
HAL Id: tel-02373758
https://theses.hal.science/tel-02373758v2

Submitted on 13 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards next generation networks with SDN and NFV
Andrea Tomassilli

To cite this version:
Andrea Tomassilli. Towards next generation networks with SDN and NFV. Networking and Internet
Architecture [cs.NI]. Université Côte d’Azur, 2019. English. �NNT : 2019AZUR4044�. �tel-02373758v2�

https://theses.hal.science/tel-02373758v2
https://hal.archives-ouvertes.fr

 Vers les Réseaux de Nouvelle

Génération avec SDN et NFV

	

	

Andrea Tomassilli
Laboratoire d’informatique, Signaux et Système de Sophia Antipolis

Présentée en vue de l’obtention

du grade de docteur en Informatique

d’Université Côte d’Azur

Dirigée par : Frédéric Giroire / Stéphane

Pérennes

Soutenue le : 24 Juin 2019

 Devant le jury, composé de :

 Mathieu Bouet, Ingénieur, Thales

 Michele Flammini, Professeur, Università degli

 Studi dell'Aquila

 Frédéric Giroire, Chargé de recherche, CNRS

 Brigitte Jaumard, Professeur, Concordia University

 Stéphane Pérennes, Directeur de recherche, CNRS

 Stefano Secci, Professeur, Cnam

 Thierry Turletti, Directeur de recherche, Inria

THÈSE DE DOCTORAT

Acknowledgements

This Thesis would not have been possible without the guidance of my PhD
advisors Frédéric Giroire and Stéphane Pérennes. Thank you for the con-
tinued support during my PhD study, for the great patience, for your faith
and enthusiasm, and for having shared your experiences with me. I was very
fortunate to work with you.

I would like to also express my deep and warm acknowledgements to
Mathieu Bouet and Stefano Secci, who both thoroughly reviewed my Thesis,
and evaluated my work. Thank you for your time and effort taken to review
this report and for the valuable comments. You contributed to improve this
revised version of the manuscript.

I would also like to express my sincere gratitude to all the members of the
examination committee: Michele Flammini, Brigitte Jaumard, and Thierry
Turletti. Thank you for having accepted my request to evaluate my Thesis
and research work.

I’m thankful to all the members of the COATI research group for making
me feel welcomed from the very first moment. The three years spent with you
made this journey much more fun. Special thanks to Fionn for the careful
English reviews made on my drafts over these years.

Also, I would like to thank the teams I had the opportunity to visit and
collaborate with during these 3 years. In particular, the Computer Science
and Software Engineering Department of Concordia University, the RealOpt
team of Inria Bordeaux, the Network Protocols & Systems Research Team
of Nokia Bell-Labs, and the DIANA team of Inria Sophia Antipolis. I’ve
learned a lot from each and every one of you.

Thanks to all my friends who were with me during these years and for
the great times we spent together, the laughs, the chats, and the parties.

To conclude, I would like to thank all my family for having supported me
in every possible way.

3

Résumé

Les progrès récents dans le domaine des réseaux, tels que les réseaux logiciel
(SDN) et la virtualisation des fonctions réseaux (NFV), modifient la façon
dont les opérateurs de réseaux déploient et gèrent les services Internet.
D’une part, SDN introduit un contrôleur logiquement centralisé avec une
vue globale de l’état du réseau. D’autre part, NFV permet le découplage
complet des fonctions réseaux des appareils propriétaires et les exécute en
tant qu’applications logicielles sur des serveurs génériques. De cette façon,
les opérateurs de réseaux peuvent déployer dynamiquement des fonctions
réseaux virtuelles (VNF).
SDN et NFV, tous deux séparément, offrent aux opérateurs de nouvelles
opportunités pour réduire les coûts, améliorer la flexibilité et le passage à
l’échelle des réseaux et réduire les délais de mise sur le marché des nouveaux
services et applications. De plus, le modèle de routage centralisé du SDN,
associé à la possibilité d’instancier les VNF à la demande, peut ouvrir la
voie à une gestion encore plus efficace des ressources réseaux. Par exemple,
un réseau SDN/NFV peut simplifier le déploiement des châınes de fonctions
de services (SFC) en rendant le processus plus facile et moins coûteux.
Dans cette thèse, notre objectif était d’examiner comment tirer parti des
avantages potentiels de combiner SDN et NFV. En particulier, nous avons
étudié les nouvelles possibilités offertes en matière de conception de réseau,
de résilience et d’économies d’énergie, ainsi que les nouveaux problèmes
qui surgissent dans ce nouveau contexte, comme l’emplacement optimal des
fonctions réseaux.
Nous montrons qu’une symbiose entre le SDN et le NFV peut améliorer la
performance des réseaux et réduire considérablement les dépenses d’investissement
(CapEx) et les dépenses opérationnelles (OpEx) du réseau.

5

Abstract

Recent advances in networks such as Software Defined Networking (SDN)
and Network Function Virtualization (NFV) are changing the way network
operators deploy and manage Internet services.
On one hand, SDN introduces a logically centralized controller with a global
view of the network state. On the other hand, NFV enables the complete
decoupling of network functions from proprietary appliances and runs them
as software applications on general–purpose servers. In such a way, network
operators can dynamically deploy Virtual Network Functions (VNFs).
SDN and NFV, both separately, bring to network operators new opportu-
nities for reducing costs, enhancing network flexibility and scalability, and
shortening the time-to-market of new applications and services.
Moreover, the centralized routing model of SDN jointly with the possibility
of instantiating VNFs on–demand may open the way for an even more effi-
cient operation and resource management of networks .
For instance, an SDN/NFV-enabled network may simplify the Service Func-
tion Chain (SFC) deployment and provisioning by making the process easier
and cheaper.
In this study, we aim at investigating how to leverage both SDN and NFV
in order to exploit their potential benefits. We took steps to address the
new opportunities offered in terms of network design, network resilience, and
energy savings, and the new problems that arise in this new context, such as
the optimal network function placement in the network.
We show that a symbiosis between SDN and NFV can improve network
performance and significantly reduce the network’s Capital Expenditure
(CapEx) and Operational Expenditure (OpEx).

7

Contents

1 Introduction 1
1.1 Software Defined Networks . 2

1.1.1 SDN Architecture . 3
1.2 Network Function Virtualization 7
1.3 Service Function Chaining . 9
1.4 Research Challenges and Contributions 10

1.4.1 NFV Resource Allocation 10
1.4.2 Survivable SDN/NFV Networks 11
1.4.3 Energy Aware SDN/NFV Networks 12
1.4.4 Other Work . 13

1.5 Plan of the Thesis . 14
1.6 List of Publications . 14
1.7 Collaboration . 16

2 Preliminaries 27
2.1 Linear Programming . 27

2.1.1 Column Generation . 29
2.2 Complexity Theory . 31

2.2.1 LP-Rounding . 33
2.2.2 Greedy . 35

I NFV Resource Allocation 41

3 Service Function Chains Placement 43
3.1 Introduction . 44
3.2 Related Work . 45
3.3 System Model and Problem Formulation 47

3.3.1 Preliminaries: Single Function and Uniform Case . . . 48
3.4 Approximation Algorithms for SFC-Placement 49

3.4.1 Equivalence with Hitting Set 49
3.4.2 Naive and Faster Greedy Algorithms 54
3.4.3 An LP-Rounding Approach. 57

3.5 Tree Topologies . 61

9

10 CONTENTS

3.5.1 Special Case: Cost uniform over nodes 65

3.6 Experimental Study . 68

3.6.1 Data sets . 68

3.6.2 Number of demands 69

3.6.3 Length of the paths . 70

3.6.4 Length of the chain . 70

3.6.5 Network topology . 71

3.6.6 Processing time . 72

3.7 Conclusion . 72

II Survivable SDN/NFV Networks 77

4 Bandwidth-optimal Failure Recovery with SDN 79

4.1 Introduction . 80

4.2 Related Work . 82

4.3 Problem Statement and Notations 83

4.4 Optimization Approaches . 84

4.4.1 A layered network model 85

4.4.2 Compact ILP Formulation 86

4.4.3 A Column Generation Approach 87

4.4.4 Benders Decomposition Approach 89

4.4.5 The Min-Overflow problem 90

4.5 Numerical Results . 95

4.5.1 Data sets . 95

4.5.2 Limits of an ILP-based approach. 96

4.5.3 Performances of the optimization models 97

4.5.4 Varying Number of NFVI-enabled Nodes 98

4.5.5 Number of paths . 100

4.6 Experimental evaluation . 101

4.6.1 Implementation options 101

4.6.2 Experimental setup . 103

4.6.3 Convergence time . 103

4.6.4 Operational trade-offs 104

4.7 Conclusion . 105

CONTENTS 11

5 Path Protection for Service Function Chains 107
5.1 Introduction . 107
5.2 Related Work . 109
5.3 Problem and Notations . 111
5.4 Optimization Models . 112

5.4.1 Dedicated Protection 112
5.4.2 Shared Protection . 116

5.5 Experimental Study . 119
5.5.1 Data Sets . 119
5.5.2 Compact ILPs vs. CG Models 120
5.5.3 Performance of CG Models 120
5.5.4 Bandwidth and Processing Requirements 121
5.5.5 Delay . 123

5.6 Conclusion . 123

III Energy Aware Routing 133

6 Energy Efficient Service Function Chains 135
6.1 Introduction . 136
6.2 Related Work . 138

6.2.1 Service Chains . 138
6.2.2 SDN and Network Energy Efficiency 138
6.2.3 Network Virtualization and Network Energy Efficiency 139

6.3 Statement of the Problem: SFC and VNF Placement 139
6.3.1 Notations. 139
6.3.2 Power Model . 142
6.3.3 Layered Graph. 142

6.4 Compact formulation . 143
6.5 Solving large Instances with GreenChains 144

6.5.1 Energy Saving Module. 145
6.5.2 Routing Module . 145
6.5.3 Service Chain Placement Module. 145

6.6 Decomposition Models . 146
6.6.1 Column Generation Formulation 147
6.6.2 Solution Scheme . 148

6.7 Numerical Experiments . 151
6.7.1 Data sets . 152

12 CONTENTS

6.7.2 Compact formulation evaluation 153
6.7.3 Quality of the Column Generation models 154
6.7.4 Energy Savings . 156

6.8 Conclusions . 159

7 Conclusion and Future Work 165

IV Appendix 169

8 Data Center Scheduling with Network Tasks 171
8.1 Introduction . 172
8.2 Related Work . 174
8.3 A New Scheduling Framework 176

8.3.1 Problem and Example 176
8.3.2 Modeling Data Center Orchestration with Communi-

cation . 177
8.4 Hardness . 179

8.4.1 List-Scheduling . 179
8.5 Algorithms . 181

8.5.1 Generalized List Scheduling 182
8.5.2 Optimality on simple MapReduce Workflows 184
8.5.3 Partition . 187

8.6 Experimental Evaluation . 191
8.6.1 Trace . 191
8.6.2 Network . 191
8.6.3 Workflows . 191
8.6.4 Datasets . 192
8.6.5 Results . 192

8.7 Conclusion . 198

9 Path Protection in Elastical Optical Networks 203
9.1 Introduction . 203
9.2 Related Work . 206
9.3 Statement of the RMSA Protection Problem 207
9.4 Path Protection Models . 208
9.5 Solution Design . 210
9.6 Numerical Results . 213

CONTENTS 13

9.6.1 Data Sets . 213
9.6.2 Performance of CG Models 215
9.6.3 Shared vs. Dedicated Path Protection 215

9.7 Conclusion . 218

List of Abbreviations

ATM Asynchronous Transfer Mode

API Application Programming Interface

CAPeX Capital Expenditure

CG Column Generation

CLI Command Line Interface

CPU Central Processing Unit

DPI Deep Packet Inspection

EON Elastical Optical Network

FM Flow Manager

FW Firewall

ICT Information and Communication Technology

IDS Intrusion Detection System

ILP Integer Linear Program

IP Internet Protocol

ISP Internet Service Provider

LB Load Balancer

LP Linear Program

MILP Mixed Integer Linear Program

MPLS Multiprotocol Label Switching

NAT Network Address Translator

NFV Network Function Virtualization

ONF Open Networking Foundation

OPeX Operational Expenditure

QoE Quality of Experience

15

16 CHAPTER 0.

QoS Quality of Service

RSA Routing and Spectrum Assignment

RSMA Routing, Spectrum, and Modulation Assignment

SDN Software Defined Networking

SFC Service Function Chain

SFP Service Function Path

SLA Service Level Agreement

VM Virtual Machine

VNF Virtual Network Function

WAN Wide Area Network

17

Chapter 1

Introduction

The last decade has seen the development of new paradigms to pave the
way for a more flexible, open, and economical networking. In this context,
Software Defined Networking (SDN) and Network Function Virtualization
(NFV) are two of the more promising technologies for the Next-Generation
Network.

SDN aims at simplifying network management by decoupling the control
plane from the data plane. Network intelligence is logically centralized in an
SDN controller that maintains a global view of the network state. SDN offers,
to network operators, better ways to manage and configure their networks.
For instance, network devices do not have to be configured individually in a
command line interface (CLI) environment and do not have to be changed
manually in response to new network conditions [KF13]. Forwarding deci-
sions are rather taken in a single (logical) location, called the controller, with
a complete knowledge of the network state. Another advantage concerns the
ability to introduce new ideas and to easily implement and test new pro-
tocols that are hard to deploy in the so-called legacy networks. This offers
new opportunities in terms of better usage of network resources, such as the
available bandwidth, so as to maximize the operator’s profit.

With the NFV paradigm, network functions (e.g., a firewall, a load bal-
ancer, and a content filtering) can be implemented in software and executed
on generic-purpose servers located in small cloud nodes. Virtual Network
Functions (VNFs) can be instantiated and scaled on–demand without the
need of installing new equipment. The goal is to shift from specialized hard-
ware appliances to commoditized hardware in order to deal with the major
problems of today’s enterprise middlebox infrastructure, such as cost, capac-
ity rigidity, management complexity, and failures [She+12].

Both paradigms are penetrating the industry in a big way due to their nu-
merous advantages in terms of cost, flexibility, and energy efficiency. In 2013,
Google announced the use of SDN to interconnect its data centers across the
planet [Jai+13]. By utilizing this technology, Google was able to achieve sev-
eral benefits, including an efficient network management, easier and faster

1

2 CHAPTER 1. INTRODUCTION

innovation cycles of networks and services, a better network utilization and
a reduction of both OPEX (Operating Expenditure) and CAPEX (Capital
Expenditure).

Motivated by these results, the combined application of both SDN and
NFV is strongly stimulating the interest of Internet Service Providers and
Network Operators. For instance, AT&T, the leading US Telecom Operator,
has set as a goal the virtualization of 75% of its network by 2020 [Mar17].
Moreover, Orange introduced an SDN offering coverage for 75 countries, de-
signed to help companies instantly provision branch offices with Virtual Net-
work Functions (VNFs) [Wor17], and Huawei in the last years deployed 560
SDN/NFV commercial projects around the world [Hua17].

This list is not exhaustive. Several industrial and academic laboratories
are exploring how to maximize SDN and NFV benefits.

The aim of this thesis is to further investigate how to take advantage of
the full benefits of these technologies.

In this chapter, we first introduce the context in which this thesis takes
place and the research problems that inspired our work. We then highlight
our contributions and conclude this chapter with an outline of the remainder
of this thesis.

1.1 Software Defined Networks

Computer networks consist of a large number of network devices such as
routers, switches, and many types of middleboxes. Router and switches run
complex control software that is typically closed and proprietary [McK+08].
They are configured individually using low-level and specific commands which
vary across vendors and may even vary across different products of the same
vendor. As a result, network management is challenging and failure-prone
[Nun+14]. This leads to an increased complexity, slower innovation, and to
additional costs of running a network, in terms of both CAPEX and OPEX
[FRZ14; Pfa+09].

SDN tries to simplify the network management and make the deployment
of new services easier by separating the control plane from the data forward-
ing plane. Network elements (i.e., the data plane) become simple forwarding
devices, and decisions of how the traffic must be handled are taken in a log-
ically centralized controller responsible of generating the routing tables. See
Fig. 1.1 for a comparison with legacy networks.

1.1. SOFTWARE DEFINED NETWORKS 3

Figure 1.1: SDN decouples the control plane from the data forwarding plane.

The centralization of the control logic leads to several benefits. For in-
stance, network policies become simpler and less failure-prone as they are
not changed with low-level device specific configurations, but instead, using
high level languages and software components [Kre+15].

Moreover, the controller, with a global view of the network state, can
detect changes (e.g., network failures and link loads) and automatically react,
thus maintaining high-level policies intact.

Finally, traffic engineering mechanisms can be much more efficiently im-
plemented with respect to a legacy network approach (e.g., IP, ATM, and
MPLS). This is thanks to both the possibility to easily retrieve global network
information and to program network elements dynamically and proactively
without having to handle them individually [Aky+14]. For example, Google
has shown their ability to achieve nearly 100% of link utilization using an
OpenFlow WAN controller [Jai+13].

1.1.1 SDN Architecture

An SDN architecture can be described as a composition of 3 main layers:
Data Plane, Control Plane, and Management Plane, as illustrated in Fig. 1.2.

The Data plane is a set of software or handware networking elements such
as routers, switches, and middleboxes. Physical devices consist of highly ef-

4 CHAPTER 1. INTRODUCTION

ficient and programmable packet forwarding devices without any software to
take autonomous decisions. Indeed, traffic is forwarded according to decisions
that the control plane makes.

The Control plane elements are represented by a single logical entity, the
controller, which exercises direct control over the data plane using an Appli-
cation Programming Interface (API), which defines the information exchange
between the two planes. The controller provides abstractions, services, and
common APIs to developers. Examples of functionalities are statistics about
the network state, network topology information, distribution of network con-
figurations, and device discovery [Kre+15]. Thus, a developer does not need
anymore to care about low-level details of data distribution of networking
elements.

A centralized controller manages all the forwarding devices in the net-
work and implements all control plane logic in a single location. It may be
enough to manage a small network. Examples of centralized controllers in-
clude Beacon [Eri13], Ryu [Tel12], OpenDayLight [Med+14], and Maestro
[CCN10]. However, a single controller represents a single point of failure and
it may not be sufficient to manage, in a resilient way, the data plane network
elements. Thus, when a node fails, another node should take over the tasks
of the failed node. A distributed controller can be either a centralized cluster
or a physically distributed set of nodes. Examples of distributed controllers
are Onix [Kop+10], ONOS [Ber+14], and DISCO [PBL14].

The Management plane can be defined as the network brain. It imple-
ments the control functions that will be translated by the controller into
commands to be installed in the data plane. It includes applications that
allow network operators to develop their high-level policies of network. SDN
applications can be grouped in to 5 categories [Kre+15]: traffic engineering
(such as load balancing), mobility and wireless, measurement, security, and
data center networking.

In order to enable information exchange between the three layers, North-
Bound and SouthBound interfaces are defined between controller/applications
and controller/network devices (see, e.g., Fig. 1.2).

The SouthBound API defines the means of communication between the
control and data planes and specifies how the SDN controller instructs the
switches regarding how they should behave. OpenFlow [McK+08] is the
most popular protocol promoted by the Open Networking Foundation (ONF)
[Fou], an organization founded by Deutsche Telekom, Facebook, Google, Mi-
crosoft, Verizon, and Yahoo! in 2011, to promote the implementation of

1.1. SOFTWARE DEFINED NETWORKS 5

APP 1 APP 2 APP N…

SDN Controller

NorthBound API

SouthBound API

DATA

PLANE

CONTROL

PLANE

MANAGEMENT

PLANE

Figure 1.2: SDN Architecture with the interactions between layers

SDN.
OpenFlow was originally deployed in academic campus networks with the

goal being to allow researchers to run experiments in production networks.
It is a Layer 2 protocol which provides a way to program the flow table of
switches and routers over an SSL or TCP/IP connection. Currently, many
vendors and network device manufacturers support OpenFlow. The list in-
cludes Cisco, Huawei, HP, NEC, IBM, and many others [Aky+14; LKR14].

An OpenFlow switch has one or more flow routing tables consisting of
flow entries and defining how the packet belonging to a certain flow will be
processed. The controller can control traffic paths in the network by revising,
adding, and deleting entries from the flow tables of the switches.
Flow entries consist of:

• Matching Rules : set of rules used to match incoming packets. Matching
starts at the first flow table and may continue to additional flow tables
of the pipeline. Matching can be done either on the packet header
fields (e.g., Ethernet source address and IPv4 destination address) or
it can also be performed against the ingress port, the metadata field,
and other pipeline fields.

• Counters : to collect statistics about a particular flow, such as the num-

6 CHAPTER 1. INTRODUCTION

ber of packets and bytes for each flow, and the time since the last packet
matched the flow.

• Actions : an action defines how to handle a matching packet. Three ba-
sic actions are: forward this flow’s packets to a given port, encapsulate
and forward this flow’s packets to a controller, and drop the packet.

After a packet arrives to an OpenFlow Switch, there are two possibilities. If
a match is found, then the switch executes the appropriate set of instructions
associated with the specific flow entry. If a match is not found, then the action
taken would be defined by the table-miss flow entry, defining the actions to
be taken when a match does not occur. Examples of actions that may be
taken in this case are packet drop, try to match another flow table, or send
the packet to the controller over the OpenFlow channel in order to determine
the action to be taken. After a decision has been taken, a new rule may be
sent to the device in order to make it able to handle future packets of the
same kind.

The NorthBound API connects the control layer and the application
layer. Its role consists in providing a high-level API between applica-
tions/services and the network infrastructure. Conversely, from the South-
Bound interface, which has OpenFlow as open source protocol, NorthBound
lacks such protocol standards. Defining a common NorthBound API is a
critical task as the requirement of each networking application can vary
[PST18]. For instance, a security application has different requirements with
respect to a routing application. As a consequence, existing controllers such
as Onix and OpenDaylight propose and define their own NorthBound APIs.

With a global view of the network state that centralizes network man-
agement tasks, the controller can create optimized routes to forward traffic.
As a consequence, routing can be optimized and networks can be made more
efficient. This opens the way for opportunities for more efficient network
resource utilization by adapting the routing configuration over time. On the
other hand, SDN brings several challenges in terms of security, availability,
scalability, survivability, and costs [LKR14], that must be taken into consid-
eration in order to exploit its full benefits.

1.2. NETWORK FUNCTION VIRTUALIZATION 7

Network Appliances
General Purpose

Servers

Figure 1.3: NFV moves network functions from dedicated hardware to gen-
eral purpose servers.

1.2 Network Function Virtualization

Networks include many kinds of equipment. From routers and switches to
middleboxes, such as Proxies, Firewalls (FW), Intrusion Detection Systems
(IDS), Load Balancers (LB), Network Address Translators (NAT), WAN Op-
timizer, and Flow Monitor (FM). The number of middleboxes in an enterprise
network is comparable with the number of routers and switches [SRA12].
They are necessary as they offer a wide range of benefits, in terms of secu-
rity, performance, and cost.

Typically, a network function is implemented as a specialized hardware
device. This approach has several drawbacks. For instance, middleboxes are
expensive, require specialized technicians to be managed, do not allow to add
new functionalities, are energy-hungry, and have short lifecycles [HB16]. As
shown in [She+12], the cost of middleboxes for large networks may even go
beyond a million dollars over a 5 year range.

The high cost of middleboxes does not only depend on the cost of ac-
quisition, but it also depends on the management of a heterogeneous set of
devices. Indeed, they require a large management team with expertise to
perform tasks such as upgrades, monitoring and diagnostics, and configura-
tion [She+12]. In addition, the personnel need training in order to be able
to deal with them.

8 CHAPTER 1. INTRODUCTION

NFV aims at changing the way operators design, deploy, and manage
their network infrastructures. Its goal is to deal with the huge amount of
specialized hardware devices deployed in the operators’ networks and with
the high cost that derives from them.

With the NFV paradigm, network functions are not executed by closed
and proprietary appliances anymore, but instead run as software on top of
COTS (commercial off-the-shelf) equipment (i.e., industry standard servers,
storage, and switches). By decoupling network functions from their underly-
ing hardware appliances, NFV provides a more flexible provisioning of soft-
ware based network functionalities. Indeed, virtual functions can be instan-
tiated on demand without the installation of new equipment.

For example, a network operator may run an open source software-based
firewall on an x86 platform in a virtual machine [Han+15].

NFV opens the way to new possibilities with respect to legacy networks
[Mij+16]. For instance, some of the new opportunities introduced by NFV
are as follows.

• the possibility of decoupling software from hardware. This allows to
separate development and maintenance for both software and hardware.

• a more flexible network function deployment. In such a way, network
operators can deploy new network services in a fast way over the same
physical platform.

• dynamic resource allocation (scaling up and down) as the network func-
tionality is decoupled from the hardware.

Thus, NFV is a promising approach for network providers and service
operators which brings several benefits such as reduction of the CAPEX and
OPEX costs, better flexibility of management, resources scaling, and service
agility [Ngu+17]. It also brings several challenges in terms of performance,
manageability, reliability, and security [Han+15].

With the advent of 5G networks, NFV needs to address some of the
design challenges like optimizing resource provisioning of the VNFs for cost
and energy efficiency, ensuring performance guarantees of VNF operations,
ensuring coexistence of VNFs with non-virtualized network functions, and
mobilizing and scaling VNFs between hardware resources [Abd+16].

1.3. SERVICE FUNCTION CHAINING 9

FW DPI
Data

Monitoring
Encryption Decryption

Figure 1.4: Example of a Service Function Chain [HB16].

1.3 Service Function Chaining

Network virtualization does not require SDN. Similarly, SDN does not imply
network virtualization. However, they are complementary to each other and
share many properties. A symbiosis between network virtualization and SDN
would help in addressing challenges in terms of resource management and
intelligent service orchestration.

Software Defined - NFV Network may play an important role in Service
Function Chaining (SFC). Network flows are often required to be processed
by an ordered sequence of network functions [QN15]. For instance, an In-
trusion Detection System may need to inspect the packet before compres-
sion or encryption are performed. Moreover, different customers can have
different requirements in terms of the sequence of network functions to be
performed [STV]. See, e.g., Fig. 1.4 for an example.

A Service Function Chain defines the required functions and the corre-
sponding order that must be applied to the packet belonging to a specific
data flow. SFC is an enabling technology for the flexible management of a
service/application traffic and provides a solution for classifying flows and
enforcing a certain policy according to the service requirements [Med+17].

In the current networks, a service chain includes a sequence of hardware
dedicated network devices to support a specific application or service. When
a new service is required, new hardware devices need to be deployed, installed,
and connected. While doing this, computational and network capacity con-
straints, as well as the policy constraints should be considered [Bha+16].
This process is time-consuming, expensive, and error-prone [LC15].

Thanks to the dynamic function provisioning of NFV and the centralized
control of SDN, a Software Defined-NFV Network is able to simplify the
service chain deployment and provisioning by making the process easier and
cheaper, enabling a flexible and dynamic deployment of network functions
as well as a simplified middlebox traffic steering [Qaz+13]. Indeed, the SDN
controller can easily provide and reconfigure service function chains in the
network, without the need of changing any hardware, and thus reducing the

10 CHAPTER 1. INTRODUCTION

complexity of resource provisioning. With the centralized control allowed
by SDN, the flow can be managed dynamically from end-to-end and the
network functions can be installed only along paths for which and when they
are necessary.

As a consequence, a Service Function Chain may be added or deleted
dynamically, saving time and cost to the operators [Kum+15]. Indeed, in
legacy networks, changing the locations of physical middleboxes as the net-
work conditions change would be very costly and impractical.

The SFC problem brings new challenges in the network, one of which is
in the context of resource allocation. Optimization models are needed for the
SFC distribution and allocation in order to achieve optimal performance of
the network, satisfy user demands, accomodate SFCs dynamically, and min-
imize network cost [Med+17]. Efficient algorithms are needed to determine
on which nodes VNFs should be placed. This, with different objectives in
mind, such as load balancing, CAPEX and OPEX reduction, energy savings,
and ability to recover from failures [HIP15; HB16].

1.4 Research Challenges and Contributions

In this section, we summarize our contributions and put them into context.
We first present the contributions made in the context of SDN/NFV-enabled
networks, for then summarizing the ones made in the context of Data Center
Scheduling and Elastical Optical Networks.

1.4.1 NFV Resource Allocation

Network operators should place VNFs when they will be used most effectively
and least expensively [Han+15]. In the context of NFV, the same virtual
function can be replicated and executed on several servers. It follows that a
fundamental problem arising when dealing with chains of network functions is
how to map these functions to nodes (servers) in the network while achieving
a specific objective.

Different optimization strategies may be applied to deal with the NFV
Resource Allocation Problem: exact solution and heuristics. Exact solutions
are mainly based on ILP techniques (i.e., branch and bound and branch and
price) and can efficiently deal with small instances [MD14; Lui+15; MKK14;
Moh+15; Add+15]. When instance sizes are medium to large or when the

1.4. RESEARCH CHALLENGES AND CONTRIBUTIONS 11

time to find a solution is crucial, such as in dynamic scenarios, an exact
solution approach is not suitable. In this case, a heuristic approach able to
find a good solution in a reasonable time is preferred. The family of heuristic
solutions includes both greedy approaches to find a feasible solution [Rig+15;
Moh+15; Add+15] and methods able to provide an approximation to the
exact solution [Coh+15; San+17; Tom+18b; Fen+17; CWJ18; Ma+17; SJ19;
Pou+19].

In [Tom+18b; Tom+18a], we address the problem of how to optimally
place virtual functions within the physical network in order to satisfy the
SFC requirements of all the network flows.

Our goal is to place network functions reducing the overall deployment or
setup cost. The cost aims at reflecting the cost of having a virtual machine
that runs a virtual function, such as license fees, network efficiency, or energy
consumption [Oba+16].

Since the formulated problem is NP-Hard, we propose two algorithms
that achieve a logarithmic approximation factor. For the special case of tree
network topologies with only upstream and downstream flows, we devise an
optimal algorithm. We demonstrate the cost effectiveness of our algorithms
through extensive simulations.

1.4.2 Survivable SDN/NFV Networks

Network operators are responsible for ensuring that the network provides
all the services that users are expecting, with the agreed Quality of Service
(QoS). Hence, different factors need to be taken into account during net-
work design and management in order to optimize both the cost and the
performance.

However, the underlying network that connects all of these things has
remained virtually unchanged. Demands of the exploding number of de-
vices using the network are stretching its limits, and network failures such
as (multiple) link or node failures may have a significant impact on the QoS
experienced by the customers and lead to SLA (Service Level Agreement)
violations. Consequently, resiliency needs to be strongly addressed while
designing a network.

In [Tom+18c], we consider the problem of providing, for each demand, a
primary and a link-disjoint backup path, under both dedicated and shared
path protection schemes. Moreover, the problem also consists in provisioning
VNFs in order to ensure that the traversal order of the network functions by

12 CHAPTER 1. INTRODUCTION

each path is respected. This adds a challenge to the classical version of the
problem. Our goal is to minimize the bandwidth requirements while ensuring
that the delays on primary and backup paths stay below SLAs.

We propose a scalable exact method to solve the problem of reliable ser-
vice function chaining. The method is based on a decomposition model using
column generation.

In [Tom+19], we consider a protection technique called unrestricted flow
reconfiguration, also known as global rerouting [PM04]. In each of the pos-
sible failure situations, a new set of backup paths are defined, one for each
demand. This makes this technique the most bandwidth-efficient protec-
tion method. However, this also means that each failure may give rise to
a completely different routing for the demands. In a legacy network, it is
extremely expensive and impractical to implement this technique due to the
huge number of rules to install on the network devices.

We develop a scalable mathematical model that we handle using the Col-
umn Generation technique. We show the effectiveness of our methods and
demonstrate the feasibility of our approach with an implementation in Open-
Daylight.

1.4.3 Energy Aware SDN/NFV Networks

With the large yearly increase of Internet traffic and the growing concern of
the public and governments towards greenhouse gas emissions, future net-
works will have to be more energy efficient. In [08], it is reported that the
Information and Communication Technology (ICT) sector is responsible for
between 2 and 10% of global energy consumption, of which 51% is attributed
to the infrastructure of Telecommunication Networks and data centers.

Moreover, energy bills represent more then the 10% of telecom operators
operational expenditure [Bel15]. With the emergence of techniques of NFV,
the functions can now be executed by generic hardware instead of dedicated
equipment. Coupled with the SDN paradigm, NFV brings a great flexibility
to manage network flows. These new paradigms thus bear the opportunity
for energy savings in networks.

In [Tom+16; Hui+18a], we explore the potential energy savings of us-
ing NFV for Service Function Chains. We consider the problem of reducing
network energy consumption while placing network functions using generic
hardware along the paths followed by flows. We propose a way of modeling
this problem based on Integer Linear Programming (ILP). The ILP can op-

1.4. RESEARCH CHALLENGES AND CONTRIBUTIONS 13

timally solve instances of small sizes. To handle instances of larger sizes, we
thus propose and validate a heuristic algorithm and we formulate a Column
Generation model.

1.4.4 Other Work

1.4.4.1 Path Protection in Elastic Optical Network

With a flexible frequency grid, Elastic Optical Networks (EONs) will support
a more efficient usage of the spectrum resources. On the other hand, this
efficiency may lead to even more disruptive effects of a failure on the number
of involved connections with respect to traditional networks.

In [TJG18], we study the problem of providing path protection to the
lightpaths against a single fiber failure event in the optical layer. Our opti-
mization task is to minimize the spectrum requirements for the protection
in the network. We develop a scalable exact mathematical model using col-
umn generation for both shared and dedicated path protection schemes. The
model takes into account practical constraints such as the modulation format,
regenerators, and shared risk link groups. We demonstrate the effectiveness
of our model through extensive simulation on two real-world topologies of
different sizes.

1.4.4.2 Data Center Scheduling with Network Tasks

Network transfers represent up to 50% of the completion time of classical
jobs inside a data center [Cho+11; Tho+11]. Thus, network resources must
be considered when placing jobs. In [Gir+19b], we propose a new scheduling
framework, introducing network tasks that need to be executed on network
machines alongside traditional (CPU) tasks. The model takes into account
the competition between communications for the network resources, which
is not considered in the formerly proposed scheduling models with communi-
cation. Network transfers inside a data center can be easily modeled in our
framework. As we show, classical algorithms do not efficiently handle a lim-
ited amount of network bandwidth. We thus propose new provably efficient
algorithms with the goal of minimizing the makespan in this framework. We
show their efficiency and the importance of taking into consideration network
capacity through extensive simulations on workflows built from Google data
center traces.

14 CHAPTER 1. INTRODUCTION

1.5 Plan of the Thesis

Table 1.1 illustrates the organization and structure of the contributions in
the Thesis.

Topic Chapter
NFV Resource Allocation 3

Survivable SDN/NFV Networks 4, 5
Energy Aware SDN/NFV Networks 6

Data Center Scheduling 7
Path Protection in EONs 8

Table 1.1: Topic organization within the Thesis.

1.6 List of Publications

International Conferences

[1] Frédéric Giroire, Nicolas Huin, Andrea Tomassilli, Stéphane Pérennes.
When network matters: Data center scheduling with network tasks,
Proceedings of IEEE International Conference on Computer Commu-
nications (IEEE INFOCOM 2019), Paris, France, April 2019.

[2] Andrea Tomassilli, Frédéric Giroire, Nicolas Huin, Stéphane Pérennes.
Provably Efficient Algorithms for Placement of Service Function Chains
with Ordering Constraints, Proceedings of IEEE International Confer-
ence on Computer Communications (IEEE INFOCOM 2018), Honolulu,
HI, USA, April 2018.

[3] Andrea Tomassilli, Brigitte Jaumard, Frédéric Giroire. Path Protec-
tion in Optical Flexible Networks with Distance-adaptive Modulation
Formats, Proceedings of International Conference on Optical Network
Design and Modeling (ONDM 2018), Dublin, Ireland, May 2018

[4] Andrea Tomassilli, Nicolas Huin, Frédéric Giroire, Brigitte Jaumard.
Resource Requirements for Reliable Service Function Chaining, Pro-
ceedings of IEEE International Conference on Communications (IEEE

ICC 2018), Kansas City, MO, USA, May 2018.

1.6. LIST OF PUBLICATIONS 15

[5] Nicolas Huin, Andrea Tomassilli, Frédéric Giroire, Brigitte Jaumard.
Energy-Efficient Service Function Chain Provisioning, International
Network Optimization Conference (INOC 2017), Lisbon, Portugal,
February 2017.

International Journals

[6] Nicolas Huin, Andrea Tomassilli, Frédéric Giroire, Brigitte Jaumard.
Energy-Efficient Service Function Chain Provisioning, IEEE/OSA Journal

of Optical Communications and Networking. Volume 10, number
3, pages 114-124, 2018

Posters at International Conferences

[7] Andrea Tomassilli, Giuseppe Di Lena, Frédéric Giroire, Issam
Tahiri, Damien Saucez, Stéphane Pérennes, Thierry Turletti, Rusland
Sadykov, Francois Vanderbeck, Chidung Lac. Design of Survivable
SDN/NFV-enabled Networks with Bandwidth-optimal Failure Recov-
ery, IFIP Networking (NETWORKING’19), Warsaw, Poland, May 2019.

[8] Adrien Gausseran, Andrea Tomassilli, Frédéric Giroire, Joanna
Moulierac. Don’t Interrupt Me When You Reconfigure my Service
Function Chains, IFIP Networking (NETWORKING’19), Warsaw, Poland,
May 2019.

National Conferences

[9] Andrea Tomassilli, Frédéric Giroire, Nicolas Huin, Stéphane Pérennes.
Algorithmes d’approximation pour le placement de châınes de fonc-
tions de services avec des contraintes d’ordre, 20ème Rencontres Fran-
cophones sur les Aspects Algorithmiques des Télécommunications
(ALGOTEL 2018), Roscoff, France, May 2018.

Research Reports

[10] Frédéric Giroire, Nicolas Huin, Andrea Tomassilli. The Structured
Way of Dealing with Heterogeneous Live Streaming Systems, HAL-Inria
RR-9070

[11] Andrea Tomassilli, Nicolas Huin, Frédéric Giroire, Brigitte Jaumard.
Energy-Efficient Service Chains with Network Function Virtualization,
HAL-Inria RR-8979

16 CHAPTER 1. INTRODUCTION

Submitted

[12] Andrea Tomassilli, Giuseppe Di Lena, Frédéric Giroire, Issam
Tahiri, Damien Saucez, Stéphane Pérennes, Thierry Turletti, Rusland
Sadykov, Francois Vanderbeck, Chidung Lac. Design of Survivable
SDN/NFV-enabled Networks with Bandwidth-optimal Failure Recov-
ery.

[13] Adrien Gausseran, Andrea Tomassilli, Frédéric Giroire, Joanna
Moulierac. Don’t Interrupt Me When You Reconfigure my Service
Function Chains.

1.7 Collaboration

During the work of this thesis, I had the possibility to collaborate with other
PhD Students and researchers in Sophia Antipolis and elsewhere to conduct
research. A list that summarizes these collaborations, ordered in alphabetical
order, is as follows.

Name Affiliation
Zied Ben-Houidi Nokia Bell-Labs, France

Giuseppe Di Lena Orange Labs and Inria, France
Adrien Gausseran Université Cote d’Azur, France
Frédéric Giroire CNRS, France

Brigitte Jaumard Concordia University, Canada
Nicolas Huin Huawei, France
Chidung Lac Orange Labs, France

Joanna Moulierac Université Cote d’Azur, France
Stéphane Pérennes CNRS, France
Rusland Sadykov Inria, France
Damien Saucez Inria, France

Issam Tahiri Inria, France
Thierry Turletti Inria, France

Francois Vanderbeck University of Bordeaux 1, France

Also, a list of the research visits carried out during these years.

1.7. COLLABORATION 17

Hosting Institution Time Period
Concordia University, Montreal, Canada October-December 2017

Inria Bordeaux - Sud-Ouest, Bordeaux, France March 2018
Nokia Bell-Labs, Paris, France October-December 2018

18 CHAPTER 1. INTRODUCTION

References

[08] SMART 2020 Enabling the low-carbon economy in the in-
formation age, http://www.smart2020.org/ assets/files/02 -
Smart2020Report.pdf. 2008 (cit. on pp. 12, 166).

[Abd+16] Sherif Abdelwahab, Bechir Hamdaoui, Mohsen Guizani, and
Taieb Znati. “Network function virtualization in 5G”. In: IEEE
Communications Magazine 54.4 (2016), pp. 84–91 (cit. on p. 8).

[Add+15] Bernardetta Addis, Dallal Belabed, Mathieu Bouet, and Ste-
fano Secci. “Virtual network functions placement and routing
optimization”. In: Cloud Networking (CloudNet), 2015 IEEE
4th International Conference on. IEEE. 2015 (cit. on pp. 10,
11, 46).

[Aky+14] Ian F Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, and Wu
Chou. “A roadmap for traffic engineering in SDN-OpenFlow
networks”. In: Computer Networks 71 (2014), pp. 1–30 (cit. on
pp. 3, 5).

[Bel15] Alcetel Lucent Bell Labs. White Paper: Global What if Ana-
lyzer of NeTwork Energy ConsumpTion (GWATT). Bell labs
application able to measure the impact of technologies like SDN
& NFV on network energy consumption. Murray Hill, NJ, USA,
2015 (cit. on pp. 12, 166).

[Ber+14] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi,
Masayoshi Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor,
Pavlin Radoslavov, William Snow, et al. “ONOS: towards an
open, distributed SDN OS”. In: Proceedings of the third work-
shop on Hot topics in software defined networking. ACM. 2014,
pp. 1–6 (cit. on pp. 4, 80).

[Bha+16] Deval Bhamare, Raj Jain, Mohammed Samaka, and Aiman Er-
bad. “A survey on service function chaining”. In: Journal of
Network and Computer Applications 75 (2016), pp. 138–155
(cit. on p. 9).

[CCN10] Zheng Cai, Alan L Cox, and TS Ng. Maestro: A system for
scalable openflow control. Tech. rep. 2010 (cit. on p. 4).

REFERENCES 19

[Cho+11] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I Jor-
dan, and Ion Stoica. “Managing data transfers in computer
clusters with orchestra”. In: ACM SIGCOMM Computer Com-
munication Review. Vol. 41. 4. 2011 (cit. on pp. 13, 172, 174,
191).

[Coh+15] Rami Cohen, Liane Lewin-Eytan, Joseph Seffi Naor, and Danny
Raz. “Near optimal placement of virtual network functions”. In:
Computer Communications (INFOCOM), 2015 IEEE Confer-
ence on. IEEE. 2015, pp. 1346–1354 (cit. on pp. 11, 46).

[CWJ18] Yang Chen, Jie Wu, and Bo Ji. “Virtual Network Function
Deployment in Tree-structured Networks”. In: 2018 IEEE 26th
International Conference on Network Protocols (ICNP). IEEE.
2018, pp. 132–142 (cit. on p. 11).

[Eri13] David Erickson. “The beacon openflow controller”. In: Proceed-
ings of the second ACM SIGCOMM workshop on Hot topics
in software defined networking. ACM. 2013, pp. 13–18 (cit. on
p. 4).

[Fen+17] Hao Feng, Jaime Llorca, Antonia M Tulino, Danny Raz, and
Andreas F Molisch. “Approximation algorithms for the NFV
service distribution problem”. In: IEEE INFOCOM 2017-IEEE
Conference on Computer Communications. IEEE. 2017, pp. 1–
9 (cit. on p. 11).

[Fou] Open Networking Foundation. url: https://www.opennetworking/
about (cit. on p. 4).

[FRZ14] Nick Feamster, Jennifer Rexford, and Ellen Zegura. “The road
to SDN: an intellectual history of programmable networks”.
In: ACM SIGCOMM Computer Communication Review 44.2
(2014), pp. 87–98 (cit. on p. 2).

[Gir+19b] Frédéric Giroire, Nicolas Huin, Andrea Tomassilli, and Stéphane
Pérennes. “When network matters: Data center scheduling with
network tasks”. In: IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications. 2019 (cit. on pp. 13, 171).

https://www.opennetworking/about
https://www.opennetworking/about

20 CHAPTER 1. INTRODUCTION

[Han+15] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee.
“Network function virtualization: Challenges and opportuni-
ties for innovations”. In: IEEE Communications Magazine 53.2
(2015), pp. 90–97 (cit. on pp. 8, 10).

[HB16] Juliver Gil Herrera and Juan Felipe Botero. “Resource alloca-
tion in NFV: A comprehensive survey”. In: IEEE Transactions
on Network and Service Management 13.3 (2016), pp. 518–532
(cit. on pp. 7, 9, 10).

[HIP15] Enrique Hernandez-Valencia, Steven Izzo, and Beth Polonsky.
“How will NFV/SDN transform service provider opex?” In:
IEEE Network 29.3 (2015), pp. 60–67 (cit. on p. 10).

[Hua17] Huawei. Huawei Releases SDN/NFV Commercial and Techno-
logical Innovations. 2017. url: http : / / www . huawei . com /

en / press - events / news / 2017 / 10 / Huawei - SDN - NFV -

Commercial-Technological-Innovations (cit. on p. 2).

[Hui+18a] N Huin, A Tomassilli, F Giroire, and B Jaumard. “Energy-
efficient service function chain provisioning”. In: IEEE/OSA
Journal of Optical Communications and Networking 10.3
(2018), pp. 114–124 (cit. on pp. 12, 45, 136).

[Jai+13] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer,
Junlan Zhou, Min Zhu, et al. “B4: Experience with a globally-
deployed software defined WAN”. In: ACM SIGCOMM Com-
puter Communication Review. Vol. 43. 4. ACM. 2013 (cit. on
pp. 1, 3).

[KF13] Hyojoon Kim and Nick Feamster. “Improving network manage-
ment with software defined networking”. In: IEEE Communi-
cations Magazine 51.2 (2013), pp. 114–119 (cit. on p. 1).

[Kop+10] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stri-
bling, Leon Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro
Iwata, Hiroaki Inoue, Takayuki Hama, et al. “Onix: A dis-
tributed control platform for large-scale production networks.”
In: OSDI. Vol. 10. 2010, pp. 1–6 (cit. on p. 4).

http://www.huawei.com/en/press-events/news/2017/10/Huawei-SDN-NFV-Commercial-Technological-Innovations
http://www.huawei.com/en/press-events/news/2017/10/Huawei-SDN-NFV-Commercial-Technological-Innovations
http://www.huawei.com/en/press-events/news/2017/10/Huawei-SDN-NFV-Commercial-Technological-Innovations

REFERENCES 21

[Kre+15] Diego Kreutz, Fernando MV Ramos, Paulo Verissimo, Chris-
tian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uh-
lig. “Software-defined networking: A comprehensive survey”. In:
Proceedings of the IEEE 103.1 (2015), pp. 14–76 (cit. on pp. 3,
4).

[Kum+15] S Kumar, M Tufail, S Majee, C Captari, and S Homma. “Ser-
vice function chaining use cases in data centers”. In: IETF SFC
WG (2015) (cit. on p. 10).

[LC15] Yong Li and Min Chen. “Software-defined network function vir-
tualization: A survey”. In: IEEE Access 3 (2015), pp. 2542–2553
(cit. on p. 9).

[LKR14] Adrian Lara, Anisha Kolasani, and Byrav Ramamurthy. “Net-
work innovation using openflow: A survey”. In: IEEE commu-
nications surveys & tutorials 16.1 (2014), pp. 493–512 (cit. on
pp. 5, 6).

[Lui+15] M. C. Luizelli, L. R. Bays, L.S. Buriol, M. P. Barcellos, and
L. P. Gaspary. “Piecing together the NFV provisioning puzzle:
Efficient placement and chaining of virtual network functions”.
In: IFIP/IEEE International Symposium on Integrated Network
Management. 2015 (cit. on pp. 10, 46).

[Ma+17] Wenrui Ma, Oscar Sandoval, Jonathan Beltran, Deng Pan, and
Niki Pissinou. “Traffic aware placement of interdependent nfv
middleboxes”. In: IEEE INFOCOM 2017-IEEE Conference on
Computer Communications. IEEE. 2017, pp. 1–9 (cit. on p. 11).

[Mar17] Sue Marek. Update: AT&T’s Stephens: More Than 40% of
Network Functions Are Virtualized. 2017. url: https://www.
sdxcentral . com / articles / news / atts - stephens - 47 -

network-functions-virtualized/2017/07/ (cit. on p. 2).

[McK+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and
Jonathan Turner. “OpenFlow: enabling innovation in campus
networks”. In: ACM SIGCOMM Computer Communication
Review 38.2 (2008), pp. 69–74 (cit. on pp. 2, 4).

https://www.sdxcentral.com/articles/news/atts-stephens-47-network-functions-virtualized/2017/07/
https://www.sdxcentral.com/articles/news/atts-stephens-47-network-functions-virtualized/2017/07/
https://www.sdxcentral.com/articles/news/atts-stephens-47-network-functions-virtualized/2017/07/

22 CHAPTER 1. INTRODUCTION

[MD14] Hendrik Moens and Filip De Turck. “VNF-P: A model for
efficient placement of virtualized network functions”. In: 10th
International Conference on Network and Service Management
(CNSM) and Workshop. IEEE. 2014, pp. 418–423 (cit. on
p. 10).

[Med+14] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray.
“Opendaylight: Towards a model-driven sdn controller archi-
tecture”. In: Proceeding of IEEE International Symposium on
a World of Wireless, Mobile and Multimedia Networks 2014.
IEEE. 2014, pp. 1–6 (cit. on p. 4).

[Med+17] Ahmed M Medhat, Tarik Taleb, Asma Elmangoush, Giuseppe
A Carella, Stefan Covaci, and Thomas Magedanz. “Service
function chaining in next generation networks: State of the art
and research challenges”. In: IEEE Communications Magazine
55.2 (2017), pp. 216–223 (cit. on pp. 9, 10).

[Mij+16] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten,
Filip De Turck, and Raouf Boutaba. “Network function virtu-
alization: State-of-the-art and research challenges”. In: IEEE
Communications Surveys & Tutorials 18.1 (2016), pp. 236–262
(cit. on p. 8).

[MKK14] Sevil Mehraghdam, Matthias Keller, and Holger Karl. “Specify-
ing and placing chains of virtual network functions”. In: Cloud
Networking (CloudNet), 2014 IEEE 3rd International Confer-
ence on. IEEE. 2014, pp. 7–13 (cit. on pp. 10, 45, 46).

[Moh+15] Ali Mohammadkhan, Sheida Ghapani, Guyue Liu, Wei Zhang,
KK Ramakrishnan, and Timothy Wood. “Virtual function
placement and traffic steering in flexible and dynamic software
defined networks”. In: Local and Metropolitan Area Networks
(LANMAN), 2015 IEEE International Workshop on. IEEE.
2015, pp. 1–6 (cit. on pp. 10, 11, 46, 138).

[Ngu+17] Van-Giang Nguyen, Anna Brunstrom, Karl-Johan Grinnemo,
and Javid Taheri. “SDN/NFV-based mobile packet core net-
work architectures: A survey”. In: IEEE Communications Sur-
veys & Tutorials 19.3 (2017), pp. 1567–1602 (cit. on p. 8).

REFERENCES 23

[Nun+14] Bruno Astuto A Nunes, Marc Mendonca, Xuan-Nam Nguyen,
Katia Obraczka, and Thierry Turletti. “A survey of software-
defined networking: Past, present, and future of programmable
networks”. In: IEEE Communications Surveys & Tutorials 16.3
(2014), pp. 1617–1634 (cit. on p. 2).

[Oba+16] Mathis Obadia, Jean-Louis Rougier, Luigi Iannone, Vania Co-
nan, and Mathieu Brouet. “Revisiting NFV orchestration with
routing games”. In: Network Function Virtualization and Soft-
ware Defined Networks (NFV-SDN), IEEE Conference on.
IEEE. 2016, pp. 107–113 (cit. on pp. 11, 44).

[PBL14] Kévin Phemius, Mathieu Bouet, and Jérémie Leguay. “Disco:
Distributed multi-domain sdn controllers”. In: 2014 IEEE Net-
work Operations and Management Symposium (NOMS). IEEE.
2014, pp. 1–4 (cit. on p. 4).

[Pfa+09] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu
Koponen, and Scott Shenker. “Extending networking into the
virtualization layer.” In: Hotnets. 2009 (cit. on p. 2).

[PM04] Michal Pióro and Deep Medhi. Routing, flow, and capacity de-
sign in communication and computer networks. Elsevier, 2004
(cit. on pp. 12, 80).

[Pou+19] Konstantinos Poularakis, Jaime Llorca, Antonia M Tulino, Ian
Taylor, and Leandros Tassiulas. “Joint Service Placement and
Request Routing in Multi-cell Mobile Edge Computing Net-
works”. In: IEEE INFOCOM 2019-IEEE Conference on Com-
puter Communications. 2019 (cit. on p. 11).

[PST18] Manish Paliwal, Deepti Shrimankar, and Omprakash Temb-
hurne. “Controllers in SDN: A review report”. In: IEEE Access
6 (2018), pp. 36256–36270 (cit. on p. 6).

[Qaz+13] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao,
Vyas Sekar, and Minlan Yu. “SIMPLE-fying middlebox policy
enforcement using SDN”. In: ACM SIGCOMM computer com-
munication review. Vol. 43. 4. ACM. 2013, pp. 27–38 (cit. on
p. 9).

[QN15] Paul Quinn and Tom Nadeau. “Problem statement for service
function chaining”. In: (2015) (cit. on p. 9).

24 CHAPTER 1. INTRODUCTION

[Rig+15] R. Riggio, Abbas Bradai, Tinku Rasheed, Julius Schulz-Zander,
Slawomir Kuklinski, and Toufik Ahmed. “Virtual network func-
tions orchestration in wireless networks”. In: Intl. Conf. on Net-
work and Service Management (CNSM). 2015, pp. 108–116 (cit.
on pp. 11, 138).

[San+17] Yu Sang, Bo Ji, Gagan R Gupta, Xiaojiang Du, and Lin Ye.
“Provably Efficient Algorithms for Joint Placement and Allo-
cation of Virtual Network Functions”. In: Computer Commu-
nications (INFOCOM), 2017 IEEE Conference on. IEEE. 2017
(cit. on pp. 11, 46, 47).

[She+12] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Vyas Sekar. “Making middle-
boxes someone else’s problem: network processing as a cloud
service”. In: ACM SIGCOMM Computer Communication Re-
view 42.4 (2012), pp. 13–24 (cit. on pp. 1, 7).

[SJ19] Gamal Sallam and Bo Ji. “Joint Placement and Allocation of
Virtual Network Functions with Budget and Capacity Con-
straints”. In: IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. 2019 (cit. on p. 11).

[SRA12] Justine Sherry, Sylvia Ratnasamy, and Justine Sherry At. “A
survey of enterprise middlebox deployments”. In: (2012) (cit.
on p. 7).

[STV] Marco Savi, Massimo Tornatore, and Giacomo Verticale. “Im-
pact of processing costs on service chain placement in network
functions virtualization”. In: IEEE NFV-SDN 2015 (cit. on
pp. 9, 49, 119).

[Tel12] Nippon Telegraph. Telephone Corporation,“Ryu Network Op-
erating System.”. 2012 (cit. on p. 4).

[Tho+11] Kurt Thomas, Chris Grier, Justin Ma, Vern Paxson, and Dawn
Song. “Design and evaluation of a real-time url spam filtering
service”. In: IEEE Symposium on Security and Privacy (SP).
2011, pp. 447–462 (cit. on pp. 13, 172).

REFERENCES 25

[TJG18] A Tomassilli, B Jaumard, and F Giroire. “Path Protection in
Optical Flexible Networks with Distance-adaptive Modulation
Formats”. In: 2018 International Conference on Optical Net-
work Design and Modeling (ONDM). 2018 (cit. on pp. 13, 203).

[Tom+16] A Tomassilli, N Huin, F Giroire, and B Jaumard. Energy-
efficient service chains with network function virtualization.
2016 (cit. on p. 12).

[Tom+18a] Andrea Tomassilli, F Giroire, N Huin, and S Pérennes. “Algo-
rithmes d’approximation pour le placement de chaines de fonc-
tions de services avec des contraintes d’ordre”. In: ALGOTEL
2018-20émes Rencontres Francophones sur les Aspects Algorith-
miques des Télécommunications. 2018 (cit. on pp. 11, 43).

[Tom+18b] Andrea Tomassilli, Frédéric Giroire, Nicolas Huin, and Stéphane
Pérennes. “Provably Efficient Algorithms for Placement of Ser-
vice Function Chains with Ordering Constraints”. In: IEEE
INFOCOM 2018 - IEEE Conference on Computer Communi-
cations. 2018 (cit. on pp. 11, 43).

[Tom+18c] Andrea Tomassilli, Nicolas Huin, Frederic Giroire, and Brigitte
Jaumard. “Resource requirements for reliable service function
chaining”. In: 2018 IEEE International Conference on Commu-
nications (ICC). IEEE. 2018, pp. 1–7 (cit. on pp. 11, 107).

[Tom+19] Andrea Tomassilli, Giuseppe Di Lena, Frédéric Giroire, Issam
Tahiri, Damien Saucez, Stéphane Perennes, Thierry Turletti,
Rusland Sadykov, Francois Vanderbeck, and Chidung Lac.
“Poster: Design of Survivable SDN/NFV-enabled Networks
with Bandwidth-optimal Failure Recovery”. In: Annex to the
IFIP Networking 2019 Proceedings. 2019 (cit. on p. 12).

[Wor17] Marcel van Wort. SDN and NFV transforming the network:
where do we go from here? 2017. url: https : / / www .

orange-business.com/en/blogs/connecting-technology/

networks / sdn - and - nfv - transforming - the - network -

where-do-we-go-from-here (cit. on p. 2).

https://www.orange-business.com/en/blogs/connecting-technology/networks/sdn-and-nfv-transforming-the-network-where-do-we-go-from-here
https://www.orange-business.com/en/blogs/connecting-technology/networks/sdn-and-nfv-transforming-the-network-where-do-we-go-from-here
https://www.orange-business.com/en/blogs/connecting-technology/networks/sdn-and-nfv-transforming-the-network-where-do-we-go-from-here
https://www.orange-business.com/en/blogs/connecting-technology/networks/sdn-and-nfv-transforming-the-network-where-do-we-go-from-here

Chapter 2

Preliminaries

In this chapter, we introduce the preliminaries and tools that are used
throughout the later chapters.

Different techniques are used throughout this thesis. They can be grouped
into 2 main categories: Decomposition techniques and Approximation Al-
gorithms. In what follows, these techniques are presented in more detail,
describing their principles and benefits.

2.1 Linear Programming

A Linear Program (LP) is the problem of minimizing or maximizing a linear
objective function subject to linear constraints, where the constraints may
be equalities and/or inequalities.

A constraint can be defined as a condition on variables which restricts
the values that they can take.

In general, we are given:

• a cost vector c = (c1, c2, . . . , cn)T ∈ R
n

• a vector b = (b1, b2, . . . , bm)T ∈ R
m

• a matrix A =








a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

· · · · · · . . . · · ·
am,1 am,2 · · · am,n







∈ R

m×n

Given a vector of variables x = (x1, x2, . . . , xn)T , the aim consists in either
minimizing or maximizing a linear cost function

cTx =
∑n

i=1 ci · xi

27

28 CHAPTER 2. PRELIMINARIES

subject to a set of equality or inequality constraints such as Ax ≤ b, Ax ≥ b,
and Ax = b.

In addition, we are given constraints on the values that the variables can
take (e.g., non-negativity x ≥ 0 and non-positivity x ≤ 0). If all variables
can take continuous values, then it is a Linear Problem (LP). Otherwise, if
some or all of the variables are restricted to be integers, then we refer to it
as a Mixed Integer Linear Problem (MILP) and an Integer Linear Problem
(ILP), respectively.

The field of linear programming began in 1947 with the work of Dantzig.
He proposed an algorithm for solving linear problems, namely the simplex
method [Dan48]. The idea consists in starting from a vertex of the feasible
region, then moving to an adjacent vertex if an improvement is possible, until
the process reaches an optimal point. Indeed, if there is an optimal solution,
then this solution is on a vertex of the feasible region

Nowdays, the simplex method is still an excellent and widely used method
for solving general linear programs.

Even though the simplex method is fairly efficient in practice, it may re-
quire an exponential number of iterations. Indeed, in 1972, Klee and Minty
[KM70] showed that, for certain linear programs, the simplex method will ex-
amine every vertex of the feasible region and their number can be exponential
in the number of variables and constraints.

In 1979, Khachiyan proposed a new approach to linear programming,
namely the ellipsoid method, proven to be a polynomial-time algorithm.
Practical experience, however, was disappointing. In almost all cases, the
simplex method was much faster than the ellipsoid method [LY+84].

Another polynomial time algorithm was proposed in 1984 by Karmarkar.
In [Kha79], he introduced the projective method, which led to many other
algorithms known as interior point methods. An interior point method al-
gorithm which achieves the best known asymptotic running time is due to
Ye [Ye91]. For additional details, the reader is referred to [LY+84; Tod02;
Bix12].

Thus, linear programs can be solved efficiently in polynomial time. Un-
fortunately, this is not true for Integer Linear Programs (ILPs). Indeed, even
if there are special cases of ILP problems for which we do have polynomial-
time algorithms, Integer Linear Programming is NP-hard in general. Thus,
no theoretically efficient ILP-solver is possible.

The most common method for solving ILP problems is called Branch-
and-Bound [LD10]. The main idea consists in partitioning the set of feasible

2.1. LINEAR PROGRAMMING 29

solutions into smaller subsets of solutions and solving a problem for each
subset. The process is repeated recursively by exploring promising areas by
keeping track of the upper and lower bounds for the optimal solution. We
refer to [LW66] for additional details about this technique.

Another approach to solve ILPs is the Cutting Plane method [Gom+58].
In this case, the strategy consists in solving a set of linear relaxations and
iteratively adding constraints to the original problem with the goal of bet-
ter approximating the convex hull of the feasible region around the optimal
solution.

Both methods can be considered powerful tools to solve ILPs and are in-
tegrated in most of the ILP solvers, such as Cplex [CPL09], Gurobi [OPT14],
SCIP [Ach04], GLPK [Mak15], and COIN-OR [Lou03].

Anyway, the cutting plane algorithms exhibit a slow convergence as the
addition of too many cuts can lead to very large LPs that are hard to solve
[Jün+09]. Also, the branch and bound method is slow as many useless nodes
may be explored [Wol98].

2.1.1 Column Generation

Instead of solving the general problem, sometimes it may be useful to exploit
its special structure, try to decompose it, and separately solve smaller and
easier-to-solve parts of the problem to achieve the original optimal solution.
Column generation has been shown to be useful and applicable to many
problems. Examples are vehicle routing [DDS92; SS98], machine scheduling
[CP99], graph coloring [MT96], cutting stock [Van+94], and Service Function
Chain provisioning [HJG17b] problems.

We use it as a tool which can help to deal with the complexity of the
class of routing problems we are going to consider in this Thesis.

Column generation consists in solving a linear program with only a subset
of the variables present, and using the dual solution to generate new variables,
which may improve the current optimal solution, until no such variables can
be found. As in the simplex method, with column generation the aim is to
find, at each iteration, one or more promising variables to enter the basis.

The process starts by defining a restricted master problem (RMP) with
only a subset of the variables x = (x1, x2, . . . , xn). The RMP may be initial-
ized with artificial variables as well as a feasible solution computed using a
heuristic, for example. By solving the master problem, we obtain a primal
feasible solution and dual multipliers π, which will be used to find a new

30 CHAPTER 2. PRELIMINARIES

variable xn+1 (if any) with negative or positive reduced cost, according to
the case of a minimization or a maximization problem, respectively. The
problem to be solved when finding a new variable is often referred to as a
pricing problem (PP).

The solution of the subproblem provides either a certificate of optimality,
or a new column that will be added to the master problem and that may
potentially improve the value of the current solution x.

Note that solving the subproblem to optimality is only necessary to prove
optimality of the general problem. Indeed, it could be enough to stop solving
the subproblem as soon as a column with positive (maximization) or negative
(minimization) reduced cost is found. The newly generated column is added
to our RMP and the process is repeated until no improving column can be
generated. In such a case, the optimal solution of the RMP is also optimal
for the linear relaxation of the general problem.

However, there are several issues to be dealt with when using the Column
generation algorithm [DDS06]. For instance, a problem consists in speeding
up the convergence of the column generation algorithm. Indeed, convergence
of the basic column generation procedure suffers from dual oscillations espe-
cially when the number of constraints is large. To improve the convergence
and reduce the fluctuations in the dual variables, it may be useful using sta-
bilization techniques (see e.g., [Pes+18; ADF04]).

Another problem consists in choosing the best column to enter the Master
Problem, as for problems with degeneracy, the selected column may not be
useful in improving the current optimal solution.

Finally, as the column generation solved the linear relation of the input
problem, additional steps are necessary in order to find the optimal integral
solution. Existing techniques include the Branch and Cut [HP85], Branch
and Bound [LD10], and Branch and Price [Bar+98] algorithms.

The strategy we use to obtain a good integral solution is as follows. We
first solve the linear relaxation of the general problem by the standard col-
umn generation procedure, and then obtain an ǫ-optimal integer solution for
the general problem by solving exactly the ILP model associated with the
last master problem. We refer the reader to [DL05; CC+83] for more details
about this technique.

2.2. COMPLEXITY THEORY 31

2.2 Complexity Theory

Let us start with some preliminaries to NP-Completeness. NP-Completeness
is based on decision problems, where a decision problem is a problem with a
yes/no answer.

The class P (Polynomial Time) contains decision problems which can
be solved in polynomial time. This means that, given an instance of the
problem, the answer yes/no can be decided in polynomial time (efficiently).

The class NP (Non-Deterministic Polynomial Time) contains decision
problems which can be verified in polynomial time. That is, given a solution
for an instance of the problem, the correctness of the solution can be checked
in polynomial time. Thus, any problem which belongs to P also belongs to
NP.

An NP Problem is said to be NP-complete if every NP problem can be
reduced to it in polynomial time. That is, Q is NP-complete if, for every NP

problem P , we can define a polynomial-time algorithm mapping an instance
x of P to an instance y of Q with the following property: x has a yes answer
if and only if y has a yes answer too. For example, determining whether a
Boolean formula is satisfied (problem often referred to as Boolean satisfiability
problem) is NP-complete. NP-complete problems are the hardest problems
in NP.

Intuitively, NP-hard problems are at least as hard as any NP-complete
problems. These problems are not required to be decision problems, but
can be optimization problems in which the goal consists in optimizing some
objective function. No polynomial-time algorithms are known for any NP-
hard problem.

A large number of optimization problems are difficult to solve optimally
and many of them have been shown to be NP-hard [GJ02; CKH95]. For
these problems it is not possible to design polynomial-time algorithms able
to compute an optimal solution for every possible instance of the problem,
unless P=NP, and this is very unlikely to be true.

To deal with these problems, two commonly adopted approaches consist
in using either heuristics or approximation algorithms. A heuristic produces a
good solution but without any guarantee on the quality of the solution found.
On the other hand, an approximation algorithm aims at finding a solution
whose cost is as close as possible to the optimal solution, in polynomial time.

Consider a minimization problem P . An algorithm A is said to be an
approximation algorithm with approximation ratio α if and only if, for every

32 CHAPTER 2. PRELIMINARIES

instance of the problem, A gives a solution at most α times the optimal
value for this instance in polynomial time. Conversely, if P is a maximization
problem, then A must be able to compute, for each instance, a solution which
is at least α times the optimal solution.

Given an optimization problem Π, then A is an α-approximate algorithm
if and only if, for every instance x of Π, A returns a feasible solution such
that

OPT ≤ A(x) ≤ α ·OPT (x) (minimization case, α ≥ 1)

or

α ·OPT ≤ A(x) ≤ OPT (x) (maximization case, α ≤ 1)

where A(x) represents the solution returned by A with x as an instance and
OPT (x) the corresponding optimal solution.

Many different techniques have been used to develop approximation al-
gorithms such as greedy, randomized, and linear programming based algo-
rithms. [Vaz13] provides a thoughtful summary of the mainly used tech-
niques.

In what follows, we describe two techniques that have been used in this
thesis in more detail, namely greedy and linear programming, applying them
on a classical problem: the Vertex Cover Problem.

The Vertex Cover Problem can be stated as follows.
Input: A graph G = (V,E).
Output: A vertex cover for G, i.e., a subset of vertices V ′ ⊆ V such that,
for each (u, v) ∈ E, either u ∈ V ′ or v ∈ V ′.
Objective: Minimize the cardinality of the vertex cover, i.e., |V ′|.

An example for a vertex cover in given in Fig. 2.1.

2.2. COMPLEXITY THEORY 33

1 2 3

4 5 6

Figure 2.1: Example of Vertex Cover instance. An optimal vertex coloring
is given by the nodes highlighted in green.

2.2.1 LP-Rounding

The Vertex Cover problem can be expressed as an ILP by using decision
variables xu for all u ∈ V to indicate whether u ∈ V ′.

V ′ is a vertex cover if and only if, for each (u, v) ∈ E, the constraint
xu + xv ≥ 1 is satisfied.

Thus, the vertex cover problem can be expressed with the following ILP.

Objective

min
∑

u∈V

xu

Cover conditions

xu + xv ≥ 1, ∀(u, v) ∈ E

Variables Domain

xu ∈ {0, 1}, ∀ u ∈ V

As discussed below, solving ILPs is NP-hard. Therefore, we make use
of an LP to approximate the optimal solution. To this end, we relax the
constraint xv ∈ {0, 1} to xv ≥ 0, ∀v ∈ V .

A linear programming formulation for Vertex Cover is:

34 CHAPTER 2. PRELIMINARIES

Objective

min
∑

u∈V

xu

Cover conditions

xu + xv ≥ 1, ∀(u, v) ∈ E

Variables Domain

xu ≥ 0, ∀ u ∈ V

We can solve the LP in polynomial time, but the solution may be fractional.
In order to obtain an actual vertex cover, given an optimal fractional solution
x∗ for the LP, we apply the following rounding procedure.

Algorithm 1 FromFractionalToInteger

1: for each x∗
u ∈ x∗ do

2: if x∗
u ≥ 0.5 then

3: x̃u ← 1
4: else
5: x̃u ← 0
6: end if
7: end for
8: return V ′ = {u ∈ V |x̃u = 1}

V ′ is a vertex cover. Indeed, for each edge x∗
u + x∗

v ≥ 1. Thus, at least one of
u and v will be greater than 1

2
and so, in the Vertex Cover. Also, the cost of

V ′ is at most twice the optimum. This is because

OPT ≤ |V ′| =
∑

u∈V

x̃u ≤
∑

u∈V

2 · x∗
u = 2 ·OPT (LP) ≤ 2 ·OPT (ILP),

as the value of the fractional optimal solution must be less than or equal to
the value of the optimal solution of the integer program.
Thus, this is a polynomial-time 2-approximate algorithm for the vertex cover
problem.

2.2. COMPLEXITY THEORY 35

2.2.2 Greedy

A greedy heuristic for Vertex Cover may apply the following procedure: pick
repeatedly a non-covered edge, put both of its endpoints in the cover and
remove all incident edges to the 2 endpoints. A pseudocode is as follows.

Algorithm 2 GreedyVertexCover

1: V ′ ← {}
2: A← {}
3: while E 6= ∅ do
4: pick an edge (u, v) ∈ E
5: V ′ ← V ′ ∪ {u, v}
6: A← A ∪ {(u, v)}
7: remove all edges incident to either u or v from E
8: end while
9: return V ′

The algorithm returns a valid vertex cover of G as every edge in E has
at least one end-point in V ′.
A represents the set of edges selected by the algorithm. We have that:

• Every edge in A contributes 2 vertices to V ′. Thus, |V ′| = 2 · |A|.

• Every optimal vertex cover must include at least one endpoint of each
edge in A. Thus, |A| ≤ OPT .

Finally, we have:
|V ′| = 2 · |A| ≤ 2 ·OPT

Thus, GreedyVertexCover is a 2-factor approximation algorithm for the Ver-
tex Cover problem.

36 CHAPTER 2. PRELIMINARIES

References

[Ach04] Tobias Achterberg. “SCIP-a framework to integrate constraint
and mixed integer programming”. In: (2004) (cit. on p. 29).

[ADF04] Hatem Ben Amor, Jacques Desrosiers, and Antonio Frangioni.
Stabilization in column generation. Groupe d’études et de
recherche en analyse des décisions, 2004 (cit. on p. 30).

[Bar+98] Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Mar-
tin WP Savelsbergh, and Pamela H Vance. “Branch-and-price:
Column generation for solving huge integer programs”. In: Op-
erations research 46.3 (1998), pp. 316–329 (cit. on p. 30).

[Bix12] Robert E Bixby. “A brief history of linear and mixed-integer
programming computation”. In: Documenta Mathematica (2012),
pp. 107–121 (cit. on p. 28).

[CC+83] Vasek Chvatal, Vaclav Chvatal, et al. Linear programming.
Macmillan, 1983 (cit. on p. 30).

[CKH95] Pierluigi Crescenzi, Viggo Kann, and M Halldórsson. A com-
pendium of NP optimization problems. 1995 (cit. on p. 31).

[CP99] Zhi-Long Chen and Warren B Powell. “Solving parallel machine
scheduling problems by column generation”. In: INFORMS
Journal on Computing 11.1 (1999), pp. 78–94 (cit. on p. 29).

[CPL09] IBM ILOG CPLEX. “V12. 1: User’s Manual for CPLEX”.
In: International Business Machines Corporation 46.53 (2009),
p. 157 (cit. on p. 29).

[Dan48] George B Dantzig. “Programming in a linear structure”. In:
(1948) (cit. on p. 28).

[DDS06] Guy Desaulniers, Jacques Desrosiers, and Marius M Solomon.
Column generation. Vol. 5. Springer Science & Business Media,
2006 (cit. on p. 30).

[DDS92] Martin Desrochers, Jacques Desrosiers, and Marius Solomon.
“A new optimization algorithm for the vehicle routing prob-
lem with time windows”. In: Operations research 40.2 (1992),
pp. 342–354 (cit. on p. 29).

REFERENCES 37

[DL05] Jacques Desrosiers and Marco E Lübbecke. “A primer in col-
umn generation”. In: Column generation. Springer, 2005, pp. 1–
32 (cit. on p. 30).

[GJ02] Michael R Garey and David S Johnson. Computers and in-
tractability. Vol. 29. wh freeman New York, 2002 (cit. on pp. 31,
212).

[Gom+58] Ralph E Gomory et al. “Outline of an algorithm for integer so-
lutions to linear programs”. In: Bulletin of the American Math-
ematical society 64.5 (1958), pp. 275–278 (cit. on p. 29).

[HJG17b] Nicolas Huin, Brigitte Jaumard, and Frédéric Giroire. “Opti-
mization of network service chain provisioning”. In: 2017 IEEE
International Conference on Communications (ICC). IEEE.
2017, pp. 1–7 (cit. on p. 29).

[HP85] Karla Hoffman and Manfred Padberg. “LP-based combinatorial
problem solving”. In: Annals of Operations Research 4.1 (1985),
pp. 145–194 (cit. on p. 30).

[Jün+09] Michael Jünger, Thomas M Liebling, Denis Naddef, George L
Nemhauser, William R Pulleyblank, Gerhard Reinelt, Giovanni
Rinaldi, and Laurence A Wolsey. 50 Years of integer program-
ming 1958-2008: From the early years to the state-of-the-art.
Springer Science & Business Media, 2009 (cit. on p. 29).

[Kha79] Leonid G Khachiyan. “A polynomial algorithm in linear pro-
gramming”. In: Doklady Academii Nauk SSSR. Vol. 244. 1979,
pp. 1093–1096 (cit. on p. 28).

[KM70] Victor Klee and George J Minty. How good is the simplex algo-
rithm. Tech. rep. WASHINGTON UNIV SEATTLE DEPT OF
MATHEMATICS, 1970 (cit. on p. 28).

[LD10] Ailsa H Land and Alison G Doig. “An automatic method for
solving discrete programming problems”. In: 50 Years of Integer
Programming 1958-2008. Springer, 2010, pp. 105–132 (cit. on
pp. 28, 30).

[Lou03] Robin Lougee-Heimer. “The Common Optimization INterface
for Operations Research: Promoting open-source software in the
operations research community”. In: IBM Journal of Research
and Development 47.1 (2003), pp. 57–66 (cit. on p. 29).

38 CHAPTER 2. PRELIMINARIES

[LW66] Eugene L Lawler and David E Wood. “Branch-and-bound
methods: A survey”. In: Operations research 14.4 (1966),
pp. 699–719 (cit. on p. 29).

[LY+84] David G Luenberger, Yinyu Ye, et al. Linear and nonlinear
programming. Vol. 2. Springer, 1984 (cit. on p. 28).

[Mak15] A Makhorin. The GNU Linear Programming Kit (GLPK).
GNU Software Foundation, 2000. 2015 (cit. on p. 29).

[MT96] Anuj Mehrotra and Michael A Trick. “A column generation ap-
proach for graph coloring”. In: informs Journal on Computing
8.4 (1996), pp. 344–354 (cit. on p. 29).

[OPT14] GUROBI OPTIMIZATION. “INC. Gurobi optimizer reference
manual, 2015”. In: URL: http://www. gurobi. com (2014) (cit.
on p. 29).

[Pes+18] Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François
Vanderbeck. “Automation and combination of linear-programming
based stabilization techniques in column generation”. In: IN-
FORMS Journal on Computing (2018) (cit. on pp. 30, 89).

[SS98] Martin Savelsbergh and Marc Sol. “Drive: Dynamic routing
of independent vehicles”. In: Operations Research 46.4 (1998),
pp. 474–490 (cit. on p. 29).

[Tod02] Michael J Todd. “The many facets of linear programming”. In:
Mathematical Programming 91.3 (2002), pp. 417–436 (cit. on
p. 28).

[Van+94] Pamela H Vance, Cynthia Barnhart, Ellis L Johnson, and
George L Nemhauser. “Solving binary cutting stock problems
by column generation and branch-and-bound”. In: Computa-
tional optimization and applications 3.2 (1994), pp. 111–130
(cit. on p. 29).

[Vaz13] Vijay V Vazirani. Approximation algorithms. Springer Science
& Business Media, 2013 (cit. on pp. 32, 59).

[Wol98] Laurence A Wolsey. Integer programming. Wiley, 1998 (cit. on
p. 29).

REFERENCES 39

[Ye91] Yinyu Ye. “An O (n 3 L) potential reduction algorithm for
linear programming”. In: Mathematical programming 50.1-3
(1991), pp. 239–258 (cit. on p. 28).

Part I

NFV Resource Allocation

41

Chapter 3

Service Function Chains
Placement

Contents
3.1 Introduction . 44

3.2 Related Work . 45

3.3 System Model and Problem Formulation 47

3.3.1 Preliminaries: Single Function and Uniform Case . 48

3.4 Approximation Algorithms for SFC-Placement 49

3.4.1 Equivalence with Hitting Set 49

3.4.2 Naive and Faster Greedy Algorithms 54

3.4.3 An LP-Rounding Approach. 57

3.5 Tree Topologies . 61

3.5.1 Special Case: Cost uniform over nodes 65

3.6 Experimental Study 68

3.6.1 Data sets . 68

3.6.2 Number of demands 69

3.6.3 Length of the paths 70

3.6.4 Length of the chain 70

3.6.5 Network topology 71

3.6.6 Processing time . 72

3.7 Conclusion . 72

The content of this chapter is an extended version of [Tom+18b; Tom+18a].

43

44 CHAPTER 3. SFC PLACEMENT

3.1 Introduction

NFV gives network operators a great freedom to customize their networks
and offers a chance to reduce both the capital expenditure and operational
costs. Indeed, design choices such as the placement of the functions may
have a significant impact on the overall expenditure. It follows that a fun-
damental problem arising when dealing with chains of network functions is
how to map these functions to nodes (servers) in the network while achieving
a specific objective. Objectives may differ depending on network’s operator
goal. Examples of possible objectives are the minimization of the number of
used network nodes, the minimization of the network cost, the minimization
of the total latency over all paths and the optimization of bandwidth.
We address the problem of how to optimally place virtual functions within
the physical network in order to satisfy the SFC requirements of all the net-
work flows. The network is specified by a set of nodes V and links E. The
traffic is given as a set of demands D. Each demand is associated with an
ordered sequence of network functions that need to be performed to all the
packets belonging to the same flow. We assume that the flow between each
demand is completely processed at a single node for one function [Cas+10].
Our goal is to place network functions reducing the overall deployment or
setup cost. The cost aims at reflecting the cost of having a virtual machine
that runs a virtual function, such as license fees, network efficiency, or energy
consumption [Oba+16]. In our framework, we consider a general cost func-
tion that depends on both the network node and the network function. We
refer to this problem as the SFC Placement Problem.
In the case in which all the service chains consist of only one function, the
problem is known to be equivalent to the Minimum Set Cover problem, as
shown in [Cha+05]. This implies that the problem is NP-hard and that an
algorithm cannot achieve a better approximation factor than (1−ε) ln |S| for
any ε > 0, where S is the set of elements to be covered (unless P=NP) [DS].
No positive results are known when the lengths of the service function chains
are larger than 1.
We demonstrate that also the generic case, in which the demands have order
constraints on the network functions, also corresponds to a set cover instance.
We show that the exponential (in |V |) number of sets in the instance can be
reduced to a polynomial number (in |V | and |D|) by exploiting the structure
of the specific type of set cover instances. It allows us to propose two effi-
cient algorithms for the SFC Placement Problem. The first one is based on

3.2. RELATED WORK 45

LP rounding. The second one is a greedy algorithm. For both, we exploit
the specific structure of the problem to achieve a short running time, i.e.,
polynomial also in the length of the largest chain. We show that both the
algorithms achieve a solution of cost within a logarithmic factor of the opti-
mal.
We then restrict our attention to tree network topologies. We first show that
the problem is NP-hard even in this restricted case. Then, we investigate
the scenario in which all the flows are either upstream or downstream flows.
We devise an optimal algorithm for this particular case using the dynamic
programming technique.
We implement our algorithms and compare their results with the optimal
solutions obtained by a linear program. We show that the logarithmic ap-
proximation factor is only a worst case upper bound and that we can achieve
solutions close to the optimal in most cases.
Although many works on VNF placement have been reported in the liter-
ature, no existing work provides algorithms with proven theoretical results
for the placement of chains of VNFs with ordering constraints. Most of the
solutions are ILP-based, lacking in scalability, or heuristic-based, with no
approximation guarantees. To the best of our knowledge, we are the first to
propose a provably efficient algorithm to place chains of virtualized network
functions within the network.
The rest of this chapter is organized as follows. In Section 3.2, we review
related works in more detail. In Section 3.3, we present the problem for-
mulation. In Section 3.4, we first show that the SFC Placement Problem is
equivalent to Set Cover even in the general case. We then present details and
analysis of our placement algorithms. In Section 3.5, we propose our optimal
algorithm for tree topologies. In Section 3.6, we evaluate our proposed algo-
rithms. Conclusions are drawn in Section 3.7, together with open questions
for future work.

3.2 Related Work

There have been some studies on how to place ordered chains of network
functions within the network in the literature. Objectives may differ de-
pending on network’s operator goal. In particular, the optimization models
try to deal with different objectives, such as number of used nodes [MKK14],
cost [Bou+15], energy consumption [Hui+18a], bandwidth [HJG18a], and

46 CHAPTER 3. SFC PLACEMENT

end-to-end latency [MKK14].
Existing placement algorithms can be roughly classified into two categories:
ILP-based and greedy-based. These approaches typically have no provable
performance guarantees.
In [Lui+15], the authors address the problem of placing and chaining virtual
network functions on physical infrastructures minimizing their number. They
propose an Integer Linear Programming and a heuristic procedure. The work
in [Kuo+16] studies the joint problem of VNF placement and path selection
to better utilize the network. They consider the chaining constraints. Their
goal is to maximize the total size of admitted demands. Authors in [MKK14]
propose a VNF chaining placement formulated as a Mixed Integer Quadrat-
ically Constrained Program. They considered various objectives like mini-
mizing the number of used nodes or the latency of the paths. In [Moh+15]
and [Add+15], the authors provide both an ILP and a heuristic with resource
utilization being their main focus.
The closest works to ours that study the placement of virtual functions as
an optimization problem and provide theoretical results for the performance
of the proposed algorithms are [Coh+15] and [San+17].
[Coh+15] addresses the problem of the placement of virtual functions within
the physical network. Each demand has a set of required VNFs that need
to be executed. The goal of the authors is to minimize the network cost,
given by the setup cost of installing a function on a node and the connection
cost that depends on the distance between the clients (i.e., the paths) and
the nodes from which they get the service. They provide near-optimal ap-
proximation algorithms with theoretically proven performance. However, the
execution order of the network functions is not considered in their model.
In [San+17], the authors focus their attention on the problem of optimal
placement and allocation of VNFs to provide a service to all the flows of the
network. The goal is to minimize the total number of network functions. In
their model, flow routes are fixed, and one flow may be fractionally processed
by the same network function at multiple nodes. However, they study the
scenario of one single network function and leave the placement of virtual
functions with chaining constraint as an open problem for future research.

3.3. SYSTEM MODEL AND PROBLEM FORMULATION 47

G = (V,E) digraph
D set of demands
F set of functions

sfc(d) service chain of the demand d ∈ D
path(d) path associated with the demand d ∈ D

l(d) length of the path of the demand d ∈ D
s(d) length of the service chain of the demand d ∈ D
c(v, f) cost to install the function f ∈ F on the node v ∈ V

Table 3.1: Summary of the notations

3.3 System Model and Problem Formulation

We model the network as a digraph G = (V,E). A demand d ∈ D is modeled
by a couple composed of a path path(d) of length l(d) and a service function
chain sfc(d) of length s(d). A path is a sequence of vertices in V . Similarly
to [San+17], we consider the case of an operator which has already routed
its demands and which now wants to optimize the placement of network
functions. A service function chain is an ordered sequence of functions in
F , where F is the set of network functions. The flow associated with the
demand should be processed by the network functions of its chain in the
correct order. Each function f ∈ F has a setup cost which may depend on
the nodes. We note c(v, f) the setup cost of function f in node v ∈ V . In
Table 3.1, we summarize the notations used in this chapter.

The problem we consider, referred to as SFC-Placement, is to find a
placement of network functions of minimum setup cost, satisfying the service
chain constraints of all demands. It can be stated as follows.
Input: A digraph G = (V,E), a set of functions F , and a collection D of
demands. Each demand d ∈ D is associated with a path path(d) ∈ V ∗ and
to a sequence of functions sfc(d) ∈ F∗. Lastly, a cost c : V × F → c(v, f),
defining the cost of setting up the function f in node v.
Output: A function placement that is a subset Π ⊂ V × F of function
locations, such that, all demands of D are satisfied. We say that a de-
mand d ∈ D associated with a path path(d) = u1, ..., ul(d) and to a chain
sfc(d) = r1, ..., rs(d) is satisfied by Π, if there exists a sequence of indices
i1 ≤ ... ≤ is(d), such that (vij , rj) ∈ Π, for 1 ≤ j ≤ s(d).
Objective: minimize

∑

(v,f)∈Π c(v, f)

48 CHAPTER 3. SFC PLACEMENT

3.3.1 Preliminaries: Single Function and Uniform
Case

Single Function. We use the hitting set formulation of the Minimum-

Weight Set Cover problem (Min-WSC), which is equivalent [ADP80].
The Minimum-Weight Hitting Set Problem (Min-WHS) can be for-
mally defined as follows:
Input: Collection C of subsets of a finite set S.
Output: A hitting set for C, i.e., a subset S ′ ⊆ S such that S ′ contains at
least one element from each subset in C.
Objective: Minimize the cost of the hitting set, i.e.,

∑

x∈S′ cx.

When all the demands have a service function chain which consists of a single
function, the problem can be directly mapped to an instance of Min-WHS:
- the elements of S are the possible function locations, i.e., the vertices in V .
Each element has cost c(v).
- the sets in C correspond to the paths of the demands in D.
For each path path(d), the corresponding set is the set of all the nodes in
the path, i.e., {u1, ..., ul(d)}.
The placement of minimum cost covering all demands thus corresponds to a
minimum cost hitting set.
MIN-WHS is equivalent to Min-Weight Set Cover (MIN-WSC) [ADP80].
MIN-WSC asks, given a set S and a collection C of subsets of S such that
⋃

C = S, to find the subcollection C ′ ⊆ C whose union is S of minimum cost.
A Hitting Set Instance can be mapped to an equivalent Set Cover Instance.
In fact, in the MIN-WHS formulation:
- the elements are the paths of the demands
- the sets correspond to the function location for node v. The set associated
with v has cost c(v) and it is the set of all paths containing v.
In the equivalent Min-WSC formulation, the elements are the paths of the
demands and the sets correspond to the function location for node v. The
set associated with v has cost c(v) and it is the set of all paths containing v.

The equivalence directly gives us an H(|D|)-approximation using the
greedy-algorithm for Set Cover [Chv79] on the positive side. On the nega-
tive side, it tells us that the SFC Placement Problem is hard to approximate
within ln |D| [AMS06].

Uniform Service Chains and Installation Costs. There is another case
in which the service chain placement problem is immediately equivalent to a

3.4. APPROXIMATION ALGORITHMS FOR SFC-PLACEMENT 49

general set cover problem. When all the demands require the same function
chain r1, r2, . . . rk and when the installation cost does not depend on the
location (i.e. ∀ v ∈ V, cost(v, f) = cost(f)). In such a case, the function
chain r1, r2, . . . rk can be seen as a single function with cost

∑k

j=1 c(ri) and
the minimum cost placement can be obtained by placing all the functions in
a minimum set of locations covering all the paths of the demands.

3.4 Approximation Algorithms for SFC-Placement

After discussing briefly the trivial subcase in which the service chains have
length one, we show that the general problem can be modeled as a Set Cover
Problem. The instances have an exponential (in |V |) number of sets at first.
But, we show that this number can be reduced to a polynomial number (in
|V | and |D|) by exploiting the specific structure of the problem. We then
propose two algorithms with logarithmic (in |V | and |D|) approximation
factor. Note that the number of sets is still exponential in the maximum
size of a service chain, smax, but this number is small in practice [STV] and
can thus be considered constant in most scenarios. Finally, we discuss the
specific structure of the sets to be covered to improve the efficiency of the
algorithms.

3.4.1 Equivalence with Hitting Set

We now show that, even in the general case (with order), SFC Placement
Problem is equivalent to Min-WHS (and so to Min-WSC). For each demand
d ∈ D, we denote with l(d) and s(d) the length of the associated path and
chain respectively. Let path(d) = u1, u2, ..., ul(d) and assume that d requires
the sequence of functions sfc(P) = r1, r2, ..., rs(d).

Given a demand d, we build an associated network H(d).

Definition 1 (Associated Networks). The network H(d) associated with a
demand d is built as follows:

- H(d) has s(d) layers L1, L2, ..., Ls(d). Each layer contains l(d) nodes
corresponding to the nodes of path(d). We note (ui, j) the i-th node
of layer j.

- There is an arc between the node (u, j) and the node (v, j + 1) if u = v
or if u precedes v in path(d).

50 CHAPTER 3. SFC PLACEMENT

sd

u1

u2

...

ul(d)

u1

u2

...

ul(d)

· · ·

· · ·

· · ·

· · ·

u1

u2

...

ul(d)

td

r1 r2 · · · rs(d)

Figure 3.1: The associated network of a demand d ∈ D routed on a path
path(d) = u1, u2, ..., ul(d) that requires a chain sfc(d) = r1, r2, ..., rs(d)

- H(d) has two other nodes, sd and td. There is an arc between a node
sd and all the nodes of the first layer and an arc between all the nodes
of the last layer and td.

See Figure 3.1 for an example. We then define the capacities to obtain
the capacitated network H(d,Π) associated with a demand d and a function
placement Π:

- All arcs have infinite capacity.

- Each node has a capacity, and the capacity of the node u of layer i is
1 if (u, ri) ∈ Π and 0 otherwise.

Lemma 1. A demand d ∈ D is satisfied by Π if and only if there exists a
feasible st− path in the capacitated associated network H(d,Π).

Proof. The intuition of the proof is that an sdtd−path (or st−path in short)
in the layered graph contains exactly one node from each layer and defines
where the flow associated with the demand is going to be processed by the
required functions in the specified order. Each layer is associated with a
function - the jth layer corresponds to the jth function of the function chain
sfc(d) = r1, r2, ..., rs(d). Since node (u, j) is connected to (v, j+1) if and only
if u precedes v in the path path(d), the sequence of functions is performed
in the right order when travelling along the path.

Suppose there exists a feasible st− path, p. This means that there exists
a set of indices i1, ..., is(d) such that p = {s, ui1 , ..., uis(d), t}. This implies that
the capacity of uij is equal to one, i.e., (uij , rj) ∈ Π, for all 1 ≤ j ≤ s(d).

3.4. APPROXIMATION ALGORITHMS FOR SFC-PLACEMENT 51

Since, in the associated network H(d,Π), node (u, j) is connected to (v, j+1)
if and only if u precedes v in path(d), we have that i1 ≤ ... ≤ is(d). Therefore
all functions of sfc(d) are placed in the right order with respect to the nodes
of path(d), that is, d is satisfied by Π.

Suppose now that d is satisfied by Π. It means that there exists a set
of indices i1 ≤ ... ≤ is(d), such that (uij , rj) ∈ Π for all 1 ≤ j ≤ s(d).
Nodes (uij , j) of the associated network H(d,Π) thus have capacity one.
Moreover, there is an arc between (uij , j) and (uij+1

, j + 1) as uij precedes
uij+1

in path(d). Hence, {s, (ui1 , 1), ..., (uis(d) , s(d)), t} is a feasible st− path
in H(d,Π).

With this notion of associated network, we define the following problem,

Problem 1. Hitting-Cut-Problem (D, c) is an instance of the Weighted
Hitting Set problem where:

- the elements are the function locations (u, f), for all u ∈ V and f ∈ F .
Its cost is c(u, f).

- the subsets of the universe correspond to all the st-vertex-cuts of the
associated networks H(d) for all d ∈ D.

The problem is thus to find the sub-collection S of elements (functions place-
ment) hitting all the subsets (cuts) of the universe of minimum cost.

Proposition 1. Hitting-Cut-Problem (D, c) is equivalent to SFC-

Placement (D, c).
Proof. By construction, a solution S of Hitting-Cut-Problem corre-
sponds to a solution of SFC-Placement of same cost.

Let us show that S is feasible for Hitting-Cut-Problem if and only if it
is a feasible solution of SFC-Placement. The proof is direct using Menger’s
theorem for digraphs [Men27]. Consider a digraph and two vertices s and t
not connected by an arc. The theorem states that the number of st− paths
in a digraph is equal to the minimum st-vertex cut.

Lemma 1 says that all the demands in D are satisfied by Π if there exists
an st− path in all the associated networks H(d,Π) for each d ∈ D. We thus
have that all demands are satisfied if all st−vertex− cuts of H(P,Π) have a
capacity larger or equal to one. Consider C an st-vertex cut. It is hit by S.
This implies that in H(d,Π), the capacity of the cut is larger than 1. This
yields the proposition.

52 CHAPTER 3. SFC PLACEMENT

sd

u1

u2

u3

u4

u1

u2

u3

u4

u1

u2

u3

u4

td

r1 r2 r3

Figure 3.2: Example of a proper cut (dashed nodes in red) for the layered
graph relative to a demand d associated with a path of length 4 and a chain
of length 3.

Our problem is thus equivalent to a Hitting Set Problem, for which we
know approximation algorithms. However, the number of st-vertex cuts is
exponential in the number of vertices of the digraph. To derive a polyno-
mial algorithm, we need to reduce the size of an instance of Cut-Hitting-

Problem. To this end, we use the fact that checking only the extremal cuts
is enough (An extremal cut is a cut that is not strictly included in another
cut) and that, in our problem, the extremal cuts of the associated graphs have
a specific shape that we call proper st-cuts. See Figure 3.2 for an example.

Definition 2. A proper st-cut of the associated graph H(d) is a cut of the
following form:

{(u1, 1), ..., (uj1 , 1)
︸ ︷︷ ︸

layer 1

, (uj1+1, 2), ..., (uj1+j2 , 2)
︸ ︷︷ ︸

layer 2

, ...,

(uj1+j2+···+js(d)−1+1, s(d)), ..., (ul(d)=j1+j2+···+js(d) , s(d))
︸ ︷︷ ︸

layer s(d)

}

for j1, j2, ..., js(d) ≥ 0, such that
∑s(d)

i=1 ji = l(d).

Property 1. All the extremal cuts of the associated graphs are proper.

Proof. Let us first remark that, given a cut C in the associated graph, if
from the source s it is possible to reach node (ui, l), then node (ui+1, l) can
also be reached from the source. Similarly, if the sink t can be reached from

3.4. APPROXIMATION ALGORITHMS FOR SFC-PLACEMENT 53

node (ui, l), then the sink can also be reached from node (ui−1, l).
Suppose that there exists an extremal cut C such that, for a layer l, C
contains nodes ui, ui+2 with ui+1 6∈ C. Since by definition C is a cut, we have
2 possibilities:

• ui+1 at layer l cannot be reached by the source. Then, all the nodes uj

with j ≤ i + 1 in the layer l − 1 cannot be reached, and so ui is not
reachable from the source. We can remove it from C and still get a
cut. It follows that C is not an extremal cut (contradiction).

• ui+1 at layer l cannot reach the sink. In the same way, ui+2 cannot
reach the sink. We can then remove ui+2 from C and still get a cut. C
is not an extremal cut (contradiction).

Example 1. Consider a demand Da,c that requires the service function
chain {f1, f2}. Suppose that the demand is routed on the path P =
{a, b, c}. There are 4 proper cuts: {(a, 2), (b, 2), (c, 2)}, {(a, 1), (b, 2), (c, 2)},
{(a, 1), (b, 1), (c, 2)}, {(a, 1), (b, 1), (c, 1)} corresponding respectively to j1 =
0, ..., l(d) from which we can derive the following 4 constraints:

x(a, f2) + x(b, f2) + x(c, f2) ≥ 1

x(a, f1) + x(b, f2) + x(c, f2) ≥ 1

x(a, f1) + x(b, f1) + x(c, f2) ≥ 1

x(a, f1) + x(b, f1) + x(c, f1) ≥ 1

We can thus define a new problem of smaller size.

Problem 2. We define the problem Hitting-Proper-Cut-Problem

(D, c) as the same problem as Hitting-Cut-Problem (D, c), except that
the sets to be hit are only the proper st-vertex-cuts of the associated networks
H(d) for all d ∈ D.

Proposition 2. The problem SFC-Placement (D, c) is equivalent to a
Hitting Set Problem with

∑

d∈D

(
l(d)+s(d)−1

s(d)−1

)
sets as an input. If each demand

requires at most smax network functions and is associated with a path of
length smaller than lmax, then the size of the instance is at most O(|D| ·
(lmax)

smax−1).

54 CHAPTER 3. SFC PLACEMENT

Proof. The proposition follows from previous results. Hitting-Proper-

Cut-Problem (D, c) is equivalent to Hitting-Cut-Problem (D, c) as it
is enough to consider extremal sets of the collection in a Hitting Set Prob-
lem and all extremal cuts are proper cuts. SFC-Placement (D, c) thus is
equivalent to Hitting-Proper-Cut-Problem (D, c).

The size of the ground set of Hitting-Proper-Cut-Problem (D, c) is
the number of proper cuts of all the associated networks. For each path P ,
the number of proper cuts of H(P) is simply equal to

(
l(d)+s(d)−1

s(d)−1

)
.

Indeed, to obtain the indices j1, ..., js(d) defining a proper cut, it is suf-
ficient to select s(d) − 1 numbers between 0 and l(d) + s(d) − 1. Without
loss of generality, we call them n1 ≤ ... ≤ ns(d)−1. We then take j1 = n1 − 1,
ji = ni− ni−1− 1 for 2 ≤ i ≤ s(d)− 1, and js(d) = (l(d)− s(d)− 1)− ns(d)−1.

We have that
∑l(d)

i=1 ji = l(d), so the indices define a proper cut. There are
(
l(d)+s(d)−1

s(d)−1

)
ways of choosing s(d) − 1 elements in a set with l(d) + s(d) − 1

elements. It yields the number of proper cuts. The size of the ground set is
thus

∑

d∈D l(d)s(d)−1.

Last, we have
(
l(d)+s(d)−1

s(d)−1

)
= O(l(d)s(d)−1). This gives that the num-

ber of proper cuts over all paths of the set of demands D is of the order
O(|D|(lmax)

smax−1).

Proposition 2 leads us to two approximation algorithms, a greedy one pre-
sented in Section 3.4.2, and one using LP-rounding presented in Section 3.4.3.

3.4.2 Naive and Faster Greedy Algorithms

Naive Greedy Algorithm. The naive greedy algorithm is just the classic
greedy algorithm for set cover [Chv79]. It consists of a main loop: while
there are proper cuts not hit, it selects the function location with the smallest
average cost per newly hit proper cut.

When the demands are routed on paths with length at most lmax and
require at most smax functions, the greedy algorithm achieves an approxima-
tion ratio equal to H(#Proper Cuts) = H(|D|lsmax−1

max) ∼ ln(|D|) + (smax −
1) ln(lmax) [Chv79], where H(n) is the n-th harmonic number.

Problem for large chains. When the number of functions in the service
chains is large, the greedy algorithm could become impractical if it is imple-
mented naively. In fact, the greedy algorithm selects the function location
with the smallest average cost per newly hit proper cut. In a naive imple-
mentation, it is necessary to generate explicitly all the proper cuts, and this

3.4. APPROXIMATION ALGORITHMS FOR SFC-PLACEMENT 55

is not practical since, for a demand d, there may be O(lsmax−1
max) of such cuts.

Indeed, lmax is in the order of the network diameter. As an example, the net-
work Cogent [Kni+11] that we consider in the experiments, has a diameter
of 28. For a chain of length 10, we would have

(
37
9

)
proper cuts. However,

since the structure of the proper cuts is very specific, we can take advantage
of it, providing a much faster greedy algorithm.

Faster greedy algorithm, SFCFastGreedy. The main idea of the faster
greedy algorithm is to exploit the specific structure of the set cover problem
and to avoid generating all proper cuts by showing it is enough to keep track
of the number of not hit proper cuts. We show here that, by using dynamic
programming, this number can be counted in time O(|D|l2maxsmax) (instead
of O(|D|lsmax

max)).
Let us first introduce some notation. For a demand d = (path(d), sfc(d)),

a function placement Π can be seen as a matrix Ad with l(d) rows and s(d)
columns and for which Ad[i, j] = 1 iff (ui, rj) ∈ Π. We note Ad[i : j, k : l] the
submatrix of Ad considering only the rows from i to j and the columns from
k to l.

For a demand d = (path(d), sfc(d)) and a function placement Π (or
equivalently Ad), we note N(d) the number of proper cuts not hit by Ad.
It can be computed using the recursive function N(r, c) defined below. We
have N(d) = N(l(d), s(d)) with

N(r, c) = ✶i∗(r,c)=0 +
∑r−i∗(r,c)

jc=0 N(n− jc, c− 1), if c ≥ 2

N(r, 1) = ✶i∗(r,c)=0

where i∗(r, c) is defined as follows. We consider the matrix Ad[1 : r, 1 : c]).
We consider the ones placed in the last column of the matrix, column c. If
there are none, i∗(r, c) = 0. Otherwise, i∗(r, c) is the maximum index of such
ones, that is, i∗(r, c) = max0≤i≤l(d){i, such that Ad[i, c] = 1}.

The explanation of the formula is the following. We carry out a re-
cursion on the columns of Ad[1 : r, 1 : c]. First, if i∗(r, c) = 0, the cut
{(u1, fc), ..., (ur, c)} is not hit. We thus count ✶i∗(r,c)=0. We then consider all
possible values of jc for the proper cuts (recall that a proper cut is defined by
a set of indices j1, ..., jc). For a not hit proper cut, jc ≤ l(d)− i∗. For a pos-
sible value of jc, the number of corresponding not hit proper cuts is equal to
the number of not hit proper cuts in the submatrix Ad[1 : r− jc, 1 : c− 1] for
a path of length r− jc and a chain of size c− 1, that is, N(r− jc, c− 1, Ad[1 :
r − jc, 1 : c− 1]).

56 CHAPTER 3. SFC PLACEMENT

N(r, c) can be computed using dynamic programming, see the function
NC of Algorithm 5. We use a table T with r rows and c columns to keep
track of the partial results of the computation. Initially, T (i, 1) = ✶i∗(r,c)=0

for 1 ≤ i ≤ r.

3.4.2.1 An example

Consider a demand d with sfc(d) = f1, f2, f3 and path(d) = u1, u2, u3. Let
Π be a potential function placement. Π = {(u1, f1), (u3, f2), (u2, f3)}, that
is, f1 is installed on u1, f2 on u3, and f3 on u2. All the required functions are
placed, but not in the right order. We show that, in this case, some proper
cuts of the associated network H(d,Π) are not hit. H(d,Π) has

(
5
2

)
= 10

proper cuts as shown in Proposition 2. We compute here the number of
not hit proper cuts from this set without generating them. The matrix Ad

associated with the demand and the starting table T in Algorithm 4 would
be the following:

Ad =






1 0 1

0 0 0

0 1 0




 T =






0 − −
0 − −
0 − −






As Ad[1, 1] = 1, we have i∗(3, 1) = 1 6= 0 (the cut {(u1, 1), (u2, 1), (u3, 1)} is
hit). Similarly, i∗(2, 1) = 1 6= 0 and i∗(1, 1) = 1 6= 0. We thus initialize the
first column of T with only zeroes.

In order to compute T (3, 3) the following steps are necessary (i∗(3, 3) =
1):
T (3, 3) = T (1, 2) + T (2, 2) + T (3, 2)
T (1, 2) = 1 + T (1, 1) = 1
T (2, 2) = T (2, 1) + T (1, 1) + 1 = 1
T (3, 2) = T (3, 1) = 0
Since T (3, 3) = 2, we can derive that 2 proper cuts, out of the overall 10
proper cuts of H(P,Π), are not hit. Note that this corresponds to the two
proper cuts {(v1, f2), (v2, f2)(v3, f3)} and {(v1, f2)(v2, f3)(v3, f3)}. This shows
that the order of the functions is not valid. The related constraints are as
follows. In red the constraints not satisfied.

3.4. APPROXIMATION ALGORITHMS FOR SFC-PLACEMENT 57

xu1,f1 + xu2,f1 + xu3,f1 ≥ 1

xu1,f2 + xu2,f2 + xu3,f3 ≥ 1

xu1,f3 + xu2,f3 + xu3,f3 ≥ 1

xu1,f1 + xu2,f2 + xu3,f2 ≥ 1

xu1,f1 + xu2,f1 + xu3,f2 ≥ 1

xu1,f1 + xu2,f3 + xu3,f3 ≥ 1

xu1,f1 + xu2,f1 + xu3,f3 ≥ 1

xu1,f2 + xu2,f3 + xu3,f3 ≥ 1

xu1,f2 + xu2,f2 + xu3,f3 ≥ 1

xu1,f1 + xu2,f2 + xu3,f3 ≥ 1

From this approach, we can derive a faster algorithm with pseudo-code
given in Algorithm 4.
At each iteration, the algorithm selects the pair (u, f) of minimum cost, i.e.,
with the smallest average cost per newly hit proper cut. In order to do this,
it makes use of the function NC, calling it for each demand and for each pair
(u, f) ∈ V ×F . The pair of minimum cost is added to the solution Π. Then,
the number of remaining proper cuts to be hit is updated. This process is
repeated until all the proper cuts are hit.
Algorithm Complexity. The number of iterations of the main loop of
the algorithm is bounded by |V ||F| as we install a function at each iteration.
The complexity of the function NC(l(d), s(d),Π) is of the order O(l(d)2s(d)).
It gives us a complexity of O(l2maxsmax|V |2|F|2|D|), when a naive algorithm
would be of order O(lsmax

max |V |2|F|2|D|), as it would generate all proper cuts.

3.4.3 An LP-Rounding Approach.

First formulation. The Hitting-Proper-Cut-Problem can be formu-
lated as an ILP. For each node u ∈ V and for each function f ∈ F , we define
the decision binary variable x(u, f) that indicates whether the function f is

58 CHAPTER 3. SFC PLACEMENT

Algorithm 4 Cover Proper Cuts given all the demands

1: Input: set of demands D
2: for each d ∈ D do
3: not-hit[d]←

(
l(p)+s(P)−1

s(P)−1

)

4: end for
5: Π = ∅
6: repeat
7: min cost← +∞
8: best sol ← null
9: best not-hit← null

10: for each (u, f) ∈ V × F do
11: newly hit← 0
12: Π′ ← Π ∪ {(u, f)}
13: for each d ∈ D do
14: T = l(d)× s(d) matrix of null
15: for 1 ≤ i ≤ l(d) do ⊲ initialization of T
16: T [i, 1]← ✶i∗(i,1)

17: end for
18: new-not-hit[d]← NC(l(d), s(d),Π′)
19: newly hit += not-hit[d]− new-not-hit[d]
20: end for
21: cost← cost(u,f)

newly hit

22: if cost < min cost then
23: min cost← cost
24: best sol ← (u, f)
25: best not-hit← new-not-hit
26: end if
27: end for
28: Π = Π ∪ {best sol}
29: not-hit← best not-hit
30: until not-hit[d] = 0 for each d ∈ D
31: Output: placement Π

3.4. APPROXIMATION ALGORITHMS FOR SFC-PLACEMENT 59

Algorithm 5 Count proper cuts not hit given demand d and a function
placement Π

1: function NC (row r, column c, Π)
2: ⊲ Recursive function used to count the number of proper cuts not hit

given a demand d and a function placement Π
3: if T [r, c] 6= null then return T [r, c]
4: end if
5: result← 0
6: if i∗(r, c) = 0 then result ← result + 1
7: end if
8: for 0 ≤ j ≤ n− i∗(r, c) do
9: result += NC(n− j, c− 1)
10: end for
11: T [r, c]← result
12: return result
13: end function

installed on node u (x(u, f) = 1 in this case). We get as global ILP:

Objective

min
∑

u∈V

∑

f∈F

cu,f · xu,f

Cover conditions

∀d ∈ D,
∑

(u,f)∈C

xu,f ≥ 1, ∀ C proper cut of A(d)

We consider here the Set-Cover approximation through LP-Rounding. For
each u ∈ V and f ∈ F , we relax the ILP by replacing the constraints
x(u, f) ∈ {0, 1} by 0 ≤ x(u, f) ≤ 1. The relaxed ILP can be solved in time
polynomial in the number of constraints. Let x∗ be an optimal solution to
the LP relaxation. Each fractional variable x∗(u, f) is rounded to 1 with
probability x∗(u, f). The problem is then solved again with the additional
constraints given by the rounded variables.
The process is repeated iteratively until all the variables have values in {0, 1}.
With this approach, we find a feasible solution with logarithmic approxima-
tion ratio in expected polynomial time (in the number of constraints) [Vaz13].
The number of constraints is the number of proper cuts, which is of the or-
der O(|D|lsmax−1

max). It is thus polynomial in |D|, the number of demands, but

60 CHAPTER 3. SFC PLACEMENT

exponential in smax, the maximum size of a service chain. As discussed, this
number is small in practice, but it may still have a strong impact on the
algorithm execution time. We propose a faster algorithm below.

Faster rounding algorithm, SFCFastRounding. The number of con-
straints of the first formulation is the number of proper cuts which is of the
order O(|D|lsmax−1

max), exponential in smax. In fact, similarly as for the greedy
algorithm, we can avoid generating explicitly all proper cuts. The idea is
to use the formulation of the problem looking for a path in the associated
networks H(d,Π), as it is equivalent. We derive another ILP formulation.
The binary decision variables are now of two kinds:
(i) Location or capacity variables. These variables are the same as in the first
formulation: x(u, f) indicates in the first formulation whether the function
f is installed on node u. In the second formulation, it corresponds to the
shared capacity of the node (u, f) of the associated networks.
(ii) Flow variables. For each demand d ∈ D, we have a flow variable fd

uv for
each edge of the associated network H(d).

The constraints are (i) node capacity constraints and (ii) flow conservation
constraints. There are O(|V | + smaxlmax|D|) constraints, a number which is
now polynomial in smax.

Objective

min
∑

u∈V

∑

f∈F

cu,f · xu,f

Capacity constraints. ∀u ∈ V, ∀f ∈ F ,
∑

d∈D

∑

vu∈E(H(d))

fvu ≤ xu,f ,

Flow conservation constraints. ∀d ∈ D,
∑

uv∈E(H(d))

fd
uv =

∑

vu∈E(H(d))

fd
vu, ∀ u ∈ V (H(d)) \ {sd, td},

∑

sdv∈E(H(d))

fd
sdv

= 1

∑

vtd∈E(H(d))

fd
vtd

= 1

A solution of the second formulation corresponds to a solution of the
first formulation of same cost (as finding paths in the associated networks is
equivalent to covering the cuts, see Lemma 1). Therefore, the rounding can
be carried out in the same way and leads to the same approximation factor.

3.5. TREE TOPOLOGIES 61

To summarize, along with the fast greedy algorithm, SFCFastGreedy,
we obtain a second approximation algorithm for SFC-Placement, called
SFCFastRounding, with the same approximation factor O(ln(|D|) +
(smax − 1) ln(lmax)). Its expected execution time is O(M lnM) with M =
|V |+ smaxlmax|D|.

3.5 Tree Topologies

In this section, we restrict our attention to tree logical network topologies.
Note that the physical network itself can be of any shape, but the clients are
communicating through a tree. The network architecture of today’s data cen-
ters typically consists of a tree of routing and switching elements [ALV08].
Moreover, tree topologies are widely used, e.g., for Wireless Sensor Net-
works [Soh+00], and Content Delivery Networks [Yin+09]. We first prove
that the SFC Placement Problem is NP-hard even on trees through a reduc-
tion from the Vertex Cover Problem. Then, for the special case in which all
the flows are either upstream or downstream flows (i.e., flows are either going
towards the tree root or towards the leaves), we devise an optimal algorithm,
TreeSFCAlgo.

Theorem 1. The SFC Placement Problem is NP-hard even on a tree and
in the case of a single network function.

Proof. Given a graph G = (V,E) and a positive weight function w : V → R
+,

a vertex cover of minimum weight is a subset C ⊆ V such that ∀ (u, v) ∈
E, u ∈ V or v ∈ V (or both) and

∑

u∈C w(u) is minimized.
Let I = (G = (V,E), w) be an instance of Vertex Cover. We can cre-
ate an instance I ′ of SFC-tree Placement by taking the digraph T = (V ∪
{r}, {(u, r), ∀u ∈ V } ∪ {(r, u), ∀u ∈ V }). For each uv ∈ E, we create a
demand d with path(d) = u, r, v and sfc(d) = {f}. The setup cost is
c(u, f) = w(u) for all u ∈ V , and c(r) =

∑

(u)∈V w(u) + 1 for the root of
the tree. Note that with this choice of costs, the function f is never placed
in the root in an optimal placement, as it is cheaper to place the function
in all the other vertices of the tree. We thus have the following equivalence:
There is a function placement that satisfies all the paths’ requirements in the
tree with cost at most ≤ c ⇐⇒ G has a vertex cover of cost ≤ c. The
reduction can be done in polynomial time. It only requires scanning all the
edges and creating the set of demands D. Since Vertex Cover is NP-hard

62 CHAPTER 3. SFC PLACEMENT

to approximate within a factor of 1.36 [DS05], then the Placement Problem
cannot be solved in polynomial time even on trees.

We now provide a polynomial algorithm that computes the optimal so-
lution in the upstream/downstream case. We present the algorithm in the
upstream case, since downstream flows can be replaced by upstream flows,
by reversing both the paths and the required function chains.
Main idea. We use dynamic programming in a bottom-up fashion. Given
a sub-tree Tv rooted at v, we call a partial solution, a feasible function place-
ment restricted to Tv. We also distinguish 3 kinds of paths: internal-paths,
all vertices of the paths are inside Tv; external-paths, no vertex is in Tv; and
crossing-paths, some but not all vertices are in Tv.

In fact, partial solutions can be encoded in a compact way. To see that,
we look at how a partial solution s interacts with a global solution and we
claim that:

a) s has to cover all the internal paths.

b) s has no impact on the external paths.

c) On each crossing-path, s provides some (potentially empty) prefix of
the required function chain.

d) s induces some cost, namely the cost of the functions located inside Tv.

Since a) and b) are common to all partial solutions, a partial solution is fully
characterized by (c) and its cost (d). Now to code c), remark that, instead
of remembering for each external path what prefix is provided inside Tv, one
may keep track of what suffix must be provided outside Tv. Now, since all
paths are upstream, we may simply remember that some suffix s must be
provided outside Ts at depth ≥ x. We call this a constraint. The key element
here is that, if two paths share the same suffix, one only needs to keep the
one that stops at the largest depth.

Overall, this means that a partial solution can be encoded with a set of
constraints, and its internal cost. So, our algorithm computes inductively for
each subtree, the table containing, for each possible list of constraints, the
minimum cost of a partial solution matching these constraints.
TreeSFCAlgo. Let us first introduce some notations and definitions, sum-
marized in Table 3.2. We note depth(u), the depth of a node u in the tree

3.5. TREE TOPOLOGIES 63

Table 3.2: New definitions and notations.

Du the set of demands s.t. path(d) starts at Node u
src(d) source of the path path(d)

dest(d) destination of the path path(d)

C set of distinct service chains
suff(C) set of suffixes of service chains
depth(u) depth of node u ∈ V in the tree (source is at depth 1)
deg(u) degree of node u ∈ V in the tree (# children = deg-1)

constraint c couple (chain suffix,destination ds)
partial solution s couple (set of constraints Cs,cost(s))

table Su set of partial solutions of node u

T (the tree root is at depth 1). Let C be the set of service chains (a chain
per demand). We call suff(C) the set of suffixes of elements of C.

A constraint is a couple (s ∈ suff(C), h ∈ N). A constraint positioned at
node u means that the subchain s must be placed in parents of u with depth
larger of equal to h. To each demand d ∈ D is associated the constraint
(sfc(d), depth(dest(d))), positioned at the node src(d). This means that
the chain sfc(d) has to be placed below node dest(p). Let C1 and C2 be
two sets of constraints. Two operations may be done to a set of constraints,
pop and merge.

- merge(C1, C2). The merge operation is a union with “suffixe unique-
ness”: if (s, h1) ∈ C1 and (s, h2) ∈ C2, then only (s,max(h1, h2)) is
present in merge(C1, C2), as this is the most stringent constraint.

- pop(F ⊆ F , C1). We update every suffix σ of C1 by removing from it
the longest prefix made of functions present in F .

A partial solution at a node of the tree is encoded by a set of constraints
and a cost. A table is a set of partial solutions. We note Su, the table of
node u.

- merge(S1, S2). Two tables S1 and S2 may be merged by building a
partial solution z for each pair of partial solutions x ∈ S1 and y ∈ S2.
The constraints of z are the merge of the constraints of x and y. The
cost of z is just the sum of the costs of x and y. The pseudo-code of
all functions and of the algorithm is given in Algorithm 6.

64 CHAPTER 3. SFC PLACEMENT

- merge(S1, ...Sn). n tables S1, ...Sn, with n > 2, may be merged by
doing a two-by-two merge in any order (by associativity of the merge

function).

We now present our solution TreeSFCAlgo (pseudo-code in Algo-
rithm 6). It considers the nodes one by one starting from the leaves and
builds the tables of each node. Su, the table of node u is created from inter-
mediate tables SDu

, Schildren(u), and the tables of its children in the following
way. For a node u, it first builds the table SDu

, corresponding to the
demands whose paths start in u, using function build constraints(Du).
SDu

contains a single solution of cost 0. The constraints of this solution are
built in the following way. For each demand d ∈ Du, create the constraint
(sfc(d), depth(dest(d))). Then, it does the merge of all the generated
constraints. TreeSFCAlgo then builds Schildren(u) by merging SDu

with
the tables of its children. Lastly, using function Add Node(u,Du), it con-
siders all possible function placements in u and, for each one of them, it
considers all solutions in Schildren(u) and updates the constraints and cost if
the placement is compatible with them, using the pop operation. Updating
a constraint means removing the functions placed at node u from the suffix
representing the chain functions which remain to be placed.

When the table of the root of T is computed, we can select the best
solution. The last step of the algorithm is to reconstruct the solution by
doing a second pass on the tree, starting from the root.
Time complexity. TreeSFCAlgo is doing a loop over the vertices of T :

- Complexity of build constraints. During the whole algorithm, we
consider all demands of D. For each demand d, we build the constraint
(sfc(d), depth(dest(d))). Computing the depth of all nodes can be
done beforehand with a single pass on the tree of cost O(|V |). We then
check the uniqueness of the constraint in SDu

. The test takes constant
time using a hash table. We thus obtain an amortized complexity:
O(|V (T)|+ |D|).

- Complexity of merge: A table is a set of solutions. The size of a
solution x = (Cs, c) is given by its set of constraints. The number
of constraints is limited by the number of possible suffixes of chains,

3.5. TREE TOPOLOGIES 65

smax|C|, where smax is the size of the longest chain. Thus, the memory
to store a solution is of order O(smax|C|). The size of a table is then
limited by the number of possible sets of constraints and is thus of
order O(2smax|C|).

Merging two tables of size O(2smax|C|), has a complexity of O(22smax|C|),
as we consider each pair of elements. To merge the tables of u’s children,
as discussed and due to the associativity of the merge function, we
can do it iteratively, leading to a complexity of O(n22smax|C|).

- Complexity of Add Node: For each possible placement of functions
of u (2|F| potential placements), we consider each solution in S(u)
(2smax|C| potential solutions). For each solution, we update its set of
constraints (smax|C| potential constraints). The time to update a con-
straint: O(smax), with smax maxsize of a suffix. This leads to a com-
plexity of O(s2max|C|2|F|+smax|C|).

In summary, we get a complexity of O(|D|+|V |+|V |222smax|C|+|V |s2max|C|2|F|+smax|C|).
The number of functions |F| and the number of chains |C| are usually small
in practice. They can thus be considered constant most of the time. The
algorithm is thus quadratic in the number of nodes of the tree and linear in
the number of demands.
Memory usage. The memory used during the algorithm is to keep the
tables for all vertices, that is O(|V |2smax|C|). The memory is thus linear in
the number of vertices.

3.5.1 Special Case: Cost uniform over nodes

When the cost of setting up a function f is the same for each node of the
graph (∀v, v′ ∈ V, c(v, f) = c(v′, f)), the algorithm can be improved using
the following lemma.

Lemma 2. There exists an optimal solution placing only functions on nodes
which are destinations of a path.

Proof. Consider an optimal solution. We create a new solution in the follow-
ing way. For each function f placed in a non-destination node u, we move it
up in the tree towards the root to the first destination node v encountered.
The set of demands satisfied by u is a subset of the set of demands satisfied
by v. We thus built a feasible solution. The new solution has the same cost
as the first one, as the number of placed functions is the same.

66 CHAPTER 3. SFC PLACEMENT

Algorithm 6 TreeSFCAlgo

1: Input: T with root r
2: T’=T
3: while True do
4: Consider a leaf u of T ′

5: SDu
← build constraints(Du)

6: Schildren(u) ←Merge(SDu
, Sv1 , ..., Svn), with v1, ..., vn the children of

u in T
7: Su ←Add Node(u, Schildren(u))
8: T ′ ← T ′ \ {u}
9: end while

10: Output: return solution of Sr with minimum value.

1: function Merge(S1,S2)
2: ⊲ Merging two tables S1 and S2

3: S ← {}
4: for each x← (Cx, costx) ∈ S1: do
5: for each y ← (Cy, costy) ∈ S2: do
6: Cz ←merge(Cx, Cy)
7: costz ← costx + costy
8: if (Cz, c) 6∈ S then
9: S.append(Cz, costz)

10: else
11: S.append(Cz,min(costz, c))
12: end if
13: end for
14: end for
15: return S
16: end function

3.5. TREE TOPOLOGIES 67

1: function build constraints(Du ⊆ D)
2: ⊲ Building SDu

from Du, the set of demands with a path starting in
u. For each chain s of a demand in Du, we keep a constraint with s and
the deepest destination of a path with the chain.

3: C ← {}
4: for each d ∈ Du do
5: C←merge(C,{(sfc(d), depth(dest(d)))})
6: end for
7: return S←{(C,0)}
8: end function

1: function Add Node(u, Schildren(u))
2: ⊲ Build Su, the table of solutions of node u
3: Su ← {}
4: for each r ⊆ F do ⊲ functions installed on node u
5: for each s← (Cs, cost(s)) ∈ Schildren(u) do
6: if s is compatible with r (meaning if all constraints with level

d are satisfied by r) then
7: Cs ←pop(r, Cs) ⊲ update constraints of s
8: cost(s)← cost(s) +

∑

f∈r c(u, f) ⊲ update cost
9: if (Cs, c) 6∈ S then ⊲ ensure uniqueness
10: S.append(Cs, cost(s))
11: else
12: S.append(Cs,min(cost(s), c))
13: end if
14: end if
15: end for
16: end for
17: return S
18: end function

68 CHAPTER 3. SFC PLACEMENT

Tree contraction. Following Lemma 2, the first step of the algorithm is to
contract the paths and the tree T by removing the non-destination nodes.
We obtain a contracted tree, T ∗, and a set of contracted paths, P∗. Note now
that all paths of P∗ start at a destination node (either its own destination
node or the destination of another path). To each destination node u, we
associate the set of contracted paths starting in u, Pu.

3.6 Experimental Study

In this section, we evaluate the performances of our proposed algorithms:
SFCFastRounding and SFCFastGreedy, referred to as LP rounding
and Greedy in the plots, respectively. We study how the total setup cost
and the accuracy of our algorithms vary according to four different settings:
(i) different path lengths, (ii) increasing number of demands, (iii) increasing
length of the service function chains, and (iv) different network topologies.
We compare the solutions computed by our algorithms with the optimal
ones computed by solving an ILP using IBM ILOG CPLEX.
We show that the logarithmic approximation ratio is just a worst case upper
bound and that our algorithms perform well in all the considered scenarios.
In fact, the additional cost of the solutions computed by the two algorithms
never exceeds 25% of the optimal one. Moreover, the LP rounding algorithm
usually obtains a better ratio than the greedy one, but at a cost of a much
higher processing time.

3.6.1 Data sets

We conduct experiments on two real-world topologies of different sizes:
InternetMCI [Kni+11], (19 nodes and 33 links) and germany50 [Orl+10b],
(50 nodes and 88 links), and on random Erdős-Rényi graphs [Bol98]. We
build our instances in the following way. The source and destination nodes
of a demand are uniformly chosen at random from the set of vertices. The
path of the demand is given by a shortest path between these two nodes
and its chain is composed of 2 to 6 functions uniformly chosen at random
from a set of 30 functions. Finally, the setup cost of a function on a node is
uniformly chosen at random between 1 and 5.

3.6. EXPERIMENTAL STUDY 69

0 20 40 60 80 100 120 140 160

Number of Demands

0

100

200

300

400

500

600

C
o
st

Greedy

LP rounding

Optimal

(a) InternetMCI

0 50 100 150 200 250 300 350 400

Number of Demands

0

200

400

600

800

1000

1200

C
o
st

Greedy

LP rounding

Optimal

(b) germany50

Figure 3.3: Average setup cost as a function of the number of demands

1 2 3 4

Lenght of the Paths

150

200

250

300

350

C
o
st

Greedy

LP rounding

Optimal

(a) InternetMCI

1 2 3 4 5 6 7

Lenght of the Paths

200

300

400

500

600

700
C

o
st

Greedy

LP rounding

Optimal

(b) germany50

Figure 3.4: Average setup cost as a function of the length of the paths

3.6.2 Number of demands

We first compare the performances of the algorithms in the case of an increas-
ing number of demands. Results are given in Figure 3.3. In this scenario, we
consider up to 160 demands for InternetMCI and up to 400 for germany50.
As expected, we see that the setup cost increases with the number of de-
mands, as the number of functions to be placed increases. However, the
increase is sublinear. The reason is that, the more demands in a network,
the higher the opportunity of sharing functions. The optimality ratio is at
most 21% for both algorithms. The solution provided by the greedy algo-
rithm differs from 7 to 15% from the optimal one for InternetMCI and from
10 to 21% for germany50. However, the LP rounding algorithm shows an
interesting behavior. When the number of demands is small, it finds optimal
solutions. As the number of demands increases, its accuracy deteriorates

70 CHAPTER 3. SFC PLACEMENT

0 0.03 0.06 0.125 0.25 0.5 1

Additional edge probability (p)

500

1000

1500

2000

2500

3000

C
o
st

Greedy

LP rounding

ILP

Figure 3.5: Average setup cost in
random graphs as a function of
the additional edge probability

0 500 1000 1500 2000 2500

Number of demands

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

s)

Greedy

LP rounding

Optimal

Figure 3.6: Average completion
time as a function of the number
of demands on Cogent

faster than the one of the greedy algorithm. For the highest number of
demands, both algorithms exhibit similar performance.

3.6.3 Length of the paths

We now study the impact of the length of the paths. We only consider
demands with pairs of nodes at equal distances, from 1 to 4 for InternetMCI,
and from 1 to 7 for germany50. For each length, we consider 40 demands
for InternetMCI and 75 demands for germany50. As we can observe in
Figure 3.4, in both networks, the total setup cost strictly decreases when the
length of the path increases. In fact, when paths are longer, the demands
tend (in average) to share more nodes, reducing the number of required
functions to satisfy all the demands and so the cost. For both topologies,
the LP rounding algorithm performs better than the greedy one. For the
rounding algorithm, the ratio to the optimal solution is smaller than 10%
for InternetMCI and 15% for german50. The greedy algorithm presents a
gap from the optimal solution between 6 (l(d) = 1) and 20% (l(d) = 4) for
InternetMCI and between 5 (l(d) = 1) and 25% (l(d) = 7) for germany50.

3.6.4 Length of the chain

We now look at the impact of the service function chains’ length on the
algorithms’ accuracies. In this experiment, we consider service function
chains, composed of 1 to 10 functions. In total, we route 75 demands for
InternetMCI and 150 for germany50. As shown in Figure 3.7, an increasing

3.6. EXPERIMENTAL STUDY 71

1 2 3 4 5 6 7 8 9 10

SFC size

100

200

300

400

500

600

700

C
o
st

Greedy

LP rounding

Optimal

(a) InternetMCI

1 2 3 4 5 6 7 8 9 10

SFC size

200

400

600

800

1000

1200

C
o
st

Greedy

LP rounding

Optimal

(b) germany50

Figure 3.7: Average setup cost with respect to the length of the service
function chains

length of the chains impacts the performance of the algorithms negatively.
In fact, for InternetMCI, the ratio between the solution computed by the LP
Rounding algorithm and the optimal solution varies from 0.1% with a single
function chain to 17% with 10 functions in the chain. For the greedy algo-
rithm, it ranges from 4 to 21% for chains of length 1 and 10, respectively. We
observe the same results for the germany50 topology. The solution of the LP
rounding algorithm varies from 0.1 to 13%, while the solution of the greedy
algorithm is between 3 and 22%. Nevertheless, these results demonstrate
satisfactory performance.

3.6.5 Network topology

We considered random graphs with 100 nodes and different number of edges.
The goal is to test the accuracy of the algorithms for topologies with very
different shapes, from a tree to a complete graph. We use here a connected
variant of random Erdős-Rényi graphs. A graph is built as follows. We start
from a random tree. An additional edge is present between two vertices u
and v with probability p. For each experiment, we consider 400 random
demands. We see, in Figure 3.5, that when the number of edges increases,
the cost increases too. This is due to the fact that, when the number of edges
increases, the average length of the shortest paths decreases. As discussed
above, this reduces the opportunities of sharing. For small values of p, both
algorithms have a similar accuracy. However, when p ≥ 0.25, LP rounding

72 CHAPTER 3. SFC PLACEMENT

provides optimal results in these settings.

3.6.6 Processing time

To study the limits in terms of computing time of an LP-based approach,
we tested the LP-rounding and greedy algorithms using a larger topology:
Cogent [Kni+11] with 197 nodes and 245 links. The algorithms have been
implemented in C++, and the experiments were conducted on an Intel Xeon
E5520 with 24GB of RAM. In Figure 3.6, we show the impact of the number
of demands on the execution time. We compare the time necessary to find
the optimal solutions with an ILP with the time needed by our algorithms
to return a solution. We set a maximum time limit of one hour for each
experiment. For just 500 demands, the time to find an exact solution exceeds
1 hour. This implies that, for large instances, an optimal solution cannot
be found using the ILP in a reasonable amount of time. Both algorithms
can compute solutions for larger instances. However, the greedy algorithm
is much faster. Indeed, it takes 78 seconds to find a placement for 1200
demands, while the LP rounding algorithm requires more than 40 minutes.

3.7 Conclusion

NFV is a novel approach for the deployment of network services that opens
the way to a more efficient and flexible network management. Hence, placing
network functions in a cost effective manner is an essential step toward the
full adoption of the NFV paradigm.
In this chapter, we investigated the problem of placing VNFs to satisfy
the ordering constraints of the flows with the goal of minimizing the total
setup cost. Since the formulated problem is NP-Hard, we proposed two
algorithms that achieve a logarithmic approximation factor. To the best
of our knowledge, no approximation algorithms have been proposed for the
SFC Placement Problem in the literature so far. For the special case of tree
network topologies with only upstream and downstream flows, we devised
an optimal algorithm. Numerical results are given and validate the cost
effectiveness of our algorithms.

REFERENCES 73

References

[Add+15] Bernardetta Addis, Dallal Belabed, Mathieu Bouet, and Ste-
fano Secci. “Virtual network functions placement and routing
optimization”. In: Cloud Networking (CloudNet), 2015 IEEE
4th International Conference on. IEEE. 2015 (cit. on pp. 10,
11, 46).

[ADP80] Giorgio Ausiello, Alessandro D’Atri, and Marco Protasi. “Struc-
ture preserving reductions among convex optimization prob-
lems”. In: Journal of Computer and System Sciences 21.1
(1980), pp. 136–153 (cit. on pp. 48, 85).

[ALV08] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat.
“A scalable, commodity data center network architecture”. In:
ACM SIGCOMM Computer Communication Review. Vol. 38.
4. ACM. 2008, pp. 63–74 (cit. on p. 61).

[AMS06] N. Alon, D. Moshkovitz, and S. Safra. “Algorithmic Construc-
tion of Sets for K-restrictions”. In: ACM Trans. Algorithms 2.2
(2006). issn: 1549-6325. doi: 10.1145/1150334.1150336 (cit.
on p. 48).

[Bol98] Béla Bollobás. “Random graphs”. In: Modern Graph Theory.
Springer, 1998, pp. 215–252 (cit. on p. 68).

[Bou+15] Mathieu Bouet, Jérémie Leguay, Théo Combe, and Vania Co-
nan. “Cost-based placement of vDPI functions in NFV infras-
tructures”. In: International Journal of Network Management
25.6 (2015), pp. 490–506 (cit. on p. 45).

[Cas+10] Martin Casado, Teemu Koponen, Rajiv Ramanathan, and Scott
Shenker. “Virtualizing the network forwarding plane”. In: Pro-
ceedings of the Workshop on Programmable Routers for Exten-
sible Services of Tomorrow. ACM. 2010, p. 8 (cit. on p. 44).

[Cha+05] Claude Chaudet, Eric Fleury, Isabelle Guérin Lassous, Hervé
Rivano, and Marie-Emilie Voge. “Optimal positioning of active
and passive monitoring devices”. In: Proceedings of the 2005
ACM conference on Emerging network experiment and technol-
ogy. ACM. 2005, pp. 71–82 (cit. on p. 44).

https://doi.org/10.1145/1150334.1150336

74 CHAPTER 3. SFC PLACEMENT

[Chv79] V. Chvatal. “A greedy heuristic for the set-covering problem”.
In: Mathematics of operations research 4.3 (1979), pp. 233–235
(cit. on pp. 48, 54).

[Coh+15] Rami Cohen, Liane Lewin-Eytan, Joseph Seffi Naor, and Danny
Raz. “Near optimal placement of virtual network functions”. In:
Computer Communications (INFOCOM), 2015 IEEE Confer-
ence on. IEEE. 2015, pp. 1346–1354 (cit. on pp. 11, 46).

[DS] Irit Dinur and David Steurer. “Analytical Approach to Parallel
Repetition”. In: Proceedings ACM STOC 2014. New York, New
York. isbn: 978-1-4503-2710-7 (cit. on pp. 44, 85).

[DS05] Irit Dinur and Samuel Safra. “On the hardness of approximat-
ing minimum vertex cover”. In: Annals of mathematics (2005),
pp. 439–485 (cit. on p. 62).

[HJG18a] N. Huin, B. Jaumard, and F. Giroire. “Optimal Network Ser-
vice Chain Provisioning”. In: IEEE/ACM Transactions on Net-
working 26.3 (June 2018), pp. 1320–1333. issn: 1063-6692. doi:
10.1109/TNET.2018.2833815 (cit. on p. 45).

[Hui+18a] N Huin, A Tomassilli, F Giroire, and B Jaumard. “Energy-
efficient service function chain provisioning”. In: IEEE/OSA
Journal of Optical Communications and Networking 10.3
(2018), pp. 114–124 (cit. on pp. 12, 45, 136).

[Kni+11] Simon Knight, Hung X Nguyen, Nick Falkner, Rhys Bowden,
and Matthew Roughan. “The internet topology zoo”. In: IEEE
Journal on Selected Areas in Communications 29.9 (2011),
pp. 1765–1775 (cit. on pp. 55, 68, 72).

[Kuo+16] Tung-Wei Kuo, Bang-Heng Liou, Kate Ching-Ju Lin, and Ming-
Jer Tsai. “Deploying chains of virtual network functions: On the
relation between link and server usage”. In: Computer Commu-
nications (INFOCOM), 2016 IEEE Conference on. IEEE. 2016,
pp. 1–9 (cit. on p. 46).

[Lui+15] M. C. Luizelli, L. R. Bays, L.S. Buriol, M. P. Barcellos, and
L. P. Gaspary. “Piecing together the NFV provisioning puzzle:
Efficient placement and chaining of virtual network functions”.
In: IFIP/IEEE International Symposium on Integrated Network
Management. 2015 (cit. on pp. 10, 46).

https://doi.org/10.1109/TNET.2018.2833815

REFERENCES 75

[Men27] Karl Menger. “Zur allgemeinen kurventheorie”. In: Fundamenta
Mathematicae 10.1 (1927), pp. 96–115 (cit. on p. 51).

[MKK14] Sevil Mehraghdam, Matthias Keller, and Holger Karl. “Specify-
ing and placing chains of virtual network functions”. In: Cloud
Networking (CloudNet), 2014 IEEE 3rd International Confer-
ence on. IEEE. 2014, pp. 7–13 (cit. on pp. 10, 45, 46).

[Moh+15] Ali Mohammadkhan, Sheida Ghapani, Guyue Liu, Wei Zhang,
KK Ramakrishnan, and Timothy Wood. “Virtual function
placement and traffic steering in flexible and dynamic software
defined networks”. In: Local and Metropolitan Area Networks
(LANMAN), 2015 IEEE International Workshop on. IEEE.
2015, pp. 1–6 (cit. on pp. 10, 11, 46, 138).

[Oba+16] Mathis Obadia, Jean-Louis Rougier, Luigi Iannone, Vania Co-
nan, and Mathieu Brouet. “Revisiting NFV orchestration with
routing games”. In: Network Function Virtualization and Soft-
ware Defined Networks (NFV-SDN), IEEE Conference on.
IEEE. 2016, pp. 107–113 (cit. on pp. 11, 44).

[Orl+10b] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Ar-
tur Tomaszewski. “SNDlib 1.0—Survivable network design li-
brary”. In: Networks 55.3 (2010) (cit. on pp. 68, 95, 119, 213).

[San+17] Yu Sang, Bo Ji, Gagan R Gupta, Xiaojiang Du, and Lin Ye.
“Provably Efficient Algorithms for Joint Placement and Allo-
cation of Virtual Network Functions”. In: Computer Commu-
nications (INFOCOM), 2017 IEEE Conference on. IEEE. 2017
(cit. on pp. 11, 46, 47).

[Soh+00] Katayoun Sohrabi, Jay Gao, Vishal Ailawadhi, and Gregory J
Pottie. “Protocols for self-organization of a wireless sensor net-
work”. In: IEEE personal communications 7.5 (2000), pp. 16–
27 (cit. on p. 61).

[STV] Marco Savi, Massimo Tornatore, and Giacomo Verticale. “Im-
pact of processing costs on service chain placement in network
functions virtualization”. In: IEEE NFV-SDN 2015 (cit. on
pp. 9, 49, 119).

76 CHAPTER 3. SFC PLACEMENT

[Tom+18a] Andrea Tomassilli, F Giroire, N Huin, and S Pérennes. “Algo-
rithmes d’approximation pour le placement de chaines de fonc-
tions de services avec des contraintes d’ordre”. In: ALGOTEL
2018-20émes Rencontres Francophones sur les Aspects Algorith-
miques des Télécommunications. 2018 (cit. on pp. 11, 43).

[Tom+18b] Andrea Tomassilli, Frédéric Giroire, Nicolas Huin, and Stéphane
Pérennes. “Provably Efficient Algorithms for Placement of Ser-
vice Function Chains with Ordering Constraints”. In: IEEE
INFOCOM 2018 - IEEE Conference on Computer Communi-
cations. 2018 (cit. on pp. 11, 43).

[Vaz13] Vijay V Vazirani. Approximation algorithms. Springer Science
& Business Media, 2013 (cit. on pp. 32, 59).

[Yin+09] Hao Yin, Xuening Liu, Tongyu Zhan, Vyas Sekar, Feng Qiu,
Chuang Lin, Hui Zhang, and Bo Li. “Design and deployment of
a hybrid CDN-P2P system for live video streaming: experiences
with LiveSky”. In: Proceedings of the 17th ACM international
conference on Multimedia. ACM. 2009, pp. 25–34 (cit. on p. 61).

Part II

Survivable SDN/NFV
Networks

77

Chapter 4

Bandwidth-optimal Failure
Recovery with SDN

Contents
4.1 Introduction . 80

4.2 Related Work . 82

4.3 Problem Statement and Notations 83

4.4 Optimization Approaches 84

4.4.1 A layered network model 85

4.4.2 Compact ILP Formulation 86

4.4.3 A Column Generation Approach 87

4.4.4 Benders Decomposition Approach 89

4.4.5 The Min-Overflow problem 90

4.5 Numerical Results 95

4.5.1 Data sets . 95

4.5.2 Limits of an ILP-based approach. 96

4.5.3 Performances of the optimization models 97

4.5.4 Varying Number of NFVI-enabled Nodes 98

4.5.5 Number of paths 100

4.6 Experimental evaluation 101

4.6.1 Implementation options 101

4.6.2 Experimental setup 103

4.6.3 Convergence time 103

4.6.4 Operational trade-offs 104

4.7 Conclusion . 105

79

80 CHAPTER 4. BANDWIDTH-OPTIMAL FAILURE RECOVERY

4.1 Introduction

Faults in the IP and optical layer tend to be correlated between them [KKV05].
Indeed, the failure of a component located on a common router, such as a
linecard, or in the underlying optical infrastructure, such as a common fiber,
may result in the consequential failure of multiple entities at the IP layer.
Shared Risk Link Groups (SRLGs) allow to easily model this correlation,
and also, they can represent different types of failures, such as single and
multiple, nodes and links failures. An SRLG can be defined as a set of logical
resources that share an underlying physical resource and that are likely to
fail simultaneously.

We address in this chapter the problem of designing an SDN pro-
grammable network with NFV Infrastructure (NFVI)-enabled servers that
provides SRLG-failure survivability.
A way to guarantee the recovery would consist in finding two SRLG-disjoint
paths, a primary path and a protection path1. If a failure occurs on the
primary path of a demand, the traffic is rerouted through the protection
path. If, on one hand, this approach is easy to implement and to deploy,
on the other hand, it leads to excessive resource requirements in terms of
both VNFI Nodes and bandwidth cost and also may impact the number of
potential future demands to be routed.

In this chapter, we consider a protection technique called unrestricted
flow reconfiguration, also known as global rerouting [PM04]. In each of the
possible failure situations, a new set of backup paths are defined, one for
each demand. This makes this technique the most bandwidth-efficient pro-
tection method. However, this also means that each failure may give rise to
a completely different routing for the demands. In a legacy network, it is
extremely expensive and impractical to implement this technique due to the
huge number of rules to install on the network devices.
With SDN, thanks to a centralized controller, this technique may be put in
practice [VVK14], [Kem+12]. Indeed, SDN offers many potential benefits in
terms of fast detection time [Sha+13] and rerouting [Ber+14] and highlight
its ability to detect and recover from a failure within the sub 50 ms require-
ment [Niv+09]. In this chapter, we propose efficient methods to evaluate
global rerouting both in theory and practice.

1This problem is often referred to as the SRLG Diverse Routing Problem and it has
been shown to be NP-Complete [Hu03].

4.1. INTRODUCTION 81

Global rerouting is the most bandwidth-efficient protection method. If,
on one hand, it represents an opportunity for a better design of bandwidth-
aware networks, on the other hand, it is necessary to provide efficient methods
for its evaluation and comparison with other protection schemes with the
goal being to understand the bandwidth costs savings opportunities.

Thus, our problem is to provide, for each demand, a primary and a
backup path for each SRLG failure scenario, under the global rerouting
protection schema, while ensuring that the required network functions will
be performed on the packets in the order specified by its Service Function
Chain.
The studied problem is a dimensioning problem for an ISP which has to
define the needed equipment for its SDN/NFV-enabled network and want
to minimize resource usage, while guaranteeing protection against an SRLG
failure. Even though, at first glance, the problem may appear easy due to
the absence of capacities constraints, we demonstrate that it is not the case.
Indeed, we show that even for a single demand the problem is NP-Hard and
inapproximable within (1− ǫ) ln(|R|) for any ǫ > 0 unless P=NP, where |R|
denotes the number of SRLG failure scenarios.
Our contributions can be summarized as follows.

• To the best of our knowledge, we are the first to provide two scalable
exact methods to solve the problem of global rerouting in SDN/NFV-
enabled networks.

• We also propose a fast 2-phase polynomial method. The first one con-
sists in solving the fractional relaxation of the problem. The second
phase is building an integral solution from the fractional one. It leads
to an optimization problem we named Min Overflow Problem.
We show that the problem is NP-complete, but that there exists a
(1 + 1

e
+ ε)–approximation algorithm to solve it. We use this positive

result to propose a fast implementation of the second phase.

• We analyze the impact of the number of VNF-enabled nodes in the
network on the bandwidth requirements and on the delays of both
primary and backup paths, comparing the proposed protection method
against a classical dedicated path protection model.

• We demonstrate the applicability of our proposed protection method on
a virtualized SDN testing environment studying metrics such as burden

82 CHAPTER 4. BANDWIDTH-OPTIMAL FAILURE RECOVERY

on the network elements and time to reestablish the flows after a failure.
We also discuss the technical choices to be taken into account by the
network operator in order to put in practice our proposed technique.

The rest of this chapter is organized as follows. In Section 4.2, we discuss
related work. In Section 4.3, we formally define the problem to be studied, as
well as notations that will be used in this chapter. Section 4.4 develops the
proposed optimization approaches. In Section 4.5, we validate our models
by various numerical results on real world and randomly generated data
instances, and in Section 4.6, we demonstrate the feasibility of our proposal
on Mininet. Finally, we draw our conclusions in Section 4.7.

4.2 Related Work

The problem of providing network protection against failures has been widely
investigated in the last decades, see e.g., [Xu+04; RMD05; FV00]. With the
advent of SDN/NFV, there are more opportunities for network operators
to create, deploy, and manage their networks more efficiently. Indeed, with
SDN and its control–data decoupling, routing decisions can be done using a
logically centralized approach. This paves the way for a broadening of per-
spective in terms of fault management [FM17].
They also show in [KCG] a way to create backup paths in such a way that
the chances of congestion after a link failure are reduced.
Chu et al. [Chu+] consider a hybrid SDN network and propose a method to
design the network in such a way that fast failure recovery from any single
link failure is achieved. Their proposal consists in redirecting the traffic on
the failed link from the routers to SDN switches through pre-configured IP
tunnels. Next hops are pre-configured before the failures take place, and the
set of candidate recovery paths for different affected destinations is chosen
by the SDN controller in such a way that the maximal link utilization after
redirecting the recovery traffic through these paths is minimized. Their op-
timization task is to minimize the number of SDN switches required.
Suchara et al. [Suc+] proposes a joint architecture for both failure recovery
and traffic engineering. Their architecture uses multiple preconfigured paths
between each pair of edge routers. In the event of a failure, the failover is
made on the least congested path that ensures connectivity. Besides, Sgam-
belluri et al. [Sga+13] propose a controller–based fault recovery solution that
uses OpenFlow’s Fast Failover Group Tables to quickly select a preconfigured

4.3. PROBLEM STATEMENT AND NOTATIONS 83

backup path in case of link-failure.
Different from previous studies on failure recovery, we present a simple and
bandwidth-efficient approach based on multiple backup paths to protect the
network against SRLG failures where SDN switches are deployed.
The idea of using a set of pre-configured multiple backup network config-
urations is not new. For instance, in [Kva+; KCG] the authors propose a
pre-configured proactive IP recovery schema that makes use of multiple rout-
ing backup configurations as a method for fast recovery. The main idea is to
create a small set of backup routing configurations to be used in the case of
a single link or node failure. The backup configuration used after a failure is
selected according to the failure situation. Since the backup configurations
are kept in the routers, it is necessary to reduce their number in order not
to require the routers to store a significant amount of state information.
Herein, we take to the extreme the idea of multiple routing configurations by
allowing a completely different routing in response to an SRLG failure situ-
ation. Different from the above works, our aim is to provide a bandwidth-
efficient mechanism to design a reliable network. Besides guaranteeing the
recovery, our proposed approach also takes into consideration the SFC re-
quirement of the flows and allows to effectively study what is the right num-
ber of NFVI-enabled nodes, in terms of costs, and acceptable QoS levels.

4.3 Problem Statement and Notations

We model the network as an undirected graph G = (V,E), where V rep-
resents the set of nodes and E the set of links. Each link represents two
unidirectional links in opposite directions. We are given a set of SRLG
events R that can incur link failures. Each r ∈ R consists of a set of links
that share a common physical resource. We denote by D the set of demands.
As we are solving a dimensioning problem, we assume prior full knowledge
of traffic demands, i.e., traffic matrices are known beforehand. A demand
d ∈ D is modeled by a quadruple (sd, td, bwd, Cd) with sd the source, td the
destination, Cd the ordered sequence of network functions that need to be
performed to all the packets belonging to the flow of the demand, and bwd

the required units of bandwidth. We denote by ℓ(d) the length of the SFC
for a demand d.
Network functions need to be executed on the so called NFVI nodes equipped
with Commercial Off The Shelf (COTS) hardware. Not all the nodes are

84 CHAPTER 4. BANDWIDTH-OPTIMAL FAILURE RECOVERY

s ...
t

e1
e2
e3

e|S|

Figure 4.1: The multigraph resulting from the reduction

enabled to run virtual functions. We denote by V vnf ⊆ V the set of VNF-
enabled nodes.
Moreover, we assume that an NFVI-enabled node can only run a subset of
the network functions, as there may be constraints on their location in the
network.
Given the network topology and the traffic rate of the demands to be sup-
ported, the purpose of the design problem is to precompute a set of paths to
guarantee the recovery of all the demands in the event of an SRLG failure,
while satisfying their SFC requirements. The considered optimization task
is to minimize the bandwidth cost in the network.
For each demand d ∈ D we have to find a primary path and a protection
one for each SRLG failure situation r ∈ R, such that the total amount of
bandwidth needed to guarantee the recovery in all the failure situations is
minimized.

4.4 Optimization Approaches

We begin the section by proving hardness and inapproximability results for
the Global Rerouting problem. Then, we introduce a layered model that
is the basis of our proposed methods. The first optimization model that we
present is a compact ILP formulation for the global rerouting schema. In
order to overcome the scalability issues related to an ILP-based approach,
we propose a scalable decomposition model which relies on the Column Gen-
eration technique.

Proposition 3. The Global Rerouting problem is NP-hard even for a
single demand, and cannot be approximated within
(1− ǫ) ln(|R|) for any ǫ > 0 unless P=NP, where |R| denotes the number of
failing scenarios.

4.4. OPTIMIZATION APPROACHES 85

Proof. We use a reduction from the Hitting Set Problem, which is de-
fined as follows. We are given a collection C of subsets of a finite set S and
the problem consists in finding a hitting set for C, i.e., a subset S ′ ⊆ S such
that S ′ contains at least one element from each subset in C of minimum
cardinality. Given an instance I = (S,C) of Hitting Set, we can build
an instance I ′ = (G,D,R) of Global Rerouting in the following way.
G = (V,E) is a multigraph with V = {s, t} and E = {ei, i = 1, ..., |S|}. All
the edges have s and t as endpoints.See Fig 4.1 for an example. For each
C ′ ⊆ C, we add a failing scenario rC′ = E \ C ′ to R, corresponding to edges
that cannot be used in the failure situation r. Finally, we add to D, a demand
d with s and t as source and destination respectively, and with charge equal
to 1. The goal now consists in finding a path for each of the failure scenarios
r ∈ R minimizing the needed capacity to deploy. The total capacity needed
to satisfy d in each of the failure situations is ≤ c ⇐⇒ there exists a hitting
set of cardinality ≤ c. The proposition follows immediately from the fact
that Hitting Set is NP-Hard [ADP80] and cannot be approximated within
a factor of ln |S| [DS], unless P=NP.

4.4.1 A layered network model

The traffic associated to each demand must be processed by an ordered se-
quence of network functions. Similarly to [HJG18b], we use a layered graph
to model this constraint.
Let G = (V,E) be a graph. We associate to each demand d ∈ D a layered
graph GL(d) = (V ′, E ′). GL(d) is defined as follows. For each u ∈ V , V ′

contains the vertices (u, 0), (u, 1), ..., (u, ℓ(d)). An edge ((u, i), (v, j)) belongs
to E ′ if and only if (1) (u, v) ∈ E and i = j, or (2) u is a VNFI-enabled node,
u = v, j = i + 1, and the jth function of Cd is installed on u.
Given a demand d, let sd and td be the source and the destination node, re-
spectively. A path starting at vertex (sd, 0) and finishing at vertex (td, ℓ(d))
of GL(d) defines (a) which edges of G are used to route the flow associated
to the demand; and (b) on which VNFI-enabled nodes the traffic is pro-
cessed by each of the requested network functions. We refer to a path in
GL(d) = (V ′, E ′) as a Service Function Path (SFP). See Figure 4.2 for an
example. For the rest of this chapter, the term path will refer to a Service
Path in the layered network.

86 CHAPTER 4. BANDWIDTH-OPTIMAL FAILURE RECOVERY

Layer 0

u1,0

u2,0

u3,0

Layer 1

u1,1

u2,1

u3,1

Layer 2

u1,2

u2,2

u3,2

Figure 4.2: The layered network GL(d) associated with a demand d such that
sd = u1, td = u3, and Cd = f1, f2, with G = (V,E) being a triangle network.
We assume f1 installed on Node u1 and f2 installed on Nodes u1 and u3.
Source and destination nodes of GL(d) are u1,0 and u3,2, respectively. They
are drawn with dashed lines. Two possible Service Paths that satisfy d are
drawn in red and blue.

4.4.2 Compact ILP Formulation

A straightforward way to model our problem consists in using an ILP. The
goal of the ILP is to find for each demand d ∈ D a Service path on the layered
graph GL(d) for each SRLG event such that the total bandwidth required
in the network is minimized. In order to take into account the no failure
scenario, we add an SRLG associated with an empty set of links to R. Thus,
the SRLGs set is extended to R ∪ ∅.
Variables:
• ϕd,r

(ui,vj) ∈ {0, 1}, with ϕd,r

(ui,vj) = 1 if demand d uses link ((u, i), (v, j)) of

GL(d) in the SRLG failure event r.
• xr

uv ≥ 0 is the amount of bandwidth allocated on link (u, v) of G in the
SRLG failure event r.
Objective: minimization of the bandwidth needed in the network in order to
guarantee the recovery (i.e., considering for each link the maximum band-

4.4. OPTIMIZATION APPROACHES 87

width used between all the SRLG failure events).

min
∑

(u,v)∈E

max
r∈R

xr
uv (4.1)

Flow Conservation: for each demand d, SRLG set r ∈ R,

∑

(v,j)∈ω((sd,0))

ϕd,r

(sd0,vj)
=

∑

(v,j)∈ω((td,ℓ(d))

ϕd,r

(tdℓ(d),vj)
= 1 (4.2)

∑

(v,j)∈ω((u,i))

ϕd,r

(ui,vj) ≤ 2 v ∈ V \ {(sd, 0), (td, ℓ(d))} (4.3)

∑

(v′,j′)∈ω((u,i))\{(v,j)}

ϕd,r

(ui,v′j′) ≥ ϕd,r

(ui,vj)

v ∈ V \ {(sd, 0), (td, ℓ(d))}, ℓ ∈ ω((u, i)) (4.4)

Unavailable links in an SRLG failure event: for each r ∈ R,

∑

d∈D

∑

(u,v)∈r

ℓ(d)
∑

k=0

ϕd,r

(uk,vk) = 0. (4.5)

Bandwidth utilization in an SRLG failure event: for each SRLG set r ∈ R,
link (u, v) ∈ E,

∑

d∈D
bwd ·

ℓ(d)
∑

k=0

ϕd,r

(uk,vk) ≤ xr
uv. (4.6)

4.4.3 A Column Generation Approach

One can apply the Dantzig-Wolfe decomposition to the above compact for-
mulation, to exploit its block structure per demand d ∈ D. The resulting
model takes the form of a path flow formulation. We denote by Πr

d, the set
of service paths for a demand d in the SRLG failure situation r. Each service
path π is associated with an integer value aπuv ≥ 0 telling the number of times
link (u, v) is used in the service path π.
Variables:
• yd,rπ ≥ 0, where yd,rπ = 1 if demand d uses path π as a service path in the
SRLG failure event r ∈ R.
• xuv ≥ 0, is the bandwidth allocated on link (u, v) ∈ E.

88 CHAPTER 4. BANDWIDTH-OPTIMAL FAILURE RECOVERY

Objective: minimization of the required bandwidth

min
∑

(u,v)∈E

xuv (4.7)

One service path for each demand and SRLG failure event: for all d ∈ D,
r ∈ R ∑

π∈Πr
d

yd,rπ ≥ 1. (4.8)

Bandwidth utilization: for all (u, v) ∈ E, r ∈ R

xuv ≥
∑

d∈D

∑

π∈Πr
d

bwd · aπuv · yd,rπ . (4.9)

Given its very large number of variables, column generation is an efficient
technique to handle the above linear integer programming model. One
starts with a limited set of variables in a so-called restricted master program
(RMP). At each iteration, the RMP is solved. The dual values associated
to the constraints are used to generate new paths with negative reduced
cost and the associated variables are added to the RMP that may enable to
improve the current solution. This process is repeated until no more columns
can be added to the RMP, i.e., no more columns with negative reduced cost
exist. We refer to [Chv83] for more details regarding this technique.
The pricing subproblem is solved independently for each demand d and
SRLG failure event r and it returns a service path π. It consists in finding a
minimum cost service path in the layered graph where the weight of a link
is defined according to the dual values of the associated constraint.
Variables:
• ϕ(ui,vj) ∈ {0, 1}, where ϕd,r

(ui,vj) = 1 if the flow is forwarded on link

((u, i), (v, j)) of GL(d).
Let αsd

ω ≥ 0 and βr
uv ≥ 0 be the dual values relative to Constraints (4.8) and

(5.16), respectively. The service path reduced cost for a given demand d and
an SRLG failure situation r can be written as:

min−αd
r + bwd ·

∑

(u,v)∈E

βr
uv ·

ℓ(d)
∑

k=0

ϕ(uk,vk) (4.10)

The first term is a constant for each request, and the second term corresponds
to a summation over the links of the network. Therefore, we can solve the

4.4. OPTIMIZATION APPROACHES 89

pricing problem using the following objective function:

min
∑

(u,v)∈E

βr
uv ·

ℓ(d)
∑

k=0

ϕ(uk,vk). (4.11)

Thus, for each request and for each failure situation, the pricing subproblem
corresponds to a weighted shortest-path problem in the layered graph. In a
given SRLG failure situation r and for all the demands d ∈ D, the weight of
a link ((u, i), (v, j)) of GL(d) is defined to be βr

uv if i = j, 0 otherwise. Either
one of these paths leads to a negative reduced cost column, or the current
master solution is optimal for the unrestricted program. In the former case,
the new configurations found are then added iteratively to the RMP. In the
second case, the solution of the linear relaxation of the RMP z∗LP is optimal.

Convergence of the basic column generation procedure suffers from dual
oscillations as the number of constraints (5.16) is large. To improve the con-
vergence and reduce the fluctuations in the dual variables, we use a piecewise
linear penalty function stabilization described in [Pes+18].

Associated to the optimal solution of the linear relaxation of the RMP,
for each demand d and SRLG failure situation r, there is a set of service
paths identified by all the variables yd,rπ with value greater than 0. These
service paths guarantee the minimum cost in terms of required bandwidth
to deploy to guarantee the recovery in the splittable flow case. However, if
we restrict our attention to the unsplittable flow case, we have to select only
one service path for each demand and SRLG failure situation. The problem
now consists in making this choice by reducing the overflow introduced in
the network.
One possible way consists in changing the domain of the variables in the last
RMP from continuous to integer and use an ILP solver. We refer to this
strategy as MasterILP.

4.4.4 Benders Decomposition Approach

Applying Benders Decomposition technique [Ben62] to our compact model
consists in splitting the original problem variables into first stage link capacity
assignments on one hand, and second stage routing decisions on the other
hand. The master problem is in terms of the xuv variables. It takes the
following form.

90 CHAPTER 4. BANDWIDTH-OPTIMAL FAILURE RECOVERY

Objective: minimization of the bandwidth used in the network

min
∑

(u,v)∈E

xuv (4.12)

Metric inequalities

∑

(u,v)∈E

µuv · δuv,r · xuv ≥
∑

d∈D
λd(µ) · bwd ∀ µ ∈ R+E (4.13)

where the latter constraints are known as metric inequalities. They can be
separated in polynomial time by solving an LP. Hence, they can be handled in
a lazy way by generating them dynamically, which allows to solve the problem
using the cutting plane algorithm. These cuts are iteratively added to the
master problem until the difference between the lower bound, corresponding
to the solution of the master problem, and the upper bound, corresponding
to the solution of the subproblems, falls under a fixed value ǫ.

Benders separation subproblem is solved given the link bandwidth vector
x. This capacity assignment is globally feasible (for the splittable problem)
if and only if for each vector µ = {µuv ≥ 0 : (u, v) ∈ E} and for each SRLG
failure situation r ∈ R, the inequality

∑

(u,v)∈E

µuv · δuv,r · xuv ≥
∑

d∈D
λd(µ) · bwd

holds, where δuv,r ∈ [0, 1] is the available portion of link (u, v) under scenario
r, and λd(µ) is the length of the shortest path for demand d with respect to
link metrics µ.

Associated to the optimal solution of the Master problem, we have the
optimal link capacities in the splittable flow case, as in the Column Gener-
ation case. The main difference relies in the fact that we do not have the
selected paths. We thus have to find a path for each demand and failure sit-
uations trying to minimize the overflow, with respect to the solution found
in the splittable flow case.

4.4.5 The Min-Overflow problem

As it is costly to solve (exactly) the integer version of the master program,
to obtain a “good” integer solution, we could use another approach. That

4.4. OPTIMIZATION APPROACHES 91

is, we may start by efficiently compute a fractional solution to the linear
relaxation of the problem (i.e., when flows are splittable) using either the
Column Generation algorithm or the Benders Decomposition technique and
then try to obtain a good integer solution to the problem (i.e., when flows are
unsplittable) by minimizing the cost to pay in terms of additional capacity
(i.e., the overflow) over all the scenarios.
We define overflow as the total amount of additional bandwidth to be al-
located in the network in order to satisfy all the demands. One possible
strategy to do that may consist in considering each scenario one at a time,
and formulating a multicommodity flow problem as an ILP. The objective
function consists in minimizing the overflow to be allocated in the network.
We refer to this strategy as IterILP.
If on one hand, this strategy leads to good results, on the other hand, it may
not scale well, since we have to solve an ILP for each SRLG failure scenario.
Another strategy consists in using an algorithm to route the demands while
minimizing the overflow.

The problem to be solved for an SRLG failure scenarios which we refer
to as Min Overflow Problem can be stated as follows.
Input: A graph G = (V,E), a collection D of demands, each associated
with a source, a destination and the units of flows to be routed. Also, each
demand is associated with a set of paths, corresponding to the fractional
solution of the splittable flow version of the problem. Lastly, a capacity
function c∗ : (u, v) → c∗uv, according to the optimal capacities found solving
the linear relaxation of the general problem.
Output: a path for each demand.
Objective: minimize the overflow, i.e., minimize

∑

(u,v)∈E
c̃(u,v)
c∗uv

with c̃(u, v)

defined as the maximum between c∗uv and the capacity of the link (u, v) after
having selected one path per demand.

Note that, contrary to the classical version of the problem, we do not
have hard capacity constraints to respect while computing an integer rout-
ing. Herein, the goal is to route all the demands reducing the increase in
terms of capacity over each of the links (i.e., the overflow) with respect to
the free given capacities already available in the network.
In the following, we give two theoretical results about the possibility of ef-
ficiently approximating the problem. On the negative side, we show that
the problem is APX-Hard, and cannot be approximated within a factor of
1 + 3

320
. On the positive side, we devise an approximation algorithm with a

92 CHAPTER 4. BANDWIDTH-OPTIMAL FAILURE RECOVERY

constant performance ratio.

Proposition 4. The Min Overflow Problem is APX-hard (and so is
NP-Hard) and cannot be approximated within a factor of 1 + 3

320
, unless

P=NP.

Proof. We use a reduction from Max 3-SAT. Let I be an instance of Max

3-SAT with n variables Vi, 1 ≤ i ≤ n and m clauses Cj, 1 ≤ j ≤ m. We
associate each boolean variable Vi to a demand di asking for one unit of flow
from a source sdi to a destination tdi connected by two paths P0(Vi) and
P1(Vi). Selecting P1(Vi) (respectively P0(Vi)) correspond to assign to Vi the
true (respectively false) value.
We associate each clause C to to an edge (uC , vC) and we build the
paths in the following way. For each variable Vi, we consider all the
set C(Vi) with all the clauses in which Vi appears as positive literal.
C(Vi) = Ci1 , Ci2 , ..., Cim with i1 ≤ i2 ≤ ... ≤ im. Then, P1(Vi) =
sdi , (ui1 , vi1), (ui2 , vi2), ..., (uim , vim), tdi .
In a similar way, we consider now all the clauses in which Vi appears as
negative literal. C(Vi) = Ci1

, Ci2
, ..., Cim

with i1 ≤ i2 ≤ ... ≤ im. P1(Vi) is
defined as sdi , (ui1

, vi1), (ui2
, vi2), ..., (uim

, vim), tdi .
As we build paths in this way, the load of an edge (uC , vC) is equal to
the number of literals in the clause C assigned to the false value. There
are

∑n

i=1(2im + 1)(2im + 1) = 6m + 2n edges in the construction, as
∑n

i=1 |C(Vi)|+ |C(Vi)| = 3m, the numbers of literals in the formula. We now
assign each edge a capacity 2. A fractional routing always exists. Indeed,
routing one half of the the charge of each demand di on P0(Vi) and the
half on P1(Vi) is feasible, since after identification an arc receives at most
3 × 1

2
≤ 2. The case of an integral flow is quite different, since, in such a

case, only one between P0(x) or P1(x) can be chosen. Since the capacity of
the edges is 2, the cost will be 2 on each identified edge ⇐⇒ the formula
is satisfiable. This proves that the problem is NP-complete (as 3-SAT is
NP-complete). Then, we derive an inapproximability result using the fact
that it is NP-hard to satisfy more than 7

8
of the clauses (even if the formula

is satisfiable) [Hras01]. So, we may have to pay 3 on m/8 edges (even though
the optimal is 2 on all edges). Since the initial cost is less than 2 times the
number of edges, it is less than 2× (6m+ 2n) = 12m+ 4n. We have n ≤ m

3
.

So, it is NP-hard to decide if the cost is 1 or
(12+ 4

3
)m+m

8

(12+ 4
3
)m

= 1 + 3
320

.

Proposition 5. The Min Overflow Problem can be approximated

4.4. OPTIMIZATION APPROACHES 93

within a factor of (1 + 1
e
) + ǫ, for any ǫ > 0.

Proof. Let c∗uv be the optimal capacity of an edge (u, v) in the splittable
flow case. After having computed a fractional flow, we have associated to
each demand d ∈ D a set consisting of n(d) ≥ 1 paths Pd = {Pd,i : i =
1, ..., n(d)}. Each path Pd,i is associated to a multiplier 0 ≤ λd,i ≤ 1 such

that
∑n(d)

i=1 λd,i = 1 which gives the amount of flow λd,i · bwd routed on Pd,i.
Let λd,i(uv) be the fraction of flow routed on the edge (u, v) by a demand

d. Note that for each edge (u, v) we have
∑

d∈D
∑n(d)

i=1 bwd · λd,i(uv) ≤ c∗uv
since by hypothesis these capacities are feasible for the splittable flow case.
In order to find an unsplittable solution, we use a rounding–based heuristic
referred to as Randomized Rounding, which assigns to a demand d a path
Pd,i with probability λd,i. We consider now the impact in terms of load on
an edge (u, v). Let fuv be the flow on (u, v) at the end of the rounding
procedure. Clearly, for each edge (u, v) E(fuv) ≤ c∗uv holds. Let Ouv be
the overflow on the edge (u, v) defined as max(0, fuv − c∗uv). We denote by
P0(uv) = P[fuv = 0] the probability that the edge (u, v) is not used.

E[Ouv] = P0(uv) · 0 + (1− P0(uv))E[fuv|fuv > 0]− c∗uv (4.14)

= (1− P0(uv))E[fuv|fuv > 0]− c∗uv(1− P0(uv)) (4.15)

Moreover,

E[fuv] = P0(uv) · 0 + (1− P0(uv))E(fuv|fuv > 0) (4.16)

E[fuv|fuv > 0] =
E[fuv]

1− P0(uv)
(4.17)

We can therefore bound the expected overflow of a link (u, v).

E[Ouv] = E[fuv]− c∗uv(1− P0(uv)) (4.18)

= P0(uv)c∗uv − (c∗uv − E[fuv]) ≤ P0(uv)c∗uv (4.19)

Let us now consider the probability P0(uv) that an edge is not used after the
randomized rounding. Given an edge (u, v), we define Puv to be the paths
that contain (u, v) as an edge.

P0(uv) =
∏

Pd,i∈Puv

(1− λd,i) (4.20)

94 CHAPTER 4. BANDWIDTH-OPTIMAL FAILURE RECOVERY

The probability for an edge not to be selected is maximized when all λd,i are
equal (i.e., λd,i = 1

|Puv |
∀ λd,i ∈ Puv). Thus,

P0(uv) = (1− 1

ρ|Puv|
)|Puv | (4.21)

where ρ is defined to be E[fuv]
c∗uv

. This gives an upper bound for the possible

value of P0(uv). Indeed,

P0(uv) ≤ lim
n→∞

(1− 1

ρn
)n =

1

eρ
. (4.22)

The function is minimized with ρ = 1. We thus get

E[Ouv] ≤
1

eρ
c∗uv − (c∗uv − E[fuv]) (4.23)

≤ c∗uv(
1

eρ
− (1− ρ)) ≤ 1

e
c∗uv ≈ 0.37c∗uv. (4.24)

Finally, the expected cost of the solution provided is

E

[∑

(u,v)∈E Ouv
∑

(u,v)∈E c∗uv

]

=

∑

(u,v)∈E E[Ouv]
∑

(u,v)∈E c∗uv
≤ 1

e
≈ 0.37. (4.25)

By using the Markov inequality, the probability that the obtained solution
has a cost larger than 1.37(1 + ǫ) is at most 1

1+ǫ
. The overflow resulting from

the execution of the randomized rounding can be checked in polynomial
time. If the overflow exceeds the factor of (1 + 1

e
) + ǫ, another trial may be

necessary in order to find a solution below this value. The number of trials
depends on the chosen value for ǫ. For instance, if we set ǫ = 1

10
, we need

an average of 10 trials in order to find a solution with cost not greater than
1.507 (= 1.37 + 0.137) times the optimal fractional one.

As just shown, the problem of minimizing the overflow can be approx-
imated efficiently for a single scenario. The proposed schema consists in a
randomized rounding to be performed according to the value of the split-
table flow solution. We may extend Randomized Rounding to the case of
multiple scenarios by simply solving the scenarios in an iterative fashion. At
each iteration, an SRLG r ∈ R is considered. First, a fractional capacitated
multicommodity flow is solved. Then, a (1 + 1

e
+ ǫ)–approximated integer

4.5. NUMERICAL RESULTS 95

solution is found using the RandomizedRounding procedure. The over-
flow introduced (if any) by the procedure is then added. We refer to this
method as Iterative Randomized Rounding. See Algorithm 7 for the
pseudo-code of our proposed algorithm.

Algorithm 7 Iterative Randomized Rounding

1: Solve the linear relaxation of the general problem
2: c̃← c∗

3: for each r ∈ R do
4: (a) route the demands on G′ = (V,E \ r, c̃) solving a fractional mul-

ticommodity flow problem

5: (b) use RandomizedRounding to find a
(1 + 1

e
+ ǫ)–approximate integer routing

6: (c) update c̃ with the introduced overflow (if any)
7: end for
8: return c̃

4.5 Numerical Results

In this section, we evaluate the performances of our proposed algorithms on
both real and synthetic instances. The compared methods are as follows.
MasterILP, in which in the last RMP is solved as an ILP by setting the
domain of the paths variables from fractional to binary. IterILP, in which
each scenario is solved independently with an ILP that has, as a goal, the
minimization of the overflow and IterRR, in which instead of using an ILP
to minimize the overflow, we use a (1 + 1

e
+ ǫ)–approximation algorithm.

4.5.1 Data sets

We conduct experiments on three real-world topologies from SNDlib [Orl+10b]:
polska, (12 nodes, 18 links, and 66 demands), pdh (11 nodes, 34 links, and
24 demands) and nobel-germany (17 nodes, 26 links, and 121 demands).
For these networks, we use the given traffic matrices. No information is avail-
able about the SRLGs for these networks. Thus, the collection of network
failures R for these instances contains single edge failures. We also conduct
experiments on randomly generated instances of different sizes. We build
our synthetic instances using a similar method to the one in [KKV05]. We

96 CHAPTER 4. BANDWIDTH-OPTIMAL FAILURE RECOVERY

generate two networks in which we place nodes in a unit square. In each of
them, we add links according to the Waxman model [Wax88]. The proba-

bility of having a link (u, v) is defined as α exp
−dist(u,v)

βL where dist(u, v) is the
Euclidean distance from node u to node v, L is the maximum distance be-
tween two nodes and α, β are real parameters in the range [0, 1]. One of the
two networks represents the logical IP network, i.e., IP routers and IP links
while the other represents the underlying optical network, i.e., cross-connect
and fibers. Each IP node is mapped to the closest optical cross-connect and
each IP link (u, v) is mapped onto the shortest path between u and v in the
physical network. All the IP links using the same physical link are associated
to an SRLG. In addition, we add an SRLG for each undirected link.
Demands are generated using the model described in [FT02]. The model

takes into consideration the distance factor exp
−dist(u,v)

2L between two nodes
u and v. As a result, the load of the demands between close pairs of nodes
is higher with respect to pairs of nodes far apart. Finally, the chain of each
demand is composed of 3 to 6 functions uniformly chosen at random from
a set of 10 functions. Each VNF-enabled node can run up to 6 network
functions. Similarly as in [HJG18b], locations are chosen according to their
betweenness centrality, an index of the importance of a node in the network:
it is the fraction of all shortest paths between any two nodes that pass
through a given node. Experiments have been conducted on an Intel Xeon
E5520 with 24GB of RAM.

4.5.2 Limits of an ILP-based approach.

To study the limits in terms of computing time of an ILP-based approach, we
tested our optimization models on a small random topology with 10 nodes,
16 links, and 26 SRLGs.
In Figure 4.3, we show the impact of the number of demands on the execution
time. We compare the time necessary to find an optimal solution (on the
left) and the value of the solution found (on the right) by the ILP and by
our proposed methods. For each experiment, we set a maximum time limit
of one hour. If the time limit is exceeded, the solution reported represents
the best solution found so far.
For just 30 demands, the time needed by Cplex 12.8 to find an exact solution
exceeds 1 hour. For large instances, an optimal solution cannot be found

4.5. NUMERICAL RESULTS 97

1 10 20 30 40 50 60 70 80 90

Number of Demands

101

102

103

1h

T
im

e
(s

)

ILP

IterILP

MasterILP

IterRR

1 10 20 30 40 50 60 70 80 90

Number of Demands

0

1

2

3

4

5

S
ol

u
ti

on
F

ou
n

d

×104

Figure 4.3: Time and Value of the solution found by the ILP and by our
proposed methods as a function of the number of demands.

using an ILP approach in a reasonable amount of time. On the other hand,
the proposed algorithms can compute solutions for larger instances fairly
efficiently. Indeed, they only take 1 minute to solve the problem for 90
demands. As the considered network is small, the computed values tend to
be close between them. Later in the discussion, using bigger networks we
will highlight differences, limits, and advantages of the proposed approaches.

4.5.3 Performances of the optimization models

Table 4.1 summarizes the results of our proposed methods for the already
presented 3 real networks and for 4 Waxman random networks. Networks
are identified as wxm N with N being the number of nodes. The number of
demands is set to be 50, 100, 150, and 200 for the 10, 20, 30, and 40 nodes
networks, respectively. Moreover, the number of resulting SRLGs for the
Waxman random networks are 22, 40, 53, and 70, respectively. The first
column compares the Column Generation (ColGen) and the Benders De-
composition [Ben62] (Benders) techniques to find a fractional solution based
on which the heuristics find an integer solution. The Column Generation
techniques appears to be faster in finding the optimal solution z∗LP . Indeed,
on the largest considered network wxm40 only takes 22 minutes to find an
optimal solution, while Benders would require more than one hour. The
remaining 3 columns refer to our optimization methods. For each method,
we present both the time needed to find a solution z̃ILP as well as the ratio

98 CHAPTER 4. BANDWIDTH-OPTIMAL FAILURE RECOVERY

2 3 4

Number of NFVI Nodes

0

2

4

6
R

eq
u

ir
ed

B
an

d
w

id
th

×104

1.6x

1.3x 1.3x

2.7x

2.5x
2.5x

pdh

NP GR DP

3 5 7

Number of NFVI Nodes

0

3

6

9

12
×103

1.5x
1.5x

1.3x

2.5x

2.5x
2.5x

nobel-germany

Figure 4.4: Bandwidth overhead comparison of the global rerouting (GR) and
Dedicated Path Protection (DP) schemas with respect to the no-protection
scenario (NP) for pdh and nobel-germany networks. Labels on top of the
bars indicate the overhead with respect to the unprotected case.

ǫ =
z̃ILP−z∗LP

z∗
LP

with respect to the optimal fractional solution z∗LP . ǫ gives

an upper bound on the maximum overflow to pay in excess with respect to
the optimal integer solution z∗ILP , since the optimal integer solution may be
larger than the fractional one. Both MasterILP and IterILP allow to find
near–optimal solutions. As the size of the network increases, we begin to
observe the limits of the IterILP approach, as it solves an ILP for each of the
scenario. Although MasterILP demonstrates a better scalability and a very
high accuracy, for larger networks we have a tradeoff between the time to find
the solution and the quality of the solution found. Indeed, for wxm40, IterRR
only takes 2 minutes to find a good solution with an accuracy of about 9%,
while MasterILP requires 27 minutes to find a solution with an accuracy of
2.2%.

4.5.4 Varying Number of NFVI-enabled Nodes

NFVI nodes are expensive to both purchase and maintain (e.g., hardware,
software licenses, energy consumption, and maintenance). If, on one hand,
an over-provisioning corresponds to undue extra costs, on the other hand,
under-provisioning may result in poor service to user and in Service Level
Agreement (SLA) violations. It is thus necessary to find the right trade-off
in terms of NFVI nodes in the network design phase.

4.5. NUMERICAL RESULTS 99

2 3 4

Number of NFVI Nodes

0

3

6

9

12

N
u

m
b

er
of

h
op

s

pdh

SP GR

3 5 7

Number of NFVI Nodes

0

3

6

9

12
nobel-germany

Figure 4.5: Hops distribution of the backup paths computed by the global
rerouting schema (GR) compared with the shortest paths (SP) for pdh and
nobel-germany networks. Boxes are defined by the first and third quartiles.
Ends of the whiskers correspond to the first and ninth deciles.

Bandwidth overhead. In Figure 4.4, we compare the overhead in terms
of bandwidth needed in the network by the global rerouting schema and
Dedicated Path Protection with respect to the bandwidth needed in the
unprotected case. For Dedicated Path Protection we compute, for each
demand, two SRLG-disjoint paths, i.e., two paths such that no link on one
path has a common risk with any link on the other path. In doing this, we
set the bandwidth minimization as an optimization task. With an increasing
number of VNFI nodes in the network, the required bandwidth decreases.
However, the overhead with respect to the unprotected case tends to remain
constant. Indeed, if with global rerouting we only need from 30 to 60% more
bandwidth, with dedicated path protection we may need almost 3 times
more bandwidth to guarantee the recovery.
Number of hops. In Figure 4.5, we show the impact of the number of NFVI
nodes on the paths’ number of hops distribution and compare them with the
ones calculated using shortest paths on the layered network. As expected,
we see that the number of hops decreases as the number of NFVI-enabled
nodes increases. The reason is that, the more NFVI-nodes in a network,
the higher the opportunity of easily finding closer NFVI-nodes which can
perform some of the required network functions. Another result is that the
length of the paths computed using our method are almost as good (in terms
of number of hops) as the shortest paths.

100 CHAPTER 4. BANDWIDTH-OPTIMAL FAILURE RECOVERY

Network
z
∗

LP MasterILP IterILP IterRR

ColGen Benders time ǫ time ǫ time ǫ
pdh 22s 32s 11m 4% 1m 4.82% 40s 12.7%

polska 15s 18s 40s 0.22% 1m 0.1% 20s 1.4%
nb-germany 35s 1m 40s 0.17% 4m 0.06% 30s 3.2%

wxm10 10s 5s 50s 0.3% 40s 1% 10s 5.5%
wxm20 40s 2m 1m 0.6% 4m 0.6% 30s 2.7%
wxm30 3m 16m 6m 0.2% 21m 0.9% 1m 4.5%
wxm40 22m >1h 27m 2.2% >1h - 2m 9.2%

Table 4.1: Numerical results for the proposed optimization models. First
column refers to the time needed to find the optimal fractional solution z∗LP .
We set a maximum time limit of 1h. The other columns refer to the proposed
methods to obtain an integer solution z̃ILP . For each method, we show the
additional time needed and the quality of the solution found, expressed as
the ratio ǫ =

z̃ILP−z∗LP

z∗
LP

.

4.5.5 Number of paths

In our considered protection schema, a demand may be rerouted on a dif-
ferent path in each of the possible SRLG failure situations. Even though
our optimization models do not impose constraints on the number of distinct
paths for a demand, the experimental results indicate that their number
tends to be small in practice. In Figure 4.6, we show the distribution for the
number of distinct paths of the demands for our considered networks. The
number of distinct paths increases with the size of the network and tends
to stay within the range (5, 10) for most of them. For instance, for wxm40

we may have potentially 71 distinct paths to be used for a demand, one for
each of the possible SRLG failure scenarios plus one for the no–failure case.
As the results show, in such a case, 50% of the demands would use no more
than 12 distinct paths.

4.6. EXPERIMENTAL EVALUATION 101

p
d
h

p
ol
sk
a

nb
-g
er

w
xm

10

w
xm

20

w
xm

30

w
xm

40

0

5

10

15

20

N
u
m
b
er

of
d
is
ti
n
ct

p
at
h
s

Figure 4.6: Distribution for the number of distinct paths for each demand.
Boxes are defined by the first and third quartiles. Ends of the whiskers
correspond to the first and ninth deciles. The median value is drawn in red.

4.6 Experimental evaluation

In this section, we discuss how to implement our global rerouting proposition
with OpenFlow and evaluate it with the Mininet SDN emulator [LHM10].
Our evaluation in realistic conditions shows that implementation choices have
a significant impact on the convergence time of protection mechanisms.

4.6.1 Implementation options

A first option to implement the protection scheme in OpenFlow is to let
the OpenFlow controller fully update the flow tables on the switches upon
failure. When the controller detects a failure, it sends the new flow tables to
the impacted switches. This approach minimizes the memory usage on the
switches but incurs high signaling overhead between the controller and the
switches, and imposes the latter to install a full flow table at every network
change. We refer to this option as full in the rest of the chapter. A variation
of this option is to only send the changes to be performed on the flow tables to
the switches to reduce the signaling load and the number of flow table updates
on the switches. We name this option delta. Another option is to pre-install
the flow tables for each SRLG failure scenario in the switches. When the
controller sends a failure notification to a switch, the switch activates the

102 CHAPTER 4. BANDWIDTH-OPTIMAL FAILURE RECOVERY

Full Delta Notification Straw Man
101

102

1s

C
o
n
ve
rg
en
ce

T
im

e
(m

s)

GR DP

Figure 4.7: Convergence time compar-
ison of various implementation options
for Global Rerouting (GR) and Ded-
icated Path Protection (DP) for the
polska network; p = 10ms.

Full Delta Notification
0

10

20

30

40

50

60

M
ax

fl
ow

s
ch
an

ge
s

GR DP

Figure 4.8: Comparison of the number
of flow table changes of various imple-
mentation options for Global Rerout-
ing (GR) and Dedicated Path Protec-
tion (DP) for the polska network.

Full Delta Notification
101

102

103

M
ax

fl
ow

s
in
st
al
le
d

GR DP

Figure 4.9: Comparison of the flow ta-
ble sizes of various implementation op-
tions for Global Rerouting (GR) and
Dedicated Path Protection (DP) for
the polska network.

4.6. EXPERIMENTAL EVALUATION 103

appropriate flow table in only one operation. This approach minimizes the
signaling load and flow table changes but consumes more memory on the
switches than the other options. This option is called notification in the rest
of the chapter.

4.6.2 Experimental setup

Our experimental platform is a dual Intel Xeon E5506 CPU server with 48GB
of RAM running Mininet 2.2.2 [LHM10] and the controller OpenDaylight
Nitrogen [Med+] with OpenFlow 1.3.

We aim at understanding the impact of the technical choices on the con-
vergence time in realistic operational scenarios. This is why we use the most
popular OpenFlow controller, OpenDaylight, even though it focuses more
on features than on performances. We implemented the routing logic as a
network application orchestrator that communicates with the controller with
the HTTP OpenDaylight Northbound API. This approach is recommended
as it decouples the implementation of the logic from the implementation of
the controller, at the cost of communication and abstraction overhead.

We also made a straw man implementation to assess the best possible
performance one could have. It is equivalent to the full option but is imple-
mented directly in Mininet with Open vSwitch commands. This solution is
impractical and should only be considered as an ideal reference point.

Even though our implementation supports any type of network, because
of the limited number of CPU cores on our emulation server, we evaluated
only the wxm10 and the polska networks. Due to space limitations, we only
discuss the polska network as results are similar for both networks.

4.6.3 Convergence time

The convergence time is the span of time between a failure event and the
moment in which all switches are updated to be in a state that circumvents
the failure. To measure the convergence time, we continuously probe end-to-
end paths with UDP datagrams. This method has resolution of 2 · p, where
p is the probing period; in this chapter p = 10 ms.

Fig. 4.7 shows the convergence time for our three OpenDaylight imple-
mentation options and the straw man. It compares our Global Rerouting
(GR) protection scheme to the Dedicated Path Protection (DP) scheme.

104 CHAPTER 4. BANDWIDTH-OPTIMAL FAILURE RECOVERY

The figure highlights the importance of implementation choices on the con-
vergence time: the notification option significantly outperforms the other
options. The straw man implementation also shows that the tools used to im-
plement the protection scheme have a significant impact on the convergence
time as, all things considered, our straw man is just a way of implementing
the full option without a controller. Actually, on average, 68% of the conver-
gence time in OpenDaylight implementations is caused by the usage of the
Northbound API that incurs multiple marshalings and unmarshalings. It is
worth to notice that all implementation options offer sub-second convergence
time for the considered network and, in some situations, the straw man can
even go below 50 ms.

Comparing Fig. 4.7 with Fig. 4.8 shows that there is a direct link between
the number of changes to be performed on the switches and the convergence
time. Fig. 4.8 reports, for each switch, the maximum number of flow table
changes observed expressed in number of flow entries for the three OpenDay-
light implementation options. The full option requires the highest number
of changes and is the slowest, while the notification option needs the least
number of changes and is the fastest. We see that dedicated path protection
has longer convergence time than global rerouting when the full implementa-
tion is used. This is because with DP two SRLG-disjoints paths are always
provided while GR only provides the paths of the current scenario. On the
contrary, DP converges faster than GR with the delta implementation as less
path changes are needed for DP than for GR. Finally, GR and DP reach the
same level of performance when notifications are used. The slight difference
in disfavor of GR comes from the switches themselves that must manipulate
larger flow tables, which may cause more frequent L1 cache thrashing in our
emulation environment.

4.6.4 Operational trade-offs

Based on the convergence time, one would recommend to deploy the noti-
fication option. However, the reduction of the convergence time comes at
the cost of increasing flow table sizes on switches. Fig. 4.9 reports, for each
switch, the maximum observed flow table size expressed in number of flow
entries for the three OpenDaylight implementation options. The full option
minimizes the number of entries as it only requires to have the flow table
for the current routing case. The delta option consumes slightly more space
than the full one as the flow table always contains the “no-failure” scenario

4.7. CONCLUSION 105

flow table and the additional flow entries needed to circumvent the current
failure. Finally, the notification option has significantly larger flow tables
(one order or magnitude more) as flow tables always contain all the potential
failure scenarios in addition to the “no-failure” tables.

In addition, operators must chose the method to detect failures. In par-
ticular cases, only active probing methods can be used which are inherently
slow, e.g., the minimum configurable time period for BFD on some Cisco
interfaces is 50 ms [Cis], and then the time to re-route traffic becomes negli-
gible compared to the time to detect the failure. The detection time is also
constrained by the location of the controller in the network as the controller
itself must detect the failure before applying the re-routing scheme to the
switches. As failure detection is an orthogonal problem that must be tack-
led by all protection and recovery mechanisms, we considered the ideal case
where failures are detected instantaneously so that the reader can focus on
the actual costs of the re-routing scheme.

As the robustness of the controller is an orthogonal problem that must
be treated by all SDN solutions and because it is already largely stud-
ied [Zha+18], it was not considered in our study.

4.7 Conclusion

In this chapter, we studied the ISP network dimensioning problem with pro-
tection against a Shared Risk Link Group failure. We considered a path-
protection method based on a global rerouting strategy, which makes the
protection method optimal in terms of bandwidth. We proposed algorithms
to compute the backup paths for the demands which rely on the Column
Generation technique. We validated them experimentally on real-world and
on random generated instances. Finally, we showed the applicability of the
global rerouting protection method thanks to SDN with a real implementa-
tion in the OpenDaylight controller. We also discussed important trade-offs
between getting a lower convergence time and having a lower memory foot-
print on the switches.

Chapter 5

Path Protection for Service
Function Chains

Contents
5.1 Introduction . 107

5.2 Related Work . 109

5.3 Problem and Notations 111

5.4 Optimization Models 112

5.4.1 Dedicated Protection 112

5.4.2 Shared Protection 116

5.5 Experimental Study 119

5.5.1 Data Sets . 119

5.5.2 Compact ILPs vs. CG Models 120

5.5.3 Performance of CG Models 120

5.5.4 Bandwidth and Processing Requirements 121

5.5.5 Delay . 123

5.6 Conclusion . 123

The content of this chapter has been published before in [Tom+18c].

5.1 Introduction

Network failures have been widely investigated (see, e.g., [GJN11],[Tur+10],[PJ13]).
One of the key findings of [GJN11] is that links experience about an order
of magnitude more failures than devices. Moreover, according to their anal-
ysis, low-cost commodity switches are highly reliable. This finding is also
confirmed by [PJ13]. On the other hand, links are failure-prone. Indeed, in

107

108 CHAPTER 5. PATH PROTECTION FOR SFC

a monitored network, each link experiences in average 16 failures per year,
considering a five years period [Tur+10]. Despite this, most of the failures
have very short duration. The majority of link failures are solved within
5 minutes (the median time to repair is 13s). Another finding is that link
failures tend to be isolated. The short time to repair and the absence of a
relation between link failures motivate us to focus our attention on the single
link failure scenario.
Fault management techniques can be grouped into two categories: restora-
tion and protection. Restoration is a reactive approach in which a backup
path is computed and established after a failure. Protection is a proactive
technique in which capacity on links is reserved during connection setup.
Restoration schemes are more efficient in utilizing capacity, but, on the
other side, protection schemes have a faster restoration time and offer a
guaranteed recovery [SRM02]. Data plane restoration [Sha+11; Sta+11]
and protection [Sha+13; Sga+13] have been both adressed in the context of
SDN.
There are different protection schemes. In dedicated protection, some spare
capacity is reserved for each backup path. This implies that the backup
resources are used for at most one path. In shared protection, backup
paths can share some link capacity if failures in their primary paths do not
occur simultaneously. Thus, in shared protection, capacity is used more
efficiently [ZS00]. However, dedicated protection is often used by network
operators because of its simplicity. We thus study both protection schemes
in this paper.
Each protection scheme may have two different recovery mechanisms: a local
repair (i.e., link protection) or an end-to-end repair (i.e., path-protection).
Link protection schemes reroute the traffic around the failing link. In path
protection schemes, the traffic is rerouted on a link-disjoint backup path.
In this case, the backup path would be used in all the failure situations
that involve links of the primary path. Path-protection mechanisms have
been shown to lead to better resource utilization compared to link protec-
tion [RM99; IMG98].

In this chapter, we consider the problem of providing for each demand, a
primary and a link-disjoint backup path, under both dedicated and shared pro-
tection schemes. Moreover, the problem also consists in provisioning VNFs
in order to ensure that the traversal order of the network functions by each
path is respected. This adds a challenge to the classical version of the prob-
lem.

5.2. RELATED WORK 109

Our goal is to minimize the bandwidth requirements while ensuring that the
delays on primary and backup paths stay below SLAs. Our contributions are
as follows:

• To the best of our knowledge, we are the first to propose a scalable exact
method to solve the problem of reliable service function chaining. The
method is based on a decomposition model using column generation.

• The model allowed us to solve the problem with dedicated and shared
protection schemes for networks with up to 1000 traffic requests.

• We also studied the costs in terms of bandwidth and computation re-
quirements of both protection schemes and for networks of different
sizes. When service function chaining is considered, dedicated protec-
tion requires three times more bandwidth and two times more process-
ing than without protection. The ratios drop to 1.5 and 1.25 for shared
protection.

• We additionally study the impact of the number of nodes of the network
being able to host VNFs on the bandwidth requirements and on the
delays of both primary and backup paths.

The paper is organized as follows. We study two different protection schemes:
Dedicated Protection, in Section 5.4.1 and Shared Backup Path Protection,
in Section 5.4.2. For each of them, we propose both a compact Integer Linear
Program (ILP) formulation and a decomposition model. In Section 5.5, we
compare the models and show the superiority of the decomposition models
over the compact ILP formulations in terms of scalability. We then study the
impact of design choices, such as the number of VNF nodes and the kind of
protection, on the experienced delay by both the primary and backup paths
of the demands, as well as the impact on the bandwidth requirements.

5.2 Related Work

The design of survivable networks has been widely studied in the network
literature (see, e.g., [AA99],[RM99]). However, when dealing with NFV and
SFCs, an additional challenge is to map network functions to nodes and to
guarantee that the execution order of the network functions is respected in
both primary and backup paths.

110 CHAPTER 5. PATH PROTECTION FOR SFC

The problem of guaranteeing service continuity in Service Function Chain
scenario has started to be investigated recently. Both restoration [Sou+17;
LM15] and protection [Hma+17; Ye+16; BBS16] techniques have been inves-
tigated. In [Cas+17], the authors propose an approach to guarantee protec-
tion by replication. They consider the problem of placing VNFs on a NFV
Infrastructure to satisfy the requests while guaranteeing high availability.
They propose an ILP along with greedy heuristics to overcome the scalabil-
ity issues of the ILP formulation.
In [Sou+17], the authors address VNF placement and chaining in the pres-
ence of physical link failures. The proposed algorithm makes use of a Monte-
Carlo Tree Search algorithm to place VNFs and simultaneously steer traffic
flows across them. When a link fails, the algorithm reactively re-maps the
failed virtual links in other substrate paths. In Hmaity et al. [LM15], the au-
thors consider the problem of recovering the traffic path after the failure of a
network function. In their proposed solution, an alternative VNF is selected,
in a greedy manner, to replace the failed one and then the communication is
ensured by allocating a path between the new VNF and its neighbors.
In [Ye+16], the authors consider node and link failures and they propose a
heuristic algorithm with the goal of meeting the client’s reliability require-
ments. They propose two algorithms. The first one is based on dedicated
protection and the second one on shared protection. In [Hma+17], the au-
thors propose a compact ILP model in order to provide resiliency against
single node, virtual link, and single node/single virtual link failure scenarios.
They aim to reduce the number of VNF nodes used. The difference with
our work is that the authors consider link protection, while we look into path
protection, and their ILP models are not scalable.
[BBS16] discusses measures on how to backup resources in order to protect
network services from failures. They consider both node and link failures and
propose a resource allocation algorithm heuristic-based that aims at keeping
the number of physical resources allocated to VNF chains low.
The main difference with our work is that we propose a scalable exact decom-
position model to provide reliable service function chaining. (Other differ-
ences is that using path protection in order to minimize network bandwidth
was also not considered in this setting.) Column generation techniques have
been shown to be effective in dealing with both Service Function Chain-
ing [HJG17a; Hui+18c] and failure protection [AV14]. In [HJG17a], the au-
thors propose a decomposition modeling for the SFC Problem with the goal of
optimizing the bandwidth. Through extensive numerical experiments, they

5.3. PROBLEM AND NOTATIONS 111

show that their model can solve exactly and in an efficient way the problem.
We here extend their results to the case of unreliable networks in the case of
single link failure scenario.

5.3 Problem and Notations

We model the network as a graph G = (V, L), where V represents the
set of nodes and L the set of links. A request is modeled as a quadruple
(vs, vd, c,D

c
sd) with vs the source, vd the destination, c = f c

1 , f
c
2 , ..., f

c
nc

the
sequence of VNFs that need to be performed with nc the chain length, and
Dc

sd the required units of bandwidth.
Each network function f has associated processing requirements per unit of
bandwidth, denoted with ∆f . Namely, given a request (vs, vd, c,D

c
sd), the

number of cores needed to process the i− th function of the chain c is equal
to Dc

sd ·∆fc
i
.

Different chains may have different maximum tolerated latency. For instance,
the latency requirement of Video Streaming is less stringent than Online
Gaming. Following a similar idea as in [Hma+17], we associate to each chain
c a maximum tolerated delay, denoted as φ(c). Each network function f is
associated with a processing latency per unit of bandwidth ρuf , which also
depends on the node in which the function is performed, and each link with
a transmission and propagation latency λl.
Not all nodes may be enabled to run virtual functions. We denote by
V vnf ⊆ V the set of VNF-enabled nodes equipped with Commercial Off
The Shelf (COTS) hardware. We are given for each node v ∈ V vnf a ca-
pacity capv, representing the amount of available resources, such as CPU,
memory, and disk. Similarly, for each link ℓ ∈ L, we are given the transport
capacity capℓ.
The optimization task is to minimize the amount of bandwidth used in the
network. At the same time, the problem consists in providing to each demand
an edge disjoint backup path and to guarantee that the traversing order of
the functions is respected in both primary and backup paths. Both node and
link capacities must be respected, as well as the maximum tolerated latency
for each request.
As in [HJG17a], to model the function ordering problem, we use a layered
GL graph with nc+1 layers. We denote by u(i) the copy of node u in layer i.
The paths for demand Dc

sd starts from node vs(0) in layer 0 and ends at node

112 CHAPTER 5. PATH PROTECTION FOR SFC

G = (V, L) optical (grid) network
V vnf ⊆ V = subset of nodes which are enabled to

host virtual network functions
SD Set of node pairs with some demand
Dc

sd bandwidth demand from s to d for chain c
∆f # required cores per bandwidth unit for

function f
capℓ transport capacity (bandwidth) of link ℓ
capv core capacity of node v
nc length (i.e., number of functions) of the chain

c
f i
c the ith function in chain c
φ(c) maximum tolerated delay for the chain c
λl latency of physical link ℓ
ρfu processing time per bandwidth unit for func-

tion f on node u

Table 5.1: Notation

vd(nc) in layer nc. Layer i corresponds to nodes of the paths encountered
after the ith function of the service chain.
Using link (u(i), v(i)) on GL, implies using link (u, v) on G. On the other
hand, using link (u(i), u(i+ 1)) implies using the (i+ 1)− th function of the
chain at node u.

5.4 Optimization Models

We now present the optimization models for the dedicated and shared pro-
tection schemes, in Section 5.4.1 and 5.4.2 respectively. For each scheme, we
present both a compact ILP formulation and a decomposition model.

5.4.1 Dedicated Protection

We consider here a dedicated protection scheme, also known as 1+1 protec-
tion. The capacity for the backup path is fully reserved. This is a method
often used by operators in the case each demand is load balanced over both
paths used at less than 50%. When a failure involving the primary path

5.4. OPTIMIZATION MODELS 113

happens, the traffic on the failing path is switched to the second path.

5.4.1.1 Model NFV ILP DP

In the case of dedicated protection, the problem consists in finding two sd-
paths in GL for each demand. Note that the paths have to be edge disjoint
(i.e., if a path uses a link l for a layer of GL then the other path cannot use
l in any layer of GL) but not node disjoint.
Variables:
• ϕsd,c,i

ℓ,p , ϕsd,c,i
ℓ,b ∈ {0, 1}, where ϕsd,c,i

l,p = 1 (ϕsd,c,i
l,b = 1) if (vs, vd, c,D

c
sd) is

provisioned on link ℓ for the primary (backup) path.
•asd,c,iv,p , asd,c,iv,b ∈ {0, 1} where asd,c,iv,p = 1 (asd,c,iv,b = 1) if f c

i+1 is installed on node

v for the primary (backup) path. If v /∈ V V NF , asd,c,iv,1 and asd,c,iv,2 are set to 0.

Objective: minimization of the bandwidth used in the network

min
∑

(vs,vd)∈SD

∑

c∈Csd

Dc
sd

∑

ℓ∈L

nc
∑

i=0

(ϕsd,c,i
ℓ,p + ϕsd,c,i

ℓ,b) (5.1)

Constraints: both primary and backup paths must satisfy the following con-
straints. They are written for the general case.

Flow Conservation: for all (vs, vd) ∈ SD, c ∈ Csd,

∑

ℓ∈ω+(v)

ϕsd,c,0
ℓ −

∑

ℓ∈ω−(v)

ϕsd,c,0
ℓ

+ asd,c,0v =

{

1 if v = vs

0 else
(5.2)

∑

ℓ∈ω+(v)

ϕsd,c,nc

ℓ −
∑

ℓ∈ω−(v)

ϕsd,c,nc

ℓ

− asd,c,n
c

v =

{

−1 if v = vd

0 else
(5.3)

∑

ℓ∈ω+(u)

ϕsd,c,i
ℓ −

∑

ℓ∈ω−(u)

ϕsd,c,i
ℓ + asd,c,iv − asd,c,i−1

v = 0.

0 < i < nc (5.4)

114 CHAPTER 5. PATH PROTECTION FOR SFC

Link capacity: for all ℓ ∈ L,

∑

(vs,vd)∈SD

∑

c∈Csd

Dc
sd

nc
∑

i=0

(ϕsd,c,i
ℓ,p + ϕsd,c,i

ℓ,b) ≤ capℓ. (5.5)

Node capacity: for all v ∈ V vnf,

∑

(vs,vd)∈SD

∑

c∈Csd

nc−1∑

i=0

Dc
sd∆fc

i
(asd,c,iv,p + asd,c,iv,b) ≤ capu. (5.6)

Latency: for all (vs, vd) ∈ SD, c ∈ Csd,

∑

ℓ∈L

nc
∑

i=0

ϕsd,c,i
ℓ λℓ +

nc−1∑

i=0

Dc
sd ρ

v
fc
i
asd,c,iv ≤ φ(c). (5.7)

In order to guarantee that the paths are edge disjoint, we add the following
constraint. For all (vs, vd) ∈ SD, c ∈ Csd, ℓ ∈ L,

nc
∑

i=0

ϕsd,c,i
ℓ,p +

nc
∑

i=0

ϕsd,c,i
ℓ,b ≤ 1. (5.8)

5.4.1.2 Model NFV CG DP

We now propose a decomposition model for the dedicated protection sce-
nario. Each configuration consists of a Service Path. A Service Path for a
request (vs, vd, c,D

c
sd) is composed of: (i) a path, i.e., an ordered set of nodes

from the source to the destination, and (ii) a set of locations for the VNFs
in the SFC request. The goal of the Master Problem is thus to select a pair
of configurations, i.e., Service Paths for each request.
The set of configurations must be chosen in such a way that: (i) each request
is associated to a pair of edge-disjoint configurations; (ii) node and link ca-
pacities are respected and (iii) the overall required bandwidth is minimized.
• π ∈ Πc

sd is a service path from s to d. A service path is composed of a
path and a set of node/function pairs (v, f) expressing that the function f
is installed on node v.
• afv,π ∈ {0, 1}, where afv,π = 1 if f is installed on node v for service path
π ∈ Πc

sd w.r.t sd, c.

5.4. OPTIMIZATION MODELS 115

• δπℓ ∈ {0, 1}, where δπℓ = 1 if link ℓ belongs to path π.

Variables:
• ysd,cπ,p , y

sd,c
π,b ≥ 0, where ysd,cπ,p = 1 (ysd,cπ,b = 1) if the request from vs to vd for

service chain c is forwarded through service path π for the primary (backup)
path.

Objective

min
∑

(vs,vd)∈SD

∑

c∈Csd

∑

π∈Πc
sd

Dc
sd len(π) (ysd,cπ,p + ysd,cπ,b) (5.9)

One primary and one backup path per demand and per chain:
∑

π∈Πc
sd

ysd,cπ,p ≥ 1. (5.10a)
∑

π∈Πc
sd

ysd,cπ,b ≥ 1. (5.10b)

Edge disjoint primary and backup path per demand, per chain and per link:
∑

π∈Πc
sd

δπℓ (ysd,cπ,p + ysd,cπ,b) ≤ 1. (5.11)

Link capacity: for all ℓ ∈ L,
∑

(vs,vd)∈SD

∑

c∈Csd

∑

π∈Πc
sd

Dc
sd δ

π
ℓ (ysd,cπ,p + ysd,cπ,b) ≤ capℓ. (5.12)

Node capacity: for all v ∈ V vnf,
∑

(vs,vd)∈SD

∑

c∈Csd

∑

f∈Fc

∑

π∈Πc
sd

∆fD
c
sd a

f
v,π (ysd,cπ,p + ysd,cπ,b) ≤ capv.

(5.13)

The role of the pricing problem is to generate a valid Service Path for
a given request. Once again, the formulation uses the layered graph (Gl).
We denote by u(j) the vector of dual variables of constraints (j) in the RMP.
Note that these values are given as input to the pricing problem in the column
generation solution process.

Variables:
• aiv ∈ {0, 1}, where avfi = 1 if f st

i is installed on node v.

• ϕi
ℓ, where ϕi

ℓ = 1 if the flow forwarded on link ℓ on layer i.

For each request (vs, vd, c,D
c
sd), we use two pricing problems to generate

a primary and a backup service path. A Service Path generated by the

116 CHAPTER 5. PATH PROTECTION FOR SFC

pricing problems must respect constraints (6.22)-(5.7) of the model NFV -
ILP DP presented before. The two paths are then added to the collection
of service paths Πsd. The only difference between the two sub-problems for
each request relies in the objective function of the Pricing Problem. The
objective function of the pricing problem for a primary path can be written
as follows.

min Dc
sd

∑

ℓ∈L

nc∑

i=0

ϕi
ℓ − u

(10a)
sd,p −

∑

ℓ∈L

nc∑

i=0

ϕi
ℓu

(5.11)
sd

+
∑

ℓ∈L

u
(5.12)
ℓ Dc

sd

nc∑

i=0

ϕi
ℓ + Dc

sd

∑

v∈V

u(5.13)
v

nc∑

i=0

∆favfi (5.14)

5.4.2 Shared Protection

We now consider a shared protection scheme, also known as 1:1 protection.
The capacities for the backup paths are reserved in case of a single link
failure. In this case, the network resources may be shared among different
failure scenarios. For each failure scenario, we guarantee that link and node
resources are not exceeded.
We denote by Ω the set of all the possible failure situations. Since we are
considering only single link failures, Ω = L ∪ ∅.

5.4.2.1 Model NFV ILP SP

In the shared protection case, the objective changes. Indeed, while in the
dedicated protection case the required bandwidth depends on the length of
the paths, this is no longer true here.
Let xℓ ≥ 0 be the bandwidth requirements of link ℓ ∈ L.
The objective is thus:

min
∑

ℓ∈L

xℓ (5.15)

In addition to the variables introduced in the dedicated protection scheme,
we now define two new kinds of variables. Their goal is to tell us, given a
failure situation ω which link the backup paths use and on which node a
function will be performed.
Variables:
• zsd,cℓ,ω ∈ {0, 1}, where zsd,cℓ,ω = 1 if the request uses link ℓ in the backup path

5.4. OPTIMIZATION MODELS 117

in the failure situation ω.
• zsd,ci,v,ω ∈ {0, 1}, where zsd,ci,v,ω = 1 if the request uses function the ith function
of the chain Csd on node v in the backup path in the failure situation ω.
We now describe the modified constraints, with respect to NFV ILP DP.
Link Capacity: for all ℓ ∈ L, ω ∈ Ω

∑

(vs,vd)∈SD

∑

c∈Csd

Dc
sd (

nc
∑

i=0

ϕsd,c,i
ℓ + zsd,cℓ,ω) ≤ xℓ ≤ capℓ. (5.16)

Node Capacity: for all v ∈ V , v ∈ V vnf, ω ∈ Ω

∑

(vs,vd)∈SD

∑

c∈Csd

Dc
sd

nc−1∑

i=0

∆fc
i
(asd,c,iv + zsd,ci,v,ω) ≤ capv. (5.17)

5.4.2.2 Model NFV CG SP

Following a similar idea as in [Sti+07], with each π ∈ Πsd we now represent
a configuration as a service paths pairs (πp, πb) from s to d. The reason re-
lies on the fact that, by using the same model as NFV CG DP, in order to
ensure that node and link capacities are not exceeded in any failure situation
ω ∈ Ω, we would need additional variables and constraints. This would lead
to an increase in the size and consequently, to the complexity of the Reduced
Master Problem. The price to pay for this choice is an increase in the com-
plexity of the Pricing Problems, that would lead to a higher resolution time
with respect to the dedicated protection case, as we will see in Section 5.5.
More specifically, while the Pricing Problem in NFV CG DP reduces to be
a Shortest Path Problem on the layered graph GL, in this case solving the
Pricing Problem is NP-Hard [Sti+07].
Each π ∈ Πsd is associated with a binary value SDN switch ω

π telling if in fail-
ure situation ω the primary path cannot be used (i.e., if the failure involves
a link that belongs to the primary path).
Variables:
• ysd,cπ ≥ 0, where ysd,cπ = 1 if demand from vs to vd for service chain c uses
π = {πp, πb} as pair of service paths. • xℓ ≥ 0, is the bandwidth required on
link ℓ ∈ L.

Objective

min
∑

ℓ∈L

xℓ (5.18)

118 CHAPTER 5. PATH PROTECTION FOR SFC

Exactly one path pair per demand and per chain:
∑

π∈Πc
sd

ysd,cπ ≥ 1. (5.19)

Link capacity: for all ℓ ∈ L and failure situations ω:

∑

(vs,vd)∈SD

∑

c∈Csd

∑

π∈Πc
sd

ysd,cπ Dc
sd

(δ
πp

ℓ + SDNswitchω
π δπb

ℓ) ≤ xℓ ≤ capℓ. (5.20)

Node capacity: for all v ∈ V V NF and failure situations ω,

∑

(vs,vd)∈SD

∑

c∈Csd

∑

π∈Πc
sd

∑

f∈Fc

ysd,cπ ∆fD
c
sd

(afv,πp
+ SDNswitchω

πa
f
v,πb

) ≤ capv. (5.21)

In this case, the role of the Pricing Problem is to generate a pair of valid
Service Paths for a given request. The path pair π = (πp, πb) has to be link-
disjoint but not node-disjoint. Given the layered graph (Gl), if one of the
two paths uses link ℓ in some of the layers, the other path cannot use link ℓ
in any of the layer of Gl.
We look at each iteration at the minimum cost path pair according to the
dual values provided by the Restricted Master Problem. As in the dedicated
protection scheme, the pricing problem is expressed as an ILP and solved
independently for each demand and chain.
Variables:
• aiv,p, aiv,b ∈ {0, 1}, where aiv,p = 1 (aiv,b = 1) if f c

i+1 is installed on node v in
the primary (backup) path.
• ϕi

ℓ,p, ϕ
i
ℓ,b ∈ {0, 1}, where ϕi

ℓ,p = 1 (ϕi
ℓ,b = 1) if the flow is forwarded on link

ℓ on layer i in the primary (backup) path.
• γℓ,ω ∈ {0, 1}, where γℓ,ω = 1 if the primary path needs to switch to the
backup path in the failure situation ω and the backup path uses link ℓ.

min −u(5.19) +
∑

ℓ∈L

∑

ω∈Ω

u
(5.20)
ℓ,ω (

nc−1∑

i=0

ϕi
ℓ,p + γℓ,ω)

+ Dc
sd

∑

v∈V

u(5.21)
v

nc−1∑

i=0

∆f (aiv,p + aiv,b) (5.22)

5.5. EXPERIMENTAL STUDY 119

Service Chain Chained VNFs % traffic
Web Service NAT-FW-TM-WOC-IDPS 18.2%

VoIP NAT-FW-TM-FW-NAT 11.8%
Video Streaming NAT-FW-TM-VOC-IDPS 69.9%
Online Gaming NAT-FW-VOC-WOC-IDPS 0.1%

Table 5.2: Service Chain Requirements [STV]

5.5 Experimental Study

In this section, we evaluate the performance of the four proposed models.
We compare the time performance of the ILP models with their respective
decomposition models. Moreover, we evaluate the trade-off between an effi-
cient allocation of primary paths bandwidth and the total amount of required
bandwidth needed to guarantee the protection.

5.5.1 Data Sets

We conduct experiments on three network topologies from SNDlib [Orl+10b]:
pdh (11 nodes, 34 links), geant (22 nodes, 36 links) and germany50 (50 nodes,
88 links). The number of requests varies according to the network size. All
experiments are run on an Intel Xeon E5520 with 24GB of RAM. We consider
200 requests for pdh, 400 for geant, and 1000 for germany50. Network load is
the same for all the networks and is set to 1 TB of data. The network traffic
is divided into four common categories of traffic: Web Services, VoIP, Video
Streaming and Online Gaming. Each traffic category is associated with a
service function chain of five network functions. The traffic loads and the
associated chains are given in Table 6.1.
For each network, we limit the nodes able to host VNFs. We consider different
numbers and study the impact of the design choice on the delay and the
required bandwidth. Nodes able to host VNFs are chosen according to their
betweenness centrality, defined as the number of paths going through the node
when considering the shortest paths between all pairs of nodes. It measures
the relative importance of a node in a graph.

120 CHAPTER 5. PATH PROTECTION FOR SFC

0 50 100 150 200

Number of Demands

0

500

1000

1500

2000

T
im

e
 (

s)

ILP_DP

ILP_SP

CG_DP

CG_SP

Figure 5.1: Execution time of the 4 models on the pdh network.

5.5.2 Compact ILPs vs. CG Models

In Figure 5.1, we compare the compact ILPs vs. the CG model for both
dedicated and shared protection, on the pdh network. All nodes are assumed
VNF enabled, and we consider an increasing number of demands from 4 to
200. The figure demonstrates the limits regarding the computing time of
a compact ILP model. For 60 demands, the time needed to find an exact
solution with the compact ILP model exceeds 30 min for shared protection
and 25 min for dedicated protection. Hence, the compact ILP models are not
suitable for large instances due to their limited scalability.
On the other hand, these results indicate that the decomposition models
are fairly efficient. For 50 demands, 3 min are enough for both protection
schemes. With larger values, the difference between the two decomposition
models can be clearly seen. Indeed, for 200 demands CG DP requires 11 min,
while CG SP takes 20 min, almost twice the time. This is due to the fact
that the models for shared protection are more complex. Indeed, all failure
scenarios have to be considered in the model, in order to share the backup
bandwidth when possible.

5.5.3 Performance of CG Models

Table 9.2 summarizes the results of the decomposition models for dedicated
and shared protection. We present the results for 3 different values of the
number of VNF enabled nodes. Each traffic instance corresponds to 1 TB of
traffic.
We provide the number of generated columns, the value of the ILP solution

5.5. EXPERIMENTAL STUDY 121

Network
#

traffic
requests

#
VNF
nodes

generated
columns

z̃ilp ǫ

CG DP CG SP CG DP CG SP CG DP CG SP

pdh 200
2 501 790 4,400 3,030.17 0 1.6× 10−2

3 438 778 4,080 2,694.11 0 2.1× 10−2

4 413 751 3,680 2,328.67 0 3.2× 10−2

geant 400
3 1,185 1,016 7,190 5,141.88 0 3.8× 10−5

5 1,094 1,040 6,650 4,844.69 0 8.2× 10−4

7 1,076 1,034 6,390 4,651.37 0 8.6× 10−4

germany50 1000
5 3,654 2,701 9,270 7,253.11 0 2.4× 10−4

10 3,338 2,771 9,188 6,563.46 0 4.6× 10−3

15 3,165 2,674 8,800 6,198.77 0 1.7× 10−6

Table 5.3: Numerical results for CG DP and CG SP

(z̃ilp) and the accuracy ε, defined as the ratio (z̃ilp − zlp)/zlp. For most of
the instances, the value of the ILP solution coincides with the value of the
linear relaxation (zlp). In any case, the solution accuracy never exceeds 4%.
The number of generated columns is similar in the two models. However,
there is a fundamental difference in terms of complexity. We recall that, in the
CG DP model, a column corresponds to a service path, and that, in the master
problem, we look for a pair of service paths for each demand. Conversely, in
the CG SP model, a column corresponds to a pair of service paths and then,
for each demand, only one column is selected. Hence, the problem is very
hard in the shared protection case with respect to the dedicated one.

Network DP SP
pdh 2 1.26

geant 2 1.28
Germany 2 1.38

Table 5.4: Average ratio between the processing requirements of dedicated
and shared protection over the processing requirements without protection.

5.5.4 Bandwidth and Processing Requirements

As expected, there is a relationship between the number of VNF nodes and
the bandwidth needed for both the primary paths and the global protection.
Indeed, a larger number of VNF nodes allows more flexibility to find shorter

122 CHAPTER 5. PATH PROTECTION FOR SFC

2 3 4
of VNF Nodes

0

2

4

B
an

dw
id

th
 R

eq
ui

re
d

(T
B

)

NP SP DP

(a) pdh

3 5 7
of VNF Nodes

0

2

4

6

8

B
an

dw
id

th
 R

eq
ui

re
d

(T
B

)

NP SP DP

(b) geant

5 10 15
of VNF Nodes

0

5

10

B
an

dw
id

th
 R

eq
ui

re
d

(T
B

)
NP SP DP

(c) germany50

Figure 5.2: Bandwidth requirements: no protection (NP) scheme vs. dedi-
cated (DP) and shared (SP) protection schemes

paths.
VNFs nodes are expensive for both purchase and maintenance (e.g., hard-
ware, software licenses, energy consumption, and maintenance). Thus, it
is necessary to find the right trade-off between bandwidth and number of
VNF nodes. For example, in pdh, using two nodes instead of four leads to
an increase in the total required bandwidth of about 20% in the dedicated
protection case and 30% in the shared protection case. Similar results are
observed for the other networks. Even if the solution computed by the two
protection schemes in terms of bandwidth used by primary paths is almost
the same, there is a noticeable difference in terms of total bandwidth require-
ments. CG DP requires on average about 40% more bandwidth than CG SP.
Similar results are found for the processing requirements. About 60% more
processing units are required by the dedicated protection scheme than the
shared one.
In Figure 5.2, we show the bandwidth requirements for the 3 networks with-
out any protection strategy compared with the bandwidth requirements of

5.6. CONCLUSION 123

the dedicated and shared protection schemes. In the case of Dedicated Pro-
tection, we may need up to 3 times more bandwidth than the one needed if
we do not consider protection. In the case of Shared Protection, the price to
pay is less than twice. Note that we put a limit to the latency of the paths
in order not to violate the SLA requirements. Hence, we expect the savings
opportunities of the shared protection to be even larger in the general case.

5.5.5 Delay

In Figure 5.3 we show the delay of the primary and backup paths for the
three networks in the case of dedicated and shared protection. In order to
compute the link delays, we used the distances given by the geographical
coordinates provided in SNDlib.
The delays of the primary paths tend to be close between the two different
protection schemes with a maximum delay of 7.2, 9 and 18 ms for pdh, geant,
and germany50 respectively. The delay distributions of the primary paths
slightly change when varying the number of allowed VNF nodes and tend to
be homogeneous among them.
However, this is not true for the backup paths. In the dedicated protection
case, paths are interested in using shorter paths in order to minimize the
bandwidth requirements. In the shared protection case, this is not true. In
fact, backup paths may find convenient to increase their lengths in order
to share as much as possible and, thus, reduce the bandwidth requirements.
This can be observed in the results. For example, the delay for a backup path
in the dedicated protection case for germany50 never exceeds 20 ms while it
may go up to 40 ms in the shared protection case. Hence, particular attention
should be paid to paths’ latencies when considering shared path protection.

5.6 Conclusion

In this chapter, we provided exact methods to obtain reliable Service Function
Chains against a single-link failure. We considered two different protection
schemes, dedicated and shared path protection, providing for each of them
a scalable decomposition ILP model. The models are very general and can
be easily extended to the case of node-disjoint paths or to deal with multiple
failures. We showed the limits of the ILP based approaches and the time
efficiency of the decomposition models.

124 CHAPTER 5. PATH PROTECTION FOR SFC

We implemented and evaluated the models on 3 network topologies with
different sizes, studying the bandwidth requirements for the protection, as
well as their latency robustness. We also studied the trade-off between the
network bandwidth requirement to guarantee the protection and the number
of VNF capable nodes.

REFERENCES 125

References

[AA99] Murat Alanyali and Ender Ayanoglu. “Provisioning algorithms
for WDM optical networks”. In: IEEE/ACM Transactions On
Networking 7.5 (1999) (cit. on p. 109).

[ADP80] Giorgio Ausiello, Alessandro D’Atri, and Marco Protasi. “Struc-
ture preserving reductions among convex optimization prob-
lems”. In: Journal of Computer and System Sciences 21.1
(1980), pp. 136–153 (cit. on pp. 48, 85).

[AV14] YK Agarwal and Prahalad Venkateshan. “Survivable network
design with shared-protection routing”. In: European Journal of
Operational Research 238.3 (2014), pp. 836–845 (cit. on p. 110).

[BBS16] Michael Till Beck, Juan Felipe Botero, and Kai Samelin.
“Resilient allocation of service Function chains”. In: Network
Function Virtualization and Software Defined Networks (NFV-
SDN), IEEE Conference on. IEEE. 2016 (cit. on p. 110).

[Ben62] Jacques F Benders. “Partitioning procedures for solving mixed-
variables programming problems”. In: Numerische mathematik
4.1 (1962), pp. 238–252 (cit. on pp. 89, 97).

[Ber+14] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi,
Masayoshi Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor,
Pavlin Radoslavov, William Snow, et al. “ONOS: towards an
open, distributed SDN OS”. In: Proceedings of the third work-
shop on Hot topics in software defined networking. ACM. 2014,
pp. 1–6 (cit. on pp. 4, 80).

[Cas+17] Marco Casazza, Pierre Fouilhoux, Mathieu Bouet, and Stefano
Secci. “Securing virtual network function placement with high
availability guarantees”. In: 2017 IFIP Networking Conference
(IFIP Networking) and Workshops. IEEE. 2017, pp. 1–9 (cit.
on p. 110).

[Chu+] Cing-Yu Chu, Kang Xi, Min Luo, and H Jonathan Chao.
“Congestion-aware single link failure recovery in hybrid SDN
networks”. In: Proceedings of IEEE INFOCOM, 2015 (cit. on
p. 82).

126 CHAPTER 5. PATH PROTECTION FOR SFC

[Chv83] V. Chvatal. Linear Programming. Freeman, 1983 (cit. on pp. 88,
148).

[Cis] Cisco. Bidirectional Forwarding Detection – Cisco. https://
www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/

guide/fs_bfd.html. Accessed: 2018-07 (cit. on p. 105).

[DS] Irit Dinur and David Steurer. “Analytical Approach to Parallel
Repetition”. In: Proceedings ACM STOC 2014. New York, New
York. isbn: 978-1-4503-2710-7 (cit. on pp. 44, 85).

[FM17] Paulo Fonseca and Edjard Mota. “A survey on fault manage-
ment in software-defined networks”. In: IEEE Communications
Surveys & Tutorials (2017) (cit. on p. 82).

[FT02] Bernard Fortz and Mikkel Thorup. “Optimizing OSPF/IS-IS
weights in a changing world”. In: IEEE journal on selected areas
in communications 20.4 (2002), pp. 756–767 (cit. on p. 96).

[FV00] Andrea Fumagalli and Luca Valcarenghi. “IP restoration vs.
WDM protection: Is there an optimal choice?” In: IEEE net-
work 14.6 (2000) (cit. on p. 82).

[GJN11] P. Gill, N. Jain, and N. Nagappan. “Understanding network
failures in data centers: measurement, analysis, and implica-
tions”. In: ACM SIGCOMM Computer Communication Re-
view. Vol. 41. 4. 2011 (cit. on p. 107).

[Hras01] Johan Hrastad. “Some optimal inapproximability results”. In:
Journal of the ACM (JACM) 48.4 (2001), pp. 798–859 (cit. on
p. 92).

[HJG17a] Nicolas Huin, Brigitte Jaumard, and Frédéric Giroire. “Opti-
mization of Network Service Chain Provisioning”. In: IEEE
International Conference on Communications 2017. Paris,
France, 2017 (cit. on pp. 110, 111).

[HJG18b] Nicolas Huin, Brigitte Jaumard, and Frédéric Giroire. “Optimal
Network Service Chain Provisioning”. In: IEEE/ACM Trans-
actions on Networking (2018) (cit. on pp. 85, 96).

[Hma+17] Ali Hmaity, Marco Savi, Francesco Musumeci, Massimo Torna-
tore, and Achille Pattavina. “Protection strategies for virtual
network functions placement and service chains provisioning”.
In: Networks (2017), pp. 1–15 (cit. on pp. 110, 111).

https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/fs_bfd.html
https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/fs_bfd.html
https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/fs_bfd.html

REFERENCES 127

[Hu03] Jian Qiang Hu. “Diverse routing in optical mesh networks”. In:
IEEE Transactions on Communications 51.3 (2003), pp. 489–
494 (cit. on p. 80).

[Hui+18c] Nicolas Huin, Andrea Tomassilli, Frédéric Giroire, and Brigitte
Jaumard. “Energy-Efficient Service Function Chain Provision-
ing”. In: IEEE/OSA Journal of Optical Communications and
Networking 10.2 (2018) (cit. on p. 110).

[IMG98] R.R. Iraschko, M.H. MacGregor, and W.D. Grover. “Opti-
mal capacity placement for path restoration in STM or ATM
mesh-survivable networks”. In: IEEE/ACM Transactions on
Networking 6.3 (1998) (cit. on p. 108).

[KCG] Amund Kvalbein, Tarik Cicic, and Stein Gjessing. “Post-failure
routing performance with multiple routing configurations”. In:
Proceedings of IEEE INFOCOM, 2007 (cit. on pp. 82, 83).

[Kem+12] James Kempf, Elisa Bellagamba, András Kern, David Jocha,
Attila Takács, and Pontus Sköldström. “Scalable fault manage-
ment for OpenFlow”. In: Communications (ICC), 2012 IEEE
international conference on. IEEE. 2012, pp. 6606–6610 (cit. on
p. 80).

[KKV05] Srikanth Kandula, Dina Katabi, and Jean-Philippe Vasseur.
“Shrink: A tool for failure diagnosis in IP networks”. In: Pro-
ceedings of the 2005 ACM SIGCOMM workshop on Mining net-
work data. ACM. 2005, pp. 173–178 (cit. on pp. 80, 95).

[Kva+] Amund Kvalbein, Audun Fosselie Hansen, Stein Gjessing, and
Olav Lysne. “Fast IP network recovery using multiple routing
configurations”. In: Proceedings of IEEE INFOCOM, 2006 (cit.
on p. 83).

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown. “A Net-
work in a Laptop: Rapid Prototyping for Software-defined
Networks”. In: Proceedings of the 9th ACM SIGCOMM Work-
shop on Hot Topics in Networks. Hotnets-IX. Monterey, Cal-
ifornia: ACM, 2010, 19:1–19:6. isbn: 978-1-4503-0409-2. doi:
10.1145/1868447.1868466. url: http://doi.acm.org/10.
1145/1868447.1868466 (cit. on pp. 101, 103).

https://doi.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/1868447.1868466

128 CHAPTER 5. PATH PROTECTION FOR SFC

[LM15] S.-I. Lee and Myung M.-K. Shin. “A self-recovery scheme
for service function chaining”. In: International Conference
on Information and Communication Technology Convergence
(ICTC). 2015, pp. 108–112 (cit. on p. 110).

[Med+] J. Medved, R. Varga, A. Tkacik, and K. Gray. “OpenDaylight:
Towards a Model-Driven SDN Controller architecture”. In: Pro-
ceedings of IEEE WoWMoM 2014 (cit. on p. 103).

[Niv+09] B Niven-Jenkins, D Brungard, M Betts, N Sprecher, and S
Ueno. Requirements of an MPLS transport profile. Tech. rep.
2009 (cit. on p. 80).

[Orl+10b] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Ar-
tur Tomaszewski. “SNDlib 1.0—Survivable network design li-
brary”. In: Networks 55.3 (2010) (cit. on pp. 68, 95, 119, 213).

[Pes+18] Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François
Vanderbeck. “Automation and combination of linear-programming
based stabilization techniques in column generation”. In: IN-
FORMS Journal on Computing (2018) (cit. on pp. 30, 89).

[PJ13] R. Potharaju and N. Jain. “Demystifying the dark side of the
middle: a field study of middlebox failures in datacenters”.
In: Internet Measurement Conference. 2013, pp. 9–22 (cit. on
p. 107).

[PM04] Michal Pióro and Deep Medhi. Routing, flow, and capacity de-
sign in communication and computer networks. Elsevier, 2004
(cit. on pp. 12, 80).

[RM99] S. Ramamurthy and B. Mukherjee. “Survivable WDM mesh
networks. Part I - protection”. In: Annual Joint Conference of
the IEEE Computer and Communications Societies - INFO-
COM. Vol. 2. 1999, pp. 744–751 (cit. on pp. 108, 109).

[RMD05] Smita Rai, Biswanath Mukherjee, and Omkar Deshpande. “IP
resilience within an autonomous system: current approaches,
challenges, and future directions”. In: IEEE Communications
Magazine 43.10 (2005), pp. 142–149 (cit. on p. 82).

REFERENCES 129

[Sga+13] Andrea Sgambelluri, Alessio Giorgetti, Filippo Cugini, Francesco
Paolucci, and Piero Castoldi. “OpenFlow-based segment pro-
tection in Ethernet networks”. In: Journal of Optical Commu-
nications and Networking 5.9 (2013) (cit. on pp. 82, 108).

[Sha+11] Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pick-
avet, and Piet Demeester. “Enabling fast failure recovery in
OpenFlow networks”. In: 2011 8th International Workshop on
the Design of Reliable Communication Networks (DRCN 2011).
IEEE. 2011, pp. 164–171 (cit. on p. 108).

[Sha+13] Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet,
and Piet Demeester. “OpenFlow: Meeting carrier-grade recov-
ery requirements”. In: Computer Communications 36.6 (2013),
pp. 656–665 (cit. on pp. 80, 108).

[Sou+17] O. Soualah, Marouen Mechtri, Chaima Ghribi, and Djamal
Zeghlache. “A link failure recovery algorithm for Virtual Net-
work Function chaining”. In: IFIP/IEEE Symposium on Inte-
grated Network and Service Management (IM). 2017 (cit. on
p. 110).

[SRM02] Laxman Sahasrabuddhe, Senthil Ramamurthy, and Biswanath
Mukherjee. “Fault management in IP-over-WDM networks:
WDM protection versus IP restoration”. In: IEEE journal on
selected areas in communications 20.1 (2002), pp. 21–33 (cit. on
pp. 108, 204, 206).

[Sta+11] Dimitri Staessens, Sachin Sharma, Didier Colle, Mario Pick-
avet, and Piet Demeester. “Software defined networking: Meet-
ing carrier grade requirements”. In: 18th IEEE Workshop on
Local and Metropolitan Area Networks (LANMAN). IEEE. 2011
(cit. on p. 108).

[Sti+07] Thomas Stidsen, Bjørn Petersen, Kasper Bonne Rasmussen, Si-
mon Spoorendonk, Martin Zachariasen, Franz Rambach, and
Moritz Kiese. “Optimal routing with single backup path pro-
tection”. In: International Network Optimization Conference
(INOC). 2007 (cit. on p. 117).

130 CHAPTER 5. PATH PROTECTION FOR SFC

[STV] Marco Savi, Massimo Tornatore, and Giacomo Verticale. “Im-
pact of processing costs on service chain placement in network
functions virtualization”. In: IEEE NFV-SDN 2015 (cit. on
pp. 9, 49, 119).

[Suc+] Martin Suchara, Dahai Xu, Robert Doverspike, David John-
son, and Jennifer Rexford. “Network architecture for joint fail-
ure recovery and traffic engineering”. In: Proceedings of ACM
SIGMETRICS 2011 (cit. on p. 82).

[Tom+18c] Andrea Tomassilli, Nicolas Huin, Frederic Giroire, and Brigitte
Jaumard. “Resource requirements for reliable service function
chaining”. In: 2018 IEEE International Conference on Commu-
nications (ICC). IEEE. 2018, pp. 1–7 (cit. on pp. 11, 107).

[Tur+10] Daniel Turner, Kirill Levchenko, Alex C Snoeren, and Stefan
Savage. “California fault lines: understanding the causes and
impact of network failures”. In: ACM SIGCOMM Computer
Communication Review. Vol. 40. 4. ACM. 2010, pp. 315–326
(cit. on pp. 107, 108, 204).

[VVK14] Niels LM Van Adrichem, Benjamin J Van Asten, and Fernando
A Kuipers. “Fast recovery in software-defined networks”. In:
Software Defined Networks (EWSDN), 2014 Third European
Workshop on. IEEE. 2014, pp. 61–66 (cit. on p. 80).

[Wax88] Bernard M Waxman. “Routing of multipoint connections”. In:
IEEE journal on selected areas in communications 6.9 (1988),
pp. 1617–1622 (cit. on p. 96).

[Xu+04] Dahai Xu, Yizhi Xiong, Chunming Qiao, and Guangzhi Li.
“Failure protection in layered networks with shared risk link
groups”. In: IEEE network (2004) (cit. on p. 82).

[Ye+16] Zilong Ye, Xiaojun Cao, Jianping Wang, Hongfang Yu, and
Chunming Qiao. “Joint topology design and mapping of ser-
vice function chains for efficient, scalable, and reliable network
functions virtualization”. In: IEEE Network 30.3 (2016) (cit. on
p. 110).

REFERENCES 131

[Zha+18] Yuan Zhang, Lin Cui, Wei Wang, and Yuxiang Zhang. “A
Survey on Software Defined Networking with Multiple Con-
trollers”. In: J. Netw. Comput. Appl. 103.C (2018), pp. 101–
118. issn: 1084-8045. doi: 10.1016/j.jnca.2017.11.015

(cit. on p. 105).

[ZS00] Dongyun Zhou and Suresh Subramaniam. “Survivability in op-
tical networks”. In: IEEE network 14.6 (2000), pp. 16–23 (cit.
on pp. 108, 204, 206).

https://doi.org/10.1016/j.jnca.2017.11.015

132 CHAPTER 5. PATH PROTECTION FOR SFC

2 3 4
of VNF Nodes

0

2

4

6

8
D

el
ay

 (m
s)

primary backup

(a) pdh (dedicated)

2 3 4
of VNF Nodes

0

2

4

6

8
primary backup

(b) pdh (shared)

3 5 7
of VNF Nodes

0

5

10

15

D
el

ay
 (m

s)

primary backup

(c) geant (dedicated)

3 5 7
of VNF Nodes

0

5

10

15 primary backup

(d) geant (shared)

5 10 15
of VNF Nodes

0

10

20

30

D
el

ay
 (m

s)

primary backup

(e) germany50 (dedicated)

5 10 15
of VNF Nodes

0

10

20

30
primary backup

(f) germany50 (shared)

Figure 5.3: Primary and backup path delay distributions under the two
protection schemes vs. the number of VNF nodes with 1TB offered load.
Boxes are defined by the first and third quartiles. Ends of the whiskers
correspond to the first and ninth deciles.

Part III

Energy Aware Routing

133

Chapter 6

Energy Efficient Service
Function Chains

Contents
6.1 Introduction . 136

6.2 Related Work . 138

6.2.1 Service Chains . 138

6.2.2 SDN and Network Energy Efficiency 138

6.2.3 Network Virtualization and Network Energy Effi-
ciency . 139

6.3 Statement of the Problem: SFC and VNF Place-

ment . 139

6.3.1 Notations. 139

6.3.2 Power Model . 142

6.3.3 Layered Graph. 142

6.4 Compact formulation 143

6.5 Solving large Instances with GreenChains . . . 144

6.5.1 Energy Saving Module. 145

6.5.2 Routing Module 145

6.5.3 Service Chain Placement Module. 145

6.6 Decomposition Models 146

6.6.1 Column Generation Formulation 147

6.6.2 Solution Scheme 148

6.7 Numerical Experiments 151

6.7.1 Data sets . 152

6.7.2 Compact formulation evaluation 153

135

136 CHAPTER 6. ENERGY EFFICIENT SFC

6.7.3 Quality of the Column Generation models 154

6.7.4 Energy Savings . 156

6.8 Conclusions . 159

The content of this chapter has been published before in [Hui+18a].

6.1 Introduction

With the large yearly increase of Internet traffic and the growing concern of
the public and governments towards greenhouse gas emissions, future net-
works will have to be more energy efficient [Mat+13]. In the past few years,
this has been the focus of extensive research work [Ver+11; Le +13]. One
of the classic methods to reduce the energy consumption of networks is to
try to aggregate network traffic on a small number of network equipment
in order to put to sleep the unused hardware. However, an additional chal-
lenge is given by the fact that today’s traffic must pass through a certain
number of network functions. Examples of network functions include deep
packet inspection (DPI), firewall, load balancing, and WAN optimization.
The network functions often need to be applied in a specific order, e.g., in a
security scenario, the firewall has to be applied before carrying out a DPI, as
the latter is more CPU intensive than the former. In this context, a Service
Function Chain (SFC) is a list of network functions, that need to be applied
to a flow in a particular order. These functions are carried out by specific
hardware, which are installed at specific locations of the network. The paths
followed by demands are thus very constrained, reducing the opportunities
to aggregate traffic.

With the emergence of techniques of Network Function Virtualization
(NFV), the functions can now be executed by generic hardware instead of
dedicated equipment. Coupled with the Software Defined Network (SDN)
paradigm, NFV brings a great flexibility to manage network flows. Indeed,
with the centralized control allowed by SDN, the flow can be managed dy-
namically from end-to-end and the service functions can be installed only
along paths for which and when they are necessary. These new paradigms
thus bear the opportunity for energy savings in networks.

In this work, we explore the potential energy savings of using NFV for Ser-
vice Function Chains. We consider the problem of reducing network energy
consumption while placing service functions using generic hardware along

6.1. INTRODUCTION 137

the paths followed by flows. A difficulty is that the network functions have
to be executed in a specific order and can be repeated several time in the
same chain.
In summary, the contributions of this work are the following

– We show how virtualization can be used to improve the energy efficiency
of networks, when demands have to go through a chain of services. To
the best of our knowledge, we are the first to propose such a method.

– We propose a way of modeling this problem based on Integer Linear
Programming (ILP). The ILP can solve optimally instances of small
sizes.

– To handle instances of larger sizes, we thus propose and validate a
heuristic algorithm, GreenChains, and we formulate a Column Gen-
eration model to solve the EE-SFCP problem on large instances.

– We provide enhancements of the model with the use of cuts, as the
our problem is a difficult optimization problem. As a matter of fact,
it contains a sharp On-Off phenomena, as a network device consumes
a large portion of its energy as soon as it is used, even if very lightly
used. Cuts allow the reduction of the integrality gap.

– This allows us to carry out extensive simulations on networks of differ-
ent sizes. We study three different scenarios: a legacy scenario which
serves as baseline for comparison, a hardware scenario in which the
routing can be changed dynamically by a centralized SDN controller,
but in which network functions are executed by specific hardware, and
finally, an NFV scenario in which the network functions are virtual-
ized and can be placed dynamically. We show that from 22% to 62% of
energy can be saved during the night while respecting the constraints
of the service chains.

– Finally, we propose a latency analysis to evaluate the impact on delays
of switching off some network elements to save energy.

The article is organized as follows. In Section 6.2, we review the current
works on energy efficiency and Service Function Chaining. The problem is
presented in Section 6.3 along with the power model and the layered graph
model used in our mathematical formulations. We present in Sections 6.4, 6.5

138 CHAPTER 6. ENERGY EFFICIENT SFC

and 6.6 the ILP formulation, GreenChains and column generation scheme,
respectively. We then compare the models and assess their quality in Sec-
tion 6.7.

6.2 Related Work

6.2.1 Service Chains

Several works study the problem of service function chain placement, but
taking other metrics or other scenarios into account. Savi et al. [STV15]
proposes a different ILP model to solve the problem. They study the impact
of the positions of the network functions on the processing costs. Gupta et
al. [Gup+15; Gup+17] explores the joint placement and routing of traffic
in order to minimize the network bandwidth consumption. In Martini et al.
[Mar+15], a layered ILP model close to the one we propose in the paper is
proposed, but with latency minimization as optimization task. [Moh+15]
explores the problem of joint optimization of maximum link, CPU core and
maximum delay in the network while placing the VNFs. Last, Riggio et
al. [Rig+15] considers a cloud environment in which the load has to be
load-balanced in order to minimize the computation and the communication
overheads. However, these works do not consider the problem of minimizing
network energy consumption with a dynamic traffic.

Energy-Aware Routing. Several works have proposed algorithms to obtain
energy aware routing, see e.g., Chiaraviglio et al. [CMN12]. However, these
works are hard to be put in practice as operators of legacy networks are
reluctant to change their network configurations.

6.2.2 SDN and Network Energy Efficiency

Since the pioneering work of Gupta et al. [GS03], a lot of researchers have
considered the problem of energy efficiency of networks, see, e.g., [LMF11;
Pha14; Gir+10] for backbone networks, [SLX10] for data center networks,
[Mod+13] for content distribution, and [DGF10] for wireless networks. We
refer to [Bol+10] for a comprehensive survey.

Recently, researchers have started to explore how the introduction of the
SDN paradigm with a centralized control and a live report of metrology
data may enable dynamic routing. In particular, it would allow the imple-

6.3. STATEMENTOF THE PROBLEM: SFC ANDVNF PLACEMENT139

mentation of energy-aware routing algorithms, as discussed in Giroire et al.
[GMP14] and later works [Hui+18b]. However, these papers did not consider
the constraints of network functions. Some particular works considered some
specific class of network functions, like compression [Gir+15], but not the
general problem of ensuring that flows are treated by the network functions.

6.2.3 Network Virtualization and Network Energy Ef-

ficiency

Only two papers explore the potential of network virtualization for energy
efficiency. In Bolla et al. [Bol+14], the authors present an extension of
an open source software framework, the Distributed Router Open Platform
(DROP), to enable a novel distributed paradigm for NFV. DROP includes
sophisticated power management mechanisms, which are exposed by means
of the Green Abstraction Layer. In [Mij15], authors estimate the energy sav-
ings that could result from the three main NFV use cases-Virtualized Evolved
Packet Core, Virtualized Customer Premises Equipment and Virtualized Ra-
dio Access Network. However, both papers do not consider the constraints
of service chains.

6.3 Statement of the Problem: SFC and

VNF Placement

6.3.1 Notations.

We assume the network to be represented by a directed graph G = (V, L),
where V is the set of nodes (indexed by v), and L is the set of links (indexed
by ℓ). Each node u ∈ V has a set of computing, storage and network resources
denoted by Cu to host network functions. Within this study, we assume that
the resources are described by a given number of CPU cores.

Traffic is described by a set of requests D, in which each request d is
defined by a 4-tuple (vs, vd, c,D

c
sd), where vs is the source of the request, vd

its destination, Dc
sd its bandwidth requirement, and c the requested service

chain. Indeed, each request d is associated with a given application, which
is required to pass through a given SFC. Let F be the overall set of virtual

140 CHAPTER 6. ENERGY EFFICIENT SFC

functions arising in the service chains, indexed by f , and C be the set of
service chains, indexed by c. Each service chain c corresponds to a sequence
of nc functions f c

1 , . . . , f
c
i , . . . , f

c
nc

, where f c
i denotes the ith function of chain

c. Note that some functions may appear more than once in a given chain.
Each virtual function f has its one resource requirement, and we denote by
∆f the number (fraction) of cores required by the function f per bandwidth
unit.
The Energy Efficient Service Function Chain Provisioning (EE-SFCP)
problem consists in jointly provisioning a set D of requests coupled with
service function chains C and placing virtual functions arising in the chains,
in order to minimize the network energy consumption, subject to link and
node capacities. Figure 6.1 shows examples of a Energy Efficient Ser-
vice Function Chain provisioning problem. We have three requests and two
types of services. Demand D1 = (A D) requires 1 unit of bandwidth
and the execution of a firewall (FW) and a packet inspector (IDPS). Flows
D2 = (H K) and D3 = (G F) need 1 unit of bandwidth, and the
execution of a firewall followed by a video optimizer (VOC). An instance of a
firewall uses ∆FW = 0.33 core per unit of bandwidth, an instance of a video
optimizer requires ∆VOC = 1 core, and an instance of a packet inspector uses
∆FW = 2 cores. Each link has a capacity of 3 units of bandwidth, and each
node hosts 2 cores.
In Figure 6.1a, flows are routed according to the shortest path between their
source and destination. We need to place a firewall function instance on three
different nodes (namely A, G, and H) to cover the three demands. Flows D2

and D3 get their video optimizer on nodes F and I, respectively. The packet
inspector of flow D1 is installed on node B. In this last configuration, five
links can be shut down ((A,E), (H,E), (E,F), (G,D), (G,K)) and node E
can be put to sleep. A total of 7 cores are active (1 on nodes A, F , G, H,
and I, and two on node B).
However, there exists another routing that minimizes the energy consumed
by the network. It allows the shutdown of one more link and the reduction
of the number of active cores by two units. Indeed, if we consider the routing
given in Figure 6.1b, we can group all the firewall instances on node F . Since
nodes only host 2 cores, we need to put one video optimizer instance on node
F , in charge of D2; D3 is served by the instance on node G. We now only
use 5 cores in total, and we can now shutdown links (A,B), (B,C), (C,D),
(H, I), (I, J), and (J,K).

6.3. STATEMENTOF THE PROBLEM: SFC ANDVNF PLACEMENT141

A B C D

H I J K

E F G

(a)

G

A B C D

H I J K

E F

(b)

IDPS FWVOC

Figure 6.1: Example of Energy efficient Service Function Placement. Greyed
links and nodes are inactive.

142 CHAPTER 6. ENERGY EFFICIENT SFC

6.3.2 Power Model

Campaigns of measures of power consumption (see, e.g., [Cha+08]) show
that a network device consumes a large amount of its power as soon as it is
switched on and that the energy consumption does not depend much on the
load. Following this observation, on/off power models have been proposed
and studied. Later, researchers and hardware constructors have proposed
more energy proportional hardware models [Nic+12]. To encompass those
different models, we use a hybrid power model in which the power of an
active link ℓ is expressed as

Pℓ = P on

ℓ +
bwℓ

Clink

ℓ

Pmax

ℓ ,

where P on

ℓ represents the energy used when the link ℓ is switched on, bwℓ

the bandwidth that is carried on ℓ, and Pmax

ℓ the additional energy consumed
by ℓ when it is fully capacitated, i.e., when the amount of carried bandwidth
equals the transport capacity (Clink

ℓ) of link ℓ.
We assume that links can be put into sleep mode, by putting to sleep both
endpoint interfaces. Two links in opposite direction between a pair of nodes
are assumed to be in the same state (active or in sleep mode), as the send
and receive elements of a unidirectional fiber are usually controlled by the
same interface. Routers cannot be put into sleep mode, as there are the
sources/destinations of network traffic. However, cores may be put into sleep
mode and the power used by node v is equal to

Pv = P unit

v ×#cores

with P unit
v being the energy consumption of a single core.

6.3.3 Layered Graph.

As in the previous chapters, to model the ordering constraints we use a
layered graph Gl that is defined as follows. We add max

c∈C
nc layers to the

original graph G and each layer contains a copy of G. For every node u ∈ V ,
let vi be the corresponding node in the ith layer (i = 0, 1, . . . , nc). Every
(i − 1, i) layer pair is connected by (vi−1, vi) links. Provisioning of a chain
and node placement of its functions amounts to find a path from node vs
on the first layer, i.e. v0s , to node vd on the ncth layer, i.e., vnc

d . Placement
of a function on a node is given by the endpoints of the link used to switch
between layers.

6.4. COMPACT FORMULATION 143

6.4 Compact formulation

We now present the ILP formulation for the EE-SFCP problem. Let us first
introduce the set of variables.

• xℓ ∈ {0, 1} where xℓ = 1 if link ℓ is active, 0 otherwise

• f sd,c
iℓ ∈ {0, 1} where f sd,c

iℓ = 1 if the flow for the request (vs, vd, c,D
c
sd)

uses the link ℓ in layer i. We consider here un-splittable routing.

• asd,civ ∈ {0, 1} where asd,civ = 1 if the ith function of the chain c is executed
on node v for the request (vs, vd, c,D

c
sd).

• kv ∈ N, number of CPU cores used in node v.

• fℓ ∈ R, flow passing through link (u, v). This variable is linked and is
added to the ILP for clarity of the presentation.

The formulation is given as follows.
Objective

min
∑

ℓ∈L

(

P on

ℓ × xℓ + Pmax

ℓ × fℓ
Clink

ℓ

)

+
∑

u∈V

Pvku (6.1)

Flow Conservation

∑

ℓ∈ω+(v)

f sd,c
iℓ −

∑

ℓ∈ω−(v)

f sd,c
iℓ + asd,civ − asd,ci−1v = 0

(vs, vd) ∈ SD, c ∈ Csd, u ∈ V, 0 < i < nc (6.2)

∑

ℓ∈ω+(v)

f sd,c
0ℓ −

∑

ℓ∈ω−(v)

f sd,c
0ℓ + asd,c0v =

{

1 if u = vs,

0 else

(vs, vd) ∈ SD, c ∈ Csd, u ∈ V (6.3)

∑

ℓ∈ω+(v)

f sd,c
ncℓ
−

∑

ℓ∈ω−(v)

f sd,c
ncℓ
− asd,cnc−1v =

{

−1 if u = vd,

0 else

(vs, vd) ∈ SD, c ∈ Csd, u ∈ V. (6.4)

144 CHAPTER 6. ENERGY EFFICIENT SFC

Link Capacity

fℓ =
∑

(vs,vd)∈SD

∑

c∈Csd

nc∑

i=0

Dc
sd × f sd,c

iℓ ≤ Clink

ℓ × xuv

ℓ ∈ A. (6.5)

Number of CPU cores used

∑

(s,t)∈D

nc−1∑

i=0

(
∆fc

i
Dc

sd

)
× asd,civ ≤ kv u ∈ V. (6.6)

Node Capacity

kv ≤ Cnode

v u ∈ V. (6.7)

6.5 Solving large Instances withGreenChains

As the ILP proposed in the previous section cannot provide solutions for large
networks, we propose here an ILP-based heuristic algorithm called Green-

Chains to solve the

Problem 3. . The problem can be decomposed into three sub-problems.

- First, the energy saving problem tries to put into sleep mode as many
links and cores as possible to decrease the energy consumption of the
network.

- Second, the routing problem computes a path for each request, respect-
ing the link capacity constraints.

- Last, the goal of the service chain placement problem is to find a place-
ment of the NFV respecting the capacities of the nodes and the order
defined by the service chains, according to the path computed for each
request.

6.5. SOLVING LARGE INSTANCES WITH GREENCHAINS 145

6.5.1 Energy Saving Module.

The goal of this module is to put links into sleep mode.
It first launches the routing module and then places the network functions

on the requests’ paths. If both modules succeed, it creates a list U of all links
according to their usage (volume of traffic). It then chooses the less loaded
link ℓmin as a candidate to be put in sleep mode. It now considers the graph
G′ = (V, L \ {ℓmin}). It launches the routing and placement modules again.
If they succeed, ℓmin is put in sleep mode. The list U is actualized with the
new routing, as well as the less loaded link. If at least one of the two modules
fails, GreenChains considers that ℓmin cannot be into sleep mode and the
link is kept active for the final solution. The second element of U is then
considered. The algorithm goes on till all links have been tried and set either
as definitely in sleep mode or active. The goal of this module is to reduce the
energy used by the links by putting in sleep mode as many links as possible.

6.5.2 Routing Module

We consider the requests one by one and compute a weighted shortest path
on a residual graph for each one of them. To favor links with a lower load, the
weight of the link in the residual graph is equal to the inverse of its residual
capacity. When we assign a path to a request, we decrease the capacity of
the residual graph by the amount of charge requested. Furthermore, when
considering a new demand to be routed, we remove links with a residual
capacity smaller than the demand.

6.5.3 Service Chain Placement Module.

This module is in charge of choosing the execution location of the chains
functions. We propose the following ILP that aims at minimizing the total
number of cores used.

Given a path Psd,c for every request (vs, vd, c,D
c
sd), we need to find the

execution location of each function of the chain c. Each node of the path is
indexed by i, i.e., P i

sd,c is the ith node of Psd,c.

We introduce the following two sets of variables.

• asd,civ ∈ {0, 1} where asd,ci,v = 1 if f c
i for request (vs, vd, c,D

c
sd) is executed

on node v

146 CHAPTER 6. ENERGY EFFICIENT SFC

• kv ∈ N, #cores used in node v.

The formulation is as follows.
Objective function

min
∑

u∈V

ku. (6.8)

Execution constraints

∑

v∈Psd,c

asd,civ = 1 (vs, vd) ∈ SD, c ∈ Csd, 1 ≤ i ≤ nc. (6.9)

Order constraints

asd,c
i,Pk

sd,c

≤
k∑

j=1

asd,c
i−1,P j

sd,c

(vs, vd) ∈ SD, c ∈ Csd,

1 ≤ k ≤ len(Psd,c), 1 ≤ i ≤ nc. (6.10)

Number of cores used

∑

(vs,vd)∈SD

∑

c∈C

nc∑

i=1

(
∆fc

i
Dc

sd

)
× asd,civ ≤ kv u ∈ V. (6.11)

Node Capacity constraints

ku ≤ Cu u ∈ V. (6.12)

6.6 Decomposition Models

As the ILP does not scale, we propose a column generation scheme to help
validate our heuristic for larger networks. We first present here a model
using Column Generation, CG-simple. We then introduce two variants of
the models, CG-cut, and CG-cut+. Indeed, problems dealing with energy-
efficiency frequently lead to large integrality gap and bad precision. This is
due to the On-Off phenomena of power models, which translates into large
steps of the objective function. We thus try to improve the precision of the
model by introducing different sets of constraints. We discuss the precision
of the models in Section 6.7.3.

6.6. DECOMPOSITION MODELS 147

6.6.1 Column Generation Formulation

We propose a column generation formulation that relies on the concept of
Service Path: each Service Path p is associated with a 4-uplet (vs, vd, c,D

c
sd)

and defines: (i) a potential route for the request (vs, vd, c,D
c
sd) between vs and

vd, (ii) node placement of the functions of chain c along the potential route.
A route is described by parameters δpℓ , equal to the number of occurrences
of the link ℓ in the path p. Node placement is given by apvi, equal to 1 if the
ith function of the chain c is located at node v, 0 otherwise. We denote by
P c
sd the overall set of Service Path for each request (vs, vd, c,D

c
sd).

We now define the set of variables. First set of decision variables: xℓ = 1
if link ℓ is on (active), 0 otherwise. Note that links are powered off by pair,
i.e., xℓ=(v,v′) = xℓ′=(v′,v). Second set of decision variables: ypd = 1 if demand
d is routed using configuration p, 0 otherwise. Integer variables: kv = #
required cores in node v.

The objective, i.e., the minimization of the energy, can be written

min
∑

ℓ∈L

P on

ℓ xℓ

︸ ︷︷ ︸

link switch
on energy

+
∑

ℓ∈L

∑

p∈P c
sd

δpℓ




∑

d=(vs,vd,c)∈D

Dc
sd

Clink

ℓ

Pmax
ℓ



 ypd

︸ ︷︷ ︸

link bandwidth energy

+
∑

u∈V

Pv kv

︸ ︷︷ ︸

node resource energy

(6.13)

The constraint set decomposes into three sets of constraints.

One path per demand
∑

p∈P c
sd

ypd = 1 (us, ud) ∈ SD, c ∈ Csd ∈ D. (6.14)

Link capacity
∑

d=(vs,vd,c)∈D

∑

p∈P c
sd

Dc
sd δ

p
ℓ y

p
d ≤ xℓ C

link

ℓ ℓ ∈ L. (6.15)

148 CHAPTER 6. ENERGY EFFICIENT SFC

Node capacity

∑

d∈D

∑

p∈P c
sd

Dc
sd(

nc∑

i=1

∆fia
p
vfi

)ypd ≤ kv ≤ Cnode

v

u ∈ V. (6.16)

As we faced issues with large integrality gaps, we enhanced model (6.13)-
(6.16) with different sets of cuts, through the next two models.
CG-cut model. The first set of cuts in (6.17) states that, for each node, at
least one incident link should always be on. Moreover, the second inequality
given by Equation (6.18) enforces that at least n − 1 links should be active
to have a connected network (or different if not all-to-all).

∑

ℓ∈ω+(v)

xℓ ≥ 1 u ∈ V (6.17)

∑

ℓ∈L

xℓ ≥ n− 1. (6.18)

CG-cut+ model. We further enhance the CG-cut model with:

xℓ ≥
∑

p∈P c
sd

γp
ℓ y

p
d ℓ ∈ L, (us, ud) ∈ SD, c ∈ Csd (6.19)

where γp
ℓ = 1 if the link ℓ belong the path p. Using (6.14), it follows that

∑

p∈P c
sd

γp
ℓ y

p
d ≤ 1. It avoids the use of a big M formulation at the expense of a

large number of constraints.

6.6.2 Solution Scheme

To solve the model of Section 6.6.1 efficiently, we need to recourse to column
generation for solving the linear relaxation, and then to derive an ILP value,
using the last restricted master problem. For additional details on linear
programming and column generation schemes see, e.g., [Chv83].

There is a configuration generator, i.e., pricing problem, for each request
(vs, vd, c,D

c
sd). Two sets of decision variables are required. First set is made

of variables ϕi
ℓ such that ϕi

ℓ = 1 if the provisioning of demand d uses link ℓ in
layer i of the layered graph Gl, 0 otherwise. Second set contains variables aiv

6.6. DECOMPOSITION MODELS 149

such that aiv = 1 if the ith function (f c
i) of chain c for request (vs, vd, c,D

c
sd)

is placed on NFV node v, 0 otherwise. The formulation of the Service Path
generator is given as follows.

min−u(6.14)
sd

+
∑

ℓ∈L

nc∑

i=0

ϕi
ℓ ×

(

Pmax
ℓ

Dc
sd

Clink
ℓ

+ u
(6.15)
ℓ Dc

sd

)

+
∑

u∈V

nc−1∑

i=0

aiv ×
(
u(6.16)
v ∆fiD

c
sd

)
. (6.20)

Path computation (flow conservation constraints):

∑

ℓ∈ω+(v)

ϕi
ℓ −

∑

ℓ∈ω−(v)

ϕi
ℓ + aiv − ai−1

v = 0

u ∈ V, 0 < i < nc (6.21)

∑

ℓ∈ω+(v)

ϕ0
ℓ −

∑

ℓ∈ω−(v)

ϕ0
ℓ + a0v =

{

1 if v = vs

0 else

u ∈ V (6.22)

∑

ℓ∈ω+(v)

ϕnc

ℓ −
∑

ℓ∈ω−(v)

ϕnc

ℓ − anc

v =

{

−1 if v = vd

0 else

u ∈ V. (6.23)

Link capacity: Dc
sd

nc∑

i=0

ϕi
ℓ ≤ Clink

ℓ ℓ ∈ L. (6.24)

Node capacity: Dc
sd

nc∑

i=0

∆fia
i
v ≤ Cnode

v u ∈ V. (6.25)

150 CHAPTER 6. ENERGY EFFICIENT SFC

6.6.2.1 Speeding up the Pricing Problem

The Pricing Problem corresponds to a constrained shortest path with neg-
ative weights on the layered graph, and we can use CPLEX to solve it.
However, if we discard the capacity constraints, the problem becomes the
shortest path with negative weights problem. It can be solved much faster
than the original problem using the Bellman-Ford shortest path algorithm.
Since we remove the capacity constraints, the set of solutions considered is a
superset of the initial set of solutions. It is possible to find a path that might
use more resources than available. In this case, we fall back the ILP solver
to obtain a valid path. The weight of the inter-layer arcs is thus given by

wiv = Pmax
ℓ

Dc
sd

Clink
ℓ

+ u
(6.15)
ℓ Dc

sd 0 ≤ i < nc, u ∈ V.

and the weight of intra-layer arcs by

wiℓ = u(6.16)
v ∆fiD

c
sd 0 ≤ i ≤ nc, ℓ ∈ L.

6.6.2.2 Particularities of CG-cut+

By introducing the constraints (6.19) into the model, we also need to intro-
duce a new set of variable γl into the Pricing Problem that indicates if the
link ℓ is used in the path. The objective function becomes

min −u(6.14)
sd +

∑

ℓ∈L

nc∑

i=0

ϕi
ℓ ×

(

Pmax
ℓ

Dc
sd

Clink
ℓ

+ u
(6.15)
ℓ Dc

sd

)

+
∑

u∈V

nc∑

i=0

aiv ×
(
u(6.16)
v ∆fiD

c
sd

)

+
∑

ℓ∈L

γlu
(6.19)
sd,c,l . (6.26)

and the link capacities constraints become

Dc
sd

nc∑

i=0

ϕi
ℓ ≤ Clink

ℓ × γℓ ℓ ∈ L. (6.27)

Moreover, adding enhanced cuts creates negative cycles in the layered
graph used for the Pricing Problem. We choose not to get rid of the cycles by

6.7. NUMERICAL EXPERIMENTS 151

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Tr
af

fic
 [n

or
m

al
iz

ed
]

Daily time (h)

D1

D2

D3

D2

D4 D4

D5

D3

D3

0.3

0.4

0

0.6

0.8

1.0

0 5 10 15 20 24

Figure 6.2: Normalized daily variation of traffic of a France Telecom network
link and multi-period approximation

enumerating them all. Instead, we check if the solution provided by the solver
contains any negative cycles. If that is the case, we add the corresponding
constraints in the formulation and call the solver again. We repeat this
process until the obtained solution no longer contains any negative cycles or
the reduced cost is no longer negative. Removing the cycle has a negligible
impact on the performance of the column generation scheme as it is executed
only a few times at the start of the algorithm.

6.7 Numerical Experiments

In this section, we investigate the energy savings obtained by the Column
Generation model. We compare the results with the ones of GreenChains

heuristic algorithm. We first present the data sets we use for the experi-
ments. We then take a look at the precision of the solutions obtained by
the Column Generation model and GreenChains. We investigate different
improvements of the model presented in Section 6.3. We then present the
energy savings achieved for network topologies of different sizes. Last, we
discuss the impact of the solutions on link usage and path lengths.

152 CHAPTER 6. ENERGY EFFICIENT SFC

Service
Chained VNFs Rate

traffic
Chains (%)

Web
NAT-FW-TM-WOC-IDPS 100 kbps 18.2

Service

VoIP NAT-FW-TM-FW-NAT 64 kbps 11.8

Video
NAT-FW-TM-VOC-IDPS 4 Mbps 69.9

Streaming

Online
NAT-FW-VOC-WOC-IDPS 50 kbps 0.1

Gaming

Table 6.1: Service Chain Requirements [STV15]

6.7.1 Data sets

In networks, each type of flows has to go through a different chain of network
services. In our experiments, we consider four of the most frequent types of
flows, as presented in Table 6.1: Video Streaming, Web Service, Voice-over-
IP (VoIP), and Online Gaming. The traffic percentages are from [Net15]. For
each one, we give the ordered set of functions required and the bandwidth
used. In total, we have six different functions, and each function requires a
different amount of cores to be executed.

We tested the CG models and GreenChains on three topologies of
different sizes from SNDlib [Orl+10a]: pdh (11 nodes and 64 directed links),
atlanta (15 nodes and 44 directed links), and germany50 (50 nodes and 176
directed links).

To obtain realistic looking traffic matrices, we generate, for each network,
a set of demands from the traffic matrices provided in SNDlib: we divide each
aggregate flow from a source to a destination into four demands correspond-
ing to the four different types of traffic. We consider that the flows provided
in the SNDlib data set represent aggregated flows of miscellaneous services.
Thus, we can subdivided them into four different services. The original load
of the flow is conserved, and each sub-flow load is given by the distribution
of the last column of Table 6.1. For example, a flow with a charge of 1 is
split into a Web Service, a VoIP, a Video Streaming and an Online Gaming
sub-flows with a load of 0.182, 0.118, 0.699 and 0.001, respectively.

We tested the solution on a daily traffic to see how much energy can
be saved during the day or at night. The variations of traffic come from a
trace of a typical France Telecom link shown in Figure 6.2. Previous work

6.7. NUMERICAL EXPERIMENTS 153

0 4 8 12 16 20 24 28 32 36 40

Number of demands

10-2
10-1
100
101
102
103
104
105
106

E
xe

cu
ti

o
n

 t
im

e
 (

s)

GreenChains

ILP

(a) Execution time

0 4 8 12 16 20 24 28 32 36 40

Number of demands

0

500

1000

1500

2000

2500

3000

E
n

e
rg

y
U

se
d

GreenChains

ILP

(b) Energy used

Figure 6.3: Comparison between the compact formulation and Green-

Chains

[Ara+16] indicates that using a small number of configurations during the
day is enough to obtain most of the energy savings. In our case, we considered
five different levels of traffic called D1 to D5. D1 represents the period with
the lowest amount of traffic and D5 the one with the highest.

Traditionally, ISP networks use shortest path routing and operate their
network with an overprovisioning factor of 2 or 3 [Fra+03; Iye+03], in order
to be able to cope with failures and traffic growth. This means that links
typically are used at only between 30 and 50% of their capacity. We set
capacities accordingly at the beginning of the simulation. For each network,
we solve the legacy scenario by routing requests on the shortest paths between
each location of the service’s functions. Each function location is chosen at
random in the legacy scenario. We then choose the link capacities such that
each link is at most used at 33% of its capacity. Finally, we considered equal
values for the energy consumption of the links and nodes.

6.7.2 Compact formulation evaluation

We compare the results obtained by the heuristic algorithm, GreenChains,
with the optimal results given by the integer linear program on a small net-
work, pdh, with 11 nodes and 64 links. We consider instances with an in-
creasing complexity: the number of demands varies from 4 to 40. Note that
we consider multiples of 4 demands, as the traffic between a pair of nodes
is divided into four different demands corresponds to different categories of
traffic.

We compare the execution times of the ILP model and the algorithm in
Figure 6.3a. The experiments are made on a Intel Xeon E5620 with 24GB

154 CHAPTER 6. ENERGY EFFICIENT SFC

CG-simple CG-cuts CG-cut+

D1 D2 D3 D4 D5

Time periods

0
10
20
30
40
50
60
70
80
90

100
E

n
e
rg

y
u

se
d

(a) pdh

D1 D2 D3 D4 D5

Time periods

0
10
20
30
40
50
60
70
80
90

100

E
n

e
rg

y
u

se
d

(b) atlanta

D1 D2 D3 D4 D5

Time periods

0
10
20
30
40
50
60
70
80
90

100

E
n

e
rg

y
u

se
d

(c) germany50

Figure 6.4: Performance of all three CG models on the (a) pdh, (b) atlanta
and, (c) germany50 network topologies. 100 represents the energy used by
the legacy scenario.

of RAM. We see that the ILP model can be used to solve the problem with
a reasonable amount of time for a maximum number of 16 demands. In this
case, it takes around 45 minutes to return the optimal solution. The increase
is exponential: for 20 demands, the execution time is almost 3 hours. On
the other hand, GreenChains is much faster as it can find a solution in
less than 1 second for 20 demands (0.38 s). It solves an instance with 40
demands in 0.78 s and the all-to-all instance (with 440 demands), considered
in the following, in less than 7 s. We see that the ILP cannot be used in
practice to solve instances with a large number of demands, and thus we use
the GreenChains for the experiments on larger networks in the following.

The results regarding energy savings are given in Figure 6.3. Green-

Chains finds results within a precision ranging between 0% and 16% for the
different number of demands. We consider this as good results given the
difficulty of the EE-SFCP problem. Moreover, it means that the potential
energy savings of using dynamic traffic and virtualization are in fact even
greater than the one presented in the following.

6.7.3 Quality of the Column Generation models

We now compare the performance of the three different CG models (CG-
simple, CG-cut, and CG-cut+) with respect to their accuracy as given by ε =
(z̃ilp−z⋆lp)/z⋆lp, where z⋆

lp
represents the optimal value of the relaxation of the

Restricted Master Problem, and z̃ilp the integer solution obtained at the end
of the column generation algorithm. In Figure 6.4, 6.5, and 6.6, we compare
the solutions found by the three CG models for all three networks and for the

6.7. NUMERICAL EXPERIMENTS 155

CG-simple CG-cuts CG-cut+

D1 D2 D3 D4 D5

Time periods

10-2

10-1

100

101

ε
ra

ti
o

(a) pdh

D1 D2 D3 D4 D5

Time periods

10-3

10-2

10-1

100

ε
ra

ti
o

(b) atlanta

D1 D2 D3 D4 D5

Time periods

10-1

100

101

ε
ra

ti
o

(c) germany50

Figure 6.5: Accuracy, ε, of all three CG models on the (a) pdh, (b) atlanta
and, (c) germany50 network topologies

CG-simple CG-cuts CG-cut+

D1 D2 D3 D4 D5

Time periods

1ms

100ms
1s

1min

10min

T
im

e
 (

s)

(a) pdh

D1 D2 D3 D4 D5

Time periods

1ms

100ms
1s

1min

10min

T
im

e
 (

s)

(b) atlanta

D1 D2 D3 D4 D5

Time periods

1ms

100ms
1s

1min

10min

T
im

e
 (

s)

(c) germany50

Figure 6.6: Execution times of all three CG models on the (a) pdh, (b) atlanta
and, (c) germany50 network topologies

5 different levels of traffic. We first observe in Figure 6.4, in which error bars
represent the gap between the relaxed and integer solutions, that CG-simple
and CG-cut provide similar solutions. However, ε dramatically varies, as
shown in Figure 6.5. Cuts significantly improves ε: for CG-simple, it varies
between 12% and 113% for pdh, 10% and 97% for atlanta, and 37% and
330% for germany50. For CG-cut, ε is between 7 to 15% for pdh, 6 and 12%
for atlanta, and 24 and 30% for germany50. The ratio is further improved
with CG-cut+: between 4 and 8% for pdh, 1 and 6% for atlanta. However,
no solutions were found in a reasonable amount of time for the germany50
topology. As the energy savings are similar for the three models, it shows
that the three CG models provide rather accurate solutions, as confirmed by
the solutions and accuracy of the CG-cut and CG-cut+ models.

Finally, in Figure 6.6, we compare the execution times of the models.
We observe that CG-cut+ execution time (between 17 s and 5 h) is orders

156 CHAPTER 6. ENERGY EFFICIENT SFC

of magnitude higher that the one of CG-simple (between 50 ms and 440 s)
and CG-cut (between 70 ms and 670 s). This is greatly due to the fact that
we speed up the resolution of the two previous model using the Bellman-
Ford shortest path algorithm for the Pricing Problem. The second factor
is that CG-cut+’s cuts slow the convergence time of the column generation
drastically.

We now focus on the CG-cut model, as it offers the best compromise in
terms of accuracy (w.r.t. CG-simple model) and computation time require-
ments (w.r.t. CG-cut+ model) to solve large networks.

6.7.4 Energy Savings

We now compare the energy savings obtained by GreenChains and CG-cut.
We consider three scenarios in the experiments:

- Legacy scenario. This scenario corresponds to the one of a legacy net-
work, whose operator does not try to reduce the energy consumption
of its network. Its goal is to minimize the total bandwidth used while
respecting the link capacity and the chain constraints. This scenario is
used as a baseline for comparison for the energy-aware algorithms.

- Hardware scenario. The hardware scenario corresponds to one of an
SDN (non-virtualized) network in which an operator tries to reduce
its energy consumption by adapting the routing to the demands. In
this scenario, the network functions are carried out by some specific
hardware placed at given positions in the network.

- NFV scenario. The NFV scenario is the one of a virtualized SDN
network in which generic hardware nodes can execute any virtual net-
work functions. This is the scenario solved by the solutions provided
in Sections 6.4, 6.5 and 6.6.

We provide in Figure 6.7 the energy used for the five levels of demands for
pdh, atlanta, and germany50. The values are normalized: 100 corresponds to
the legacy scenario. We also present in Figure 6.8 the corresponding energy
savings during the day. We see that we obtained important savings using
virtualization: between 25 and 61% for pdh, 5 and 22% for atlanta, and 15
and 30% for germany50.

6.7. NUMERICAL EXPERIMENTS 157

D1 D2 D3 D4 D5

Time periods

0
10
20
30
40
50
60
70
80
90

100

E
n

e
rg

y
u

se
d

CG

Heuristic

(a) pdh

D1 D2 D3 D4 D5

Time periods

0
10
20
30
40
50
60
70
80
90

100

E
n

e
rg

y
u

se
d

CG

Heuristic

(b) atlanta

D1 D2 D3 D4 D5

Time periods

0
10
20
30
40
50
60
70
80
90

100

E
n

e
rg

y
u

se
d

CG

Heuristic

(c) germany50

Figure 6.7: Energy used for GreenChains and the CG model on the three
topologies.

0 6 12 18 24

Hours

0

10

20

30

40

50

60

70

E
n

e
rg

y
sa

vi
n

g
s

(%
)

(a) pdh

0 6 12 18 24

Hours

0

10

20

30

E
n

e
rg

y
sa

vi
n

g
s

(%
)

(b) atlanta

0 6 12 18 24

Hours

0

10

20

30

40

E
n

e
rg

y
sa

vi
n

g
s

(%
)

(c) germany50

Figure 6.8: Saved energy for GreenChains for the three network topologies.

6.7.4.1 Validating GreenChains with CG-cut

We now compare the solutions provided by both GreenChains and CG-
cut in Figure 6.7. Error bars on the CG-cut solutions represent the lower
bounds given by z⋆

lp
. For the lowest traffic periods (D1, D2 and in D3), both

methods provide similar solutions for pdh and germany50. The CG model
provides slightly better solutions when the traffic is higher, with a difference
of 3 and 1% for pdh, of 5,and 2 for atlanta, and of 2 and 3% for germany50
respectively in the D5 period. Observe that, even if CG only provides slight
improvement of the heuristic’s solutions, it shows (c.f. ε accuracy value) that
the heuristic gives good results, regardless of the traffic period.

158 CHAPTER 6. ENERGY EFFICIENT SFC

0% 20% 40% 60% 80% 100%

Link usage

0

20

40

60

80

100

%
 o

f
li

n
k
s

D1

D5

(a) pdh

0% 20% 40% 60% 80% 100%

Link usage

0

20

40

60

80

100

%
 o

f
li

n
k
s

D1

D5

(b) atlanta

0% 20% 40% 60% 80% 100%

Link usage

0

20

40

60

80

100

%
 o

f
li

n
k
s

D1

D5

(c) germany50

Figure 6.9: Link load for GreenChains for the three network topologies.

D1 D2 D3 D4 D5

Time periods

0

5

10

15

20

D
e
la

y
(m

s)

(a) pdh

D1 D2 D3 D4 D5

Time periods

0

5

10

15

20
D

e
la

y
(m

s)

(b) atlanta

D1 D2 D3 D4 D5

Time periods

0

5

10

15

20

D
e
la

y
(m

s)

(c) germany50

Figure 6.10: Delay in milliseconds for GreenChains for the three network
topologies.

6.7.4.2 Link load

To reduce the amount of energy used by the network, we reroute some of the
flows to be able to put links into sleep mode. This means that the remaining
active links are more loaded. In Figure 6.9, we look at the link load given
by GreenChains for the highest and lowest traffic periods. First, we see
that, unsurprisingly, the percentage of links with no traffic is higher when
the traffic is low, around 40% of the links for atlanta and germany50. When
the network is at its highest utilization, it drops to around 15% for both
networks. The pdh network, due to its higher link density, can have more
links put into sleep mode. Indeed, between 44% and 71% of the links have
no traffic. Moreover, at the lowest traffic period, no links are used at 100%
for pdh, atlanta and are at most used up to 57%, 52% of their capacity,
respectively. At rush hour, pdh and atlanta have at most links at 98 and
99% capacity while germany50 has only one link at full capacity.

6.8. CONCLUSIONS 159

6.7.4.3 Impact on Delay

When some links are put into sleep mode, paths tend to become longer. How-
ever, we show in Figure 6.10 that the maximum delay of every path stays
below the usual 50 ms latency value in Service Level Agreements: experi-
enced delay is less than 5.4, 10.8 and 16.2 ms on pdh, atlanta and germany50
respectively. Moreover, the median of the delay stays constant for pdh, at-
lanta at 3.6 and 5.4 ms, respectively. For germany50, it only increases from
7.2 for D5 (no link into sleep mode) to 9 ms for D1.

6.8 Conclusions

In this chapter, we investigated the potential of network virtualization to re-
duce the energy consumption of networks. We introduced a Column Gener-
ation model to solve the problem of minimizing network energy consumption
while satisfying the SFC requirements. We also proposed GreenChains, an
ILP-based heuristic that we validate using our Column Generation model.
We then compared three different scenarios corresponding to a continuous
deployment of the SDN and NFV paradigm for energy efficiency. We show
that an operator, using SDN control, can save energy by choosing the paths
of the flows dynamically according to the variations of demands during the
day. Indeed, this allows the turning off of a large portion of network equip-
ment. Indeed, compared to a legacy scenario, SDN can provide between 18
and 51% energy savings during the night. We also demonstrated that the
deployment of VNF in an SDN network leads to additional energy savings
between 4 and 12%. As a matter of fact, choosing dynamically the locations
of network functions according to the variations of the demands allows a
greater flexibility for the choice of the network paths and leads to the use of
less network equipment.

160 CHAPTER 6. ENERGY EFFICIENT SFC

References

[Ara+16] J. Araujo, F. Giroire, J. Moulierac, Y. Liu, and R. Modrzejew-
ski. “Energy Efficient Content Distribution”. In: The Computer
Journal 59.2 (Feb. 2016), pp. 192–207 (cit. on p. 153).

[Bol+10] Raffaele Bolla, Roberto Bruschi, Franco Davoli, and Flavio Cuc-
chietti. “Energy efficiency in the future internet: A survey of
existing approaches and trends in energy-aware fixed network
infrastructures”. In: IEEE Communications Surveys & Tutori-
als 13.2 (2010), pp. 223–244 (cit. on p. 138).

[Bol+14] R. Bolla, C. Lombardo, R. Bruschi, and S. Mangialardi.
“DROPv2: energy efficiency through network function vir-
tualization”. In: IEEE Network 28.2 (2014), pp. 26–32 (cit. on
p. 139).

[Cha+08] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and
S. Wright. “Power Awareness in Network Design and Routing”.
In: Annual Joint Conference of the IEEE Computer and Com-
munications Societies - INFOCOM. Apr. 2008, pp. 1130–1138
(cit. on p. 142).

[Chv83] V. Chvatal. Linear Programming. Freeman, 1983 (cit. on pp. 88,
148).

[CMN12] L. Chiaraviglio, M. Mellia, and F. Neri. “Minimizing ISP net-
work energy cost: formulation and solutions”. In: IEEE/ACM
Transactions on Networking (TON) 20 (2 Apr. 2012), pp. 463–
476 (cit. on p. 138).

[DGF10] Floriano De Rango, Francesca Guerriero, and Peppino Fazio.
“Link-stability and energy aware routing protocol in distributed
wireless networks”. In: IEEE Transactions on Parallel and Dis-
tributed systems 23.4 (2010), pp. 713–726 (cit. on p. 138).

[Fra+03] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R.
Rockell, T. Seely, and S.C. Diot. “Packet-level traffic measure-
ments from the Sprint IP backbone”. In: IEEE network 17.6
(2003), pp. 6–16 (cit. on p. 153).

REFERENCES 161

[Gir+10] Frédéric Giroire, Dorian Mazauric, Joanna Moulierac, and Brice
Onfroy. “Minimizing routing energy consumption: from theoret-
ical to practical results”. In: 2010 IEEE/ACM Int’l Conference
on Green Computing and Communications & Int’l Conference
on Cyber, Physical and Social Computing. IEEE. 2010, pp. 252–
259 (cit. on p. 138).

[Gir+15] F. Giroire, J. Moulierac, Truong Khoa Phan, and F. Roudaut.
“Minimization of network power consumption with redundancy
elimination”. In: Computer communications 59 (2015), pp. 98–
105 (cit. on p. 139).

[GMP14] F. Giroire, J. Moulierac, and K. Phan. “Optimizing Rule Place-
ment in Software-Defined Networks for Energy-aware Routing”.
In: IEEE Global Telecommunications Conference - GLOBE-
COM. Austin, USA, Dec. 2014, pp. 2523–2529 (cit. on p. 139).

[GS03] Maruti Gupta and Suresh Singh. “Greening of the Internet”. In:
Proceedings of the 2003 conference on Applications, technolo-
gies, architectures, and protocols for computer communications.
ACM. 2003, pp. 19–26 (cit. on p. 138).

[Gup+15] A. Gupta, M.F. Habib, P. Chowdhury, M. Tornatore, and B.
Mukherjee. “On service chaining using virtual network func-
tions in network-enabled cloud systems”. In: IEEE Interna-
tional Conference on Advanced Networks and Telecommunca-
tions Systems (ANTS). 2015, pp. 1–3 (cit. on p. 138).

[Gup+17] A. Gupta, B. Mukherjee, B. Jaumard, and M. Tornatore. “Ser-
vice Chain (SC) Mapping with Multiple SC Instances in a Wide
Area Network”. In: IEEE Global Telecommunications Confer-
ence - GLOBECOM. 2017, pp. 1–6 (cit. on p. 138).

[Hui+18a] N Huin, A Tomassilli, F Giroire, and B Jaumard. “Energy-
efficient service function chain provisioning”. In: IEEE/OSA
Journal of Optical Communications and Networking 10.3
(2018), pp. 114–124 (cit. on pp. 12, 45, 136).

[Hui+18b] Nicolas Huin, Myriana Rifai, Frédéric Giroire, Dino Lopez
Pacheco, Guillaume Urvoy-Keller, and Joanna Moulierac.
“Bringing energy aware routing closer to reality with SDN
hybrid networks”. In: IEEE Transactions on Green Commu-

162 CHAPTER 6. ENERGY EFFICIENT SFC

nications and Networking 2.4 (2018), pp. 1128–1139 (cit. on
p. 139).

[Iye+03] Sundar Iyer, Supratik Bhattacharyya, Nina Taft, and Christophe
Diot. “An approach to alleviate link overload as observed on
an IP backbone”. In: Annual Joint Conference of the IEEE
Computer and Communications Societies - INFOCOM. Vol. 1.
2003, pp. 406–416 (cit. on p. 153).

[Le +13] Esther Le Rouzic, Edoardo Bonetto, Luca Chiaraviglio, Fred-
eric Giroire, Filip Idzikowski, Felipe Jiménez, Christoph Lange,
Julio Montalvo, Francesco Musumeci, Issam Tahiri, et al.
“TREND towards more energy-efficient optical networks”. In:
2013 17th International Conference on Optical Networking De-
sign and Modeling (ONDM). IEEE. 2013, pp. 211–216 (cit. on
p. 136).

[LMF11] L. Chiaraviglio, M. Mellia, and F. Neri. “Minimizing ISP Net-
work Energy Cost: Formulation and Solutions”. In: IEEE/ACM
Transactions on Networking 20.2 (Apr. 2011), pp. 463–476 (cit.
on p. 138).

[Mar+15] B. Martini, F. Paganelli, P. Cappanera, S. Turchi, and P. Cas-
toldi. “Latency-aware composition of virtual functions in 5g”.
In: NetSoft. IEEE. 2015, pp. 1–6 (cit. on p. 138).

[Mat+13] Daisuke Matsubara, Takashi Egawa, Nozomu Nishinaga, Ved
P Kafle, Myung-Ki Shin, and Alex Galis. “Toward future net-
works: a viewpoint from ITU-T”. In: IEEE Communications
Magazine 51.3 (2013), pp. 112–118 (cit. on p. 136).

[Mij15] Rashid Mijumbi. “On the Energy Efficiency Prospects of
Network Function Virtualization”. In: CoRR abs/1512.00215
(2015). url: http://arxiv.org/abs/1512.00215 (cit. on
p. 139).

[Mod+13] Remigiusz Modrzejewski, Luca Chiaraviglio, Issam Tahiri,
Frederic Giroire, Esther Le Rouzic, Edoardo Bonetto, Francesco
Musumeci, Roberto Gonzalez, and Carmen Guerrero. “Energy
efficient content distribution in an ISP network”. In: 2013 IEEE
Global Communications Conference (GLOBECOM). IEEE.
2013, pp. 2859–2865 (cit. on p. 138).

http://arxiv.org/abs/1512.00215

REFERENCES 163

[Moh+15] Ali Mohammadkhan, Sheida Ghapani, Guyue Liu, Wei Zhang,
KK Ramakrishnan, and Timothy Wood. “Virtual function
placement and traffic steering in flexible and dynamic software
defined networks”. In: Local and Metropolitan Area Networks
(LANMAN), 2015 IEEE International Workshop on. IEEE.
2015, pp. 1–6 (cit. on pp. 10, 11, 46, 138).

[Net15] Index Cisco Visual Networking. “Cisco visual networking in-
dex: Forecast and methodology 2015-2020”. In: White paper,
CISCO) (2015) (cit. on p. 152).

[Nic+12] L. Niccolini, G. Iannaccone, S. Ratnasamy, J. Chandrashekar,
and L. Rizzo. “Building a power-proportional software router”.
In: USENIX Annual Technical Conference (USENIX ATC).
Boston, MA, USA, 2012, pp. 89–100 (cit. on p. 142).

[Orl+10a] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly.
“SNDlib 1.0–Survivable Network Design Library”. English. In:
Networks 55.3 (2010), pp. 276–286. doi: 10.1002/net.20371
(cit. on p. 152).

[Pha14] Truong Khoa Phan. “Design and management of networks with
low power consumption”. PhD thesis. Université Nice Sophia
Antipolis, 2014 (cit. on p. 138).

[Rig+15] R. Riggio, Abbas Bradai, Tinku Rasheed, Julius Schulz-Zander,
Slawomir Kuklinski, and Toufik Ahmed. “Virtual network func-
tions orchestration in wireless networks”. In: Intl. Conf. on Net-
work and Service Management (CNSM). 2015, pp. 108–116 (cit.
on pp. 11, 138).

[SLX10] Yunfei Shang, Dan Li, and Mingwei Xu. “Energy-aware routing
in data center network”. In: Proceedings of the first ACM SIG-
COMM workshop on Green networking. ACM. 2010, pp. 1–8
(cit. on p. 138).

[STV15] M. Savi, M. Tornatore, and G. Verticale. “Impact of Processing
Costs on Service Chain Placement in Network Functions Virtu-
alization”. In: IEEE Conference on Network Function Virtuali-
zation and Software Defined Network (NFV-SDN). Nov. 2015,
pp. 191–197 (cit. on pp. 138, 152).

https://doi.org/10.1002/net.20371

164 CHAPTER 6. ENERGY EFFICIENT SFC

[Ver+11] Willem Vereecken, Ward Van Heddeghem, Margot Deruyck,
Bart Puype, Bart Lannoo, Wout Joseph, Didier Colle, Luc
Martens, and Piet Demeester. “Power consumption in telecom-
munication networks: overview and reduction strategies”. In:
IEEE Communications Magazine 49.6 (2011) (cit. on p. 136).

Chapter 7

Conclusion and Future Work

SDN and NFV have the potential to provide a solution to simplify man-
agement, enhance flexibility of the network, and reduce its costs. However,
together with opportunities, they also bring new challenges to network oper-
ators that need to be explored.

One of these challenges deals with the optimal placement of VNFs in
the network to satisfy the Service Function Chain requirements of the flows.
Indeed, with a joint SDN-NFV paradigm, flows can be managed dynamically
from end-to-end, and the network functions can be installed only along paths
for which and when they are necessary, while, in a legacy network, a flexible
control of network equipment would be very costly and impractical.

In Chapter 3, we investigated the problem of placing VNFs to satisfy the
ordering constraints of the flows with the goal of minimizing the total setup
cost. We proposed two algorithms that achieve a logarithmic approximation
factor. In addition, for the special case of tree network topologies with only
upstream and downstream flows, we devised an optimal algorithm. Our
aim consists of proposing the first theoretical framework for studying the
placement problem with ordering constraints.

However, a remaining unaddressed issue is considering flow rates and the
accounting of practical constraints such as soft capacities on network func-
tions or hard capacities on network nodes. An interesting future research
direction may concern an investigation of the possibility of efficiently ap-
proximating these problems.

SDN and NFV also add additional constraints that make classical prob-
lems reconsiderable again. This is the case for the network protection prob-
lem, a problem that has been widely studied in the literature. We considered
two different variants of the problem.

The first, in Chapter 4, is a network design problem. We consider a path-
based protection scheme with a global rerouting strategy, in which, for each
failure situation, we may have a new routing of all the demands. This makes
the protection technique bandwidth-optimal. It is extremely expensive and

165

166 CHAPTER 7. CONCLUSION AND FUTURE WORK

impractical to implement this technique on legacy networks due to the huge
number of rules to install on the network devices. We assess the potential
of this technique to be applied to SDN networks. To this end, we develop a
scalable mathematical model that we handle using the Column Generation
technique. We show the effectiveness of our proposed methods experimentally
on real-world IP network topologies and on randomly generated instances.
Also, with an implementation based on the OpenDaylight SDN controller
with Mininet, we demonstrated the feasibility of the approach and showed
that technical implementation choices may have a dramatic impact on the
time needed to reestablish the flows after a failure takes place.

Then, in Chapter 5, we considered the problem of providing path protec-
tion against a single link failure under both dedicated and shared protection
schemes. The problem also consists in provisioning VNFs in the required or-
der, which adds a challenge to the classical version of the problem. We inves-
tigated the two different protection mechanisms and discussed their resource
requirements, as well as the latency of their paths. For each mechanism, we
developed a scalable exact mathematical model using column generation.

Finally, in Chapter 6, we studied the potentials of SDN and NFV in energy
savings. Indeed, there is the need of reducing energy consumption from
both environmental (the Information and Communication Technology (ICT)
sector is responsible for between 2 and 10% of global energy consumption
[08]) and economical (energy bills represent more then the 10% of telecom
operators operational expenditure [Bel15]) reasons. With the centralized
control allowed by SDN, the flows can be managed dynamically, and adapted
according to the traffic conditions. We proposed both heuristics and ILP-
based optimization models in order to be able to deal efficiently with the
problem. We considered three different scenarios: a legacy scenario which
represents legacy networks and which serves as a baseline for comparison,
a hardware scenario in which the routing can be changed dynamically by
a centralized SDN controller, but in which network functions are executed
by specific hardware, and finally, an NFV scenario in which the network
functions are virtualized and can be placed dynamically. We showed that
we can save between 4 and 12% more energy using VNF than compared to
using middleboxes.

In this thesis, we only addressed some of the challenges towards the Next-
Generation Network. Many of them still need to be addressed to fully attain
the benefits of the SDN and NFV paradigms. But overall, we believe that
an SDN-NFV enabled network has the potential to boost NFV deployment

REFERENCES 167

and support new efficient and cost-effective services.

References

[08] SMART 2020 Enabling the low-carbon economy in the in-
formation age, http://www.smart2020.org/ assets/files/02 -
Smart2020Report.pdf. 2008 (cit. on pp. 12, 166).

[Bel15] Alcetel Lucent Bell Labs. White Paper: Global What if Ana-
lyzer of NeTwork Energy ConsumpTion (GWATT). Bell labs
application able to measure the impact of technologies like SDN
& NFV on network energy consumption. Murray Hill, NJ, USA,
2015 (cit. on pp. 12, 166).

Part IV

Appendix

169

Chapter 8

Data Center Scheduling with
Network Tasks

Contents
8.1 Introduction . 172

8.2 Related Work . 174

8.3 A New Scheduling Framework 176

8.3.1 Problem and Example 176

8.3.2 Modeling Data Center Orchestration with Com-
munication . 177

8.4 Hardness . 179

8.4.1 List-Scheduling . 179

8.5 Algorithms . 181

8.5.1 Generalized List Scheduling 182

8.5.2 Optimality on simple MapReduce Workflows . . . 184

8.5.3 Partition . 187

8.6 Experimental Evaluation 191

8.6.1 Trace . 191

8.6.2 Network . 191

8.6.3 Workflows . 191

8.6.4 Datasets . 192

8.6.5 Results . 192

8.7 Conclusion . 198

The content of this chapter is an extended version of [Gir+19b].

171

172 CHAPTER 8. DATA CENTER SCHEDULING

8.1 Introduction

The increasing need for efficiently processing and analyzing huge amounts of
data has led to data-oriented parallel computing solutions such as MapRe-
duce [DG08], Dryad [Isa+07], CIEL [Mur+11], and Spark [Zah+12]. These
solutions are based on input data partitioning over a number of parallel ma-
chines. Jobs are split up into finer–grained tasks, and partial results from
the various stages of computation are then transferred through the network.
Each stage requires all the outputs of the previous stage to be in place before
moving to the next stage.

In this context, the network starts to become an increasingly significant
bottleneck in the performance of parallel processing [Gre+09; Guo+08] and
hence, an important resource to optimize in a data center. Indeed, decreasing
the parallel communications’ completion time may lead to completing the
corresponding job faster [Cho+11; CZS14; Dog+14].

Today’s most common applications spend a significant portion of their
time in communications. As reported by [Cho+11], the communications ac-
counted for 33% of total completion times of MapReduce jobs in Facebook’s
Hadoop cluster, and 42% for Monarch [Tho+11], an iterative MapReduce
application in Spark identifying spam links on Twitter. The recent develop-
ment of containers and micro-services [NS14] will amplify this trend. They
further divide monolithic tasks into several subtasks, increasing the number
of communications in the network.

Usually, when a job arrives, the orchestrator tries to optimize the data
center resources and decide on which servers the job’s tasks should be exe-
cuted. Traditionally, this is done using scheduling algorithms which take into
account properties of the server, such as CPU usage and memory utilization,
and of the task, such as execution time, task deadline, and task activation
time. The effects of the placement of the tasks on the network’s resources
are not usually taken into consideration. However, taking into account net-
work resources when placing tasks is now of primary importance for a large
number of applications to reduce the communication overhead.

Some scheduling models have been introduced to this end, such as
Scheduling with communication delays, or with communications costs. If on
one hand, they take into account communication delays, on the other hand,
they do not consider the fact that network bandwidth might be limited and
that the communications may compete for it, leading to an additional delay
or cost when a large number of communications are performed at the same

8.1. INTRODUCTION 173

time.
We thus introduce a new scheduling framework which takes into account

the limited communication bandwidth. In this framework, traditional (CPU)
tasks stand alongside new network tasks. As usual, (CPU) tasks have to be
executed by servers, but network tasks have to be executed by network ma-
chines, aiming to model the limited network capacity. The originality and
difficulty of this study, compared to scheduling with non-identical machines,
lies in the fact that network tasks may or may not be executed depending on
the placement of the CPU tasks.
Indeed, when placing two CPU tasks T1 and T2, we would incur a commu-
nication delay only in the case in which T1 and T2 are scheduled on two
different CPU machines. In such a case, we would have a network task T1→2

to schedule on one of the network machines.
Our contributions can be summarized as follows.

• We introduce a new scheduling framework to model communication
delays when tasks are competing for a limited network bandwidth. The
idea is to model communications with network tasks which have to be
executed on network machines.

• We show that the problem of scheduling data center jobs while routing
their communications can be modeled with our scheduling framework
using a simple set of network machines.

• We then study a new problem, Scheduling With Network Tasks,
with the goal of minimizing the makespan of a set of tasks. The prob-
lem is NP-complete and we show that the simple 3-approximation List
Scheduling algorithm with communication delays may be as bad as
the simple algorithm putting all tasks on a single machine when the
network bandwidth is limited.

• We then propose a generalized version of the classical List Scheduling
algorithm for our framework, called Generalized List Schedul-

ing. We show that our algorithm is optimal on simple MapReduce
workflows.

• We also introduce a two-phase algorithm, Partition. In the first
phase, the algorithm partitions the tasks into the available machines.
In the second phase, we schedule at which time and in which order the

174 CHAPTER 8. DATA CENTER SCHEDULING

tasks should be done. We provide approximation algorithms for the
two phases.

• Finally, we evaluate the practical behavior of our algorithms.

We perform extensive simulations using workflows based on Google Trace
statistics [RWH11]. We show that our algorithms are very efficient for sce-
narios in which network capacity has to be taken into account.
The rest of this paper is organized as follows. In Section 8.2, we review re-
lated works in more detail. We then formally introduce the new framework
and scheduling problem formally in Section 8.3. We discuss the hardness of
the problem in Section 8.4. We then propose two algorithms in Section 8.5
and we evaluate them in Section 8.6. Finally, we draw our conclusions in
Section 8.7.

8.2 Related Work

Optimizing Data Center Communications. Recent works have started
to address the problem of optimizing network activity in order to improve
job performance.

In [Cho+11], the authors propose a centralized application-level mecha-
nism to coordinate transfers in the shuffle stage of MapReduce jobs with the
goal of reducing the average job completion time. Indeed, according to their
measurements on MapReduce applications, up to 50% of the completion time
may be consumed in the shuffle phase. To this end, the authors propose a
method based on weighted fair sharing at the cluster level. They show that,
with their approach, the shuffle phase duration can be reduced by a factor
of 1.5.

A family of works is based on the coflow abstraction [CS12], that is,
a collection of parallel flows belonging to the same job. Varys [CZS14]
is a coordinated coflow scheduler designed with the goal of maintaining
high network utilization and guaranteeing starvation freedom. [Cho+11]
and [CZS14] are centralized coflow schedulers. A decentralized solution is
presented in [Dog+14]. The authors design and implement Baraat, a de-
centralized task-aware scheduling system for data centers. The goal is to
minimize task completion time. Their solution is based on scheduling net-
work resources at the unit of a task. They show that FIFO–based schemes

8.2. RELATED WORK 175

perform well, allowing to reduce both the average and the tail task comple-
tion times.

In [CKL], the authors consider the problem of scheduling all three phases
(i.e., Map, Shuffle, and Reduce) of the MapReduce process. They develop
constant factor approximation algorithms to minimize the mean response
time over all jobs.

Corral [Jal+15] is an offline planning algorithm with the goal of jointly
optimizing the placement of data and compute, and improving the applica-
tion latency. Corral performs network-aware task placement. Large shuffles
are separated from each other to reduce network contention in the cluster
and jobs are run across a small number of racks to their data locality.

In this paper, we introduce a new theoretical framework to address the
problems considered in these works. In this framework, we define a new
problem, Scheduling With Network Tasks, and we propose (prov-
ably) efficient algorithms to solve it.

Scheduling. The problem of the paper Scheduling With Network

Tasks is related to different classic scheduling problems, see e.g., [CPW99]
for a comprehensive survey.

Scheduling with precedence constraints or list scheduling was introduced
in [Gra66]. The authors model the precedence with a directed acyclic graph
(DAG), in which an arc Dij between two tasks Ti and Tj means that task
Ti has to be completely processed before Tj may begin its execution. The
authors provide a (2 − 1/m)-approx of the problem. In the 90s, commu-
nications were introduced in the family of problems called scheduling with
communication delays. At the end of a task, some data may be sent to other
machines. A communication delay dij is paid to send data from machine i
to machine j. The general problem of minimizing the makespan is still open
(even with an infinite number of machines). However, when the communi-
cation delays are all the same for a given source (di = dij) and when a task
can be duplicated on several machines to avoid some communication costs,
there exists a 2-approximation algorithm [PY90]. When the communication
costs are further simplified to be unitary, a 2-approximation exists without
the additional hypothesis above [Ray87]. Note that a critical difficulty
of scheduling with communication is that the communication delay may or
may not be paid depending on the task placement. In the problem variant in
which the communication is always paid, a 2-approximation for the general
setting was presented in [MQS98]. This result can be extended to obtain a

176 CHAPTER 8. DATA CENTER SCHEDULING

0 1 2 3

74 5 6

8

0 0→ 1 1 1→ 2 2 2→ 3 3

3→ 7

7

0→ 5

4 4→ 5 5 5→ 6 6 6→ 7

6→ 8

8

3 7IdleIdle0 5Idle Idle
Network

Machine

Idle3210 Idle

865Idle4 7

P1

P2

Time

0 1 2 3 4 5 6

Figure 8.1: (Top Left) The dependency (di)graph of a job J with 9 (CPU)
tasks. (Top Right) Modeling with network tasks indicated with rectangles.
We provide a feasible schedule of job J . (Middle) Scheduled graph: (CPU)
tasks executed by Machine 1 are in red, by Machine 2 in blue, carried out
network tasks in black, not executed ones in gray. (Bottom) Timeline.

3-approximation algorithm for our generalized problem.
In all the above models, no network capacity is assumed. The model of this
paper, on the contrary, takes into account the competition between flows to
access a limited amount of network bandwidth.

8.3 A New Scheduling Framework

8.3.1 Problem and Example

We consider a set of jobs (often referred to as workflows) which have to be
executed on m machines (also called processors or servers in the literature).
A machine Mj has a processing speed Sj. Each job is made up of one or
several tasks with dependency constraints between them. We denote by T
the set of all the tasks (of all the jobs). The size of a task Ti is denoted by
si. The completion time of a task Ti on the machine Mj is ci,j = si/Sj.

The dependency between tasks in a job is expressed through a directed
acyclic graph (DAG) in which an arc between tasks Ti and Tj means that Ti

has to be completed before Tj may start. The set of jobs is thus modeled by
a forest of DAGs.

When the task Ti has completed its execution, it may have computed
data which is needed to execute task Tj. We model this by introducing a

8.3. A NEW SCHEDULING FRAMEWORK 177

network task Ti→j which has to be executed after task Ti and before task Tj.
The size of Ti→j is denoted by si→j. Network tasks have to be executed on a
set of k network machines, which represent network links (or communication
channels). The network machine Nℓ has a capacity Cℓ. The completion time
of a network task Ti→j on the network machine Nℓ is ci→j,ℓ = si→j/Cℓ.

We now define the new scheduling problem.

Problem 4 (Scheduling With Network Tasks). Given a set of jobs
J composed of tasks linked by a dependency digraph G and a set of net-
work tasks N , a set of m CPU machines, and k network machines, find the
scheduling of J minimizing the makespan, that is, the maximum completion
time of the jobs.

Example: Consider a system with 2 machines, M1,M2, of processing speeds
S1 = S2 = 1, and one network machine N1 of capacity C1 = 1. We want to
execute the job J with 9 tasks and the dependency digraph given in Fig. 8.1.
We also provide the digraph with the potential network tasks to be executed.
We set all task sizes to one in this example.

In Fig. 8.1, we provide a feasible schedule for job J . At time 0, tasks T0

and T4 are the only tasks which may be executed. They are placed on ma-
chines M1 and M2 respectively. Their completion time is 1 (size/processing
speed). At time 2, T1 can be executed on M1, as its only predecessor, T0,
has been executed, and as its result is available in M1. All predecessors of
T5 have been executed, but the task cannot be carried out, as the result of
T0 is in M1 and the one of T4 is in M2. The result of T0 is thus sent to M2,
i.e., the network task T0→5 is executed by the network machine. It takes one
time unit (size/capacity). The job completion time is thus 6.

8.3.2 Modeling Data Center Orchestration with Com-
munication

We show here that we can model data center task orchestration and network
resource allocation using our scheduling framework with a simple set of net-
work machines.
Preliminary. Our framework directly models simple networks such as a
set of machines connected via a bus by using a model with a single network
machine or connected via an antenna (WiFi, 4G, ...) using a model with
one network machine per channel. However, more complex networks can be

178 CHAPTER 8. DATA CENTER SCHEDULING

. . .

Nu
1 Nu

2Nd
2Nd

1
Nd
3
Nu
3

Nu
4Nd

4
Nd
16
Nu
16Nu

15Nd
15

Figure 8.2: Modeling data center communications with Network machines
for a 4-Fat Tree with 16 (racks of) servers.

represented.
Data center networks. The simplicity of the model lies in the fact that
only border links have to be modeled. Indeed, data center architectures are
built with large bisection bandwidth [CGC16]. Topologies such as Fat Trees
or VL2 have full bisection bandwidth. In fact, they are permutation net-
works. It means that when the capacity is available at the border to send
and receive a communication, it is always possible to find a path inside the
network for the communication. Thus, only border links (i.e., links between
the servers and the ToR switches) have to be taken into account.

We consider a data center with m servers, see an example in Fig. 8.2. In
large data centers, what we refer to as servers are in fact a rack of servers.
In this case, we only model inter-rack bandwidth, as within-rack bandwidth
is usually 5 to 20 times larger than inter-rack bandwidth [Ahm+14]. Each
server is modeled by a machine. However, we now introduce two network
machines per link connecting a Top of Rack (ToR) switch to a server Mj,
one for the download traffic, Nd

j , and the other for the upload traffic, Nu
j .

When a network task is scheduled to be executed at time t between machines
Mi and Mj, the task Ti→j is placed in both the upload network machine Nu

i

of Mi and the download network machine Nd
j of Mj in the same time step t.

The parallel execution of the task in both machines models the communica-
tion between the two machines.

In the following, we assume that the machines and the network machines

8.4. HARDNESS 179

are identical. For the machines, this is a classical case considered in schedul-
ing problems and is often true in practice in data centers. For the network
machines, they are all representing links between servers and ToR switches
and thus are often similar in data centers. Thus, cij = ci for all tasks Ti ∈ T
and ci→j,ℓ = ci→j for all Ti→j ∈ N .

Also, less efficient networks can be modeled. In this case, it is enough to
reduce the capacity of the network machines by a factor equal to C

O(m logm)
,

with C the minimum multicut of the network, to ensure that paths exist,
see e.g., [GVY93]. The model then gives a C

O(m logm)
-approximation of the

makespan.

8.4 Hardness

We show here that Scheduling With Network Tasks is harder than
scheduling with communication delays. Both problems are clearly NP-
complete as they are generalizations of the problem of scheduling with
precedence. However, there exists a simple greedy algorithm which has a
3-approximation factor when there are communication delays (but an in-
finite network capacity). We prove that this algorithm may be arbitrarily
bad in our framework (by arbitrarily we mean Ω(m)-approximate, i.e., the
algorithm does not do significantly better than the simple algorithm putting
all jobs on a single machine).

8.4.1 List-Scheduling

Next, we study the performance of the well-known “List Scheduling” algo-
rithm which is 3-approximate in the case of infinite network capacity, i.e., b
= +∞ (see [Ray87]). Initially, we describe the algorithm and then we show
that its approximation ratio is bad in the worst case, even when considering
only unit time tasks.
List scheduler. The UET list scheduler algorithm [Ray87] provides a 2-
approximation of the problem scheduling with communication delays when
(CPU) task completion times and communication delays are unitary. We say
that a task Tj ∈ T is available on Machine Mp ∈ M during the time slot
(t−1, t] if it has no parent or if each of its parents has been completed either
on machine Mi at time < t−1 or on machine Mj 6= Mi at time < t−2. Note
that, in this case, Tj can be feasibly executed by Mp during (t− 1, t].

180 CHAPTER 8. DATA CENTER SCHEDULING

Algorithm 8 Generalized UET List scheduler

1: U = T ⊲ U is the set of unprocessed tasks
2: t = 0 ⊲ t is the clock
3: while U 6= ∅ do
4: t = t + 1
5: for p = 1, 2, . . . ,m do ⊲ Iterate on machines
6: Compute the set of available tasks Ap,t

7: if Ap,t 6= ∅ then
8: min = {T ′ ∈ Ap,t|T ′

⊏ T for all T ∈ Ap,t}
9: Allocate to machine Mp the task min at time slot (t− 1, t]
10: end if
11: end for
12: end while

Initially, the algorithm computes a total order ⊏ of the tasks of T (con-
taining the partial order defined by the jobs) which corresponds to a feasible
schedule if all tasks are executed on a single machine. Then, it produces
a schedule by proceeding time slot by time slot and machine by machine
deciding a subset of available tasks to be executed during the slot (t− 1, t].
The pseudo-code of the algorithm is provided in Algorithm 8.
Efficiency when bandwidth is limited. The generalized UET List sched-
uler provides an ordered list of tasks to be executed for each machine. We
now consider the same schedule in the scenario in which bandwidth is lim-
ited. In this case, a task which was scheduled at time t by the list scheduler
may have to wait and be scheduled later after all the necessary communica-
tions are done. Note that the execution of the algorithm defines a natural
(partial) order on the network tasks when executed with limited bandwidth.
The network tasks of a task Tj with Ti ⊏ Tj cannot be executed before
all network tasks of Ti have been executed. The partial order can then be
extended arbitrarily to a total order.

Theorem 2. List Scheduler is Ω(m)-approximate when network bandwidth
is limited even in the case of unitary costs.

Proof. We consider an instance of the problem with m machines and one job
with m2+m+1 tasks, where the DAG of precedence constraints G consists of
3 layers of nodes. The first layer contains the tasks T1, T2, . . . , Tm2 , the sec-
ond layer consists of the tasks Tm2+1, Tm2+2, . . . , Tm2+m while the third layer

8.5. ALGORITHMS 181

contains only the task Tm2+m+1. Moreover, we have the following precedence
relations: task Tm2+i is preceded by tasks T(i−1)m+1, T(i−1)m+2, . . . , Tim, for
1 ≤ i ≤ m, and task Tm2+m+1 is preceded by tasks Tm2+1, Tm2+2, . . . , Tm2+m.
There is a single (k = 1) network machine, N1, of capacity C1 = 1.

In the optimal schedule S∗, tasks T(i−1)m+1, T(i−1)m+2, . . . , Tim are exe-
cuted by machine Mi followed by Tm2+i, for 1 ≤ i ≤ m. The task Tm2+m+1

is executed m − 1 units of time after the completion of Tm2+1 on machine
M1. Only m − 1 communications are performed during (m + 1, 2m] from
Tm2+2, Tm2+3, . . . , Tm2+m to Tm2+m+1. The makespan of this schedule is
C(S∗) = 2m + 1.

On the other hand, Algorithm 8 may choose an order scheduling tasks
T(i−1)m+1, T(i−1)m+2, . . . , Tim simultaneously on machines M1,M2, . . . ,Mm,
respectively, during the time slot (i− 1, i], for 1 ≤ i ≤ m. The task Tm2+i is
executed by machine Mi. Lastly, the task Tm2+m+1 is executed by machine
M1. Globally, with Algorithm 8’s schedule, (m + 1)(m− 1) communications
have to be done. m(m − 1) between tasks of Layers 1 and 2, and (m − 1)
between tasks Tm2+2, ..., Tm2+m and the task of Layer 3, Tm2+m+1. No com-
munication is done during the first and last time slot. During the other
time slots, only one communication is performed. That is, the makespan
computed by the algorithm is C(S) = m2 + 1.

The main problem of Algorithm 8’s schedule is that it performs a large
number of communications compared to the optimal solution. The trivial al-
gorithm which schedules all tasks on a single machine and produces a schedule
with no communications is obviously m-approximate and Theorem 2 implies
that List Scheduling is at least as bad as this trivial algorithm. It is thus of
primary interest to find efficient algorithms to deal with limited bandwidth.

8.5 Algorithms

In this section, we propose two algorithms to solve the problem of Schedul-
ing With Network Tasks. The first one is a generalization of the well
known List Scheduling algorithm. The second one divides the problem into
two subproblems. The first subproblem computes an assignment of the tasks
to machines while minimizing the CPU and the networking work. The second
subproblem computes a schedule for the tasks once the placement has been
selected. We provide approximation algorithms for the two subproblems.

182 CHAPTER 8. DATA CENTER SCHEDULING

8.5.1 Generalized List Scheduling

We propose a new algorithm, Generalized List Scheduling (referred to
as G-List), to solve our problem. To do so, we generalize the notion of an
available task defined for the list scheduler algorithm [Ray87]. The goal is
then to avoid carrying out useless network tasks. The main idea is two-fold:
(1) Like classical greedy algorithms, we consider tasks and their possible as-
signments to machines. However, the same task may need different amounts
of communications if assigned to different machines. We thus consider all the
possible (available task, machine) couples at time t and sort them according
to the number of required communications by the schedule. The algorithm
thus places a task on a machine in which the most data is available if possible.
(2) A task is placed on a machine at time t only if all its communications
tasks can be done before time t. Otherwise, we delay its placement.
Description of the algorithm. A high level pseudo-code of G-List is
provided in Algorithm 9. We define an available task/machine-assignment
at time slot (t − 1, t] as a pair task/machine (T ∈ T ,M) for which all pre-
ceding tasks of T have been completed before time t − 1 and for which all
needed communications with machines different than P can be scheduled
before time t− 1. At each time slot, G-List computes the set A of available
task/machine-assignments. It then sorts the tasks in the set according to the
amount of needed communications to be scheduled. While A is not empty, it
schedules (Tmin,Mmin), the minimum element of the set. It then updates A
by removing the task/machine-assignments with machine Mmin and the ones
whose needed communications cannot be scheduled any more.

Note that A is not computed and sorted from scratch at each iteration.
Indeed, A can be updated using simple efficient algorithms and data struc-
tures. Moreover, when completion times of tasks are large, it is not necessary
to iterate on all time slots. Several features are added to improve the algo-
rithm:

(1) In case of ties, we place first the task whose out-tree has the longest
branch, considering the sum of CPU and network tasks.

Indeed, the longest branch is a lower bound on the time to process the
tasks depending on a task. It may be seen as a generalization of placing
first tasks with longer processing times in the classic 4/3-approximation
algorithm for scheduling [Gra66].

(2) The algorithm makes two passes: the first one considering the workflow

8.5. ALGORITHMS 183

Algorithm 9 Generalized List Scheduling

1: U = T ⊲ U is the set of unprocessed tasks
2: t = 0 ⊲ t is the clock
3: while U 6= ∅ do
4: t = t + 1
5: compute A the set of available task/machine-assignments.
6: sort A according to number of needed communications
7: while A 6= ∅ do
8: (Tmin,Mmin) = min(A)
9: Allocate to machine Mmin the task Tmin at time slot (t− 1, t]
10: Allocate needed network tasks for Tmin to network machines in

previous time slots
11: Update A
12: end while
13: end while

and the second one considering the “reverse workflow” in which an arc
between task Ti and Tj is transformed into an arc between tasks Tj and
Ti. Then, the best between the two passes is selected. The idea is that
out-trees are optimized by the first pass and in-trees by the second pass, in
the sense that tasks of the same subtrees are placed on the same machines
if possible.

(3) For each job, we designate a longest branch as the master branch; all
of its tasks are executed by a so called master machine. Then, before
placing a task on a slave machine, we first test that it would not be faster
to place it on the master machine when it will be free. That is, we only
place a task on a slave machine if its completion time plus the time to
send back the result to the master is smaller than the completion time of
the master machine.

Discussion. Note that, when considering no dependency between tasks (and
thus no communication), G-List boils down to the classical greedy schedul-
ing algorithm which is a 4/3 approximation. When considering dependency
and no communication, it reduces to list scheduling of [Gra66], and when
considering dependencies and communication (but no bandwidth limit), to
List Scheduler of [Ray87].

184 CHAPTER 8. DATA CENTER SCHEDULING

J1 = 1

J2 = 2

J3 = 3

J4 = 1

J5 = 1

J6 = 2

J7 = 3

c
J
1J

4 = 1
cJ2J4 = 4

cJ3J4
= 5

cJ3J6 = 2

cJ4J5
= 1

cJ4J6 = 1
c
J
4J

7 = 2

Figure 8.3: Example of a dependency graph . The master branch is high-
lighted in red.

s

T1

T2

T3

...

T
n−2

d s

m1

m2

m3

...

mi

r1

r2

...

rj

d

Figure 8.4: Example of simple (left) and single-stage (right) MapReduce
workflows with i map tasks and j reduce tasks.

8.5.2 Optimality on simple MapReduce Workflows

We consider the specific case of a simple MapReduce workflow, in which there
is a single Map phase and a single reduce task. Formally, a simple MapReduce
workflow is defined by a DAG with a source task s linked to n − 2 tasks,
T1, . . . , Tn−2, which are linked to a target task d, see Fig. 8.4. The completion
times of tasks T1, . . . , Tn−2 are equal. Similarly, the communication times of
tasks Ts→Ti

for 1 ≤ i ≤ n − 2 are equal and the communication times of
tasks TTi→d for 1 ≤ i ≤ n− 2 also. Note that simple MapReduce workflows
are very frequent in data centers and that they also model simpler workflows
(by setting to 0 some completion times) such as Map workflows and Reduce
workflows which are also very common [Ren+13].

We prove here that G-List is optimal on a simple MapReduce Workflow.

Note that the problem is NP-complete if the processing times of tasks

8.5. ALGORITHMS 185

T1, ..., Tn−2 are different. Indeed, an instance of the k-partition problem

can be directly reduced to an instance of the problem, in which the numbers
are the processing times of the tasks of a MapReduce workflow and for which
the communication times are 0 and the capacity is infinite. The problem is
NP-complete and no pseudo-polynomial algorithm exists to solve it when
k ≥ 3 [MD79].

Proposition 6. G-List is optimal on simple MapReduce workflows.

Proof. Let us compute the makespan of G-List on a simple MapReduce
workflow. We note a (resp. b and c) the completion time of network tasks
Ts→Ti

(resp. of (CPU) task Ti and of network tasks TTi→d) for 1 ≤ i ≤ n− 1.
G-List first selects any available branch (all branches are equivalent) of

the workflow to be executed by a master machine. Note that without loss
of generality we can always consider that the master machine executes both
task s and d.

The makespan is thus given by the time at which the master machine
finishes the last job d, denoted by tm.

We denote by κ, the number of intermediate tasks (out of the n − 2)
carried out by slave machines. The master thus carries out task s, n− 2− κ
intermediate tasks, and task d.

tm = cs + max((n− 2− κ)b, ts) + ct,

where ts is the time at which the slave machine receiving the last job (we
refer to this machine as the last slave machine in the following) has finished
sending its last result. Indeed, the task t is done when the master has finished
all the (n−2−κ) intermediate tasks assigned to it, after a time (n−2−κ)b,
and once the last data was received after a time ts given by

ts = tf +

(⌈
κ

m− 1

⌉

− 1

)

tI + b + tℓ,

where tf is the time at which the last slave machine receives its first data; the
interjob time ti is the time between the execution of two tasks; and tℓ is the
time to send the result of the last job, starting from the end of its execution.
We have tf = a(m − 1) if m − 1 divides κ, and tf = a(κ mod (m − 1))
otherwise.

G-List sends a task to a slave machine only if it is faster to send its data,
execute it, and get back its result, than executing it on the master machine.

186 CHAPTER 8. DATA CENTER SCHEDULING

Thus, G-List selects

κ = arg min
κ

(max(n− 2− κ)b, ts)).

The last step is to show that the makespan of G-List is optimal. Due to lack
of space, the proof is not provided here, but it can be found in [Gir+19a].

- If (n−2−κ)b ≥ tb, the limiting resource is the CPU of the master machine.
The makespan of G-List is optimal (i) as executing a job carried out by
the master on a slave machine would increase the makespan; (ii) and, as
the master machine takes the minimum time, (n − 2 − κ)b, necessary to
carry out the (n− κ− 2) jobs assigned to it, as it always works during the
whole execution of the algorithm.

We now consider that (n − 2 − κ)b < tb. We also first consider the (most
frequent) case in which the time to send the data of an intermediate task is
larger than the time to send the results, that is, a ≥ c. In this case, when
the last slave machine has executed a job, the result of the previous machine
has been sent, and it can then directly send its result. We thus have that

tℓ = c

and that the interjob time ti is

ti = max(b, a(m− 1)).

We distinguish between two cases:

- if b ≥ a(m − 1) (recall that we also have a ≥ c), the limiting resource is
the upload bandwidth of the master machine. We get

ts = aκ + b + c.

The makespan of G-List is optimal, as ts is the minimum time necessary
for the last slave machine to send the results of the κ

m−1
tasks assigned to

it. Indeed, aκ is the minimum time to receive the data of the last job, as
the master machine sends data continuously before. Then, the last slave
machine executes the job in time b and sends it back in time c.

8.5. ALGORITHMS 187

- if b < a(m − 1) (recall that we also have a ≥ c), the limiting resource is
the CPU of the slave machine. Thus,

ts = tf +

⌈
κ

m− 1

⌉

b + c.

Again, ts is minimum. Indeed, the time to receive the first packet tf is
minimum, as the master machine always sends data in the network until
κ jobs are sent to the slave machines. The time to carry out the κ

m−1
tasks

is κ
m−1

b, which is optimal. Lastly, the result of the last job is sent in time
c.

Similarly, G-List is optimal in the last following cases.

- a < c and b ≥ a(m− 1), we have

ts = a + b + κc.

The limiting resource is the download bandwidth of the master machine,
which is always used.

- a < c and b < a(m− 1), we get:

ts = tf +

⌈
κ

m− 1

⌉

b + c.

The limiting resource is the CPU of the slave machine, which is always
used as soon as the data is received (in minimum time).

8.5.3 Partition

When the workflows are complex, the greedy algorithm may have difficulty
in assigning the tasks to the available machines while minimizing the net-
work load. To prevent this, an efficient method consists in first carrying out
a partition of the tasks to be done by machines while minimizing the net-
work tasks that would be necessary to be done. We call this first phase or
subproblem the Partitioning to Schedule. For this subproblem, we pro-
vide an approximation algorithm with factor O(

√
log n logm), with n being

the number of tasks and m the number of machines, which comes from the

188 CHAPTER 8. DATA CENTER SCHEDULING

best approximation factor for the k−balanced partitioning problem. When
this preliminary phase is done, we just have to decide the order to process
the tasks. We call this problem the Scheduling When Placed prob-
lem. We provide an algorithm (which is a generalization of Hu’s algorithm
to handle network tasks) which is a depth-approximation of the problem.
Practical workflows have low depth, e.g., typically less than or equal to 4 for
a MapReduce workflow. This leads to a constant factor approximation ratio
in practice.

8.5.3.1 Partitioning to Schedule

To solve the problem, we use, as a subroutine, an algorithm to solve the
classic k-balanced partitioning problem [Eve+99]. Given an integer k ≥ 2
and a real ν ≥ 1, a (k, ν)-balanced partition of G = (V,E) is a subset of
the edges whose removal partitions the graph into at most k parts, where the
sum of the vertex weights in each part is at most ν

k
w(V). The (k, ν)-balanced

partitioning problem with input G = (V,E), k, and ν is to find a (k, ν)-
balanced partition of G with minimum capacity, i.e., for which the sum of
the weights of the arcs between parts is minimized. When ν = 2, the problem
is just called the k-balanced partitioning problem. Classic algorithms achieve
an approximation factor of O(log n) to solve the problem [Eve+99; ST97].
The approximation algorithm with the best known approximation factor,
O(
√

log n log k), is due to Krauthgamer et al. [KNS].
Partition works as follows. We consider the undirected version of the

DAG of the workflow as input. The completion times of the network (resp.
CPU) tasks correspond to the weights of the edges (resp. of the vertices). As
we do not know in advance if the best partition for our problem is balanced
(indeed, if the network delays are very long, it may be better to schedule
all the tasks on a single machine), we systematically test different levels of
balance.

The algorithm solves the k-balanced partitioning problem, for 1 ≤ k ≤
m. It then outputs the best solution, that is, the one minimizing the sum
of the weights of the arcs between parts divided by k (corresponding to
the average work of the network machines) and the maximum partition size
(corresponding to the work of the (CPU) machines).

In fact, first note that there exists an optimal partition using fewer than
k machines when the maximum work over all machines is less or equal to
2n
k
w(V). Indeed, if two machines have less than n

k
w(V) work to do, only

8.5. ALGORITHMS 189

one among both machines may do all the tasks assigned to them, and the
makespan may not be increased. Thus, only one machine may have less than
n
k
w(V) work to do, and there may be only k − 1 machines with more.

Theorem 3. Partition-Assign provides a O(
√

log n logm) -approximation
algorithm of the Partitioning to Schedule problem.

Proof. Let S∗ = W ∗
CPU + W ∗

N be an optimal solution of the Partitioning

to Schedule problem, where W ∗
CPU is the maximum work to be done on a

machine and W ∗
N is the network work.

There exists an integer k, with 1 ≤ k ≤ m, such that n
k
≤ W ∗

CPU ≤ 2n
k

.
Indeed, W ∗

CPU ≥ n
m

as at least one machine of the m machines has to do
more than 1/m-th of the work and W ∗

CPU ≤ n, the total amount of work to
be done.
Remark now that there exists an optimal partition using fewer than or ex-
actly k machines when the maximum work over all machines is less than or
equal to 2n

k
w(V). Indeed, if two machines have less than n

k
w(V) work to do,

only one among both machines may do all the tasks assigned to them, and
the makespan may not be increased. Thus, only one machine may have less
than n

k
w(V) work to do, and there may be only k − 1 machines with more.

Thus, without loss of generality, consider that S∗ uses at most k machines.
Consider now the solution SA provided by the k-balanced partitioning algo-
rithm for this value of k. We have SA = max part size + cut weight, with
cut weight the capacity of its cut and max part size the maximum weight
of a part.
On one hand, we have that cut weight ≤ O(

√
log n log k)W ∗

N . Indeed, S∗

provides a solution of the k-balanced partitioning algorithm, as it uses at
most k machines. On the other hand, we have that max part size ≤ 2n

k
.

As n
k
≤ W ∗

CPU , we get that max part size ≤ 2W ∗
CPU . This yields that

SA ≤ O(
√

log n logm)S∗.

190 CHAPTER 8. DATA CENTER SCHEDULING

Algorithm 10 Partition

1: Input: Set of workflows G, m number of machines.
2: partitions[m] ⊲ Solutions of m partitioning problems
3: for k = 1, 2, . . . ,m do ⊲ Iterate on number of processors
4: partitions[k] ← Compute an approximate solution of the k-balanced

partitioning problem for G.
5: end for
6: best sol = mink(max part size(partitions[k]) +

cut weight(partitions[k])/k)
7: return best sol

As the algorithm of Krauthgamer et al. is based on semi–definite pro-
gramming and has a long execution time, to solve the problem in practice
we use the O(log n) approximation algorithm described in [ST97]. The main
idea is to recursively partition the graph by solving, at each step, a Minimum
Bisection Problem. We use the Kernighan and Lin heuristic algorithm [KL70]
to solve bisection, leading to a time complexity of O(mn3 log n).

8.5.3.2 Scheduling When Placed

Theorem 4. Partition-Schedule provides a depth(W)-approximation al-
gorithm of the Scheduling When Placed problem, where depth(W) is
the depth of the workflow W to be scheduled.

Proof. Partition-Schedule considers the tasks of the workflow layer by
layer. It does not schedule a task of layer j if a task of layer i with i < j can
be scheduled.
Consider an optimal schedule S∗ and let C(S∗) be its makespan. We denote
by C(Li) the time to process the tasks of layer i and by C(Li → Lj) the time
to process the network tasks between layers i and j. Clearly, C(S∗) ≥ C(Li)
for 1 ≤ i ≤ depth(W). Similarly, C(S∗) ≥ C(Li → Li+1) for 1 ≤ i ≤
depth(W)− 1. Thus, the makespan of Partition-Schedule, c(A), is such
that

c(A) ≤
depth(W)
∑

i=1

C(Li) +

depth(W)−1
∑

i=1

C(Li → Li+1).

We thus have c(A) ≤ (2 depth(W)− 1)C(S∗).

8.6. EXPERIMENTAL EVALUATION 191

8.6 Experimental Evaluation

To validate our algorithm, we carried out some experiments using workflows
built using statistics from the data center traces comprising 25 millions tasks
released by Google [RWH11].
We compare the performances of our two proposed algorithms, G-List (its
variants with and without selection of the master branch referred to as G-

List-Master and G-List, respectively) and Partition, with the ones of
List Scheduler [Ray87] which was proposed to handle communication delays,
but which does not take into account the limited network capacity. We show
the importance of taking into account the competition of tasks for bandwidth.

8.6.1 Trace

We extracted the distributions of the number of tasks per job and of the delay
of computational tasks from the trace. The variances of the distributions are
huge. Indeed, 75% of jobs have only 1 task, but these tasks only account
for 20% of the total tasks. The average and maximum number of tasks of
a workflow are 38 and 90,000, respectively. Also, the task completion time
is heavy-tailed. The mean value is 28 minutes, but the longest task lasted 5
and a half days [LC12].

8.6.2 Network

The traces do not include statistics on network delays. This is why we tested
different scenarios. To this end, we define the parameter ρ, which we refer
to as network factor and which is the ratio between the average delay of
a network task and the average delay of a CPU task. We then considered
different values between 0% and 400% for ρ. We use ρ = 0.5 as the default
value, as it corresponds to a scenario in which roughly 33% of the time is
spent in network transfers [Cho+11].

8.6.3 Workflows

The dependencies between the tasks of a workflow are also not provided.
We thus compare the algorithms using workflows of different types: simple
MapReduce (defined in Section 8.5.2), 1-Stage MapReduce, and Random
workflows. 1-Stage MapReduce workflows contain a map phase, a shuffle

192 CHAPTER 8. DATA CENTER SCHEDULING

phase, and a reduce phase (see Fig. 8.4). For a given number of tasks, we
randomly choose the proportion of tasks in the first layer and in the second
layer. We then connect task s to all the tasks of the first layer, and all
the tasks of the second layer to task d. Each task of the first layer is then
connected to a task in the second layer. We then choose the edge density of
the workflow, that is, a probability p that a given task in the second layer
is dependent of a given task of the first layer. Random workflows are built
in the following way: we order the tasks from T1 to Tn. To avoid cycles, we
only add an arc from Ti to Tj (with probability p) if i < j. We then check
if the workflow is connected and accept it in this case, and generate another
one if not. We tested different values for p.

8.6.4 Datasets

The datasets are then built in the following way. We choose a number of
jobs to be executed. For each job, we choose its type of workflow ran-
domly: simple MapReduce, 1-Stage MapReduce or Random workflow, with
probabilities 20, 40, and 40%, respectively. It corresponds to a realistic dis-
tribution as at least 50% of applications in clusters can fit in the MapReduce
paradigm [Ren+13]. We then draw its number of jobs randomly according
to the distribution of the Google trace. The completion times of the (CPU)
tasks (resp. of the network tasks) are then chosen according to the distribu-
tion of the Google trace (and multiplied by the network factor ρ). For each
experiment, we average over 100 datasets.

8.6.5 Results

We compare the makespan of the schedules given by the different algorithms.
We also study its sensitivity to different parameters such as the number of
data center servers, number of tasks in a job, workflow edge density, and
network factor. We provide two sets of results. The first ones are for a
single workflow. The goal is to understand the efficiency of the algorithms
for different types of workflows. The second ones are for sets of 20 random
workflows of different types. Note that a single workflow may have up to
90,000 tasks. The goal is to see how efficient the algorithms are for a data
center workflow. As the variance of the Google trace is very high, we present
the results using a normalized makespan metrics, denoted as ratio. It is

8.6. EXPERIMENTAL EVALUATION 193

G-List G-List-Master Partition ListScheduler

1 5 10
machines

100

101

R
at

io

(a) simple MapReduce

1 5 10
machines

100

101

R
at

io

(b) 1-Stage MapReduce

1 5 10
machines

100

101

R
at

io

(c) random workflow

1 5 10
machines

100

101

R
at

io

(d) 20 workflows

Figure 8.5: Efficiency of the proposed algorithms as a function of the number
of machines for different types of workflows.

defined as the ratio between the makespan provided by an algorithm and the
best of two classical lower bounds:

∑

Ti∈T
ci/m and the completion time of

the longest branch. This metric allows to normalize the makespan between
workflows with very different task completion times. It also gives an idea of
the cost of network communications as the lower bound does not take into
account the completion time of network tasks.

194 CHAPTER 8. DATA CENTER SCHEDULING

8.6.5.1 Number of machines

We first vary the number of machines used to execute the workflows (Fig. 8.5).
With one machine, all the algorithms have a ratio of 1 as all the tasks are
executed on 1 machine and no network tasks need to be done. When the
number of machines increases, the ratio increases as tasks are done on several
machines in order to decrease the makespan. For simple MapReduce work-
flows, the ratio increases to 5 even though G-List is optimal. It means that
this value corresponds to the cost of network communications (and not to a
gap to optimality). Note that, for other types of workflows (1-Stage MapRe-
duce, random), the ratio has similar or lower values, showing the efficiency
of our algorithms.

The gap between List Scheduler and our algorithms, G-List and Par-

tition, also increases with the number of machines. This shows that our
algorithms make much better use of the increased processing power avail-
able by optimizing the network communications. G-List provides the best
solutions for simple MapReduce worfklows (Fig. 8.5a), as the algorithm is
optimal for this type of workflow. However, Partition is also behaving well
and provides close to optimal solutions. For 1-Stage MapReduce workflows
(Fig. 8.5b), Partition is a lot more efficient than G-List as this type of
workflow is more complex to schedule. On random workflows, both algo-
rithms behave well. This is due to the fact that random workflows have
DAGs with longer depths and that there are fewer possible scheduling com-
binations (see the following discussion for edge density). Indeed, the ratio
is close to 1 in this case. On the sets of 20 workflows, the three algorithms
behave similarly, with a small advantage for G-List-Master.

8.6.5.2 Size of the workflow

We observe similar results for this parameter (Fig. 8.6), G-List is a bit
better on simple MapReduce, but Partition is significantly better on K2.
For random workflows and the sets of 20 workflows, the algorithms perform
similarly.

8.6.5.3 Edge density

To understand for which kinds of workflows each algorithm is more efficient,
we studied two parameters: edge density and network factor. We made the
edge density vary from 0 to 1 (Fig. 8.7). With a small edge density, all

8.6. EXPERIMENTAL EVALUATION 195

20 80 140
tasks

100

101

102

R
at

io

(a) simple MapReduce

20 80 140
tasks

100

101

102

R
at

io

(b) 1-Stage MapReduce

20 80 140
tasks

100

101

102

R
at

io

(c) random workflow

Figure 8.6: #tasks per workflow.

196 CHAPTER 8. DATA CENTER SCHEDULING

0.0 0.5 1.0
Edge density

100

101

102

R
at

io

(a) 1-Stage MapReduce

0.0 0.5 1.0
Edge density

100

101

102

R
at

io

(b) random workflows

Figure 8.7: Efficiency of the proposed algorithms as a function of the workflow
edge density.

algorithms behave well. The tasks are not very dependent on each other,
and scheduling decisions are easy to take. When the edge density increases,
scheduling becomes harder, and Partition behaves better as it considers the
global structure of the dependency digraph, especially for 1-Stage MapRe-
duce workflows (Fig. 8.7a). For random workflows (Fig. 8.7b), Partition
is also better for edge densities higher than 0.2. However, all algorithms
(including List Scheduler) behave well when the value of the edge density is
1. Indeed, in this case, there exists a complete order of the tasks, so all algo-
rithms carry out the same schedule on a single machine. In general, random
workflows tend to have a long branch. G-List-Master is executing all the
tasks of this branch on the master machine and thus is the most effective for
this type of workflow.

8.6.5.4 Network factor

We vary ρ from 0 to 4 (Fig. 8.8). When the network factor is zero, all al-
gorithms are equivalent. Indeed, this corresponds to a scenario in which
network capacity is not a limiting resource. In this case, only the CPU task
placement has to be optimized. Then, when the completion times of the net-
work tasks increase, our algorithms, as expected, perform better than List
Scheduler. Partition is the most efficient for all except for simple MapRe-
duce workflows.

To summarize, both algorithms behave well for different types of work-
flows and different sets of parameters. G-List is the best on simple MapRe-

8.6. EXPERIMENTAL EVALUATION 197

0 2 4
Network factor

100

101

102

R
at

io

(a) simple MapReduce

0 2 4
Network factor

100

101

102

R
at

io

(b) 1-Stage MapReduce

0 2 4
Network factor

100

101

102

R
at

io

(c) random workflow

0 2 4
Network factor

100

101

102

R
at

io

(d) 20 workflows

Figure 8.8: Efficiency of the proposed algorithms for different network factors
and types of workflows.

198 CHAPTER 8. DATA CENTER SCHEDULING

duce worfklows and its variant with Master branch is efficient on Random
workflows. Partition, in general, is better when the workflows are more
complex and when the network is a strong bottleneck. Data center operators
should thus choose a solution based on their mix of applications and network
capacity.

8.7 Conclusion

In this chapter, we proposed a new framework to model the orchestration of
tasks in a datacenter for scenarios in which the network bandwidth is a limit-
ing resource. We introduce a new problem, Scheduling With Network

Tasks, in which, along with traditional (CPU) tasks, network tasks have
to be scheduled on network machines. We propose two algorithms to solve
the problem, G-List and Partition, for which we derive some theoretical
guarantees. We demonstrate their effectiveness using datasets built using
statistics from Google data center traces [RWH11].
The paper focuses more on the theoretical side. An interesting future work
may also concern the study of the practical behaviors of the algorithms on a
testbed, comparing them with practical solutions proposed for data centers.

REFERENCES 199

References

[Ahm+14] Faraz Ahmad, Srimat T Chakradhar, Anand Raghunathan, and
TN Vijaykumar. “ShuffleWatcher: Shuffle-aware Scheduling in
Multi-tenant MapReduce Clusters.” In: USENIX Annual Tech-
nical Conference. 2014, pp. 1–12 (cit. on p. 178).

[CGC16] Tao Chen, Xiaofeng Gao, and Guihai Chen. “The features,
hardware, and architectures of data center networks: A survey”.
In: Journal of Parallel and Distributed Computing 96 (2016),
pp. 45–74 (cit. on p. 178).

[Cho+11] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I Jor-
dan, and Ion Stoica. “Managing data transfers in computer
clusters with orchestra”. In: ACM SIGCOMM Computer Com-
munication Review. Vol. 41. 4. 2011 (cit. on pp. 13, 172, 174,
191).

[CKL] Fangfei Chen, Murali Kodialam, and TV Lakshman. “Joint
scheduling of processing and shuffle phases in mapreduce sys-
tems”. In: IEEE INFOCOM 2012 (cit. on p. 175).

[CPW99] Bo Chen, Chris N Potts, and Gerhard J Woeginger. “A review
of machine scheduling: Complexity, algorithms and approxima-
bility”. In: Handbook of combinatorial optimization. Springer,
1999, pp. 1493–1641 (cit. on p. 175).

[CS12] Mosharaf Chowdhury and Ion Stoica. “Coflow: A networking
abstraction for cluster applications”. In: ACM Workshop on
Hot Topics in Networks. 2012, pp. 31–36 (cit. on p. 174).

[CZS14] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. “Efficient
coflow scheduling with varys”. In: ACM SIGCOMM Computer
Communication Review. Vol. 44. 4. 2014, pp. 443–454 (cit. on
pp. 172, 174).

[DG08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified
data processing on large clusters”. In: Communications of the
ACM 51.1 (2008) (cit. on p. 172).

200 CHAPTER 8. DATA CENTER SCHEDULING

[Dog+14] Fahad R Dogar, Thomas Karagiannis, Hitesh Ballani, and
Antony Rowstron. “Decentralized task-aware scheduling for
data center networks”. In: ACM SIGCOMM Computer Com-
munication Review. 2014, pp. 431–442 (cit. on pp. 172, 174).

[Eve+99] Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber.
“Fast approximate graph partitioning algorithms”. In: SIAM
Journal on Computing 28 (1999) (cit. on p. 188).

[Gir+19a] Frédéric Giroire, Nicolas Huin, Andrea Tomassilli, and Stéphane
Pérennes. When Network Matters: Data Center Scheduling with
Network Tasks. Tech. rep. Inria, Jan. 2019 (cit. on p. 186).

[Gir+19b] Frédéric Giroire, Nicolas Huin, Andrea Tomassilli, and Stéphane
Pérennes. “When network matters: Data center scheduling with
network tasks”. In: IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications. 2019 (cit. on pp. 13, 171).

[Gra66] Ronald L Graham. “Bounds for certain multiprocessing anoma-
lies”. In: Bell System Technical Journal 45.9 (1966), pp. 1563–
1581 (cit. on pp. 175, 182, 183).

[Gre+09] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth
Kandula, Changhoon Kim, Parantap Lahiri, David A Maltz,
Parveen Patel, and Sudipta Sengupta. “VL2: a scalable and
flexible data center network”. In: ACM SIGCOMM computer
communication review. Vol. 39. 4. 2009, pp. 51–62 (cit. on
p. 172).

[Guo+08] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang
Zhang, and Songwu Lu. “Dcell: a scalable and fault-tolerant
network structure for data centers”. In: ACM SIGCOMM Com-
puter Communication Review. Vol. 38. 4. 2008 (cit. on p. 172).

[GVY93] Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. “Ap-
proximate max-flow min-(multi) cut theorems and their appli-
cations”. In: ACM symposium on Theory of computing. 1993,
pp. 698–707 (cit. on p. 179).

[Isa+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Den-
nis Fetterly. “Dryad: distributed data-parallel programs from
sequential building blocks”. In: ACM SIGOPS operating sys-
tems review. Vol. 41. 3. ACM. 2007 (cit. on p. 172).

REFERENCES 201

[Jal+15] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram Rao,
Konstantin Makarychev, and Matthew Caesar. “Network-aware
scheduling for data-parallel jobs: Plan when you can”. In: ACM
SIGCOMM Computer Communication Review. Vol. 45. 4. 2015,
pp. 407–420 (cit. on p. 175).

[KL70] Brian W Kernighan and Shen Lin. “An efficient heuristic pro-
cedure for partitioning graphs”. In: The Bell system technical
journal 49 (1970) (cit. on p. 190).

[KNS] Robert Krauthgamer, Joseph Naor, and Roy Schwartz. “Par-
titioning graphs into balanced components”. In: ACM-SIAM
SODA 2009 (cit. on p. 188).

[LC12] Zitao Liu and Sangyeun Cho. “Characterizing machines and
workloads on a Google cluster”. In: IEEE Parallel Processing
Workshops (ICPPW). 2012 (cit. on p. 191).

[MD79] R Garey Michael and S Johnson David. “Computers and in-
tractability: a guide to the theory of NP-completeness”. In: WH
Free. Co., San Fr (1979) (cit. on p. 185).

[MQS98] Alix Munier, Maurice Queyranne, and Andreas S. Schulz. “Ap-
proximation Bounds for a General Class of Precedence Con-
strained Parallel Machine Scheduling Problems”. In: Lecture
Notes in Computer Science (1998), pp. 367–382. issn: 0302-
9743. doi: 10.1007/3-540-69346-7_28 (cit. on p. 175).

[Mur+11] Derek G Murray, Malte Schwarzkopf, Christopher Smowton,
Steven Smith, Anil Madhavapeddy, and Steven Hand. “CIEL:
a universal execution engine for distributed data-flow comput-
ing”. In: Proc. 8th ACM/USENIX Symposium on Networked
Systems Design and Implementation. 2011, pp. 113–126 (cit.
on p. 172).

[NS14] Dmitry Namiot and Manfred Sneps-Sneppe. “On micro-services
architecture”. In: International Journal of Open Information
Technologies 2.9 (2014), pp. 24–27 (cit. on p. 172).

[PY90] Christos H Papadimitriou and Mihalis Yannakakis. “Towards
an architecture-independent analysis of parallel algorithms”. In:
SIAM journal on computing 19.2 (1990), pp. 322–328 (cit. on
p. 175).

https://doi.org/10.1007/3-540-69346-7_28

202 CHAPTER 8. DATA CENTER SCHEDULING

[Ray87] Victor J Rayward-Smith. “UET scheduling with unit interpro-
cessor communication delays”. In: Discrete Applied Mathemat-
ics 18.1 (1987) (cit. on pp. 175, 179, 182, 183, 191).

[Ren+13] Kai Ren, YongChul Kwon, Magdalena Balazinska, and Bill
Howe. “Hadoop’s adolescence: an analysis of Hadoop usage in
scientific workloads”. In: Proceedings of the VLDB Endowment
6.10 (2013), pp. 853–864 (cit. on pp. 184, 192).

[RWH11] Charles Reiss, John Wilkes, and Joseph L Hellerstein. “Google
cluster-usage traces: format+ schema”. In: Google Inc., White
Paper (2011), pp. 1–14 (cit. on pp. 174, 191, 198).

[ST97] Horst D Simon and Shang-Hua Teng. “How good is recursive
bisection?” In: SIAM Journal on Scientific Computing 18.5
(1997), pp. 1436–1445 (cit. on pp. 188, 190).

[Tho+11] Kurt Thomas, Chris Grier, Justin Ma, Vern Paxson, and Dawn
Song. “Design and evaluation of a real-time url spam filtering
service”. In: IEEE Symposium on Security and Privacy (SP).
2011, pp. 447–462 (cit. on pp. 13, 172).

[Zah+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur
Dave, Justin Ma, Murphy McCauley, Michael J Franklin, Scott
Shenker, and Ion Stoica. “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing”.
In: USENIX conference on Networked Systems Design and
Implementation. 2012 (cit. on p. 172).

Chapter 9

Path Protection in Elastical
Optical Networks

Contents
9.1 Introduction . 203

9.2 Related Work . 206

9.3 Statement of the RMSA Protection Problem . . 207

9.4 Path Protection Models 208

9.5 Solution Design 210

9.6 Numerical Results 213

9.6.1 Data Sets . 213

9.6.2 Performance of CG Models 215

9.6.3 Shared vs. Dedicated Path Protection 215

9.7 Conclusion . 218

The content of this chapter has been published before in [TJG18].

9.1 Introduction

In an Elastic Optical Network (EON), data is distributed over a number of
low data rate subcarriers without having to strictly follow the ITU-T fixed
wavelength grid. In this way, with a data traffic more and more uncertain
and heterogeneous, the spectrum resources can be used more efficiently and
with a higher degree of flexibility [Jin+09].
With respect to a classical WDM network, EONs impose additional con-
straints on the structure of the optical path. Indeed, EONs require that
contiguous frequency slots are allocated to each connection, which is also the
main difference between the Routing and Spectrum Assignment (RSA) and

203

204 CHAPTER 9. PATH PROTECTION IN EON

Routing and Wavelength Assignment (RWA) problems. Thus, the already
proposed RWA methods are not suitable for EONs.
The RSA problem requires to find both an end-to-end optical path and a
contiguous subset of frequency slots for each connection request.
Furthermore, EONs open up the possibility of exploiting multiple modulation
formats for the different subcarriers. In such a way, the utilization efficiency
could be further enhanced [Jin+10]. The problem of also determining a
modulation format in addition to a routing path and a contiguous segment
of spectrum is often referred to as the Routing, Modulation, and Spectrum
Allocation (RMSA) problem. The problem is known to be NP-Hard even in
the absence of modulation formats [KW11] and is challenging, even on small
instances.
With the increasing efficiency in terms of resource usage, a link may accom-
modate a larger number of connections in EONs. Hence, the effects of a
failure, such as a fiber cut, could be even more disruptive than in traditional
networks. Network failures have been widely investigated (see e.g., [Tur+10;
Ian+02]). In the results of [Tur+10], each link experienced, on average, 16
failures per year. If not well managed, a failure may correspond to loss of
service to users and loss of revenue. It is thus necessary to provide protection
against failures in order to guarantee continuity of service and no violation of
SLA requirements. We focus our attention on the single link failure scenario,
since they are the predominant form of failures in optical networks [RSM03].
Fault management techniques can be grouped into two categories: restora-
tion and protection. In restoration, the network spare resources are used to
reroute the connections affected by the failure. In protection, spare capacity
is reserved in advance during connection setup. Restoration schemes use
network spare resources more efficiently, but on the other hand, protection
schemes have a faster restoration time and guarantee the recovery [SRM02].
We thus study the latter schema.
In dedicated protection, there is no spectrum resources sharing between
backup lightpaths. Each frequency slot is used for at most one lightpath. In
shared protection, backup spectrum resources can be shared among different
lightpaths if they fail independently. If, on one hand, in shared protection,
spectrum resources are used more efficiently [ZS00], on the other hand, in
dedicated protection the recovery time is smaller. We thus study both pro-
tection schemes in this paper.
Another classification of the protection techniques can be made according
to the recovery mechanisms. It could consist in a local repair (i.e., link

9.1. INTRODUCTION 205

protection) or in an end-to-end repair (i.e., path protection). Link protection
schemes reroute the traffic only around the failed link. Path protection
schemes reroute the traffic through a backup path if a failure occurs on
its working path. With path protection, network resources are used more
efficiently [RSM03].
We consider the problem of providing for each connection, a link-disjoint
backup lightpath, under both dedicated and shared path protection schemes.
Our model also includes practical parameters such as the modulation format
selection and the positions of regenerators. The modulation format of a
lightpath adds a constraint on the maximum transmission distance, which
may be extended by one or more regenerators if present in the route. One
of the key concerns of the network operators’ is the efficient utilization of
the deployed network capacity [Jin+09]. Our optimization goal is thus the
minimization of the spectrum requirements for the protection.
In this paper, we propose two models for both dedicated and shared path
protection against a single link failure. Our resolution strategy is based on a
decomposition model using the column generation technique. We show that
this technique is effective in dealing with the RMSA problem.
Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to propose a scalable
exact method to solve the problem of providing path protection against
a single link failure in elastic optical networks. The method is based
on a decomposition model using column generation.

• The model takes into account practical constraints, such as multiple
modulation formats, regenerators, and shared risk link groups.

• We compare the shared and dedicated path protection models and eval-
uate the tradeoff between the resolution time and the effectiveness, in
terms of bandwidth utilization.

• We additionally study the impact of the number of regenerators in the
network on the bandwidth requirements and on the latencies of both
primary and backup lightpaths.

The rest of this paper is organized as follows. In Section 9.2, we review related
works in more detail. In Section 9.3, we formally state the problem addressed
in this paper. In section 9.4, we describe our column-generation-based model

206 CHAPTER 9. PATH PROTECTION IN EON

and show the subproblem to be solved in Section 9.5. In Section 9.6, we
validate our model by various numerical results on two real world topologies
of different sizes. Finally, we draw our conclusions in Section 9.7.

9.2 Related Work

The problem of providing protection against failures in WDM networks has
been widely investigated in the literature, see e.g., [RSM03], [SRM02], [ZS00].
Nevertheless, not enough effort has been made in the context of EONs with
multiple modulation formats and flexible spectrum allocation.
Dedicated path protection. The problem of off-line routing and spectrum
allocation in flexible grid optical networks with dedicated path protection was
studied in [KW12] and [Kli13b]. The optimization goal considered is to min-
imize the width of spectrum required in the network. In [KW12], the authors
provide both an ILP formulation and a heuristic algorithm to solve the prob-
lem. In [Kli13b], an evolutionary algorithm metaheuristic is proposed with
the aim to support the search for optimal solutions.
Shared path protection. Shared protection for EONs was considered
in [Kli13a], [SWB14], and [WK13]. A genetic algorithm metaheuristic with
the goal to provide near optimal solutions to the problem of finding a pri-
mary and a backup path for each demand is proposed in [Kli13a]. The
closest works to ours are [SWB14] and [WK13]. The authors consider ex-
act methods and propose ILP formulations for both dedicated and shared
path protection, but with different optimization objectives. In [SWB14], the
authors minimize both the required spare capacity and the maximum num-
ber of frequency slots used in the network. In [WK13], the objective is to
minimize the width of spectrum required in the network. They propose an
ILP formulation in which each demand has a set of candidate pairs of link
disjoint routing paths. The ILP model is able to deal with small networks
(up to 9 nodes and 26 links). For larger networks, they propose heuristic
algorithms based on both jointly and separated assignment of lightpaths to
the demands.
Model Scalability. Previous works highlight the fact that finding an opti-
mal or a near-optimal solution to the problem of jointly computing both a
primary and a backup path for each demand is a challenging task, even for
networks of small sizes and for a small number of demands. For instance,
in [WK13] the authors show the benefits in terms of computing time and

9.3. STATEMENT OF THE RMSA PROTECTION PROBLEM 207

Figure 9.1: An example of SRLG Constraints

accuracy of computing the set of backup paths after the primary path alloca-
tion. In order to be able to deal with larger datasets, we adopt a two phase
approach. First, we find a working path for each demand, then a backup
path under both dedicated and shared protection schemes. We use the col-
umn generation technique as a solution approach, as results from [Rui+13]
evidence the effectiveness of the column generation techniques in obtaining
solutions for large instances of the RSA problem (but they do not consider
protection against failures). Exact models proposed in the literature are
only able to deal with small networks. On the contrary, our model is more
scalable and we are able to solve instances with 24 nodes, 43 links, and 120
traffic requests. Moreover, we take into account regenerators and choices of
modulation formats, which are not considered in the exact models of the
literature.

9.3 Statement of the RMSA Protection Prob-

lem

The RMSA problem assumes an undirected graph G = (V, L) with optical
node set V and link set L. We denote by ω(v) the set of links adjacent to
v, for v ∈ V . The bandwidth is slotted into a set S of frequency slots. The
traffic is defined by a set K of requests where each request k ∈ K has a source
(sk), a destination (dk), and a spectrum demand Dk, expressed in terms of
a number of frequency slots. The traffic is assumed to be symmetrical.

The provisioning of the primary lightpaths is given, and we are interested
in finding both a dedicated and a shared path protection with minimum
spectrum requirements, satisfying the spectrum contiguity and continuity
constraints, as well as the following constraints:

208 CHAPTER 9. PATH PROTECTION IN EON

• Shared Risk Link Group (SRLG) constraints, see Figure 9.1. Each
SRLG constraint is defined by a set of links sharing a common resource,
which affects all links in the set if the common resource fails. In the
context of optical networks, it refers to a bundle of fiber links going
through the same duct and that cannot be used simultaneously for
primary and backup provisioning of the same demand. Let F be the
set of all SRLG sets: F = {F : if ℓ and ℓ′ both belong to F , then ℓ
cannot be used in a path protecting ℓ′ and vice versa }.

• Modulation constraints The modulation format can be selected accord-
ing to the traffic demand and the distance. We consider four modu-
lation formats: BPSK (1 bit per symbol), QPSK (2 bits per symbol),
8QAM (3 bits per symbol), and 16QAM (4 bits per symbol) [CTV11].
For instance, if, for a demand k, we have a request of 250 Gb/s (i.e.,
Dk = 20 assuming the bandwidth of a subcarrier slot as 12.5 GHz),
then with BPSK DBSPK

k = 20 and with 16QAM, D16QAM
k = 5. We

consider the following maximum transmission distances: BPSK (9,600
Km), QPSK (4,800 Km), 8QAM (2,400 Km), and 16QAM (1,200 Km).
These values are based on the experimental results reported in [Boc+].
Moreover, we assume that a subset of the nodes have regeneration capa-
bilities. Indeed, decisions about the required equipment (i.e., transpon-
ders, regenerators, and switches) and its deployment are taken during
the planning phase [Kre+14].

9.4 Path Protection Models

We propose two column generation models relying on lightpath configurations
for both dedicated and shared path protection schemes. In the rest of the
paper, the two models will be referred to, respectively, as CG DP and CG -
SP.
A lightpath configuration, denoted by π, refers to a backup lightpath, i.e.,
a backup path, a spectrum slice with s as a starting frequency slot and a
modulation format. Denote by Π the set of all possible backup lightpath
configurations. Π is decomposed as follows:

Π =
⋃

k∈K

Πk =
⋃

k∈K

⋃

s∈S

Πks,

9.4. PATH PROTECTION MODELS 209

where Πk is the set of potentials lightpaths for provisioning request k, and
Πks is the set of potential lightpaths for provisioning request k with a slot
slice of width Dm

k according to the selected modulation format m such that
s is a starting slot. Note that Πk contains only feasible backup lightpaths
for a demand k. We say that a backup lightpath is feasible for k if it does
not contain any link in the same shared risk link group of some link of the
primary lightpath for k. Each lightpath configuration, or lightpath for short,
is denoted by π and is characterized by:
bπℓs: indicates if slot s is used on link ℓ in the backup lightpath associated
with π.
We assume that working lightpaths are known and described throughput the
following parameter:
akℓ : indicates if the primary lightpath of request k goes through link ℓ.
The model uses the following decision variables:
zπ = 1 if lightpath π ∈ Π is selected as a backup path, 0 otherwise.
xℓs = 1 if slot s is used on link ℓ in a backup path, 0 otherwise.
We denote with LSb the pairs (ℓ, s) | ℓ ∈ L, s ∈ S that can be used for
protection, i.e., that are not used by the primary lightpaths.
The objective minimizes the spectrum requirements for the protection, and
is written as follows:

min
∑

(ℓ,s)∈LSb

xℓs (9.1)

Constraints are as follows:

∑

π∈Πk

zπ ≥ 1 k ∈ K (9.2)

zπ ∈ {0, 1} π ∈ Π (9.3)

xℓs ∈ {0, 1} ℓ ∈ L, s ∈ S (9.4)

Model CG DP
∑

k∈K

∑

π∈Πk

bπℓszπ ≤ xℓs ℓ ∈ L, s ∈ S, (ℓ, s) ∈ LSb (9.5)

Model CG SP
∑

k∈K

akℓ′
∑

π∈Πk

bπℓszπ ≤ xℓs ℓ, ℓ′ ∈ L, s ∈ S

{ℓ, ℓ′} 6⊆ F : F ∈ F , ℓ 6= ℓ′, (ℓ, s) ∈ LSb (9.6)

210 CHAPTER 9. PATH PROTECTION IN EON

Constraint (9.2) ensures that each request is protected. Constraints (9.5) and
(9.6) make sure that each slot is never used more than once on each backup
fiber link. The difference between the two models relies on these constraints.
In the dedicated protection case, two working paths cannot have backup
paths going through the same link ℓ and slot s. On the other hand, in the
shared protection case, two working paths that are not sharing any link ℓ′

can use protection paths going through the same link ℓ and slot s.

9.5 Solution Design

Given the huge number of variables/columns in the proposed model, we
resort to the Column Generation method to solve its Linear Programming
(LP) relaxation. This technique consists of decomposing the original problem
into a restricted master problem - RMP - (i.e., model (9.1) - (9.6) with a very
restricted number of variables) and one or several pricing problems - PPs.
RMP and PPs are solved alternately. Solving RMP consists in selecting the
best lightpaths, while solving one PP allows the generation of an improving
potential lightpath, i.e., a lightpath such that, if added to the current RMP,
improves the optimal value of its LP relaxation. The process continues until
the optimality condition is satisfied, that is, the so-called reduced cost that
defines the objective function of the pricing problems is non negative for all
of them. An ε-optimal solution for the RSA problem is derived by solving
exactly the ILP model associated with the last RMP.
Let Kσ denote the set of requests that have the potential to be protected by
a lightpath starting at slot σ: Kσ = {k ∈ K : σ + Dk − 1 ≤ |S|}. Let Dσ

k

be the number of slots needed for request k in Kσ: Dσ
k = Dk for k ∈ Kσ :

σ + Dk − 1 = |S| and Dσ
k = Dk + 1 for k ∈ Kσ : σ + Dk − 1 < |S|.

Each pricing problem is indexed by a demand k and a starting slot σ, and
produces a single potential lightpath for protecting demand k, starting at
slot σ.
Definitions of the decision variables are as follows:
yℓ = 1 if link ℓ is used, 0 otherwise
xℓs indicates if slot s is used on link ℓ or not.
We first describe the model for shared protection. Let u

(9.2)
k and u

(9.6)
ℓℓ′s be

the values of the dual variables associated with constraints (9.2) and (9.6),

9.5. SOLUTION DESIGN 211

respectively. The pricing problem can be written as follows:

min 0 − u
(9.2)
k −

∑

(s,ℓ)∈S×L

∑

ℓ′∈L:
ℓ6=ℓ′

u
(9.6)
ℓℓ′s akℓ′ xℓs (9.7)

subject to:
∑

ℓ∈ω(sk)

yℓ =
∑

ℓ∈ω(dk)

yℓ = 1 (9.8)

∑

ℓ∈ω(v)

yℓ ≤ 2 v ∈ V \ {sk, dk} (9.9)

∑

ℓ′∈ω(v)\{ℓ}

yℓ′ ≥ yℓ v ∈ V \ {sk, dk}, ℓ ∈ ω(v) (9.10)

σ+Dσ
k
−1

∑

s=σ

xℓs = Dσ
k yℓℓ ∈ L (9.11)

yℓ, xℓs ∈ {0, 1} ℓ ∈ L, s ∈ S. (9.12)

Constraints (9.8), (9.9) and (9.10) define the routing of the current request.
Constraint (9.11) reserves a contiguous spectrum channel for the current
request.
We observe that for each link ℓ:
xℓs = yℓ for s ∈ {σ, . . . , σ + Dσ

k − 1}
xℓs = 0 for s /∈ {σ, . . . , σ + Dσ

k − 1}.
Therefore, the reduced cost can be rewritten:

min 0− u
(9.2)
k −

∑

ℓ∈L







∑

ℓ′∈L:
ℓ6=ℓ′

σ+Dσ
k
−1

∑

s=σ

u
(9.6)
ℓℓ′s







yℓ.

The first term is a constant for each request, and the second term cor-
responds to a summation over the links of the network. Therefore, we can
solve the pricing problem using the following objective function:

min −
∑

ℓ∈L







∑

ℓ′∈L:
ℓ6=ℓ′

σ+Dσ
k
−1

∑

s=σ

u
(9.6)
ℓℓ′s







yℓ.

212 CHAPTER 9. PATH PROTECTION IN EON

where u
(9.6)
ℓℓ′s are non-positive dual values. We conclude that, for each request

k, the lightpath generator corresponds to a weighted shortest-path problem

with link weight: − ∑

ℓ′∈L:ℓ6=ℓ′

σ+Dσ
k
−1

∑

s=σ

u
(9.6)
ℓℓ′s . As a result, the pricing problem

when modulation and regenerators are not taken into account can be solved
with a polynomial time algorithm, e.g., Dijkstra’s algorithm.
In the dedicated protection case, the only difference lies in the objective
function of the pricing problem, defined as:

min 0− u
(9.2)
k −

∑

(s,ℓ)∈S×L

u
(9.5)
ℓs xℓs

where u
(9.2)
k and u

(9.5)
ℓs are the values of the dual variables associated with

constraints (9.2) and (9.5), respectively. As with the shared protection case,
the problem can be reduced to finding a shortest path in a weighted graph.
Additional Modulation and Regenerators Constraints. However, if
modulation is taken into account, we need to consider the maximum trans-
mission distance constraint according to the considered modulation format.
Also, a regenerator may extend the maximum reachable distance with re-
spect to the chosen modulation format.
Each pricing problem is now indexed by a demand k, a starting slot σ, and
a modulation format m, and produces a single potential lightpath for pro-
tecting demand k, starting at slot σ, if such a lightpath exists. In fact, some
demands may not be satisfied, since the reachable distance is not long enough
to reach the destination from the source, even in the presence of regenerators.
Regenerators add an additional layer of complexity to the problem. Indeed,
without regenerators, for a demand (s, t), we could only consider to solve the
subproblem for the modulation formats whose transmission reach is greater
or equal to the length of the shortest path between s and t. With the pres-
ence of regenerators, this consideration does not apply, since the transmission
reach may be increased.
When considering modulation constraints and nodes with regenerator capa-
bilities, the pricing problem becomes a Minimum-Weight Path Problem with
a constraint on the path length. The Minimum-Weight Constrained Path
Problem is proven to be NP-Hard [GJ02]. The problem has been widely
studied and efficient algorithms have been proposed (see [ID05] for a survey
on the subject).
Our solving strategy is described as follows. Pricing problems are solved us-

9.6. NUMERICAL RESULTS 213

ing a modified version of the Label-setting algorithm for the Shortest Path
Problem with Resource Constraints [ID05] based on the dynamic program-
ming approach.
Given a weighted graph G = (V,E), a demand (s, t), the maximum transmis-
sion distance according to the selected modulation format, and a set of nodes
with regenerator capabilities Vr ∈ V , the algorithm starts from the trivial
path P = (s). It is then extended in all the feasible directions considering
both the length of the links and the remaining transmission distance from
the source s, which may have been increased because of the presence of one
or more nodes in the set Vr in the considered path. For each path extension
P ′ ⊃ P , a dominance algorithm is used in order to maintain only a Pareto-
optimal set of paths or paths which can be extended to a Pareto-optimal
one. When there are no more labels to be processed, the algorithm stops. A
solution of minimum cost is selected from the set of all computed paths.

9.6 Numerical Results

In this section, we evaluate the accuracy and performance of the proposed
models through simulation on two networks of different sizes and according
to different types of metrics. The results indicate that our models perform
well, with an accuracy better than 1% for CG DP and 20% for CG SP in the
considered networks. We also compare the performance of the dedicated and
shared protection schemes, and show the tradeoff between the time needed
to find a solution to the problem in the two cases and the savings in terms
of bandwidth overhead.

9.6.1 Data Sets

We conduct experiments on two network topologies: nobel-US (14 nodes, 21
links) from SNDlib [Orl+10b], and USnet (24 nodes, 43 links) from [Muk06].
For nobel-US, the length of each link is calculated using the GPS coordi-
nates of the nodes, according to the Cosine-Haversine formula. We assume
that there is one pair of bidirectional fibers on each link, and the available
spectrum width of each fiber is set to be 2000 GHz. We set the bandwidth
of a subcarrier slot to 12.5 GHz. We considered four modulation formats:
BPSK (binary phase-shift keying), QPSK (quadrature phase-shift keying),
8QAM (8-quadrature amplitude modulation), and 16QAM (16-quadrature

214 CHAPTER 9. PATH PROTECTION IN EON

Transmission Reach of BPSK (M=1) 9,600 Km
Transmission Reach of QPSK (M=2) 4,800 Km

Transmission Reach of 8-QAM (M=3) 2,400 Km
Transmission Reach of 16-QAM (M=4) 1,200 Km

Bandwidth of a frequency slot 12.5 GHz
Capacity of a frequency slot (with M=1) 12.5 Gb/s

Number of frequency slots per link 160

Table 9.1: Simulation Parameters
.

Network
#

traffic
requests

slots
primary
lightpaths

generated
columns

zlp z̃ilp

CG DP CG SP CG DP CG SP CG DP CG SP

nobel-US
20 164 8,735 12,875 292 171.05 292 201
40 273 15,190 21,744 546 237.1 546 290
60 457 19,128 28,316 816 328.82 816 430

USnet
40 344 26,828 40,931 574 339.6 574 431
80 856 39,514 67,936 1,278 557.37 1,278 713
120 1138 46,938 80,495 1,790 835.55 1,790 1,021

Table 9.2: Numerical results for CG DP and CG SP.

amplitude modulation). Similarly, as in [Zhu+13], we assume transmission
distances of 9,600 km for BPSK (M = 1), 4,800 km for QPSK (M = 2),
2,400 km for 8QAM (M = 3), and 1,200 km for 16QAM (M = 4), where
M denotes the number of bits per symbol. The number of considered nodes
with regenerator capabilities is 5 for nobel-US and 10 for USnet. Locations
are chosen according to the betweenness centrality, an index of the impor-
tance of an element in the network. It measures the extent to which a node
lies on paths between other nodes. The length of each link is calculated
using the GPS coordinates of the nodes, according to the Cosine-Haversine
formula. Primary paths are computed with the objective of minimizing the
total number of used frequency slots in the network. All experiments are run
on an Intel Xeon E5520 with 24GB of RAM. The simulation parameters are
summarized in Table 9.1.

9.6. NUMERICAL RESULTS 215

9.6.2 Performance of CG Models

Table 9.2 summarizes the results of the two decomposition models for dedi-
cated and shared protection on the two considered networks. We considered
different numbers of demands. The load of each demand is randomly selected
according to a uniform distribution within 50− 200 Gb/s.
A first difference can be observed in the number of generated columns, reveal-
ing the different level of complexity of the two models. This has an impact
on the completion time, as can be observed in Figure 9.2. The large number
of generated columns is also a consequence of our solving strategy. In fact,
in order to accelerate the time needed to solve the RMP and to find an ILP
solution to the last RMP, at each iteration, we remove nonbasic columns from
the master problem according to their marginal cost. Thus, the number of
iterations increases but, on the other hand, the time needed to find a solution
decreases.
Another difference between the two models is the quality of the solution.
CG DP may require twice the number of frequency slots than CG SP. This
is a natural consequence of the different protection strategies. Moreover, the
two models exhibit a different level of accuracy as expressed by the ratio of
(z̃ilp−zlp)/zlp. In the case of CG DP, it never exceeds 1%, while, for CG SP,
it may go up to 20%. The main reason for the difference in accuracy of the
two models is the following. In CG DP, to reduce the spectrum usage, the
goal is to try to use short paths. This leads to fractional solutions with a
small number of paths (and often a single one) for each demand. On the
contrary, in CG SP, the goal is to share backup paths as much as possible
in order to reduce the value of the objective function. This leads to a large
number of fractional paths per demand (sharing frequency slots with backup
paths of several other demands) in the optimal fractional solution. The last
RMP thus contains a large number of path variables with a nonzero value
(often < 0.1) for each demand. Only one of them will be set to 1 per demand,
when solving the last RMP as an ILP, leading to a larger gap.

9.6.3 Shared vs. Dedicated Path Protection

We now compare the performances of the two protection schemes. In Fig-
ure 9.3, we study the impact of the number of demands on the resources
required by the two protection schemes. We keep the total traffic intensity
constant and vary the number of demands. The traffic is set to be 10 Tbps

216 CHAPTER 9. PATH PROTECTION IN EON

10 20 30 40 50 60 70 80
Number of Demands

0

200

400

600

800
Ti

m
e

(s
)

CG_DP
CG_SP

(a) nobel-US

20 40 60 80 100 120
Number of Demands

1000

2000

3000

Ti
m

e
(s

)

(b) USnet

Figure 9.2: Average completion time as a function of the number of demands

on nobel-US and 15 Tbps on USnet. As the results indicate, the two protec-
tion schemes exhibit a very different behavior. As the number of demands
increases, the performance of the shared protection scheme, defined in terms
of used frequency slots improves. On the other hand, both the primary
lightpaths and the backup lightpaths computed according to the dedicated
protection scheme, tend to require more resources as the number of demands
becomes larger. This is not surprising, since an increasing number of de-
mands improves the frequency slots’ sharing opportunities of the lightpaths.
In fact, in the shared protection scheme two link-disjoint primary lightpaths
may share frequency slots in their backup paths. The benefits of shared over
dedicated path protection is about 20% and 40% in the two networks accord-
ing to the number of demands. Indeed, the benefits tend to increase with
the number of considered demands. These results are similar to the ones
reported by [SWB14] and [WK13].

Regenerators and Modulation Formats. Since, in optical networks, regener-
ators are costly, we are interested in evaluating the impact of the number of
regenerators on the lightpaths. In Figures 9.4 and 9.5, we study the impact
of the number of regenerators on the paths’ latencies and on the spectrum
requirements for the protection. We consider 50 demands for nobel-US and
100 demands on USnet. As the number of nodes with regeneration capa-
bilities increases, from 0 to 10 for nobel-US and from 5 to 15 for USnet

(Fig. 9.5), the spectrum requirements of the primary lightpaths and of the
backup lightpaths decrease in both protection schemes. The reason is that a

9.6. NUMERICAL RESULTS 217

20 30 40 50 60
Number of Demands

600

800

1000

1200

U
se

d
fr

eq
ue

nc
y

sl
ot

s

Primary
CG_DP
CG_SP

(a) nobel-US

30 60 90 120
Number of Demands

1000

1250

1500

1750

2000

U
se

d
fr

eq
ue

nc
y

sl
ot

s

(b) USnet

Figure 9.3: Average number of frequency slots used as a function of the
number of demands

higher number of regenerators allows the lightpaths to use better modulation
formats (in terms of bits per symbol) and consequently to use fewer resources.
However, when considering lightpaths’ latencies, the two protection schemes
behave surprisingly in a strikingly different way. While, in the dedicated
protection case, backup lightpaths’ latencies tend to decrease, in the shared
protection case, we observe the reverse phenomena. The explanation is the
following. In dedicated protection, backup paths cannot be shared and, thus,
the only means to reduce the number of used frequency slots is to use shorter
paths. This is what happens when increasing the number of regenerators.
Indeed, both primary and backup lightpaths need fewer resources, as they
may now use more efficient modulation formats. This leads to increased spare
capacity, allowing backup paths to use shorter routes. In shared protection,
the situation is different. Indeed, there are two ways to reduce the spectrum
usage: shorter paths as for DP, but also increased sharing of backup paths.
The second way happens to be predominant in our experiments: regenerators
allow better modulation formats and longer routes, leading to better sharing
opportunities. As a consequence, the spectrum requirements are reduced,
but this comes at the cost of increased lightpath lengths. However, the max-
imum delay of the backup paths in the shared protection case never exceeds
50 ms, the value often chosen as the maximum allowed delay for a route
in networks [Gir+03]. As the results indicate, particular attention should
be paid to lightpaths’ latencies when considering shared path protection, in
order not to violate the SLA requirements. Indeed, with the spectrum re-
sources as optimization task, the possibility to share resources may lead to

218 CHAPTER 9. PATH PROTECTION IN EON

longer paths at the expense of the delay. Note that we could also easily add
a constraint in the pricing problem in order to consider only lightpaths under
a certain delay requirement.

0 5 10
Number of Regenerators

0

10

20

30

40

50

D
el

ay
 (m

s)

CG_DP CG_SP

(a) nobel-US

5 10 15
Number of Regenerators

0

10

20

30

40

50

D
el

ay
 (m

s)

(b) USnet

Figure 9.4: Path delay distributions under the two protection schemes vs.
the number of regenerators.

0 5 10
Number of Regenerators

0

250

500

750

1000

1250

U
se

d
fr

eq
ue

nc
y

sl
ot

s Primary CG_DP CG_SP

(a) nobel-US

5 10 15
Number of Regenerators

0

500

1000

1500

2000

U
se

d
fr

eq
ue

nc
y

sl
ot

s

(b) USnet

Figure 9.5: Average number of frequency slots used as a function of the
number of regenerators

9.7 Conclusion

In this chapter, we investigated the problem of providing path protection
against a single link failure in elastic optical networks. We presented two de-
composition models for both dedicated and shared path protection schemes

9.7. CONCLUSION 219

taking into consideration modulation, regenerators, and shared risk link
group constraints. Through extensive simulation, we showed the effectiveness
of our models in finding a solution in a reasonable amount of time. More-
over, we studied different metrics in order to compare the accuracy of those
models, showing the tradeoff in terms of required bandwidth and latency
with the time resources needed by the two protection schemes. Our future
works include the further improvement of the model precision and scalability,
in order to be able to deal with larger and more complex instances of the
problem.

References

[Boc+] Adriana Bocoi, Matthias Schuster, Franz Rambach, Moritz
Kiese, Christian-Alexander Bunge, and Bernhard Spinnler.
“Reach-dependent capacity in optical networks enabled by
OFDM”. In: Proc. Optical Fiber Communication (OFC), 2009.
IEEE (cit. on p. 208).

[CTV11] Konstantinos Christodoulopoulos, Ioannis Tomkos, and EA
Varvarigos. “Elastic bandwidth allocation in flexible OFDM-
based optical networks”. In: Journal of Lightwave Technology
29.9 (2011), pp. 1354–1366 (cit. on p. 208).

[Gir+03] F. Giroire, A. Nucci, N. Taft, and C. Diot. “Increasing the ro-
bustness of IP backbones in the absence of optical level protec-
tion”. In: Annual Joint Conference of the IEEE Computer and
Communications Societies - INFOCOM. Vol. 1. 2003, pp. 1–11
(cit. on p. 217).

[GJ02] Michael R Garey and David S Johnson. Computers and in-
tractability. Vol. 29. wh freeman New York, 2002 (cit. on pp. 31,
212).

[Ian+02] Gianluca Iannaccone, Chen-nee Chuah, Richard Mortier, Supratik
Bhattacharyya, and Christophe Diot. “Analysis of link fail-
ures in an IP backbone”. In: Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment. ACM. 2002,
pp. 237–242 (cit. on p. 204).

[ID05] Stefan Irnich and Guy Desaulniers. “Shortest path problems
with resource constraints”. In: Column generation (2005),
pp. 33–65 (cit. on pp. 212, 213).

[Jin+09] Masahiko Jinno, Hidehiko Takara, Bartlomiej Kozicki, Yukio
Tsukishima, Yoshiaki Sone, and Shinji Matsuoka. “Spectrum-
efficient and scalable elastic optical path network: architecture,
benefits, and enabling technologies”. In: IEEE Communications
Magazine 47.11 (2009) (cit. on pp. 203, 205).

221

222 REFERENCES

[Jin+10] Masahiko Jinno, Bartlomiej Kozicki, Hidehiko Takara, Atsushi
Watanabe, Yoshiaki Sone, Takafumi Tanaka, and Akira Hirano.
“Distance-adaptive spectrum resource allocation in spectrum-
sliced elastic optical path network [topics in optical commu-
nications]”. In: IEEE Communications Magazine 48.8 (2010)
(cit. on p. 204).

[Kli13a] Miros law Klinkowski. “A genetic algorithm for solving RSA
problem in elastic optical networks with dedicated path protec-
tion”. In: International Joint Conference CISIS’12-ICEUTE´
12-SOCO´ 12 Special Sessions. Springer. 2013, pp. 167–176
(cit. on p. 206).

[Kli13b] Miros law Klinkowski. “An evolutionary algorithm approach for
dedicated path protection problem in elastic optical networks”.
In: Cybernetics and Systems 44.6-7 (2013), pp. 589–605 (cit. on
p. 206).

[Kre+14] Aristotelis Kretsis, Konstantinos Christodoulopoulos, Pana-
giotis Kokkinos, and Emmanouel Varvarigos. “Planning and
operating flexible optical networks: Algorithmic issues and
tools”. In: IEEE Communications Magazine 52.1 (2014) (cit.
on p. 208).

[KW11] Miroslaw Klinkowski and Krzysztof Walkowiak. “Routing and
spectrum assignment in spectrum sliced elastic optical path net-
work”. In: IEEE Communications Letters 15.8 (2011), pp. 884–
886 (cit. on p. 204).

[KW12] Miros law Klinkowski and Krzysztof Walkowiak. “Offline RSA
algorithms for elastic optical networks with dedicated path pro-
tection consideration”. In: Ultra Modern Telecommunications
and Control Systems and Workshops (ICUMT), 2012 4th In-
ternational Congress on. IEEE. 2012 (cit. on p. 206).

[Muk06] Biswanath Mukherjee. Optical WDM networks. Springer Sci-
ence & Business Media, 2006 (cit. on p. 213).

[Orl+10b] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Ar-
tur Tomaszewski. “SNDlib 1.0—Survivable network design li-
brary”. In: Networks 55.3 (2010) (cit. on pp. 68, 95, 119, 213).

REFERENCES 223

[RSM03] S Ramamurthy, Laxman Sahasrabuddhe, and Biswanath Mukher-
jee. “Survivable WDM mesh networks”. In: Journal of Light-
wave Technology 21.4 (2003), p. 870 (cit. on pp. 204–206).

[Rui+13] Marc Ruiz, Micha l Pióro, Mateusz Żotkiewicz, Miros law Klinkowski,
and Luis Velasco. “Column generation algorithm for RSA
problems in flexgrid optical networks”. In: Photonic network
communications 26.2-3 (2013) (cit. on p. 207).

[SRM02] Laxman Sahasrabuddhe, Senthil Ramamurthy, and Biswanath
Mukherjee. “Fault management in IP-over-WDM networks:
WDM protection versus IP restoration”. In: IEEE journal on
selected areas in communications 20.1 (2002), pp. 21–33 (cit. on
pp. 108, 204, 206).

[SWB14] Gangxiang Shen, Yue Wei, and Sanjay K Bose. “Optimal design
for shared backup path protected elastic optical networks under
single-link failure”. In: Journal of Optical Communications and
Networking 6.7 (2014) (cit. on pp. 206, 216).

[TJG18] A Tomassilli, B Jaumard, and F Giroire. “Path Protection in
Optical Flexible Networks with Distance-adaptive Modulation
Formats”. In: 2018 International Conference on Optical Net-
work Design and Modeling (ONDM). 2018 (cit. on pp. 13, 203).

[Tur+10] Daniel Turner, Kirill Levchenko, Alex C Snoeren, and Stefan
Savage. “California fault lines: understanding the causes and
impact of network failures”. In: ACM SIGCOMM Computer
Communication Review. Vol. 40. 4. ACM. 2010, pp. 315–326
(cit. on pp. 107, 108, 204).

[WK13] Krzysztof Walkowiak and Miros law Klinkowski. “Shared backup
path protection in elastic optical networks: Modeling and op-
timization”. In: Design of Reliable Communication Networks
(DRCN), 2013 9th International Conference on the. IEEE.
2013, pp. 187–194 (cit. on pp. 206, 216).

[Zhu+13] Zuqing Zhu, Wei Lu, Liang Zhang, and Nirwan Ansari. “Dy-
namic service provisioning in elastic optical networks with
hybrid single-/multi-path routing”. In: Journal of Lightwave
Technology 31.1 (2013), pp. 15–22 (cit. on p. 214).

224 REFERENCES

[ZS00] Dongyun Zhou and Suresh Subramaniam. “Survivability in op-
tical networks”. In: IEEE network 14.6 (2000), pp. 16–23 (cit.
on pp. 108, 204, 206).

Bibliography

[08] SMART 2020 Enabling the low-carbon economy in the in-
formation age, http://www.smart2020.org/ assets/files/02 -
Smart2020Report.pdf. 2008 (cit. on pp. 12, 166).

[AA99] Murat Alanyali and Ender Ayanoglu. “Provisioning algorithms
for WDM optical networks”. In: IEEE/ACM Transactions On
Networking 7.5 (1999) (cit. on p. 109).

[Abd+16] Sherif Abdelwahab, Bechir Hamdaoui, Mohsen Guizani, and
Taieb Znati. “Network function virtualization in 5G”. In: IEEE
Communications Magazine 54.4 (2016), pp. 84–91 (cit. on p. 8).

[Ach04] Tobias Achterberg. “SCIP-a framework to integrate constraint
and mixed integer programming”. In: (2004) (cit. on p. 29).

[Add+15] Bernardetta Addis, Dallal Belabed, Mathieu Bouet, and Ste-
fano Secci. “Virtual network functions placement and routing
optimization”. In: Cloud Networking (CloudNet), 2015 IEEE
4th International Conference on. IEEE. 2015 (cit. on pp. 10,
11, 46).

[ADF04] Hatem Ben Amor, Jacques Desrosiers, and Antonio Frangioni.
Stabilization in column generation. Groupe d’études et de
recherche en analyse des décisions, 2004 (cit. on p. 30).

[ADP80] Giorgio Ausiello, Alessandro D’Atri, and Marco Protasi. “Struc-
ture preserving reductions among convex optimization prob-
lems”. In: Journal of Computer and System Sciences 21.1
(1980), pp. 136–153 (cit. on pp. 48, 85).

[Ahm+14] Faraz Ahmad, Srimat T Chakradhar, Anand Raghunathan, and
TN Vijaykumar. “ShuffleWatcher: Shuffle-aware Scheduling in
Multi-tenant MapReduce Clusters.” In: USENIX Annual Tech-
nical Conference. 2014, pp. 1–12 (cit. on p. 178).

[Aky+14] Ian F Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, and Wu
Chou. “A roadmap for traffic engineering in SDN-OpenFlow
networks”. In: Computer Networks 71 (2014), pp. 1–30 (cit. on
pp. 3, 5).

225

226 BIBLIOGRAPHY

[ALV08] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat.
“A scalable, commodity data center network architecture”. In:
ACM SIGCOMM Computer Communication Review. Vol. 38.
4. ACM. 2008, pp. 63–74 (cit. on p. 61).

[AMS06] N. Alon, D. Moshkovitz, and S. Safra. “Algorithmic Construc-
tion of Sets for K-restrictions”. In: ACM Trans. Algorithms 2.2
(2006). issn: 1549-6325. doi: 10.1145/1150334.1150336 (cit.
on p. 48).

[Ara+16] J. Araujo, F. Giroire, J. Moulierac, Y. Liu, and R. Modrzejew-
ski. “Energy Efficient Content Distribution”. In: The Computer
Journal 59.2 (Feb. 2016), pp. 192–207 (cit. on p. 153).

[AV14] YK Agarwal and Prahalad Venkateshan. “Survivable network
design with shared-protection routing”. In: European Journal of
Operational Research 238.3 (2014), pp. 836–845 (cit. on p. 110).

[Bar+98] Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Mar-
tin WP Savelsbergh, and Pamela H Vance. “Branch-and-price:
Column generation for solving huge integer programs”. In: Op-
erations research 46.3 (1998), pp. 316–329 (cit. on p. 30).

[BBS16] Michael Till Beck, Juan Felipe Botero, and Kai Samelin.
“Resilient allocation of service Function chains”. In: Network
Function Virtualization and Software Defined Networks (NFV-
SDN), IEEE Conference on. IEEE. 2016 (cit. on p. 110).

[Bel15] Alcetel Lucent Bell Labs. White Paper: Global What if Ana-
lyzer of NeTwork Energy ConsumpTion (GWATT). Bell labs
application able to measure the impact of technologies like SDN
& NFV on network energy consumption. Murray Hill, NJ, USA,
2015 (cit. on pp. 12, 166).

[Ben62] Jacques F Benders. “Partitioning procedures for solving mixed-
variables programming problems”. In: Numerische mathematik
4.1 (1962), pp. 238–252 (cit. on pp. 89, 97).

[Ber+14] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi,
Masayoshi Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor,
Pavlin Radoslavov, William Snow, et al. “ONOS: towards an
open, distributed SDN OS”. In: Proceedings of the third work-

https://doi.org/10.1145/1150334.1150336

BIBLIOGRAPHY 227

shop on Hot topics in software defined networking. ACM. 2014,
pp. 1–6 (cit. on pp. 4, 80).

[Bha+16] Deval Bhamare, Raj Jain, Mohammed Samaka, and Aiman Er-
bad. “A survey on service function chaining”. In: Journal of
Network and Computer Applications 75 (2016), pp. 138–155
(cit. on p. 9).

[Bix12] Robert E Bixby. “A brief history of linear and mixed-integer
programming computation”. In: Documenta Mathematica (2012),
pp. 107–121 (cit. on p. 28).

[Boc+] Adriana Bocoi, Matthias Schuster, Franz Rambach, Moritz
Kiese, Christian-Alexander Bunge, and Bernhard Spinnler.
“Reach-dependent capacity in optical networks enabled by
OFDM”. In: Proc. Optical Fiber Communication (OFC), 2009.
IEEE (cit. on p. 208).

[Bol+10] Raffaele Bolla, Roberto Bruschi, Franco Davoli, and Flavio Cuc-
chietti. “Energy efficiency in the future internet: A survey of
existing approaches and trends in energy-aware fixed network
infrastructures”. In: IEEE Communications Surveys & Tutori-
als 13.2 (2010), pp. 223–244 (cit. on p. 138).

[Bol+14] R. Bolla, C. Lombardo, R. Bruschi, and S. Mangialardi.
“DROPv2: energy efficiency through network function vir-
tualization”. In: IEEE Network 28.2 (2014), pp. 26–32 (cit. on
p. 139).

[Bol98] Béla Bollobás. “Random graphs”. In: Modern Graph Theory.
Springer, 1998, pp. 215–252 (cit. on p. 68).

[Bou+15] Mathieu Bouet, Jérémie Leguay, Théo Combe, and Vania Co-
nan. “Cost-based placement of vDPI functions in NFV infras-
tructures”. In: International Journal of Network Management
25.6 (2015), pp. 490–506 (cit. on p. 45).

[Cas+10] Martin Casado, Teemu Koponen, Rajiv Ramanathan, and Scott
Shenker. “Virtualizing the network forwarding plane”. In: Pro-
ceedings of the Workshop on Programmable Routers for Exten-
sible Services of Tomorrow. ACM. 2010, p. 8 (cit. on p. 44).

228 BIBLIOGRAPHY

[Cas+17] Marco Casazza, Pierre Fouilhoux, Mathieu Bouet, and Stefano
Secci. “Securing virtual network function placement with high
availability guarantees”. In: 2017 IFIP Networking Conference
(IFIP Networking) and Workshops. IEEE. 2017, pp. 1–9 (cit.
on p. 110).

[CC+83] Vasek Chvatal, Vaclav Chvatal, et al. Linear programming.
Macmillan, 1983 (cit. on p. 30).

[CCN10] Zheng Cai, Alan L Cox, and TS Ng. Maestro: A system for
scalable openflow control. Tech. rep. 2010 (cit. on p. 4).

[CGC16] Tao Chen, Xiaofeng Gao, and Guihai Chen. “The features,
hardware, and architectures of data center networks: A survey”.
In: Journal of Parallel and Distributed Computing 96 (2016),
pp. 45–74 (cit. on p. 178).

[Cha+05] Claude Chaudet, Eric Fleury, Isabelle Guérin Lassous, Hervé
Rivano, and Marie-Emilie Voge. “Optimal positioning of active
and passive monitoring devices”. In: Proceedings of the 2005
ACM conference on Emerging network experiment and technol-
ogy. ACM. 2005, pp. 71–82 (cit. on p. 44).

[Cha+08] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and
S. Wright. “Power Awareness in Network Design and Routing”.
In: Annual Joint Conference of the IEEE Computer and Com-
munications Societies - INFOCOM. Apr. 2008, pp. 1130–1138
(cit. on p. 142).

[Cho+11] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I Jor-
dan, and Ion Stoica. “Managing data transfers in computer
clusters with orchestra”. In: ACM SIGCOMM Computer Com-
munication Review. Vol. 41. 4. 2011 (cit. on pp. 13, 172, 174,
191).

[Chu+] Cing-Yu Chu, Kang Xi, Min Luo, and H Jonathan Chao.
“Congestion-aware single link failure recovery in hybrid SDN
networks”. In: Proceedings of IEEE INFOCOM, 2015 (cit. on
p. 82).

[Chv79] V. Chvatal. “A greedy heuristic for the set-covering problem”.
In: Mathematics of operations research 4.3 (1979), pp. 233–235
(cit. on pp. 48, 54).

BIBLIOGRAPHY 229

[Chv83] V. Chvatal. Linear Programming. Freeman, 1983 (cit. on pp. 88,
148).

[Cis] Cisco. Bidirectional Forwarding Detection – Cisco. https://
www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/

guide/fs_bfd.html. Accessed: 2018-07 (cit. on p. 105).

[CKH95] Pierluigi Crescenzi, Viggo Kann, and M Halldórsson. A com-
pendium of NP optimization problems. 1995 (cit. on p. 31).

[CKL] Fangfei Chen, Murali Kodialam, and TV Lakshman. “Joint
scheduling of processing and shuffle phases in mapreduce sys-
tems”. In: IEEE INFOCOM 2012 (cit. on p. 175).

[CMN12] L. Chiaraviglio, M. Mellia, and F. Neri. “Minimizing ISP net-
work energy cost: formulation and solutions”. In: IEEE/ACM
Transactions on Networking (TON) 20 (2 Apr. 2012), pp. 463–
476 (cit. on p. 138).

[Coh+15] Rami Cohen, Liane Lewin-Eytan, Joseph Seffi Naor, and Danny
Raz. “Near optimal placement of virtual network functions”. In:
Computer Communications (INFOCOM), 2015 IEEE Confer-
ence on. IEEE. 2015, pp. 1346–1354 (cit. on pp. 11, 46).

[CP99] Zhi-Long Chen and Warren B Powell. “Solving parallel machine
scheduling problems by column generation”. In: INFORMS
Journal on Computing 11.1 (1999), pp. 78–94 (cit. on p. 29).

[CPL09] IBM ILOG CPLEX. “V12. 1: User’s Manual for CPLEX”.
In: International Business Machines Corporation 46.53 (2009),
p. 157 (cit. on p. 29).

[CPW99] Bo Chen, Chris N Potts, and Gerhard J Woeginger. “A review
of machine scheduling: Complexity, algorithms and approxima-
bility”. In: Handbook of combinatorial optimization. Springer,
1999, pp. 1493–1641 (cit. on p. 175).

[CS12] Mosharaf Chowdhury and Ion Stoica. “Coflow: A networking
abstraction for cluster applications”. In: ACM Workshop on
Hot Topics in Networks. 2012, pp. 31–36 (cit. on p. 174).

[CTV11] Konstantinos Christodoulopoulos, Ioannis Tomkos, and EA
Varvarigos. “Elastic bandwidth allocation in flexible OFDM-
based optical networks”. In: Journal of Lightwave Technology
29.9 (2011), pp. 1354–1366 (cit. on p. 208).

https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/fs_bfd.html
https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/fs_bfd.html
https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/fs_bfd.html

230 BIBLIOGRAPHY

[CWJ18] Yang Chen, Jie Wu, and Bo Ji. “Virtual Network Function
Deployment in Tree-structured Networks”. In: 2018 IEEE 26th
International Conference on Network Protocols (ICNP). IEEE.
2018, pp. 132–142 (cit. on p. 11).

[CZS14] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. “Efficient
coflow scheduling with varys”. In: ACM SIGCOMM Computer
Communication Review. Vol. 44. 4. 2014, pp. 443–454 (cit. on
pp. 172, 174).

[Dan48] George B Dantzig. “Programming in a linear structure”. In:
(1948) (cit. on p. 28).

[DDS06] Guy Desaulniers, Jacques Desrosiers, and Marius M Solomon.
Column generation. Vol. 5. Springer Science & Business Media,
2006 (cit. on p. 30).

[DDS92] Martin Desrochers, Jacques Desrosiers, and Marius Solomon.
“A new optimization algorithm for the vehicle routing prob-
lem with time windows”. In: Operations research 40.2 (1992),
pp. 342–354 (cit. on p. 29).

[DG08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified
data processing on large clusters”. In: Communications of the
ACM 51.1 (2008) (cit. on p. 172).

[DGF10] Floriano De Rango, Francesca Guerriero, and Peppino Fazio.
“Link-stability and energy aware routing protocol in distributed
wireless networks”. In: IEEE Transactions on Parallel and Dis-
tributed systems 23.4 (2010), pp. 713–726 (cit. on p. 138).

[DL05] Jacques Desrosiers and Marco E Lübbecke. “A primer in col-
umn generation”. In: Column generation. Springer, 2005, pp. 1–
32 (cit. on p. 30).

[Dog+14] Fahad R Dogar, Thomas Karagiannis, Hitesh Ballani, and
Antony Rowstron. “Decentralized task-aware scheduling for
data center networks”. In: ACM SIGCOMM Computer Com-
munication Review. 2014, pp. 431–442 (cit. on pp. 172, 174).

[DS] Irit Dinur and David Steurer. “Analytical Approach to Parallel
Repetition”. In: Proceedings ACM STOC 2014. New York, New
York. isbn: 978-1-4503-2710-7 (cit. on pp. 44, 85).

BIBLIOGRAPHY 231

[DS05] Irit Dinur and Samuel Safra. “On the hardness of approximat-
ing minimum vertex cover”. In: Annals of mathematics (2005),
pp. 439–485 (cit. on p. 62).

[Eri13] David Erickson. “The beacon openflow controller”. In: Proceed-
ings of the second ACM SIGCOMM workshop on Hot topics
in software defined networking. ACM. 2013, pp. 13–18 (cit. on
p. 4).

[Eve+99] Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber.
“Fast approximate graph partitioning algorithms”. In: SIAM
Journal on Computing 28 (1999) (cit. on p. 188).

[Fen+17] Hao Feng, Jaime Llorca, Antonia M Tulino, Danny Raz, and
Andreas F Molisch. “Approximation algorithms for the NFV
service distribution problem”. In: IEEE INFOCOM 2017-IEEE
Conference on Computer Communications. IEEE. 2017, pp. 1–
9 (cit. on p. 11).

[FM17] Paulo Fonseca and Edjard Mota. “A survey on fault manage-
ment in software-defined networks”. In: IEEE Communications
Surveys & Tutorials (2017) (cit. on p. 82).

[Fou] Open Networking Foundation. url: https://www.opennetworking/
about (cit. on p. 4).

[Fra+03] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R.
Rockell, T. Seely, and S.C. Diot. “Packet-level traffic measure-
ments from the Sprint IP backbone”. In: IEEE network 17.6
(2003), pp. 6–16 (cit. on p. 153).

[FRZ14] Nick Feamster, Jennifer Rexford, and Ellen Zegura. “The road
to SDN: an intellectual history of programmable networks”.
In: ACM SIGCOMM Computer Communication Review 44.2
(2014), pp. 87–98 (cit. on p. 2).

[FT02] Bernard Fortz and Mikkel Thorup. “Optimizing OSPF/IS-IS
weights in a changing world”. In: IEEE journal on selected areas
in communications 20.4 (2002), pp. 756–767 (cit. on p. 96).

[FV00] Andrea Fumagalli and Luca Valcarenghi. “IP restoration vs.
WDM protection: Is there an optimal choice?” In: IEEE net-
work 14.6 (2000) (cit. on p. 82).

https://www.opennetworking/about
https://www.opennetworking/about

232 BIBLIOGRAPHY

[Gir+03] F. Giroire, A. Nucci, N. Taft, and C. Diot. “Increasing the ro-
bustness of IP backbones in the absence of optical level protec-
tion”. In: Annual Joint Conference of the IEEE Computer and
Communications Societies - INFOCOM. Vol. 1. 2003, pp. 1–11
(cit. on p. 217).

[Gir+10] Frédéric Giroire, Dorian Mazauric, Joanna Moulierac, and Brice
Onfroy. “Minimizing routing energy consumption: from theoret-
ical to practical results”. In: 2010 IEEE/ACM Int’l Conference
on Green Computing and Communications & Int’l Conference
on Cyber, Physical and Social Computing. IEEE. 2010, pp. 252–
259 (cit. on p. 138).

[Gir+15] F. Giroire, J. Moulierac, Truong Khoa Phan, and F. Roudaut.
“Minimization of network power consumption with redundancy
elimination”. In: Computer communications 59 (2015), pp. 98–
105 (cit. on p. 139).

[Gir+19a] Frédéric Giroire, Nicolas Huin, Andrea Tomassilli, and Stéphane
Pérennes. When Network Matters: Data Center Scheduling with
Network Tasks. Tech. rep. Inria, Jan. 2019 (cit. on p. 186).

[Gir+19b] Frédéric Giroire, Nicolas Huin, Andrea Tomassilli, and Stéphane
Pérennes. “When network matters: Data center scheduling with
network tasks”. In: IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications. 2019 (cit. on pp. 13, 171).

[GJ02] Michael R Garey and David S Johnson. Computers and in-
tractability. Vol. 29. wh freeman New York, 2002 (cit. on pp. 31,
212).

[GJN11] P. Gill, N. Jain, and N. Nagappan. “Understanding network
failures in data centers: measurement, analysis, and implica-
tions”. In: ACM SIGCOMM Computer Communication Re-
view. Vol. 41. 4. 2011 (cit. on p. 107).

[GMP14] F. Giroire, J. Moulierac, and K. Phan. “Optimizing Rule Place-
ment in Software-Defined Networks for Energy-aware Routing”.
In: IEEE Global Telecommunications Conference - GLOBE-
COM. Austin, USA, Dec. 2014, pp. 2523–2529 (cit. on p. 139).

BIBLIOGRAPHY 233

[Gom+58] Ralph E Gomory et al. “Outline of an algorithm for integer so-
lutions to linear programs”. In: Bulletin of the American Math-
ematical society 64.5 (1958), pp. 275–278 (cit. on p. 29).

[Gra66] Ronald L Graham. “Bounds for certain multiprocessing anoma-
lies”. In: Bell System Technical Journal 45.9 (1966), pp. 1563–
1581 (cit. on pp. 175, 182, 183).

[Gre+09] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth
Kandula, Changhoon Kim, Parantap Lahiri, David A Maltz,
Parveen Patel, and Sudipta Sengupta. “VL2: a scalable and
flexible data center network”. In: ACM SIGCOMM computer
communication review. Vol. 39. 4. 2009, pp. 51–62 (cit. on
p. 172).

[GS03] Maruti Gupta and Suresh Singh. “Greening of the Internet”. In:
Proceedings of the 2003 conference on Applications, technolo-
gies, architectures, and protocols for computer communications.
ACM. 2003, pp. 19–26 (cit. on p. 138).

[Guo+08] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang
Zhang, and Songwu Lu. “Dcell: a scalable and fault-tolerant
network structure for data centers”. In: ACM SIGCOMM Com-
puter Communication Review. Vol. 38. 4. 2008 (cit. on p. 172).

[Gup+15] A. Gupta, M.F. Habib, P. Chowdhury, M. Tornatore, and B.
Mukherjee. “On service chaining using virtual network func-
tions in network-enabled cloud systems”. In: IEEE Interna-
tional Conference on Advanced Networks and Telecommunca-
tions Systems (ANTS). 2015, pp. 1–3 (cit. on p. 138).

[Gup+17] A. Gupta, B. Mukherjee, B. Jaumard, and M. Tornatore. “Ser-
vice Chain (SC) Mapping with Multiple SC Instances in a Wide
Area Network”. In: IEEE Global Telecommunications Confer-
ence - GLOBECOM. 2017, pp. 1–6 (cit. on p. 138).

[GVY93] Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. “Ap-
proximate max-flow min-(multi) cut theorems and their appli-
cations”. In: ACM symposium on Theory of computing. 1993,
pp. 698–707 (cit. on p. 179).

234 BIBLIOGRAPHY

[Han+15] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee.
“Network function virtualization: Challenges and opportuni-
ties for innovations”. In: IEEE Communications Magazine 53.2
(2015), pp. 90–97 (cit. on pp. 8, 10).

[Hras01] Johan Hrastad. “Some optimal inapproximability results”. In:
Journal of the ACM (JACM) 48.4 (2001), pp. 798–859 (cit. on
p. 92).

[HB16] Juliver Gil Herrera and Juan Felipe Botero. “Resource alloca-
tion in NFV: A comprehensive survey”. In: IEEE Transactions
on Network and Service Management 13.3 (2016), pp. 518–532
(cit. on pp. 7, 9, 10).

[HIP15] Enrique Hernandez-Valencia, Steven Izzo, and Beth Polonsky.
“How will NFV/SDN transform service provider opex?” In:
IEEE Network 29.3 (2015), pp. 60–67 (cit. on p. 10).

[HJG17a] Nicolas Huin, Brigitte Jaumard, and Frédéric Giroire. “Opti-
mization of Network Service Chain Provisioning”. In: IEEE
International Conference on Communications 2017. Paris,
France, 2017 (cit. on pp. 110, 111).

[HJG17b] Nicolas Huin, Brigitte Jaumard, and Frédéric Giroire. “Opti-
mization of network service chain provisioning”. In: 2017 IEEE
International Conference on Communications (ICC). IEEE.
2017, pp. 1–7 (cit. on p. 29).

[HJG18a] N. Huin, B. Jaumard, and F. Giroire. “Optimal Network Ser-
vice Chain Provisioning”. In: IEEE/ACM Transactions on Net-
working 26.3 (June 2018), pp. 1320–1333. issn: 1063-6692. doi:
10.1109/TNET.2018.2833815 (cit. on p. 45).

[HJG18b] Nicolas Huin, Brigitte Jaumard, and Frédéric Giroire. “Optimal
Network Service Chain Provisioning”. In: IEEE/ACM Trans-
actions on Networking (2018) (cit. on pp. 85, 96).

[Hma+17] Ali Hmaity, Marco Savi, Francesco Musumeci, Massimo Torna-
tore, and Achille Pattavina. “Protection strategies for virtual
network functions placement and service chains provisioning”.
In: Networks (2017), pp. 1–15 (cit. on pp. 110, 111).

https://doi.org/10.1109/TNET.2018.2833815

BIBLIOGRAPHY 235

[HP85] Karla Hoffman and Manfred Padberg. “LP-based combinatorial
problem solving”. In: Annals of Operations Research 4.1 (1985),
pp. 145–194 (cit. on p. 30).

[Hu03] Jian Qiang Hu. “Diverse routing in optical mesh networks”. In:
IEEE Transactions on Communications 51.3 (2003), pp. 489–
494 (cit. on p. 80).

[Hua17] Huawei. Huawei Releases SDN/NFV Commercial and Techno-
logical Innovations. 2017. url: http : / / www . huawei . com /

en / press - events / news / 2017 / 10 / Huawei - SDN - NFV -

Commercial-Technological-Innovations (cit. on p. 2).

[Hui+18a] N Huin, A Tomassilli, F Giroire, and B Jaumard. “Energy-
efficient service function chain provisioning”. In: IEEE/OSA
Journal of Optical Communications and Networking 10.3
(2018), pp. 114–124 (cit. on pp. 12, 45, 136).

[Hui+18b] Nicolas Huin, Myriana Rifai, Frédéric Giroire, Dino Lopez
Pacheco, Guillaume Urvoy-Keller, and Joanna Moulierac.
“Bringing energy aware routing closer to reality with SDN
hybrid networks”. In: IEEE Transactions on Green Commu-
nications and Networking 2.4 (2018), pp. 1128–1139 (cit. on
p. 139).

[Hui+18c] Nicolas Huin, Andrea Tomassilli, Frédéric Giroire, and Brigitte
Jaumard. “Energy-Efficient Service Function Chain Provision-
ing”. In: IEEE/OSA Journal of Optical Communications and
Networking 10.2 (2018) (cit. on p. 110).

[Ian+02] Gianluca Iannaccone, Chen-nee Chuah, Richard Mortier, Supratik
Bhattacharyya, and Christophe Diot. “Analysis of link fail-
ures in an IP backbone”. In: Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment. ACM. 2002,
pp. 237–242 (cit. on p. 204).

[ID05] Stefan Irnich and Guy Desaulniers. “Shortest path problems
with resource constraints”. In: Column generation (2005),
pp. 33–65 (cit. on pp. 212, 213).

http://www.huawei.com/en/press-events/news/2017/10/Huawei-SDN-NFV-Commercial-Technological-Innovations
http://www.huawei.com/en/press-events/news/2017/10/Huawei-SDN-NFV-Commercial-Technological-Innovations
http://www.huawei.com/en/press-events/news/2017/10/Huawei-SDN-NFV-Commercial-Technological-Innovations

236 BIBLIOGRAPHY

[IMG98] R.R. Iraschko, M.H. MacGregor, and W.D. Grover. “Opti-
mal capacity placement for path restoration in STM or ATM
mesh-survivable networks”. In: IEEE/ACM Transactions on
Networking 6.3 (1998) (cit. on p. 108).

[Isa+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Den-
nis Fetterly. “Dryad: distributed data-parallel programs from
sequential building blocks”. In: ACM SIGOPS operating sys-
tems review. Vol. 41. 3. ACM. 2007 (cit. on p. 172).

[Iye+03] Sundar Iyer, Supratik Bhattacharyya, Nina Taft, and Christophe
Diot. “An approach to alleviate link overload as observed on
an IP backbone”. In: Annual Joint Conference of the IEEE
Computer and Communications Societies - INFOCOM. Vol. 1.
2003, pp. 406–416 (cit. on p. 153).

[Jai+13] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer,
Junlan Zhou, Min Zhu, et al. “B4: Experience with a globally-
deployed software defined WAN”. In: ACM SIGCOMM Com-
puter Communication Review. Vol. 43. 4. ACM. 2013 (cit. on
pp. 1, 3).

[Jal+15] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram Rao,
Konstantin Makarychev, and Matthew Caesar. “Network-aware
scheduling for data-parallel jobs: Plan when you can”. In: ACM
SIGCOMM Computer Communication Review. Vol. 45. 4. 2015,
pp. 407–420 (cit. on p. 175).

[Jin+09] Masahiko Jinno, Hidehiko Takara, Bartlomiej Kozicki, Yukio
Tsukishima, Yoshiaki Sone, and Shinji Matsuoka. “Spectrum-
efficient and scalable elastic optical path network: architecture,
benefits, and enabling technologies”. In: IEEE Communications
Magazine 47.11 (2009) (cit. on pp. 203, 205).

[Jin+10] Masahiko Jinno, Bartlomiej Kozicki, Hidehiko Takara, Atsushi
Watanabe, Yoshiaki Sone, Takafumi Tanaka, and Akira Hirano.
“Distance-adaptive spectrum resource allocation in spectrum-
sliced elastic optical path network [topics in optical commu-
nications]”. In: IEEE Communications Magazine 48.8 (2010)
(cit. on p. 204).

BIBLIOGRAPHY 237

[Jün+09] Michael Jünger, Thomas M Liebling, Denis Naddef, George L
Nemhauser, William R Pulleyblank, Gerhard Reinelt, Giovanni
Rinaldi, and Laurence A Wolsey. 50 Years of integer program-
ming 1958-2008: From the early years to the state-of-the-art.
Springer Science & Business Media, 2009 (cit. on p. 29).

[KCG] Amund Kvalbein, Tarik Cicic, and Stein Gjessing. “Post-failure
routing performance with multiple routing configurations”. In:
Proceedings of IEEE INFOCOM, 2007 (cit. on pp. 82, 83).

[Kem+12] James Kempf, Elisa Bellagamba, András Kern, David Jocha,
Attila Takács, and Pontus Sköldström. “Scalable fault manage-
ment for OpenFlow”. In: Communications (ICC), 2012 IEEE
international conference on. IEEE. 2012, pp. 6606–6610 (cit. on
p. 80).

[KF13] Hyojoon Kim and Nick Feamster. “Improving network manage-
ment with software defined networking”. In: IEEE Communi-
cations Magazine 51.2 (2013), pp. 114–119 (cit. on p. 1).

[Kha79] Leonid G Khachiyan. “A polynomial algorithm in linear pro-
gramming”. In: Doklady Academii Nauk SSSR. Vol. 244. 1979,
pp. 1093–1096 (cit. on p. 28).

[KKV05] Srikanth Kandula, Dina Katabi, and Jean-Philippe Vasseur.
“Shrink: A tool for failure diagnosis in IP networks”. In: Pro-
ceedings of the 2005 ACM SIGCOMM workshop on Mining net-
work data. ACM. 2005, pp. 173–178 (cit. on pp. 80, 95).

[KL70] Brian W Kernighan and Shen Lin. “An efficient heuristic pro-
cedure for partitioning graphs”. In: The Bell system technical
journal 49 (1970) (cit. on p. 190).

[Kli13a] Miros law Klinkowski. “A genetic algorithm for solving RSA
problem in elastic optical networks with dedicated path protec-
tion”. In: International Joint Conference CISIS’12-ICEUTE´
12-SOCO´ 12 Special Sessions. Springer. 2013, pp. 167–176
(cit. on p. 206).

[Kli13b] Miros law Klinkowski. “An evolutionary algorithm approach for
dedicated path protection problem in elastic optical networks”.
In: Cybernetics and Systems 44.6-7 (2013), pp. 589–605 (cit. on
p. 206).

238 BIBLIOGRAPHY

[KM70] Victor Klee and George J Minty. How good is the simplex algo-
rithm. Tech. rep. WASHINGTON UNIV SEATTLE DEPT OF
MATHEMATICS, 1970 (cit. on p. 28).

[Kni+11] Simon Knight, Hung X Nguyen, Nick Falkner, Rhys Bowden,
and Matthew Roughan. “The internet topology zoo”. In: IEEE
Journal on Selected Areas in Communications 29.9 (2011),
pp. 1765–1775 (cit. on pp. 55, 68, 72).

[KNS] Robert Krauthgamer, Joseph Naor, and Roy Schwartz. “Par-
titioning graphs into balanced components”. In: ACM-SIAM
SODA 2009 (cit. on p. 188).

[Kop+10] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stri-
bling, Leon Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro
Iwata, Hiroaki Inoue, Takayuki Hama, et al. “Onix: A dis-
tributed control platform for large-scale production networks.”
In: OSDI. Vol. 10. 2010, pp. 1–6 (cit. on p. 4).

[Kre+14] Aristotelis Kretsis, Konstantinos Christodoulopoulos, Pana-
giotis Kokkinos, and Emmanouel Varvarigos. “Planning and
operating flexible optical networks: Algorithmic issues and
tools”. In: IEEE Communications Magazine 52.1 (2014) (cit.
on p. 208).

[Kre+15] Diego Kreutz, Fernando MV Ramos, Paulo Verissimo, Chris-
tian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uh-
lig. “Software-defined networking: A comprehensive survey”. In:
Proceedings of the IEEE 103.1 (2015), pp. 14–76 (cit. on pp. 3,
4).

[Kum+15] S Kumar, M Tufail, S Majee, C Captari, and S Homma. “Ser-
vice function chaining use cases in data centers”. In: IETF SFC
WG (2015) (cit. on p. 10).

[Kuo+16] Tung-Wei Kuo, Bang-Heng Liou, Kate Ching-Ju Lin, and Ming-
Jer Tsai. “Deploying chains of virtual network functions: On the
relation between link and server usage”. In: Computer Commu-
nications (INFOCOM), 2016 IEEE Conference on. IEEE. 2016,
pp. 1–9 (cit. on p. 46).

BIBLIOGRAPHY 239

[Kva+] Amund Kvalbein, Audun Fosselie Hansen, Stein Gjessing, and
Olav Lysne. “Fast IP network recovery using multiple routing
configurations”. In: Proceedings of IEEE INFOCOM, 2006 (cit.
on p. 83).

[KW11] Miroslaw Klinkowski and Krzysztof Walkowiak. “Routing and
spectrum assignment in spectrum sliced elastic optical path net-
work”. In: IEEE Communications Letters 15.8 (2011), pp. 884–
886 (cit. on p. 204).

[KW12] Miros law Klinkowski and Krzysztof Walkowiak. “Offline RSA
algorithms for elastic optical networks with dedicated path pro-
tection consideration”. In: Ultra Modern Telecommunications
and Control Systems and Workshops (ICUMT), 2012 4th In-
ternational Congress on. IEEE. 2012 (cit. on p. 206).

[LC12] Zitao Liu and Sangyeun Cho. “Characterizing machines and
workloads on a Google cluster”. In: IEEE Parallel Processing
Workshops (ICPPW). 2012 (cit. on p. 191).

[LC15] Yong Li and Min Chen. “Software-defined network function vir-
tualization: A survey”. In: IEEE Access 3 (2015), pp. 2542–2553
(cit. on p. 9).

[LD10] Ailsa H Land and Alison G Doig. “An automatic method for
solving discrete programming problems”. In: 50 Years of Integer
Programming 1958-2008. Springer, 2010, pp. 105–132 (cit. on
pp. 28, 30).

[Le +13] Esther Le Rouzic, Edoardo Bonetto, Luca Chiaraviglio, Fred-
eric Giroire, Filip Idzikowski, Felipe Jiménez, Christoph Lange,
Julio Montalvo, Francesco Musumeci, Issam Tahiri, et al.
“TREND towards more energy-efficient optical networks”. In:
2013 17th International Conference on Optical Networking De-
sign and Modeling (ONDM). IEEE. 2013, pp. 211–216 (cit. on
p. 136).

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown. “A Net-
work in a Laptop: Rapid Prototyping for Software-defined
Networks”. In: Proceedings of the 9th ACM SIGCOMM Work-
shop on Hot Topics in Networks. Hotnets-IX. Monterey, Cal-
ifornia: ACM, 2010, 19:1–19:6. isbn: 978-1-4503-0409-2. doi:

240 BIBLIOGRAPHY

10.1145/1868447.1868466. url: http://doi.acm.org/10.
1145/1868447.1868466 (cit. on pp. 101, 103).

[LKR14] Adrian Lara, Anisha Kolasani, and Byrav Ramamurthy. “Net-
work innovation using openflow: A survey”. In: IEEE commu-
nications surveys & tutorials 16.1 (2014), pp. 493–512 (cit. on
pp. 5, 6).

[LM15] S.-I. Lee and Myung M.-K. Shin. “A self-recovery scheme
for service function chaining”. In: International Conference
on Information and Communication Technology Convergence
(ICTC). 2015, pp. 108–112 (cit. on p. 110).

[LMF11] L. Chiaraviglio, M. Mellia, and F. Neri. “Minimizing ISP Net-
work Energy Cost: Formulation and Solutions”. In: IEEE/ACM
Transactions on Networking 20.2 (Apr. 2011), pp. 463–476 (cit.
on p. 138).

[Lou03] Robin Lougee-Heimer. “The Common Optimization INterface
for Operations Research: Promoting open-source software in the
operations research community”. In: IBM Journal of Research
and Development 47.1 (2003), pp. 57–66 (cit. on p. 29).

[Lui+15] M. C. Luizelli, L. R. Bays, L.S. Buriol, M. P. Barcellos, and
L. P. Gaspary. “Piecing together the NFV provisioning puzzle:
Efficient placement and chaining of virtual network functions”.
In: IFIP/IEEE International Symposium on Integrated Network
Management. 2015 (cit. on pp. 10, 46).

[LW66] Eugene L Lawler and David E Wood. “Branch-and-bound
methods: A survey”. In: Operations research 14.4 (1966),
pp. 699–719 (cit. on p. 29).

[LY+84] David G Luenberger, Yinyu Ye, et al. Linear and nonlinear
programming. Vol. 2. Springer, 1984 (cit. on p. 28).

[Ma+17] Wenrui Ma, Oscar Sandoval, Jonathan Beltran, Deng Pan, and
Niki Pissinou. “Traffic aware placement of interdependent nfv
middleboxes”. In: IEEE INFOCOM 2017-IEEE Conference on
Computer Communications. IEEE. 2017, pp. 1–9 (cit. on p. 11).

[Mak15] A Makhorin. The GNU Linear Programming Kit (GLPK).
GNU Software Foundation, 2000. 2015 (cit. on p. 29).

https://doi.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/1868447.1868466

BIBLIOGRAPHY 241

[Mar+15] B. Martini, F. Paganelli, P. Cappanera, S. Turchi, and P. Cas-
toldi. “Latency-aware composition of virtual functions in 5g”.
In: NetSoft. IEEE. 2015, pp. 1–6 (cit. on p. 138).

[Mar17] Sue Marek. Update: AT&T’s Stephens: More Than 40% of
Network Functions Are Virtualized. 2017. url: https://www.
sdxcentral . com / articles / news / atts - stephens - 47 -

network-functions-virtualized/2017/07/ (cit. on p. 2).

[Mat+13] Daisuke Matsubara, Takashi Egawa, Nozomu Nishinaga, Ved
P Kafle, Myung-Ki Shin, and Alex Galis. “Toward future net-
works: a viewpoint from ITU-T”. In: IEEE Communications
Magazine 51.3 (2013), pp. 112–118 (cit. on p. 136).

[McK+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and
Jonathan Turner. “OpenFlow: enabling innovation in campus
networks”. In: ACM SIGCOMM Computer Communication
Review 38.2 (2008), pp. 69–74 (cit. on pp. 2, 4).

[MD14] Hendrik Moens and Filip De Turck. “VNF-P: A model for
efficient placement of virtualized network functions”. In: 10th
International Conference on Network and Service Management
(CNSM) and Workshop. IEEE. 2014, pp. 418–423 (cit. on
p. 10).

[MD79] R Garey Michael and S Johnson David. “Computers and in-
tractability: a guide to the theory of NP-completeness”. In: WH
Free. Co., San Fr (1979) (cit. on p. 185).

[Med+] J. Medved, R. Varga, A. Tkacik, and K. Gray. “OpenDaylight:
Towards a Model-Driven SDN Controller architecture”. In: Pro-
ceedings of IEEE WoWMoM 2014 (cit. on p. 103).

[Med+14] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray.
“Opendaylight: Towards a model-driven sdn controller archi-
tecture”. In: Proceeding of IEEE International Symposium on
a World of Wireless, Mobile and Multimedia Networks 2014.
IEEE. 2014, pp. 1–6 (cit. on p. 4).

https://www.sdxcentral.com/articles/news/atts-stephens-47-network-functions-virtualized/2017/07/
https://www.sdxcentral.com/articles/news/atts-stephens-47-network-functions-virtualized/2017/07/
https://www.sdxcentral.com/articles/news/atts-stephens-47-network-functions-virtualized/2017/07/

242 BIBLIOGRAPHY

[Med+17] Ahmed M Medhat, Tarik Taleb, Asma Elmangoush, Giuseppe
A Carella, Stefan Covaci, and Thomas Magedanz. “Service
function chaining in next generation networks: State of the art
and research challenges”. In: IEEE Communications Magazine
55.2 (2017), pp. 216–223 (cit. on pp. 9, 10).

[Men27] Karl Menger. “Zur allgemeinen kurventheorie”. In: Fundamenta
Mathematicae 10.1 (1927), pp. 96–115 (cit. on p. 51).

[Mij+16] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten,
Filip De Turck, and Raouf Boutaba. “Network function virtu-
alization: State-of-the-art and research challenges”. In: IEEE
Communications Surveys & Tutorials 18.1 (2016), pp. 236–262
(cit. on p. 8).

[Mij15] Rashid Mijumbi. “On the Energy Efficiency Prospects of
Network Function Virtualization”. In: CoRR abs/1512.00215
(2015). url: http://arxiv.org/abs/1512.00215 (cit. on
p. 139).

[MKK14] Sevil Mehraghdam, Matthias Keller, and Holger Karl. “Specify-
ing and placing chains of virtual network functions”. In: Cloud
Networking (CloudNet), 2014 IEEE 3rd International Confer-
ence on. IEEE. 2014, pp. 7–13 (cit. on pp. 10, 45, 46).

[Mod+13] Remigiusz Modrzejewski, Luca Chiaraviglio, Issam Tahiri,
Frederic Giroire, Esther Le Rouzic, Edoardo Bonetto, Francesco
Musumeci, Roberto Gonzalez, and Carmen Guerrero. “Energy
efficient content distribution in an ISP network”. In: 2013 IEEE
Global Communications Conference (GLOBECOM). IEEE.
2013, pp. 2859–2865 (cit. on p. 138).

[Moh+15] Ali Mohammadkhan, Sheida Ghapani, Guyue Liu, Wei Zhang,
KK Ramakrishnan, and Timothy Wood. “Virtual function
placement and traffic steering in flexible and dynamic software
defined networks”. In: Local and Metropolitan Area Networks
(LANMAN), 2015 IEEE International Workshop on. IEEE.
2015, pp. 1–6 (cit. on pp. 10, 11, 46, 138).

[MQS98] Alix Munier, Maurice Queyranne, and Andreas S. Schulz. “Ap-
proximation Bounds for a General Class of Precedence Con-
strained Parallel Machine Scheduling Problems”. In: Lecture

http://arxiv.org/abs/1512.00215

BIBLIOGRAPHY 243

Notes in Computer Science (1998), pp. 367–382. issn: 0302-
9743. doi: 10.1007/3-540-69346-7_28 (cit. on p. 175).

[MT96] Anuj Mehrotra and Michael A Trick. “A column generation ap-
proach for graph coloring”. In: informs Journal on Computing
8.4 (1996), pp. 344–354 (cit. on p. 29).

[Muk06] Biswanath Mukherjee. Optical WDM networks. Springer Sci-
ence & Business Media, 2006 (cit. on p. 213).

[Mur+11] Derek G Murray, Malte Schwarzkopf, Christopher Smowton,
Steven Smith, Anil Madhavapeddy, and Steven Hand. “CIEL:
a universal execution engine for distributed data-flow comput-
ing”. In: Proc. 8th ACM/USENIX Symposium on Networked
Systems Design and Implementation. 2011, pp. 113–126 (cit.
on p. 172).

[Net15] Index Cisco Visual Networking. “Cisco visual networking in-
dex: Forecast and methodology 2015-2020”. In: White paper,
CISCO) (2015) (cit. on p. 152).

[Ngu+17] Van-Giang Nguyen, Anna Brunstrom, Karl-Johan Grinnemo,
and Javid Taheri. “SDN/NFV-based mobile packet core net-
work architectures: A survey”. In: IEEE Communications Sur-
veys & Tutorials 19.3 (2017), pp. 1567–1602 (cit. on p. 8).

[Nic+12] L. Niccolini, G. Iannaccone, S. Ratnasamy, J. Chandrashekar,
and L. Rizzo. “Building a power-proportional software router”.
In: USENIX Annual Technical Conference (USENIX ATC).
Boston, MA, USA, 2012, pp. 89–100 (cit. on p. 142).

[Niv+09] B Niven-Jenkins, D Brungard, M Betts, N Sprecher, and S
Ueno. Requirements of an MPLS transport profile. Tech. rep.
2009 (cit. on p. 80).

[NS14] Dmitry Namiot and Manfred Sneps-Sneppe. “On micro-services
architecture”. In: International Journal of Open Information
Technologies 2.9 (2014), pp. 24–27 (cit. on p. 172).

[Nun+14] Bruno Astuto A Nunes, Marc Mendonca, Xuan-Nam Nguyen,
Katia Obraczka, and Thierry Turletti. “A survey of software-
defined networking: Past, present, and future of programmable
networks”. In: IEEE Communications Surveys & Tutorials 16.3
(2014), pp. 1617–1634 (cit. on p. 2).

https://doi.org/10.1007/3-540-69346-7_28

244 BIBLIOGRAPHY

[Oba+16] Mathis Obadia, Jean-Louis Rougier, Luigi Iannone, Vania Co-
nan, and Mathieu Brouet. “Revisiting NFV orchestration with
routing games”. In: Network Function Virtualization and Soft-
ware Defined Networks (NFV-SDN), IEEE Conference on.
IEEE. 2016, pp. 107–113 (cit. on pp. 11, 44).

[OPT14] GUROBI OPTIMIZATION. “INC. Gurobi optimizer reference
manual, 2015”. In: URL: http://www. gurobi. com (2014) (cit.
on p. 29).

[Orl+10a] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly.
“SNDlib 1.0–Survivable Network Design Library”. English. In:
Networks 55.3 (2010), pp. 276–286. doi: 10.1002/net.20371
(cit. on p. 152).

[Orl+10b] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Ar-
tur Tomaszewski. “SNDlib 1.0—Survivable network design li-
brary”. In: Networks 55.3 (2010) (cit. on pp. 68, 95, 119, 213).

[PBL14] Kévin Phemius, Mathieu Bouet, and Jérémie Leguay. “Disco:
Distributed multi-domain sdn controllers”. In: 2014 IEEE Net-
work Operations and Management Symposium (NOMS). IEEE.
2014, pp. 1–4 (cit. on p. 4).

[Pes+18] Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François
Vanderbeck. “Automation and combination of linear-programming
based stabilization techniques in column generation”. In: IN-
FORMS Journal on Computing (2018) (cit. on pp. 30, 89).

[Pfa+09] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu
Koponen, and Scott Shenker. “Extending networking into the
virtualization layer.” In: Hotnets. 2009 (cit. on p. 2).

[Pha14] Truong Khoa Phan. “Design and management of networks with
low power consumption”. PhD thesis. Université Nice Sophia
Antipolis, 2014 (cit. on p. 138).

[PJ13] R. Potharaju and N. Jain. “Demystifying the dark side of the
middle: a field study of middlebox failures in datacenters”.
In: Internet Measurement Conference. 2013, pp. 9–22 (cit. on
p. 107).

https://doi.org/10.1002/net.20371

BIBLIOGRAPHY 245

[PM04] Michal Pióro and Deep Medhi. Routing, flow, and capacity de-
sign in communication and computer networks. Elsevier, 2004
(cit. on pp. 12, 80).

[Pou+19] Konstantinos Poularakis, Jaime Llorca, Antonia M Tulino, Ian
Taylor, and Leandros Tassiulas. “Joint Service Placement and
Request Routing in Multi-cell Mobile Edge Computing Net-
works”. In: IEEE INFOCOM 2019-IEEE Conference on Com-
puter Communications. 2019 (cit. on p. 11).

[PST18] Manish Paliwal, Deepti Shrimankar, and Omprakash Temb-
hurne. “Controllers in SDN: A review report”. In: IEEE Access
6 (2018), pp. 36256–36270 (cit. on p. 6).

[PY90] Christos H Papadimitriou and Mihalis Yannakakis. “Towards
an architecture-independent analysis of parallel algorithms”. In:
SIAM journal on computing 19.2 (1990), pp. 322–328 (cit. on
p. 175).

[Qaz+13] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao,
Vyas Sekar, and Minlan Yu. “SIMPLE-fying middlebox policy
enforcement using SDN”. In: ACM SIGCOMM computer com-
munication review. Vol. 43. 4. ACM. 2013, pp. 27–38 (cit. on
p. 9).

[QN15] Paul Quinn and Tom Nadeau. “Problem statement for service
function chaining”. In: (2015) (cit. on p. 9).

[Ray87] Victor J Rayward-Smith. “UET scheduling with unit interpro-
cessor communication delays”. In: Discrete Applied Mathemat-
ics 18.1 (1987) (cit. on pp. 175, 179, 182, 183, 191).

[Ren+13] Kai Ren, YongChul Kwon, Magdalena Balazinska, and Bill
Howe. “Hadoop’s adolescence: an analysis of Hadoop usage in
scientific workloads”. In: Proceedings of the VLDB Endowment
6.10 (2013), pp. 853–864 (cit. on pp. 184, 192).

[Rig+15] R. Riggio, Abbas Bradai, Tinku Rasheed, Julius Schulz-Zander,
Slawomir Kuklinski, and Toufik Ahmed. “Virtual network func-
tions orchestration in wireless networks”. In: Intl. Conf. on Net-
work and Service Management (CNSM). 2015, pp. 108–116 (cit.
on pp. 11, 138).

246 BIBLIOGRAPHY

[RM99] S. Ramamurthy and B. Mukherjee. “Survivable WDM mesh
networks. Part I - protection”. In: Annual Joint Conference of
the IEEE Computer and Communications Societies - INFO-
COM. Vol. 2. 1999, pp. 744–751 (cit. on pp. 108, 109).

[RMD05] Smita Rai, Biswanath Mukherjee, and Omkar Deshpande. “IP
resilience within an autonomous system: current approaches,
challenges, and future directions”. In: IEEE Communications
Magazine 43.10 (2005), pp. 142–149 (cit. on p. 82).

[RSM03] S Ramamurthy, Laxman Sahasrabuddhe, and Biswanath Mukher-
jee. “Survivable WDM mesh networks”. In: Journal of Light-
wave Technology 21.4 (2003), p. 870 (cit. on pp. 204–206).

[Rui+13] Marc Ruiz, Micha l Pióro, Mateusz Żotkiewicz, Miros law Klinkowski,
and Luis Velasco. “Column generation algorithm for RSA
problems in flexgrid optical networks”. In: Photonic network
communications 26.2-3 (2013) (cit. on p. 207).

[RWH11] Charles Reiss, John Wilkes, and Joseph L Hellerstein. “Google
cluster-usage traces: format+ schema”. In: Google Inc., White
Paper (2011), pp. 1–14 (cit. on pp. 174, 191, 198).

[San+17] Yu Sang, Bo Ji, Gagan R Gupta, Xiaojiang Du, and Lin Ye.
“Provably Efficient Algorithms for Joint Placement and Allo-
cation of Virtual Network Functions”. In: Computer Commu-
nications (INFOCOM), 2017 IEEE Conference on. IEEE. 2017
(cit. on pp. 11, 46, 47).

[Sga+13] Andrea Sgambelluri, Alessio Giorgetti, Filippo Cugini, Francesco
Paolucci, and Piero Castoldi. “OpenFlow-based segment pro-
tection in Ethernet networks”. In: Journal of Optical Commu-
nications and Networking 5.9 (2013) (cit. on pp. 82, 108).

[Sha+11] Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pick-
avet, and Piet Demeester. “Enabling fast failure recovery in
OpenFlow networks”. In: 2011 8th International Workshop on
the Design of Reliable Communication Networks (DRCN 2011).
IEEE. 2011, pp. 164–171 (cit. on p. 108).

BIBLIOGRAPHY 247

[Sha+13] Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet,
and Piet Demeester. “OpenFlow: Meeting carrier-grade recov-
ery requirements”. In: Computer Communications 36.6 (2013),
pp. 656–665 (cit. on pp. 80, 108).

[She+12] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Vyas Sekar. “Making middle-
boxes someone else’s problem: network processing as a cloud
service”. In: ACM SIGCOMM Computer Communication Re-
view 42.4 (2012), pp. 13–24 (cit. on pp. 1, 7).

[SJ19] Gamal Sallam and Bo Ji. “Joint Placement and Allocation of
Virtual Network Functions with Budget and Capacity Con-
straints”. In: IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. 2019 (cit. on p. 11).

[SLX10] Yunfei Shang, Dan Li, and Mingwei Xu. “Energy-aware routing
in data center network”. In: Proceedings of the first ACM SIG-
COMM workshop on Green networking. ACM. 2010, pp. 1–8
(cit. on p. 138).

[Soh+00] Katayoun Sohrabi, Jay Gao, Vishal Ailawadhi, and Gregory J
Pottie. “Protocols for self-organization of a wireless sensor net-
work”. In: IEEE personal communications 7.5 (2000), pp. 16–
27 (cit. on p. 61).

[Sou+17] O. Soualah, Marouen Mechtri, Chaima Ghribi, and Djamal
Zeghlache. “A link failure recovery algorithm for Virtual Net-
work Function chaining”. In: IFIP/IEEE Symposium on Inte-
grated Network and Service Management (IM). 2017 (cit. on
p. 110).

[SRA12] Justine Sherry, Sylvia Ratnasamy, and Justine Sherry At. “A
survey of enterprise middlebox deployments”. In: (2012) (cit.
on p. 7).

[SRM02] Laxman Sahasrabuddhe, Senthil Ramamurthy, and Biswanath
Mukherjee. “Fault management in IP-over-WDM networks:
WDM protection versus IP restoration”. In: IEEE journal on
selected areas in communications 20.1 (2002), pp. 21–33 (cit. on
pp. 108, 204, 206).

248 BIBLIOGRAPHY

[SS98] Martin Savelsbergh and Marc Sol. “Drive: Dynamic routing
of independent vehicles”. In: Operations Research 46.4 (1998),
pp. 474–490 (cit. on p. 29).

[ST97] Horst D Simon and Shang-Hua Teng. “How good is recursive
bisection?” In: SIAM Journal on Scientific Computing 18.5
(1997), pp. 1436–1445 (cit. on pp. 188, 190).

[Sta+11] Dimitri Staessens, Sachin Sharma, Didier Colle, Mario Pick-
avet, and Piet Demeester. “Software defined networking: Meet-
ing carrier grade requirements”. In: 18th IEEE Workshop on
Local and Metropolitan Area Networks (LANMAN). IEEE. 2011
(cit. on p. 108).

[Sti+07] Thomas Stidsen, Bjørn Petersen, Kasper Bonne Rasmussen, Si-
mon Spoorendonk, Martin Zachariasen, Franz Rambach, and
Moritz Kiese. “Optimal routing with single backup path pro-
tection”. In: International Network Optimization Conference
(INOC). 2007 (cit. on p. 117).

[STV] Marco Savi, Massimo Tornatore, and Giacomo Verticale. “Im-
pact of processing costs on service chain placement in network
functions virtualization”. In: IEEE NFV-SDN 2015 (cit. on
pp. 9, 49, 119).

[STV15] M. Savi, M. Tornatore, and G. Verticale. “Impact of Processing
Costs on Service Chain Placement in Network Functions Virtu-
alization”. In: IEEE Conference on Network Function Virtuali-
zation and Software Defined Network (NFV-SDN). Nov. 2015,
pp. 191–197 (cit. on pp. 138, 152).

[Suc+] Martin Suchara, Dahai Xu, Robert Doverspike, David John-
son, and Jennifer Rexford. “Network architecture for joint fail-
ure recovery and traffic engineering”. In: Proceedings of ACM
SIGMETRICS 2011 (cit. on p. 82).

[SWB14] Gangxiang Shen, Yue Wei, and Sanjay K Bose. “Optimal design
for shared backup path protected elastic optical networks under
single-link failure”. In: Journal of Optical Communications and
Networking 6.7 (2014) (cit. on pp. 206, 216).

[Tel12] Nippon Telegraph. Telephone Corporation,“Ryu Network Op-
erating System.”. 2012 (cit. on p. 4).

BIBLIOGRAPHY 249

[Tho+11] Kurt Thomas, Chris Grier, Justin Ma, Vern Paxson, and Dawn
Song. “Design and evaluation of a real-time url spam filtering
service”. In: IEEE Symposium on Security and Privacy (SP).
2011, pp. 447–462 (cit. on pp. 13, 172).

[TJG18] A Tomassilli, B Jaumard, and F Giroire. “Path Protection in
Optical Flexible Networks with Distance-adaptive Modulation
Formats”. In: 2018 International Conference on Optical Net-
work Design and Modeling (ONDM). 2018 (cit. on pp. 13, 203).

[Tod02] Michael J Todd. “The many facets of linear programming”. In:
Mathematical Programming 91.3 (2002), pp. 417–436 (cit. on
p. 28).

[Tom+16] A Tomassilli, N Huin, F Giroire, and B Jaumard. Energy-
efficient service chains with network function virtualization.
2016 (cit. on p. 12).

[Tom+18a] Andrea Tomassilli, F Giroire, N Huin, and S Pérennes. “Algo-
rithmes d’approximation pour le placement de chaines de fonc-
tions de services avec des contraintes d’ordre”. In: ALGOTEL
2018-20émes Rencontres Francophones sur les Aspects Algorith-
miques des Télécommunications. 2018 (cit. on pp. 11, 43).

[Tom+18b] Andrea Tomassilli, Frédéric Giroire, Nicolas Huin, and Stéphane
Pérennes. “Provably Efficient Algorithms for Placement of Ser-
vice Function Chains with Ordering Constraints”. In: IEEE
INFOCOM 2018 - IEEE Conference on Computer Communi-
cations. 2018 (cit. on pp. 11, 43).

[Tom+18c] Andrea Tomassilli, Nicolas Huin, Frederic Giroire, and Brigitte
Jaumard. “Resource requirements for reliable service function
chaining”. In: 2018 IEEE International Conference on Commu-
nications (ICC). IEEE. 2018, pp. 1–7 (cit. on pp. 11, 107).

[Tom+19] Andrea Tomassilli, Giuseppe Di Lena, Frédéric Giroire, Issam
Tahiri, Damien Saucez, Stéphane Perennes, Thierry Turletti,
Rusland Sadykov, Francois Vanderbeck, and Chidung Lac.
“Poster: Design of Survivable SDN/NFV-enabled Networks
with Bandwidth-optimal Failure Recovery”. In: Annex to the
IFIP Networking 2019 Proceedings. 2019 (cit. on p. 12).

250 BIBLIOGRAPHY

[Tur+10] Daniel Turner, Kirill Levchenko, Alex C Snoeren, and Stefan
Savage. “California fault lines: understanding the causes and
impact of network failures”. In: ACM SIGCOMM Computer
Communication Review. Vol. 40. 4. ACM. 2010, pp. 315–326
(cit. on pp. 107, 108, 204).

[Van+94] Pamela H Vance, Cynthia Barnhart, Ellis L Johnson, and
George L Nemhauser. “Solving binary cutting stock problems
by column generation and branch-and-bound”. In: Computa-
tional optimization and applications 3.2 (1994), pp. 111–130
(cit. on p. 29).

[Vaz13] Vijay V Vazirani. Approximation algorithms. Springer Science
& Business Media, 2013 (cit. on pp. 32, 59).

[Ver+11] Willem Vereecken, Ward Van Heddeghem, Margot Deruyck,
Bart Puype, Bart Lannoo, Wout Joseph, Didier Colle, Luc
Martens, and Piet Demeester. “Power consumption in telecom-
munication networks: overview and reduction strategies”. In:
IEEE Communications Magazine 49.6 (2011) (cit. on p. 136).

[VVK14] Niels LM Van Adrichem, Benjamin J Van Asten, and Fernando
A Kuipers. “Fast recovery in software-defined networks”. In:
Software Defined Networks (EWSDN), 2014 Third European
Workshop on. IEEE. 2014, pp. 61–66 (cit. on p. 80).

[Wax88] Bernard M Waxman. “Routing of multipoint connections”. In:
IEEE journal on selected areas in communications 6.9 (1988),
pp. 1617–1622 (cit. on p. 96).

[WK13] Krzysztof Walkowiak and Miros law Klinkowski. “Shared backup
path protection in elastic optical networks: Modeling and op-
timization”. In: Design of Reliable Communication Networks
(DRCN), 2013 9th International Conference on the. IEEE.
2013, pp. 187–194 (cit. on pp. 206, 216).

[Wol98] Laurence A Wolsey. Integer programming. Wiley, 1998 (cit. on
p. 29).

[Wor17] Marcel van Wort. SDN and NFV transforming the network:
where do we go from here? 2017. url: https : / / www .

orange-business.com/en/blogs/connecting-technology/

https://www.orange-business.com/en/blogs/connecting-technology/networks/sdn-and-nfv-transforming-the-network-where-do-we-go-from-here
https://www.orange-business.com/en/blogs/connecting-technology/networks/sdn-and-nfv-transforming-the-network-where-do-we-go-from-here
https://www.orange-business.com/en/blogs/connecting-technology/networks/sdn-and-nfv-transforming-the-network-where-do-we-go-from-here

BIBLIOGRAPHY 251

networks / sdn - and - nfv - transforming - the - network -

where-do-we-go-from-here (cit. on p. 2).

[Xu+04] Dahai Xu, Yizhi Xiong, Chunming Qiao, and Guangzhi Li.
“Failure protection in layered networks with shared risk link
groups”. In: IEEE network (2004) (cit. on p. 82).

[Ye+16] Zilong Ye, Xiaojun Cao, Jianping Wang, Hongfang Yu, and
Chunming Qiao. “Joint topology design and mapping of ser-
vice function chains for efficient, scalable, and reliable network
functions virtualization”. In: IEEE Network 30.3 (2016) (cit. on
p. 110).

[Ye91] Yinyu Ye. “An O (n 3 L) potential reduction algorithm for
linear programming”. In: Mathematical programming 50.1-3
(1991), pp. 239–258 (cit. on p. 28).

[Yin+09] Hao Yin, Xuening Liu, Tongyu Zhan, Vyas Sekar, Feng Qiu,
Chuang Lin, Hui Zhang, and Bo Li. “Design and deployment of
a hybrid CDN-P2P system for live video streaming: experiences
with LiveSky”. In: Proceedings of the 17th ACM international
conference on Multimedia. ACM. 2009, pp. 25–34 (cit. on p. 61).

[Zah+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur
Dave, Justin Ma, Murphy McCauley, Michael J Franklin, Scott
Shenker, and Ion Stoica. “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing”.
In: USENIX conference on Networked Systems Design and
Implementation. 2012 (cit. on p. 172).

[Zha+18] Yuan Zhang, Lin Cui, Wei Wang, and Yuxiang Zhang. “A
Survey on Software Defined Networking with Multiple Con-
trollers”. In: J. Netw. Comput. Appl. 103.C (2018), pp. 101–
118. issn: 1084-8045. doi: 10.1016/j.jnca.2017.11.015

(cit. on p. 105).

[Zhu+13] Zuqing Zhu, Wei Lu, Liang Zhang, and Nirwan Ansari. “Dy-
namic service provisioning in elastic optical networks with
hybrid single-/multi-path routing”. In: Journal of Lightwave
Technology 31.1 (2013), pp. 15–22 (cit. on p. 214).

https://www.orange-business.com/en/blogs/connecting-technology/networks/sdn-and-nfv-transforming-the-network-where-do-we-go-from-here
https://www.orange-business.com/en/blogs/connecting-technology/networks/sdn-and-nfv-transforming-the-network-where-do-we-go-from-here
https://www.orange-business.com/en/blogs/connecting-technology/networks/sdn-and-nfv-transforming-the-network-where-do-we-go-from-here
https://www.orange-business.com/en/blogs/connecting-technology/networks/sdn-and-nfv-transforming-the-network-where-do-we-go-from-here
https://doi.org/10.1016/j.jnca.2017.11.015

252 BIBLIOGRAPHY

[ZS00] Dongyun Zhou and Suresh Subramaniam. “Survivability in op-
tical networks”. In: IEEE network 14.6 (2000), pp. 16–23 (cit.
on pp. 108, 204, 206).

	Introduction
	Software Defined Networks
	SDN Architecture

	Network Function Virtualization
	Service Function Chaining
	Research Challenges and Contributions
	NFV Resource Allocation
	Survivable SDN/NFV Networks
	Energy Aware SDN/NFV Networks
	Other Work

	Plan of the Thesis
	List of Publications
	Collaboration

	Preliminaries
	Linear Programming
	Column Generation

	Complexity Theory
	LP-Rounding
	Greedy

	I NFV Resource Allocation
	Service Function Chains Placement
	Introduction
	Related Work
	System Model and Problem Formulation
	Preliminaries: Single Function and Uniform Case

	Approximation Algorithms for SFC-Placement
	Equivalence with Hitting Set
	Naive and Faster Greedy Algorithms
	An LP-Rounding Approach.

	Tree Topologies
	Special Case: Cost uniform over nodes

	Experimental Study
	Data sets
	Number of demands
	Length of the paths
	Length of the chain
	Network topology
	Processing time

	Conclusion

	II Survivable SDN/NFV Networks
	Bandwidth-optimal Failure Recovery with SDN
	Introduction
	Related Work
	Problem Statement and Notations
	Optimization Approaches
	A layered network model
	Compact ILP Formulation
	A Column Generation Approach
	Benders Decomposition Approach
	The Min-Overflow problem

	Numerical Results
	Data sets
	Limits of an ILP-based approach.
	Performances of the optimization models
	Varying Number of NFVI-enabled Nodes
	Number of paths

	Experimental evaluation
	Implementation options
	Experimental setup
	Convergence time
	Operational trade-offs

	Conclusion

	Path Protection for Service Function Chains
	Introduction
	Related Work
	Problem and Notations
	Optimization Models
	Dedicated Protection
	Shared Protection

	Experimental Study
	Data Sets
	Compact ILPs vs. CG Models
	Performance of CG Models
	Bandwidth and Processing Requirements
	Delay

	Conclusion

	III Energy Aware Routing
	Energy Efficient Service Function Chains
	Introduction
	Related Work
	Service Chains
	SDN and Network Energy Efficiency
	Network Virtualization and Network Energy Efficiency

	Statement of the Problem: SFC and VNF Placement
	Notations.
	Power Model
	Layered Graph.

	Compact formulation
	Solving large Instances with GreenChains
	Energy Saving Module.
	Routing Module
	Service Chain Placement Module.

	Decomposition Models
	Column Generation Formulation
	Solution Scheme

	Numerical Experiments
	Data sets
	Compact formulation evaluation
	Quality of the Column Generation models
	Energy Savings

	Conclusions

	Conclusion and Future Work

	IV Appendix
	Data Center Scheduling with Network Tasks
	Introduction
	Related Work
	A New Scheduling Framework
	Problem and Example
	Modeling Data Center Orchestration with Communication

	Hardness
	List-Scheduling

	Algorithms
	Generalized List Scheduling
	Optimality on simple MapReduce Workflows
	Partition

	Experimental Evaluation
	Trace
	Network
	Workflows
	Datasets
	Results

	Conclusion

	Path Protection in Elastical Optical Networks
	Introduction
	Related Work
	Statement of the RMSA Protection Problem
	Path Protection Models
	Solution Design
	Numerical Results
	Data Sets
	Performance of CG Models
	Shared vs. Dedicated Path Protection

	Conclusion

