J. He, M. Wasa, K. S. Chan, Q. Shao, and J. Yu, Chem. Rev, vol.117, pp.8754-8786, 2016.

H. M. Davies and D. Morton, J. Org. Chem, vol.81, pp.343-350, 2016.

R. Parella, B. Gopalakrishnan, and S. A. Babu, Org. Lett, vol.15, pp.3238-3241, 2013.

D. Shabashov and O. Daugulis, J. Am. Chem. Soc, vol.132, pp.3965-3972, 2010.

D. S. Roman and A. B. Charette, Org. Lett, vol.15, pp.4394-4397, 2013.

S. K. Teo, W. A. Colburn, W. G. Tracewell, K. A. Kook, D. I. Stirling et al., Clin. Pharmacokinet, vol.43, pp.311-327, 2004.

T. Eriksson, S. Bjöurkman, B. Roth, Å. Fyge, and P. Höuglund, Chirality, vol.7, pp.44-52, 1995.

A. M. Rouhi, Chem. Eng. News, vol.81, pp.45-61, 2003.

C. K. Hazra, Q. Dherbassy, J. Wencel-delord, and F. Colobert, Angew. Chem. Int. Ed, vol.53, pp.13871-13875, 2014.

Q. Dherbassy, G. Schwertz, C. K. Hazra, T. Wesch, J. Wencel-delord et al., Phosphorus Sulfur Silicon Relat. Elem, vol.190, pp.1339-1351, 2015.

Q. Dherbassy, J. Djukic, J. Wencel-delord, and F. Colobert, Angew. Chem. Int. Ed, vol.57, pp.4668-4672, 2018.

K. Yamaguchi, H. Kondo, J. Yamaguchi, and K. Itami, Chem. Sci, 2013.

S. E. Ammann, W. Liu, and M. C. White, Angew. Chem. Int. Ed, vol.55, pp.9571-9575, 2016.

N. Rival, D. Hazelard, G. Hanquet, T. Kreuzer, C. Bensoussan et al., Org. Biomol. Chem, vol.10, p.9418, 2012.

Q. Dherbassy, G. Schwertz, M. Chessé, C. K. Hazra, J. Wencel-delord et al., Chem. -Eur. J, vol.22, pp.1735-1743, 2016.

S. Jerhaoui, F. Chahdoura, C. Rose, J. Djukic, J. Wencel-delord et al.,

J. , , vol.22, pp.17397-17406, 2016.

H. Ogawa, A. Iwasaki, S. Sumimoto, M. Iwatsuki, A. Ishiyama et al., Org. Lett, vol.19, pp.890-893, 2017.

D. A. Evans, T. C. Britton, and J. A. Ellman, Tetrahedron Lett, vol.28, pp.6141-6144, 1987.

D. H. Barton, D. Crich, and W. B. Motherwell, J. Chem. Soc. Chem. Commun, p.939, 1983.

S. Jerhaoui, P. Poutrel, J. Djukic, J. Wencel-delord, and F. Colobert, Org. Chem. Front, vol.5, pp.409-414, 2018.

S. Jerhaoui, J. Djukic, J. Wencel-delord, and F. Colobert, , vol.23, pp.15594-15600, 2017.

K. S. Chan, H. Fu, and J. Yu, J. Am. Chem. Soc, vol.137, pp.2042-2046, 2015.

M. Wasa, K. M. Engle, D. W. Lin, E. J. Yoo, and J. Yu, J. Am. Chem. Soc, vol.133, 2011.

J. L. García-ruano, A. Alcudia, M. Prado, D. Barros, M. C. Maestro et al., J. Org. Chem, vol.65, pp.2856-2862, 2000.

P. Bravo, S. Capelli, M. Crucianelli, M. Guidetti, A. L. Markovsky et al., Tetrahedron, vol.55, pp.3025-3040, 1999.

C. Zucca, P. Bravo, E. Corradi, S. Meille, A. Volonterio et al., Molecules, vol.6, pp.424-432, 2001.

T. Toru and E. , Organosulfur Chemistry in Asymmetric Synthesis, 2008.

B. M. Trost and M. Rao, Angew. Chem. Int. Ed, vol.54, pp.5026-5043, 2015.

J. A. Labinger and J. E. Bercaw, Nature, vol.417, pp.507-514, 2002.

H. M. Davies and R. E. Beckwith, Chem. Rev, vol.103, pp.2861-2904, 2003.

L. Claisen and A. Claparède, Berichte Dtsch. Chem. Ges. 1881, vol.14, pp.2460-2468

L. Claisen, Berichte Dtsch. Chem. Ges, vol.1887, pp.655-657

Y. Fujiwara, K. Takaki, J. Watanabe, Y. Uchida, and H. Taniguchi, Chem. Lett, vol.18, pp.1687-1688, 1989.

T. Nishiguchi, K. Nakata, K. Takaki, and Y. Fujiwara, Chem. Lett, vol.21, pp.1141-1142, 1992.

G. Dyker, Angew. Chem. Int. Ed. Engl, vol.33, pp.103-105, 1994.

J. Sofack-kreutzer, N. Martin, A. Renaudat, R. Jazzar, and O. Baudoin, Angew. Chem. Int. Ed, vol.51, pp.10399-10402, 2012.

D. Dailler, G. Danoun, and O. Baudoin, Angew. Chem. Int. Ed, vol.54, pp.4919-4922, 2015.

P. M. Holstein, D. Dailler, J. Vantourout, J. Shaya, A. Millet et al., Angew. Chem. Int. Ed, vol.55, pp.2805-2809, 2016.

T. Saget and N. Cramer, Angew. Chem. Int. Ed, vol.51, pp.12842-12845, 2012.

T. Saget, S. J. Lemouzy, and N. Cramer, Angew. Chem. Int. Ed, vol.51, pp.2238-2242, 2012.

J. Pedroni, M. Boghi, T. Saget, and N. Cramer, Angew. Chem. Int. Ed, vol.53, pp.9064-9067, 2014.

J. Pedroni and N. Cramer, Angew. Chem. Int. Ed, vol.54, pp.11826-11829, 2015.

J. Pedroni, T. Saget, P. A. Donets, and N. Cramer, Chem. Sci, vol.6, pp.5164-5171, 2015.

J. Pedroni and N. Cramer, Org. Lett, vol.18, pp.1932-1935, 2016.

P. Wang, P. Verma, G. Xia, J. Shi, J. X. Qiao et al., Nature, vol.551, pp.489-493, 2017.

A. G. Constable, W. S. Mcdonald, L. C. Sawkins, and B. L. Shaw, J. Chem. Soc. Chem. Commun, p.1061, 1978.

Y. Fuchita, K. Hiraki, and T. Uchiyama, J. Chem. Soc. Dalton Trans, p.897, 1983.

K. Hiraki, Y. Fuchtta, and Y. Matsumoto, Chem. Lett, vol.13, pp.1947-1948, 1984.

Y. Fuchita, K. Hiraki, and Y. Matsumoto, J. Organomet. Chem, vol.280, pp.51-54, 1985.

R. Giri, N. Maugel, J. Li, D. Wang, S. P. Breazzano et al., J. Am. Chem. Soc, vol.129, pp.3510-3511, 2007.

R. M. Beesley, C. K. Ingold, and J. F. Thorpe, J Chem Soc Trans, vol.107, pp.1080-1106, 1915.

A. Renaudat, L. Jean-gérard, R. Jazzar, C. E. Kefalidis, E. Clot et al., Angew. Chem. Int. Ed, vol.49, pp.7261-7265, 2010.

P. Larini, C. E. Kefalidis, R. Jazzar, A. Renaudat, E. Clot et al., Chem. -Eur. J, vol.18, pp.1932-1944, 2012.

D. Wang, M. Wasa, R. Giri, and J. Yu, J. Am. Chem. Soc, vol.130, pp.7190-7191, 2008.

L. Campeau, D. J. Schipper, and K. Fagnou, J. Am. Chem. Soc, vol.130, pp.3266-3267, 2008.

D. J. Schipper, L. Campeau, and K. Fagnou, Tetrahedron, vol.65, pp.3155-3164, 2009.

A. T. Tran and J. Yu, Angew. Chem. Int. Ed, vol.56, pp.10530-10534, 2017.

V. G. Zaitsev, D. Shabashov, and O. Daugulis, J. Am. Chem. Soc, vol.127, pp.13154-13155, 2005.

M. Corbet and F. D. Campo, Angew. Chem. Int. Ed, vol.52, pp.9896-9898, 2013.

K. Chen and B. Shi, Angew. Chem. Int. Ed. n.d, vol.53, pp.11950-11954

N. Rodríguez, J. A. Romero-revilla, M. Á. Fernández-ibáñez, and J. C. Carretero, Chem. Sci, vol.4, pp.175-179, 2012.

G. Zhang, X. Xie, J. Zhu, S. Li, C. Ding et al., Org. Biomol. Chem, vol.13, pp.5444-5449, 2015.

M. Fan and D. Ma, Angew. Chem. Int. Ed. n.d, vol.52, pp.12152-12155

W. Gong, G. Zhang, T. Liu, R. Giri, and J. Yu, J. Am. Chem. Soc, vol.136, pp.16940-16946, 2014.

C. Jun, H. Lee, and J. Hong, J. Org. Chem, vol.62, pp.1200-1201, 1997.

F. Mo and G. Dong, Science, vol.345, pp.68-72, 2014.

F. Zhang, K. Hong, T. Li, H. Park, and J. Yu, Science, vol.351, pp.252-256, 2016.

F. Ma, M. Lei, and L. Hu, Org. Lett, vol.18, pp.2708-2711, 2016.

Y. Wu, Y. Chen, T. Liu, M. D. Eastgate, and J. Yu, J. Am. Chem. Soc, 2016.

R. Zhu, L. Liu, H. S. Park, K. Hong, Y. Wu et al., J. Am. Chem. Soc, vol.139, pp.16080-16083, 2017.

R. Zhu, L. Liu, and J. Yu, J. Am. Chem. Soc, vol.139, pp.12394-12397, 2017.

K. D. Otley and J. A. Ellman, Org. Lett, vol.17, pp.1332-1335, 2015.

H. Kinuta, M. Tobisu, and N. Chatani, J. Am. Chem. Soc, vol.137, pp.1593-1600, 2015.

A. J. Canty, J. Patel, B. W. Skelton, and A. H. White, J. Organomet. Chem, vol.607, pp.194-202, 2000.

M. Wasa, K. M. Engle, and J. Yu, J. Am. Chem. Soc, vol.131, pp.9886-9887, 2009.

Y. Zhang, B. Shi, and J. Yu, J. Am. Chem. Soc, vol.131, pp.5072-5074, 2009.

A. Kubota, M. H. Emmert, and M. S. Sanford, Org. Lett, vol.14, pp.1760-1763, 2012.

M. Wasa, K. S. Chan, X. Zhang, J. He, M. Miura et al., J. Am. Chem. Soc, vol.134, pp.18570-18572, 2012.

J. He, R. Takise, H. Fu, and J. Yu, J. Am. Chem. Soc, vol.137, pp.4618-4621, 2015.

G. Chen, Z. Zhuang, G. Li, T. G. Saint-denis, Y. Hsiao et al., Angew. Chem. Int. Ed, vol.56, pp.1506-1509, 2017.

J. He, S. Li, Y. Deng, H. Fu, B. N. Laforteza et al., Science, vol.343, pp.1216-1220, 2014.

Y. Dang, S. Qu, J. W. Nelson, H. D. Pham, Z. Wang et al., J. Am. Chem. Soc, vol.137, pp.2006-2014, 2015.

H. Fu, P. Shen, J. He, F. Zhang, S. Li et al., Angew. Chem. Int. Ed, vol.56, pp.1873-1876, 2017.

R. Zhu, J. He, X. Wang, and J. Yu, J. Am. Chem. Soc, vol.136, pp.13194-13197, 2014.

R. Zhu, T. G. Saint-denis, Y. Shao, J. He, J. D. Sieber et al., J. Am. Chem. Soc, vol.139, pp.5724-5727, 2017.

S. Li, G. Chen, C. Feng, W. Gong, and J. Yu, J. Am. Chem. Soc, vol.136, pp.5267-5270, 2014.

G. Balavoine and J. C. Clinet, J. Organomet. Chem, vol.390, pp.84-88, 1990.

R. Giri, X. Chen, and J. Yu, Angew. Chem. Int. Ed, vol.44, pp.2112-2115, 2005.

R. Giri, J. Liang, J. Lei, J. Li, D. Wang et al., Angew. Chem. Int. Ed, vol.44, pp.7420-7424, 2005.

A. Rabinkov, T. Miron, L. Konstantinovski, M. Wilchek, D. Mirelman et al., Biochim. Biophys. Acta BBA -Gen. Subj, vol.1379, pp.233-244, 1998.

N. Yoshimoto, M. Onuma, S. Mizuno, Y. Sugino, R. Nakabayashi et al., Plant J, vol.83, pp.941-951, 2015.

K. K. Andersen, Tetrahedron Lett, vol.3, pp.93-95, 1962.

K. K. Andersen, W. Gaffield, N. E. Papanikolaou, J. W. Foley, and R. I. , Perkins, J. Am. Chem. Soc, vol.86, pp.5637-5646, 1964.

C. Mioskowski and G. Solladie, Tetrahedron, vol.36, pp.227-236, 1980.

J. M. Klunder and K. B. Sharpless, J. Org. Chem, vol.52, pp.2598-2602, 1987.

Y. Watanabe, N. Mase, M. Tateyama, and T. Toru, Tetrahedron Asymmetry, vol.10, pp.737-745, 1999.

D. D. Ridley and M. A. Smal, J. Chem. Soc. Chem. Commun, vol.0, pp.505-506, 1981.

J. M. Llera, I. Fernández, and F. Alcudia, Tetrahedron Lett, vol.32, pp.7299-7302, 1991.

I. Fernández, B. Gori, F. Alcudia, and N. Khiar, Phosphorus Sulfur Silicon Relat. Elem, vol.180, pp.1511-1512, 2005.

F. Rebiere, O. Samuel, L. Ricard, and H. B. Kagan, J. Org. Chem, vol.56, pp.5991-5999, 1991.

W. Oppolzer, M. Wills, C. Starkemann, and G. Bernardinelli, Tetrahedron Lett, vol.31, pp.4117-4120, 1990.

W. Oppolzer, O. Froelich, C. Wiaux-zamar, and G. Bernardinelli, Tetrahedron Lett, vol.38, pp.2825-2828, 1997.

D. A. Evans, M. M. Faul, L. Colombo, J. J. Bisaha, J. Clardy et al., J. Am. Chem. Soc, vol.114, pp.5977-5985, 1992.

Z. Han, D. Krishnamurthy, P. Grover, Q. K. Fang, and C. H. Senanayake, J. Am. Chem. Soc, vol.124, pp.7880-7881, 2002.

D. A. Cogan, G. Liu, K. Kim, B. J. Backes, and J. A. Ellman, J. Am. Chem. Soc, vol.120, pp.8011-8019, 1998.

D. J. Weix and J. A. Ellman, Org. Lett, vol.5, pp.1317-1320, 2003.

M. T. Robak, M. A. Herbage, and J. A. Ellman, Chem. Rev, vol.110, pp.3600-3740, 2010.

D. R. Rayner, A. J. Gordon, and K. Mislow, J. Am. Chem. Soc, vol.90, pp.4854-4860, 1968.

A. Rauk, L. C. Allen, and K. Mislow, Angew. Chem. Int. Ed. Engl, vol.9, pp.400-414, 1970.

K. Mislow, Trans. N. Y. Acad. Sci, vol.35, pp.227-242, 1973.

D. A. Evans and G. C. Andrews, Acc. Chem. Res, vol.7, pp.147-155, 1974.

R. W. Hoffmann, R. Gerlach, and S. Goldmann, Tetrahedron Lett, vol.19, pp.2599-2602, 1978.

C. Aurisicchio, E. Baciocchi, M. F. Gerini, and O. Lanzalunga, Org. Lett, vol.9, pp.1939-1942, 2007.

Y. Khim, W. Tagaki, M. Kise, N. Furukawa, and S. Oae, Bull. Chem. Soc. Jpn, vol.39, pp.2556-2557, 1966.

G. Sipos, E. E. Drinkel, and R. Dorta, Chem Soc Rev, vol.44, pp.3834-3860, 2015.

J. Han, V. A. Soloshonok, K. D. Klika, J. Drabowicz, and A. Wzorek, Chem. Soc. Rev, vol.47, pp.1307-1350, 2018.

S. Lavielle, S. Bory, B. Moreau, M. J. Luche, and A. Marquet, J. Am. Chem. Soc, vol.100, pp.1558-1563, 1978.

M. Casey and C. M. Keaveney, Chem Commun, pp.184-185, 2004.

M. C. Carreño, G. Hernández-torres, A. Urbano, and F. Colobert, Eur. J. Org. Chem, pp.2035-2038, 2008.

M. C. Carreño, J. L. García-ruano, M. A. Toledo, A. Urbano, C. Z. Remor et al., J. Org. Chem, vol.61, pp.503-509, 1996.

F. Colobert, M. Obringer, and G. Solladié, Eur. J. Org. Chem, pp.1455-1467, 2006.

G. Solladié, M. Adamy, and F. Colobert, J. Org. Chem, vol.61, pp.4369-4373, 1996.

S. Beauvière, F. Brebion, S. Chelli, B. Delouvrié, C. Gomez et al., Phosphorus Sulfur Silicon Relat. Elem, vol.188, pp.367-376, 2013.

D. A. Lanfranchi, C. Bour, and G. Hanquet, Eur. J. Org. Chem, pp.2818-2826, 2011.

B. Yalcouye, S. Choppin, A. Panossian, F. R. Leroux, and F. Colobert, Eur. J. Org. Chem, pp.6285-6294, 2014.

A. García-rubia, M. Á. Fernández-ibáñez, R. Arrayás, and J. C. Carretero, Chem. -Eur. J, vol.17, pp.3567-3570, 2011.

T. Wesch, F. R. Leroux, and F. Colobert, Adv. Synth. Catal, vol.355, pp.2139-2144, 2013.

Q. Dherbassy, J. Wencel-delord, and F. Colobert, Tetrahedron, vol.72, pp.5238-5245, 2016.

B. R. James, E. Ochiai, and G. L. Rampel, Inorg. Nucl. Chem. Lett, vol.7, pp.781-784, 1971.

R. Dorta, H. Rozenberg, L. J. Shimon, and D. Milstein, J. Am. Chem. Soc, vol.124, pp.188-189, 2002.

C. Pettinari, M. Pellei, G. Cavicchio, M. Crucianelli, W. Panzeri et al., Organometallics, vol.18, pp.555-563, 1999.

R. Dorta, H. Rozenberg, and D. Milstein, Chem. Commun, pp.710-711, 2002.

A. P. Pulis and D. J. Procter, Angew. Chem. Int. Ed, vol.55, pp.9842-9860, 2016.

N. Khiar, I. Fernández, and F. Alcudia, Tetrahedron Lett, vol.34, pp.123-126, 1993.

M. C. Carreño, J. L. García-ruano, M. C. Maestro, and L. M. Martín-cabrejas, Tetrahedron Asymmetry, vol.4, pp.727-734, 1993.

R. Tokunoh, M. Sodeoka, K. Aoe, and M. Shibasaki, Tetrahedron Lett, vol.36, pp.8035-8038, 1995.

H. Cheng, B. Feng, L. Chen, W. Guo, X. Yu et al., Chem Commun, vol.50, pp.2873-2875, 2014.

R. Siedlecka, E. Wojaczy?ska, and J. Skar?ewski, Tetrahedron Asymmetry, vol.15, pp.1437-1444, 2004.

G. Chelucci, D. Berta, and A. Saba, Tetrahedron, vol.53, pp.3843-3848, 1997.

K. J. Fraunhoffer and M. C. White, J. Am. Chem. Soc, vol.129, pp.7274-7276, 2007.

M. S. Chen, N. Prabagaran, N. A. Labenz, and M. C. White, J. Am. Chem. Soc, vol.127, pp.6970-6971, 2005.

S. A. Reed, A. R. Mazzotti, and M. C. White, J. Am. Chem. Soc, vol.131, pp.11701-11706, 2009.

J. J. Bürgi, R. Mariz, M. Gatti, E. Drinkel, X. Luan et al., Angew. Chem. Int. Ed, vol.48, pp.2768-2771, 2009.

J. V. Allen, J. F. Bower, and J. M. Williams, Tetrahedron Asymmetry, vol.5, pp.1895-1898, 1994.

K. Hiroi, K. Watanabe, I. Abe, and M. Koseki, Tetrahedron Lett, vol.42, pp.7617-7619, 2001.

S. Nakamura, T. Fukuzumi, and T. Toru, Chirality, vol.16, pp.10-12, 2004.

X. Feng, B. Wei, J. Yang, and H. Du, Org. Biomol. Chem, p.5927, 2011.

G. Tsuchihashi, S. Iriuchijima, and M. Ishibashi, Tetrahedron Lett, vol.13, pp.4605-4608, 1972.

N. Kunieda, M. Kinoshita, and J. Nokami, Chem. Lett, vol.6, pp.289-292, 1977.

G. Solladié, A. Rubio, M. C. Carreño, and J. García-ruano, Tetrahedron Asymmetry, vol.1, pp.187-198, 1990.

R. Pummerer, Berichte Dtsch. Chem. Ges, vol.42, pp.2282-2291, 1909.

R. Pummerer, Berichte Dtsch. Chem. Ges, vol.43, pp.1401-1412, 1910.

O. De-lucchi, U. Miotti, and G. Modena, , pp.157-405, 1991.

I. K. Stamos, Tetrahedron Lett, vol.27, pp.6261-6262, 1986.

M. ?iau?iulis, S. Sapmaz, A. P. Pulis, and D. J. Procter, Chem. Sci, vol.9, pp.754-759, 2018.

Z. He, H. J. Shrives, J. A. Fernández-salas, A. Abengózar, J. Neufeld et al., Angew. Chem. Int. Ed, vol.57, pp.5759-5764, 2018.

N. Furukawa, S. Ogawa, K. Matsumura, and H. Fujihara, J. Org. Chem, vol.56, pp.6341-6348, 1991.

J. Rae, J. Frey, S. Jerhaoui, S. Choppin, J. Wencel-delord et al., ACS Catal, vol.8, pp.2805-2809, 2018.

J. Clayden and M. Julia, J. Chem. Soc. Chem. Commun, p.1682, 1993.

J. Clayden, J. J. Cooney, and M. Julia, J. Chem. Soc. Perkin, vol.1, 1995.

, Biological interest and properties of cyclopropanes

, Standard methods to build up functionalized cyclopropanes

, iv. C-H functionalisation of cyclopropanes using a bidentate DG

, 2.i. Development of a new sulfinyl aniline chiral directing group

, Synthesis of the substrates and chiral auxiliaries

, First catalytic tests using sulfinylaniline directing groups

, 2.ii. Optimization of the C-H functionalization of cyclopropane carboxylic acid, p.100

, Extension to the arylation of larger cycloalkanes

, Extension to the arylation of substituted cyclopropanes

, Other challenging transformations: alkylation and

, Isolation and synthesis of hoshinolactam

, APS-based total synthesis of hoshinolactam

. .. , Synthesis of the key intermediates of cascarillic acid and grenadamide, p.131

, New methodology for the synthesis of cyclic natural products

, Optimization of the directing group synthesis

, 7.v. Determination of the diastereomeric ratio using crude 1 H NMR analysis

, Gram-scale and deprotection experiments

, Kinetic isotopic effects and intermediate isolation

, Total synthesis of cyclopropane bearing natural products

(. Rf, . Cyhex, and . Etoac, , vol.3, pp.0-28

C. Rt-(min and . Ia,

, 20.37 min (99 %), vol.26

/. Cyhex and . Etoac, 1 to 7:3) afforded the minor diastereomer (30 mg, vol.4, p.31

, Minor diastereomer II-8hB: 1 H NMR (400 MHz, CDCl3): 10.60 (1H, br s, NH), 8.17 (1H, d, J=8.3 Hz), 7.89-7.97 (2H, m), 7.45 (1H, dd, J=7.7, 1.3 Hz), vol.7

. Hz, 34 (3H, d, J=6.0 Hz); 13 C NMR (100 MHz, CDCl3): 167.66, 148.09, 141, 3247 (w), 1690 (m), 1585 (m), 1525 (s, N-O), 1436 (m), 1348 (s, N-O), 1179 (m), 1021 (m, S-O), 1010 (m), vol.1, p.547

(. Rf, . Cyhex, and . Etoac, 0.24. Major diastereomer II-8hA: 1 H NMR (400 MHz, CDCl3): 10.40 (1H, br s, NH), 8.11 (1H, s), 7.98-8.03 (1H, m), vol.3

, 3H, m), 7.28-7.33 (1H, m), 7.24 (2H, d, J=8.2 Hz, vol.7

, HRMS (ESI-TOF): m/z calcd for C24H22KN2O4S + : 473.0932

(. Rf, . Cyhex, and . Etoac, Experimental section, vol.3

D. Y. Chen, R. H. Pouwer, and J. Richard, Chem. Soc. Rev, p.4631, 2012.

L. Pauling, J. Am. Chem. Soc, vol.53, pp.1367-1400, 1931.

C. A. Coulson and H. C. Longuet-higgins, Proc. R. Soc. Math. Phys. Eng. Sci, vol.192, pp.16-32, 1947.

H. N. Wong, M. Y. Hon, C. W. Tse, Y. C. Yip, J. Tanko et al., Chem. Rev, vol.89, pp.165-198, 1989.

L. A. Wessjohann, W. Brandt, and T. Thiemann, Chem. Rev, vol.103, pp.1625-1648, 2003.

A. D. Walsh, Nature, vol.159, pp.712-713, 1947.

W. Wu, B. Ma, J. , I. Wu, P. R. Schleyer et al., Chem. -Eur. J, vol.15, pp.9730-9736, 2009.

E. Vogel, Angew. Chem, vol.72, pp.4-26, 1960.

C. G. Overberger and A. E. Borchert, J. Am. Chem. Soc, vol.82, pp.1007-1008, 1960.

J. E. Baldwin, Chem. Rev, vol.103, pp.1197-1212, 2003.

C. G. Overberger and A. E. Borchert, J. Am. Chem. Soc, vol.82, pp.4896-4899, 1960.

S. Nozoe, J. Furukawa, U. Sankawa, and S. Shibata, Tetrahedron Lett, vol.17, pp.195-198, 1976.

T. Hudlicky, T. M. Kutchan, S. R. Wilson, and D. T. Mao, J. Am. Chem. Soc, vol.102, pp.6351-6353, 1980.

M. Yu and B. L. Pagenkopf, Tetrahedron, vol.61, pp.321-347, 2005.

T. F. Schneider, J. Kaschel, and D. B. Werz, Angew. Chem. Int. Ed, vol.53, pp.5504-5523, 2014.

G. Bartoli, G. Bencivenni, and R. Dalpozzo, Synthesis, vol.46, pp.979-1029, 2014.

H. E. Simmons and R. D. Smith, J. Am. Chem. Soc, vol.80, pp.5323-5324, 1958.

A. W. Johnson and R. B. Lacount, J. Am. Chem. Soc, vol.83, pp.417-423, 1961.

E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc, vol.87, pp.1353-1364, 1965.

J. M. Vega-pérez, I. Periñán, M. Vega, and F. Iglesias-guerra, Tetrahedron Asymmetry, vol.19, pp.1720-1729, 2008.

J. M. Vega-pérez, I. Periñán, and F. Iglesias-guerra, Tetrahedron Asymmetry, vol.20, pp.1065-1072, 2009.

J. M. Vega-pérez, I. Periñán, C. Palo-nieto, M. Vega-holm, and F. Iglesias-guerra, Tetrahedron Asymmetry, vol.21, pp.81-95, 2010.

Z. Song, T. Lu, R. P. Hsung, Z. F. Al-rashid, C. Ko et al., Angew. Chem. Int. Ed, vol.46, pp.4069-4072, 2007.

M. Cheeseman, I. R. Davies, P. Axe, A. L. Johnson, and S. D. Bull, Org. Biomol. Chem, vol.7, p.3537, 2009.

K. Ko and H. Yun, Bull. Korean Chem. Soc, vol.33, pp.2415-2418, 2012.

A. B. Charette and H. Juteau, J. Am. Chem. Soc, vol.116, pp.2651-2652, 1994.

H. Y. Kim, L. Salvi, P. J. Carroll, and P. J. Walsh, J. Am. Chem. Soc, vol.131, pp.954-962, 2009.

S. Xiao-hua, L. Cun, J. Zhao, Z. Cai-rong, and J. Deng-gao, J. Chem. Res, vol.35, pp.582-584, 2011.

W. A. Nugent, Chem. Commun, pp.1369-1370, 1999.

J. Kallemeyn, M. Mulhern, and Y. Ku, Synlett, pp.535-538, 2011.

E. Nadeau, D. L. Ventura, J. A. Brekan, and H. M. Davies, J. Org. Chem, vol.75, pp.1927-1939, 2010.

C. Mazet, V. Köhler, and A. Pfaltz, Angew. Chem. Int. Ed, vol.44, pp.4888-4891, 2005.

J. V. Ruppel, T. J. Gauthier, N. L. Snyder, J. A. Perman, and X. P. Zhang, Org. Lett, vol.11, pp.2273-2276, 2009.

S. Zhu, X. Xu, J. A. Perman, and X. P. Zhang, J. Am. Chem. Soc, vol.132, pp.12796-12799, 2010.

N. Hoshiya, T. Kobayashi, M. Arisawa, and S. Shuto, Org. Lett, vol.15, pp.6202-6205, 2013.

L. M. Chapman, J. C. Beck, L. Wu, and S. E. Reisman, J. Am. Chem. Soc, vol.138, pp.9803-9806, 2016.

W. R. Gutekunst, R. Gianatassio, and P. S. Baran, Angew. Chem. Int. Ed, vol.51, pp.7507-7510, 2012.

C. Reddy, N. Bisht, R. Parella, and S. A. Babu, J. Org. Chem, vol.81, pp.12143-12168, 2016.

J. Kim, M. Sim, N. Kim, and S. Hong, Chem Sci, vol.6, pp.3611-3616, 2015.

D. E. Applequist and D. F. O'brien, J. Am. Chem. Soc, vol.85, pp.743-748, 1963.

M. Hutchby, C. E. Houlden, J. G. Ford, S. N. Tyler, M. R. Gagné et al., Angew. Chem. Int. Ed, vol.48, pp.8721-8724, 2009.

C. E. Houlden, G. C. Lloyd-jones, and K. I. Booker-milburn, Org. Lett, vol.12, pp.3090-3092, 2010.

J. W. Lockman, B. R. Murphy, D. F. Zigar, W. R. Judd, P. M. Slattum et al., J. Med. Chem, vol.53, pp.8734-8746, 2010.

D. Mu, F. Gao, G. Chen, and G. He, , vol.7, pp.1880-1885, 2017.

L. Alcaraz, A. Bailey, and N. Kindon, Spirocyclic Amide Derivatives, 2011.

S. S. Kim, K. Nehru, S. S. Kim, D. W. Kim, and H. C. Jung, Synthesis, pp.2484-2486, 2002.

F. Pan, P. Shen, L. Zhang, X. Wang, and Z. Shi, Org. Lett, vol.15, pp.4758-4761, 2013.

S. M. Ennaceur and J. M. Sanderson, Langmuir, vol.21, pp.552-561, 2005.

J. Ammer and H. Mayr, J. Phys. Org. Chem, vol.26, pp.59-63, 2013.

C. Janiak, J. Chem. Soc. Dalton Trans, pp.3885-3896, 2000.

X. Yang, T. Sun, and Y. Rao, Chem. -Eur. J, vol.22, pp.3273-3277, 2016.

J. J. Macketta, Encyclopedia of Chemical Processing and Design, Pentachlorophenol to Petroleum Fractions, Liquid Densities, vol.34, 1990.

R. Kumar and M. Tao, Biochim. Biophys. Acta, vol.410, pp.87-98, 1975.

Y. Nishii, N. Maruyama, K. Wakasugi, and Y. Tanabe, Bioorg. Med. Chem, vol.9, pp.33-39, 2001.

S. F. Martin, R. E. Austin, C. J. Oalmann, W. R. Baker, S. L. Condon et al., J. Med. Chem, vol.35, pp.1710-1721, 1992.

T. D. Avery, G. Fallon, B. W. Greatrex, S. M. Pyke, D. K. Taylor et al., J. Org. Chem, vol.66, pp.7955-7966, 2001.

H. Wang, F. Yang, X. Li, X. Yan, and Z. Huang, Chem. -Eur. J, vol.15, pp.3784-3789, 2009.

H. M. Key, P. Dydio, D. S. Clark, and J. F. Hartwig, Nature, vol.534, pp.534-537, 2016.

X. Chen, C. E. Goodhue, and J. Yu, J. Am. Chem. Soc, vol.128, pp.12634-12635, 2006.

K. J. Stowers, K. C. Fortner, and M. S. Sanford, J. Am. Chem. Soc, vol.133, pp.6541-6544, 2011.

H. Jiang, J. He, T. Liu, and J. Yu, J. Am. Chem. Soc, vol.138, pp.2055-2059, 2016.

M. Wasa, K. M. Engle, and J. Yu, J. Am. Chem. Soc, vol.132, pp.3680-3681, 2010.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys, p.154104, 2010.

S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem, vol.32, pp.1456-1465, 2011.

F. L. Weinhold-;-n, T. Allinger, J. Clark, P. A. Gasteiger, H. F. Kollman et al., , 2002.

J. W. Blunt, B. R. Copp, R. A. Keyzers, M. H. Munro, and M. R. Prinsep, Nat Prod Rep, vol.33, pp.382-431, 2016.

P. Jouin, B. Castro, and D. Nisato, J. Chem. Soc. Perkin, vol.1, p.1177, 1987.

Y. Nagai and T. Kusumi, Tetrahedron Lett, vol.36, pp.1853-1856, 1995.

M. T. Crimmins, B. W. King, and E. A. Tabet, J. Am. Chem. Soc, vol.119, pp.7883-7884, 1997.

V. Theodorou, M. Gogou, M. Philippidou, V. Ragoussis, G. Paraskevopoulos et al., Tetrahedron, vol.67, pp.5630-5634, 2011.

R. F. Heck and J. P. Nolley, J. Org. Chem, vol.37, pp.2320-2322, 1972.

B. Mondal, B. Roy, and U. Kazmaier, J. Org. Chem, vol.81, pp.11646-11655, 2016.

D. H. Barton, D. Crich, and W. B. Motherwell, Tetrahedron Lett, vol.24, pp.4979-4982, 1983.

D. H. Barton, D. Crich, and W. B. Motherwell, Tetrahedron, vol.41, pp.3901-3924, 1985.

D. H. Barton, D. Bridon, I. Fernandaz-picot, and S. Z. Zard, Tetrahedron, vol.43, pp.2733-2740, 1987.

O. Motl, M. Amin, and P. Sedmera, Phytochemistry, vol.11, pp.407-408, 1972.

I. O. Roberts, M. S. Baird, and Y. Liu, Tetrahedron Lett, vol.45, pp.8685-8686, 2004.

N. Sitachitta and W. H. Gerwick, J. Nat. Prod, vol.61, pp.681-684, 1998.

J. R. Dulayymi, M. S. Baird, and K. Jones, Tetrahedron, vol.60, pp.341-345, 2004.

M. Cheeseman and S. Bull, Synlett, pp.1119-1121, 2006.

R. Green, M. Cheeseman, S. Duffill, A. Merritt, and S. D. Bull, Tetrahedron Lett, vol.46, pp.7931-7934, 2005.

T. D. Avery, J. A. Culbert, and D. K. Taylor, Org Biomol Chem, vol.4, pp.323-330, 2006.

H. Salim and O. Piva, Tetrahedron Lett, vol.48, pp.2059-2062, 2007.

P. Kumar, A. Dubey, and A. Harbindu, Org Biomol Chem, vol.10, pp.6987-6994, 2012.

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

G. Velde, F. M. Bickelhaupt, E. J. Baerends, C. Guerra, S. J. Van-gisbergen et al., J. Comput. Chem, vol.22, pp.931-967, 2001.

J. P. Perdew and Y. Wang, Phys. Rev. B, vol.45, pp.13244-13249, 1992.

E. Van-lenthe, E. J. Baerends, and J. G. Snijders, J. Chem. Phys, p.4597, 1993.

E. Van-lenthe, E. J. Baerends, and J. G. Snijders, J. Chem. Phys, vol.101, p.9783, 1994.

E. Van-lenthe, A. Ehlers, and E. Baerends, J. Chem. Phys, p.8943, 1999.

L. Delhaye, C. Stevens, A. Merschaert, P. Delbeke, W. Briône et al., Org. Process Res. Dev, vol.11, pp.1104-1111, 2007.

G. Solladié and F. Colobert, Encycl. Reag. Org. Synth, 2001.

S. A. Blum, R. G. Bergman, and J. A. Ellman, J. Org. Chem, vol.68, pp.150-155, 2003.

, 2.i. From cycloalkanes to linear alkyl chains

. .. , H arylation and application to the synthesis of biologically active molecules

, Efficient synthesis of enantioenriched 2,2-dimethylcyclopropane bioisosters, p.210

, One-pot double functionalisation of propionic acid derivatives

, One-pot arylation and

, Optimization of the coupling reaction conditions

, 1 H NMR determination of the conversion and diastereomeric ratio

, One-pot double functionalization of aliphatic chains, p.251

, Diastereoselective sulfoxide-enabled activation of aliphatic C(sp 3 )-H bonds (S)-N, p.1

/. Cyhex and . Etoac, :1) afforded the title compound (297 mg, 96%) as a white solid, vol.4

H. Nmr, MHz, CDCl3): 10.12 (1H, br s, NH), 8.39 (1H, d, vol.8

. Hz, 7.51 (1H, dd, J=7.9, 1.5 Hz), 7.43-7.47 (1H, m), 7.35 (2H, d, J=8.2 Hz), vol.7

-. , , p.1

/. Cyhex and . Etoac, 1) afforded the title compound (362 mg, 87%) as a clear oil, vol.9

H. Nmr, MHz, issue.400

. Hz, 7.46 (1H, dd, J=7.6, 1.7 Hz), 7.37-7.41 (1H, m), 7.30 (2H, d, J=8.4 Hz), vol.7

, HRMS (ESI-TOF): m/z calcd for C23H31KNO2S + : 424.1707

. Rf,

-. , , p.1

/. Cyhex and . Etoac, 95:5) afforded the title compound (408 mg, 80%) as a white solid

H. Nmr, 400 MHz, CDCl3): 10.11 (1H, br s, NH), 8.38 (1H, d, J=8.2 Hz), 7.50 (1H, dd, J=7.6, 1.5 Hz), vol.7

, /z calcd for Chapter, pp.51-52

. Rf,

, 3-dioxoisoindolin-2-yl)-N-(2-(p-tolylsulfinyl)phenyl)butanamide III-1j

H. Nmr, 400 MHz, CDCl3): 10.07 (1H, br s, NH), 8.26 (1H, d, J=8.4 Hz), vol.7

. Hz, 7.33 (2H, d, J=8.1 Hz), 7.21 (2H, d, J=8.2 Hz), 7.13 (1H, td, J=7.6, 1.3 Hz), 3.70 (2H, t, J=7.2 Hz), 2.19-2.40 (5H, m), 1.87-2.05 (2H, m); 13 C NMR, vol.168, p.1032

M. and S. ,

, HRMS (ESI-TOF): m/z calcd for C25H22N2NaO4S + : 469.1192

. Rf, , pp.0-22

/. Cyhex and . Etoac, 1) afforded the title compound (357 mg, 91%) as a yellow oil, vol.9

H. Nmr, 400 MHz, CDCl3): 10.20 (1H, br s, NH), 8.37 (1H, d, J=8.4 Hz), 7.51 (1H, dd, J=7.7, 1.9 Hz), 7.44-7.49 (1H, m), vol.7, p.33

(. 2h, 4 Hz), 7.25-7.30 (2H, m), 7.17-7.22 (5H, m), vol.7, p.14

O. Rt-(min, /. Hex, and . Iproh, 80/20, 0.5 mL/min): 19.13 (1%), 24.60 (99%); other data match the reported ones

H. Nmr, MHz, issue.400

. Hz,

. Hz,

. Hz,

. Mhz, , p.1036

S. and S. ,

, HRMS (ESI-TOF): m/z calcd for C22H20ClNNaO2S + : 420.0795

. Rf, , p.1

H. Nmr, 400 MHz, CDCl3): 10.24 (1H, br s, NH), 8.36 (1H, d, J=7.8 Hz), 7.41-7.54 (4H, m), 7.35-7.42 (2H, m), 7.32 (2H, d, J=8.3 Hz), 7.19 (2H, d, J=8.3 Hz), vol.7

, HRMS (ESI-TOF): m/z calcd for C23H21F3NO2S + : 432.1240

. Rf,

H. Nmr, 400 MHz, CDCl3): 10.10 (1H, br s, NH), vol.8

. Hz, 7.50 (1H, dd, J=7.4, 1.1 Hz), 7.41-7.47 (1H, m), vol.7

. Hz, 7.21 (2H, d, J=8.3 Hz), 7.12 (1H, td, J=7.5, 1.2 Hz), vol.2, p.33

, 3H, s, PhCH3), 2.14-2.30 (2H, m), 1.39-1.58 (3H, m)

(. 6h,

O. Rt-(min, /. Hex, and . Iproh, 98/2, 0.5 mL/min): 30.25 (99%), vol.36, p.17

. Rf,

-. , , p.1

/. Cyhex and . Etoac, :1) afforded the title compound (297 mg, 96%) as a white solid, vol.4

H. Nmr, 400 MHz, CDCl3): 10.15 (1H, br s, NH), 8.41 (1H, d, J=8.3 Hz), 7.53 (1H, d, J=7.6 Hz), 7.47 (1H, t, J=7.8 Hz), vol.7

O. Rt-(min, /. Hex, and . Iproh, , vol.98

, mL/min): 51.81 (98%), vol.60, p.55

H. Nmr, 400 MHz, CDCl3): 10.97 (1H, br s, NH), vol.8

, (2H, m), 1.33-1.40 (2H, m), 1.25 (9H, s, C(CH3)3), 0.92 (3H, t, J=7.4 Hz); 13 C NMR (100 MHz, CDCl3): 171, vol.87

. Rf,

H. Nmr, 400 MHz, CDCl3): 10.16 (1H, br s, NH), vol.8

. Hz, 7.49 (1H, dd, J=7.7, 1.5 Hz), 7.40-7.46 (1H, m), vol.7

. Hz, 7.21 (2H, d, J=8.2 Hz), vol.7

, CHCl3

. Rf, Experimental section Major diastereomer: 1 H NMR (400 MHz, CDCl3): 10.34 (1H, br s, NH), vol.3

. Hz,

. Rt-(min, . Ia, /. Hex, and . Iproh,

. Rf, 0.25. Minor diastereomer: 1 H NMR (400 MHz, CDCl3): 10.15 (1H, br s, NH), 8.26 (1H, d, J=8.0 Hz), 7.93 (2H, d, J=8.2 Hz), vol.7, pp.39-46

, 2H, m), 2.35 (3H, s, PhCH3), 1.46-1.58 (2H, m), 0.69 (3H, t, J=7.4 Hz)

. Rt-(min, . Ia, /. Hex, and . Iproh, 90/10, 0.5 mL/min): 63.62 (98%), vol.66, p.96

. Rf, , pp.0-21

, -methoxyphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)pentanamide III-2aC

, Reaction was carried out using III-1a (100 mg) as substrate and 3-iodoanisole (90 µL, 2.4 equiv.) as coupling partner. Purification with CyHex/EtOAc (9:1) afforded a mixture of diastereomers, p.97

H. Nmr, MHz, issue.400

. Hrms-(esi-tof, /z calcd for C25H28NO3S + : 422.1784, found: 422.1800; FT-IR (cm -1 ): 1687 (s, C=O), 1298 (s, C-O ether, p.1023

. Rf,

, -acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)pentanamide III-2aD

, Reaction was carried out using III-1a (100 mg) as substrate and 3'-iodoacetophenone (100 µL, 2.5 equiv.) as coupling partner, Purification with CyHex/EtOAc

, Major diastereomer: 1 H NMR (400 MHz, CDCl3): 10.30 (1H, br s, NH), 8.33 (1H, d, J=8.2 Hz), 7.74-7.80 (2H, m), 7.43 (2H, d, J=8.4 Hz), 7.25-7.41 (4H, m), 7.06-7.19 (3H, m)

, Hz

. Rf, , pp.0-23

, -acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)pentanamide III-2aE

, Reaction was carried out using III-1a (100 mg) as substrate and 3-iodoanisole (90 µL, 2.4 equiv.) as coupling partner. Purification with CyHex/EtOAc (9:1) afforded a mixture of diastereomers, p.92

H. Nmr, 52-3.68 (1H, m), 2.58-2.65 (1.4H, m), 2.55-2.58 (3H, m, PhC(O)CH3), 400 MHz, CDCl3): 10.09 (0.3H, br s, NH), 9.97 (0.7H, br s, NH), 8.22 (0.3H, d, J=8.2 Hz), 8.14 (0.7H, d, J=8.2 Hz), 7.26-7.49 (7H, m), 7.07-7.23 (4H, m), vol.3

. Rf,

, )-p-tolylsulfinyl)phenyl)butanamide III-2bF

, Reaction was carried out using III-1b (20 mg) as substrate and 2-iodonaphthalene (50 mg, p.3

, equiv.) as coupling partner. Purification by preparative thin layer chromatography with

/. Cyhex and . Etoac, 1) afforded the major diastereomer (13 mg, 45%) as a clear oil and the minor diastereomer (4 mg, assumed 14%, mixed with some starting material). 1 H NMR of the crude showed a 70:30 diastereomeric ratio. Major diastereomer: 1 H NMR, vol.9

, 3H, m), 7.64 (1H, d, J=1.4 Hz), 7.32-7.48 (7H, m), 7.21 (2H, d, J=8.4 Hz), vol.7

, HRMS (ESI-TOF): m/z calcd for C27H25NNaO2S + : 450.1498, found: 450.1519; FT-IR (cm -1 ): 1709 (m, C-O), 1038

. Rf, Experimental section, vol.3

, -bromophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)butyramide III-2bG

, Reaction was carried out using III-1b (100 mg) as substrate and 2-bromoiodobenzene (100 µL, 2.3 equiv.) as coupling partner, Purification with CyHex/EtOAc

, Major diastereomer : 1 H NMR (400 MHz, CDCl3): 10.17 (1H, br s, NH), 8.35 (1H, d, J=8.4 Hz)

. Rf, , pp.0-6

, -acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)decanamide III-2cH

, Reaction was carried out using III-1c (100 mg) as substrate and 4'-iodoacetophenone (150 mg, 2.4 equiv.) as coupling partner, Purification with CyHex/EtOAc

, Major diastereomer: 1 H NMR (400 MHz, CDCl3): 10.18 (1H, br s, NH), 8.25 (1H, d, J=8.4 Hz), 7.86 (2H, d, J=8.3 Hz), 7.45 (1H, dd, J=7.7, 1.4 Hz), 7.41 (1H, td, J=7.9, 1.5 Hz), vol.7

, HRMS (ESI-TOF): m/z calcd for C31H38NO3S + : 504.2567, found: 504.2605; FT-IR

. Rf, Experimental section, vol.3

, -nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)decanamide III-2cI

, Reaction was carried out using III-1c (100 mg) as substrate and 3-iodonitrobenzene (150 mg, vol.2

, :3) afforded the major diastereomer (70 mg, 53%) as a yellow oil and the minor diastereomer (42 mg, 32%) as an orange oil. 1 H NMR of the crude showed a 6:4 diastereomeric ratio, equiv.) as coupling partner. Purification with CyHex/EtOAc, vol.7

, 1H, m), 7.34-7.45 (3H, m), 7.28 (2H, d, J=8.4 Hz

. Mhz,

. Rf, , pp.0-21

, -nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)palmitamide III-2dA

, Reaction was carried out using III-1d (100 mg) as substrate and 4-iodonitrobenzene (160 mg, p.3

, as coupling partner. Purification with CyHex/EtOAc (4:1) afforded the major diastereomer (44 mg, 35%) as a clear oil and the minor diastereomer (30 mg, p.24

, Major diastereomer: 1 H NMR (400 MHz, CDCl3): 10.36 (1H, br s, NH), vol.8

. Hz, 28 (3H, s, PhCH3), 1.46-1.66 (2H, m), 7.11 (2H, d, J=8.3 Hz), 7.05 (1H, td, J=7.7, 1.1 Hz), 3.18-3.30 (1H, m), 2.65 (1H, dd, J=15.4, 6.3 Hz), 2.44 (1H, dd, J=15.4, 8.8 Hz), vol.2, pp.6-7

. Rf,

, -acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)palmitamide III-2dH

, Reaction was carried out using III-1d (100 mg) as substrate and 4'-iodoacetophenone (100 mg

, as coupling partner. Purification with CyHex/EtOAc (4:1) afforded the major diastereomer (58 mg, 46%) as an orange oil and the minor diastereomer (38 mg, p.30

, Major diastereomer: 1 H NMR (400 MHz, CDCl3): 10.18 (1H, br s, NH), 8.25 (1H, d, J=8.2 Hz), 7.86 (2H, d, J=8.4 Hz), 7.46 (1H, dd, J=7.7, 1.4 Hz)

. Rf,

, Reaction was carried out using III-1d (100 mg) as substrate and 4-iodotoluene (100 mg, 2 equiv.) ratio. HRMS (ESI-TOF): m/z calcd for C36H50NO2S + : 560, vol.3557

, -nitrophenyl)-4-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)butanamide III-2eI

, Reaction was carried out using III-1e (100 mg) as substrate and 3-iodonitrobenzene (132 mg

, 1 to 7:3) afforded the major diastereomer (73 mg, 55%) and the minor diastereomer (48 mg, 36%) as clear oils. 1 H NMR of the crude showed a 6:4 diastereomeric ratio, equiv.) as coupling partner. Purification with CyHex/EtOAc, vol.9, p.99

, (1H, m), 7.07-7.22 (8H, m), 7.05 (2H, d, J=8.2 Hz

. Hz,

. Hz,

. Rf,

, Reaction was carried out using III-1f (100 mg) as substrate and 3-iodonitrobenzene (132 mg

, equiv.) as coupling partner. Purification with CyHex/EtOAc, p.95

, Major diastereomer: 1 H NMR (400 MHz, CDCl3): 10.36 (1H, br s, NH), 8.26 (1H, d, J=8.4 Hz), 7.96-8.01 (2H, m), 7.31-7.47 (4H, m), 7.28 (2H, d, J=8.3 Hz), vol.7, p.100

. Mhz,

. Rf,

, -nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2hI

, Reaction was carried out using III-1h (100 mg) as substrate and 3-iodonitrobenzene (132 mg

, Experimental section diastereomer (81 mg, 56%) and the minor diastereomer (35 mg, 24%) as clear oils. 1 H NMR of the crude showed a 7:3 diastereomeric ratio. Major diastereomer: 1 H NMR (400 MHz, CDCl3): 10.09 (1H, br s, NH), equiv.) as coupling partner. Purification with CyHex/EtOAc, vol.9

, .85 (1H, m), 1.59-1.69 (1H, m), 1.40-1.53 (2H, m), 1.25-1.37 (2H, m), 0.90-1.01 (1H, m); 13 C NMR (100 MHz, pp.76-77

. Rf, (S)-p-tolylsulfinyl)phenyl)amino)hexanoate III-2iD, vol.4

, Reaction was carried out using III-1i (100 mg) as substrate and 3'-iodoacetophenone (170 mg, 2.6 equiv.) as coupling partner

H. Nmr, MHz, CDCl3): 10.30 (0.4H, br s, NH), vol.10, p.15

, 6H, br s, NH), 8.29 (0.4H, d, J=8.4 Hz), 8.21 (0.6H, d, J=8.4 Hz), 7.74-7.81 (2H, m), 7.32-7.47 (5H, m), 7.24-7.29 (2H, m), vol.3

, HRMS (ESI-TOF): m/z calcd for C28H29NNaO5S + : 514.1659, p.1022

. Rf, 3-phenyl-4-(1,3-dioxoisoindolin-2-yl)-N-(2-((S)-p-tolylsulfinyl)phenyl)butanamide III-2jK, vol.19, p.0

, Reaction was carried out using III-1k (120 mg) as substrate and iodobenzene (100 µL, 3.3 equiv.) as coupling partner. Purification with CyHex/EtOAc (4:1) afforded a mixture of diastereomers (105 mg, 75%) as a yellow oil. 1 H NMR of the crude showed a, vol.60, p.40

H. Nmr, 400 MHz, CDCl3): 10.21 (0.6H, br s, NH), vol.10, p.5

. 4h,

. Hz, 2H, m), 3.66-3.77 (1H, m), 2.53-2.79 (2H, m), 2.28 (1.8H, s, PhCH3), 2.24 (1.2H, s, PhCH3), 2H, m), 7.58-7.66 (2H, m), 7.39-7.45 (1H, m, vol.13

. Ft-ir, cm-1): 1711 (s, C-O), 1022 (m, S-O)

, HRMS (ESI-TOF): m/z calcd for C31H26N2NaO4S + : 545.1505, found: 545.1508; Rf (CyHex/EtOAc, vol.7, pp.0-25

, 3-dioxoisoindolin-2-yl)-N-(2-((S)-p-tolylsulfinyl)phenyl)butanamide III-2jH Reaction was carried out using III-1j (120 mg) as substrate and 4'-iodoacetophenone, p.3

, 53%) as a yellow oil and the minor diastereomer (59 mg, 39%) as a brownish oil. 1 H NMR of the crude showed a 60:40 diastereomeric ratio, Experimental section Major diastereomer: 1 H NMR (400 MHz, CDCl3): 10.33 (1H, br s, NH), 8.08 (1H, d, J=8.4 Hz), vol.7

, 1H, m), 2.59-2.69 (1H, m), 2.51 (3H, s, PhC(O)CH3), 2.31 (3H, s, PhCH3)

, HRMS (ESI-TOF): m/z calcd for C33H29N2O5S + : 565.1792

. Rf, (S)-(p-tolylsulfinyl)phenyl)amino)pentan-3-yl)benzoate III-2nB

, :3) afforded the major diastereomer (93 mg, 66%) as a clear oil and the minor diastereomer (26 mg, 18%). 1 H NMR of the crude mixture showed a 75:25 diastereomeric ratio, Reaction was carried out using III-1n (100 mg) as substrate and methyl 4-iodobenzoate (180 mg, 2.3 equiv.) as coupling partner. Purification using CyHex/EtOAc, vol.7

, Experimental section 4-methyl-3-(3-methoxyphenyl)-N-(2-(S)-(para-tolylsulfinyl)phenyl)valeramide III-2nC, vol.3

, Purification with CyHex/EtOAc (4:1) afforded the major diastereomer (89 mg, 67%) and the minor diastereomer (22 mg, 17%) as clear oils. 1 H NMR of the crude showed a 7:3 diastereomeric ratio, Reaction was carried out using III-1n (100 mg) as substrate and 3-iodoanisole (100 µL, 2.8 equiv.) as coupling partner

. Hz, , p.100

. Mhz,

, HRMS (ESI-TOF): m/z calcd for C26H29NNaO3S + : 458.1760, found: 458.1768; FT-IR

. Rf,

, -acetylphenyl)-N-(2-(S)-(para-tolylsulfinyl)phenyl)valeramide III-2nH

, Reaction was carried out using III-1n (100 mg) as substrate and 4'-iodoacetophenone (150 mg

, :1) afforded the major diastereomer (100 mg, 74%) and the minor diastereomer (28 mg, 21%) as orange oils. 1 H NMR of the crude showed a 7:3 diastereomeric ratio. Major diastereomer: 1 H NMR (400 MHz, CDCl3): 10.34 (1H, br s, NH), equiv.) as coupling partner. Purification with CyHex/EtOAc, vol.4

. Hz,

. Hz, 3H, s, PhC(O)CH3), 2.28-2.40 (4H, m), vol.1, p.100

. Mhz,

, FT-IR (cm -1 ): 1683 (s, C=O), 1022 (m, S=O), HRMS (ESI-TOF): m/z calcd for C27H30NO3S + : 448, p.448, 1941.

. Rf, Experimental section 4-methyl-3-(3-nitrophenyl)-N-(2-(S)-(para-tolylsulfinyl)phenyl)valeramide III-2nI, vol.3

, Reaction was carried out using III-1n (100 mg) as substrate and 3-iodonitrobenzene (151 mg

, H NMR of the crude mixture showed a 75:25 diastereomeric ratio. Major diastereomer: 1 H NMR (400 MHz, CDCl3): 10.17 (1H, br s, NH), 8.18 (1H, d, J=8.2 Hz), 8.02 (1H, ddd, J=7.9, 2.2, 1.2 Hz), 7.95 (1H, t, J=2.2 Hz), 7.36-7.48 (4H, m), 7.34 (2H, d, J=8.4 Hz), 7.24-7.27 (2H, m), vol.7

=. +125 and . 2°, CHCl3

. Rf,

, Reaction was carried out using III-1n (100 mg) as substrate and iodobenzene (100 µL) as coupling partner. Purification using CyHex/EtOAc (95:5) afforded a mixture of diastereomers (112 mg, 91%) as a clear oil

H. Nmr, 400 MHz, CDCl3): 10.21 (0.9H, br s, NH), vol.10

. Hz,

. Hz, 0.88 (0.3H, d, J=6.7 Hz), 0.76 (2.7H, d, J=6.7 Hz), 0.72 (0.3H, d, J=6.8 Hz); 13 C NMR (100MHz, CDCl3): 170.53, 142.96 (0.9C), vol.142

, 1C

, HRMS (ESI-TOF): m/z calcd for C25H28NO2S + : 406.1835, found: 406.1846; FT-IR

. Rf, Experimental section (2H, m), 7.20-7.28 (6H, m), 7.10-7.17 (5H, m), vol.7

, FT-IR (cm -1 ) 1694 (m, C=O), 1518 (s, N-O), p.1345

. Rf,

, -methoxyphenyl)-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2kC

H. Nmr, 400 MHz, CDCl3): 10.34 (1H, br s, NH), vol.8

. Hz, 7.42 (1H, dd, J=7.7, 1.3 Hz), 7.36-7.40 (1H, m), 7.31-7.35 (2H, m), 7.12-7.26 (8H, m), vol.7

. Hz,

. Hz,

. Rf, , pp.0-28

, -nitrophenyl)-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2kH

H. Nmr, 400 MHz, CDCl3): 10.46 (1H, br s, NH), vol.8

, 1H, m), 7.28-7.46 (7H, m), 7.17-7.24 (4H, m, vol.7

. Rf, Experimental section, vol.3

, )-p-tolylsulfinyl)phenyl)propenamide III-2kI

H. Nmr, 34 (3H, s, PhCH3), 2.27 (2.6H, s, PhCH3), 2.25 (0.4H, s, PhCH3), 400 MHz, CDCl3): 10.33 (1H, br s, NH), 8.28 (1H, d, J=8.3 Hz), 7.42 (1H, dd, J=7.7, 1.5 Hz), 7.31-7.39 (3H, m), 7.06-7.27 (11H, m), 7.03 (2H, d, J=8.1 Hz), 4.58 (1H, t, J=7.9 Hz), 3.04 (1H, dd, J=15.3, 7.9 Hz), 2.95 (1H, dd, J=15.3, 7.9 Hz), vol.2

. Rf,

, -fluorophenyl)-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2kL

H. Nmr, 400 MHz, CDCl3): 10.37 (1H, br s, NH), 8.29 (1H, d, J=8.2 Hz), vol.7, pp.37-44

, 2H, m), 7.13-7.23 (6H, m), 7.10 (1H, td, J=7.7, 1.1 Hz, vol.7, p.2

D. 2h and J. , 6.98 (0.8H, d, J=7.8 Hz), 6.81-6.91 (2H, m), vol.143, p.7

. Hrms-(esi-tof,

. Rf,

, -trifluorophenyl)-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2kM

H. Nmr, 400 MHz, CDCl3): 10.39 (1H, br s, NH), 8.27 (1H, d, J=8.4 Hz), 7.48 (1H, s), 7.35-7.45 (4H, m), 7.29-7.34 (3H, m), vol.7

. Hz,

, 124.58 (q, J=3.8 Hz), 124.42, 124.10 (q, J=271.7 Hz), vol.123

, HRMS (ESI-TOF): m/z calcd for C29H25F3NO2S + : 508.1553, found: 508.1599; FT-IR (cm -1 ): 1693 (s, C=O), 1327 (s, C-F), 1022 (m, S=O)

. Rf, , pp.0-32

, -bromophenyl)-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2kN

H. Nmr, 400 MHz, CDCl3): 10.46 (0.9H, br s, NH), vol.10, p.40

, 1H, br s, NH), 8.26-8.37 (1H, m), 7.36-7.44 (2H, m), 7.24-7.33 (6H, m), 7.15-7.23 (5H, m), 7.08-7.12 (1H, m), 7.06 (2H, d, J=8.4 Hz, vol.131, p.63

. Rf, , vol.8, pp.0-47

, -methoxyphenyl)-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2kO

H. Nmr, 400 MHz, CDCl3): 10.35 (1H, br s, NH), vol.8

, (8H, m), 7.11 (2H, d, J=8.4 Hz), 7.06 (1H, td, J=7.5, 1.1 Hz), 6.75 (2H, d, J=8.7 Hz

. Mhz,

, 1265 (s, C-O ether, HRMS (ESI-TOF): m/z calcd for C29H27KNO3S + : 508.1343, found: 508.1370; FT-IR (cm -1 ): 1694 (m, C=O), p.1022

. Rf,

, -methoxyphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)propanamide III-2lC

, Reaction was carried out using III-1l (84 mg) as substrate and 3-iodoanisole (50 µL, 2 equiv.) as coupling partner

H. Nmr, 400 MHz, CDCl3): 10.45 (0.2H, br s, NH), 10.39 (0.8H, br s, NH), 8.24-8.35 (1H, m), 7.37-7.44 (2H, m), 7.28-7.34 (2H, m), 7.08-7.23 (8H, m), vol.8

S. 5h, 5H, s, PhCH3), p.3

. Rf,

, -nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)-3-(3-(trifluoromethyl)phenyl)propanamide

, Reaction was carried out using III-1m (50 mg) as substrate and 1-iodo-3-nitrobenzene (60 mg

H. Nmr, 400 MHz, CDCl3): 10.45-10.56 (1H, m, NH), 8.25 (1H, d, J=8.4 Hz), 8.02-8.10 (2H, m), 7.35-7.53 (8H, m), vol.7

. Hz, 06-3.14 (1H, m), 2.94-3.04 (1H, m), 2.35 (0.6H, s, PhCH3), 2.34 (2.4H, s, PhCH3), 7.20 (2H, d, J=8.4 Hz), 7.12 (1H, td, J=7.6, 1.1 Hz), 4.73-4.82 (1H, m), vol.3, pp.14-46

, HRMS (ESI-TOF): m/z calcd for C29H24F3N2O4S + : 553.1403, found: 553.1386; FT-IR (cm -1 ): 1697 (m, C-O), p.1529

. Rf,

, Due to the complexity of the spectrum with the diastereomeric mixture and the presence of C-F couplings, some carbons were omitted between 122.00 and 144, vol.93

, Reaction was carried out using 1n (50 mg) as substrate and 2-iodonaphthalene (60 mg, 2 equiv.) as coupling partner, vol.46

H. Nmr, 400 MHz, CDCl3): 10.52 (0.9H, br s, NH), 10.48 (0.1H, br s, NH), 8.28 (1H, d, J=8.3 Hz), 7.67-7.80 (4H, m), 7.35-7.55 (8H, m), 7.25-7.32 (3H, m), 7.09 (1H, td, J=7.5, 0.9 Hz), 6.99 (2H, d, J=8.2 Hz)

. Hz,

. Hrms-(esi-tof,

, m/z calcd for C33H27F3NO2S + : 558.1709, found: 558.1683; FT-IR (cm -1 ): 1691 (m, C-O), 1328 (s, C-F), 1124 (s, C-F), 1021 (m

. Rf,

, 6H, m), 2.29 (3H, s, PhCH3), vol.13

. Rf,

, -acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2oE

, General arylation procedure was carried out using III-1o (70 mg) as substrate and 2'-iodoacetophenone (50 µL, 1.5 equiv.) as coupling partner, Purification with CyHex/EtOAc, vol.7, p.3

H. Nmr, 400 MHz, CDCl3): 10.10 (1H, br s, NH), 8.32 (1H, d, J=8.1 Hz), 7.71 (1H, dd, J=7.7, 1.5 Hz), vol.7

. Hz, , vol.3

C. Nmr, 2H, m), 2.55-2.66 (5H, m), 2.33 (3H, s, PhCH3), vol.13, p.100

. Mhz,

, HRMS (ESI-TOF): m/z calcd for C24H23NNaO3S + : 428.1291, found: 428.1291; FT-IR

. Rf, Experimental section, vol.3

D. 7h and J. , 10H, m), 7.05-7.14 (2H, m), 6.09-6.18 (1H, m, CHOC(O)CH3

. Hz, 27 (2H, s, PhCH3), 1.98 (2H, s, CHOC(O)CH3), 1.91 (1H, s, CHC(O)CH3), 1H, s, PhCH3), vol.2, p.51

, HRMS (ESI-TOF): m/z calcd for C24H23NNaO4S + : 444.1240, p.1022

. Rf, Experimental section, vol.3

D. 5h and J. , , vol.140, p.39

C. Ester, HRMS (ESI-TOF): m/z calcd for C25H25NNaO5S + : 474.1346, p.1037

. Rf, Experimental section, vol.3

B. V. Reddy, L. R. Reddy, and E. J. Corey, Org. Lett, vol.8, pp.3391-3394, 2006.

Y. Feng and G. Chen, Angew. Chem. Int. Ed, vol.49, pp.958-961, 2010.

W. R. Gutekunst and P. S. Baran, J. Am. Chem. Soc, vol.133, pp.19076-19079, 2011.

K. Chen, Z. Li, P. Shen, H. Zhao, and Z. Shi, Chem. -Eur. J, vol.21, pp.7389-7393, 2015.

H. Keberle, J. W. Faigle, and M. Wilhelm, Gamma-Amino-Beta-(Para-Halophenyl)-Butyric Acids and Their Esters, p.3471548, 1969.

D. R. Owen, D. M. Wood, J. R. Archer, and P. I. Dargan, Drug Alcohol Rev, vol.35, pp.591-596, 2016.

K. Mori, Tetrahedron Asymmetry, vol.16, pp.685-692, 2005.

S. Xu, H. Li, X. Wang, C. Chen, M. Cao et al., Bioorg. Med. Chem. Lett, vol.24, pp.2734-2736, 2014.

J. Xiao, X. Cong, G. Yang, Y. Wang, and Y. Peng, Org. Lett, vol.20, pp.1651-1654, 2018.

, Background on enantioselective C-H bond functionalisation

, Metal-catalysed desymmetrisation of C-H bonds

, By kinetic resolution of racemic substrates

, Enantioselective C-C bond formation in methylene units

, Ligand-enabled enantioselective C-heteroatom bond formation

, Towards a new methodology for unactivated C-H bond functionalisation

. .. Iv.2-;, Enantioselective transformations promoted by in situ sulfinylimine formation, p.276

. Iv, 3.i. Towards new ligands for the asymmetric C(sp 3 )-H bond functionalisation

, Test of different families of ligands

, Test of different substrate protecting groups

, Synthesis of various 2-sulfinylethanamine moieties

, Obtention of the two diastereomers of L4

, Novel access to (S, RS)-aminosulfoxides ligands

, 8.ii.1. Synthesis of (S, RS)-aminosulfoxide type ligands

, 8.vi.1. Synthesis of the bis(TFA-Pd(II)-L12) chelate

, 1.iii. Metal-catalysed desymmetrisation of C-H bonds IV

, Yu's arylation of ?-substituted cyclopropanes In 2015, after showing that mono protected amino acids (MPAA) ligands enabled the ?-C(sp 3 )-H bond functionalisation of triflate-protected amines, Yu and co-workers reported a highly enantioselective method for the arylation of triflyl-protected cyclopropylamines

. Hz,

, 3H, s, PhOCH3); 3.00-3.17 (2H, m), 2.40 (3H, s, PhCH3), 1.28 (9H, s, PhC(CH3)3)

C. Ether, 1012 (s, S-O)

. Hrms-(esi-tof, , pp.422-2146

H. Nmr, 400 MHz, CDCl3): 7.66 (1H, br d, J=7.5 Hz, NH), 7.47 (2H, d, J=8.2 Hz), 4.40 (4H, app d, J=4.4 Hz), vol.7, pp.29-36

. Hrms-(esi-tof,

H. Nmr, 400 MHz, CDCl3): 8.20 (1H, d, J=8.7 Hz, NH), 7.52 (2H, d, vol.7

. Hz, 39 (3H, s, PhCH3), 2.03 (3H, s, C(O)CH3), 1.17 (3H, s), 0.96 (3H, s), 7H, m), 5.17 (1H, d, J=8.8 Hz, vol.2

. Hrms-(esi-tof,

, 5-dimethylphenyl)-2-((RS)-p-tolylsulfinyl), vol.3

H. Nmr, 400 MHz, CDCl3): 7.61 (1H, d, J=7.5 Hz, NH), 7.47 (2H, d, vol.8

. Hz,

. Hz, 3H, s, S(O)PhCH3), 2.32 (6H, s

C. Nmr, MHz, issue.100

, HRMS (ESI-TOF): m/z calcd for C19H23NNaO2S

H. Nmr, 400 MHz, CDCl3): 7.77-7.90 (5H, m), 7.42-7.53 (5H, m), vol.7, p.31

, HRMS (ESI-TOF): m/z calcd for C21H21NNaO2S

, 1-(4-(tert-butyl)phenyl)-2-((RS)-p-tolylsulfinyl)

H. Nmr, 400 MHz, CDCl3): 7.62 (1H, d, J=7.6 Hz, NH), 7.47 (2H, d, J=8.2 Hz), 7.38 (2H, d, J=8.5 Hz), vol.7, pp.27-34

. Ft-ir, 1656 (s, C-O), 1037 (s, S-O), cm -1 ): 3274 (m, N-H)

, HRMS (ESI-TOF): m/z calcd for C21H27NNaO2S

H. Nmr, 400 MHz, CDCl3): 7.65 (1H, d, J=7.6 Hz, NH), 7.46 (2H, d, J=8.2 Hz), 7.24-7.35 (4H, m), vol.7

. Hz, 40 (3H, s), 2.34 (3H, s), 2.04 (3H, s, C(O)CH3), 3.18 (1H, dd, J=13.4, 3.8 Hz), 3.11 (1H, dd, J=13.4, 6.4 Hz), vol.2

, HRMS (ESI-TOF): m/z calcd for C18H21NNaO2S, pp.338-1186

, trifluoromethyl)phenyl)-2-((RS)-p-tolylsulfinyl

H. Nmr, 400 MHz, CDCl3): 7.89 (1H, d, J=7.2 Hz, NH), 7.62 (2H, d, vol.8

. Hz, 7.50 (2H, d, J=8.4 Hz), 7.46 (2H, d, J=8.2 Hz), 7.32 (2H, d, J=7.9 Hz), 5.50 (1H, td, J=6.7, 3.9 Hz), vol.3

. Ft-ir, , p.1681

. Hrms-(esi-tof,

H. Nmr, MHz, issue.400

. Hz, 6.56 (1H, br s, NH), 3.32 (2H, q, J=6.4 Hz)

(. 1h,

C. Nmr, MHz, issue.100

. Ft-ir, , p.3286

, Experimental section (R)-4-phenyl-2-(2-((SS)-p-tolylsulfinyl)ferrocenyl)-4, HRMS (ESI-TOF): m/z calcd for C12H18NO2S, vol.4, pp.5-6

H. Nmr, 400 MHz, CDCl3): 7.68 (1H, d, J=8.2 Hz), 7.27-7.41 (5H, m), 7.17 (2H, d, J=8.0 Hz), 5.30 (1H, dd, J=9.9

. Hz, , p.100

. Mhz,

, HRMS (ESI-TOF): m/z calcd for C26H24FeNO2S

H. Nmr, 38 (3H, s, PhCH3), 1.38 (3H, s), 1.08 (3H, s), 400 MHz, DMSO-d6): 13.13 (1H, s, COOH), 7.41-7.48 (2H, m), 7.38 (2H, d, J=8.0 Hz), vol.2

H. Nmr, 400 MHz, CDCl3): 8.94 (1H, dd, J=4.2, 1.8 Hz), vol.8

. Hz,

, 1045 (s, S-O)

, HRMS (ESI-TOF): m/z calcd for C13H16NOS

H. Nmr, 400 MHz, CDCl3): 7.48 (2H, d, J=8.2 Hz), 7.32 (2H, d, J=7.9 Hz), 6.84 (1H, br s, NH), 3.75 (1H, dtd, p.3280

-. , -phenyl-2-(p-tolylthio)ethyl)acetamide thio-L4

H. Nmr, 400 MHz, CDCl3): 7.23-7.36 (7H, m), 7.10 (2H, d, J=7.9 Hz), 6.01 (1H, d, J=7.0 Hz, NH), 5.15 (1H, app q, J=7.0 Hz), vol.1, p.95

, HRMS (ESI-TOF): m/z calcd for C17H20NOS, pp.286-1321

H. Nmr, 02 (1H, br s), 2.76 (1H, br s), 2.03 (3H, s, C(O)CH3), 1.27 (9H, s, C(CH3)3), 400 MHz, CDCl3): 7.28-7.41 (5H, m), 6.97 (1H, br s, NH), 5.39 (1H, br s), vol.3, p.3230

, 6-pentafluorophenyl)-cyclopropanecarboxamide (18 mg, 0.06 mmol, 1 equiv.), 4-iodotoluene (40 mg, 0.18 mmol, 3 equiv.), silver carbonate (42 mg, 0.15 mmol, 2.5 equiv.), potassium phosphate dibasic

, 006 mmol, 10 mol%) and appropriate ligand

H. Nmr and . Chiralpak-®-adh-column, Experimental section, vol.4

, 6-pentafluorophenyl)-cycloalkanecarboxamide IV-1a (50 mg, 0.2 mmol, 1 equiv.), iodoarene (2 equiv.), silver carbonate (110 mg, 0.40 mmol, 2 equiv.), sodium trifluoroacetate (14 mg, 0.10 mmol, 50 mol%), palladium(II) trifluoroacetate (7 mg, 0.02 mmol, 10 mol%), vol.12

, 2S)-N-(pentafluorophenyl)-2-(p-tolyl)cyclopropane-1-carboxamide IV-2aA

H. Nmr, 400 MHz, CDCl3): 7.17 (2H, d, J=8.0 Hz), 7.08 (2H, d, vol.7

. Hz, 6.66 (1H, br s, NH), 2.64 (1H, app q, J=8.5 Hz), vol.2, p.100

. Mhz,

. Hrms-(esi-tof,

C. Rt-(min, . Adh, /. Hex, and . Iproh,

, Chapter 4: Experimental section (1R,2S)-2-phenyl-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aN, 18.84 (4 %), 33.98 (96 %)

H. Nmr, 400 MHz, CDCl3): 7.28 (4H, d, J=4.4 Hz), vol.7

. Hz, 6.71 (1H, br s, NH), 2.67 (1H, app q, J=8.7 Hz), 2.15 (1H, app q, vol.8

. Hz, , p.3250

, HRMS (ESI-TOF): m/z calcd for

, mL/min): 21.06 (4 %), 29.32 (96 %)

, 2S)-2-(4-(trifluoromethyl)phenyl)-N-(pentafluorophenyl)cyclopropane

H. Nmr, 400 MHz, CDCl3): 7.52 (2H, d, J=8.1 Hz), vol.7

. Hz, 6.82 (1H, br s, NH), 2.68 (1H, app q, J=8.4 Hz), vol.2, p.4

. Hz,

F. Nmr, CDCl3): -62, MHz, vol.49, issue.376

. Hrms-(esi-tof, , p.2

H. Nmr, 400 MHz, CDCl3): 7.93 (2H, d, J=8.3 Hz), 7.33 (2H, d, J=8.2 Hz), 6.96 (1H, br s, NH), 3.88 (3H, s, CO2CH3), 2.67 (1H, app q, J=8.4 Hz), vol.2, p.3263

, HRMS (ESI-TOF): m/z calcd for C18H12F5NNaO3

, 2S)-2-(4-acetylphenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aI, vol.1

H. Nmr, 400 MHz, CDCl3): 7.86 (2H, d, J=8.4 Hz), vol.7

. Hz, 7.10 (1H, br s, NH), 2.68 (1H, app q, J=8.5 Hz), vol.2

, HRMS (ESI-TOF): m/z calcd for C18H12F5NNaO2

C. Rt-(min and . Adh, Hex/iPrOH 90/10, 0.5 mL/min): 18.78 (7 %), vol.50

, 2S)-2-(4-cyanophenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aR, vol.1

H. Nmr, 400 MHz, CDCl3): 7.56 (2H, d, J=8.4 Hz), vol.7

. Ft-ir, cm -1 ): 3266 (w, N-H), 2229 (m, C-N nitrile), 1679 (m

, HRMS (ESI-TOF): m/z calcd for C17H10F5N2O

, mL/min): 17.68 (15 %), vol.46

, 2S)-2-(3-bromophenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aD

H. Nmr, 400 MHz, CDCl3): 7.44 (1H, s), 7.33 (1H, dt, J=7.7, 1.4 Hz), 7.11-7.22 (2H, m), 6.80 (1H, br s, NH), p.100

. Mhz, 4, carbons corresponding to the pentafluoroamide moiety are not reported and the carbon of the amide was nearly invisible; 19 F NMR (376 MHz, CDCl3): -144, vol.87, p.3249

, HRMS (ESI-TOF): m/z calcd for C16H9BrF5NNaO + [M+Na] + : 427.9680

, 2S)-2-(3-nitrophenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aB

H. Nmr, 400 MHz, CDCl3): 8.17 (1H, s), 8.02-8.12 (1H, m), 7.60 (1H, d, J=7.7 Hz), 7.44 (1H, t, J=7.9 Hz), 7.11 (1H, br s, NH), vol.2

. Hz, , vol.1

, NMR (376 MHz, CDCl3): -145.07, -156.35, -162.25; FT-IR (cm -1 ): 3255 (w, N-H), 1678 (m, C-O), 1522 (s, N-O), p.1350

, HRMS (ESI-TOF): m/z calcd for C16H9F5N2NaO3

(. 1r, 5-dinitrophenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aK compound (42 mg, 51 %, 87 % ee) as a yellow solid. The absolute stereochemistry was assigned according to IV-2aR

H. Nmr, 400 MHz, CDCl3): 8.90 (1H, t, J=2.0 Hz), 8.49 (1H, dd, J=2.2, 0.8 Hz), 7.08 (1H, br s, NH), 2.83 (1H, app q, J=8.4 Hz), vol.2

, HRMS (ESI-TOF): m/z calcd for C16H9F5N3O5

, N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aH 4: Experimental section (1H, app q, J=5.4 Hz), vol.1, p.3261

, HRMS (ESI-TOF): m/z calcd for C18H12F5NNaO2

, 2S)-2-(3-trifluoromethylphenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aF, vol.1

H. Nmr, 500 MHz, Acetone-d6): 9.34 (1H, br s, NH), 7.62 (1H, s), vol.7, p.57

(. 1h, 5 Hz), 7.42-7.54 (2H, m), 2.77 (1H, app q, J=8.5 Hz), 2.51 (1H, app q, J=8.1 Hz), vol.1

. Mhz, Acetone-d6): -63.09, -146.84, -160.67, -166.00; FT-IR (cm -1 ): 1677 (s, C-O)

. Hrms-(esi-tof, found: 396.0610; Rt (min, CHIRALPAK ® ADH, Hex/iPrOH 95/5, 0.5 mL/min): 15.67 (9 %), 22.34 (91 %)

H. Nmr, 400 MHz, Acetone-d6): 9.31 (1H, br s, NH), 7.28-7.40 (2H, m), 7.22 (1H, s)

. Hz, , p.3254

, HRMS (ESI-TOF): m/z calcd for C17H9F8NNaO2 + [M+Na] + : 434.0398

, 2S)-2-(3,5-dichlorophenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aL, vol.1

H. Nmr, 400 MHz, CDCl3): 7.20 (1H, t, J=1.8 Hz), 7.14-7.16 (2H, m), vol.6, p.94

(. 1h, 1H, app q, J=8.5 Hz), 2.15 (1H, app q, J=8.2 Hz), 1.67-1.89 (1H, m), 1.41-1.52 (1H, m); 13 C NMR (100 MHz, CDCl3): 167.6, 139.5, 134.7, 127.9

, HRMS (ESI-TOF): m/z calcd for

, Chapter 4: Experimental section (1R,2S)-2-(3-methoxyphenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aC, mL/min): 19.82 (8 %), 23.95 (92 %)

H. Nmr, 400 MHz, CDCl3): 7.19 (1H, t, J=7.9 Hz), 6.87 (1H, d, J=8.3 Hz

. Hrms-(esi-tof,

%. ,

, 2S)-2-(naphthalen-2-yl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aJ, vol.1

H. Nmr, 1H, m), 2.42-2.61 (1H, m), 1.82-1.93 (1H, m), 400 MHz, Acetone-d6): 9.33 (1H, br s, NH), 7.72-7.86 (4H, m), vol.1, p.3250

, HRMS (ESI-TOF): m/z calcd for C20H13F5NO

, Experimental section methyl (1R,2S)-2-(2-((pentafluorophenyl)carbamoyl)cyclopropyl)benzoate IV-2aG, Chapter

H. Nmr, 500 MHz, CDCl3): 7.92 (1H, dd, J=7.8, 1.3 Hz), 7.62 (1H, br s, NH), 7.41-7.47 (1H, m), 7.32 (1H, d, J=7.7 Hz), vol.7

, MHz, CDCl3): -145.8, -158.4, -163.1; FT-IR (cm -1 ): 1722 (s, C-O ester), 1679 (m, C-O amide)

, HRMS (ESI-TOF): m/z calcd for C18H12F5NNaO3

, 2S)-2-(2-formylphenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aM, vol.1

H. Nmr, 400 MHz, CDCl3): 10.21 (1H, s, CHO), 7.77 (1H, dd, J=7.3, vol.1

. Hz, 2H, m), 7.21 (1H, s, NH), 3.02 (1H, app q, J=8.4 Hz, vol.2

, HRMS (ESI-TOF): m/z calcd for C17H11F5NO2, vol.82

, Chapter 4: Experimental section (1R,2S)-2-(2,4-difluorophenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aP, 18.46 (93 %)

H. Nmr, 85 (2H, m), 2.57 (1H, app q, J=8.2 Hz), 2.15-2.27 (1H, m), 1.77-1.86 (1H, m), vol.6, p.5

. Hz, 119.2 (dd, J=15, 4 Hz), 111.0 (dd, J=21, 4 Hz), 103.5 (t, J=26 Hz), p.3254

, HRMS (ESI-TOF): m/z calcd for C16H9F7NO

, 2S)-2-(2-methoxyphenyl)-N-(perfluorophenyl)cyclopropane-1-carboxamide IV-2aQ, vol.1

H. Nmr, 500 MHz, CDCl3): 7.15-7.22 (2H, m), 6.89 (1H, td, J=7.5, 0.9 Hz), vol.6

, HRMS (ESI-TOF): m/z calcd for C17H12F5NNaO2 +

, Experimental section (1R,2S)-2-(4-methylphenyl)-N-(perfluorophenyl)cyclobutane-1-carboxamide IV-2bA, Chapter

H. Nmr, 400 MHz, CDCl3): 7.14 (4H, app q, J=8.1 Hz), 6.19 (1H, br s, NH), 4.00 (1H, app q, J=8.7 Hz), 3.53-3.67 (1H, m)

, 157.68, -162.95; FT-IR (cm -1 ): 3252 (br w, N-H), 1674 (m, p.53

. Hrms-(esi-tof, , p.356, 1096.

. Rt-(min, . Chiralpak-®-adh, /. Hex, and . Iproh,

, -((perfluorophenyl)carbamoyl)cyclobutyl)benzoate IV-2bO, 1R,2S)-4

H. Nmr, 400 MHz, CDCl3): 7.96 (2H, d, J=8.3 Hz), 7.32 (2H, d, vol.8

. Hz, 1H, m), 2.60-2.76 (1H, m), 2.45-2.58 (1H, m), 2.25-2.42 (2H, m), 6.46 (1H, br s, NH), 4.08 (1H, app q, J=8.6 Hz), 3.90 (3H, s, CO2CH3), p.3272

, HRMS (ESI-TOF): m/z calcd for C19H14F5NNaO3 + [M+Na] + : 422.0786

, N-pentafluorophenyl-2-methyl-3-(3-(trifluoromethyl)phenyl)propanamide IV-2dF

H. Nmr, 400 MHz, CDCl3): 7.35-7.56 (4H, m), 6.62 (1H, br s, NH), 3.13 (1H, dd, J=13.5, 8.7 Hz), p.32

. Hz, 129.1, 125.5 (q, J=4 Hz), 124.1 (q, J=272 Hz), 123.6 (q, J=4 Hz), 43.7, 39.9, p.3299

. Hrms-(esi-tof,

C. Rt-(min and . Odh, Hex/iPrOH 98/2, 0.5 mL/min): 42.52 (50 %), 49.66 (50 %)

C. Nmr, MHz, issue.125

, HRMS (ESI-TOF): m/z calcd for C21H27F5NOSi

H. Nmr, 1H, m), 1.91-2.00 (1H, m), 1.44-1.50 (1H, m), 1.37-1.44 (1H, m, p.100

. Mhz, , p.2169

, found: 390.1285; Rt (min, CHIRALPAK ® ODH, Hex/iPrOH 99/1, 0.5 mL/min): 78.05 (8 %), 86.72 (92 %), HRMS (ESI-TOF): m/z calcd for C18H21F5NOSi

, The title compound (67 mg, 80 %, 66 % ee) was obtained as an off-white solid. The absolute stereochemistry was assigned according to IV-2aR

H. Nmr, 500 MHz, CDCl3): 7.68 (1H, br s, NH), 3.53 (1H, app q, J=7.8 Hz), vol.3

. Mhz,

, MHz, CDCl3): -143.69, -156.84, -162.64; FT-IR (cm -1 ): 3248 (m, N-H), 2161 (w, C-C alkyne), 1678 (s, C-O)

, HRMS (ESI-TOF): m/z calcd for C22H29F5NOSi, p.446, 1914.

C. Rt-(min and . Odh, Hex/iPrOH 99/1, 0.5 mL/min): 28.01 (17 %)

, 2S,E)-3-(perfluorophenyl)-4-((triisopropylsilyl)methylene), vol.1

H. Nmr, 500 MHz, CDCl3): 4.02 (1H, s), 3.67 (1H, app q, J=7.6 Hz), 3.32 (1H, app q, J=7.0 Hz), 2.55-2.67 (2H, m), 2.29-2.39 (1H, m), 2.19-2.29 (1H, m), 0.94-1.13 (21H, m

. Hrms-(esi-tof, m/z calcd C22H29F5NOSi + [M+H] + : 446.1933, found: 446.1947. (1S,3R)-2

H. Nmr, 500 MHz, CDCl3): 8.19 (1H, br s, NH), 1.81-1.89 (2H, m), vol.1, p.125

. Mhz,

F. Nmr, , p.3294

, Experimental section (m, N-H), 2159 (m, C-C alkyne), 1684 (m

, HRMS (ESI-TOF): m/z calcd for C23H31F5NOSi +

H. Nmr, 400 MHz, CDCl3): 7.32 (1H, br s, NH), 2.71-2.81 (1H, m, CHCH3), 2.54-2.69 (2H, m), vol.1

, HRMS (ESI-TOF): m/z calcd for C21H29F5NOSi +

H. Nmr, 500 MHz, CDCl3): 7.17 (1H, t, J=7.9 Hz), vol.6

. Hz,

, Hz, CH2CH3), 3.78 (3H, s, COCH3), 2.55 (1H, app q, J=8.7 Hz), vol.2

, HRMS (ESI-TOF): m/z calcd for C13H16NaO3

, To a stirred solution of (1R,2S)-2-(3-nitrophenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aB (44 mg, 0.12 mmol, 1 equiv.) in 2 mL of anhydrous THF was added di-tertbutyl-dicarbonate (26 mg, 0.12 mmol, 1 equiv

, After 1 h, a solution of lithium hydroxide (8.5 mg, 0.35 mmol, p.3

H. Nmr, MHz, issue.500

. Hz, 8.07 (1H, dd, J=8.4, 2.0 Hz), 7.57-7.63 (1H, m), 7.44 (1H, t, J=7.9 Hz), 3.91 (2H, q, J=7.1 Hz, CH2CH3), 2.63 (1H, app q, J=8.6 Hz), vol.2

, mp (°C): 94; HRMS (ESI-TOF): m/z calcd for C12H14NO4, p.29

, Experimental section IV.8.vi. Mechanistic studies IV.8.vi.1. Synthesis of the bis

, To a solution of N-((S)-1-(4-(tert-butyl)phenyl)-2-((R)-p-tolylsulfinyl)ethyl)acetamide L15

, After 1 h, NMR showed half conversion to the pre-chelate. Silver carbonate (8.5 mg, 0.03 mmol, 1 equiv.) was added, and the resulting mixture was stirred 1 h at room temperature. The mixture was filtered, and NMR, CD2Cl2 was added palladium

H. Nmr, 500 MHz, CD2Cl2): 7.62 (2H, d, J=8.5 Hz), 7.42 (2H, d, J=8.5 Hz), vol.7

. Hz, 3H, s, PhCH3), 2.25 (3H, s, C(O)CH3), 1.36 (9H, s, C(CH3)3)

, MHz, CD2Cl2): -74.20; FT-IR (cm -1 ): 1715 (s, C-O amide), 1666 (s, C-O trifluoroacetamide, p.1076

, HRMS (ESI-TOF): m/z calcd for C46H52F6N2NaO8Pd2S2

, Figure 5. DFT calculations were carried out with singlet gas phase geometries optimized at the ZORA-PBE

, D3(BJ)/all electron TZP level (see SI for details): a) NCI plot of attractive (red colored) and repulsive or non bonded (blue colored isosurfaces) noncovalent interactions materialized by reduced density gradient isosurfaces

, Note that in all models optimal pi-pi stacking of the C6F5 and p-tolyl group contributes in stabilizing the trans N-Pd-N stereochemistry, NCI isosurfaces in TS-dia1 and TS-dia2 with significant interatomic distances and the imaginary frequency associated to the Ccy-Hcyactivation assisted by the vicinal Pd and O centres

Å. , embodied by the "covalent hole" within the NCI attractive isosurface, in two ways: by spread out attractive Pd-to-Hcy-Ccy NCI and by Hcy-O NCI (Figure SX)

D. V^pauli and C. ,

D. V^pauli and L. ,

D. V^pauli and G. ,

D. V^pauli and G. , , vol.61

, Electrostatic Interaction = Delta V_elstat in the BB paper), Electrostatic Interaction: -9, vol.-----------------------------------------------

, Orbital, vol.06

, Alternative Decomposition Orb.Int, vol.106

. Residu,

, IV-an-1b hartree eV kcal/mol kJ, vol./mol ------------------------------------------------

D. V^pauli and C. ,

D. V^pauli and L. ,

D. V^pauli and G. ,

D. V^pauli and G. , , vol.60

, Electrostatic Interaction = Delta V_elstat in the BB paper), vol.-----------------------------------------------

, Orbital, vol.06

, Alternative Decomposition Orb, vol.8753, p.21374

. Residu,

. Iv-pre-dia1, , vol.mol kJ/mol ------------------------------------------------

D. V^pauli and C. ,

D. V^pauli and L. ,

D. V^pauli and G. ,

D. V^pauli and G. , , vol.78

, Electrostatic Interaction = Delta V_elstat in the BB paper), vol.-----------------------------------------------

, Orbital, vol.53

, Alternative Decomposition Orb, vol.7575, p.57276, 19610.

. Residu,

. Iv-ts-dia1, , vol.mol kJ/mol ------------------------------------------------

D. V^pauli and C. ,

D. V^pauli and L. ,

D. V^pauli and G. ,

D. V^pauli and G. , , vol.53

, Electrostatic Interaction = Delta V_elstat in the BB paper), vol.-----------------------------------------------

, Orbital, vol.95

, Alternative Decomposition Orb, vol.79, 19856.

. Residu,

. Iv-pd-dia1, , vol.mol kJ/mol ------------------------------------------------

D. V^pauli and C. ,

D. V^pauli and L. ,

D. V^pauli and G. ,

D. V^pauli and G. , , vol.12

, Electrostatic Interaction = Delta V_elstat in the BB paper), vol.-----------------------------------------------

, Orbital, vol.03

, Alternative Decomposition Orb, vol.32, 19855.

. Residu,

. Iv-pre-dia2, , vol.mol kJ/mol ------------------------------------------------

D. V^pauli and C. ,

D. V^pauli and L. ,

D. V^pauli and G. ,

D. V^pauli and G. , , vol.19

, Electrostatic Interaction = Delta V_elstat in the BB paper), vol.------------------------------------------------

, Orbital, vol.40

, Alternative Decomposition Orb, vol.6976, p.57367, 19695.

. Residu,

. Iv-ts-dia2, , vol.mol kJ/mol ------------------------------------------------

D. V^pauli and C. ,

D. V^pauli and L. ,

D. V^pauli and G. ,

D. V^pauli and G. , , vol.63

, Electrostatic Interaction = Delta V_elstat in the BB paper), vol.-----------------------------------------------

, Orbital, vol.97

, Alternative Decomposition Orb, vol.92, 19894.

. Residu,

. Iv-pd-dia2, , vol.mol kJ/mol ------------------------------------------------

D. V^pauli and C. ,

D. V^pauli and L. ,

D. V^pauli and G. ,

D. V^pauli and G. , , vol.02

, Electrostatic Interaction = Delta V_elstat in the BB paper), vol.------------------------------------------------

, Orbital, vol.51

, Alternative Decomposition Orb, vol.81, 19864.

. Residu,

. Iv-pre-dia1h, , vol.mol kJ/mol ------------------------------------------------

D. V^pauli and C. ,

D. V^pauli and L. ,

D. V^pauli and G. ,

D. V^pauli and G. , , vol.72

, Electrostatic Interaction = Delta V_elstat in the BB paper), vol.------------------------------------------------

, Orbital, vol.02

, Alternative Decomposition Orb, vol.45

. Residu,

. Iv-pre-dia2h, , vol.mol kJ/mol ------------------------------------------------

. Pauli-repulsion-kinetic, , p.172

D. V^pauli and C. ,

D. V^pauli and L. ,

D. V^pauli and G. ,

D. V^pauli and G. ,

, the BB paper), vol.------------------------------------------------

, Total Steric

, Orbital Interactions A

, Total Orbital Interactions: -68

, Alternative Decomposition Orb.Int. Kinetic

, Total Orbital Interactions: -68

. Residu,

. Iv-ts-dia2h, , vol.mol kJ/mol ------------------------------------------------

D. V^pauli and C. ,

D. V^pauli and L. ,

D. V^pauli and G. ,

D. V^pauli and G. , , vol.30

, Electrostatic Interaction = Delta V_elstat in the BB paper), vol.------------------------------------------------

, Orbital, vol.17

, Alternative Decomposition Orb, vol.7073, p.51349

. Residu,

. Iv, Bibliographic references

V. I. Sokolov, L. L. Troitskaya, and N. S. Khrushchova, J. Organomet. Chem, vol.250, pp.439-446, 1983.

B. Shi, N. Maugel, Y. Zhang, and J. Yu, Angew. Chem. Int. Ed, vol.47, pp.4882-4886, 2008.

H. Shi, A. N. Herron, Y. Shao, Q. Shao, and J. Yu, Nature, vol.558, pp.581-585, 2018.

J. Zheng and S. You, Angew. Chem. Int. Ed, vol.53, pp.13244-13247, 2014.

J. Zheng, W. Cui, C. Zheng, and S. You, J. Am. Chem. Soc, vol.138, pp.5242-5245, 2016.

Q. Yao, S. Zhang, B. Zhan, and B. Shi, Angew. Chem. Int. Ed, vol.56, pp.6617-6621, 2017.

K. S. Chan, M. Wasa, L. Chu, B. N. Laforteza, M. Miura et al., Nat. Chem, vol.6, pp.146-150, 2014.

P. Shen, L. Hu, Q. Shao, K. Hong, and J. Yu, J. Am. Chem. Soc, vol.140, pp.6545-6549, 2018.

Y. Wei, H. Tang, X. Cong, B. Rao, C. Wu et al., Org. Lett, vol.16, pp.2248-2251, 2014.

S. Yan, S. Zhang, and W. Duan, Org. Lett, vol.17, pp.2458-2461, 2015.

A. P. Smalley, J. D. Cuthbertson, and M. J. Gaunt, J. Am. Chem. Soc, vol.139, pp.1412-1415, 2017.

S. Yan, Y. Han, Q. Yao, X. Nie, L. Liu et al., Angew. Chem. Int. Ed, vol.57, pp.9093-9097, 2018.

Q. Wu, P. Shen, J. He, X. Wang, F. Zhang et al., Science, vol.355, pp.499-503, 2017.

Q. Shao, J. He, Q. Wu, and J. Yu, , vol.7, pp.7777-7782, 2017.

Q. Shao, Q. Wu, J. He, and J. Yu, J. Am. Chem. Soc, vol.140, pp.5322-5325, 2018.

Z. Li and C. Li, Org. Lett, vol.6, pp.4997-4999, 2004.

O. Baslé and C. Li, Org. Lett, vol.10, pp.3661-3663, 2008.

J. He, Q. Shao, Q. Wu, and J. Yu, J. Am. Chem. Soc, vol.139, pp.3344-3347, 2017.

H. Park, P. Verma, K. Hong, and J. Yu, Nat. Chem, vol.10, pp.755-762, 2018.

F. Burg, M. Gicquel, S. Breitenlechner, A. Pöthig, and T. Bach, Angew. Chem. Int. Ed, vol.57, pp.2953-2957, 2018.

D. Mu, G. He, and G. Chen, Chem. -Asian J, 2018.

Y. Yang, G. Chen, X. Hong, J. Yu, and K. N. Houk, J. Am. Chem. Soc, vol.139, pp.8514-8521, 2017.

K. M. Engle, T. Mei, M. Wasa, and J. Yu, Acc. Chem. Res, vol.45, pp.788-802, 2012.

P. Bravo, A. Farina, V. P. Kukhar, A. L. Markovsky, S. V. Meille et al., J. Org. Chem, vol.62, pp.3424-3425, 1997.

P. Bravo, M. Guidetti, F. Viani, M. Zanda, A. L. Markovsky et al., Tetrahedron, vol.54, pp.12789-12806, 1998.

G. Liu, D. A. Cogan, and J. A. Ellman, J. Am. Chem. Soc, vol.119, pp.9913-9914, 1997.

K. C. Nicolaou, G. Bellavance, M. Buchman, and K. K. Pulukuri, J. Am. Chem. Soc, vol.139, pp.15636-15639, 2017.

Q. Pei, G. Che, R. Zhu, J. He, and J. Yu, Org. Lett, vol.19, pp.5860-5863, 2017.

K. Yamaguchi, Y. Kazuta, H. Abe, A. Matsuda, and S. Shuto, J. Org. Chem, vol.68, pp.9255-9262, 2003.

J. Contreras-garcía, E. R. Johnson, S. Keinan, R. Chaudret, J. Piquemal et al., J. Chem. Theory Comput, vol.7, pp.625-632, 2011.

E. R. Johnson, S. Keinan, P. Mori-sánchez, J. Contreras-garcía, A. J. Cohen et al., J. Am. Chem. Soc, vol.132, pp.6498-6506, 2010.

, Scientific contributions Oral communications: -"C(sp 3 )-H functionalization of cycloalkane derivatives using a bidentate directing group bearing a chiral sulfoxide, the Journées de la Chimie Organique, 2016.

, S)-2-(p-tolylsulfinyl)aniline: a versatile chiral tool for the stereoselective C(sp 3 )-H bond functionalization of carboxamides, at the Chirality Day, 2017.

, Sulfoxides: novel strategies for the asymmetric C(sp 3 )-H bond functionalization, the Journées Scientifiques de l'Institut de Chimie, 2017.

, Sulfoxide: novel strategy for the asymmetric C(sp 3 )-H bond activation, at Janssen Pharmaceutica, 2018.

, A Sulfinyl Aniline as a Versatile Chiral Tool for Stereoselective C(sp 3 )-H Bond Functionalisation, at ChemCYS, 2018.

, Novel aminosulfoxide ligands: Towards the enantioselective C(sp 3 )-H bond arylation and alkynylation of carboxamides, at the Regio Symposium, vol.38, 2018.

S. Jerhaoui, F. Chahdoura, C. Rose, J. Djukic, J. Wencel-delord et al., Enantiopure sulfinyl aniline as removable and recyclable chiral auxiliary for asymmetric C(sp 3 )-H bond activation, Chem. Eur. J, p.22, 2016.

S. Jerhaoui, J. Djukic, J. Wencel-delord, and F. Colobert, Stereoselective Sulfinyl Aniline Promoted Pd-catalyzed C-H Arylation and Acetoxylation Of Carboxamides, Chem. Eur. J, p.23, 2017.

S. Jerhaoui, P. Poutrel, J. Djukic, J. Wencel-delord, and F. Colobert, Stereospecific C-H activation as a key step for asymmetric synthesis of various biologically active cyclopropanes, Org. Chem. Front, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02177419

J. Rae, J. Frey, S. Jerhaoui, S. Choppin, J. Wencel-delord et al., Synthesis of axially chiral C-N scaffolds via asymmetric coupling with enantiopure sulfinyl iodanes
URL : https://hal.archives-ouvertes.fr/hal-02161671

, ACS Catal, 2018.

C. Jerhaoui, S. Djukic, J. Wencel-delord, J. Colobert, and F. , Other contributions: -Project ScienceLab in Chemistry with the Jardin des Sciences, pp.2015-2016, 2018.

, -Practical classes in organic chemistry, pp.2016-2018

, -Participation at "Ma thèse en 180 secondes, 2018.

V. , Bibliographic references

Y. Chen, X. Qin, J. Guan, Z. Du, and F. Han, Tetrahedron Asymmetry, vol.28, pp.522-531, 2017.

Y. Sun and N. Cramer, Angew. Chem. Int. Ed, vol.56, pp.364-367, 2017.

E. A. Bercot and T. Rovis, J. Am. Chem. Soc, vol.126, pp.10248-10249, 2004.

D. Leboeuf, E. Schulz, and V. Gandon, Org. Lett, vol.16, pp.6464-6467, 2014.

D. Leboeuf, L. Marin, B. Michelet, A. Perez-luna, R. Guillot et al., Chem. -Eur. J, vol.22, pp.16165-16171, 2016.

F. Jia, J. Hong, P. Sun, J. Chen, and W. Chen, Synth. Commun, vol.43, pp.2641-2647, 2013.

A. Boiron, P. Zillig, D. Faber, and B. Giese, J. Org. Chem, vol.63, pp.5877-5882, 1998.

J. Soufyan and . Sulfoxydes, nouvelle stratégie pour l'activation C(sp 3 )-H asymétrique

, Résumé Pendant de nombreuses années, les liaisons C-H aliphatiques ont été considérées comme dormantes, difficilement exploitables dans le contexte de la chimie organique. Le défi le plus important est de sélectionner une liaison C-H parmi toutes celles que contient une molécule

, Suite au développement des groupements bicoordinants, nous avons développé notre propre groupement bicoordinant chiral. Cet auxiliaire nous a permis de réaliser de nombreuses transformations diastéréosélectives sur des carbones aliphatiques telles que l'arylation et l'oléfination. Nous l'avons également utilisé pour développer une méthodologie innovante pour la synthèse de produits naturels

, Mots clés : Activation C-H, sulfoxyde, catalyse homogène