J. D. Watson and F. H. Crick, Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid, Nature, vol.171, p.737, 1953.

P. Belmont, J. Constant, and M. Demeunynck, Nucleic acid conformation diversity: from structure to function and regulation, Chem. Soc. Rev, vol.30, issue.1, pp.70-81, 2001.

M. Manoharan, Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action, Antisense Nucleic Acid Drug. Dev, vol.12, issue.2, pp.103-128, 2002.

J. B. Opalinska and A. M. Gewirtz, Nucleic-acid therapeutics: basic principles and recent applications, Nat. Rev. Drug. Discov, vol.1, issue.7, pp.503-514, 2002.

E. S. Lander, The Heroes of CRISPR, Cell, vol.2016, issue.1-2, pp.18-28

J. A. Doudna, E. Charpentier, P. D. Hsu, E. S. Lander, and F. Zhang, Development and Applications of CRISPR-Cas9 for Genome Engineering, Science, vol.2014, issue.6213, pp.1262-1278, 2014.

S. T. Crooke, Progress in antisense technology, Annu. Rev. Med, vol.55, pp.61-95, 2004.

J. Winkler, Oligonucleotide conjugates for therapeutic applications, Ther. Deliv, vol.2013, issue.4, pp.791-809

J. Zhou, K. Shum, J. C. Burnett, J. J. Rossi, X. Shen et al., Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs, Nucleic Acids Res, vol.2013, issue.1, pp.1584-1600, 2018.

M. D. De-smet, C. J. Meenken, G. J. Van-den-horn, A. Van-aerschot, A. Khvorova et al., Fomivirsen -a phosphorothioate oligonucleotide for the treatment of CMV retinitis, Ocul. Immunol. Inflamm, vol.7, issue.3-4, pp.238-248, 1999.

S. Karaki, S. Benizri, R. Mejías, V. Baylot, N. Branger et al., Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas, RNA interference. Drugging RNAi. Science, vol.258, issue.4, pp.543-552, 2001.

H. Ledford, Gene-silencing technology gets first drug approval after 20-year wait, Nature, vol.2018, issue.7718, pp.291-292

A. Latorre, A. Latorre, A. Somoza, N. M. Bell, and J. Micklefield, Chemical modification of oligonucleotides for therapeutic, bioanalytical and other applications, Angew. Chem. Int. Ed, vol.55, issue.11, pp.2691-2703, 2009.

Y. Singh, P. Murat, and E. Defrancq, Recent developments in oligonucleotide conjugation, Chem. Soc. Rev, issue.6, pp.2054-2070, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01658561

M. Manoharan, 2?-Carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation, Biochim. Biophys. Acta, issue.1, pp.117-130, 1999.

K. Singh, S. Koshkin, A. Wengel, J. Nielsen, and P. , LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition, Chemical Communications, issue.4, pp.455-456, 1998.

E. M. Straarup, N. Fisker, M. Hedtjarn, M. W. Lindholm, C. Rosenbohm et al., Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates, Nucleic Acids Res, issue.20, pp.7100-7111, 2010.

J. K. Nair, J. L. Willoughby, A. Chan, K. Charisse, M. R. Alam et al., Multivalent N-Acetylgalactosamine-Conjugated siRNA Localizes in Hepatocytes and Elicits Robust RNAi-Mediated Gene Silencing, J. Am. Chem. Soc, vol.136, issue.49, pp.16958-16961, 2014.

M. Wang and X. Jiang, Sulfur-Sulfur Bond Construction, Top. Curr. Chem. (Cham, vol.376, issue.2, p.14, 2018.

R. Singh and G. M. Whitesides, Thiol-disulfide interchange, The chemistry of sulphur-containing functional groups, pp.633-657, 1993.

G. Saito, J. A. Swanson, and K. Lee, Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities, Adv. Drug. Deliver. Rev, vol.55, issue.2, pp.199-215, 2003.

J. M. Estrela, A. Ortega, and E. Obrador, Glutathione in cancer biology and therapy, Crit. Rev

D. Scibior, M. Skrzycki, M. Podsiad, H. Czeczot, ). R. et al., Glutathione level and glutathione-dependent enzyme activities in blood serum of patients with gastrointestinal tract tumors, Glutathione levels and variability in breast tumors and normal tissue, vol.43, pp.783-787, 1993.

Y. Guo, H. Wang, Y. Sun, B. Qu, A. M. Piggott et al., A disulfide bound-molecular beacon as a fluorescent probe for the detection of reduced glutathione and its application in cells, Chem. Commun, vol.2012, issue.26, pp.8769-8773, 2007.

D. S. Sem, K. G. Reddie, W. H. Humphries, C. P. Bain, C. K. Payne et al., Fluorescence-based detection of thiols in vitro and in vivo using dithiol probes, Anal. Biochem, vol.352, issue.2, pp.680-683, 2006.

, Cleavage-Triggered Chemosensors and Their Biological Applications, Chem. Rev, vol.113, issue.7, pp.5071-5109, 2013.

B. Yin, M. You, W. Tan, B. Ye, A. M. Pujol et al., Mercury(II) Ions Detection via Pyrene-Mediated Photolysis of Disulfide Bonds. Chemistry (Weinheim an der Bergstrasse, J. Am. Chem. Soc, vol.18, issue.5, pp.286-296, 2011.

M. De-stefano and K. Vesterager-gothelf, Dynamic Chemistry of Disulfide Terminated Oligonucleotides in Duplexes and Double-Crossover Tiles, ChemBioChem, vol.2016, issue.12, pp.1122-1126

D. Li, X. Wang, F. Shi, R. Sha, N. C. Seeman et al., Specific covalent binding of a NF-?B decoy hairpin oligonucleotide targeted to the p50 subunit and induction of apoptosis, Org. Biomol. Chem, vol.12, issue.44, pp.115-118, 2003.

V. Patzke, J. S. Mccaskill, and G. Von-kiedrowski, DNA with 3?-5?-Disulfide Links-Rapid Chemical Ligation through Isosteric Replacement, Angew. Chem. Int. Ed, vol.53, issue.16, pp.4222-4226, 2014.

D. J. Hansen, I. Manuguerra, M. B. Kjelstrup, and K. V. Gothelf, Dynamic Combinatorial Chemistry, and PCR Amplification of 3 '-5 ' and 3 '-6 ' Disulfide-linked Oligonucleotides, Angew. Chem. Int. Ed, vol.53, issue.52, pp.14415-14418, 2014.

C. W. Bradshaw, L. E. , A. Kabakibi, S. Lam, B. Liu et al., S. Sakamuri WO2015069932 (A1) Polynucleotide constructs having disulfide groups, 2015.

M. Amarzguioui, T. Holen, E. Babaie, and H. Prydz, Tolerance for mutations and chemical modifications in a siRNA, Nucleic Acids Res, vol.31, issue.2, pp.589-595, 2003.

J. A. Fidanza and L. W. Mclaughlin, Use of a thiol tether for the site-specific attachment of reporter groups to DNA, J. Org. Chem, vol.57, issue.8, pp.2340-2346, 1992.

M. Endo and T. Majima, Structural arrangement of two DNA double helices using cross-linked oligonucleotide connectors, Chem. Commun, issue.11, pp.1308-1309, 2004.

M. Endo and T. Majima, Structural arrangement of DNA constrained by a cross-linker, Org. Biomol. Chem, vol.3, issue.19, pp.3476-3478, 2005.

S. M. Gryaznov and R. L. Letsinger, Template controlled coupling and recombination of oligonucleotide blocks containing thiophosphoryl groups, Nucleic Acids Res, vol.21, issue.6, pp.1403-1408, 1993.

H. Gao, M. Yang, R. Patel, A. F. Cook, H. Gao et al., Stabilization of double-stranded oligonucleotides using backbone-linked disulfide bridges, Nucleic Acids Res, vol.23, issue.11, pp.285-292, 1995.

S. Pérez-rentero, S. Grijalvo, R. Ferreira, and R. Eritja, Synthesis of Oligonucleotides Carrying Thiol Groups Using a Simple Reagent Derived from Threoninol, Molecules, vol.2012, issue.9, pp.10026-10045

M. N. Lipsett, Disulfide Bonds in sRNA, Cold Spring Harb. Symp. Quant. Biol, p.449, 1966.

S. E. Osborne, J. Volker, S. Y. Stevens, K. J. Breslauer, and G. D. Glick, Design, synthesis, and analysis of disulfide cross-linked DNA duplexes, J. Am. Chem. Soc, vol.118, issue.48, pp.11993-12003, 1996.

G. D. Glick, Design, synthesis, and analysis of conformationally constrained nucleic acids, Biopolymers, vol.48, issue.1, pp.83-96, 1998.

G. D. Glick, S. E. Osborne, D. S. Knitt, J. P. Marino, J. Milton et al., Site-specific disulfide bridges in oligodeoxyribonucleotide duplexes containing 6-mercaptopurine and 4-thiothymine bases, J. Chem. Soc., Chem. Commun, vol.114, issue.13, pp.779-780, 1992.

S. E. Osborne and A. D. Ellington, Incorporating disulfide cross-links at the terminus of oligonucleotides via solid-phase nucleic acid synthesis, Bioorg. Med. Chem. Lett, vol.6, issue.19, pp.2339-2342, 1996.

S. Sun, X. Tang, A. Merchant, X. Hou, G. Wang et al., Synthesis of Guanosine and Deoxyguanosine Phosphoramidites with Cross-Linkable Thioalkyl Tethers for Direct Incorporation into RNA and DNA, J. Org. Chem, issue.17, p.61, 1996.

. Nucleos, . Nucleot, H. Xiaorong, W. Gang, G. Barbara et al., Preparation of DNA and RNA Fragments Containing Guanine N2-Thioalkyl Tethers, Curr Protoc Nucleic Acid Chem, vol.28, issue.1, pp.2603-2616, 1991.

A. E. Ferentz, G. L. Verdine, A. M. Macmillan, and G. L. Verdine, Aminolysis of 2?-Deoxyinosine Aryl Ethers: Nucleoside Model Studies for the Synthesis of Functionally Tethered Oligonucleotides, Nucleos. Nucleot, vol.11, issue.24, pp.2603-2616, 1990.

C. R. Allerson, S. L. Chen, and G. L. Verdine, A Chemical Method for Site-Specific Modification of RNA: The Convertible Nucleoside Approach, J. Am. Chem. Soc, vol.119, issue.32, pp.7423-7433, 1997.

X. Yao-zhong, Z. Qinguo, and P. F. Swann, Synthesis and duplex stability of oligodeoxynucleotides containing 6-mercaptopurine, Tetrahedron Lett, issue.39, pp.5837-5840, 1992.

C. R. Allerson, G. L. Verdine, D. A. Erlanson, L. Chen, G. L. Verdine et al., Trapping of a catalytic HIV reverse transcriptase·template:primer complex through a disulfide bond, J. Am. Chem. Soc, vol.2, issue.10, pp.355-364, 1993.

C. He and G. L. Verdine, Trapping Distinct Structural States of a Protein/DNA Interaction through Disulfide Crosslinking, Chem. Biol, vol.9, issue.12, pp.1297-1303, 2002.

S. Z. Timofei, N. G. Dolinnaya, A. K. Elena, G. I. Marina, V. G. Metelev et al., Covalent binding of modified nucleic acids to proteins as a method for investigation of specific proteinnucleic acid interactions, Russ. Chem. Rev, vol.74, issue.1, pp.77-95, 2005.

S. R. Paalman, D. M. Noll, N. D. Clarke, E. N. Peletskaya, P. L. Boyer et al., Formation of a covalent complex between methylguanine methyltransferase and DNA via disulfide bond formation between the active site cysteine and a thiol-containing analog of guanine, Nucleic Acids Res, vol.25, issue.9, pp.3565-3576, 1997.

R. S. Coleman, J. L. Mccary, and R. J. Perez, Thionucleoside disulfides as covalent constraints of DNA conformation, Tetrahedron, vol.55, issue.41, pp.12009-12022, 1999.

E. Gyssels, L. L. Carrette, E. Vercruysse, K. Stevens, A. Madder et al., Triplex Crosslinking through Furan Oxidation Requires Perturbation of the Structured Triple-Helix, Biochemistry, vol.16, issue.4, pp.1456-1464, 1998.

K. Hoogsteen, H. Tateishi-karimata, M. Nakano, and N. Sugimoto, The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine, Acta Crystallogr, vol.16, issue.9, p.3593, 1963.

N. C. Chaudhuri and E. T. Kool, Very High Affinity DNA Recognition by Bicyclic and Cross-Linked Oligonucleotides, J. Am. Chem. Soc, vol.117, issue.42, pp.10434-10442, 1995.

F. A. Rogers, M. Manoharan, P. Rabinovitch, D. C. Ward, and P. M. Glazer, Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides, Nucleic Acids Res, vol.32, issue.22, pp.6595-6604, 2004.

D. R. Corey, Synthesis of oligonucleotide-peptide and oligonucleotide-protein conjugates

M. Antopolsky, E. Azhayeva, U. Tengvall, S. Auriola, I. Jääskeläinen et al., Immobilization of Oligonucleotides onto a Glass Support via Disulfide Bonds: A Method for Preparation of DNA Microarrays, Bioconjugate Chem, vol.283, issue.4, pp.5305-5321, 1987.

R. K. Gaur, P. Sharma, and K. C. Gupta, A simple method for the introduction of thiol group at 5'-termini of oligodeoxynucleotides, Nucleic Acids Res, vol.17, issue.11, p.4404, 1989.

G. T. Hermanson and B. Techniques, , 2013.

C. E. Prater and P. S. Miller, 3'-Methylphosphonate-Modified Oligo-2'-O-methylribonucleotides and Their Tat Peptide Conjugates: Uptake and Stability in Mouse Fibroblasts in Culture, Bioconjugate Chem, vol.15, issue.3, pp.498-507, 2004.

R. Eritja, A. Pons, M. Escarcellar, E. Giralt, F. Albericio et al., Toward high yield synthesis of peptide-oligonucleotide chimera through a disulfide bridge: A simplified method for oligonucleotide activation, Bioorg. Med. Chem. Lett, vol.47, issue.24, pp.5084-5087, 1991.

W. H. Kuijpers and C. A. Van-boeckel, A new strategy for the solid-phase synthesis of 5?-thiolated oligodeoxynucleotides, Tetrahedron, issue.47, pp.10931-10944, 1993.

E. Vivès and B. Lebleu, Selective coupling of a highly basic peptide to an oligonucleotide

A. Astriab-fisher, D. S. Sergueev, M. Fisher, B. R. Shaw, R. L. Juliano et al., Synthesis, cellular uptake and HIV-1 Tat-dependent trans-activation inhibition activity of oligonucleotide analogues disulphide-conjugated to cell-penetrating peptides, Biochem. Pharmacol, vol.38, issue.7, pp.532-538, 1994.

A. Muratovska and M. R. Eccles, Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells, FEBS Lett, vol.558, issue.1-3, pp.63-68, 2004.

H. Margus, K. Padari, and M. Pooga, Cell-penetrating peptides as versatile vehicles for oligonucleotide delivery, Mol. Ther, vol.2012, issue.3, pp.525-533

B. C. Chu and L. E. Orgel, Ligation of oligonucleotides to nucleic acids or proteins via disulfide bonds, Nucleic Acids Res, vol.16, issue.9, pp.3671-3691, 1988.

S. B. Rajur, C. M. Roth, J. R. Morgan, and M. L. Yarmush, Covalent Protein?Oligonucleotide Conjugates for Efficient Delivery of Antisense Molecules, Bioconjugate Chem, vol.8, issue.6, pp.935-940, 1997.

Y. Singh, N. Spinelli, E. Defrancq, and P. Dumy, A novel heterobifunctional linker for facile access to bioconjugates, Org. Biomol. Chem, vol.4, issue.7, pp.1413-1419, 2006.

M. Thomas, S. A. Kularatne, L. Qi, P. Kleindl, C. P. Leamon et al., Ligandtargeted delivery of small interfering RNAs to malignant cells and tissues, Ann. NY Acad. Sci, vol.1175, pp.32-39, 2009.

N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low et al., Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay, Anal. Biochem, vol.338, issue.2, pp.284-293, 2005.

P. S. Low, W. A. Henne, and D. D. Doorneweerd, Discovery and Development of Folic-Acid-Based Receptor Targeting for Imaging and Therapy of Cancer and Inflammatory Diseases, Accounts Chem. Res, vol.41, issue.1, pp.120-129, 2008.

G. Sengle, A. Jenne, P. S. Arora, B. Seelig, J. S. Nowick et al., Synthesis, incorporation efficiency, and stability of disulfide bridged functional groups at RNA 5'-ends, Bioorg. Med. Chem, vol.8, issue.6, pp.1317-1329, 2000.

F. E. Alemdaroglu and A. Herrmann, DNA meets synthetic polymers-highly versatile hybrid materials, Org. Biomol. Chem, vol.5, issue.9, pp.1311-1320, 2007.

S. Jung, S. H. Lee, H. Mok, H. J. Chung, T. G. Park et al., Multifunctional siRNA delivery system: polyelectrolyte complex micelles of six-arm PEG conjugate of siRNA and cell penetrating peptide with crosslinked fusogenic peptide, Supramolecular Assemblies for the Cytoplasmic Delivery of Antisense Oligodeoxynucleotide: Polyion Complex (PIC) Micelles Based on Poly(ethylene glycol)-SS-Oligodeoxynucleotide Conjugate, vol.144, pp.2449-2454, 2005.

S. Y. Lee, M. S. Huh, S. Lee, S. J. Lee, H. Chung et al., Stability and cellular uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for efficient gene silencing, J. Control. Release, issue.3, pp.339-346, 2010.

M. Vicente, P. Daniel, P. Enrique, and G. Anna, Linking the 3? Ends of Oligonucleotide Duplexes with Cystine Disulfide Bridges, Eur. J. Org. Chem, issue.4, pp.958-963, 2006.

R. L. Juliano, Intracellular Delivery of Oligonucleotide Conjugates and Dendrimer Complexes

, Ann. NY Acad. Sci, vol.1082, issue.1, pp.18-26, 2006.

S. K. Hamilton, A. L. Sims, J. Donavan, and E. Harth, Non-viral siRNA delivery vectors: dendritic molecular transporter and molecular transporter nanovectors for target gene silencing, Polymer Chem, vol.2011, issue.2, pp.441-446

S. K. Hamilton, M. R. Ikizler, C. Wallen, P. F. Wright, E. Harth et al., Effective delivery of IgGantibodies into infected cells via dendritic molecular transporter conjugate IgGMT, Pharmaceuticals, vol.4, issue.12, pp.636-666, 2008.

A. M. Derfus, A. A. Chen, D. Min, E. Ruoslahti, S. N. Bhatia et al., A Reactive Peptidic Linker for Self-Assembling Hybrid Quantum Dot?DNA Bioconjugates, Bioconjugate Chem, vol.18, issue.5, pp.1741-1748, 2007.

J. A. Dougan, C. Karlsson, W. E. Smith, and D. Graham, Enhanced oligonucleotide-nanoparticle conjugate stability using thioctic acid modified oligonucleotides, Nucleic Acids Res, vol.35, issue.11, pp.3668-3675, 2007.

L. S. Hyeon, M. Hyejung, P. T. Gwan, -. Di, and T. Copolymers, PEG Density Effect of Polyelectrolyte Complexes on Cellular Uptake and Gene Silencing Efficiency. Macromol. Biosci, vol.11, issue.3, pp.410-418, 2011.

A. Semenyuk, A. Földesi, T. Johansson, C. Estmer-nilsson, P. Blomgren et al., Synthesis of RNA Using 2'-O-DTM Protection, J. Am. Chem. Soc, vol.128, issue.38, pp.12356-12357, 2006.

M. Dirin, E. Urban, C. R. Noe, and J. Winkler, Fragment-based solid-phase assembly of oligonucleotide conjugates with peptide and polyethylene glycol ligands, Eur. J. Med. Chem, vol.121, pp.132-142, 2016.

Y. Ochi, O. Nakagawa, K. Sakaguchi, S. Wada, and H. Urata, A post-synthetic approach for the synthesis of 2'-O-methyldithiomethyl-modified oligonucleotides responsive to a reducing environment, Chem. Commun, issue.69, pp.7620-7622, 2013.

A. Biscans, Synthèse et évaluation d'oligoribonucléotides 2'-O-modifiés par des groupements biolabiles acétalesters ou alkyldithiométhyles dans une approche de prodrogues d'ARN interférents, 2015.

A. Biscans, S. Rouanet, J. Vasseur, C. Dupouy, and F. Debart, A versatile post-synthetic method on a solid support for the synthesis of RNA containing reduction-responsive modifications, Org. Biomol. Chem, issue.29, pp.7010-7017, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02197255

C. Napoli, C. Lemieux, and R. Jorgensen, Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans, Plant. Cell, vol.2, issue.4, pp.279-289, 1990.

A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, vol.391, issue.6669, pp.806-811, 1998.

P. D. Zamore, T. Tuschl, P. A. Sharp, and D. P. Bartel, RNAi: double-stranded RNA directs the ATPdependent cleavage of mRNA at 21 to 23 nucleotide intervals, Cell, vol.101, issue.1, pp.25-33, 2000.

S. M. Elbashir, W. Lendeckel, and T. Tuschl, RNA interference is mediated by 21-and 22-nucleotide RNAs, Genes Dev, vol.15, issue.2, pp.188-200, 2001.

S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells, Nature, issue.6836, pp.494-498, 2001.

C. D. Novina and P. A. Sharp, The RNAi revolution, Nature, vol.430, pp.161-164, 2004.

J. W. Engels and M. Manoharan, RNA interference and chemically modified small interfering RNAs, Curr Opin Chem Biol, vol.30, issue.3, pp.570-579, 2004.

E. Bernstein, A. A. Caudy, S. M. Hammond, and G. J. Hannon, Role for a bidentate ribonuclease in the initiation step of RNA interference, Nature, vol.409, issue.6818, pp.363-366, 2001.

M. Rao and S. Sockanathan, Molecular mechanisms of RNAi: implications for development and disease, Birth Defects Res. C. Embryo. Today, vol.75, issue.1, pp.28-42, 2005.

D. S. Schwarz, G. Hutvagner, T. Du, Z. Xu, N. Aronin et al., Asymmetry in the assembly of the RNAi enzyme complex, Cell, vol.115, issue.2, pp.209-216, 2003.

C. Matranga, Y. Tomari, C. Shin, D. P. Bartel, and P. D. Zamore, Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes, Cell, vol.123, issue.4, pp.607-620, 2005.

G. Meister, M. Landthaler, A. Patkaniowska, Y. Dorsett, G. Teng et al., Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs, Mol. Cell, vol.15, issue.2, pp.185-197, 2004.

J. Liu, M. A. Carmell, F. V. Rivas, C. G. Marsden, J. M. Thomson et al., Argonaute2 is the catalytic engine of mammalian RNAi, Science, issue.5689, pp.1437-1441, 2004.

D. W. Bartlett and M. E. Davis, Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging, Nucleic Acids Res, vol.34, issue.1, pp.322-333, 2006.

G. Sui, C. Soohoo, B. Affar-el, F. Gay, Y. Shi et al., A DNA vector-based RNAi technology to suppress gene expression in mammalian cells, Proc. Natl. Acad. Sci, pp.5515-5520, 2002.

H. Song and P. Yang, Construction of shRNA lentiviral vector, Am. J. Med. Sci, vol.2010, issue.12, pp.598-601

C. Chakraborty, A. R. Sharma, G. Sharma, C. G. Doss, and S. S. Lee, Therapeutic miRNA and siRNA: Moving from Bench to Clinic as Next Generation Medicine, Mol. Ther. Nucleic Acids, vol.8, pp.132-143, 2017.

E. Song, S. K. Lee, J. Wang, N. Ince, N. Ouyang et al., RNA interference targeting Fas protects mice from fulminant hepatitis, Nat. Med, vol.9, issue.3, pp.347-351, 2003.

D. Haussecker, Current issues of RNAi therapeutics delivery and development, J. Control. Release, vol.195, pp.49-54, 2014.

H. Wood, FDA approves patisiran to treat hereditary transthyretin amyloidosis, Nat. Rev. Neurology, vol.14, issue.10, pp.570-570, 2018.

S. Samakoglu, L. Lisowski, T. Budak-alpdogan, Y. Usachenko, S. Acuto et al., A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference, Nat. Biotechnol, vol.24, pp.89-94, 2005.

C. Mueller, Q. Tang, A. Gruntman, K. Blomenkamp, J. Teckman et al., Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles, Mol. Ther, vol.2012, issue.3, pp.590-600

T. W. Geisbert, A. C. Lee, M. Robbins, J. B. Geisbert, A. N. Honko et al., Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study, Lancet, vol.2010, issue.9729, pp.1896-1905

C. D. Novina, M. F. Murray, D. M. Dykxhoorn, P. J. Beresford, J. Riess et al., siRNA-directed inhibition of HIV-1 infection, Nat. Med, vol.8, issue.7, pp.681-686, 2002.

S. Li, S. Chono, L. Huang, P. Guo, O. Coban et al., Efficient Oncogene Silencing and Metastasis Inhibition via Systemic Delivery of siRNA, Mol. Ther, vol.16, issue.5, pp.942-946, 2008.

J. Trebley, S. Hoeprich, S. Guo, Y. Shu, Z. Wang et al., Engineering RNA for Targeted siRNA Delivery and Medical Application, Adv. Drug. Deliver. Rev, vol.62, issue.6, pp.2983-2995, 2010.

M. Izquierdo, Short interfering RNAs as a tool for cancer gene therapy, Cancer Gene Ther, vol.12, issue.3, pp.217-227, 2005.

J. Hong, Z. Qian, S. Shen, T. Min, C. Tan et al., High doses of siRNAs induce eri-1 and adar-1 gene expression and reduce the efficiency of RNA interference in the mouse, Biochem. J, vol.390, pp.675-679, 2005.

Z. Meng and M. Lu, RNA Interference-Induced Innate Immunity, Off-Target Effect, or Immune Adjuvant? Front, vol.8, p.331, 2017.

M. Robbins, A. Judge, and I. Maclachlan, siRNA and innate immunity, Oligonucleotides, vol.19, issue.2, pp.89-102, 2009.

A. L. Jackson, S. R. Bartz, J. Schelter, S. V. Kobayashi, J. Burchard et al., 3' UTR seed matches, but not overall identity, are associated with RNAi off-targets, Nat. Biotechnol, vol.21, issue.6, pp.199-204, 2003.

L. Aagaard, J. J. Rossi, M. A. Behlke, K. Gavrilov, W. M. Saltzman et al., Functional Delivery of siRNA by Disulfide-Constrained Cyclic Amphipathic Peptides, Adv. Drug. Deliver. Rev, vol.59, issue.2-3, pp.584-589, 2006.

G. F. Deleavey, M. J. Damha, S. Shukla, C. S. Sumaria, P. I. Pradeepkumar et al., Exploring chemical modifications for siRNA therapeutics: a structural and functional outlook, Future Med. Chem, vol.19, issue.8, pp.2221-2242, 2012.

M. Manoharan, A. Akinc, R. K. Pandey, J. Qin, P. Hadwiger et al., Unique genesilencing and structural properties of 2'-fluoro-modified siRNAs, Angew. Chem. Int. Ed, vol.50, issue.10, pp.2284-2288, 2011.

T. P. Prakash, C. R. Allerson, P. Dande, T. A. Vickers, N. Sioufi et al., Positional Effect of Chemical Modifications on Short Interference RNA Activity in Mammalian Cells, J. Med. Chem, issue.13, pp.4247-4253, 2005.

M. J. Damha, C. J. Wilds, A. Noronha, I. Brukner, G. Borkow et al., Hybrids of RNA and Arabinonucleic Acids (ANA and 2'F-ANA) Are Substrates of Ribonuclease H, J. Am. Chem. Soc, vol.120, issue.49, pp.12976-12977, 1998.

M. Fortin, H. D'anjou, M. Higgins, J. Gougeon, P. Aubé et al., A multi-target antisense approach against PDE4 and PDE7 reduces smoke-induced lung inflammation in mice, Resp. Res, vol.10, issue.1, p.39, 2009.

A. Kalota, L. Karabon, C. R. Swider, E. Viazovkina, M. Elzagheid et al., 2'-deoxy-2'-fluoro-beta-D-arabinonucleic acid (2'F-ANA) modified oligonucleotides (ON) effect highly efficient, and persistent, gene silencing, Nucleic Acids Res, vol.34, issue.2, pp.451-461, 2006.

S. Montero, G. F. Deleavey, N. Martín-pintado, J. F. Fakhoury, C. González et al., Locked 2?-Deoxy-2?,4?-Difluororibo Modified Nucleic Acids: Thermal Stability, Structural Studies, and siRNA Activity, vol.10, pp.2016-2023, 2015.

C. Selvam, D. Mutisya, S. Prakash, K. Ranganna, and R. Thilagavathi, Therapeutic potential of chemically modified siRNA: Recent trends, Chem. Biol. Drug. Des, vol.90, issue.5, pp.665-678, 2017.

C. Ducho, F. Debart, C. Dupouy, and J. Vasseur, Enzymatically Cleavable siRNA Prodrugs: a New Paradigm for the Intracellular Delivery of RNA-Based Therapeutics, Beilstein J. Org. Chem, vol.2015, issue.10, pp.436-469, 2018.

N. Parey, C. Baraguey, J. Vasseur, and F. Debart, First Evaluation of Acyloxymethyl or Acylthiomethyl Groups as Biolabile 2'-O-Protections of RNA, Org. Lett, vol.8, issue.17, pp.3869-3872, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00097408

A. R. Martin, T. Lavergne, J. Vasseur, and F. Debart, Assessment of new 2'-O-acetalester protecting groups for regular RNA synthesis and original 2'-modified proRNA, Bioorg. Med. Chem. Lett, vol.19, issue.15, pp.4046-4049, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00412360

T. Lavergne, J. R. Bertrand, J. J. Vasseur, and F. Debart, A Base-Labile Group for 2?-OH Protection of Ribonucleosides: A Major Challenge for RNA Synthesis, Chem. Eur. J, vol.14, issue.30, pp.9135-9138, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00346580

T. Lavergne, C. Baraguey, C. Dupouy, N. Parey, W. Wuensche et al., Synthesis and preliminary evaluation of pro-RNA 2'-O-masked with biolabile pivaloyloxymethyl groups in an RNA interference assay, J. Org. Chem, issue.14, pp.5719-5731, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00616629

A. Biscans, M. Bos, A. R. Martin, N. Ader, G. Sczakiel et al., Direct synthesis of partially modified 2'-O-pivaloyloxymethyl RNAs by a base-labile protecting group strategy and their potential for prodrug-based gene-silencing applications, Chembiochem, vol.15, issue.18, pp.2674-2679, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101605

A. Biscans, J. Bertrand, J. Dubois, J. Rüger, J. Vasseur et al., Lipophilic 2?-O-Acetal Ester RNAs: Synthesis, Thermal Duplex Stability, Nuclease Resistance, Cellular Uptake, and siRNA Activity after Spontaneous Naked Delivery, ChemBioChem, vol.2016, issue.21, pp.2054-2062
URL : https://hal.archives-ouvertes.fr/hal-02197248

A. Biscans, S. Rouanet, J. Bertrand, J. Vasseur, C. Dupouy et al., Synthesis, binding, nuclease resistance and cellular uptake properties of 2'-O-acetalester-modified oligonucleotides containing cationic groups, Bioorg. Med. Chem, issue.17, pp.5360-5368, 2015.

Y. Ochi, M. Imai, O. Nakagawa, J. Hayashi, S. Wada et al., Gene silencing by 2'-Omethyldithiomethyl-modified siRNA, a prodrug-type siRNA responsive to reducing environment, Bioorg. Med. Chem. Lett, vol.26, issue.3, pp.845-848, 2016.

J. Hayashi, M. Nishigaki, Y. Ochi, S. Wada, F. Wada et al., Effective gene silencing activity of prodrug-type 2?-O-methyldithiomethyl siRNA compared with non-prodrug-type 2?-O-methyl siRNA, Bioorg. Med. Chem. Lett, pp.2171-2174, 2018.

A. L. Ramon, J. R. Bertrand, H. De-martimprey, G. Bernard, G. Ponchel et al., siRNA associated with immunonanoparticles directed against cd99 antigen improves gene expression inhibition in vivo in Ewing's sarcoma, J. Mol. Recognit, vol.26, issue.7, pp.318-329, 2013.

N. Riggi, L. Cironi, P. Provero, M. L. Suva, K. Kaloulis et al., Development of Ewing's sarcoma from primary bone marrow-derived mesenchymal progenitor cells, Cancer Res, vol.65, issue.24, pp.11459-11468, 2005.

F. Gauthier, F. Beltran, A. Biscans, F. Debart, C. Dupouy et al., A 2',2'-disulfidebridged dinucleotide conformationally locks RNA hairpins, Org. Biomol. Chem, issue.17, pp.3181-3188, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02197157

Y. Zou, P. Tiller, I. W. Chen, M. Beverly, and J. Hochman, Metabolite identification of small interfering RNA duplex by high-resolution accurate mass spectrometry, Rapid. Commun. Mass Sp, vol.22, issue.12, pp.1871-1881, 2008.

J. Hong, Y. Huang, J. Li, F. Yi, J. Zheng et al., Comprehensive analysis of sequence-specific stability of siRNA, FASEB J, issue.12, pp.4844-4855, 2010.

A. Martinez-ramirez, S. Rodriguez-perales, B. Melendez, B. Martinez-delgado, M. Urioste et al., Characterization of the A673 cell line (Ewing tumor) by molecular cytogenetic techniques, Cancer Genet. Cytogen, vol.141, issue.2, pp.138-142, 2003.

G. Barbaro, G. Di-lorenzo, M. Soldini, S. Parrotto, G. Bellomo et al., Hepatic glutathione deficiency in chronic hepatitis C: quantitative evaluation in patients who are HIV positive and HIV negative and correlations with plasmatic and lymphocytic concentrations and with the activity of the liver disease, Am. J. Gastroenterol, vol.91, issue.12, pp.2569-2573, 1996.

A. Pompon, I. Lefebvre, and J. Imbach, On-line internal surface reversed-phase cleaning": The direct HPLC analysis of crude biological samples Application to the kinetics of degradation of oligonucleotides in cell culture medium, Biochem. Pharmacol, vol.43, issue.8, pp.1769-1775, 1992.

B. Dalby, S. Cates, A. Harris, E. C. Ohki, M. L. Tilkins et al., Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications, Methods, vol.33, issue.2, pp.95-103, 2004.

F. Gauthier, S. Claveau, J. Bertrand, J. Vasseur, C. Dupouy et al., Gymnotic delivery and gene silencing activity of reduction-responsive siRNAs bearing lipophilic disulfidecontaining modifications at 2?-position, Bioorg. Med. Chem, vol.26, issue.16, pp.4635-4643, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02197153

S. H. Lee, J. Y. Lee, J. S. Kim, T. G. Park, and H. Mok, Amphiphilic siRNA Conjugates for Co-Delivery of Nucleic Acids and Hydrophobic Drugs, Bioconjugate Chem, vol.2017, issue.8, pp.2051-2061

M. Saraswathy and S. Gong, Recent developments in the co-delivery of siRNA and small molecule anticancer drugs for cancer treatment, Mater. Today, vol.17, issue.6, pp.298-306, 2014.

N. S. Motlagh, P. Parvin, F. Ghasemi, and F. Atyabi, Fluorescence properties of several chemotherapy drugs: doxorubicin, paclitaxel and bleomycin, Biomed. Opt. Express, vol.7, issue.6, pp.2400-2406, 2016.

C. Cristina, X. S. Renato, C. Susana, C. Sonia, J. O. Paulo et al., Doxorubicin: The Good, the Bad and the Ugly Effect, Curr. Med. Chem, issue.25, pp.3267-3285, 2009.

A. Turner, L. Li, T. Pilli, L. Qian, E. L. Wiley et al., MADD Knock-Down Enhances Doxorubicin and TRAIL Induced Apoptosis in Breast Cancer Cells, PLOS ONE, vol.2013, issue.2, p.56817

A. R. Rubio, N. Busto, J. M. Leal, and B. Garcia, Doxorubicin binds to duplex RNA with higher affinity than ctDNA and favours the isothermal denaturation of triplex RNA, RSC Advances, vol.6, issue.103, pp.101142-101152, 2016.

D. Agudelo, P. Bourassa, G. Bérubé, and H. Tajmir-riahi, Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: Structural features and biological implications, Int. J. Biol. Macromol, vol.66, pp.144-150, 2014.

C. H. Stuart, D. A. Horita, M. J. Thomas, F. R. Salsbury, M. O. Lively et al., Site-Specific DNA-Doxorubicin Conjugates Display Enhanced Cytotoxicity to Breast Cancer Cells, Bioconjugate Chem, vol.25, issue.2, pp.406-413, 2014.

F. Yang, S. S. Teves, C. J. Kemp, and S. Henikoff, Doxorubicin, DNA torsion, and chromatin dynamics, Biochim. Biophys. Acta, issue.1, pp.84-89, 2014.

S. M. Cutts, A. Nudelman, A. Rephaeli, and D. R. Phillips, The power and potential of doxorubicin-DNA adducts, IUBMB Life, vol.57, issue.2, pp.73-81, 2005.

G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, and L. Gianni, Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity, Pharmacol. Rev, vol.56, issue.2, pp.185-229, 2004.

Y. Mai, J. J. Yu, B. Bartholdy, Z. Y. Xu-monette, E. E. Knapp et al., An oxidative stress-based mechanism of doxorubicin cytotoxicity suggests new therapeutic strategies in ABC-DLBCL, Cell. Biol. Toxicol, vol.2016, issue.24, pp.15-25, 2007.

D. Agudelo, P. Bourassa, M. Beauregard, G. Bérubé, and H. Tajmir-riahi, tRNA Binding to Antitumor Drug Doxorubicin and Its Analogue, vol.2013, p.69248

P. Yousefpour, F. Atyabi, E. V. Farahani, R. Sakhtianchi, and R. Dinarvand, Polyanionic carbohydrate doxorubicin-dextran nanocomplex as a delivery system for anticancer drugs: in vitro analysis and evaluations, Int. J. Nanomed, vol.6, pp.1487-1496, 2011.

D. J. Burkhart, B. L. Barthel, G. C. Post, B. T. Kalet, J. W. Nafie et al., A novel doxorubicin-glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy: distribution and efficacy in experimental human ovarian cancer, Brit. J. Cancer, vol.84, issue.24, pp.1044-1047, 1992.

M. P. Hay, W. R. Wilson, and W. A. Denny, Nitroarylmethylcarbamate prodrugs of doxorubicin for use with nitroreductase gene-directed enzyme prodrug therapy, Bioorg. Med. Chem, issue.12, pp.4043-4055, 2005.

J. A. Mackay, M. Chen, J. R. Mcdaniel, W. Liu, A. J. Simnick et al., Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumors after a single injection, Nat. Mater, vol.8, issue.12, pp.993-999, 2009.

A. Latorre, P. Couleaud, A. Aires, A. L. Cortajarena, and Á. Somoza, Multifunctionalization of magnetic nanoparticles for controlled drug release: A general approach, Eur. J. Med. Chem, vol.82, pp.355-362, 2014.

Y. H. Yu, E. Kim, D. E. Park, G. Shim, S. Lee et al., Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA, Eur. J. Pharm. Biopharm, vol.2012, issue.2, pp.268-273

T. Xia, M. Kovochich, M. Liong, H. Meng, S. Kabehie et al., Co-delivery of Doxorubicin and Bcl-2 siRNA by Mesoporous Silica Nanoparticles Enhances the Efficacy of Chemotherapy in Multidrug Resistant Cancer Cells, ACS Nano, vol.3, issue.10, pp.2673-2677, 2009.

T. Yang, B. Li, S. Qi, Y. Liu, Y. Gai et al., Co-delivery of Doxorubicin and Bmi1 siRNA by Folate Receptor Targeted Liposomes Exhibits Enhanced Anti-Tumor Effects in vitro and in vivo, Nat. Rev. Drug. Discov, vol.2014, issue.11, pp.145-160, 2005.

C. Weicai, Y. Yuanyuan, C. Du, C. Jifeng, W. Lu et al., pH-responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells, Biomaterials, vol.10, issue.13, pp.4849-4859, 2013.

Q. Zhong and S. R. Da-rocha, Poly(amidoamine) Dendrimer-Doxorubicin Conjugates: In Vitro Characteristics and Pseudosolution Formulation in Pressurized Metered-Dose Inhalers, Mol. Pharm, vol.13, issue.3, pp.1058-1072, 2016.

T. Yousef and N. Hassan, Supramolecular encapsulation of doxorubicin with ?-cyclodextrin dendrimer: in vitro evaluation of controlled release and cytotoxicity, J. Inclusion Phenom. Macro, vol.87, issue.1, pp.105-115, 2017.

R. Duncan, Polymer conjugates as anticancer nanomedicines, Nat. Rev. Cancer, vol.6, issue.9, pp.688-701, 2006.

J. Zhao, S. Feng, B. Xiao, L. Ma, D. Merlin et al., Polymers in the Co-delivery of siRNA and Anticancer Drugs for the Treatment of Drug-resistant Cancers, Expert Opin. Drug. Del, vol.10, issue.14, p.24, 2015.

J. Hoon-jeong, L. V. Christensen, J. W. Yockman, Z. Zhong, J. F. Engbersen et al., Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: Disulfide bonds boost intracellular release of the cargo, J. Controlled Release, vol.28, issue.10, pp.57-63, 2007.

A. M. Butt, M. C. Amin, H. Katas, N. A. Abdul-murad, R. Jamal et al., Doxorubicin and siRNA Codelivery via Chitosan-Coated pH-Responsive Mixed Micellar Polyplexes for Enhanced Cancer Therapy in Multidrug-Resistant Tumors, Mol. Pharm, vol.13, issue.12, pp.4179-4190, 2016.

V. Alinejad, M. Hossein-somi, B. Baradaran, P. Akbarzadeh, F. Atyabi et al., Co-delivery of IL17RB siRNA and doxorubicin by chitosan-based nanoparticles for enhanced anticancer efficacy in breast cancer cells, Biomed Pharmacother, vol.83, pp.229-240, 2016.

Y. Xia, T. Xu, C. Wang, Y. Li, Z. Lin et al., Novel functionalized nanoparticles for tumor-targeting co-delivery of doxorubicin and siRNA to enhance cancer therapy, Int. J. Nanomed, vol.13, pp.143-159, 2018.

M. E. Roth, O. Green, S. Gnaim, and D. Shabat, Dendritic, Oligomeric, and Polymeric Self-Immolative Molecular Amplification, Chem. Rev, vol.116, issue.3, pp.1309-1352, 2016.

A. Satyam, Design and synthesis of releasable folate-drug conjugates using a novel heterobifunctional disulfide-containing linker, Bioorg. Med. Chem. Lett, vol.18, issue.11, pp.3196-3199, 2008.

F. Kratz, I. A. Muller, C. Ryppa, and A. Warnecke, Prodrug strategies in anticancer chemotherapy, ChemMedChem, vol.3, issue.1, pp.20-53, 2008.

P. L. Carl, P. K. Chakravarty, and J. A. Katzenellenbogen, A novel connector linkage applicable in prodrug design, J. Med. Chem, issue.5, pp.479-480, 1981.

I. R. Vlahov, Y. Wang, P. J. Kleindl, and C. P. Leamon, Design and regioselective synthesis of a new generation of targeted chemotherapeutics. Part II: Folic acid conjugates of tubulysins and their hydrazides, Bioorg. Med. Chem. Lett, vol.18, issue.16, pp.4558-4561, 2008.

A. Alouane, R. Labruère, T. L. Saux, F. Schmidt, and L. Jullien, Self-Immolative Spacers: Kinetic Aspects, Structure-Property Relationships, and Applications, vol.54, pp.7492-7509, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02137224

X. Zhang, M. Waibel, J. Hasserodt, S. Gnaim, D. Shabat et al., A comparative study of the self-immolation of para-aminobenzylalcohol and hemithioaminal-based linkers in the context of protease-sensitive fluorogenic probes, Org. Biomol. Chem, vol.16, issue.3, pp.1777-1780, 2010.

J. L. Jourden, K. B. Daniel, and S. M. Cohen, Investigation of self-immolative linkers in the design of hydrogen peroxide activated metalloprotein inhibitors, Chem. Commun, vol.47, issue.28, pp.7968-7970, 2011.

M. A. Dewit, E. R. Gillies, A. Warnecke, and F. Kratz, (hydroxymethyl)aniline as a Building Block for Oligomers with Self-Eliminating and Multiple Release Properties, J. Am. Chem. Soc, vol.131, issue.51, pp.1546-1552, 2008.

S. Ibsen, E. Zahavy, W. Wrasdilo, M. Berns, M. Chan et al., A Novel Doxorubicin Prodrug with Controllable Photolysis Activation for Cancer Chemotherapy, New J. Chem, vol.27, issue.9, pp.492-505, 2010.

M. Shamis and D. Shabat, Single-Triggered AB6 Self-Immolative Dendritic Amplifiers

. J. Eur, M. Waibel, X. Zhang, and J. Hasserodt, Aspects of the Synthesis of an Exceptionally Preorganized Self-Immolative Spacer-Phenolate Unit, Synthesis, vol.13, issue.16, pp.318-324, 2007.

R. Erez, D. Shabat, M. Grinda, J. Clarhaut, B. Renoux et al., The azaquinone-methide elimination: comparison study of 1,6-and 1,4-eliminations under physiological conditions, A Self-Immolative Reporter For ?-Galactosidase Sensing, vol.6, pp.560-566, 2007.

C. A. Blencowe, A. T. Russell, F. Greco, W. Hayes, D. W. Thornthwaite et al., A reduction sensitive cascade biodegradable linear polymer, J. Am. Chem. Soc, vol.2011, issue.4, pp.3977-3985, 2008.

R. A. Mcbride, Degradation Kinetics and Functional Design of Linear Self-Immolative Polymers, 2013.

G. I. Peterson, M. B. Larsen, and A. J. Boydston, Controlled Depolymerization: Stimuli-Responsive Self-Immolative Polymers, Macromolecules, vol.2012, issue.18, pp.7317-7328

M. Srinivasarao and P. S. Low, Ligand-Targeted Drug Delivery, Chem. Rev, vol.2017, issue.19, pp.12133-12164

A. D. Wong, M. A. Dewit, and E. R. Gillies, Amplified release through the stimulus triggered degradation of self-immolative oligomers, dendrimers, and linear polymers, Adv. Drug. Deliver. Rev, vol.2012, issue.11, pp.1031-1045

F. M. De-groot, W. J. Loos, R. Koekkoek, L. W. Van-berkom, G. F. Busscher et al., Elongated Multiple Electronic Cascade and Cyclization Spacer Systems in Activatible Anticancer Prodrugs for Enhanced Drug Release, J. Org. Chem, issue.26, pp.8815-8830, 2001.

N. Jain, S. W. Smith, S. Ghone, and B. Tomczuk, Current ADC Linker Chemistry, Pharm. Res, vol.32, issue.11, pp.3526-3540, 2015.

T. H. Pillow, J. D. Sadowsky, D. Zhang, S. Yu, G. Rosario et al., Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates ?Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc01831a Click here for additional data file, Chem. Sci, vol.2017, issue.1, pp.366-370

P. Gomes, N. Vale, and R. Moreira, Cyclization-activated Prodrugs, Molecules, vol.12, issue.11, p.2484, 2007.

M. A. Dewit and E. R. Gillies, Design, synthesis, and cyclization of 4-aminobutyric acid derivatives: potential candidates as self-immolative spacers, Org. Biomol. Chem, vol.9, issue.6, pp.1846-1854, 2011.

C. D. Johnson, S. Lane, P. N. Edwards, and P. J. Taylor, Prodrugs based on masked lactones. Cyclization of .gamma.-hydroxy amides, J. Org. Chem, issue.21, pp.5130-5139, 1988.

K. L. Amsberry, A. E. Gerstenberger, R. T. Borchardt, D. Shan, M. G. Nicolaou et al., Amine Prodrugs Which Utilize Hydroxy Amide Lactonization. II. A Potential Esterase-Sensitive Amide Prodrug, J. Pharm. Sci, vol.8, issue.4, pp.765-767, 1991.

I. R. Vlahov, G. D. Vite, P. J. Kleindl, Y. Wang, H. K. Santhapuram et al., Regioselective synthesis of folate receptor-targeted agents derived from epothilone analogs and folic acid, Bioorg. Med. Chem. Lett, issue.15, pp.4578-4581, 2010.

A. El-alaoui, F. Schmidt, M. Amessou, M. Sarr, D. Decaudin et al., Development of a drug-release strategy based on the reductive fragmentation of benzyl carbamate disulfides, Angew. Chem. Int. Ed, vol.46, issue.34, pp.979-987, 1990.

A. K. Jain, M. G. Gund, D. C. Desai, N. Borhade, S. P. Senthilkumar et al., Mutual prodrugs containing bio-cleavable and drug releasable disulfide linkers, Bioorg. Chem, vol.49, pp.40-48, 2013.

L. R. Jones, E. A. Goun, R. Shinde, J. B. Rothbard, C. H. Contag et al., Releasable Luciferin?Transporter Conjugates: Tools for the Real-Time Analysis of Cellular Uptake and Release, J. Am. Chem. Soc, vol.128, issue.20, pp.6526-6527, 2006.

M. Lapeyre, J. Leprince, M. Massonneau, H. Oulyadi, P. Renard et al., Aryldithioethyloxycarbonyl (Ardec): A New Family of Amine Protecting Groups Removable under Mild Reducing Conditions and Their Applications to Peptide Synthesis, Adv. Healthc. Mater, vol.12, issue.13, pp.1887-1890, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01962803

M. Gund, A. Khanna, N. Dubash, A. Damre, K. S. Singh et al., Water-soluble prodrugs of paclitaxel containing self-immolative disulfide linkers, Bioorg. Med. Chem. Lett, vol.25, issue.1, pp.122-127, 2015.

A. ;. , L. C. Somoza-calatrava, Á. Couleaud, P. Ocampo-garcia, and S. , Aires Trapote, A.; Latorre Lozano, A. WO2016150521 Functionalised magnetic nanoparticles, 2016.

K. Piorecka, W. Stanczyk, and M. Florczak, NMR analysis of antitumor drugs: Doxorubicin, daunorubicin and their functionalized derivatives, Tetrahedron Lett, vol.2017, issue.2, pp.152-155

V. Metelev, A. Romanenkov, E. Kubareva, E. Zubin, N. Polouchine et al., Structure-based cross-linking of NF-kappa B p50 homodimer and decoy bearing a novel 2 '-disulfide trapping site, IUBMB Life, vol.58, issue.11, pp.654-658, 2006.

R. Xu, M. Fisher, R. L. Juliano, Y. Tian, L. Bromberg et al., Complexation and release of doxorubicin from its complexes with pluronic P85-b-poly(acrylic acid) block copolymers, Targeted delivery of doxorubicin: Drug delivery system based on PAMAM dendrimers. Biochemistry (Moscow) 2013, vol.22, pp.884-894, 2007.

D. Kaushik and G. Bansal, Four new degradation products of doxorubicin: An application of forced degradation study and hyphenated chromatographic techniques, J. Pharm. Anal, vol.5, issue.5, pp.285-295, 2015.

G. D. Nina, M. Z. Eugeny, A. K. Elena, S. Z. Timofey, S. O. Tatiana et al., Design and Synthesis of 2-Functionalised Oligonucleotides. Their Application for Covalent Trapping the Protein -DNA Complexes, Solid-Phase Synthesis of Oligonucleotide Conjugates Useful for Delivery and Targeting of Potential Nucleic Acid Therapeutics, vol.13, pp.1029-1049, 2009.

J. H. Jeong, H. Mok, Y. Oh, T. G. Park, and R. L. Juliano, The delivery of therapeutic oligonucleotides, Bioconjugate Chem, vol.20, issue.6, pp.6518-6548, 2009.

X. Ming and B. Laing, Bioconjugates for targeted delivery of therapeutic oligonucleotides, Adv. Drug. Deliver. Rev, vol.87, pp.81-89, 2015.

C. D. Spicer, E. T. Pashuck, and M. M. Stevens, Achieving Controlled Biomolecule-Biomaterial Conjugation, Chem. Rev, vol.118, issue.16, pp.7702-7743, 2018.

K. Lu, Q. Duan, L. Ma, and D. Zhao, Chemical Strategies for the Synthesis of Peptide?Oligonucleotide Conjugates, Bioconjugate Chem, vol.21, issue.2, pp.187-202, 2010.

T. S. Zatsepin, T. S. Oretskaya, A. Aviñó, S. M. Ocampo, R. Lucas et al., Synthesis and in vitro inhibition properties of siRNA conjugates carrying glucose and galactose with different presentations, Chem. Biodivers, vol.1, issue.10, pp.751-757, 2004.

Y. Ikeda, D. Kubota, and Y. Nagasaki, Simple Solid-Phase Synthesis and Biological Properties of Carbohydrate?Oligonucleotide Conjugates Modified at the 3?-Terminus, Bioconjugate Chem, vol.21, issue.9, pp.1685-1690, 2010.

A. Sato, M. Takagi, A. Shimamoto, S. Kawakami, and M. Hashida, Small interfering RNA delivery to the liver by intravenous administration of galactosylated cationic liposomes in mice, Biomaterials, vol.28, issue.7, pp.1434-1442, 2007.

S. Sonoke, T. Ueda, K. Fujiwara, K. Kuwabara, and J. Yano, Galactose-modified cationic liposomes as a liver-targeting delivery system for small interfering RNA, Biol. Pharm. Bull, vol.34, issue.8, pp.1338-1342, 2011.

A. Akinc, W. Querbes, S. De, J. Qin, M. Frank-kamenetsky et al., Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice, siRNA Conjugates Carrying Sequentially Assembled Trivalent N-Acetylgalactosamine Linked Through Nucleosides Elicit Robust Gene Silencing In Vivo in Hepatocytes, vol.18, pp.1181-1187, 2010.

B. Ugarte-uribe, S. Pérez-rentero, R. Lucas, A. Aviñó, J. J. Reina et al., Synthesis, Cell-Surface Binding, and Cellular Uptake of Fluorescently Labeled Glucose?DNA Conjugates with Different Carbohydrate Presentation, Bioconjugate Chem, issue.7, pp.1280-1287, 2010.

L. Venturelli, S. Nappini, M. Bulfoni, G. Gianfranceschi, S. Dal-zilio et al., Glucose is a key driver for GLUT1-mediated nanoparticles internalization in breast cancer cells, Sci. Rep, vol.6, p.21629, 2016.

S. Mukhopadhyay, U. Maitra, V. Noponen, H. Belt, M. Lahtinen et al., Bile acid-cysteamine conjugates: Structural properties, gelation, and toxicity evaluation, Curr Sci, vol.87, issue.12, pp.193-203, 2004.

M. Wammers, A. K. Schupp, J. G. Bode, C. Ehlting, S. Wolf et al., Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages, J. Leukocyte Biol, vol.8, issue.1, pp.1253-1264, 2013.

A. Bajaj, P. Kondaiah, S. Bhattacharya, M. Raouane, D. Desmaële et al., Effect of the Nature of the Spacer on Gene Transfer Efficacies of Novel Thiocholesterol Derived Gemini Lipids in Different Cell Lines: A Structure-Activity Investigation, Bioconjugate Chem, vol.2012, issue.8, pp.1091-1104, 2008.

M. Danko, E. Szabo, and P. Hrdlovic, Synthesis and spectral characteristics of fluorescent dyes based on coumarin fluorophore and hindered amine stabilizer in solution and polymer matrices. Dyes Pigments, vol.90, pp.129-138, 2011.

P. E. Thoren, D. Persson, E. K. Esbjorner, M. Goksor, P. Lincoln et al., Membrane binding and translocation of cell-penetrating peptides, Biochemistry, vol.43, issue.12, pp.3471-3489, 2004.

H. Li, L. Cai, J. Li, Y. Hu, P. Zhou et al., Novel coumarin fluorescent dyes: Synthesis, structural characterization and recognition behavior towards Cu(II) and Ni(II). Dyes Pigments, vol.91, pp.309-316, 2011.

G. Kim and H. Kim, Doubly activated coumarin as a colorimetric and fluorescent chemodosimeter for cyanide, Tetrahedron Lett, issue.1, pp.185-187, 2010.

L. Du, N. Ni, M. Li, and B. Wang, A Fluorescent Hydrogen Peroxide Probe Based on a 'Click' Modified Coumarin Fluorophore, Tetrahedron Lett, issue.8, pp.1152-1154, 2010.

S. W. Hong and W. H. Jo, A fluorescence resonance energy transfer probe for sensing pH in aqueous solution, Polymer, vol.49, issue.19, pp.4180-4187, 2008.

L. He, Q. Xu, Y. Liu, H. Wei, Y. Tang et al., Coumarin-Based Turn-On Fluorescence Probe for Specific Detection of Glutathione over Cysteine and Homocysteine, ACS Appl. Mater. Inter, vol.7, issue.23, pp.12809-12813, 2015.

W. X. Ren, J. Han, S. Uhm, Y. J. Jang, C. Kang et al., Recent development of biotin conjugation in biological imaging, sensing, and target delivery, J. Inorg. Biochem, vol.51, issue.52, pp.1625-1633, 2004.

C. R. Noe, M. Dirin, J. Winkler, B. Lachmann, and E. Urban, EP2845607A1 Antisense oligonucleotides with improved pharmacokinetic properties, 2015.

M. Dirin, E. Urban, B. Lachmann, C. R. Noe, and J. Winkler, Concise postsynthetic preparation of oligonucleotide-oligopeptide conjugates through facile disulfide bond formation, Future Med. Chem, vol.7, issue.13, pp.1657-1673, 2015.

M. Gallo, J. M. Montserrat, and A. M. Iribarren, Design and applications of modified oligonucleotides. Braz, J. Med. Biol. Res, vol.36, pp.143-151, 2003.

K. Mori, T. Kodama, T. Baba, and S. Obika, Bridged nucleic acid conjugates at 6'-thiol: synthesis, hybridization properties and nuclease resistances, Org. Biomol. Chem, vol.9, issue.14, pp.5272-5279, 2011.

A. K. Ghosh and M. Brindisi, Organic Carbamates in Drug Design and Medicinal Chemistry, J. Med. Chem, vol.58, issue.7, pp.2895-2940, 2015.

K. Seio, R. Tawarada, T. Sasami, M. Serizawa, M. Ise et al., Synthesis and hybridization of 2'-O-methyl-RNAs incorporating 2'-O-carbamoyluridine and unique participation of the carbamoyl group in U-G base pair, Bioorg. Med. Chem, issue.20, pp.7275-7280, 2009.

A. Misra, S. Mishra, and K. Misra, Synthesis and Fluorescence Studies of Multiple Labeled Oligonucleotides Containing Dansyl Fluorophore Covalently Attached at 2'-Terminus of Cytidine via Carbamate Linkage, Bioconjugate Chem, vol.15, issue.3, pp.638-646, 2004.

K. Seio, M. Tokugawa, T. Kanamori, H. Tsunoda, A. Ohkubo et al., Synthesis and properties of cationic 2'-O-[N-(4-aminobutyl)carbamoyl] modified oligonucleotides, Bioorg. Med. Chem. Lett, vol.2012, issue.7, pp.2470-2473

X. Huo, S. Juergens, X. Zhang, D. Rezaei, C. Yu et al., Deoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-kappaB activation in benign Barrett's epithelial cells, Am J Physiol-Gastr, vol.301, issue.2, pp.278-286, 2011.

B. Robert, R. Robert, and D. Jennifer, Tertiary Motifs in RNA Structure and Folding, Angew. Chem. Int. Ed, vol.38, issue.16, pp.2326-2343, 1999.

K. D. Warner, M. C. Chen, W. Song, R. L. Strack, A. Thorn et al., Structural basis for activity of highly efficient RNA mimics of green fluorescent protein, Nat. Struct. Mol. Biol, vol.21, pp.658-663, 2014.

X. Sun, J. M. Li, and R. M. Wartell, Conversion of stable RNA hairpin to a metastable dimer in frozen solution, RNA, vol.13, issue.12, pp.2277-2286, 2007.

P. Svoboda and A. D. Cara, Hairpin RNA: a secondary structure of primary importance, Cell Mol. Life Sci, vol.63, issue.7, pp.901-908, 2006.

J. G. Toulmé, R. , and L. Aptamères, des ligands et des catalyseurs oligonucléotidiques obtenus par sélection in vitro, Med. Sci, vol.14, issue.2, pp.155-166, 1998.

H. Sun, X. Zhu, P. Y. Lu, R. R. Rosato, W. Tan et al., Oligonucleotide aptamers: new tools for targeted cancer therapy, Mol. Ther. Nucleic Acids, vol.3, p.182, 2014.

A. Serganov and E. Nudler, A Decade of Riboswitches, Cell, vol.2013, issue.0, pp.17-24

S. Debroy, M. Gebbie, A. Ramesh, J. R. Goodson, M. R. Cruz et al., A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator, Science, vol.345, issue.6199, pp.937-940, 2014.

M. T. Mcmanus, C. P. Petersen, B. B. Haines, J. Chen, and P. A. Sharp, Gene silencing using micro-RNA designed hairpins, RNA, vol.8, issue.6, pp.842-850, 2002.

T. L. Trinh, G. Zhu, X. Xiao, W. Puszyk, K. Sefah et al., A Synthetic Aptamer-Drug Adduct for Targeted Liver Cancer Therapy, J. Controlled Release, vol.2015, issue.11, pp.1005-1015, 2006.

Y. Morita, M. Leslie, H. Kameyama, D. Volk, and T. Tanaka, Aptamer Therapeutics in Cancer: Current and Future, Cancer, vol.10, issue.3, p.80, 2018.

E. S. Gragoudas, A. P. Adamis, E. T. Cunningham, . Jr, M. Feinsod et al., Pegaptanib for neovascular age-related macular degeneration, N. Engl. J. Med, issue.27, pp.2805-2816, 2004.

E. Defrancq, Y. Singh, and N. Spinelli, Chemical Strategies for Oligonucleotide-Conjugates Synthesis, Curr Org Chem, vol.12, issue.4, pp.263-290, 2008.

D. Shukla, P. Namperumalsamy, M. Goldbaum, and E. Cunningham, Pegaptanib sodium for ocular vascular disease, 2007.

A. Kiliszek, L. Blaszczyk, R. Kierzek, and W. Rypniewski, Stabilization of RNA hairpins using nonnucleotide linkers and circularization, Nucleic Acids Res, vol.45, issue.10, p.92, 2017.

R. Micura, W. Pils, C. Höbartner, K. Grubmayr, M. Ebert et al., Methylation of the nucleobases in RNA oligonucleotides mediates duplex-hairpin conversion, Nucleic Acids Res, vol.29, issue.19, pp.3997-4005, 2001.

A. A. Gorodetsky and J. K. Barton, DNA-Mediated Electrochemistry of Disulfides on Graphite, J. Am. Chem. Soc, vol.129, issue.19, pp.6074-6075, 2007.

S. Alefelder and S. T. Sigurdsson, Interstrand disulfide cross-linking of internal sugar residues in duplex RNA, Bioorg. Med. Chem, vol.8, issue.1, pp.269-273, 2000.

C. Prestinari and C. Richert, Intrastrand locks increase duplex stability and base pairing selectivity, Chem. Commun, vol.47, issue.38, pp.10824-10826, 2011.

M. Fujita, S. Watanabe, M. Yoshizawa, J. Yamamoto, and S. Iwai, Analysis of Structural Flexibility of Damaged DNA Using Thiol-Tethered Oligonucleotide Duplexes, PLOS ONE, vol.10, issue.2, p.117798, 2015.

D. Nina, M. Valeri, O. Tatiana, T. David, and S. Zoe, Hairpin-shaped DNA duplexes with disulfide bonds in sugar-phosphate backbone as potential DNA reagents for crosslinking with proteins, FEBS Lett, vol.444, issue.2-3, pp.285-290, 1999.

O. V. Vorob'eva, A. S. Romanenkov, V. G. Metelev, A. S. Karyagina, N. V. Lavrova et al., Crosslinking of Cys142 of Methyltransferase SsoII with DNA Duplexes Containing a Single Internucleotide Phosphoryldisulfide Link, Mol. Biol, vol.37, issue.5, pp.772-779, 2003.

M. Valeri, K. Elena, V. Olga, R. Andrey, O. Tatiana et al., Specific conjugation of DNA binding proteins to DNA templates through thiol-disulfide exchange, Biochemistry (Moscow), vol.538, issue.1-3, pp.1212-1222, 2003.

G. D. Glick, H. Wang, S. E. Osborne, E. R. Zuiderweg, G. D. Glick et al., Three-Dimensional Structure of a Disulfide-Stabilized Non-Ground-State DNA Hairpin, Bioorg. Med. Chem. Lett, vol.56, issue.24, pp.836-842, 1991.

R. J. Cain, E. R. Zuiderweg, G. D. Glick, H. Wang, E. R. Zuiderweg et al., Solution structure of a DNA hairpin and its disulfide cross-linked analog, Nucleic Acids Res, vol.23, issue.12, pp.2981-2991, 1995.

E. J. Maglott, G. D. Glick, J. T. Goodwin, S. E. Osborne, E. J. Scholle et al., Design, synthesis, and analysis of yeast tRNA(Phe) analogs possessing intra-and interhelical disulfide cross-links, Nucleic Acids Res, vol.26, issue.5, pp.5207-5215, 1996.

E. J. Maglott, J. T. Goodwin, and G. D. Glick, Probing the Structure of an RNA Tertiary Unfolding Transition State, J. Am. Chem. Soc, vol.121, issue.32, pp.7461-7462, 1999.

A. H. El-sagheer, T. Brown, T. K. Stage-zimmermann, and O. C. Uhlenbeck, New strategy for the synthesis of chemically modified RNA constructs exemplified by hairpin and hammerhead ribozymes, Proc. Natl. Acad. Sci, vol.8, pp.863-867, 2001.

K. F. Blount and O. C. Uhlenbeck, Internal Equilibrium of the Hammerhead Ribozyme Is Altered by the Length of Certain Covalent Cross-Links, Biochemistry, issue.21, pp.6834-6841, 2002.

S. B. Cohen, T. R. Cech, D. J. Earnshaw, B. T. Masquida, S. Müller et al., Dynamics of Thermal Motions within a Large Catalytic RNA Investigated by Cross-linking with Thiol?Disulfide Interchange, J. Am. Chem. Soc, vol.119, issue.27, pp.197-212, 1997.

C. Dupouy, P. Millard, A. Boissonnet, J. Escudier, -. D--;-b)-hilbers et al., CNA preorganization of unpaired loop moiety stabilizes DNA hairpin, Chem. Commun, vol.46, issue.28, pp.685-695, 1985.
URL : https://hal.archives-ouvertes.fr/hal-02131862

S. Nakano, T. Kirihata, S. Fujii, H. Sakai, M. Kuwahara et al., Influence of cationic molecules on the hairpin to duplex equilibria of self-complementary DNA and RNA oligonucleotides, Nucleic Acids Res, vol.35, issue.2, pp.486-494, 2007.

A. Mujeeb, J. L. Clever, T. M. Billeci, T. L. James, T. G. Parslow et al., Fluorescent HIV-1 Dimerization Initiation Site: Design, Properties, and Use for Ligand Discovery, Nat. Struct. Biol, vol.5, issue.6, pp.40112-40121, 1998.

D. C. St-louis, D. Gotte, E. Sanders-buell, D. W. Ritchey, M. O. Salminen et al., Infectious molecular clones with the nonhomologous dimer initiation sequences found in different subtypes of human immunodeficiency virus type 1 can recombine and initiate a spreading infection in vitro, J. Virol, vol.72, issue.5, pp.3991-3998, 1998.

C. S. Badorrek and K. M. Weeks, Architecture of a Gamma Retroviral Genomic RNA Dimer, Biochemistry, vol.45, issue.42, pp.12664-12672, 2006.

J. C. Paillart, L. Berthoux, M. Ottmann, J. L. Darlix, R. Marquet et al., A dual role of the putative RNA dimerization initiation site of human immunodeficiency virus type 1 in genomic RNA packaging and proviral DNA synthesis, J. Virol, vol.70, issue.12, pp.8348-8354, 1996.

D. Muriaux, P. Fossé, and J. Paoletti, A Kissing Complex Together with a Stable Dimer Is Involved in the HIV-1Lai RNA Dimerization Process in Vitro, Biochemistry, vol.35, issue.15, pp.5075-5082, 1996.

E. Ennifar, S. Bernacchi, P. Wolff, and P. Dumas, Influence of C-5 halogenation of uridines on hairpin versus duplex RNA folding, RNA, vol.13, issue.9, pp.1445-1452, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00199778

M. Zheng, Y. Wang, H. Shi, Y. Hu, L. Feng et al., Redox-Mediated Disassembly to Build Activatable Trimodal Probe for Molecular Imaging of Biothiols, ACS Nano, vol.10, issue.11, pp.10075-10085, 2016.

H. Xu and M. Hepel, Molecular Beacon"-Based Fluorescent Assay for Selective Detection of Glutathione and Cysteine, Anal. Chem, vol.83, issue.3, pp.813-819, 2011.

P. J. Ogren, A. Meetze, and W. C. Duer, The Limit of Detection in Generalized Least-Squares Calibrations: An Example Using Alprazolam Liquid Chromatography-Tandem Mass Spectrometry Data, J. Anal. Toxicol, vol.33, issue.3, pp.129-142, 2009.

D. A. Armbruster and T. Pry, Limit of Blank, Limit of Detection and Limit of Quantitation, Clin Biochem. Rev, vol.29, pp.49-52, 2008.

D. Haussecker and M. A. Kay, Science, vol.347, pp.1069-1070, 2015.

A. Wittrup and J. Lieberman, Nat Rev Genet, vol.16, p.543, 2015.

G. F. Deleavey and M. J. Damha, Chem Biol, vol.19, pp.937-954, 2012.

S. Shukla, C. S. Sumaria, and P. I. Pradeepkumar, ChemMedChem, vol.5, pp.328-349, 2010.

M. Manoharan, A. Akinc, and R. K. Pandey, Angew Chem Int Ed Engl, vol.50, pp.2284-2288, 2011.

T. P. Prakash, C. R. Allerson, and P. Dande, J Med Chem, vol.48, pp.4247-4253, 2005.

S. Martínez-montero, G. F. Deleavey, N. Martín-pintado, J. F. Fakhoury, C. González et al., ACS Chem Biol, vol.10, pp.2016-2023, 2015.

F. Debart, C. Dupouy, and J. J. Vasseur, Beilstein J Org Chem, vol.14, pp.436-469, 2018.

T. Lavergne, C. Baraguey, and C. Dupouy, J Org Chem, vol.76, pp.5719-5731, 2011.

A. R. Martin, T. Lavergne, J. Vasseur, and F. Debart, Bioorg Med Chem Lett, vol.19, pp.4046-4049, 2009.

N. Parey, C. Baraguey, J. Vasseur, and F. Debart, Org Lett, vol.8, pp.3869-3872, 2006.

A. Biscans, M. Bos, and A. R. Martin, ChemBioChem, vol.15, pp.2674-2679, 2014.

A. Biscans, S. Rouanet, J. Bertrand, J. J. Vasseur, C. Dupouy et al., Bioorg Med Chem, vol.23, pp.5360-5368, 2015.

A. Biscans, J. Bertrand, and J. Dubois, ChemBioChem, vol.17, pp.2054-2062, 2016.

J. M. Estrela, A. Ortega, and E. Obrador, Crit Rev Clin Lab Sci, vol.43, pp.143-181, 2006.

D. ?cibior, M. Skrzycki, M. Podsiad, and H. Czeczot, Clin Biochem, vol.41, pp.852-858, 2008.

Y. Ochi, O. Nakagawa, K. Sakaguchi, S. Wada, and H. Urata, Chem Commun, vol.49, pp.7620-7622, 2013.

Y. Ochi, M. Imai, O. Nakagawa, J. Hayashi, S. Wada et al., Bioorg Med Chem Lett, vol.26, pp.845-848, 2016.

J. Hayashi, M. Nishigaki, and Y. Ochi, Bioorg Med Chem Lett, vol.28, pp.2171-2174, 2018.

A. Biscans, S. Rouanet, J. J. Vasseur, C. Dupouy, and F. Debart, Org Biomol Chem, vol.14, pp.7010-7017, 2016.

J. Bertrand, C. Lucas, and N. M. Pham, Nucleic Acid Ther, vol.25, pp.121-129, 2015.

F. Gauthier, F. Beltran, A. Biscans, F. Debart, C. Dupouy et al., Org Biomol Chem, vol.16, pp.3181-3188, 2018.

T. Lavergne, J. Bertrand, J. Vasseur, and F. Debart, Chem Eur J, vol.14, pp.9135-9138, 2008.

A. Semenyuk, A. Földesi, and T. Johansson, J Am Chem Soc, vol.128, pp.12356-12357, 2006.

F. Gauthier, Modified ONs were synthesized on a standard succinyl-linker solid support with a DNA synthesizer using 2?-O-AcSM phosphoramidites 1a-d and commercially available 2?-O-pivaloyloxymethyl (PivOM) ribonucleoside phosphoramidites as 2?OH precursors. The ON elongation was performed on a 1 ?mol scale with a 180 s coupling step according to the RNA synthesis method previously developed by us (Scheme 1). 28 Following the assembly, the cyclization was performed with 20 equivalents of 2?,2?-dithiopyridine in an anhydrous butylamine/THF (5 : 95) solution for 30 min. During this reaction, cyanoethyl groups were also removed. Then, an ammonia treatment removed the acyl protecting groups from the nucleobases, 2?-O-PivOM groups and released ON from the solid support. Crude ONs were purified by ion-exchange high-performance liquid chromatography (IEX-HPLC). The low yields (range from 1.4% to 7.0%) might be explained by the premature release of a part of the oligonucleotide from solid support during the butylamine treatment (Table 1). The presence of the S-S bridge was ascertained by MALDI-TOF mass spectrometry (Table 1 and ESI, Fig. S13-S23 ?). A difference of 90.5 was calculated between the m/z of Fig. 1 (A) Hairpin models containing 4 (H4) or 5 (H5) uridines in the loop portion. The disulfide bridge was introduced at four different positions, Results and discussion Synthesis of oligoribonucleotides modified by a 2?,2?-S-S bridge The formation of the S-S bridge between two 2?-O-AcSM adjacent nucleotides results in an intramolecular thiol-disulfide exchange reaction between a thiolate, vol.2

, The following HPLC solvent systems were used: 5 or 20% CH 3 CN in 25 mM Tris-HCl buffer, pH 8 (buffer A) and 20% CH 3 CN containing 200 mM NaClO 4 in 25 mM Tris-HCl buffer, pH 8 or 5% CH 3 CN containing 400 mM NaClO 4 in 25 mM Tris-HCl buffer, pH 8 (buffer B). Flow rates were 1.0 mL min ?1 and 4 mL min ?1 for analysis and semipreparative purposes, respectively; UV detection was performed at 260 nm. MALDI-TOF mass spectra were recorded using a Voyager-DE spectrometer equipped with an N 2 laser (337 nm) (PerSeptive Biosystems, USA) or an Axima Assurance spectrometer equipped with an N 2 laser (337 nm) (Shimadzu Biotech) using 2,4,6-trihydroxyacetophenone as a saturated solution in a mixture of acetonitrile/0.1 M ammonium citrate solution (1 : 1, v/v) for the matrix. Analytical samples were mixed with the matrix in the 1 : 5 (v/v) ratio, crystallized on a 100-well or 384-well stainless-steel plate and analyzed, DNAPac PA 100 columns (4 × 250 mm for analysis or 9 × 250 mm, Dionex)

, Solid-phase synthesis of 2?-O-AcSM modified ONs. RNA Research). Labeled DIS-F and DIS-2F ONs were synthesized using 5?-fluorescein-CE-phosphoramidite (6-FAM) and 3?-DABCYL CPG as solid support

R. T. Batey, R. P. Rambo, and J. A. Doudna, Angew. Chem., Int. Ed, vol.38, pp.2326-2343, 1999.

P. Svoboda and A. D. Cara, Cell. Mol. Life Sci, vol.63, pp.901-908, 2006.

S. Debroy, M. Gebbie, A. Ramesh, J. R. Goodson, M. R. Cruz et al., Science, vol.345, pp.937-940, 2014.

A. Serganov and E. Nudler, Cell, vol.152, pp.17-24, 2013.

M. T. Mcmanus, C. P. Petersen, B. B. Haines, J. Chen, and P. A. Sharp, RNA, vol.8, pp.842-850, 2002.

S. Hori, A. Herrera, J. Rossi, and J. Zhou, Cancers, vol.10, pp.9-33, 2018.

W. Pils and R. Micura, Nucleic Acids Res, vol.28, pp.1859-1863, 2000.

A. H. El-sagheer and T. Brown, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.15329-15334, 2010.

A. Kiliszek, L. B?aszczyk, R. Kierzek, and W. Rypniewski, Nucleic Acids Res, vol.45, pp.92-92, 2017.

S. E. Osborne, J. Völker, S. Y. Stevens, K. J. Breslauer, and G. D. Glick, J. Am. Chem. Soc, vol.118, pp.11993-12003, 1996.

M. Endo and T. Majima, Chem. Commun, vol.11, pp.1308-1309, 2004.

A. A. Gorodetsky and J. K. Barton, J. Am. Chem. Soc, vol.129, pp.6074-6075, 2007.

S. Alefelder and S. T. Sigurdsson, Bioorg. Med. Chem, vol.8, pp.269-273, 2000.

D. Li, X. Wang, F. Shi, R. Sha, N. C. Seeman et al., Org. Biomol. Chem, vol.12, pp.8823-8827, 2014.

M. , D. Stefano, and K. V. Gothelf, ChemBioChem, vol.17, pp.1122-1126, 2016.

T. L. Trinh, G. Zhu, X. Xiao, W. Puszyk, K. Sefah et al., PLoS One, vol.10, p.136673, 2015.

G. D. Glick, J. Org. Chem, vol.56, pp.6746-6747, 1991.

N. Dolinnaya, V. Metelev, T. Oretskaya, D. Tabatadze, and Z. Shabarova, FEBS Lett, vol.444, pp.285-290, 1999.

D. Lesage, V. Metelev, O. Borisova, N. Dolinnaya, T. Oretskaya et al., FEBS Lett, vol.547, pp.115-118, 2003.

A. Biscans, S. Rouanet, J. Vasseur, C. Dupouy, and F. Debart, Org. Biomol. Chem, vol.14, pp.7010-7017, 2016.

C. Prestinari and C. Richert, Chem. Commun, vol.47, pp.10824-10826, 2011.

C. W. Hilbers, C. A. Haasnoot, and S. H. De-bruin, Biochimie, vol.67, pp.685-695, 1985.

C. Dupouy, P. Millard, A. Boissonnet, and J. Escudier, Chem. Commun, vol.46, pp.5142-5144, 2010.

S. Bernacchi, E. Ennifar, K. Tóth, P. Walter, J. Langowski et al., J. Biol. Chem, vol.280, pp.40112-40121, 2005.

D. Muriaux, P. Fossé, and J. Paoletti, Biochemistry, vol.35, pp.5075-5082, 1996.

E. Ennifar, S. Bernacchi, P. Wolff, and P. Dumas, RNA, vol.13, pp.1445-1452, 2007.

N. Parey, C. Baraguey, J. Vasseur, and F. Debart, Org. Lett, vol.8, pp.3869-3872, 2006.

T. Lavergne, J. Bertrand, J. Vasseur, and F. Debart, Chem. -Eur. J, vol.14, pp.9135-9138, 2008.

M. H. Lee, Z. Yang, C. W. Lim, Y. H. Lee, S. Dongbang et al., Chem. Rev, vol.113, pp.5071-5109, 2013.

R. R. Perry, J. Mazetta, M. Levin, and S. C. Barranco, Cancer, vol.72, pp.783-787, 1993.

Y. Guo, H. Wang, Y. Sun, and B. Qu, Chem. Commun, vol.48, pp.3221-3223, 2012.

H. Xu and M. Hepel, Anal. Chem, vol.83, pp.813-819, 2011.

D. A. Armbruster and T. Pry, Clin. Biochem. Rev, vol.29, pp.49-52, 2008.