J. Veysset, Simulation des grands espaces et des temps longs. PhD thesis, ENMP, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01184749

J. Abco-+-01]-marc-alexa, D. Behr, S. Cohen-or, D. Fleishman, C. T. Levin et al., Point set surfaces, Proceedings of the Conference on Visualization '01, VIS '01, pp.21-28, 2001.

G. Birkhoff and H. L. Garabedian, Smooth surface interpolation, Journal of Mathematics and Physics, vol.39, issue.1-4, pp.258-268, 1960.

J. Blinn, A generalization of algebraic surface drawing, 1982.

B. Bengtsson and S. Nordbeck, Construction of isarithms and isarithmic maps by computers. BIT Numerical Mathematics, vol.4, issue.2, pp.87-105, 1964.

J. F. Brinkley, Knowledge-driven ultrasonic three-dimensional organ modeling, IEEE Transactions on Pattern Analysis and Machine Intelligence, issue.4, pp.431-441, 1985.

T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, Journal of Computational Physics, vol.230, issue.7, pp.2391-2405, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00579536

F. Cazals and M. Pouget, Estimating differential quantities using polynomial fitting of osculating jets, Computer Aided Geometric Design, vol.22, issue.2, pp.121-146, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00097582

B. Carl-de, Bicubic spline interpolation. 41, vol.04, p.1962

G. Guennebaud and M. Gross, Algebraic point set surfaces, ACM Trans. Graph, vol.26, issue.3, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00354998

H. Hoppe, T. Derose, T. Duchamp, J. Mcdonald, and W. Stuetzle, Surface reconstruction from unorganized points. SIG-GRAPH, Comput. Graph, vol.26, issue.2, pp.71-78, 1992.

T. Hastie and W. Stuetzle, Principal curves, Journal of the American Statistical Association, vol.84, issue.406, pp.502-516, 1989.

D. Levin, Mesh-Independent Surface Interpolation, Springer Berlin Heidelberg, pp.37-49, 2004.

A. D. Maude, Interpolation-mainly for graph plotters, The Computer Journal, vol.16, issue.1, pp.64-65, 1973.

D. H. Mclain, Drawing contours from arbitrary data points, The Computer Journal, vol.17, issue.4, pp.318-324, 1974.

D. H. Mclain, Two dimensional interpolation from random data, The Computer Journal, vol.19, issue.2, pp.178-181, 1976.

N. J. Mitra, A. Nguyen, and L. Guibas, Estimating surface normals in noisy point cloud data, In special issue of International Journal of Computational Geometry and Applications, vol.14, pp.261-276, 2004.

S. Muraki, Volumetric shape description of range data using &ld-quo ;blobby model&rdquo, Comput. Graph, vol.25, issue.4, pp.227-235, 1991.

M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross, Shape modeling with point-sampled geometry, ACM Trans. Graph, vol.22, issue.3, pp.641-650, 2003.

V. Pratt, Direct least-squares fitting of algebraic surfaces, ACM SIGGRAPH computer graphics, vol.21, pp.145-152, 1987.

B. Vemuri and J. Aggarwal, Representation and recognition of objects from dense range maps, IEEE Transactions on Circuits and Systems, vol.34, issue.11, pp.1351-1363, 1987.

J. Veysset, Simulation des grands espaces et des temps longs, ENMP, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01184749

S. Adjerid and J. E. Flaherty, A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations, SIAM Journal on Numerical Analysis, vol.23, issue.4, pp.778-796, 1986.

C. David, J. E. Arney, and . Flaherty, An adaptive mesh-moving and local refinement method for time-dependent partial differential equations, ACM Trans. Math. Softw, vol.16, issue.1, pp.48-71, 1990.

E. L. Allgower and S. F. Mccormick, Newton's method with mesh refinements for numerical solution of nonlinear two-point boundary value problems, Numerische Mathematik, vol.29, issue.3, pp.237-260, 1978.

R. Boussetta, T. Coupez, and L. Fourment, Adaptive remeshing based on a posteriori error estimation for forging simulation
URL : https://hal.archives-ouvertes.fr/hal-00512775

, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.48, pp.6626-6645, 2006.

J. Marsha, J. Berger, and . Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, Journal of Computational Physics, vol.53, issue.3, pp.484-512, 1984.

C. L. Bottasso, Anisotropic mesh adaption by metric-driven optimization, International Journal for Numerical Methods in Engineering, vol.60, issue.3, pp.597-639, 2004.

]. T. Cjn-+-13a, G. Coupez, N. Jannoun, H. C. Nassif, H. Nguyen et al., Adaptive time-step with anisotropic meshing for incompressible flows, Journal of Computational Physics, pp.195-211, 2013.

G. Thierry-coupez, N. Jannoun, H. C. Nassif, H. Nguyen, E. Digonnet et al., Adaptive time-step with anisotropic meshing for incompressible flows, Journal of Computational Physics, vol.241, pp.195-211, 2013.

T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, Journal of Computational Physics, vol.230, issue.7, pp.2391-2405, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00579536

G. El-jannoun, Adaptation anisotrope précise en espace et temps et méthodes d'éléments finis stabilisées pour la résolution de problèmes de mécanique des fluides instationnaires, 2014.

L. Formaggia and S. Perotto, New anisotropic a priori error estimates, Numerische Mathematik, vol.89, issue.4, pp.641-667, 2001.

L. Formaggia and S. Perotto, Anisotropic error estimates for elliptic problems, Numerische Mathematik, vol.94, issue.1, pp.67-92, 2003.

C. Gruau and T. Coupez, 3d tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.48, pp.4951-4976, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00517639

F. Hecht and R. Kuate, An approximation of anisotropic metrics from higher order interpolation error for triangular mesh adaptation, Journal of Computational and Applied Mathematics, vol.258, pp.99-115, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01105158

W. Huang, Metric tensors for anisotropic mesh generation, Journal of Computational Physics, vol.204, issue.2, pp.633-665, 2005.

G. Kunert, An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes, Numerische Mathematik, vol.86, issue.3, pp.471-490, 2000.

M. Picasso, An anisotropic error indicator based on zienkiewicz-zhu error estimator : Application to elliptic and parabolic problems, SIAM Journal on Scientific Computing, vol.24, issue.4, pp.1328-1355, 2003.

M. Picasso, Adaptive finite elements with large aspect ratio based on an anisotropic error estimator involving first order derivatives, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.1, pp.14-23, 2006.

J. Peter, M. Nguyen-dinh, and P. Trontin, Goal oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates -with applications to euler flows, Computers and Fluids, vol.66, pp.194-214, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00769151

C. C. Pain, A. P. Umpleby, C. R. De-oliveira, and A. J. Goddard, Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.29, pp.3771-3796, 2001.

]. A. +-00, D. Tam, M. P. Ait-ali-yahia, M. Robichaud, V. Moore et al., Anisotropic mesh adaptation for 3d flows on structured and unstructured grids, Computer Methods in Applied Mechanics and Engineering, vol.189, issue.4, pp.1205-1230, 2000.

A. David, D. L. Venditti, and . Darmofal, Anisotropic grid adaptation for functional outputs : application to two-dimensional viscous flows, Journal of Computational Physics, vol.187, issue.1, pp.22-46, 2003.

M. Yano and D. L. Darmofal, An optimization-based framework for anisotropic simplex mesh adaptation, Journal of Computational Physics, vol.231, issue.22, pp.7626-7649, 2012.

, Et une pression nulle est imposée sur le coin inférieur gauche. FIGURE 4.11 -Maillage pour les Reynolds 1000, vol.5000, p.10000

, Les résultats obtenus sur la vitesse sont comparés à ceux obtenus dans

, Les images présentants les résultats suivants sont reprises de

, On y retrouve pour plusieurs valeurs du nombre de Reynolds, à gauche les valeurs de la vitesse horizontale en fonction de l'ordonnée Y et à droite les valeurs de la vitesse verticale en fonction de l'abscisse X. Les droites en pointillés et solide représentent les résultats pour le maillage grossier et le maillage fin, alors que les losanges représentent les résultats de

F. Brezzi and J. Douglas, Stabilized mixed methods for the stokes problem, Numerische Mathematik, vol.53, issue.1, pp.225-235, 1988.

A. N. Brooks, J. R. Thomas, and . Hughes, Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations

, Computer Methods in Applied Mechanics and Engineering, vol.32, issue.1, pp.199-259, 1982.

J. C. Helio, T. J. Barbosa, and . Hughes, The finite element method with lagrange multipliers on the boundary : circumventing the babu?kabrezzi condition, Computer Methods in Applied Mechanics and Engineering, vol.85, issue.1, pp.109-128, 1991.

J. C. Helio, T. J. Barbosa, and . Hughes, Boundary lagrange multipliers in finite element methods : Error analysis in natural norms, Numerische Mathematik, vol.62, issue.1, pp.1-15, 1992.

Y. Bazilevs and T. J. Hughes, Weak imposition of dirichlet boundary conditions in fluid mechanics, Challenges and Advances in Flow Simulation and Modeling, vol.36, pp.12-26, 2007.

Y. Bazilevs, C. Michler, V. M. Calo, and T. J. Hughes, Weak dirichlet boundary conditions for wall-bounded turbulent flows, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.49, pp.4853-4862, 2007.

R. Codina and J. Blasco, A finite element formulation for the stokes problem allowing equal velocity-pressure interpolation, Computer Methods in Applied Mechanics and Engineering, vol.143, issue.3, pp.373-391, 1997.

I. Christie, D. F. Griffiths, A. R. Mitchell, and O. C. Zienkiewicz, Finite element methods for second order differential equations with significant first derivatives, International Journal for Numerical Methods in Engineering, vol.10, issue.6, pp.1389-1396, 1976.

T. Coupez and E. Hachem, Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing, Computer Methods in Applied Mechanics and Engineering, vol.267, pp.65-85, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00866734

R. Codina, Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Computer Methods in Applied Mechanics and Engineering, vol.156, issue.1, pp.185-210, 1998.

R. Codina, On stabilized finite element methods for linear systems of convection-diffusion-reaction equations, Computer Methods in Applied Mechanics and Engineering, vol.188, issue.1, pp.61-82, 2000.

R. Codina, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.13, pp.1579-1599, 2000.

R. Codina, A stabilized finite element method for generalized stationary incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.20, pp.2681-2706, 2001.

M. Morandi-cecchi and M. A. Pirozzi, Applied Scientific Computing : Recent Approaches to Grid Generation, Approximation and Numerical Modelling, Applied Numerical Mathematics, vol.55, issue.3, pp.334-356, 2005.

R. Codina, J. Principe, O. Guasch, and S. Badia, Time dependent subscales in the stabilized finite element approximation of incompressible flow problems, Computer Methods in Applied Mechanics and Engineering, vol.196, pp.2413-2430, 2007.

D. Durante, E. Rossi, A. Colagrossi, and G. Graziani, Numerical simulations of the transition from laminar to chaotic behaviour of the planar vortex flow past a circular cylinder, vol.48, p.2016

E. Erturk, T. C. Corke, and C. Gökçöl, Numerical solutions of 2-d steady incompressible driven cavity flow at high reynolds numbers. CoRR, 2004.

G. El-jannoun, Adaptation anisotrope précise en espace et temps et méthodes d'éléments finis stabilisées pour la résolution de problèmes de mécanique des fluides instationnaires, 2014.

L. P. Franca, S. L. Frey, and T. J. Hughes, Stabilized finite element methods : I. application to the advective-diffusive model
URL : https://hal.archives-ouvertes.fr/inria-00075259

, Computer Methods in Applied Mechanics and Engineering, vol.95, issue.2, pp.253-276, 1992.

Z. Feng and E. E. Michaelides, A numerical study on the transient heat transfer from a sphere at high reynolds and peclet numbers, International Journal of Heat and Mass Transfer, vol.43, issue.2, pp.219-229, 2000.

K. Ghia, C. Ghia, and . Shin, High-re solutions for incompressible flow using the navier-stokes equations and a multigrid method, Journal of Computational Physics, vol.48, issue.3, pp.387-411, 1982.

E. Hachem, Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces. Theses, École Nationale Supérieure des Mines de Paris, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00443532

J. R. Thomas, L. P. Hughes, G. M. Franca, and . Hulbert, A new finite element formulation for computational fluid dynamics : Viii. the galerkin/least-squares method for advective-diffusive equations, Computer Methods in Applied Mechanics and Engineering, vol.73, issue.2, pp.173-189, 1989.

J. R. Thomas, G. R. Hughes, L. Feijóo, J. Mazzei, and . Quincy, The variational multiscale method-a paradigm for computational mechanics, Advances in Stabilized Methods in Computational Mechanics, vol.166, pp.3-24, 1998.

J. C. Heinrich, P. S. Huyakorn, O. C. Zienkiewicz, and A. R. Mitchell, An 'upwind' finite element scheme for two-dimensional convective transport equation, International Journal for Numerical Methods in Engineering, vol.11, issue.1, pp.131-143, 1977.

E. Hachem, B. Rivaux, T. Kloczko, H. Digonnet, and T. Coupez, Stabilized finite element method for incompressible flows with high reynolds number, Journal of Computational Physics, vol.229, issue.23, pp.8643-8665, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521881

J. R. Thomas and . Hughes, A simple scheme for developing 'upwind' finite elements, International Journal for Numerical Methods in Engineering, vol.12, issue.9, pp.1359-1365, 1978.

J. R. Thomas and . Hughes, Recent progress in the development and understanding of supg methods with special reference to the compressible euler and navier-stokes equations, International Journal for Numerical Methods in Fluids, vol.7, issue.11, pp.1261-1275, 1987.

J. R. Thomas and . Hughes, Multiscale phenomena : Green's functions, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Computer Methods in Applied Mechanics and Engineering, vol.127, issue.1, pp.387-401, 1995.

E. Oñate, A. Valls, and J. García, Modeling incompressible flows at low and high reynolds numbers via a finite calculus-finite element approach, Journal of Computational Physics, vol.224, issue.1, pp.332-351, 2007.

J. Principe and R. Codina, On the stabilization parameter in the subgrid scale approximation of scalar convection-diffusion-reaction equations on distorted meshes, Multiscale Models and Mathematical Aspects in Solid and Fluid Mechanics, vol.199, pp.1386-1402, 2010.

R. Schreiber and H. Keller, Driven cavity flows by efficient numerical techniques, Journal of Computational Physics, vol.49, issue.2, pp.310-333, 1983.

M. Schäfer, S. Turek, F. Durst, E. Krause, and R. Rannacher, Benchmark Computations of Laminar Flow Around a Cylinder, STD + 96, pp.547-566, 1996.

E. Tayfun, Y. Tezduyar, and . Osawa, Finite element stabilization parameters computed from element matrices and vectors, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.3, pp.411-430, 2000.

J. Veysset, Simulation des grands espaces et des temps longs. PhD thesis, ENMP, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01184749

A. Wolfgang, M. Wall, E. Bischoff, and . Ramm, A deformation dependent stabilization technique, exemplified by eas elements at large strains, Computer Methods in Applied Mechanics and Engineering, vol.188, issue.4, pp.859-871, 2000.

H. Yagi and M. Kawahara, Contents 5.1 Introduction, Optimal shape determination of a body located in incompressible viscous fluid flow, vol.196, pp.5084-5091, 2007.

, La section suivante s'intéresse, quant à elle à l'écoulement autour d'un

, On y étudie le champ de vitesse et de pression autour d'une des deux ailes de l'avion. Ce dernier avance à la vitesse de 2m/s dans un gaz dont la viscosité vaut ? = 10 ?4 m 2 /s. La longueur de pale vaut environ 0.1m. Le nombre de Reynolds du problème vaut donc environ 10000

, Le nuage de point discrétisant l'avion de modélisme a été acquis à la main

, généré à l'aide d'un modèle, la reconstruction de la fonction distance contient de nombreuses discontinuités que l'on peut apercevoir sur les ailes et l'aileron de l'avion. Néanmoins on peut voir sur les figures suivantes que cela n'empêche pas le calcul éléments finis d'écoulement autour de l'avion. Ces discontinuités ne font

, 4 représentent les lignes de courant et le vecteur vitesse autour de l'aile de l'avion. La première figure peut laisser croire à un écoulement laminaire lorsque l'on regarde les lignes de courant qui ne se croisent pas

. Néanmoins, on peut observer la formation de nombreux vortexs sous l'aile

, Si la figure 5.4 ne le montre pas, il existe également des déplacements dans la troisième direction de l'espace

, Ce calcul permettrait entre autre, dans une étude aérodynamique, de calculer les coefficients de portance et de trainée de l'avion et de les optimiser en modifiant la géométrie ou la rhéologie de l'avion

. Bibliographie,

T. Coupez, Convection of local level set function for moving surfaces and interfaces in forming flow, Materials Processing and Design, Modeling, Simulation and Applications, NUMIFORM '07 : 9th International Conference on Numerical Methods in Industrial Forming Processes, vol.908, pp.61-66, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00510556

H. Digonnet and T. Coupez, Object-oriented programming for "fast and easy" development of parallel applications in forming processes simulation, 2nd MIT Conference on Computational Fluid and Solid Mechanics, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00531577

H. Digonnet, T. Coupez, P. Laure, and L. Silva, Massively parallel anisotropic mesh adaptation, International Journal of High Performance Computing Applications, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01487424

J. Zhao, Direct multiphase mesh generation from 3D images using anisotropic mesh adaptation and a redistancing equation. Theses, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01421353