K. Kersten, C. Salvagno, and K. E. De-visser, Exploiting the Immunomodulatory Properties of Chemotherapeutic Drugs to Improve the Success of Cancer Immunotherapy, Front Immunol, vol.6, p.516, 2015.

L. A. Raedler, Opdivo (Nivolumab): Second PD-1 Inhibitor Receives FDA Approval for Unresectable or Metastatic Melanoma. Am Health Drug Benefits, vol.8, pp.180-183, 2015.

D. Kazandjian, D. L. Suzman, G. Blumenthal, S. Mushti, K. He et al., FDA Approval Summary: Nivolumab for the Treatment of Metastatic Non-Small Cell Lung Cancer With Progression On or After Platinum-Based Chemotherapy, The Oncologist, vol.21, issue.5, pp.634-676, 2016.

T. Powles, J. P. Eder, G. D. Fine, F. S. Braiteh, Y. Loriot et al., MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer, Nature, vol.515, issue.7528, pp.558-62, 2014.

J. D. Wolchok, H. Kluger, M. K. Callahan, M. A. Postow, N. A. Rizvi et al., Nivolumab plus Ipilimumab in Advanced Melanoma, N Engl J Med, vol.369, issue.2, pp.122-155, 2013.

N. Galanina, J. Kline, and M. R. Bishop, Emerging role of checkpoint blockade therapy in lymphoma, TherAdvHematol, vol.8, issue.2, pp.81-90, 2017.

C. Lee and R. J. Motzer, Immune Checkpoint Therapy in Renal Cell Carcinoma

, Cancer J Sudbury Mass, vol.22, issue.2, pp.92-97, 2016.

D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, Nat Rev Cancer, vol.12, issue.4, pp.252-64, 2012.

D. Shin, A. Garcia-diaz, J. Zaretsky, H. Escuin-ordinas, S. Hu-lieskovan et al., Innate resistance of PD-1 blockade through loss of function mutations in JAK resulting in inability to express PD-L1 upon interferon exposure, J Immunother Cancer, vol.3, issue.2, p.311, 2015.

P. Sharma, S. Hu-lieskovan, J. A. Wargo, and R. A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy, Cell, vol.168, issue.4, pp.707-730, 2009.

J. S. O'donnell, M. J. Smyth, and M. Teng, Acquired resistance to anti-PD1 therapy: checkmate to checkpoint blockade, Genome Med, p.2017, 2016.

, Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma -NEJM, vol.8, 2017.

S. Koyama, E. A. Akbay, Y. Y. Li, G. S. Herter-sprie, K. A. Buczkowski et al., Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints, Nat Commun, vol.7, p.10501, 2016.

M. Swart, I. Verbrugge, and J. B. Beltman, Combination Approaches with Immune-Checkpoint Blockade in Cancer Therapy. Front Oncol, vol.6, 2016.

S. J. Harris, J. Brown, J. Lopez, and T. A. Yap, Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC), Journal of Clinical Oncology, vol.13, issue.2, pp.171-93, 2016.

,

A. Amin, E. R. Plimack, J. R. Infante, M. S. Ernstoff, B. I. Rini et al.,

. Nivolumab,

, ONO-4538) in combination with sunitinib or pazopanib in patients (pts) with metastatic renal cell carcinoma (mRCC), BMS-936558, vol.32, pp.5010-5010, 2014.

, BRAF (dabrafenib) and/or MEK (trametinib) inhibitors in advanced melanoma, Phase I study combining anti-PD-L1 (MEDI4736) with, vol.33, 2017.

S. J. Antonia, J. R. Brahmer, S. Gettinger, L. Q. Chow, R. Juergens et al.,

, ONO-4538) in Combination With Platinum-Based Doublet Chemotherapy (PT-DC) in Advanced Non-Small Cell Lung Cancer (NSCLC): Metastatic Non-Small Cell Lung Cancer, BMS-936558, vol.90, p.2, 2014.

C. Pfirschke, C. Engblom, S. Rickelt, V. Cortez-retamozo, C. Garris et al., Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effectorsuppressor T cells in limiting effective chemotherapy, Cancer ImmunolImmunother CII, vol.44, issue.2, pp.1219-1247, 2009.

L. Zitvogel, L. Galluzzi, M. J. Smyth, and G. Kroemer, Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity, vol.39, pp.74-88, 2013.

L. Zitvogel, O. Kepp, and G. Kroemer, Immune parameters affecting the efficacy of chemotherapeutic regimens, Nat Rev ClinOncol, vol.8, issue.3, pp.151-60, 2011.

S. Cui, Immunogenic Chemotherapy Sensitizes Renal Cancer to Immune Checkpoint Blockade Therapy in Preclinical Models, Med SciMonitInt Med J ExpClin Res, vol.23, pp.3360-3366, 2017.

M. Dosset, T. R. Vargas, A. Lagrange, R. Boidot, F. Végran et al.,

/. Pathway, an adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer. OncoImmunology, vol.0, pp.0-00, 2018.

I. Faiena, A. L. Cummings, A. M. Crosetti, A. J. Pantuck, K. Chamie et al., Durvalumab: an investigational anti-PD-L1 monoclonal antibody for the treatment of urothelial carcinoma. Drug Des DevelTher, vol.12, pp.209-224, 2018.

J. E. Rosenberg, J. Hoffman-censits, T. Powles, M. S. Van-der-heijden, A. V. Balar et al., Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial, Lancet Lond Engl, vol.387, pp.1909-1929, 2016.

S. Mosely, J. E. Prime, R. Sainson, J. Koopmann, D. Wang et al., Rational Selection of Syngeneic Preclinical Tumor Models for Immunotherapeutic Drug Discovery, Cancer Immunol Res, 2016.

G. Shayan, R. Srivastava, J. Li, N. Schmitt, L. P. Kane et al., Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer, Oncoimmunology, vol.6, issue.1, p.1261779, 2017.

M. Mino-kenudson, Programmed cell death ligand-1 (PD-L1) expression by immunohistochemistry: could it be predictive and/or prognostic in non-small cell lung cancer?, Cancer Biol Med, vol.13, issue.2, pp.157-70, 2016.

J. A. Wargo, A. Reuben, Z. A. Cooper, K. S. Oh, and R. J. Sullivan,

, Radiation, and Targeted Therapy and Opportunities for Combination With Immunotherapy, Chemotherapy, vol.42, issue.4, pp.601-617, 2015.

O. Kepp, J. Pol, L. Zitvogel, and G. Kroemer, Immunogenic Stress and Death of Cancer Cells in Natural and Therapy-Induced Immunosurveillance

C. Springer, , pp.215-244, 2017.

P. Gotwals, S. Cameron, D. Cipolletta, V. Cremasco, A. Crystal et al., Prospects for combining targeted and conventional cancer therapy with immunotherapy, Nat Rev Cancer, vol.17, issue.5, p.17, 2017.

C. Fournier, R. Vargas, T. Martin, T. Melis, A. Apetoh et al., Immunotherapeutic properties of chemotherapy, CurrOpinPharmacol, p.2017, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01557529

R. Ramakrishnan, D. Assudani, S. Nagaraj, T. Hunter, H. Cho et al., Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice, J Clin Invest, vol.120, issue.4, pp.1111-1135, 2010.

L. A. Raedler and . Opdivo, Nivolumab): Second PD-1 InhibitorReceives FDA Approval for Unresectable or MetastaticMelanoma, Am. Health Drug, vol.8, pp.180-183, 2015.

S. L. Topalian, Survival, durable tumorremission, and long-termsafety in patients withadvancedmelanomareceivingnivolumab, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.32, pp.1020-1030, 2014.

, Safety and clinicalactivity of MEDI4736, an anti-programmedcelldeath-ligand 1

, PD-L1) antibody, in patients with non-smallcelllung cancer (NSCLC), Journal of ClinicalOncology, vol.33, issue.15_suppl, p.28, 2018.

A. B. Schulze and L. H. Schmidt, PD-1 targetedImmunotherapy as first-line therapy for advanced non-small-celllung cancer patients, J. Thorac. Dis, vol.9, pp.384-386, 2017.

, NivolumabApproved for Bladder Cancer by European Commission, p.28, 2018.

, Imfinzi a New PD-L1 Approved for Bladder Cancer After Platinum-BasedChemotherapy, 2017.

, Treatment of Advanced Renal-CellCarcinoma. N. Engl. J. Med, vol.374, pp.888-890, 2016.

H. O. Alsaab, PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and ClinicalOutcome, Front. Pharmacol, vol.8, 2017.

S. P. Patel and R. &kurzrock, PD-L1 Expression as a PredictiveBiomarker in Cancer Immunotherapy, Mol. Cancer Ther, vol.14, pp.847-856, 2015.

S. Malekivareki, C. Garrigós, and I. Duran, Biomarkers of response to PD-1/PD-L1 inhibition, Crit. Rev. Oncol. Hematol, vol.116, pp.116-124, 2017.

S. Spranger, R. Bao, and T. F. &gajewski, Melanoma-intrinsic ?cateninsignallingprevents anti-tumourimmunity, vol.523, pp.231-235, 2015.

J. M. Zaretsky, Mutations Associated withAcquiredResistance to PD, issue.1

, Blockade in Melanoma. N. Engl. J. Med, vol.375, pp.819-829, 2016.

S. Koyama, Adaptive resistance to therapeutic PD-1 blockadeisassociatedwithupregulation of alternative immune checkpoints, Nat. Commun, vol.7, p.10501, 2016.

D. S. Thommen, Progression of Lung Cancer Is Associated withIncreasedDysfunction of T CellsDefined by Coexpression of Multiple InhibitoryReceptors, Cancer Immunol. Res, vol.3, pp.1344-1355, 2015.

S. P. Becerra and V. &notario, The effects of PEDF on cancer biology: mechanisms of action and therapeuticpotential, Nat. Rev, vol.13, pp.258-271, 2013.

X. He, R. Cheng, S. Benyajati, and J. Ma, PEDF and itsroles in physiological and pathological conditions: implication in diabetic and hypoxiainducedangiogenicdiseases, Clin. Sci. Lond. Engl, pp.805-823, 2015.

N. G. Nwani, MelanomaCells Block PEDF Production in Fibroblasts to Induce the Tumor-PromotingPhenotype of Cancer-Associated Fibroblasts, Cancer Res, vol.76, pp.2265-2276, 2016.

Q. Ding, Ficolin-2 triggers antitumoreffect by activating macrophages and CD8+ T cells, Clin. Immunol. Orlando, vol.183, pp.145-157, 2017.

J. L. Mcelwee, Identification of PADI2 as a potentialbreast cancer biomarker and therapeutictarget, BMC, vol.12, p.500, 2012.

H. Wang, PADI2 geneconferssusceptibility to breast cancer and playstumorigenicrole via ACSL4, BINC3 and CA9 signaling, Cancer Cell Int, vol.16, p.61, 2016.

Y. Zhang, Geneticpolymorphisms in human UDPglucuronosyltransferases 1A7 and the risk of gastrointestinalcarcinomas: A systematicreview and network meta-analysis, vol.8, pp.66371-66381, 2017.

L. Yilmaz, Increased UGT1A3 and UGT1A7 expression isassociatedwithpancreatic cancer. Asian Pac, J. Cancer Prev, vol.16, pp.1651-1655, 2015.

M. L. Ascierto, The Intratumoral Balance betweenMetabolic and Immunologic Gene Expression Is Associated with Anti-PD-1 Response in Patients withRenalCellCarcinoma, Cancer Immunol. Res, vol.4, pp.726-733, 2016.

Y. Y. Setiady, J. A. Coccia, and P. U. Park, In vivo depletion of CD4+FOXP3+ Tregcells by the PC61 anti-CD25 monoclonal antibodyismediated by FcgammaRIII+ phagocytes, Eur. J. Immunol, vol.40, pp.780-786, 2010.

E. Zhou, Up-regulation of Tim-3 isassociatedwithpoorprognosis of patients with colon cancer, Int. J. Clin. Exp. Pathol, vol.8, pp.8018-8027, 2015.

Y. Zhang, P. Cai, T. Liang, L. Wang, and L. Hu, TIM-3 is a potentialprognostic marker for patients withsolidtumors: A systematicreview and meta-analysis, vol.8, pp.31705-31713, 2017.

Y. Komohara, The Coordinated Actions of TIM-3 on Cancer and MyeloidCells in the Regulation of Tumorigenicity and ClinicalPrognosis in ClearCellRenalCellCarcinomas, Cancer Immunol. Res, vol.3, pp.999-1007, 2015.

B. Tomkowicz, TIM-3 Suppresses Anti-CD3/CD28-Induced TCR Activation and IL-2 Expression through the NFAT SignalingPathway, PloS, vol.10, p.140694, 2015.

Y. Xia, S. Shen, and I. M. &verma, NF-?B, an active player in human cancers, Cancer Immunol. Res, vol.2, pp.823-830, 2014.

, et/ou anti-PDL-1, et de plus être ciblé par différentes stratégies thérapeutiques pour induire la destruction de tumeurs ayant acquis une résistance acquise à l'anti-PD1

. Incidence, , p.11, 2018.

F. Santé-publique, Le cancer en France métropolitaine : projections d'incidence et de mortalité par cancer en 2017, p.11, 2018.

, Les dernières avancées -Les progrès de la recherche | Institut National Du Cancer, p.11, 2018.

G. P. Dunn, L. J. Old, and R. D. Schreiber, The Immunobiology of Cancer Immunosurveillance and Immunoediting, Immunity, vol.21, pp.137-148, 2004.

D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, vol.100, pp.57-70, 2000.

F. Ghiringhelli,

L. Zitvogel, L. Galluzzi, M. J. Smyth, and G. Kroemer, Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance, Immunity, vol.39, pp.74-88, 2013.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, pp.646-674, 2011.

P. Delvenne, Virus-induced cancers: interplay between genetics and environment, Rev. Med. Liege, vol.67, pp.381-389, 2012.

J. Galon, Validation of the Immunoscore (IM) as a prognostic marker in stage I/II/III colon cancer: Results of a worldwide consortium-based analysis of 1,336 patients, J. Clin. Oncol, vol.34, pp.3500-3500, 2016.

B. M. Olson and D. G. Mcneel, Antigen loss and tumor-mediated immunosuppression facilitate tumor recurrence, Expert Rev. Vaccines, vol.11, pp.1315-1317, 2012.

D. Fruci, Major histocompatibility complex class i and tumour immunoevasion: how to fool T cells and natural killer cells at one time, Curr. Oncol, vol.19, pp.39-41, 2012.

L. Zitvogel, A. Tesniere, and G. Kroemer, Cancer despite immunosurveillance: immunoselection and immunosubversion, Nat. Rev. Immunol, vol.6, pp.715-727, 2006.

F. Ghiringhelli, Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation, J. Exp. Med, vol.202, pp.919-929, 2005.

M. Wang, Role of tumor microenvironment in tumorigenesis, J. Cancer, vol.8, pp.761-773, 2017.

J. Zhang, VEGF blockade inhibits lymphocyte recruitment and ameliorates immune-mediated vascular remodeling, Circ. Res, vol.107, pp.408-417, 2010.

A. Q. Butt and K. H. Mills, Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines, Oncogene, vol.33, pp.4623-4631, 2014.

K. E. De-visser, A. Eichten, and L. M. Coussens, Paradoxical roles of the immune system during cancer development, Nat. Rev. Cancer, vol.6, pp.24-37, 2006.

P. Matzinger, Tolerance, danger, and the extended family, Annu. Rev

, Immunol, vol.12, pp.991-1045, 1994.

L. H. Stockwin, D. Mcgonagle, I. G. Martin, G. E. Blair, and . Dendritic,

, Immunological sentinels with a central role in health and disease, Immunol. Cell Biol, vol.78, pp.91-102, 2000.

S. Anguille, E. L. Smits, E. Lion, V. F. Van-tendeloo, and Z. Berneman,

, Clinical use of dendritic cells for cancer therapy, Lancet Oncol, vol.15, pp.257-267, 2014.

A. J. Michielsen, E. J. Ryan, and J. N. O'sullivan, Dendritic cell inhibition correlates with survival of colorectal cancer patients on bevacizumab treatment, Oncoimmunology, vol.1, pp.1445-1447, 2012.

E. Vivier, E. Tomasello, M. Baratin, T. Walzer, and S. Ugolini, Functions of natural killer cells, Nat. Immunol, vol.9, pp.503-510, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00294184

G. Trinchieri, Biology of Natural Killer Cells, Advances in Immunology

F. J. Dixon, , vol.47, pp.187-376, 1989.

. Perussia, The Cytokine Profile of Resting and Activated NK Cells

, Methods San Diego Calif, vol.9, pp.370-378, 1996.

B. R. Lauwerys, N. Garot, J. Renauld, and F. A. Houssiau, Cytokine Production and Killer Activity of NK/T-NK Cells Derived with IL-2, IL-15, or the Combination of IL-12 and IL-18, J. Immunol, vol.165, pp.1847-1853, 2000.

M. Adib-conquy, D. Scott-algara, J. Cavaillon, and . Souza-fonseca,

F. Guimaraes, TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals, Immunol. Cell Biol, vol.92, pp.256-262, 2014.

W. Leung, Infusions of allogeneic natural killer cells as cancer therapy, Clin

, Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.20, pp.3390-3400, 2014.

C. Grégoire, The trafficking of natural killer cells, Immunol. Rev, vol.220, pp.169-182, 2007.

A. Silva, D. M. Andrews, A. G. Brooks, M. J. Smyth, and Y. Hayakawa, Application of CD27 as a marker for distinguishing human NK cell subsets, Int. Immunol, vol.20, pp.625-630, 2008.

J. R. Carlyle, Molecular and genetic basis for strain-dependent NK1

, alloreactivity of mouse NK cells, J. Immunol. Baltim. Md, vol.176, pp.7511-7524, 1950.

C. A. Alvarez-breckenridge, NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors, Nat. Med, vol.18, pp.1827-1834, 2012.

M. A. Elhelu, The Role of Macrophages in Immunology, J. Natl. Med. Assoc, vol.75, pp.314-317, 1983.

P. J. Murray and T. A. Wynn, Protective and pathogenic functions of macrophage subsets, Nat. Rev. Immunol, vol.11, pp.723-737, 2011.

C. Steidl, Tumor-associated macrophages and survival in classic

. Hodgkin's-lymphoma, N. Engl. J. Med, vol.362, pp.875-885, 2010.

D. Duluc, Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages, Int. J. Cancer, vol.125, pp.367-373, 2009.

G. H. Windbichler, Interferon-gamma in the first-line therapy of ovarian cancer: a randomized phase III trial, Br. J. Cancer, vol.82, pp.1138-1144, 2000.

Y. Nagai, H. Tsuchiya, M. Q. Ji, H. Zhang, and M. I. Greene, Synergistic effect of IFN-? on breast cancer targeted therapy, J. Immunol, vol.198, 2017.

M. E. Gleave, Interferon Gamma-1b Compared with

, Metastatic Renal-Cell Carcinoma, N. Engl. J. Med, vol.338, pp.1265-1271, 1998.

M. Wiesenfeld, Controlled clinical trial of interferon-gamma as postoperative surgical adjuvant therapy for colon cancer, J. Clin. Oncol. Off. J. Am

. Soc, Clin. Oncol, vol.13, pp.2324-2329, 1995.

W. Khazen, Expression of macrophage-selective markers in human and rodent adipocytes, FEBS Lett, vol.579, pp.5631-5634, 2005.

P. Dong, CD86 + /CD206 + , Diametrically Polarized Tumor-Associated

. Macrophages, Predict Hepatocellular Carcinoma Patient Prognosis, Int. J. Mol. Sci, vol.17, p.320, 2016.

M. R. Galdiero, Tumor associated macrophages and neutrophils in cancer, Immunobiology, vol.218, pp.1402-1410, 2013.

S. Jaillon, Neutrophils in innate and adaptive immunity

. Immunopathol, , vol.35, pp.377-394, 2013.

L. W. Treffers, I. H. Hiemstra, T. W. Kuijpers, . Van-den, T. K. Berg et al., Neutrophils in cancer, Immunol. Rev, vol.273, pp.312-328, 2016.

A. Mócsai, Diverse novel functions of neutrophils in immunity, inflammation, and beyond, J. Exp. Med, vol.210, pp.1283-1299, 2013.

P. C. Fulkerson and M. E. Rothenberg, Targeting eosinophils in allergy, inflammation and beyond, Nat. Rev. Drug Discov, vol.12, pp.117-129, 2013.

A. S. Goldman and B. S. Prabhakar, Immunology Overview. in Medical Microbiology, 1996.

B. Alberts, Molecular Biology of the Cell, 2002.

, Transitional B cells: step by step towards immune competence: Trends in Immunology, p.11, 2018.

T. W. Lebien and T. F. Tedder, lymphocytes: how they develop and function, Blood, vol.112, pp.1570-1580, 2008.

M. Descatoire, Human marginal zone B cell : a NOTCH2 dependent lineage, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01012049

J. B. Petro, Transitional type 1 and 2 B lymphocyte subsets are differentially responsive to antigen receptor signaling, J. Biol. Chem, vol.277, pp.48009-48019, 2002.

M. Mcheyzer-williams, S. Okitsu, N. Wang, and L. Mcheyzer-williams, A brief history of T cell help to B cells, Nature Reviews Immunology. Available at, vol.55, pp.24-34, 2012.

T. Kurosaki, K. Kometani, W. Ise, and . Memory-b-cells, Nat. Rev. Immunol, vol.15, pp.149-159, 2015.

C. J. Del-nagro, CD19 function in central and peripheral B-cell development, Immunol. Res, vol.31, pp.119-131, 2005.

M. J. Spiering, Primer on the Immune System, Alcohol Res. Curr. Rev, vol.37, pp.171-175, 2015.

R. V. Luckheeram, R. Zhou, A. D. Verma, and B. Xia, CD4+T Cells: Differentiation and Functions, Clin. Dev. Immunol, 2012.

C. L. Sokol, Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response, Nat. Immunol, vol.10, pp.713-720, 2009.

M. Besancon, Immunothérapie non-spécifique du cancer de la vessie : développement de nouvelles approches basées sur la combinaison d'agents thérapeutiques, 2017.

S. Z. Josefowicz, L. Lu, and A. Y. Rudensky, Regulatory T cells: mechanisms of differentiation and function, Annu. Rev. Immunol, vol.30, pp.531-564, 2012.

W. Chen, Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3, J. Exp. Med, vol.198, pp.1875-1886, 2003.

E. Ventre, Modulation des fonctions des lymphocytes T CD8 par l'Interleukine
URL : https://hal.archives-ouvertes.fr/tel-00678496

D. Zehn, S. Y. Lee, and M. J. Bevan, Complete but curtailed T-cell response to very low-affinity antigen, Nature, vol.458, pp.211-214, 2009.

J. M. Curtsinger, J. O. Valenzuela, P. Agarwal, D. Lins, and M. F. Mescher,

, Cutting Edge: Type I IFNs Provide a Third Signal to CD8 T Cells to Stimulate Clonal Expansion and Differentiation, J. Immunol, vol.174, pp.4465-4469, 2005.

I. Voskoboinik, J. C. Whisstock, and J. A. Trapani, Perforin and granzymes: function, dysfunction and human pathology, Nat. Rev. Immunol, vol.15, pp.388-400, 2015.

A. Strasser, P. J. Jost, and S. Nagata, The many roles of FAS receptor signaling in the immune system, Immunity, vol.30, pp.180-192, 2009.

V. Umansky, C. Blattner, C. Gebhardt, and J. Utikal, The Role of Myeloid-Derived Suppressor Cells (MDSC) in Cancer Progression, Vaccines, vol.4, 2016.

A. H. Zea, Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion, Cancer Res, vol.65, pp.3044-3048, 2005.

S. Kusmartsev, Reversal of Myeloid Cell-Mediated Immunosuppression in Patients with Metastatic Renal Cell Carcinoma, Clin. Cancer Res, vol.14, pp.8270-8278, 2008.

V. Bronte, Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards, Nat. Commun, vol.7, p.12150, 2016.

W. H. Fridman, Immune infiltration in human cancer: prognostic significance and disease control, Curr. Top. Microbiol. Immunol, vol.344, pp.1-24, 2011.

J. Li, J. Wang, R. Chen, Y. Bai, and X. Lu, The prognostic value of tumorinfiltrating T lymphocytes in ovarian cancer, Oncotarget, vol.8, pp.15621-15631, 2017.

W. H. Fridman, F. Pagès, C. Sautès-fridman, and J. Galon, The immune contexture in human tumours: impact on clinical outcome, Nat. Rev. Cancer, vol.12, pp.298-306, 2012.

M. Tosolini, Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer, Cancer Res, vol.71, pp.1263-1271, 2011.

N. K. Yoon, Higher levels of GATA3 predict better survival in women with breast cancer, Hum. Pathol, vol.41, pp.1794-1801, 2010.

L. Lv, The accumulation and prognosis value of tumor infiltrating IL-17 producing cells in esophageal squamous cell carcinoma, PloS One, vol.6, p.18219, 2011.

F. R. Balkwill, M. Capasso, and T. Hagemann, The tumor microenvironment at a glance, J Cell Sci, vol.125, pp.5591-5596, 2012.

A. Kotsakis, Prognostic value of circulating regulatory T cell subsets in untreated non-small cell lung cancer patients, Sci. Rep, vol.6, 2016.

T. J. Curiel, Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival, Nat. Med, vol.10, pp.942-949, 2004.

A. F. Koreishi, The role of cytotoxic and regulatory T cells in relapsed/refractory Hodgkin lymphoma, Appl. Immunohistochem. Mol. Morphol. AIMM, vol.18, pp.206-211, 2010.

A. Tzankov, Correlation of high numbers of intratumoral FOXP3+

, regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin's lymphoma, Haematologica, vol.93, pp.193-200, 2008.

J. A. Coronella, Evidence for an Antigen-driven Humoral Immune Response in Medullary Ductal Breast Cancer, Cancer Res, vol.61, pp.7889-7899, 2001.

M. C. Wouters and B. H. Nelson, Prognostic significance of tumor-infiltrating B cells and plasma cells in human cancer, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, 2018.

T. Schioppa, B regulatory cells and the tumor-promoting actions of TNF? during squamous carcinogenesis, Proc. Natl. Acad. Sci. 201100994, 2011.

M. Horikawa, V. Minard-colin, T. Matsushita, and T. F. Tedder, Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice, J. Clin. Invest, vol.121, pp.4268-4280, 2011.

B. Xu, Prognostic value of tumor infiltrating NK cells and macrophages in stage II+III esophageal cancer patients, Oncotarget, vol.7, pp.74904-74916, 2016.

T. Tachibana, Increased Intratumor V?24-Positive Natural Killer T Cells

, A Prognostic Factor for Primary Colorectal Carcinomas, Clin. Cancer Res, vol.11, pp.7322-7327, 2005.

H. Qiu, The prognostic significance of peripheral T-lymphocyte subsets and natural killer cells in patients with colorectal cancer, Hepatogastroenterology, vol.56, pp.1310-1315, 2009.

B. Qian and J. W. Pollard, Macrophage diversity enhances tumor progression and metastasis, Cell, vol.141, pp.39-51, 2010.

J. Condeelis and J. W. Pollard, Macrophages: obligate partners for tumor cell migration, invasion, and metastasis, Cell, vol.124, pp.263-266, 2006.

L. Bingle, N. J. Brown, and C. E. Lewis, The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies, J. Pathol, vol.196, pp.254-265, 2002.

L. Yang, CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients, Oncotarget, vol.6, pp.10592-10603, 2015.

S. S. Dave, Prediction of Survival in Follicular Lymphoma Based on Molecular Features of Tumor-Infiltrating Immune Cells

L. S. Ojalvo, C. A. Whittaker, J. S. Condeelis, and J. W. Pollard, Gene Expression Analysis of Macrophages That Facilitate Tumor Invasion Supports a Role for Wnt-Signaling in Mediating Their Activity in Primary Mammary Tumors, J. Immunol, vol.184, pp.702-712, 2009.

T. Zabuawala, An Ets2-Driven Transcriptional Program in Tumor

, Associated Macrophages Promotes Tumor Metastasis, Cancer Res, 2010.

C. Murdoch, A. Giannoudis, and C. E. Lewis, Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues, Blood, vol.104, pp.2224-2234, 2004.

J. R. White, Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis, Genomics, vol.83, pp.1-8, 2004.

S. Kusmartsev, S. Nagaraj, and D. I. Gabrilovich, Tumor-Associated CD8+ T Cell Tolerance Induced by Bone Marrow-Derived Immature Myeloid Cells, J. Immunol, vol.175, pp.4583-4592, 2005.

V. Bronte, P. Serafini, A. Mazzoni, D. M. Segal, and P. Zanovello, L-arginine metabolism in myeloid cells controls T-lymphocyte functions, Trends Immunol, vol.24, pp.301-305, 2003.

B. Huang, Gr-1+CD115+ Immature Myeloid Suppressor Cells Mediate the Development of Tumor-Induced T Regulatory Cells and T-Cell Anergy in Tumor-Bearing Host, Cancer Res, vol.66, pp.1123-1131, 2006.

P. Sinha, V. K. Clements, S. K. Bunt, S. M. Albelda, and S. Ostrand-rosenberg, Cross-Talk between Myeloid-Derived Suppressor Cells and Macrophages Subverts Tumor Immunity toward a Type 2 Response, J. Immunol, vol.179, pp.977-983, 2007.

D. I. Gabrilovich, S. Ostrand-rosenberg, and V. Bronte, Coordinated regulation of myeloid cells by tumours, Nat. Rev. Immunol, vol.12, pp.253-268, 2012.

J. M. Janco, P. Lamichhane, L. Karyampudi, and K. L. Knutson, TUMOR-INFILTRATING DENDRITIC CELLS IN CANCER PATHOGENESIS1, J. Immunol

. Baltim and . Md, , pp.2985-2991, 2015.

I. Treilleux, Dendritic cell infiltration and prognosis of early stage breast cancer, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.10, pp.7466-7474, 2004.

M. H. Sandel, Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.11, pp.2576-2582, 2005.

X. Cai, Dendritic cell infiltration and prognosis of human hepatocellular carcinoma, J. Cancer Res. Clin. Oncol, vol.132, pp.293-301, 2006.

Y. Ma, G. V. Shurin, Z. Peiyuan, and M. R. Shurin, Dendritic Cells in the Cancer Microenvironment, J. Cancer, vol.4, pp.36-44, 2013.

H. Angell and J. Galon, From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer, Curr. Opin. Immunol, vol.25, pp.261-267, 2013.

P. Gao, Is the prediction of prognosis not improved by the seventh edition of the TNM classification for colorectal cancer? Analysis of the surveilla006Ece, epidemiology, and end results (SEER) database, BMC Cancer, vol.13, p.123, 2013.

F. Pagès, International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study, Lancet Lond. Engl, vol.391, pp.2128-2139, 2018.

J. Galon, Towards the introduction of the 'Immunoscore' in the classification of malignant tumours, J. Pathol, vol.232, pp.199-209, 2014.

M. Anitei, Prognostic and predictive values of the immunoscore in patients with rectal cancer, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.20, pp.1891-1899, 2014.

Y. Yang, Cancer immunotherapy: harnessing the immune system to battle cancer, J. Clin. Invest, vol.125, pp.3335-3337, 2015.

K. Y. Helmy, S. A. Patel, G. R. Nahas, and P. Rameshwar, Cancer immunotherapy: accomplishments to date and future promise, Ther. Deliv, vol.4, pp.1307-1320, 2013.

M. A. Cheever, J. A. Thompson, D. J. Peace, and P. D. Greenberg, Potential Uses of Interleukin 2 in Cancer Therapy, Immunobiology, vol.172, pp.365-382, 1986.

S. Négrier, Randomized study of intravenous versus subcutaneous interleukin-2, and IFNalpha in patients with good prognosis metastatic renal cancer, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.14, pp.5907-5912, 2008.

J. Tourani, Subcutaneous interleukin-2 and interferon alfa administration in patients with metastatic renal cell carcinoma: final results of SCAPP III, a large, multicenter, phase II, nonrandomized study with sequential analysis design--the Subcutaneous Administration Propeukin Program Cooperative Group, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.21, pp.3987-3994, 2003.

P. Dhupkar and N. Gordon, Interleukin-2: Old and New Approaches to Enhance Immune-Therapeutic Efficacy, Adv. Exp. Med. Biol, vol.995, pp.33-51, 2017.

B. S. Parker, J. Rautela, and P. J. Hertzog, Antitumour actions of interferons: implications for cancer therapy, Nat. Rev. Cancer, vol.16, pp.131-144, 2016.

S. Pasquali and S. Mocellin, The anticancer face of interferon alpha (IFN-alpha): from biology to clinical results, with a focus on melanoma, Curr. Med. Chem, vol.17, pp.3327-3336, 2010.

F. M. Veronese and A. Mero, The impact of PEGylation on biological therapies, BioDrugs Clin. Immunother. Biopharm. Gene Ther, vol.22, pp.315-329, 2008.

A. M. Eggermont, Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial, Lancet Lond. Engl, vol.372, pp.117-126, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00485095

, Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead, p.19, 2018.

H. F. Sears, Phase-I clinical trial of monoclonal antibody in treatment of gastrointestinal tumours, Lancet Lond. Engl, vol.1, pp.762-765, 1982.

A. M. Scott, J. D. Wolchok, and L. J. Old, Antibody therapy of cancer, Nat. Rev. Cancer, vol.12, pp.278-287, 2012.

P. Hubert and S. Amigorena, Antibody-dependent cell cytotoxicity in monoclonal antibody-mediated tumor immunotherapy, Oncoimmunology, vol.1, pp.103-105, 2012.

I. Zafir-lavie, Y. Michaeli, and Y. Reiter, Novel antibodies as anticancer agents, Oncogene, vol.26, pp.3714-3733, 2007.

J. E. Bakema and M. Van-egmond, Fc receptor-dependent mechanisms of monoclonal antibody therapy of cancer, Curr. Top. Microbiol. Immunol, vol.382, pp.373-392, 2014.

M. D. Pescovitz and . Rituximab, an Anti-CD20 Monoclonal Antibody: History and Mechanism of Action, Am. J. Transplant, vol.6, pp.859-866

J. Sauveur, Development and characterization od models of resistance to T-DM1, 2016.

K. Klute, Microtubule inhibitor-based antibody-drug conjugates for cancer therapy, OncoTargets Ther, vol.7, pp.2227-2236, 2014.

C. Varga, M. Maglio, I. M. Ghobrial, and P. G. Richardson, Current use of monoclonal antibodies in the treatment of multiple myeloma, Br. J. Haematol, vol.181, pp.447-459, 2018.

B. A. Teicher and R. V. Chari, Antibody Conjugate Therapeutics: Challenges and Potential, Clin. Cancer Res, vol.17, pp.6389-6397, 2011.

C. Kellner, A Novel CD19-directed Recombinant Bispecific Antibody Derivative With Enhanced Immune Effector Functions for Human Leukemic Cells

, J. Immunother, vol.31, p.871, 2008.

S. M. Kipriyanov, Synergistic antitumor effect of bispecific CD19 x CD3 and CD19 x CD16 diabodies in a preclinical model of non-Hodgkin's lymphoma, J. Immunol. Baltim. Md, vol.169, pp.137-144, 1950.

T. Dreier, T Cell Costimulus-Independent and Very Efficacious Inhibition of Tumor Growth in Mice Bearing Subcutaneous or Leukemic Human B Cell Lymphoma Xenografts by a CD19-/CD3-Bispecific Single-Chain Antibody Construct, J. Immunol, vol.170, pp.4397-4402, 2003.

H. Kantarjian, Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia, N. Engl. J. Med, vol.376, pp.836-847, 2017.

H. Byrne, P. J. Conroy, J. C. Whisstock, and R. J. Kennedy, A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications, Trends Biotechnol, vol.31, pp.621-632, 2013.

Z. B. Davis, M. Felices, M. R. Verneris, and J. S. Miller, Natural Killer Cell Adoptive Transfer Therapy: Exploiting the First Line of Defense Against Cancer

, Cancer J. Sudbury Mass, vol.21, pp.486-491, 2015.

L. A. Welniak, B. R. Blazar, and W. J. Murphy, Immunobiology of Allogeneic Hematopoietic Stem Cell Transplantation, Annu. Rev. Immunol, vol.25, pp.139-170, 2007.

K. Perica, J. C. Varela, M. Oelke, and J. Schneck, Adoptive T Cell Immunotherapy for Cancer, Rambam Maimonides Med. J, vol.6, 2015.

C. Wrzesinski, Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells, J. Immunother. Hagerstown Md, vol.33, pp.1-7, 1997.

M. H. Kershaw, J. A. Westwood, and P. K. Darcy, Gene-engineered T cells for cancer therapy, Nat. Rev. Cancer, vol.13, pp.525-541, 2013.

M. Cartellieri, Chimeric antigen receptor-engineered T cells for immunotherapy of cancer, J. Biomed. Biotechnol, p.956304, 2010.

S. A. Grupp, Chimeric antigen receptor-modified T cells for acute lymphoid leukemia, N. Engl. J. Med, vol.368, pp.1509-1518, 2013.

N. Khera, S. B. Zeliadt, and S. J. Lee, Economics of hematopoietic cell transplantation, Blood, vol.120, pp.1545-1551, 2012.

D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, Nat. Rev. Cancer, vol.12, pp.252-264, 2012.

C. Granier, Tim-3: a novel biomarker and therapeutic target in oncology

, Med. Sci. MS, vol.34, pp.231-237, 2018.

F. Wang, TIGIT expression levels on human NK cells correlate with functional heterogeneity among healthy individuals, Eur. J. Immunol, vol.45, pp.2886-2897, 2015.

A. K. Mishra, Squamous cell carcinomas escape immune surveillance via inducing chronic activation and exhaustion of CD8+ T Cells co-expressing PD-1 and LAG-3 inhibitory receptors, Oncotarget, vol.7, pp.81341-81356, 2016.

C. Cd28, have opposing effects on the response of T cells to stimulation, J. Exp. Med, vol.182, pp.459-465, 1995.

Y. Ishida, Y. Agata, K. Shibahara, and T. Honjo, Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death, EMBO J, vol.11, pp.3887-3895, 1992.

H. O. Alsaab, PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome, Front. Pharmacol, vol.8, 2017.

W. Zou, J. D. Wolchok, and L. Chen, PD-L1 (B7-H1) and PD-1 Pathway Blockade for Cancer Therapy: Mechanisms, Response Biomarkers and Combinations, Sci. Transl. Med, vol.8, pp.328-332, 2016.

K. E. Pauken and E. J. Wherry, Overcoming T cell exhaustion in infection and cancer, Trends Immunol, vol.36, pp.265-276, 2015.

J. Couzin-frankel, Breakthrough of the year 2013, Cancer immunotherapy. Science, vol.342, pp.1432-1433, 2013.

G. K. Philips and M. Atkins, Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies, Int. Immunol, vol.27, pp.39-46, 2015.

S. L. Topalian, Durable Tumor Remission, and Long-Term Safety in Patients With Advanced Melanoma Receiving Nivolumab, J. Clin. Oncol, vol.32, pp.1020-1030, 2014.

N. J. Shah, W. J. Kelly, S. V. Liu, K. Choquette, and A. Spira, Product review on the Anti-PD-L1 antibody atezolizumab, Hum. Vaccines Immunother, vol.14, pp.269-276, 2018.

F. Zhang, Structural basis of the therapeutic anti-PD-L1 antibody atezolizumab, Oncotarget, vol.8, pp.90215-90224, 2017.

R. S. Herbst, A study of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic tumors, J. Clin. Oncol, vol.31, pp.3000-3000, 2013.

S. M. Ansell, PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin's Lymphoma, 2015.

K. M. Smith and J. Desai, Nivolumab for the treatment of colorectal cancer, Expert Rev. Anticancer Ther, vol.18, pp.611-618, 2018.

, Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial, Lancet Oncol, vol.17, pp.717-726, 2016.

C. H. Moskowitz, Pembrolizumab in Relapsed/Refractory Classical Hodgkin Lymphoma: Primary End Point Analysis of the Phase 2 Keynote, p.87

, Study. Blood, vol.128, pp.1107-1107, 2016.

J. Bellmunt, Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma, N. Engl. J. Med, vol.376, pp.1015-1026, 2017.

S. J. Antonia, Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer, N. Engl. J. Med, vol.377, pp.1919-1929, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01753457

J. Villadolid and A. Amin, Immune checkpoint inhibitors in clinical practice: update on management of immune-related toxicities, Transl. Lung Cancer Res, vol.4, pp.560-575, 2015.

J. Naidoo, Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies, Ann. Oncol, vol.26, pp.2375-2391, 2015.

S. L. Topalian, Safety, activity, and immune correlates of anti-PD-1 antibody in cancer, N. Engl. J. Med, vol.366, pp.2443-2454, 2012.

J. R. Brahmer, Safety and activity of anti-PD-L1 antibody in patients with advanced cancer, N. Engl. J. Med, vol.366, pp.2455-2465, 2012.

V. R. Belum, Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor, Eur. J. Cancer, vol.60, pp.12-25, 2016.

M. Ryder, M. Callahan, M. A. Postow, J. Wolchok, and J. A. Fagin, Endocrinerelated adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution, Endocr. Relat. Cancer, vol.21, pp.371-381, 2014.

J. Adam, Évaluation de l'expression de PD-L1 en immunohistochimie : un biomarqueur émergent dans les carcinomes pulmonaires non à petites cellules

, Ann. Pathol, vol.36, pp.94-102, 2016.

A. Bellesoeur, Biomarqueurs des immunothérapies anti-PD-1/PD-L1 : facteurs cliniques, histologiques et immunohistochimiques associés au statut PD-L1, vol.73, 2016.

, Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer | NEJM, p.29, 2018.

M. Vareki, S. Garrigós, C. Duran, and I. , Biomarkers of response to PD-1/PD-L1 inhibition, Crit. Rev. Oncol. Hematol, vol.116, pp.116-124, 2017.

M. Callea, Differential Expression of PD-L1 between Primary and Metastatic Sites in Clear-Cell Renal Cell Carcinoma, Cancer Immunol. Res, vol.3, pp.1158-1164, 2015.

K. R. Leite, PD-L1 expression in renal cell carcinoma clear cell type is related to unfavorable prognosis, Diagn. Pathol, vol.10, p.189, 2015.

R. J. Motzer, Nivolumab for Metastatic Renal Cell Carcinoma: Results of a Randomized Phase II Trial, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.33, pp.1430-1437, 2015.

, Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma | NEJM. Available, p.12, 2018.

T. K. Choueiri, Immunomodulatory Activity of Nivolumab in Metastatic Renal Cell Carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.22, pp.5461-5471, 2016.

R. B. Holmgaard, D. Zamarin, D. H. Munn, J. D. Wolchok, and J. P. Allison, Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4, J. Exp. Med. jem, p.20130066, 2013.

F. Housseau and N. J. Llosa, Immune checkpoint blockade in microsatellite instable colorectal cancers: Back to the clinic, Oncoimmunology, vol.4, 2015.

L. Krähenbühl, A Longitudinal Analysis of IDO and PDL1 Expression during Immune-or Targeted Therapy in Advanced Melanoma, Neoplasia N. Y. N, vol.20, pp.218-225, 2018.

R. B. Holmgaard, Tumor-Expressed IDO Recruits and Activates MDSCs in a Treg-Dependent Manner, Cell Rep, vol.13, pp.412-424, 2015.

N. A. Rizvi, Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer, Science, vol.348, pp.124-128, 2015.

G. T. Gibney, L. M. Weiner, and M. B. Atkins, Predictive biomarkers for checkpoint inhibitor-based immunotherapy, Lancet Oncol, vol.17, pp.542-551, 2016.

D. B. Johnson, Hybrid capture-based next-generation sequencing (HC NGS) in melanoma to identify markers of response to anti-PD-1/PD-L1, J. Clin. Oncol, vol.34, pp.105-105, 2016.

J. E. Rosenberg, Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial, The Lancet, vol.387, pp.1909-1920, 2016.

W. Hugo, Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma, Cell, vol.165, pp.35-44, 2016.

N. Mcgranahan, Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade, Science, vol.351, pp.1463-1469, 2016.

M. Alexander, J. D. Mellor, G. Mcarthur, and D. Kee, Ipilimumab in pretreated patients with unresectable or metastatic cutaneous, uveal and mucosal melanoma

, Med. J. Aust, vol.201, pp.49-53, 2014.

E. Simeone, Immunological and biological changes during ipilimumab treatment and their potential correlation with clinical response and survival in patients with advanced melanoma, Cancer Immunol. Immunother, vol.63, pp.675-683, 2014.

M. A. Postow, Pharmacodynamic effect of ipilimumab on absolute lymphocyte count (ALC) and association with overall survival in patients with advanced melanoma, J. Clin. Oncol, vol.31, pp.9052-9052, 2013.

D. A. Schaer, Detection of Intra-Tumor Self Antigen Recognition during Melanoma Tumor Progression in Mice Using Advanced Multimode Confocal/Two Photon Microscope, PLOS ONE, vol.6, p.21214, 2011.

P. C. Tumeh, PD-1 blockade induces responses by inhibiting adaptive immune resistance, Nature, vol.515, pp.568-571, 2014.

A. I. Daud, Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma, J. Clin. Invest, vol.126, pp.3447-3452, 2016.

A. Sivan, Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy, Science, vol.350, pp.1084-1089, 2015.

M. Vétizou, Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota, Science, vol.350, pp.1079-1084, 2015.

M. Vetizou and G. Trinchieri, Anti-PD1 in the wonder-gut-land, Cell Res, vol.28, pp.263-264, 2018.

B. Routy, Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors, Science, vol.359, pp.91-97, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01727917

R. W. Jenkins, D. A. Barbie, and K. T. Flaherty, Mechanisms of resistance to immune checkpoint inhibitors, Br. J. Cancer, vol.118, pp.9-16, 2018.

J. M. Pitt, Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors, Immunity, vol.44, pp.1255-1269, 2016.

T. N. Schumacher and R. D. Schreiber, Neoantigens in cancer immunotherapy. Science, vol.348, pp.69-74, 2015.

D. T. Le, PD-1 Blockade in Tumors with Mismatch-Repair Deficiency, N. Engl. J. Med, vol.372, pp.2509-2520, 2015.

D. T. Le, Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade, Science, vol.357, pp.409-413, 2017.

, Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden | NEJM, p.14, 2018.

J. M. Zaretsky, Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma, N. Engl. J. Med, vol.375, pp.819-829, 2016.

V. Anagnostou, Evolution of Neoantigen Landscape during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer, Cancer Discov, vol.7, pp.264-276, 2017.

G. Kroemer, L. Galluzzi, O. Kepp, and L. Zitvogel, Immunogenic cell death in cancer therapy, Annu. Rev. Immunol, vol.31, pp.51-72, 2013.

L. Zitvogel, O. Kepp, and G. Kroemer, Decoding cell death signals in inflammation and immunity, Cell, vol.140, pp.798-804, 2010.

F. Schlemmer, Mécanismes de la chimiothérapie immunogène, vol.11, 2013.

W. Peng, Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy, Cancer Discov, vol.6, pp.202-216, 2016.

S. Spranger, R. Bao, and T. F. Gajewski, Melanoma-intrinsic ?-catenin signalling prevents anti-tumour immunity, Nature, vol.523, pp.231-235, 2015.

S. Koyama, Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints, Nat. Commun, vol.7, p.10501, 2016.

K. Kim, Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.11774-11779, 2014.

J. S. O'donnell, G. V. Long, R. A. Scolyer, M. W. Teng, and M. J. Smyth, Resistance to PD1/PDL1 checkpoint inhibition, Cancer Treat. Rev, vol.52, pp.71-81, 2017.

D. Shin, Innate resistance of PD-1 blockade through loss of function mutations in JAK resulting in inability to express PD-L1 upon interferon exposure

, J. Immunother. Cancer, vol.3, p.311, 2015.

A. Marabelle, S. Aspeslagh, S. Postel-vinay, and J. Soria, JAK Mutations as Escape Mechanisms to Anti-PD-1 Therapy. Cancer Discov, vol.7, pp.128-130, 2017.

R. T. Manguso, In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target, Nature, vol.547, pp.413-418, 2017.

J. L. Benci, Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade, Cell, vol.167, pp.1540-1554, 2016.

M. R. Zaidi and G. Merlino, The Two Faces of Interferon-? in Cancer, Clin. Cancer Res, vol.17, pp.6118-6124, 2011.

P. Chen, Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade, Cancer Discov, vol.6, pp.827-837, 2016.

K. Sakuishi, Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity, J. Exp. Med, vol.207, pp.2187-2194, 2010.

G. Shayan, Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer, Oncoimmunology, vol.6, p.1261779, 2017.

R. Huang, A. Francois, A. R. Mcgray, A. Miliotto, and K. Odunsi, Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer, Oncoimmunology, vol.6, p.1249561, 2017.

J. Gao, VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer, Nat. Med, vol.23, pp.551-555, 2017.

, Intrinsic Resistance of Solid Tumors to Immune Checkpoint Blockade Therapy | Cancer Research

S. L. Highfill, Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy, Sci. Transl. Med, vol.6, pp.237-67, 2014.

A. Ribas, PD-1 Blockade Expands Intratumoral Memory T Cells, Cancer Immunol. Res, vol.4, pp.194-203, 2016.

D. R. Sen, The epigenetic landscape of T cell exhaustion, Science, vol.354, pp.1165-1169, 2016.

S. A. Patel and A. J. Minn, Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies, Immunity, vol.48, pp.417-433, 2018.

K. Kersten, C. Salvagno, and K. E. De-visser, Exploiting the Immunomodulatory Properties of Chemotherapeutic Drugs to Improve the Success of Cancer Immunotherapy, Front. Immunol, vol.6, p.516, 2015.

M. Bruchard and F. Ghiringhelli,

, Bull. Cancer (Paris), vol.101, pp.605-607, 2014.

A. Ribas, Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy, Cell, vol.170, p.10, 2017.

J. Fu, STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade, Sci. Transl. Med, vol.7, pp.283-52, 2015.

T. Shekarian, Pattern recognition receptors: immune targets to enhance cancer immunotherapy, Ann. Oncol, vol.28, pp.1756-1766, 2017.

, Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity | JEM. Available at, p.29, 2018.

J. Liu, Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses, Proc. Natl. Acad. Sci, vol.112, pp.6682-6687, 2015.

A. Vargas and F. , Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors, Immunity, vol.46, pp.577-586, 2017.

M. F. Sanmamed, Agonists of Co-stimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS, Semin. Oncol, vol.42, pp.640-655, 2015.

S. N. Linch, M. J. Mcnamara, and W. L. Redmond, OX40 Agonists and Combination Immunotherapy: Putting the Pedal to the Metal, Front. Oncol, vol.5, 2015.

Z. Guo, PD-1 blockade and OX40 triggering synergistically protects against tumor growth in a murine model of ovarian cancer, PloS One, vol.9, p.89350, 2014.

D. Xu, NK and CD8+ T cell-mediated eradication of poorly immunogenic B16-F10 melanoma by the combined action of IL-12 gene therapy and 4-1BB costimulation, Int. J. Cancer, vol.109, pp.499-506, 2004.

X. Fan, S. A. Quezada, M. A. Sepulveda, P. Sharma, and J. P. Allison, Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy, J. Exp. Med, vol.211, pp.715-725, 2014.

C. Harvey, Efficacy of anti-ICOS agonist monoclonal antibodies in preclinical tumor models provides a rationale for clinical development as cancer immunotherapeutics, J. Immunother. Cancer, vol.3, p.9, 2015.

, Dose Escalation and Expansion Study of GSK3359609 in Subjects With Selected Advanced Solid Tumors (INDUCE-1) -Full Text View -ClinicalTrials, p.16, 2018.

O. Sears, Abstract CT035: ICONIC: Phase 1/2 trial of ICOS agonist JTX-2011 alone and in combination with nivolumab (nivo), Cancer Res, vol.77, pp.35-035, 2017.

C. Ménétrier-caux, Targeting regulatory T cells, Target. Oncol, vol.7, pp.15-28, 2012.

J. Faget, ICOS is associated with poor prognosis in breast cancer as it promotes the amplification of immunosuppressive CD4(+) T cells by plasmacytoid dendritic cells, Oncoimmunology, vol.2, p.23185, 2013.

L. Mo, Depletion of regulatory T cells by anti-ICOS antibody enhances anti-tumor immunity of tumor cell vaccine in prostate cancer, Vaccine, vol.35, pp.5932-5938, 2017.

P. Sharma, S. Hu-lieskovan, J. A. Wargo, A. Ribas, and . Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy, Cell, vol.168, pp.707-723, 2017.

J. Mestas and C. C. Hughes, Of Mice and Not Men: Differences between Mouse and Human Immunology, J. Immunol, vol.172, pp.2731-2738, 2004.

M. S. Freitas, Paracoccin Induces M1 Polarization of Macrophages via Interaction with TLR4, Front. Microbiol, vol.7, 2016.

R. M. Srivastava, CD137 Stimulation Enhances Cetuximab-Induced Natural Killer: Dendritic Cell Priming of Antitumor T-Cell Immunity in Patients with Head and Neck Cancer, Clin. Cancer Res, vol.23, pp.707-716, 2017.

N. H. Segal, Results from an Integrated Safety Analysis of Urelumab, an Agonist Anti-CD137 Monoclonal Antibody, Clin. Cancer Res, vol.23, pp.1929-1936, 2017.

P. J. Siska, Deep exploration of the immune infiltrate and outcome prediction in testicular cancer by quantitative multiplexed immunohistochemistry and gene expression profiling, Oncoimmunology, vol.6, p.1305535, 2017.

C. Lazzari, Combination of immunotherapy with chemotherapy and radiotherapy in lung cancer: is this the beginning of the end for cancer?

, Med. Oncol, vol.10, p.1758835918762094, 2018.

C. Pfirschke, Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy, Immunity, vol.44, pp.343-354, 2016.

E. Becht, Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy

, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.22, pp.4057-4066, 2016.

S. I. Mosely, Rational Selection of Syngeneic Preclinical Tumor Models for Immunotherapeutic Drug Discovery, Cancer Immunol. Res, vol.5, pp.29-41, 2017.

M. J. Overman, Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study, Lancet Oncol, vol.18, pp.1182-1191, 2017.

S. Adams, Abstract P2-11-06: Safety and clinical activity of atezolizumab (anti-PDL1) in combination with nab-paclitaxel in patients with metastatic triplenegative breast cancer, Cancer Res, vol.76, 2016.

S. Benavente, Establishment and Characterization of a Model of Acquired Resistance to Epidermal Growth Factor Receptor Targeting Agents in Human Cancer Cells, Clin. Cancer Res, vol.15, pp.1585-1592, 2009.

C. Garcia-garcia, Dual mTORC1/2 and HER2 blockade results in antitumor activity in preclinical models of breast cancer resistant to anti-HER2 therapy, Clin. Cancer Res. clincanres, vol.2750, 2011.

P. Dhupkar, N. Gordon, J. Stewart, and E. S. Kleinerman, Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases, Cancer Med, vol.7, pp.2654-2664, 2018.

M. Mediavilla-varela, M. M. Page, J. Kreahling, S. J. Antonia, and S. Altiok, Anti-PD1 treatment to induce M1 polarization of tumor infiltrating macrophages in a 3D ex vivo system of lung cancer patients, J. Clin. Oncol, vol.35, pp.23090-23090, 2017.

L. Dyck, Anti-PD-1 inhibits Foxp3+ Treg cell conversion and unleashes intratumoural effector T cells thereby enhancing the efficacy of a cancer vaccine in a mouse model, Cancer Immunol. Immunother. CII, vol.65, pp.1491-1498, 2016.

D. Franceschini, PD-L1 negatively regulates CD4 + CD25 + Foxp3 + Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV, J. Clin. Invest, vol.119, pp.551-564, 2009.

P. A. Ott, F. S. Hodi, H. L. Kaufman, J. M. Wigginton, and J. D. Wolchok, Combination immunotherapy: a road map, J. Immunother. Cancer, vol.5, p.16, 2017.

Z. Guo, Combined TIM-3 blockade and CD137 activation affords the long-term protection in a murine model of ovarian cancer, J. Transl. Med, vol.11, p.215, 2013.

J. B. Haanen, Converting Cold into Hot Tumors by Combining Immunotherapies, Cell, vol.170, pp.1055-1056, 2017.

R. S. Herbst, Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients, Nature, vol.515, pp.563-567, 2014.

S. P. Becerra and V. Notario, The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential, Nat. Rev. Cancer, vol.13, pp.258-271, 2013.

X. He, R. Cheng, S. Benyajati, and J. Ma, PEDF and its roles in physiological and pathological conditions: implication in diabetic and hypoxia-induced angiogenic diseases, Clin. Sci. Lond. Engl, vol.128, pp.805-823, 1979.

S. R. Goding, Restoring Immune Function of Tumor-Specific CD4+ T Cells during Recurrence of Melanoma, J. Immunol, vol.190, pp.4899-4909, 2013.

Q. J. Wu, AAV-mediated human PEDF inhibits tumor growth and metastasis in murine colorectal peritoneal carcinomatosis model, BMC Cancer, vol.12, p.129, 2012.

F. Cui, The pigment epithelial-derived factor gene loaded in PLGA nanoparticles for therapy of colon carcinoma, Oncol. Rep, vol.24, pp.661-668, 2010.

Q. Ding, Ficolin-2 triggers antitumor effect by activating macrophages and CD8+ T cells, Clin. Immunol. Orlando Fla, vol.183, pp.145-157, 2017.

A. Szala, Ficolin-2 and ficolin-3 in women with malignant and benign ovarian tumours, Cancer Immunol. Immunother, vol.62, pp.1411-1419, 2013.

J. L. Mcelwee, Identification of PADI2 as a potential breast cancer biomarker and therapeutic target, BMC Cancer, vol.12, p.500, 2012.

H. Wang, PADI2 gene confers susceptibility to breast cancer and plays tumorigenic role via ACSL4, BINC3 and CA9 signaling, Cancer Cell Int, vol.16, p.61, 2016.

L. Yilmaz, Increased UGT1A3 and UGT1A7 expression is associated with pancreatic cancer. Asian Pac, J. Cancer Prev. APJCP, vol.16, pp.1651-1655, 2015.