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Abstract

In this thesis we study several aspects of the security of remote electronic voting protocols.
Such protocols describe how to securely organise elections over the Internet. They notably aim
to guarantee vote privacy — i.e., votes must remain secret — and verifiability — it must be possible
to check that votes are correctly counted. Our contributions are on two aspects.

First, we propose a new approach to automatically prove equivalence properties in the
symbolic model. Many privacy properties can be expressed as equivalence properties, such as in
particular vote privacy, but also anonymity or unlinkability. Our approach relies on typing: we
design a type system that can typecheck two protocols to prove their equivalence. We show that
our type system soundly implies trace equivalence, both for bounded and unbounded numbers of
sessions. We compare a prototype implementation of our typechecker with other existing tools
for symbolic equivalence, on a variety of protocols from the literature. This case study shows
that our procedure is much more efficient than most other tools — at the price of losing precision
(our tool may fail to prove some equivalences).

Our second contribution is a study of the definitions of privacy and verifiability — more
precisely, individual verifiability, a property that requires each voter to be able to check that their
own vote is counted. We prove that, both in symbolic and computational models, privacy implies
individual verifiability, contrary to intuition and related previous results that seem to indicate that
these two properties are opposed. Our study also highlights a limitation of existing game-based
definitions of privacy: they assume the ballot box is trusted, which makes for significantly weaker
guarantees than what protocols aim for. Hence we propose a new game-based definition for vote
privacy against a dishonest ballot box. We relate our definition to a simulation-based notion of
privacy, to show that it provides meaningful guarantees, and conduct a case study on several
voting schemes.

Keywords: Security, cryptographic protocols, electronic voting, equivalence, type systems,
privacy






Résumé

Cette these porte sur ’étude de différents aspects de la sécurité des protocoles de vote électronique
a distance. Ces protocoles décrivent comment organiser des élections par Internet de maniere
sécurisée. Ils ont notamment pour but d’apporter des garanties de secret du vote, et de
vérifiabilité — i.e., il doit étre possible de s’assurer que les votes sont correctement comptabilisés.
Nos contributions portent sur deux aspects principaux.

Premierement, nous proposons une nouvelle technique d’analyse automatique de propriétés
d’équivalence, dans le modele symbolique. De nombreuses propriétés en lien avec la vie privée
s’expriment comme des propriétés d’équivalence, telles que le secret du vote en particulier, mais
aussi ’anonymat ou la non-tracgabilité. Notre approche repose sur le typage: nous mettons au
point un systeme de typage qui permet d’analyser deux protocoles pour prouver leur équivalence.
Nous montrons que notre systeme de typage est correct, c’est-a-dire qu’il implique effectivement
I’équivalence de traces, a la fois pour des nombres bornés et non bornés de sessions. Nous
comparons 'implémentation d’un prototype de notre systéme avec les autres outils existants
pour I'équivalence symbolique, sur divers protocoles de la littérature. Cette étude de cas montre
que notre procédure est bien plus efficace que la plupart des autres outils — au prix d’une perte
de précision (notre outil peut parfois échouer a prouver certaines équivalences).

Notre seconde contribution est une étude des définitions du secret du vote et de la vérifiabilité
— ou, plus précisément, la vérifiabilité individuelle, une propriété qui requiert que chaque votant
soit en mesure de vérifier que son propre vote a bien été pris en compte. Nous prouvons, aussi
bien dans les modeles symbolique que calculatoire, que le secret du vote implique la vérifiabilité
individuelle, alors méme que l'intuition et des résultats voisins déja établis semblaient indiquer
que ces deux propriétés s’opposent. Notre étude met également en évidence une limitation des
définitions existantes du secret du vote par jeux cryptographiques : elles supposent une urne
honnéte, et par conséquent expriment des garanties significativement plus faibles que celles que
les protocoles visent & assurer. Nous proposons donc une nouvelle définition (par jeu) du secret
du vote, contre une urne malhonnéte. Nous relions notre définition a une notion de secret du
vote par simulation, pour montrer qu’elle apporte des garanties fortes. Enfin, nous menons une
étude de cas sur plusieurs systemes de vote existants.

Mots-clés: Sécurité, protocoles cryptographiques, vote électronique, équivalence, typage, secret
du vote
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Introduction

1 Context

Electronic voting has been gaining more and more importance in recent years. Information
technology is more and more prominent in all domains of society, and it is then natural to
envisage applying it to facilitate organising elections. Electronic voting — the use of computers to
organise elections — manifests itself in two main forms. First, voting machines that are installed
at polling stations, and that voters use to cast their votes. Second, remote voting systems, where
voters cast their votes from the Internet. In this thesis, we will be more concerned with that
second category.

The advantages of electronic voting are clear: it makes elections much more practical to
organise than paper voting. In particular, votes are much easier to gather and count: ballots can
simply be sent over the Internet to a server controlled by the authorities, and then tallied by
computers. This could help reduce the infrastructure required to hold elections or referendums.
Electronic voting systems, both on-site and remote, have already been deployed in real elections,
both on small and large scales, e.g. Internet voting to elect the members of parliament in Estonia
and France (in the latter case only for citizens living abroad) or for referendums in Switzerland,
voting machines for national elections in the United States or in Brazil, etc.

But, as with any system that manipulates sensitive data, comes the problem of ensuring this
data is securely handled. How can I be sure that the result announced by the election organisers
is the right one? That my vote was properly counted, and not somehow removed from the ballot
box? Can I be certain that my vote remains secret? That no one can learn in any way which
candidate I voted for? Such questions have been discussed over centuries in the context of paper
voting, and are typically considered crucial from the point of view of democracy. Indeed, what
legitimacy would the winner have when there is no way to ensure they are the rightful winner?
And how could I freely express my opinion by voting without fearing reprisal, if there was a risk
that my vote could be revealed later on?

In paper-based election systems, it is possible, to a reasonable extent, to get these guarantees.
At the polling station, I can secretly choose which ballot to put in an envelope and then in the
ballot box. I can then watch the ballot box to check that my ballot is not opened before tallying.
This allows me to ensure my vote remains secret. I can also oversee the tallying at the local
polling station, to check that votes (including mine) are correctly counted.

However, it is often much less clear how to get such security with remote electronic voting
systems. Still, it is in that case even more crucial to ensure the system is secure: since the
election is held over the Internet, an attack on the system could be carried out from anywhere on
a large scale, whereas in paper elections, manipulation of the votes would need to be performed
in many polling stations to influence the result, which would be much harder to do undetected.

3
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Protocols To provide such guarantees, remote voting systems take the form of cryptographic
protocols. These make use of cryptography (e.g. encryption, signatures, ...) to protect the votes,
and describe precisely what cryptographic operations should be performed by each party (i.e.
the voters, authorities. ..). But it is now a well-known issue that cryptographic protocols are
hard to get right — to make really secure. A major example is the TLS (Transport Layer Security)
protocol. TLS aims to secure communications on the web. It notably provides authentication
guarantees, so that users can be sure they are communicating with the server that they wanted
to reach. It also aims to guarantee the confidentiality and integrity of communications: any data
exchanged between a server and a client should remain secret from any other third party, and
it should not be possible for such a third party to tamper with it. TLS was first proposed in

1999 [73], and then updated and corrected many times, the latest version being published in
2018 [92]: over time many vulnerabilities and attacks against each successive version have been
found (e.g. Logjam [12], POODLE [%4], Triple Handshake [30], ...), meaning that the protocol

was never really secure.

Formal analysis Formal methods have proved to be a powerful tool to study the security
of cryptographic protocols. Broadly speaking, they consist in designing mathematical models
of the protocols, and of an adversary trying to attack them, as well as formal definitions for
the security properties that should be guaranteed. The goal is then to prove formally that no
adversary, in the chosen model, can make it so that the properties are violated. Over the last
decades, they have been used to prove security or find attacks for many real-life protocols, such
as the BAC (Basic Access Control) protocol used by RFID chips in biometric passports [14], the
AKA (Authenticated Key Agreement) protocol used by mobile phones to connect to 3G/4G/5G
networks [16, 23, 85], or the TLS protocol mentioned earlier [72].

Let us look at an example of a voting protocol, to illustrate the kind of attacks they can be
subject to, and how formal methods can help in that context.

2 Example: Helios

Description Helios is an electronic voting protocol that was first proposed in 2009 [10].
Although it has not been deployed in large scale high-stake elections, it has been used in various
smaller scale situations, such as the election of the president of the University of Louvain-la-
Neuve [11].

Among other properties, Helios aims to protect the privacy of voters, by keeping their votes
secret. To that end, Helios makes use of asymmetric cryptography. Technical details regarding
the cryptographic construction used are irrelevant here, we will only describe informally its
behaviour. Basically, an election authority, composed of several trustees, jointly generate a pair
of a public and a private key for the election. The public key is published, while the private key
is split into several shares that are distributed among the trustees. These shares are generated in
such a way that all of the trustees (or a certain threshold of them) need to agree in order to
decrypt a message. This decreases the risk that the talliers misuse the key: only a fraction of
them needs to be trusted. The public key will then be used by the voters to encrypt their votes,
and the trustees must agree to jointly decrypt the ballots, and compute the result. For better
clarity, we will from now on in our explanations refer to the group of trustees as a if it were a
single authority, which we will call election authority or tallying authority, that is the only owner
of the secret key sk, and uses it to decrypt the ballots.
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Figure 1: The Helios voting protocol

The basic structure of an election in Helios is displayed in Figure 1, and (informally) described

below.

The election authority generates a public and private key pair (pk,sk), and publishes the
public key pk. This is an abstraction of the real protocol used to generate and distribute
the private key shares between the trustees.

The voters construct ballots containing an encryption of their vote with pk.

A voting server, that plays the role of a ballot box, collects the ballots from all voters.
Concretely, voters log on to the server using some pre-established password, and send their
ballot.

Fach time an encrypted ballot is received during the voting phase of the election, the voting
server displays it on a public bulletin board, for everyone to see. In particular, voters can
check, if they want to, that their ballot is there.

Finally, the tallying authority (composed of all trustees) is in charge of computing the
result of the election. It retrieves all ballots from the bulletin board, decrypts them (using
the secret key sk), and then computes and publishes the result.

Attack At first glance, the secrecy of votes seems to be respected, provided the tallying
authority is trusted. Indeed, any vote that is sent over the network is encrypted at all times, and
only the talliers have (shares of) the key necessary to decrypt it. Hence, unless the cryptographic
scheme used to encrypt votes is broken, no attacker seems to be able to somehow access the

votes in clear.
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However, there is actually an attack against this protocol, that was first described in [65].
Consider a very simple scenario where only three voters participate in the election: Alice, who
wishes to express her vote for candidate «, Bob, who wants to vote for another candidate 3, and
Charlie, who is actually an attacker, and is trying to learn who Alice votes for. Following the
protocol, Alice and Bob will respectively submit ballots b4, bp containing encryptions of their
votes «, 3 to the ballot box.

If the election stopped at that point, the ballot box would contain only b4 and bg. The result
of the election would then be “one vote for a, one for 5”. When seeing this result, Charlie would
not know whether it was Alice or Bob who voted for a: to learn Alice’s vote, he has to take some
additional actions.

Charlie could first eavesdrop on Alice when she sends her ballot b4, and learn what this
ballot is. He is then of course unable to decrypt it, since he does not have access to the secret
key of the election. However, Charlie can instead submit to the ballot box a second copy of b4,
under his own name, i.e. pretending it is his own ballot, even though he actually does not know
what this ballot contains. At that point, the list of all ballots in the ballot box is [ba,bp, ba]l.
Opening the ballots, the tallying authority would then compute the result “two votes for a, one
for #”. This time, even if Charlie does not know what vote he submitted, he knows that that
vote is the same as Alice’s. Once the result is published, he would see that the only possibility is
that that vote was actually «, since only that candidate got two votes. He would thus deduce
that Alice wanted to vote for a: her privacy is breached.

This attack may seem simplistic, and difficult to apply in a real setting with many voters.
However, the authors in [65] studied that question, and concluded that this attack (or variants of
it) would actually be feasible in real elections, e.g. the French legislative elections, if that version
of Helios was used for them.

Fix Fortunately, this ballot copying attack can be quite easily prevented. It relies on the ability
for Charlie to submit an exact copy of Alice’s ballot to the ballot box. The ballot box could
easily detect that the same ballot has already been submitted by Alice earlier, and reject it.
This correction to the protocol was proposed by the authors in [65]: they call the operation of
rejecting these duplicate ballots weeding. It at least prevents the attack: now when Charlie tries
to submit b4 in his own name to the ballot box, his attack is detected, and the ballot rejected.
But is it actually sufficient to make Helios really secure? How can we know that there are no
other ways of attacking the voters’ privacy? This attack illustrates that even very simple flaws
in a voting protocol are not at all obvious. This is where formal methods can help: by defining
precisely what properties should be satisfied, we can formally verify that the protocols are secure.

In fact, as it turns out, performing weeding fails to prevent a similar attack discovered by
Roenne, in a context where revote is allowed, 7.e. when each voter can submit several ballots,
of which only the last one will be counted. This second attack is as follows. The attacker
Charlie could decide to not only eavesdrop, but also block Alice’s ballot b4 entirely — cutting her
connection to the voting server. She will try to vote again, with a new ballot ¥, for the same
candidate. As before, Charlie will submit b4 under his own name. Even with weeding, the server
will accept this ballot. Indeed, since b4 was blocked when Alice tried to submit it, the server has
never seen that ballot. Hence, the result will, as in the previous attack, contain two votes for
Alice’s choice, and Charlie will thus learn her vote.

6



3. Properties

3 Properties

Different properties have been proposed to characterise the security guarantees an electronic
voting protocol should provide. We consider here the following properties, that are arguably the
most important ones.

Verifiability Intuitively, verifiability is the idea that people should be able to convince them-
selves that the result published for the election is the correct one, and has not been tampered
with. It is typically formalised as the conjunction of the following three subproperties.

e Individual verifiability: I can check that my vote was correctly placed in the ballot box.

e Universal verifiability: Anyone can check that the result of the election correctly corresponds
to the tally of the ballot box.

e Eligibility verifiability: Anyone can check that all ballots recorded in the ballot box were
cast by legitimate voters.

Altogether, these three properties basically ensure that it is possible to check that the result
published by the tallying authority correctly counts all votes from registered voters, and only
those.

Privacy This property can informally be described as the guarantee that votes remain secret.
However, this cannot simply be formalised by requiring that, when considering any arbitrary
voter Alice, no attacker can learn the value of her vote. While such a condition can make sense
when dealing with actual secrets (e.g. a key in a key exchange protocol), here the value v of the
vote is simply one of the choices publicly available to voters in the election. The value of the
vote itself is hence not secret. Rather, what is secret is the association between the voter and
the vote: the fact that it was Alice, and not some other voter, who voted for v.

This is typically formalised as an indistinguishability property between two scenarios: one
where Alice indeed votes for v, and one where some other voter Bob votes for v instead. More
precisely, the condition is that for any arbitrary voters Alice, Bob and votes 0, 1, no attacker
should be able to determine, by interacting with the voting protocol, whether Alice votes for 0
and Bob for 1, or Alice votes for 1 and Bob for 0. This indistinguishability property means that
the attacker cannot know who voted for which candidate.

Receipt-freeness/coercion resistance Receipt-freeness and coercion resistance are other
properties frequently required of voting protocols. They can be seen as stronger notions of
privacy, as they express that my vote should remain secret even if I am willing to reveal it. That
is, even if I am trying to reveal to some third party who I voted for, I should not be able to
convince them I am telling the truth. More precisely, receipt-freeness states that, after I have
voted, even if an attacker forces me to provide all the information I have regarding the election
(e.g. depending on the protocol, my vote, my ballot, my credentials, any confirmation code I
may have received. .. ), he should not be able to determine whether I truthfully provide my real
vote, or a fake one: the election process should not produce any receipt for my vote that I could
show to someone else. Coercion-resistance further requires that the attacker still cannot learn
my vote even if I am asked for all my information before I vote.

These strong properties provide protection against coercion, and vote selling: since there is
no way for a third party to be sure I followed their instructions, they have no way of forcing me
to vote for a specific candidate (either by coercing me, or even if I willingly sell my vote).
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4 Relations between properties

An interesting point to note regarding the properties of voting systems we described earlier is
that vote privacy intuitively seems to be at odds with verifiability. Indeed, vote privacy basically
requires that as little information as possible leaks regarding the votes. Of course, the result
of the election itself intrinsically gives some indication of how voters voted in any reasonable
voting scheme; but privacy would require that this inevitable leakage is the only information an
attacker can obtain on the individual votes. On the other hand, if a protocol is to be verifiable, it
must include some mechanisms that allow voters to check that their vote was taken into account.
To perform this verification, the voters typically need some information to be published by the
authorities in addition to the result of the election. This additional information risks leaking
information about the votes, which would violate vote privacy. The intuition hence seems to
indicate that the more a voting system is designed with verifiability in mind, the harder it will
be for this system to also guarantee vote privacy.

In fact, this intuition has been formally proved by Chevallier-Mames, Fouque, Pointcheval,
Stern and Traoré [19]. They established that verifiability and unconditional privacy are incom-
patible. They consider a very strong notion of privacy, unconditional privacy, which requires that
the votes remain perfectly secret even from an adversary that has unbounded computational
power. However, no such result has been established in the case — usual for cryptographic
protocols — of a polynomial adversary, such as is considered in all existing game-based definitions
for vote privacy [26]. Still, following this intuition, official regulations and recommandations
about electronic voting tend to favour one of the two properties over the other — for instance
French recommandations only require vote privacy [2], though newer recommandations also ask
for transparency [1], while Swiss law first requires privacy, and a level of verifiability that depends
on the number of voters who vote online [3].

5 Formal analysis

To analyse a protocol w.r.t. the properties above, we need to design a formal model of both the
protocol and the properties. We also need to specify against what kind of attacker they should
hold. Several such models for security protocols have been proposed. They can mostly be sorted
into two broad classes.

Symbolic models The attack on Helios described above stems from a logical flaw in the
specification of the protocol, rather than an attack on the cryptographic primitives used: it
can be performed without breaking the cryptography. Symbolic models focus on such attacks:
they consider an abstract and idealised model of cryptography. While the security of the real
cryptographic primitives usually relies on computational hardness assumptions (e.g. factorisation
or discrete logarithm), in symbolic models, the primitives are assumed to be perfect and
unbreakable. For instance, an encryption primitive will be assumed not to leak any information
regarding the plaintexts to anyone who does not know the correct decryption key. Primitives are
typically represented as abstract function symbols, and the messages exchanged by the different
parties are modelled as abstract terms constructed using these symbols. The properties of the
cryptographic primitives, i.e. the computations that the protocol parties and the adversary can
perform on these terms, are characterised as an equational theory, that is, a set of equations that
define the behaviour of the primitives.

For instance, asymmetric encryption could be modelled using a symbol aenc, with arity 2,
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and a symbol pk, with arity 1: pk(k) represents the public key associated with private key k,
and aenc(M, pk(k)) represents the asymmetric encryption of message M with that public key.
An associated symbol adec can be used to represent the corresponding decryption operation:
adec(M, k) represents the operation of decrypting message M with the private key k.

The behaviour of the primitive would then be modelled as the following equation, stating
that decrypting a message with the correct key successfully returns the original plaintext:

adec(aenc(M,pk(k)), k) = M

This equational theory specifies that the only computation that can be performed on a
ciphertext aenc(M,pk(k)) is to decrypt it using the key k. This models a perfect encryption
primitive, that cannot be broken or leak information on the plaintext in any way to someone
who does not have the decryption key.

Symbolic models typically consider an attacker that has complete control over the network,
and can therefore intercept or block any messages sent by a protocol participant, and, within the
limits allowed by the equational theory considered, use them to perform any computation, i.e.
apply any function symbol to them to construct new terms. Finally the attacker has the ability
to modify messages before their reach their destination, by replacing them with any term he can
compute. This attacker model is usually called the Dolev-Yao attacker, as it was first considered
by Dolev and Yao in 1983 [74].

Different symbolic models exist to describe the behaviour of protocols against such an attacker.
One of the most prominent approaches, and the one we choose in this thesis when considering a
symbolic setting, is to model protocols as processes in a process algebra such as the pi-calculus,
which is a common tool to model distributed programs. This idea first took the form of the
spi-calculus that was proposed by Abadi and Gordon in 1997 [3]. Standard pi-calculus provides
constructions to model processes running in parallel, and exchanging simple messages by inputting
or outputting them on communication channels. The spi-calculus extends it with cryptographic
primitives, modelled as terms as explained earlier. It was then generalised into the applied
pi-calculus by Abadi and Fournet in [6], which, compared to the spi-calculus, further separates
the equational theory from the process algebra. This makes it easier to state security properties
independently of the equational theory considered. Among other approaches are most notably
those based on multiset rewriting [12], where protocols are represented as rewrite rules, that
describe the evolution of the state of participants and the knowledge of the attacker during the
execution of the protocol.

Computational models On the other hand, computational models, first explored in the 1980’s
(by e.g. Goldwasser, Micali [79], Blum [36], Yao [97]), consider an attacker model that is much
less abstract, more precise, and arguably closer to the real world. Protocols are represented as a
collection of algorithms (7.e. Turing machines) that describe the behaviour of each participant,
and manipulate bitstrings, rather than abstract terms. Contrary to the symbolic case, the attacker
is not explicitly restricted to performing certain computations specified by the primitives. Rather,
the attacker is a probabilistic Turing machine, that can perform any arbitrary computations
on the messages it observes, with the restriction that it must run in polynomial time w.r.t. a
security parameter A\. That parameter typically represents the size of the keys used. Several
ways of writing security properties in such models exist. Simulation-based properties — notably in
the Universal Composability framework [11] — require that, in the eyes of the outside world, even
in the presence of an adversary, the protocol being studied is indistinguishable from an ideal
system whose security is manifest. Game-based properties, on the other hand, are expressed as
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cryptographic games, where an adversary interacts with the protocol through oracles that run the
algorithms modelling it, and is asked to try to break its security in a specific way. For instance,
an indistinguishability property between two scenarios would be modelled by a game Exp” (N,
where the adversary interacts with one of the two possible scenarios, depending on a secret bit
B. The adversary is then asked to guess this bit 3, i.e. to determine which scenario is running,
and his guess constitutes the result of the game. The advantage of the adversary is then the
difference between the probabilities it guesses 1 when § = 0 and when 8 = 1:

Adv4(N) = [P(Exp’(X) = 1) — B(Exp! (A) = 1)

Security is then defined by requiring that asymptotically (w.r.t. the security parameter ), no
adversary can do significantly better than random guessing. That is, that no adversary has a
non-negligible advantage Adv 4()) in that game.

As explained earlier, in the case of vote privacy, the two scenarios which the adversary tries
to distinguish could for instance be two runs of the voting scheme, with the votes of two voters
being exchanged: Exp’(\) would then have Alice vote 0 and Bob 1, while Exp!(\) would have
Alice vote 1 and Bob 0. A more general formalisation would let the adversary himself choose
which votes are used: the adversary would propose two votes vy, v1, and, depending on [, Alice
would vote vg and Bob vy, or the other way around. Even more generally, in the formalisations
we use in later chapters, the votes of more than just two voters can be swapped.

Such notions of security are typically proved by reduction: that is, by proving that breaking the
security of the protocol entails breaking some security assumption on the underlying cryptographic
primitives, which in turn breaks some underlying computational hardness assumption (e.g. RSA,
factoring,. . . ).

Computational models are much more precise than symbolic models, as they do not rely on
as strong abstractions, and make much weaker assumptions on the primitives. On the other hand,
the abstractions and idealisations made by symbolic models allow for much easier automated
verification, as we discuss in the next section. In some cases, however, it has been proved that
with reasonable assumptions symbolic models can be computationally sound, in the sense that
proving symbolic security implies computational security [9, 62, 63]. Another recent approach
that bridges the symbolic and computational worlds is the Bana-Comon model [19]. It considers a
symbolic representation of an attacker without restricting it to a fixed set of operations, contrary
to usual symbolic models, which lets the model be computationally sound by construction, while
allowing for symbolic reasoning.

6 Automated verification

Symbolic vs computational Manually proving the security of a given protocol, either in
symbolic or computational models, tends to be rather tedious, even for simple examples, and
is prone to errors that can be difficult to detect. A natural idea is then to design procedures
and tools to automatically produce these proofs. As mentioned in the previous paragraph,
computational models use a much thinner abstraction layer than symbolic models, which makes
automated reasoning more difficult in these models. The only significant tools that allow to
reason in a computational setting are CryptoVerif [32], that automates transformations between
games, EasyCrypt [21], that makes use of probabilistic relational Hoare logic, and F* [90], a
functional programming language that provides a rich type system to encode security properties.
Only CryptoVerif is fully automatic, while EasyCrypt and F* can rather be seen as interactive
provers that assist the user in creating and verifying a proof.

10
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We will be focusing more here on verification tools in the symbolic setting, which allows for
much easier automation.

Trace and equivalence properties Symbolic verification for cryptographic protocols typically
studies properties that can be classified in two categories. The first one is the class of trace
properties, i.e. properties expressed as a condition that must be satisfied by all executions (also
called traces) of the protocol. That is typically the case of reachability properties, that require
that a certain “bad” state can never be reached. They can for instance express secrecy guarantees:
the execution can never reach a state where the attacker has learned the value of some secret.
In the context of voting protocols, verifiability is expressed as a trace property: basically, the
execution should never reach a point where a result has been published that does not correctly
account for all the votes.

On the other hand, some properties, called equivalence properties, can only be expressed by
considering several executions of the protocol. Equivalence properties express the idea that two
situations should be indistinguishable in the eyes of an attacker. These properties are very useful
to express many types of privacy guarantees, such as, for instance, anonymity — an attacker
should not be able to distinguish between me running the protocol or someone else. Equivalence
can be used to formalise strong flavours of secrecy: an attacker should not only be unable to learn
some secret data (e.g. a key), but he should even be unable to distinguish a run of the protocol
that uses the actual secret from a variant that uses a different value. Unlinkability, which requires
that an attacker cannot “track” a user, i.e. recognise whether two different sessions of a protocol
are run by the same user or not, is another major example of an equivalence property. Vote
privacy, as explained earlier, is also typically expressed as an equivalence property.

Automated tools were first built to verify trace properties. In this thesis, we will tend to
focus more on the verification of equivalence properties, whose study is more recent, although
several procedures were designed in the last few years.

Bounded vs unbounded number of sessions Symbolic models allow to consider an un-
bounded number of sessions of a protocol running in parallel. Verifying security properties with
such an arbitrary number of sessions gives stronger guarantees: only proving them for a given
fixed number of sessions might miss some attacks that require a larger number of sessions to
be carried out. However, unfortunately, it has been proved that the deduction problem — can
an attacker learn a given message when interacting with a certain protocol? — as well as the
equivalence problem are undecidable when an unbounded number of sessions is considered [75, 52].
The procedures and tools that have been designed for automated verification then follow one of
two approaches: either they restrict their scope to bounded numbers of sessions — and can then
be exact decision procedures; or they consider the unbounded case, but are then incomplete —
typically, they prove properties in some cases, but cannot always conclude or terminate.

Tools In the unbounded case, one of the most prominent tools is ProVerif [31, 33], which was
first proposed by Blanchet in 2001, and has been steadily improved and extended since then.
Basically, ProVerif is fully automatic, and proves (non-)deducibility properties by translating
protocols expressed in a variant of the applied pi-calculus into a set of Horn clauses that
overapproximate the knowledge an attacker can gain from interacting with the protocol. The
problem is then reduced to determining whether some message is deducible from this set of Horn
clauses. It has then been extended [35] to prove equivalence of processes that only differ by the
messages exchanged, and not the structure of the process — diff-equivalence — in a similar way.

11
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ProVerif is correct, in the sense that when it declares a protocol secure, the property indeed
holds. It is however not complete: it can in some cases not terminate, or find false attacks that
do not disprove the property, due to the overapproximation it performs being too coarse. For
example, ProVerif’s overapproximation tends to treat all processes as if they were replicated,
and hence is at risk to find false attacks when the security of a protocol relies on the fact that
something happens only once. This can notably be the case when considering voting protocols
that require that each voters votes at most once. The main other tool for the unbounded case is
Tamarin [90, 22], which uses multiset rewriting rather than process algebras and Horn clauses,
but, similarly to ProVerif, handles trace properties and diff-equivalence. Tamarin however is not
fully automatic, but rather interactive: it allows the user to provide lemmas to guide the tool.
This allows Tamarin to prove cases that would be difficult to handle automatically, but of course
requires more work from the user.

On the other hand, when restricting the study to bounded numbers of sessions, several
procedures have been designed recently, that decide protocol equivalence. One of the first such
tools was SPEC [08], which proves a strong notion of equivalence (bisimulation) for a fixed
signature of cryptographic primitives. More recent tools rather prove a weaker notion, called
trace equivalence. APTE [15] decides trace equivalence, also for a fixed set of cryptographic
primitives, but can handle more complex constructions such as else-branches. Akiss [13] uses
Horn clauses, and can handle user-provided primitives and equational theories (within a large
class that captures most usual primitives). More recently, Deepsec [15] can, as Akiss, handle
user-specified equational theories and complex constructions (such as else branches, private
channels). It is much more efficient than previous tools — it was designed to establish an upper-
bound on the complexity of the problem of deciding equivalence, as part of a proof that the
problem is coNEXP-complete. An advantage of both Akiss and Deepsec is that they can take
advantage of parallelisation to speed up verification. Finally, SAT-Equiv [55] can handle a fixed
equational theory (that contains most usual primitives), and reduces equivalence to a graph
planning problem. It is very efficient, but however imposes some restrictions on the protocols
considered — it requires a well-typedness property, and as a result tags may need to be added to
messages when encoding the protocol. All of these tools share the common issue that they to
some extent work by considering all possible executions of the processes considered, which must
be done to decide equivalence: they therefore tend to suffer, to different degrees, from efficiency
issues when considering processes that involve a large numbers of parallel branches.

Typing Type systems are a common tool from the domain of Programming Languages, that
are used to statically enforce safety properties such as the absence of runtime errors in programs.
A simple use of types is to describe the nature of the values considered, with types such as int,
string, bool and so on. Programs are then checked using type systems containing rules such
as the following (very simple) example, that states that the product of two integers is also an
integer:

T :int Yy :int

T *y:int

Type systems can be seen as overapproximating the possible behaviours of programs, by
abstracting the values into their types. The advantage of such an approach is that it provides
efficient (but of course incomplete) ways of proving properties that would be undecidable in
general.

Type systems can also be used to prove much stronger properties in the context of security.
They have been applied in particular to the verification of trace properties such as authentication
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or secrecy properties [30, 38, 77]. In such a case, one could for instance tag the values that
should not be published with a type secret and values that may safely be published with a type
public. The following simple typing rule would then indicate that the encryption of a secret
message does not leak any secret information, and is thus safe to publish, provided that the key

used is secret:
T : secret k : secret

enc(z, k) : public

One would then typecheck the whole protocol to ensure that all messages that can ever be output
to the network can be given type public.

We have already evoked F* [90]. It, as well as its relational extension rF* [20], relies on a rich
type system with dependent and refinement types: types that contain logical formulas, which can
encode complex conditions on the values they are given to. Contrary to the approach described
above, its type system is not specifically dedicated to security protocols, but instead allows to
manually write logical formulas, that can encode very complex properties such as cryptographic
games. Typechecking thus produces complex proof obligations, that are discharged by F* to a
SAT-solver. Such techniques have been used to produce verified implementations of very large
and complex protocols such as TLS [72]. However, a downside of such complex types is that
although the typechecking itself is automated, highly non-trivial work is required from the user
to come up with the correct types that will allows proofs to go through.

7 Contributions

This thesis brings several contributions to the domain of formal analysis of electronic voting
protocols, on two main aspects:

e first, the automated verification of symbolic equivalence properties such as vote privacy,
with the design of a type system for equivalence;

e second, a study of the notions of privacy and verifiability, that leads to the surprising result
that privacy in fact implies individual verifiability, and to the design of a new game-based
definition of privacy, that allows to consider a dishonest ballot box.

This section presents these contributions more in detail, and briefly describes other work performed
during my PhD, that I chose not to present in this thesis.

A type system for symbolic equivalence We propose a new approach to the problem of
automated proofs of equivalence properties, that makes use of type systems. As explained earlier,
these have been applied to the case of trace properties such as reachability /secrecy properties.
The difficulty is that such techniques typically overapproximate the set of possible executions of
a protocol by abstracting the messages into their types. They can then ensure that some “bad”
state (e.g. where the attacker learns a secret) can never be reached, by proving the stronger
statement that such a state is never reached by the overapproximated set of executions. However,
this would not be a sound way of doing things for equivalence. Even if the overapproximations
of two processes P and () are equivalent, it could be that some specific behaviours are actually
possible in P but not in @), which would make P and @ not equivalent, but might be missed due
to the approximation. Instead, we design a type system that can typecheck two processes P and
Q@ together, to ensure that they have the same behaviours, and we use the types to establish
invariants regarding the messages stored in variables by these processes. While typechecking, our
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type system collects all output messages (or in fact, subterms of these messages) into what we call
a constraint. Some additional checks on this constraint ensure that not only P and @ have similar
behaviours, but also the messages an attacker can observe in corresponding executions of the
two processes are indistinguishable. Our type system handles a fixed signature of cryptographic
primitives that includes most usual ones.

We prove that our type system soundly implies symbolic equivalence, even when considering
processes with a mix of replicated (i.e. executed an unbounded number of times) and non-
replicated parts.

We also implemented, in collaboration with Niklas Grimm, a prototype of our type-checking
procedure, which we apply to several examples of protocols from the literature (e.g. key exchange
protocols), in order to compare its performance to that of the other automatic tools for symbolic
equivalence listed earlier. This benchmark shows that for bounded numbers of sessions, our
approach is very efficient, and suffers much less than the other tools from large numbers of
sessions/parallel branches. In the unbounded case, our approach can handle a mix of replicated
and non-replicated processes. Our overapproximation is more precise than ProVerif’s in such
cases, and can leverage the fact that some part of the processes can only be executed once. This
flexibility notably allows us to prove vote privacy for Helios, for which ProVerif cannot conclude.
Indeed, as previously evoked, Roenne’s attack implies that the property only holds if voters only
vote once, which causes ProVerif to find false attacks. In exchange, our prototype requires light
type annotations to be provided by hand by the user, and is less general w.r.t. the equational
theory considered than ProVerif.

Privacy and verifiability We study the definitions of vote privacy and verifiability, and
establish that, surprisingly, privacy implies individual verifiability. This result, while counter-
intuitive, does not contradict the previous result from [19], as we consider established definitions
with a polynomial adversary, rather than an unbounded one. Let us explain the basic intuition
of our result. Consider a voting system that is not verifiable at all, i.e. where an adversary can
somehow prevent the vote of any voter of his choice from being counted, without being detected.
In such a system, an adversary trying to learn my vote could simply block all other voters’ votes:
the result itself would then count only my vote, and therefore reveal it. That attack would of
course only work only in such an extremely non-verifiable case: we show how to generalise this
intuition to produce an attack on privacy from any attack on individual verifiability. We conduct
our proof in both symbolic and computational models, two very different settings, to further
show that this implication is not an artefact from the chosen model, but an intrinsic property of
the notions of privacy and verifiability. An important aspect of our result, that perhaps explains
why it is counter-intuitive, is that it holds when considering the same trust assumptions w.r.t.
the election authorities for both privacy and verifiability. In existing work however, verifiability
is usually studied against an attacker that controls the ballot box, while privacy notions typically
implicitly assume the ballot box to be trusted.

Privacy against a dishonest ballot box This last remark highlights a limitation of existing
(game-based) definitions for vote privacy: they implicitly consider a trusted ballot box, while
voting systems typically aim at protecting voters from a dishonest ballot box. A similar
observation was made in [67, 29]. This leads to the last main contribution presented in this
thesis: the design of a definition for privacy against a dishonest ballot box, in a computational
setting. Our notion is based on BPRIV, a state-of-the-art notion of vote privacy against a honest
ballot box, first introduced in [26]. Designing a meaningful definition when the ballot box is
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untrusted is made noticeably difficult by the attack described in the previous paragraph. An
adversary that controls the ballot box can always remove ballots from it, which leads to the result
giving out more information than it should about the remaining ones. This trivially violates the
naive privacy notion that requires that no matter what, the adversary cannot gain information
about the votes. We present a way of defining a slightly weaker privacy notion, which does not
consider the behaviour above an attack, but still provide meaningful guarantees. More precisely,
we show that our notion is stil sufficiently robust, in the sense that it implies a simulation-based
notion of vote privacy. This simulation-based property states that the voting system securely
implements an ideal functionality, which makes clear what power an adversary can have against
the system. We then apply our privacy notion to a few voting protocols from the literature,
namely Helios [10], Belenios [59] and Civitas [54], to illustrate that it allows for a more precise
characterisation of the level of privacy they offer.

BeleniosVS During my PhD, I also worked on the design and proof of the BeleniosVS voting
protocol [56]. BeleniosVS is an extension of Belenios [59] and BeleniosRF [11], which makes
use of Voting Sheets, i.e. sheets containing pre-encrypted ballots that are distributed to voters.
Voters cast their vote by scanning the ballot of their choice from their sheet on the device they
use to participate in the election, rather than by having that device encrypt the vote itself. This
way, the device never has access to the vote in clear, which allows the system to guarantee
vote privacy to voters without requiring them to trust their device. I participated in proving
that BeleniosVS guarantees privacy, verifiability, and receipt-freeness properties. I chose not to
present this work in this thesis.

QUIC Finally, an internship at Microsoft Research in Cambridge gave me the opportunity to
participate in the verification of the QUIC protocol. QUIC is a new protocol originally proposed
by Google and currently being standardised by IETF. It provides a similar functionality as TLS,
but relies on the network protocol UDP, while TLS relies on TCP. In particular, this allows QUIC
to receive and decrypt data packets out of order, without having to wait for previous packets to
arrive, which allows for lower latency and better performance. I participated in developing a
security model of the QUIC packet construction in F*, and discovering a slight vulnerability in
the way some header data in the packets are protected. This work is still under development,
and will also not be presented in this thesis.

8 Outline

The thesis is organised into two parts of three chapters each, the first being dedicated to the
type system for protocol equivalence, and the second to the study of privacy and verifiability
definitions.

e Chapter 1 introduces the rather standard symbolic model we use, and the formal definition
of the trace equivalence notion we consider.

e Chapter 2 presents the type system for equivalence as well as the attached procedure for
constraints, and the proof of their soundness for both bounded and unbounded numbers of
sessions.

e In Chapter 3 we conduct a case study by detailing the application of our type system to
two relevant examples of protocols (Helios and Private Authentication). We also present
the experimental results of our prototype implementation.
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e Chapter 4 presents our result that vote privacy implies individual verifiability in a symbolic
model.

e Chapter 5 details the same result in a computational model.

e In Chapter 6, finally, we expose our new definition for vote privacy against a dishonest ballot
box, prove that it implies a simulation-based notion of privacy, and study its properties,
notably applying it to real examples of voting protocols.

Related publications The work on the type system for equivalence detailed in Part I has
been published in two articles [60] and [01], presented respectively at the conferences CCS’17
(ACM Conference on Computer and Communications Security) and POST’18 (Principles of
Security and Trust). These two articles were written in collaboration with Véronique Cortier,
Niklas Grimm and Matteo Maffei.

The work on privacy and verifiability (Chapters 4 and 5) has been published in an article [(4]
presented at the CCS’18 conference.

The work on BeleniosVS, not detailed in this thesis, was published in an article [56] presented
at the CSF’19 (IEEE symposium on Computer Security Foundations).

In addition, the source code for the implementation of the typechecker, the example files
for the benchmark, as well as the scripts used to generate the graphs featured in Chapter 6 are
available at [1].
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A Type System for Equivalence

17






Introduction to Part 1

Formal methods proved to be indispensable tools for the analysis of advanced cryptographic
protocols. As explained in introduction, mature push-button analysis tools have emerged and
have been successfully applied to many protocols from the literature in the context of trace
properties such as authentication or confidentiality. A current and very active topic is the
adaptation of these techniques to the more involved case of trace equivalence properties. These
are the natural symbolic counterpart of cryptographic indistinguishability properties, and they
are at the heart of many privacy properties.

For instance, consider an electronic voting protocol, such as Helios evoked in introduction,
involving a part Voter(id,v) run by voter id who wishes to vote for candidate v, and a part
representing the server’s role S. This scheme preserves secrecy of the vote if an attacker cannot
know who voted for which candidate. That is, the attacker should not be able to distinguish an
execution where Alice votes for 0 and Bob for 1 from an execution where Alice votes for 1 and
Bob for 0. This can be expressed by the equivalence

Voter(Alice,0)| Voter(Bob,1)|S ~; Voter(Alice,1)| Voter(Bob,0)|S.

Another example of an application of equivalence properties is unlinkability. Consider for
instance the case of RFID protocols, that typically involve an RFID tag and a reader, and aim
to let the tag authenticate the reader. These are for instance used by electronic passports, or
contactless cards for public transportation. A basic requirement of such protocols is that they
should correctly ensure authentication. They should also preserve the secrecy of data stored on
the tag (e.g. keys, ...). These requirements are trace properties. However, they do not cover
all security guarantees one might want for RFID tags. A potential issue of these protocols is
that, if not designed carefully, they might allow an attacker to track a user, 7.e. to recognise and
identify them by simply interacting with their tag. To prevent such privacy breaches, a protocol
must satisfy unlinkability: an attacker should not be able to link different sessions of the protocol
to the same user. Consider a protocol Reader(k)|Tag(k), in which a reader is communicating
with a tag with which it shares a secret key k. Unlinkability can be expressed (adapting the
formalisation proposed in [13]) as the equivalence

Reader(kAlice) ’ Tag(kAlice) ‘ Reader(kAlice) | Tag(k;Alz'ce) ~t
Reader(k atice) | Tag(katice) | Reader(kpoy) | Tag(kpop)

requiring that the attacker cannot determine whether he sees the same tag (belonging to Alice)
twice, or two different tags (belonging to Alice and Bob respectively).

In addition to vote privacy and unlinkability, trace equivalence is used to express many
privacy properties, such as differential privacy [70], or anonymity [7, 14].
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Related work As we detailed in introduction, several tools and procedures have been proposed
in recent years to automatically verify equivalence properties in the symbolic model. As the
problem is undecidable when considering an unbounded number of sessions of protocols [52],
these tools use one of two approaches. Either they restrict themselves to bounded numbers of
sessions only, in which case the problem becomes decidable, or they handle the unbounded case,
at the cost of being incomplete — typically relying on overapproximations and heuristics to prove
equivalence, with no termination guarantees.

Tools that decide equivalence in the bounded case notably encompass SPEC [65], APTE [15,

], Akiss [13], and more recently Deepsec [15] and SAT-Equiv [55]. These tools vary in the class
of cryptographic primitives and of protocols they can consider. However, as they decide the
problem of equivalence, due to its complexity — it is coNEXP-complete [18] — they all tend to
suffer from the state explosion problem. Most of the older tools can typically not analyse more
than a few sessions of even relatively small protocols. The more recent tools — SAT-Equiv and
Deepsec — are more efficient and depending on the protocol considered may go a bit further, but
they still inevitably suffer when considering large numbers of sessions.

The only tools that can verify equivalence properties for an unbounded number of sessions
are ProVerif [35], Maude-NPA [95], and Tamarin [22]. ProVerif checks a property that is stronger
than trace equivalence, namely diff-equivalence, which works well in practice provided that
protocols have a similar structure. However, as for trace properties, the internal design of
ProVerif, that relies on translating the protocols to a set of Horn clauses, renders the tool unable
to distinguish between exactly one session and infinitely many. This overapproximation often
yields false attacks, in particular when the security of a protocol relies on the fact that some action
is only performed once. Maude-NPA also checks diff-equivalence but often does not terminate.
Tamarin, based on multiset rewriting, can handle an unbounded number of sessions and is very
flexible in terms of supported protocol classes but it often requires human interactions.

Contribution In this part, we consider a novel type checking-based approach. Several sound
type systems have successfully been developed for proving trace properties (e.g. [30, 38, 39]).
One advantage is that a few typing annotations often suffice to convey the reasons why a
protocol is secure. Intuitively, a type system over-approximates protocol behaviour. Due to this
over-approximation, it is no longer possible to decide security properties but the types typically
convey sufficient information to prove security. Extending this approach to equivalence properties
is a delicate task. Indeed, two protocols P and @ are in equivalence if (roughly) any trace of P
has an equivalent trace in @) (and conversely). Overapproximating behaviours may not preserve
equivalence.

Instead, we develop a somewhat hybrid approach: we design a type system to overapproximate
the set of possible traces and we collect the set of sent messages into constraints. We then propose
a procedure for proving (static) equivalence of the constraints. These do not only contain sent
messages but also reflect internal checks made by the protocols, which is crucial to guarantee
that whenever a message is accepted by P, it is also accepted by @ (and conversely).

After introducing our symbolic model, as well as the relevant notions and properties in
Chapter 1, we present our type system in detail in Chapter 2. We show that our type system
soundly proves equivalence of protocols for both a bounded and an unbounded number of sessions,
or a mix of both. This is particularly convenient to analyse systems where some actions are
limited (e.g., no revote, or limited access to some resource). More specifically, we show that
whenever two protocols P and () are type-checked to be equivalent, then they are in trace
equivalence, for the standard notion of trace equivalence [37], against a full Dolev-Yao attacker.
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In particular, one advantage of our approach is that it proves security directly in a security
model that is similar to the ones used by the other popular tools, in contrast to many other
security proofs based on type systems. Our result holds for protocols with all standard primitives
(symmetric and asymmetric encryption, signatures, pairs, hash), with atomic keys (that can
be fresh or long-term keys) and no private channels. Similarly to ProVerif, we need the two
protocols P and () to have a rather similar structure.

In Chapter 3, we present a case study, where we use our type system to prove vote privacy
for Helios, and anonymity for the Private Authentication protocol. In addition, in collaboration
with Niklas Grimm, we designed a prototype implementation of our type system. We evaluate
its performance on several protocols of the literature. In the case of a bounded number of
sessions, our tool provides a significant speed-up compared to most other tools. To be fair, let us
emphasise that these tools can decide equivalence while our tool checks sufficient conditions by
the means of our type system. In the case of an unbounded number of sessions, the performance
of our prototype tool is comparable to ProVerif. In contrast to ProVerif, our tool can consider a
mix of bounded and unbounded number of sessions. As an application, we can prove for the first
time ballot privacy of the well-known Helios e-voting protocol [10], without assuming a reliable
channel between honest voters and the ballot box. ProVerif fails in this case as ballot privacy
only holds under the assumption that honest voters vote at most once, otherwise the protocol is
subject to a copy attack [94]. For similar reasons, Tamarin also fails to verify this protocol.

Related publications The three chapters in this part are based on two articles [60] and [61],
published respectively at the conferences CCS’17 (ACM Conference on Computer and Commu-
nications Security) and POST’18 (Principles of Security and Trust). These two articles were
written in collaboration with Véronique Cortier, Niklas Grimm and Matteo Maffei.
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Chapter 1

Preliminaries: Symbolic Model and
Pi-calculus

1.1 Introduction

In this chapter, we present the syntax and semantics of the symbolic model we consider. Typically,
in such models, cryptographic operations are idealised and represented by abstract function
symbols. Messages are then constructed using these abstract cryptographic primitives. The
abilities of the attacker, 7.e. what he can compute given a set of messages using the properties
of the primitives, are modelled as a rewriting system on messages. Security protocols are then
modelled as processes of a process algebra, such as the applied pi-calculus [6]. We present here a
calculus close to [17] inspired from the calculus underlying the ProVerif tool [31].

1.2 Messages and Terms

Messages are modelled as terms built over a signature of abstract cryptographic primitives.

Formally, we consider an infinite set of names A for nonces, which are used to model random
values generated during an execution of the protocol. We also assume an infinite set of variable
names V.

Cryptographic primitives are modelled through a signature F, that is, a set of function
symbols, given with their arity (i.e. the number of arguments).

Given a signature F, a set of names N, and a set of variables V, the set of terms T (F,V,N)
is the set inductively defined by applying functions to variables in V and names in A/. That is,
the smallest set that

e contains V and N: VUN C T(F,V,N);
e and is closed under application of function symbols in F:

Vf e F with arity n. Vt1,...,t, € T(F,V,N). f(t1,...,tn) € T(F,V,N).

A substitution o = {My/x1,..., My/xr} is a mapping from variables xi,...,z; € V to
messages My, ..., M. We let dom(c) = {x1,...,x}. We say that o is ground if all messages
My, ..., My, are ground. We let names(o) = Uy <;<j names(M;). The application of a substitution

o to a term t is denoted to. Intuitively, applying o to a term t is the operation of replacing
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Chapter 1. Preliminaries: Symbolic Model and Pi-calculus

each occurrence of a variable € dom(o) in ¢ with the message o(z). Formally, this operation is
defined inductively as follows.

otherwise

Vf € F with arity n. Vt1,...,t, € T(F,V,N). f(t1,...,tn)o = f(t10,...,t,0)

In the following, we will consider the signature:
Fe. ={pk/1,vk/1,enc/2 aenc/2,sign/2, (-,-)/2,h/2}

whose function symbols model respectively public and verification keys, symmetric and asymmetric
encryption, concatenation and hash. The companion primitives (symmetric and asymmetric
decryption, signature check, and projections) are represented by the following signature:

Fq = {dec/2,adec/2, checksign/2, 7 /1, m2/1}

We also consider a set C of public constants, i.e. function symbols of arity 0, used as agent names
for instance.

We assume the set A/ of names is partitioned into the set FA of free nonces, intended to
represent nonces created by the attacker, and the set BN of bound nonces, used to represent
nonces created by the protocol parties. We similarly consider an infinite set of names C for keys,
split into sets FK and BXC, that represent keys generated respectively by the attacker, and by
protocol parties. Finally we assume the set of variables to be split into two subsets V = X & AX
where X are variables used in processes while AX are variables used by the attacker to store
messages.

For any term ¢, we denote by names(t) (resp. keys(t), vars(t)) the set of names (resp. keys,
variables) occurring in ¢. A term is ground if it does not contain variables.

We consider the set T(F. U FaUC, V,N UK) of cryptographic terms, simply called terms.
Messages are terms containing only constructors, i.e. from 7 (F.UC,V,N UK).

An attacker term, is a term from T (F. U Fy UC, AX, FN U FK). In particular, an attacker
term cannot use nonces and keys created by the protocol’s parties.

Example 1. For instance, the following terms M and N are messages that represent the
encryption of respectively a name n € N and a variable x € X with a key k € BK:

M = enc(n,k), N =enc(z,k).

M is ground, while N is not. We have names(M) = {n}, names(N) = 0, and keys(M) =
keys(NV) = {k}.

The following term R is an attacker term that represents the attacker attempting to decrypt
a message he has stored in a variable y € AX with a key stored in a variable z € AX:

R = dec(y, 2)

Note that attacker terms cannot contain keys in BK: intuitively the attacker does not know a
priori any key used by the protocol agents. To decrypt a message with a key, as in R, he thus
needs to have obtained and stored that key in one of his variables.
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1.8. Processes and Semantics

The evaluation of a term t, denoted t], corresponds to the bottom-up application of the
cryptographic primitives. Basically, destructors are applied when possible: e.g. decrypting an
encrypted message with the correct key returns the plaintext. For instance, dec(enc(0, k), k),
where k is a key, evaluates to 0. When a destructor is present but cannot be applied, the evaluation
fails. For instance, trying to decrypt a ciphertext with the wrong key fails: dec(enc(0, k), k'),
where k # k' are two different keys, fails and evaluates to L. In addition, evaluation enforces
that the keys used are always atomic, i.e. elements of I, rather than constructed from other
messages. Evaluating a message where a non-atomic key is used, e.g. enc(0, (k, k’)) where a pair
composed of two keys is used as an encryption key, will fail, and yield L.

Formally, t] for a term t is recursively defined as follows.

if tl= (t1,12)

if ti= (t1,t2)

if t1{= enc(ts,t4) and t4 = tal

if t1}= aenc(ts, pk(ts4)) and t4 = tal
if t11= Sign(tg, t4) and tol= Vk(t4)
otherwise.

e

S

~—~
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checksign(ty, to
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vk(t)] = vk(t}) if tle K
h(t)} =h(t]) if t|# L
t1,to) = (t1l,tal) if t1J# L and tol# L
enc(ty,t2)] = enc(tli, th,) if tﬂ,# 1 and tole K
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Note in particular that this evaluation operation models encryption algorithms that are
length-hiding: the only computation that can be performed on a ciphertext is to decrypt it with
the decryption key. Hence, from a ciphertext, an adversary cannot recover any information on
the length of the plaintext. Additionally, the asymmetric encryption operation described by the
model is anonymous, in the sense that a ciphertext reveals no information on the public key used
to produce it.

Also note that the evaluation of term ¢ succeeds only if all underlying keys are atomic, even
when these keys would disappear from the final message during evaluation. For example, while
dec(enc(0, k), k)I= 0, we have dec(enc(0, (k, k)), (k,k)){= L, because the message (k, k) is not
an atomic key, even though it disappears during the evaluation.

We write t = t' if t|=t'].

1.3 Processes and Semantics

Security protocols describe how messages should be exchanged between participants. We model
them through a process algebra, whose syntax is displayed in Fig. 1.1.

We identify processes up to a-renaming, which is defined as usual. To avoid capture of bound
variables and names, we then assume that all bound names, keys, and variables in the process
have been renamed so that they are all are distinct.

A configuration of the system is a tuple (P; ¢; o) where:

e P is a multiset of processes that represents the current active processes.
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Chapter 1. Preliminaries: Symbolic Model and Pi-calculus

Destructors used in processes:
d ::=dec(z,t) | adec(x,t) | checksign(z,t') | m1(z) | mo(x)

where z € X, t e KUX, t' € {vk(k)|k e K} UX.

Processes:

PQ:= 0

| newn.P

| out(M).P

| in(x).P

| (P1Q)

| letxz=din P else )

| if M = N then P else )
| P

where n € BN UBK, z € X, and M, N are messages.

Figure 1.1: Syntax for processes.

e ¢ is a substitution with dom(¢) C AX and for any = € dom(¢), ¢(x) (also denoted z¢) is
a message that only contains variables in dom(o). ¢ represents the terms that have been
sent on the network by the processes.

e ¢ is a ground substitution, that contains the messages with which variables in the processes
are instantiated in the current execution.

The semantics of processes is given through a transition relation —— on configurations,
defined in Figure 1.2. « is the action associated to the transition. This action represents what
an attacker can observe when the transition is executed. It can be

e 7, which denotes a silent action, i.e. a transition where the attacker cannot observe
anything;

e in(R), which denotes that the attacker provides as input to the process a message con-
structed by applying an attacker term R, called the recipe, to the frame of messages
previously output;

e or new ax.out(az), which denotes that a message is output to the attacker by the process,
and stored in variable ax in the frame.

The relation —», is defined as the reflexive transitive closure of —, where w is the concate-
nation of all actions. We also write equality up to silent actions =,.

Intuitively, process new n.P creates a fresh nonce or key, and behaves like P. Process
out(M).P emits M and behaves like P, provided that the evaluation of M is successful. The
corresponding message is stored in the substitution ¢, corresponding to the attacker knowledge.
The attacker controls the communication between processes, in the sense that a process may
input any message that the attacker can forge (rule IN). More precisely, the attacker uses a
recipe R to compute a new message from his knowledge ¢. Note that all names, except the
attacker names FN, are initially assumed to be secret, and similarly for keys. Process P | Q
corresponds to the parallel composition of P and (). Process let x = d in P else () behaves like
P in which zx is replaced by d if d can be successfully evaluated, and behaves like () otherwise.
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1.8. Processes and Semantics

({P | B} UP;¢;0) - ({P1, P2} UP; ¢;0) PAR
({0} UP;;50) - (P; ¢;0) ZERO

({new n.P}UP;¢;0) N {P}UP;;0) NEW
({new k.P} UP; ¢;0) SRS {PYUP;¢;0) NEwWKEY
({out(t).P} UP; ¢; o) 24 m) (1 by Py 6 U {tJazn ) o) out

if to is a ground term, (to){# L, ax, € AX and n = |¢| +1

({in(@).PYUP;di0) 2 ({PYUP; 10 U{(Roo)l /z}) IN
if R is an attacker term such that vars(R) C dom(¢),
and(Repo)]# L
({let x =d in P else Q} UP; ¢;0) = {P}UP;p;0 U{(do)l /z}) LeET-IN
if do is ground and (do)# L
({let x =d in P else Q} UP; ¢;0) SUES {Q}UP;0;0) LET-ELSE
if do is ground and (do)l= L, i.e. d fails
({if M = N then P else Q} UP;¢;0) - {P}YUP;¢;0) IF-THEN

if M, N are messages such that Mo, No are ground,
(Mo)l# L, (No)l# L, and Mo = No
({if M = N then P else Q} UP;¢;0) - {QYUP;0;0) Ir-ELSE
if M, N are messages such that Mo, No are ground
and (Mo)l= L or (No)l=_L or Mo # No
{IP}UP;¢;0) S {P,/P}UP;0;0) REPL

Figure 1.2: Semantics

Process if M = N then P else () behaves like P if M and N correspond to two equal messages
and behaves like ) otherwise. The replicated process ! P behaves as an unbounded number of
copies of P in parallel. In the following, we will often omit the else-branch in conditionals and
destructor applications when it is empty, 7.e. 0. Similarly, we will omit the null process at the
end of branches, e.g. simply writing in(z).out(M) for in(x).out(M).0.

A trace of a process P is any possible sequence of transitions in the presence of an attacker
that may read, forge, and send messages. Formally, the set of traces trace(P) is defined as
follows.

trace(P) = {(w, ¢, 0)|({P}:0;0) ==+ (P;d;0)}

Example 2. Consider the Helios protocol mentioned in introduction. Informally, the behaviour
of the protocol is as follows:

Vs S o),

S —=>Vi,o... Vv, 0,

where {m};k denotes the asymmetric encryption of message m with public key pk randomised
with r; and [m]y denotes the signature of m with key k. Voters Vi,...,V,, each send their vote
v; encrypted with the public key pk(ks) of the election to the server S on an authentic channel
(modelled here by a signature). For simplicity, compared to the informal description from the
introduction, we have combined here the roles of the ballot box and the tallying authority into a
single entity S. The server decrypts all ballots, to compute and publish the result, i.e. the set of
votes in clear.

We describe here a simplified version of Helios, incorporating the weeding operation, in a
simple case with only two (honest) voters A and B and a voting server S. The protocol can be
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Chapter 1. Preliminaries: Symbolic Model and Pi-calculus

modelled by the process:
H = new r,. Voter(kq,vq,74) | new ry. Voter(ky, vy, 1) | Ps

where Voter(k,v,r) represents voter k willing to vote for v using randomness r while Ps represents
the voting server. Voter(k,v,r) encrypts the vote v, using the value r to randomise the encryption;
and signs the ciphertext before outputting it, which models sending the ciphertext over an
authenticated channel.

Voter(k,v,r) = out(sign(aenc({v,r),pk(ks)), k))

Note that we model the randomised asymmetric encryption by having the random value r appear
paired together with the payload v. This of course an abstraction, which does not reflect how the
randomness would be used in the actual construction of the cryptographic primitive. At the level
of abstraction of our symbolic model however, this correctly models the behaviour of randomised
encryption.

The voting server receives ballots from A and B and then outputs the decrypted ballots, after
some mizring.

Ps =in(x1).in(x2).
let y; = checksign(x1, vk(ky)) in
let yo = checksign(xzo, vk(kp)) in

in let 2, = mi(22) in

(

(
let z; = adec(y1,ks) in  let 2] = mi(21) in

let z9 = adec(yo, ks)

)

(out () | out(z))

Let us describe a possible execution of process H, that describes a “normal” run of the
protocol, where the attacker does not interfere. We can first apply rule PAR twice to H, to split
the parallel branches. Then rules NEW and OUT can be applied to process new r,. Voter(kq, va, ra),
storing message sign(aenc({vg,7q), pk(ks)), kq) into the variable axy € AX. The same rules
can be applied to new 1. Voter(ky, vy, 1), storing sign(aenc((vy, ), pk(ks)), kp) into variable
axg € AX.

We can then apply rule IN twice to process Ps, inputting the two messages stored in axy,
axo. Consequently these two messages are stored in variables x1,xs. The messages have the
expected form: applying rule LET-IN six times hence successfully applies all destructors, storing
all intermediary results in variables yi, ya, 21, 22, and finally messages vq, vy into zi and z4. Rule
PAR can then be applied to split the two parallel branches out(z]), out(z}). We may then apply
rule OUT to any of the two, say the first one: v, is stored in variable axs, and then the other: vy
s stored in axy.

At this point, there are no more processes to be reduced, except for implicit null processes:
rule ZERO takes care of these, and the execution reaches its end.

Altogether, the execution can be summarised by

({H},0,0) L, 0,¢,0)

where the sequence t of actions (ignoring silent actions) is

t =; new axj.out(axy). new ary.out(axsz). in(azy). in(axs). new azxs.out(axs). new axg.out(azry),
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1.4. Equivalence

the substitution ¢ contains all output messages:

¢ = [ax1 — sign(aenc((vq,rq), Pk(ks)), ka),
azg — sign(aenc({vpy, 15), pk(ks)), k),
axs «— 24, axy — 2b),

and finally the substitution o stores the contents of all variables in the processes:

o = [x1 — sign(aenc((va,ra), Pk(ks)), ka),
x9 +— sign(aenc((vp, rp), pk(ks)), ks),
y1 — aenc({vg, rq), pk(ks)),
ya +— aenc((vp, 7p), pk(ks)),

21 = (Vas Ta), 22 = Vb, 1),
2]+ Vg, 25 > ).

Note that the execution of this process is not deterministic. For instance we could have chosen,
when reducing process Pg, to first perform the output of 2}, and then that of z}. This would have
produced the reduction

({H},0,0) 5. (0,¢,0),

with the same actions t and substitution o as the execution above, but a different substitution ¢’,
that is similar to ¢, but with the contents of variables axs and axy being swapped.

1.4 Equivalence

When processes evolve, sent messages are stored in a substitution ¢ while the values of variables
are stored in 0. A frame is simply a substitution ¢ where dom(¢)) C AX. It represents the
knowledge of an attacker. In what follows, we will typically consider ¢o.

Intuitively, two sequences of messages are indistinguishable to an attacker if he cannot perform
any test that could distinguish them. This is typically modelled as static equivalence [0]. Here,
we consider of variant of [(] where the attacker is also given the ability to observe when the
evaluation of a term fails, as defined for example in [17].

Definition 1 (Static Equivalence). Two ground frames ¢ and ¢’ are statically equivalent if
and only if they have the same domain, and for all attacker terms R,S with variables in

dom(¢) = dom(¢’), we have

(Rp =, S¢) < (R¢' = S¢').
We then write ¢ ~ ¢'.

Example 3. Consider constant values a,b € C, and keys k,k' € K. The following static
equivalence holds:

[ax1 — enc(a, k)] ~ [az1 +— enc(b, k).
Indeed, even though two different public values a, b are used on either side, they are encrypted
with a key k, and the frame does not reveal this key. Thus the attacker is unable to observe this
difference. If however the frame reveals key k, the equivalence is broken:

[azq — enc(a, k), axe — k] % [axy — enc(b, k), axy — k.

Indeed, the attacker can now use k to decrypt and observe a difference. For instance, using
recipes R = dec(ax1,ax2) and S = a, we have Rp = a = S¢, while R¢' = b # S¢' (where ¢, ¢'
are the frames on the left and on the right).
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Then two processes P and @ are in equivalence if no matter how the adversary interacts with
P, a similar interaction may happen with @, with equivalent resulting frames.

Definition 2 (Trace Equivalence). Let P, @ be two processes. We write P T, Q if for all
(s,0,0) € trace(P), there exists (s',¢',0’) € trace(Q) such that s =; s’ and ¢o and ¢'a’ are

statically equivalent. We say that P and Q) are trace equivalent, and we write P ~; Q, if P C; Q
and QQ C; P.

Note that this definition already includes the attacker’s behaviour, since processes may input
any message forged by the attacker.

Example 4. For instance, the following trace equivalence holds:
new k.out(enc(a, k)) ~; new k.out(enc(b, k)).

Indeed, these two processes can only produce (with the same sequences of actions) the two frames
l[azy — out(enc(a, k))] and [axy — out(enc(b, k))], which are statically equivalent as explained
in the previous example.

On the other hand, outputting the key k breaks the equivalence:

new k.out(enc(a, k)).out(k) %; new k.out(enc(b, k)).out(k).

Indeed, the process on the left can produce the frame [ax1 — enc(a, k), axs — k|, and the process
on the right (with the same actions) can only produce the frame [ax1 — enc(b, k), axe — k|. As
explained in the previous example, these two frames are not statically equivalent: hence, there
exists a behaviour of the left process that cannot be mimicked by any behaviour of the right process.
Thus, P [Z; Q, which implies P %4 Q.

As evoked in introduction, ballot privacy is typically modelled as an equivalence property [71]
that requires that an attacker cannot distinguish when Alice is voting 0 and Bob is voting 1 from
the scenario where the two votes are swapped.

Continuing Example 2, ballot privacy of Helios can be expressed as follows:

new rq.Voter(k,,0,7,) | newry.Voter(ky,1,7) | Ps
~y new rq.Voter(ky, 1,r,) | newry.Voter(ky,0,7p) | Ps

This notion of equivalence is the property our type system entails. In the next chapter, we
present the type system in detail, and establish that it is sound, i.e. that it correctly implies
trace equivalence.
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Chapter 2

Type System

2.1 Introduction

As explained in introduction, type systems are a powerful tool to statically verify safety properties
in the context of programming languages, but can also be used to enforce much stronger security
guarantees in the case of cryptographic protocols. The advantage of typing-based approaches is
that they typically produce efficient, although by design incomplete, ways to prove properties
that are undecidable in general. As mentioned earlier, they have been applied in the context
of security protocols to prove trace properties such as authentication and secrecy properties
(e.g. [30, 38, 39]). Typically, this kind of approach consists in using types to carry information
(e.g. labels indicating the level of confidentiality) about the messages exchanged. This basically
forms an overapproximation of all possible executions of a protocol, by considering the types as
an abstraction of the messages. It is then possible to check that this overapproximated set of
executions never violates the trace property considered, e.g. by publishing a message whose type
indicates it should be secret. However, such an overapproximation would not be sound when
considering equivalence properties. Indeed, even if the overapproximations of the possible traces
of two processes P and () are equivalent, it does not mean that the actual processes are. It might
be that some behaviour of P is actually impossible in @), but that the overapproximation misses
that fact. Such a case would break the equivalence of P and (). Instead, we propose an approach
where the two processes are typechecked at the same time, with typing rules designed to ensure
that they have the same behaviours. As we will see, this is not sufficient: we also need to check
that the messages exchanged by the processes on the left and on the right are also equivalent.
To that end, our typechecking rules collect these messages, and some additional conditions are
checked on them afterwards, to ensure they do not leak information.

This chapter presents the type system we propose to statically verify trace equivalence
properties for pi-calculus processes, as defined in the previous chapter. We then establish the
soundness of the type system for protocols with a bounded number of sessions, i.e. without
replication, and finally lift this result to the case of unbounded numbers of sessions.

2.2 Overview

We first introduce the key ideas underlying our approach on (the fixed version of) the Helios
voting protocol [10]. Helios is a verifiable voting protocol, that we have described informally in
introduction. It that has been used in various elections, including the election of the rector of
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the University of Louvain-la-Neuve. We described a pi-calculus process modelling a simplified
version of Helios in Chapter 1. We consider here a slightly more detailed model, that we will
now present. The informal behaviour of the system, with a server .S and n voters Vi,...,V,, is
depicted below.

S =V i

Vi S o)

S —=V,...,V,: vl,...,vn

where {m};k(k) denotes the asymmetric encryption of message m with the key pk(k) randomised
with the nonce 7, and [m]; denotes the signature of m with key k. v; is a value in the set {0, 1},
which represents the candidate that voter V; votes for. In the first step, the voter casts her vote,
encrypted with the election’s public key pk(ks) and then signed. Since generating a good random
number is difficult for the voter’s client (typically a JavaScript run in a browser), a typical trick
is to input some randomness (r;) from the server and to add it to its own randomness (r}). In
the second step the server outputs the tally (i.e., a randomised permutation of the valid votes
received in the voting phase). Note that the original Helios protocol does not assume signed
ballots. Instead, voters authenticate themselves through a login mechanism. For simplicity, we
abstract this authenticated channel by a signature.

As in the model from the previous chapter, we consider here an abstraction of the tallying
process from the actual Helios protocol. In the real scheme, the voting server only collects ballots,
and a different entity, the tallying authority, is in charge of computing and publishing the result.
Moreover this tallying entity is actually split into several trustees who each have only a share of
the decryption key, to distribute the trust among them. We consider here the case of a honest
voting server and tallying authority — although the attacker is still able to block and intercept
the ballots sent by voters to the server. Hence, for simplicity, we conflate the server and talliers
into a single entity, that retrieves all ballots and publishes the result of the election.

As already explained in introduction, a voting protocol provides vote privacy [71] if an
attacker is not able to know which voter voted for which candidate. Intuitively, this can be
modelled as the following trace equivalence property, which requires the attacker not to be able
to distinguish A voting 0 and B voting 1 from A voting 1 and B voting 0.

Voter(kq,0) | Voter(ky,1) | CompromisedVoters | S
~; Voter(kq,1) | Voter(ky,0) | CompromisedVoters | S

where Voter(k,v) is a process modelling a voter with private key k voting for candidate v, S is a
process modelling the behaviour of the server, and CompromisedVoters a process representing
voters controlled by the attacker. These would typically simply give their keys to the attacker,
and let him vote for them. The attacker may a priori control an unbounded number of voters.

Despite its simplicity, this protocol has a few interesting features that make its analysis
particularly challenging. First of all, as discussed in introduction, the server is supposed to
discard ciphertext duplicates, otherwise a malicious eligible voter E could intercept A’s ciphertext,
sign it, and send it to the server [65], as exemplified below:

A= S: [{va}’“a”‘ e
E—=S: [{vapn a V.
B—S: [{vb};;’(ks ]
S — A, B : vy, vp, Vg
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This would make the two tallied results distinguishable, thereby breaking trace equivalence, since
Vg, Ups Vg Bt Vg, Vb, Vp-

Even more interestingly, each voter is supposed to be able to vote only once, otherwise the
same attack would apply [94] even if the server discards ciphertext duplicates (as the randomness
used by the voter in the two ballots would be different). This makes the analysis particularly
challenging, and in particular out of scope of existing cryptographic protocol analysers such as
ProVerif. Indeed, as mentioned earlier, ProVerif abstracts away from the number of protocol
sessions, and due to this abstraction reports this attack even when it is made impossible by
having voters vote only once.

In the following sections, we introduce a type system to statically check trace equivalence
between processes. Our typing judgements thus capture properties of pairs of terms or processes,
which we will refer to as the left and right term or process, respectively. Typing judgments are
parametrised by a typing environment I', which is a mapping from names, keys, and variables to
types. We will usually denote typing environments I

Let us now give an intuition of what types we need to typecheck the aforementioned equivalence
property. We first assume standard security labels: HH stands for high confidentiality and high
integrity, HL for high confidentiality and low integrity (e.g. a message encrypted with a public
key), and LL for low confidentiality and low integrity."

In the case of Helios, the nonces r, and 7}, are sent by the server in clear and unauthenticated:
we will give them label LL. However, the nonces r;, and rj generated by the voters should not be
published, hence we will give them label HH.

More precisely, we will use type Tl-l 1 to describe randomness of security label [ produced
by the randomness generator at position i in the program, which can be invoked at most once.
As we consider processes up to a-renaming, we will assume that each distinct invocation of
the randomness generator in the process uses a different name (e.g. 74, 75, etc. in the Helios
example). We will then use this name to refer to the position ¢ of the corresponding call to the

generator. For instance, nonce 7/, will thus be given type Tf;’l.

We will also use a type Tz»l "°° which is similar, except that the randomness generator can be
invoked an unbounded number of times, i.e. the corresponding “new” instruction occurs in a
replicated process. Although this “infinite” type does not occur in the case of Helios, since we
purposefully prevent revote, it will be useful later on when considering other examples. These
types induce a partition on random values, in which each set contains at most one element or an
unbounded number of elements, respectively. This turns out to be useful, as explained below, to
type-check protocols, like Helios, in which the number of times messages of a certain shape are

produced is relevant for the security of the protocol.

We also give security labels to keys: k,, kp and ks should remain secret, and we will thus give
them label HH. Let us emphasise that these labels are not assumptions, but rather an indication
to guide the typechecking. That is, we do not assume that these keys are secret, but rather we
indicate that they should not be published, and the typechecking will ensure that they are indeed
not.

The security label is not sufficient when reasoning about keys: we also want, at least when a
key is trusted, to somehow encode information regarding what messages it can encrypt or sign.
To do this, the complete type we use for keys has the form keyl(T), where [ is the label of the

"We omit the low confidentiality and high integrity type, which could be added but was not necessary to
typecheck any of the protocols we considered.
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key itself, and T the type of the messages it can encrypt or sign. When the key is trusted (i.e.,
[ = HH), the type system will ensure that it correctly only encrypts messages of the right type.

In the case of Helios, the protocol specifies that k, should only be used to sign encryptions of
the vote of A, together with the randomness r,, 7. To express this, we use a type {T'} k.o that
describes the asymmetric encryption of a message of type T' with the key k. As we will see
later on, we will need to encode precisely in the payload type 1" what is the value of this vote.
To do this we introduce a refinement type [, Ml LL 1] that describes with the same notations
as the types for nonces the value — here 0 or 1 — of the term, both on the left and on the right.
All in all, putting all these ingredients together, we give the following type to kg:

kg keyHH({[[ LLl LL IH*HL*TH/Hl}k ).

A similar type conveys the information that kp is a trusted key, that signs only the encryption of
Bob’s vote, i.e. 1 on the left and 0 on the right:

ey ({0 Tk HLx TR ).

The type of ks is similar: it also has label HH since it is trusted. However, this time there are
several possibilities for the messages it encrypts. Indeed, it can be used to encrypt Alice’s vote, or
Bob’s vote: thus, it inherits the two payload types, which are combined in disjunctive form. Since
the associated encryption key is public — it is the election public key — it can also be used by the
attacker to encrypt a dishonest vote, or in fact any arbitrary message. To reflect that, public key
types implicitly convey an additional payload type, the one characterising messages encrypted
by the attacker: these are of low confidentiality and integrity. Following these observations, we
can give the following type to ks:

ks - key™(([r LLI,T{“LI]]*HL*TH,HI) Vo ( le,Té“L’l]]*HL*TH,Hl)).

Key types are crucial to type-check the server code: we verify the signatures produced by A
and B and then derive from the types of k, and kj the types for these signed messages. We can
then use this ciphertext type to infer after decryption the vote cast by A and B, respectively.
While processing the other ballots, to avoid the replay attack described above, the server discards
any additional ciphertexts that are equal to the ones from A and B. To use the information
obtained from the types of the randomness, we encode this behaviour by having server discard
ciphertexts produced with randomness matching the one used by A or B. Given that these
random values are used only once, we know that the remaining ciphertexts must come from the
attacker and thus convey the same vote on the left- and on the right-hand side. This suffices
to type-check the final output of the votes in clear: the votes from Alice and Bob, as a set, are
{0,1} on both sides — as derived from the refinements in the ciphertext types — and other votes
are dishonest and thus the same on both sides. Thus the two tallied results on the left- and
right-hand side are the same, which fulfils trace equivalence.

The information carried by the types, and analysed during the typechecking, is however not
sufficient in general for equivalence. Consider for instance a key k with a simple type key™ (HL),
i.e. a trusted key (label HH) that can encrypt any message (HL being the most generic type:
the one for messages that should not be published, but cannot be trusted either). Consider
then the processes P = out(enc(0, k)).out(enc(0, %)), and @) = out(enc(0, k)).out(enc(1, k)).

2In the actual types later on, we will actually only specify the type of the key, rather than the key itself, in the
encryption type. We write the key itself in this overview for clarity.
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P outputs twice the same public value 0, encrypted with k, while @ first encrypts 0 and then
1. This is perfectly fine w.r.t. the type of the key k: that trusted key is allowed to encrypt
any message. Note however that we did not (contrary to the Helios example) randomise the
encryption here: hence the two ciphertexts published by P are the same, while the two messages
from @ are different. This trivially makes P and () non-equivalent, but cannot be detected by
the key type. Indeed, the key type only enforces local conditions each time the key is used to
encrypt or decrypt, while the problem here is more global — it involves different messages, in
different outputs, that could be in different parts of a real protocol. To detect such issues, we
need some sort of global view of the messages exchanged.

To produce this global view, the type system generates a set containing the sequence of all
pairs of messages produced in the outputs of the left and right processes — or in fact, as we
will explain in later sections, subterms of these messages. We call this set a constraint. For
instance, just to give an idea of what a constraint looks like, the constraints generated in the
Helios example are reported below:

C = {({sign(aenc((0, (z,r,)), Pk(ks)), ka) ~ sign(aenc((1, (z,7;)), pk(ks)), ka),
aenc((0, (z, 7)), pk(ks)) ~ aenc((1, (z,7)), Pk(ks)),
( y:75)): Pk(ks)), ko) ~ sign(aenc((0, (y, 7)), Pk(ks)), ks),

(
aenc((L, (y.7})), pk(ks)) ~ aenc((0, (y,7})). pk(ks))}.
@ LLy : L))}

sign(aenc((1,

Once typechecking is done, we basically need to check for the kind of repetitions displayed above
in the constraints. Intuitively, we need the sequences of messages on the left and the right to
be statically equivalent, which is the case in the Helios example above. The actual general
condition is actually a bit more complex, as these messages may contain uninstantiated variables,
for which we want to use the type information collected during typechecking. We will later on
define formally that condition, called consistency, that characterises the indistinguishability of
the messages output by the process. We are then able to show that typechecking with consistent
constraints soundly implies trace equivalence.

Non-uniformity A central assumption that would simplify the analysis when checking for
equivalence is uniform execution, meaning that the two processes of interest always take the
same branch in a branching statement. For instance, this means that all decryptions must always
succeed or fail equally in the two processes. That is for instance the case in the example described
above. It would be possible to enforce this condition, by restricting the type system so that
encryption and decryption are only allowed with keys whose equality on the left and on the right
can be statically proved.

There are however protocols that require non-uniform execution for a proof of trace equivalence,
e.g., the private authentication protocol [7]. This protocol aims at authenticating B to A,
anonymously w.r.t. other agents. More specifically, agent B may refuse to communicate with
agent A but a third agent D should not learn whether B declines communication with A or
not. The protocol can be informally described as follows, where pk(k) denotes the public key
associated to key k, and aenc(M, pk(k)) denotes the asymmetric encryption of message M with
this public key.

A — B: aenc((Ng,pk(kq)), pk(ks))

aenc((Ng, (Ny, pk(ks))), pk(kq)) if B accepts A’s request

B—A:
aenc(Ny, pk(k)) if B declines A’s request
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[(ky,kp) = key™(HL*LL) initial message uses same key on both sides
[(kq k) = key™(HL) authentication succeeded on the left, failed on the right
I'(k,k.) = key™(HL) authentication succeeded on the right, failed on the left
[(ka,ke) = key™(HL) authentication succeeded on both sides
I'(k,k) = key™(HL) authentication failed on both sides

Figure 2.1: Key types for the private authentication protocol

If B declines to communicate with A, he sends a decoy message aenc(Ny, pk(k)) where pk(k) is
a decoy key (no one knows the private key k).

Encrypting with different keys Let P,(kq,pk(ky)) model agent A willing to talk with B,
and Py(ky, pk(ks)) model agent B willing to talk with A (and declining requests from other
agents). We model the protocol as:

P,(kq,pky) = mnew Ny.out(aenc((Ny,pk(kqs)),pks)). in(2)
Py(kp,pks) = mnew Ny. in(z).
let y = adec(z,kp) in let y; = mi(y) in let yo = mao(y) in
if yo = pk, then
out(aenc((y1, (No, p(ks))), pka))
else out(aenc(Ny, pk(k)))

where adec(M, k) denotes asymmetric decryption of message M with private key k. We model
anonymity as the following equivalence, intuitively stating that an attacker should not be able to
tell whether B accepts requests from the agent A or C:

Po(ka,pk(kp)) | Po(kp, pk(ka)) =t Pulka,pk(kp)) | Po(ks, pk(ke))

We now show how we can type the protocol in order to show trace equivalence. The initiator
P, is trivially executing uniformly, since it does not contain any branching operations. We hence
focus on typing the responder P.

The beginning of the responder protocol can be typed using standard techniques. Then
however, we perform the test y» = pk(k,) on the left side and y» = pk(k.) on the right side. Since
we cannot statically determine the result of the two equality checks — and thus guarantee uniform
execution — we have to typecheck the four possible combinations of then and else branches.
This means we have to typecheck outputs of encryptions that use different keys on the left and
the right side.

To deal with this we do not assign types to single keys, but rather to pairs of keys (k, k') —
which we call bikeys — where k is the key used in the left process and k’ is the key used in the
right process. The key types used for typing are presented in Fig. 2.1.

As an example, we consider the combination of the then branch on the left with the else
branch on the right. This combination occurs when A is successfully authenticated on the left
side, while being rejected on the right side. We then have to typecheck B’s positive answer
together with the decoy message: I' - aenc((y1, (Ny, pk(ks))), pk(ky)) ~ aenc(Np, pk(k)) : LL.
For this we need the type for the bikey (kq, k).
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l = LL | HL | HH
KT := key!(T) | eqkey'(T) | seskey"®(T) with a € {1, 00}
T = l

| Tx*T

| T'vT

| KT | pkey(KT) | vkey(KT)

(T)y | {T}y

[7ha s 780 with a € {1, 00}

Figure 2.2: Types for terms

Decrypting non-uniformly When decrypting a ciphertext that was potentially generated
using two different keys on the left and the right side, we have to take all possibilities into account.
Consider the following extension of the process P, where agent A decrypts B’s message.

P,(kq,pky) = mnew Ny.out(aenc({(Ngy,pk(ks)),pks)). in(2).
let 2/ = adec(z, k,) in out(1)
else out(0)

In the decryption, there are the following possible cases:

e The message is a valid encryption supplied by the attacker (using the public key pk(k,)),
so we check the then branch on both sides with I'(z") = LL.

e The message is not a valid encryption supplied by the attacker so we check the else branch
on both sides.

e The message is a valid response from B. The keys used on the left and the right are then
one of the four possible combinations (kq, k), (kq, kc), (k, kc) and (k, k).

— In the first two cases the decryption will succeed on the left and fail on the right.
We hence check the then branch on the left with I'(2’) = HL with the else branch
on the right. If the type I'(kq, k) were different from I'(kq, k.), we would check this
combination twice, using the two different payload types.

— In the remaining two cases the decryption will fail on both sides. We hence would
have to check the two else branches (which however we already did).

While checking the then branch together with the else branch, we have to check ' =1 ~ 0 : LL,
which rightly fails, as the modified protocol no longer guarantees trace equivalence.

2.3 Typing

2.3.1 Types

In our type system we give types to pairs of messages — one from the left process and one from
the right one. We store the types of nonces, variables, and keys in a typing environment I'. While
we store a type for a single nonce or variable occurring in both processes, we assign a potentially
different type to every different combination of keys (k, k") used in the left and right process — so
called bikeys. This is an important non-standard feature that enables us to type protocols using
different encryption and decryption keys.
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T<:T

(SREFL) (SHicH)

T < T"
(STRANS)

T <:HL
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LL «LL <:LL

— (SPARS)
HH % T <: HH

(SKEY) (SEQKEY)

Ty« Ty <: T} * Ty

T xHH <:

(SPAIR)

SPAIRS’
- ( )

(SSESKEY)

key' (T) <: 1 eqkey' (T) <: key!(T)

T <: eqkey'(T")

seskey"®(T') <: eqkey'(T)

T <: eqkey!(T")

SP
pkey(T) <: LL (SPUBKEY)

T<:T

(SENcC)
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Figure 2.3: Subtyping Rules

The types for messages are defined in Figure 2.2. We consider a subtyping relation <: on
types, which is defined by subtyping rules given in Figure 2.3. In particular, rules SREFL and
STRrRANS make it reflexive and transitive, as expected from a subtyping relation. We explain
below the types and their meaning, as well as the remaining subtyping rules.

We assume three security labels HH, HL and LL, ranged over by [, whose first (resp. second)
component denotes the confidentiality (resp. integrity) level. Intuitively, values of high confiden-
tiality may never be output to the network in plain, and values of high integrity are guaranteed
not to originate from the attacker. Type HL is the least informative of these levels, as it gives no
information regarding the message it applies to. Such a message has high confidentiality and
low integrity: it can therefore not be published, but we do not know where it originates from or
what it contains. For this reason, any (typable) message could be given this type: rule SHIGH
expresses that any type is a subtype of HL.

Pair types T+ T" describe the type of their components: such a type indicates a pair whose
first component has type T and second component type T”. Four subtyping rules apply to pair
types. Rule SPAIR is the simplest: it allows to subtype types 71 and T separately into Ty, T4,
to get that the pair type 17 * T» is a subtype of T * T5. Rule SPAIRL states that LL x LL is a
subtype of LL: intuitively, it means that as long as two messages have low confidentiality and
can be published, then the same is true for the pair of these two messages. Finally, rules SPAIRS
and SPAIRS’ state that any pair type is a subtype of HH, as long as one of its two components is
HH. In terms of messages, this corresponds to the fact that as soon as one component of the pair
has high integrity, i.e. cannot have been constructed by the attacker, then the whole pair cannot
either.

The union type T' V T” is given to messages that can have type T or type T'. We call branches
all the types obtained by splitting the V type. More precisely:
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Definition 3 (Branches of a type). If T is a type, we write branches(T) the set of all types T’
such that T' is not a union type, and either

o I'=T';
o or there exist types Th,... Ty, T7,. .. T}, such that

T=TV..VTxVTVTV...VT,

This naturally extends to typing environments as follows.

Definition 4 (Branches of an environment). For a typing environment I', we write branches(I")
the sets of all environments I such that

e dom(I"”) = dom(T")
e Vz € dom(T"). I'(x) € branches(I'(z)).

The type 71 describes nonces and constants of security level I: the label a ranges over {oco, 1},
denoting whether the nonce is bound within a replication or not (constants are always typed
with a = 1). We assume a different identifier n for each constant and restriction in the process.
The type 75! is populated by a single name, (i.e., n describes a constant or a non-replicated
nonce) and 75 is a special type, that is instantiated to 7'#},1 in the jth replication of the process.

Type [r4%; 74-9] is a refinement type that restricts the set of possible values of a message to
values of type 75® on the left and type 7'}7;7“ on the right. For a refinement type [75%; 71] with

equal types on both sides we simply write 759

Keys can have three different types ranged over by KT, ordered by a subtyping relation
(rules SEQKEY, SSESKEY): seskey"®(T) <: eqkey'(T") <: key!(T'). For all three types, [ denotes
the security label of the key: as rule SKEY indicates, all of these types are subtypes of [. T
is the type of the payload that can be encrypted or signed with these keys. This allows us to
transfer typing information from one process to another one: e.g. when encrypting, we check
that the payload type is respected, so that we can be sure to get a value of the payload type
upon decryption. The three different types encode different relations between the left and the
right component of a bikey (k,k’). While type key'(T") can be given to bikeys with different
components k # k', type egkey’ (T') can only be given to a bikey provided the keys are equal on
both sides. Type seskeyl’“(T) additionally guarantees that the key in question is never associated
to a different key in another bikey, at any point in the execution. More precisely, type eqkey’ (T)
could be given to a bikey (k, k) even if at some point the bikey (k, k') for some k' # k occurs
(this bikey (k, k") would then be given some other type key’ (7”)). In contrast, if (k, k) is given
type Seskeyl’“(T), then k can never be associated with a different key k’: a bikey with type
seskeyl’“(T) is always the same on the left and the right throughout the whole process. We allow
for dynamic generation of keys of type seskeyl’a(T), and use a label a to denote whether the key
is generated under replication or not — just like for nonce types.

We denote the sets of all keys in an environment I' by:

keys(T) = {k € K| 3K € K. (k, k") € dom(T") v (K, k) € dom(T)}.
We also denote the set of all session keys in I' by:

seskeys(T') = {k € K | 3, a,T. T'(k, k) = seskey"*(T)}.
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For a key of type T, we use types pkey(7T') and vkey(T') for the corresponding public key
and verification key, and types (1"), and {T"},. for symmetric and asymmetric encryptions of
messages of type T” with this key. Public keys and verification keys can be treated as LL if the
corresponding keys are equal (rules SPUBKEY,SVKEY): a public key is safe to output, provided
that the same public key is output on the left and on the right. Subtyping on encryptions is
directly induced by subtyping of the payload types (rules SENC, SAENC).

2.3.2 Constraints

When typing messages, we generate constraints of the form (M ~ N), with the meaning that
the attacker may see M and N in the left and right process, respectively, and that these two
messages are thus required to be indistinguishable.

Definition 5 (Constraint). Formally, a constraint is defined as a pair of messages, separated by
the symbol ~:
U~V

As we will see, several constraints may be generated when typing messages: we thus also
consider sets of constraints, which we usually denote c. We will also consider couples (c,I")
composed of such a set, and a typing environment I', that contains type information on the
variables, gathered while typing the messages. Finally, when typechecking processes, we will
obtain several such tuples, and will thus need to handle sets of these, which we will call constraint
sets and usually denote C.

The next section describes the typing rules of our type system. Before we get to that, let us
define a few operations on constraints and constraint sets that will be useful. We first give an
intuition of these operations, before defining them formally.

When typechecking processes, as we will see in the next sections, we will obtain several
constraint sets, and we will need to join them by computing what we call their product union.
Basically, given two constraint sets C,C’, this operation yields a constraint set CUxC" that
contains all elements of the form ¢ U ¢/, where ¢ comes from C and ¢’ from C’. Of course, by
definition of a constraint sets, ¢ does not occur alone in C, but rather as a component of a tuple
(¢,T') (and similarly for ¢’). We thus also define a notion of union for typing environments. This
union corresponds to the intuition of simply putting together all the types contained in the
environments: the union of I' = [z : T] and IV = [y : 7] would simply be TUT = [z : T,y : T'].
This is well defined when I' and I have disjoint domains. In case they do not, say if both T'
and I” contain a binding for some variable z, we require that they agree on the type of z. This
property, which we call compatibility, is formally defined below.

Definition 6 (Compatible environments). We say that two typing environments T', T are
compatible if they are equal on the intersection of their domains, i.e. if

Vz € dom(T") N dom(I”). T'(z) = T'(x).
We can then define formally the union of two typing environments.

Definition 7 (Union of environments). Let I', T be two compatible environments. Their union
T'UTY is defined by

e dom(I"UT”) = dom(T") U dom(T")
e Vz € dom(T"). (CUT)(z) =T(x)
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e Vz € dom(I”). (TUT)(z) =T"(x)

Note that this function is well defined since I' and I are assumed to be compatible.
Finally we can define the following two operations on constraint sets.

Definition 8 (Operations on constraint sets). We define two operations on constraints.

e the product union of constraint sets:

CUxC' :={(cud,TUT) |
(e,T)eC A (d,T") € C" AT, T are compatible}

e the addition of a set of constraints ¢ to all elements of a constraint set C':

CUyd = CU{(c,0)}
={(cud,T) | (c,T) € C}

2.3.3 Typing messages

The typing judgement for messages is of the form I' - M ~ N : T' — ¢ which reads as follows:
under the environment I'; M and N are of type T'. Either this is a high confidentiality type, ¢.e.
M and N are not disclosed to the attacker, or M and N are indistinguishable for the attacker
provided the set of constraints c is consistent (the proper definition of consistency is provided in
a later section).

The most common use case for our typing rules for messages is when a message is output on
the network: in that case we want to ensure the messages on the left and right processes can
be given type LL, to check they do not let the attacker distinguish between the two processes.
Typing messages with other types is only used on subterms of output messages, to ensure that
the payload of an encryption or signature has the correct type, or to infer refinements so that we
are able to determine the outcome of equality checks and destructor applications statically.

We present the typing rules for messages in Figure 2.4 and comment on them in the following.

Rules for nonces Confidential nonces can be given their label from the typing environment
using rule TNONCE. Since their label prevents them from being released in clear, the attacker
cannot observe them and we do not need to add constraints for them. They can however be
output in encrypted form and will then appear in the constraints associated to the encryption.
Public nonces (labelled as LL) on the other hand are potentially already known by the attacker.
Thus they can only be typed if they are equal on both sides (rule TNONCEL), so as not to let
the attacker observe a difference between each side.

Rules for variables and pairs We require variables to be the same in the two processes,
deriving their type from the environment (TVAR). The rule for pairs operates recursively
component-wise (TPAIR).
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Figure 2.4: Rules for Messages
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Rules for keys A non-standard rule that is crucial for the typing of branching protocols is
rule TKEY. As the typing environment contains types for bikeys (k, k'), this rule allows us to
type two potentially different keys with their type from the environment.

With rules TPUBKEYL and TVKEYL, we can give type LL to a public key or verification
key that is explicitly associated with the same key on both sides. Rules TPUBKEY and TVKEY
on the other hand allow us to type different public keys pk(M), pk(N) (resp. verification keys)
with a public key type. They require that we can show there exists a valid key type for the terms
M and N. This highlights another important technical point: we do not only support a fixed
set of keys, but also allow for the usage of keys in variables, that have been received from the
network. That is, the messages M, N do not need to explicitly be written as keys in the process,
but rather might be variables containing for instance messages obtained from the network, or by
decrypting messages received from the network.

Rules for symmetric encryption To show that a message is of type (T');» — that is, a
message of type T encrypted symmetrically with a key of type T', we have to show that the
corresponding terms (used as plaintext and key) have exactly these types, in rule TENC. The
generated constraints are simply propagated. In addition we need to show that 7" is either (a
subtype of) a valid type for a key, or LL. The first case corresponds to encryption performed
by the processes using a message which can statically be shown to be a key. The second case
models encryption with untrusted keys received from the network. Note that this rule allows us
to encrypt messages with different keys in the two processes. It can for instance be used to type
a message encrypted with k£ on the left and a different key &’ on the right, provided the bikey
(k, k") can be given a key type. This can be done e.g. if the typing environment I' contains a
mapping for (k, k'), using rule TKEY.

For encryptions with honest keys, i.e. keys that can be given a key type with label HH, we
can use rule TENCH to give type LL to the messages. This rule requires that we can prove
the payload type is respected. More precisely, once two messages have been given type ('),
e.g. using rule TENC, if T” is (a subtype of) key™(T'), then the messages can be given type LL.
Indeed, the label HH guarantees that the key is secret, and therefore hides the plaintexts from
the attacker: thus we do not need to give them type LL. However, the type T' of the payload in
(T')» must be the same as the type T' of the messages the key can encrypt in key™(T). This
enforces that keys always encrypt messages of the correct type specified in their key types. As we
will see in the next section, this property will be used to extract information regarding the type
of the plaintext when decrypting messages. In addition, even though the attacker cannot read
the plaintext, he can perform an equality check on the ciphertext that he observes. Therefore,
we add the entire ciphertexts to the constraints

Rule TENCL allows us to give type LL to encryptions even if the key is corrupted. However,
we then have to type the plaintexts with type LL since we cannot guarantee their confidentiality.
This typically models the case of messages encrypted with keys known by the attacker in sessions
with dishonest users. Formally, this typing rule lets us give type LL to messages that already
have type (T)7, in the case where T" <: key™(T") (for some T”) is a subtype of a non-secret key
type; or if T/ = LL is not even a key type. It requires that the payload type T is LL. Since we
already add constraints for giving type LL to the plaintext, we do not need to add any additional
constraints regarding the ciphertexts.

Rules for asymmetric encryption The case of asymmetric encryption is quite similar,
although slightly more involved. The difference is that we can always choose to ignore the key

43



Chapter 2. Type System

type and use type LL to check the payload instead. This allows us to type messages produced by
the attacker, who, contrary to the symmetric case, always has access to the public key but does
not need to respect its type, even for honest keys. He may use the public key to encrypt plaintexts
whose type do not match the one specified in the key type. However, any messages encrypted
this way are already known by the attacker, and must therefore be of type LL. Therefore, we
allow giving type LL to encryptions where the payload does not have the expected type even
when the key is honest, provided the payload itself can be given type LL.

As in the symmetric case, to show that a message is of type {T'},/, i.e. the type for messages
of type T encrypted asymmetrically with a key of type T”, rule TAENC requires that the plaintext
and key can be given type T and T” respectively. In addition 7" must be is either a valid type for
a public key, or LL. Here again, the second case models encryption with untrusted keys received
from the network.

When encrypting with honest keys (label HH), rule TAENCH, similarly to rule TENCH, lets
us give type LL to messages of type {1}, provided that 7 is a public key type associated
with a confidential key, and that T is indeed the payload type specified in the key type. Here
also we add the entire encryptions to the constraints, since the attacker can only check different
encryptions for equality, but not open them to reveal the plaintext.

Rule TAENCL is similar to rule TENCL, except that, as explained, the encryption key is
public, even when the associated decryption key is secret, 4.e. if the key has type pkey(key™(T)).
The attacker may use it to encrypt messages of the “wrong” type, that is, a type different from T'.
Hence rule TAENCL allows us to give type LL to encryptions even if we do not respect the payload
type, or if the key is corrupted. We then have to type the plaintexts with type LL since we
cannot guarantee their confidentiality (when the encryption is produced by the protocol agents)
or since they are already known by the attacker (when it is produced by him). Additionally, we
have to ensure that the same key is used in both processes, because the attacker might possess
the corresponding private keys and test which decryption succeeds. This is done by requiring
that the private key has type egkey!(T) (rather than just key!(T)). As in the symmetric case,
since we already add constraints for giving type LL to the plaintext, we do not need to add any
additional constraints.

Rules for signatures Signatures are also handled similarly, with the difference that, contrary
to encryption, they do not hide the contents of the message. Therefore we need not only to
ensure that the message to be signed correctly has the type specified by the key type, but also
to give it type LL even if an honest key is used, as outputting the signature would reveal the
payload to the attacker.

Formally, rule TSIGNH lets us type signatures with honest keys. We can give type LL to
messages sign(M, M’) on the left and sign(N, N’) on the right, provided that

e the terms used as signing keys (M’, N’) can be given a key type eqkey™(T) (for some T');

e the payloads M, N can be given the type T, which the key type specifies as the expected
payload type for these keys;

e the payloads can also be given type LL, as they could be seen by the attacker.

Note that the key type is required to be eqkey™(T) and not just key™(T'): indeed, the attacker
has access to all verification keys, and thus would notice messages being signed with different
keys on the left and on the right. We additionally collect together all the constraints generated
when typing the payloads.
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Rule TSIGNL is similar for the case of dishonest keys, that have type LL, except that in that
case the payload type is not enforced, as the attacker may sign messages of any type.

Rules for hashes The case of hashing can be seen as similar to asymmetric encryption with
honest keys, but is simpler, as we do not have to take key types into account. The first typing rule
for hashes (THASH) gives them type LL and adds the term to the constraints, only requiring that
the arguments of the hash function can be given type HL, the least restrictive type. Intuitively
this is justified, because the hash function makes it impossible to recover the argument. Thus,
publishing a hash of any messages is fine regardless of their types: the hash simply must be
added to the constraint, as the attacker may still perform equality checks on hashes he sees.

The second rule (THASHL) gives type LL only if we can also give type LL to the argument of
the hash function, but does not add any constraints on its own, and just passes on the constraints
created for the arguments. This means we are typing the message as if the hash function would
not have been applied and use the message without the hash, which is a strictly stronger result.
Both rules have their applications: while the former has to be used whenever we hash a secret,
the latter may be useful to avoid the creation of unnecessary constraints when hashing terms like
constants or public nonces.

Rules for HL, subtyping, and union types Rule THIGH states that we can give type HL to
any message, which intuitively means that it is always safe to treat any message as if it should
not be published. The rule simply enforces that the message is well-formed in the sense that it
only contains names, variables, and keys that are either bound in the typing environment, or
free (i.e. generated by the attacker).

As expected, rule TSUB allows us to subtype messages according to the subtyping relation.

Rule TOR also follows the intuition: it allows us to give a union type to messages, as long as
they are typable with at least one of the two types.

Rules for refinements The remaining rules deal with refinement types. TLR! and TLR>
are the introduction rules for them. Two names m, n can be given type [74%; 749] if 75 and
Tfl/’“ are their respective type in I'. The same is true for constant and public names: they do
not have a type in I' and are instead given label LL. Nonce generated by the protocol can be
replicated or not (both rules TLR! and TLR*® apply), while public names and constant cannot
be marked as replicated (only rule TLR! applies to them).

Rules TLR’ and TLRL’ are the corresponding elimination rules: similarly to rules TNONCE
and TNONCEL, they allow to give type [ € {HH,HL,LL} to messages with a refinement type with
the corresponding label [75¢; 75%]. When | = LL, they additionally require that the two names
m and n are the same, just as in TNONCEL.

Finally, TLRVAR allows to derive a new refinement type for two variables for which we
have singleton refinement types, by taking the left refinement of the left variable and the right
refinement of the right variable. Formally, if  has type [75!'; 7/"1] and y has type [[7'717;/,’1 : Tfll,ﬁ’l]],
then a message consisting of x on the left and y on the right can be given type [[Tf;ll ; Tf:;/’l]]. The
reason why this rule only applies with non-replicated refinement types lies in the intuition of the
replicated types. A replicated type [75°; TTZL/’OO]] is intended to represent the type for a nonce
generated when invoking the randomness generator in one copy of a replicated process. More
precisely, the index of the replicated copy in question is intended to be the same on both sides.
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That is, this nonce should have been generated in the first replication on both sides, or in the
second replication on both sides, etc. but not e.g. in the first on the left and the second on the
right. Applying rule TLRVAR with replicated refinement types would break this intuition: z
and y could very well contain nonces generated in different replications of the process. Hence,
we restrict it to unreplicated types.

We will see applications of this rule in the e-voting protocol, where we use it to combine A’s
vote (0 on the left, 1 on the right) and B’s vote (1 on the left, 0 on the right), into a message
that is the same on both sides.

2.3.4 Typing Processes

From now on, we assume that processes assign a type to freshly generated nonces and keys. That
is, new n.P is now of the form new n : 7. P, and similarly for new k.P. This requires a (very
light) type annotation from the user. In addition, we assume in this section that P and @ do
not contain replication and that variables and names are renamed to avoid any capture.

The typing judgement for processes is of the form I' - P ~ @) — C and can be interpreted
as follows: if two processes P and @) can be typed in I" and if the generated constraint set C' is
consistent, then P and () are trace equivalent.

When typing processes, the typing environment I' is passed down and extended from the
root towards the leaves of the syntax tree of the process, i.e., following the execution semantics.
The generated constraints C' however, are passed up from the leaves towards the root, so that at
the root we get all generated constraints, modelling the attacker’s global view on the process
execution.

More precisely, each possible execution path of the process - there may be multiple paths
because of conditionals - creates its own set of constraints ¢ together with the typing environment
I' that contains types for all names and variables appearing in ¢. Hence, typing a pair of processes
P, Q yields a constraint set ', which, as defined in Section 2.3.2, is a set elements of the form
(¢,T) for a set of constraints c¢. Keeping track of the types assigned to variables when typing is
required for the constraint checking procedure, as they help us to be more precise when checking
the consistency of constraints.

Well-formed environment We first introduce a notion of well-formedness for typing envi-
ronments. The judgement I' F ¢ reads “I" is well-formed”, and is defined in Figure 2.5.

Basically, this condition ensures that the environment is correctly constructed. First, a
well-formed environment I' must only contain bindings for nonces, variables, and bikeys. It can
also not contain several types for the same nonce, variable, or bikey. A name n € BN can only
be bound to a nonce type 75¢ (rule GNONCE); a variable  can be bound to any type (rule
GVAR); and a bikey (k, k') € BK? must be associated with a key type. The three rules for bikeys
enforce the intuitive meaning of the different key types explained earlier (Section 2.1). They
basically ensure that seskey"®(T") and eqkey!(T") are only given when the key is the same on both
sides, and that in addition a key with type seskeyl’a(T) is never part of another bikey.

More precisely a bikey (k, k') can be bound to either

e a key type seskey"?(T) for some a,l,T (rule GSESKEY): in that case, k must be equal to
k', and this key must not appear in any other bikey bound in T.

e a key type eqkeyl(T ) (rule GEQKEY): as in the previous case, we require that k = k’. k
may appear in other bikeys bound in I', but we require that any such bikey is given a key
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Figure 2.5: Well-formedness of the typing environment

type with the same security label [. It would indeed not make sense for a key to be secret
when considered in one bikey, and known by the attacker in another bikey. Note that the
condition that (k, k) itself is not already bound in I' implies in particular that & does not
already have type seskey®(T).

e a key type key!(T) (rule GKEY). In that case, we allow k and &’ to be different, but we
require that [ = HH: indeed, a bikey with a different value on either side must be kept
secret, or the attacker could use it to distinguish the two processes. As before, we require
that neither k nor k' already appear with a seskeyl’a(T) type, and that any other binding
for k or k' has the same label HH (as rule GKEY already implies this last condition for type
key!(T"), we only need to check it when the type is eqkey'(T)).

Typing processes: inputs, outputs, parallel branching Our typing rules for processes
are presented in Figure 2.6 and explained in the following. Rule PZERO copies the current typing
environment in the constraints and checks the well-formedness of the environment (I' F ¢). As
this instruction is at the end of every execution path, we use the typing environment at this
point for constraint checking, as it is guaranteed to contain an entry for all nonces and variables
that may have been used on this execution path and hence may appear in the constraints. In
addition, we require that all variables with union types in I have been split beforehand, 7.e. that
branches(I') = {I'}. As we will see, this can be done by applying rule POR as needed when
reaching the null process.

Messages output on the network are possibly learned by the attacker. Rule POUT states
that we can output messages to the network if we can type them with type LL, i.e., they are
indistinguishable to the attacker, provided that the generated set ¢ of constraints is consistent.
The constraints of ¢ are then added to all constraints in the constraint set C', using the Uy
operator defined earlier in Section 2.3.2.
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Figure 2.6: Rules for processes (1)
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I' F adec(z,y) ~ adec(z,y) : LL

[(k, k) = seskey"®(T") I'(z) = {T}pkey(seskeyl’a(T’))
'+ adec(x, k) ~ adec(z,k) : T

(DADECT)

I'(y) = Seskeyl’“(T') I'(z) = {T}pkey(seskeyl,u(T/))
I' - adec(x,y) ~ adec(z,y) : T
I(k, k) <: key™(T) I'(z) =LL

I' - checksign(x, vk(k)) ~ checksign(z, vk(k)) :

(DADECT”)

(DCHECKH)
T

L(k k) <:key"(T)  T'(z) =1L
I' F checksign(z, vk(k)) ~ checksign(z,vk(k)) : LL (DCHECKL)

I'(y) = vkey(T) T <: eqkey™(T") I'(x) =LL

; (DCHECKH”)
I' - checksign(z,y) ~ checksign(z,y) : T
[(y) = vkey(T) AT <: eqkey™(T")) or I'(y) =LL  I'(z) =LL
(I(y) = viey(T) A T <: eqkey™(T")) or T(y) ) =L moxt)
I' F checksign(x,y) ~ checksign(x,y) : LL
D(z) =TT D(z)=Tx*T
(@) =T+ (DFsT) @O =TT )
FEm(z) ~m(z): T 'k mo(x) ~mo(x) : T
@) (DFsTL) @) (DSNDL)
' m(x) ~m(x): LL 't mo(x) ~ mo(x) : LL

Figure 2.8: Destructor Rules
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Conversely, messages input from the network are stored in variables to which we give type LL
(rule PIN), since the message is known to or may even originate from the attacker.

Rule PNEW introduces a new nonce, which may be used in the continuation processes. This
nonce is added with its type to the environment. Similarly, rule PNEWKEY allows us to generate
new session keys at runtime, which is useful to accurately model security protocols.

In rule PPAR, when typechecking parallel composition P | P/ ~ @ | Q', we first typecheck
the individual subprocesses P ~ @, P’ ~ @’. We then take the product union CUxC” (as defined
in Section 2.3.2) of the generated constraint sets C, C’ as the new constraint set.

Intuitively, the elements in C' correspond to the constraints for each possible execution path
in P and @, and the ones in C’ to the execution paths of P’ and @Q'. Hence for their parallel
composition, we need to combine each possible execution of P (and ) with each possible
execution of P’ (and @'). The product union operation does exactly that. The combinations
that are discarded due to incompatible environments correspond to impossible executions (e.g.,
taking the left branch in P and the right branch in P’ in two conditionals with the same guard).

POR is the elimination rule for union types, which requires the continuation process to be
well-typed with both types.

Generic rules for destructor application Several rules handle the application of destructors
to messages: a general rule, PLET, and four additional rules for specific cases, PLETDEC,
PLETADECSAME, PLETADECDIFF, and PLETLR.

First, rule PLET applies to the case where we can statically know that a destructor application
succeeds or fails equally in the two processes. To ensure this property, for this rule, we only
allow the same destructor to be applied to the same variable in both processes. As usual, we
then typecheck the two then-branches together, as well as the else branches, and then take the
union of the corresponding constraints. Rule PLET relies on additional rules for destructors. We
present them in Figure 2.8.

e Rule DDECL simply states that decrypting a variable of type LL (typically input from
the network) with an untrusted key (label LL) yields a result of type LL. Rule DDECL’
is similar, but can be applied when decrypting using a variable as a key, as opposed to
decrypting with a message that is explicitly a key. Rules DADECL and DADECL’ are
analogous to rules DDECL and DDECL’ respectively, for the case of asymmetric decryption.

e Symmetric decryption with a trusted session key (with label HH) returns, in case of success,
a value of the key’s payload type (rule DDECH’). Note that this rule only applies when
the key has type seskey™?(T). Indeed, using a trusted key is not sufficient to know that
decryption will succeed or fail equally on both sides: we need to know that, when encrypting,
this key can never be used to encrypt a message on the left while a different key would be
used on the right (and conversely). This is enforced by requiring that the key never appears
with another key in a bikey in I'. Type seskey™%(T) exactly expresses this condition. To
decrypt with a key that does appear in other bikeys, a more complex rule (PLETDEC) is
required, which we will present later. Rule DDECH’ only applies to the case where the key
is a variable. No additional “DDECH?” rule is used for the case where the key is explicit, as
rule PLETDEC will apply to all decryptions with trusted, explicit symmetric keys.

e Rule DADECH’ is similar to rule DDECH’, but for the asymmetric case. As stated earlier,
in that case, even when decrypting with a trusted key, the ciphertext may have been
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constructed by the attacker who knows the public key. Hence, decryption yields a message
of type T' vV LL, rather than simply 7. Here again it is important that the key is of
type seskey™®(T'), since this guarantees that the key is never used in combination with a
different key and hence decryption will always equally succeed or fail in both processes. As
before, the other cases are handled by special rules PLETADECSAME and PLETADECDIFF.

e Rule DDECT treats the case in which we know that the variable x is a symmetric encryption
of a specific type. If the type of the key used for decryption matches the key type used for
encryption, we know the exact type of the result of a successful decryption. DDECT’ is
similar to DDECT, with a variable as key. Asymmetric decryption is handled by analogous
rules DADECT and DADECT".

e Verifying a signature with the verification key associated to a trusted key yields a message
of the payload type specified in the type of the key in rule DCHECKH. If the signature
key is not trusted, we simply obtain an untrusted message, of type LL, as the signature
may have been produced by the attacker (rule DCHECKL). Note that the typing rules
for messages only allow to sign messages with the same key on either side, as using a
different key would let the attacker distinguish between the two sides. Hence, as long as
the signature is checked using the same key on both sides, we know that the verification
will succeed or fail equally on both sides.

Rules DCHECKH’ and DCHECKL’ are similar, except a variable is used as a verification
key.

e Finally, rules DFsT, DSND apply when projecting pairs: if a message has type T * T", its
first and second projections respectively have types T and T”. Rules DFsTL and DSNDL
state that projecting an untrusted message of type LL yields another untrusted message.

Rules for symmetric decryption Rule PLETDEC handles symmetric decryptions where we
use fixed honest keys ki, ky (labelled HH as a bikey in I') for decryption in each process. In our
type system, we allow encryptions with potentially different keys on either side, which requires
cross-case validation in order to retain soundness. That is, since different keys may be used, we
cannot statically know that decryption will succeed or fail equally on both sides. For instance
decrypting with k1 on the left and ks on the right a message encrypted with k; on the left
and some other key ks on the right would succeed on the left but fail on the right. Still, the
number of possible combinations of encryption keys is limited by the assignments in the typing
environment I'. The typing rules for messages intuitively ensure that the messages we encounter
can only be encrypted with keys that match one of the bikeys in I'. To cover all the possibilities,
we thus type the following combinations of continuation processes:

e Both then branches: In this case we know that decryption succeeds on both sides, i.e. key
k1 was used for encryption on the left, and ks on the right. Since I'(ky, ko) <: key™(T), we
know that in this case the payload type is T, and we type the continuation with I',x : T

e Both else branches: If decryption fails on both sides, we type the two else branches
without introducing any new variables.

e Left then, right else: The encryption may have been created with key k1 on the left side
and another key than ks on the right side. Hence, we consider each k3 # ko such that
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['(k1, k3) maps to a key type with some payload type T”'. Note that by well-formedness of
I', all possible such bikeys also have label HH. For each such k’, we have to typecheck the
left then branch and the right else branch with ",z : T".

e Left else, right then: This case is analogous to the previous one.

The generated set of constraints is then simply the union of all generated constraints for the
subprocesses, accounting for all possible execution paths.

Rules for asymmetric decryption The rules for asymmetric decryption are similar, except
they are split into two rules, PLETADECSAME and PLETADECDIFF, depending on whether the
decryption key is the same on both sides or not. As in the symmetric case, we cannot know that
decryption succeeds or fails equally on the left and the right, and we thus need to consider all
bikeys in I" where the decryption keys occur. The difference lies in the fact that, contrary to the
symmetric case, even when the key is trusted, the attacker knows the public key, and may thus
have produced the ciphertext.

If the same decryption key is used on both sides, when decryption succeeds on both sides,
it may yield a plaintext provided by the attacker. Hence we additionally typecheck both then-
branches, giving type LL to the plaintext. However when decryption fails e.g. on the left and
succeeds on the right, this means the ciphertext we tried to decrypt was not encrypted with the
same public key on both sides. Thus it cannot originate from the attacker, who has to behave
the same on both sides. We therefore do not need to typecheck the cross-cases with a plaintext
of type LL (but only with the payload type specified in the key types).

If different keys ki, ko are used to decrypt, when decryption succeeds on both sides, we
know for the same reason that the message was not constructed by the attacker, and thus we
do not need to typecheck the then-branches with type LL. However we might be decrypting a
message from the attacker, encrypted with e.g. pk(k1) on both sides. Then decryption would
then succeed on the left and fail on the right: we need to typecheck the left then-branch together
with the right else-branch, while considering the plaintext to be LL (and conversely for the case
of messages encrypted with pk(kz)).

In the special case in which we know that the concrete value of the argument of the destructor
application is a nonce or constant due to a refinement type, and we know statically that any
destructor application will fail, we only need to type-check the else branch (rule PLETLR).

Rules for conditional branching The remaining rules handle conditional branching. As for
destructor applications, the difficulty while typing conditionals is to determine whether the same
branch is taken in both processes. One way to ensure this is with a trick: in rule PIFL, we type
both the left and the right operands of the conditional with type LL and add both generated
sets of constraints to the constraint set. Intuitively, this means that the attacker could perform
the equality test himself, since the guard is of type LL, which means that the conditional must
take the same branch on the left and on the right. These are exactly the same steps that we
would take to output the respective values on the network (see rule POUT), hence it would be
safe to output them on the network. It then follows directly that the equality check evaluates to
the same value in the two processes, otherwise the attacker could use his observations on the
(theoretical) outputs to distinguish the processes.

Rule PIFP allows us to do this without generating new constraints, in the special case where
one of the messages being compared is the same public name or constant on both sides. Indeed
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in that case, regardless of constraints, the other message (of type LL) has to be either equal to
that name on both sides, or different from it on both sides.

In the special case in which we can statically determine the concrete value of the terms in the
conditional, thanks to the refinement types, we have to typecheck only the single combination of
branches that will be executed (rule PIFLR). Note that this rule only applies for non-replicated
nonce types (with a = 1): intuitively, these types can only be given to one single nonce.

This is however not the case of replicated nonce types (with a = 00): we cannot know whether
we are comparing the value of two copies of a nonce coming from different instances of a replicated
process, or from the same instance. This case is handled by rule PIFLR’*. Although we know
that the nonces on both sides are of the same type, we cannot assume that they are equal. Yet,
a replicated refinement type guarantees us that any nonce with this type has been generated in
the same replicated instance on the left and on the right. This means that the two nonces we
compare either come from the same instance on both sides, or they come from different instances
on both sides. Thus the equality check always yields the same result in the two processes.

Similarly, when the type of one of the messages being compared indicates it is a pair, while
the other has a nonce type, we know that the equality check will always fail on both sides. Rule
PIFI allows us to only typecheck the else-branches. This could easily be extended to more cases
of incompatible types.

All these special cases highlight how a careful treatment of names in terms of equivalence
classes (statically captured by types) is a powerful device to enhance the expressiveness of the
analysis.

Another special case is if the messages being compared are of type HH on the left, and of type
LL on the right. As a secret of high integrity can never be equal to a public value of low integrity,
we know that both processes will take the else branch (PIFS). This rule is crucial, since it may
allow us to prune the LL typing branch produced by asymmetric decryption.

Finally, rule PIFALL lets us typecheck any conditional by simply checking the four possible
branch combinations. In contrast to the other rules for conditionals that we presented, this rule
does not require any other preconditions or checks on the terms M, M’, N, N'.

Remark As a final remark on the typing rules, notice that we do not have any typing rule for
replication: this is in line with our general idea of typing a bounded number of sessions and then
extending this result to the unbounded case in the constraint checking phase, as detailed in the
next sections.

2.4 Constraints

Our type system collects constraints that intuitively correspond to (an overapproximation of)
symbolic messages that the attacker may see (or deduce) during an execution of the process.
Therefore, intuitively, two processes are in trace equivalence only if the collected constraints are
in static equivalence for any plausible instantiation of the variables they contain.

However, checking static equivalence of symbolic frames for exactly the instantiations that
correspond to a real execution may be as hard as checking trace equivalence [1(]. Conversely,
checking static equivalence for all possible instantiations may be too strong and may prevent
proving equivalence of processes. Instead, we use again the abstraction of types to overapproximate
the set of possible instantiations. We use the typing information gathered by our type system,
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and we consider only instantiations that comply with the type. Such instantiations are said to
be well-typed. Actually, we even restrict our attention to instantiations where variables of type
LL are only replaced with deducible terms.

Hence, we define a constraint to be consistent if the corresponding two frames are in static
equivalence for any instantiation that can be typed and produces constraints that are included
in the original constraint.

Formally, we first introduce the following ingredients.

Definition 9 (Frames associated to a set of constraints). If ¢ is a set of constraints, let ¢¢(c)
and ¢, (c) denote the frames composed of the left and right terms of the constraints respectively
(in the same fized order).

Definition 10 (Frames associated to environments). If I' is a typing environment, i, denotes
the frame that is composed of all low confidentiality nonces and keys in I, i.e. all nonces n
such that 3a. T'(n) = 7% and keys k such that IT.T'(k, k) <: key™™(T), as well as all public
encryption keys pk(k) and verification keys vk(k) for k € keys(I'). This intuitively corresponds
to the initial knowledge of the attacker.

Definition 11 (Notations). For a typing environment I', we denote by I'x its restriction to
variables, and by I'xr xc its restriction to names and bikeys.

Definition 12 (Well-typed substitutions). Two ground substitutions o,o’ are well-typed in T
with constraint ¢, if they preserve the types for variables in T, i.e.

e dom(c) = dom(o’) = dom(Ty),

o and V. I'F o(z) ~ o'(z) : I'(x) — ¢y for some ¢ such that ¢ = Uycdom(r ) Co-
We then write Uy b0 ~ 0’ : Ty — ¢,.

The instantiation of a constraint is defined as expected:

Definition 13 (Instantiation of constraints). If ¢ is a set of constraints, and o, o' are two
substitutions, let [c], .. be the instantiation of ¢ by o on the left and o’ on the right, that is,
[lyyr = {Mo ~ No' | M ~ N € c}.

Similarly we write for a constraint set C

[Clsor = {elsor, T) [ (e, T) € CF

We can now formally define the consistency property.

Definition 14 (Consistency). A set of constraints ¢ is consistent in an environment I' if
for all subsets ¢ C ¢ and I" C T such that Iy x = Tac and vars(c’) € dom(IV), for all
(ground) substitutions 0,0’ well-typed in T' with a constraint ¢, such that ¢, C [] the frames
oL U de()o and ¢y U ¢, (<)o’ are statically equivalent.

We say that (¢,T) is consistent if ¢ is consistent in T', and that a constraint set C' is consistent
if each element (c,T") € C is consistent.

o,0'7

Note that not only do we restrict our attention to instantiations o, o’ that are well-typed, but
we also require that typechecking them produces as constraints a subset of the constraints for
the frames ¢, ¢’ (once instantiated). The intuition behind this restriction is that the constraint
cg should contain everything the attacker can observe in an execution that produces the frames
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¢, ¢'. Similarly, the constraint ¢, is intended to contain what the attacker can observe from the
public messages (i.e. those of type LL) in o, ¢’. Intuitively, in any actual run of the protocol,
the information learned from c, should already be contained in the information learned from cg,
which is why it is sufficient to check consistency for instantiations that satisfy this condition. We
will show later on that this intuition is correct in our type system.

2.5 Soundness

In this section, we provide our first main result: the soundness of our type system, i.e. whenever
two processes can be typed with consistent constraints, then they are in trace equivalence.

Our type system soundly enforces trace equivalence: if we can typecheck P and @ then P
and @) are equivalent, provided that the corresponding constraint set is consistent.

Theorem 1 (Typing implies trace equivalence). For all P, Q, and C, for all T containing only
keys, if T'H P~ Q — C and C is consistent, then P =; Q.

We now present the proof for Theorem 1. Rather than a fully formal proof, we choose to
give an intuition of the structure of the proof, by only describing the main lemmas, and how
they follow from one another. The fully detailed proofs are provided in Appendix A.1. Unless
specified otherwise, the environments I" considered in the lemmas are implicitly assumed to be
well-formed.

The core of the proof is an invariant that basically states that when two processes P, () can
be typechecked with a consistent constraint, then any reduction step performed in P can be
mimicked by one or several steps in (), with the same observable action. The processes obtained
after reduction can still be typechecked with consistent constraints, and the frames of output
messages during the reduction can be given type LL. This invariant will be formally stated later.

Intuitively, by applying this invariant successively, we know that for such P, ), any chain
of reduction in P can be simulated in () so that the sequences of messages on the left and on
the right have type LL. We then prove that this implies these two sequences of messages are
statically equivalent. This shows the trace inclusion P C; (), and by symmetry we obtain the
other inclusion, proving that the two processes are trace equivalent.

In the following, we present some of the main lemmas that we use to prove the invariant
and the soundness theorem, explain why they are needed, and sketch their proofs somewhat
informally. The fully formal proofs, and the precise statement of all lemmas, can be found in
Appendix A.1.

We first establish several technical lemmas regarding the type system. These are used
throughout the rest of the proofs for technical points. These technical details will not really
appear in this rather high-level presentation of the proof, and hence we do not present here all
these lemmas. To give an idea of the kind of properties they express, we give three examples of
such lemmas. We do not however detail their proof: they are quite simple, and can be found in
appendix A.l.

Lemma 1 (Typing is preserved by extending the environment). Consider processes P, Q) that
typecheck inT': T'F P ~ @Q — C. Assume I contains only bindings for variables, that do not
occur in dom(T") and are not bound in P or Q. Also assume I does not contain union types,
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i.e. branches(I") = {I"}*. Then P, Q still typecheck in TUT': TUT' F P ~ Q — C', where
C"={(c¢,T.UT")|(c,T.) € C}.

The proof for this lemma follows from a clear induction on the type derivation for the
judgement I' - P ~ @ — C.

Lemma 2 (Consistency for Subsets).
e If (¢,T) is consistent, and ¢ C ¢ then (¢/,T") is consistent.
e Let C be a consistent constraint set. Then every subset C' C C is also consistent.
o If CUyc is consistent then C also is.
This property follows quite easily from the definition of consistency.

Lemma 3 (Substitution preserves typing). Consider messages M, N of type T in T, i.e. T'

M ~ N : T — ¢ for some c. Consider two ground substitutions o, o’ that correctly evaluate, i.e.

V. o(x)l# L (and similarly for o’). Assume they are well-typed, i.e. Ty xct-o0 ~ o' :Tx — c,.
Then Uy b Mo ~No': T — ¢, for some ¢ C [c], ., Uco.

Here again, the proof is an easy induction on the type derivation for ' M ~ N : T — c.

We then establish another series of lemmas, that show the types used to describe the structure
of terms (i.e. (T')ps, {T} v, etc.) correctly follow the intuition we gave for them earlier.

For instance, here is (part of) the lemma for symmetric encryptions. The first point of the
lemma states that messages of type ("), are indeed either the encryption of a message of type T’
with a message of type 1", or variables (intuitively some = such that I'(z) = (T");/). The second
one states that if two messages have type LL, and one of them is an encryption, then the other
one also is. In addition, either the terms used as keys can be given a trusted key type (label HH),
and then the plaintexts have the expected payload type, or the terms used as keys as well as the
plaintexts have type LL. Intuitively, in the first case the encryption must have been produced by
a legitimate process (since the key is secret), and the typechecking thus enforces that process
provided a payload with the correct type. In the second case, the key is not trusted, and thus
the encrypted message may have been generated by the attacker: the payload has type LL.

Lemma 4 (Symmetric encryption types). For all T,T,T", M, N, My, M, c:

o IfT'-M~N :(T)p — c then

— either M = enc(My, M), N = enc(N1, No) and ¢ = ¢1 U ca, for some My, My, Ny,
No, c1, co such that ' =My ~ Ny : T — c1, and T - My ~ Ny : T" — ¢o,

— or M and N are variables.
e [fT'F enc(Myi, M) ~ N :LL — ¢ then N = enc(Ny, Na) for some N1, Na, and

—either T' - My ~ Ny : T' — ¢, I' = My ~ Ny : key™(T') — c3, and ¢ =
{enc(My, My) ~ N} Ucy Ucy, for some T, c1, ca;

—orI'F My ~Ny:LL— ¢, ' My ~ Ny :LL — ¢9, and ¢ = ¢1 U ¢cg for some c1, cs.

3In the full proof we actually prove a more general lemma, that does not require this condition, but we only
present this particular case here, as it makes for a more legible statement.
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Proof sketch. Both points are proved by induction on the typing derivation: we study all possible
cases for the last rule of the derivation, and all of them are rather straightforward. For the first
point for instance, this last rule can only be TENC, TVAR, or TSUB, by the form of the type
(T')7s. In the TENC and T'VAR cases, the premises of the rule directly prove the claim. In the
TSUB case, earlier technical lemmas (described in Appendix A.1) show us that before subtyping,
M and N had necessarily been given type (T"),, for some T"” <: T: applying the induction
hypothesis to that judgement proves the claim. ]

Armed with these technical lemmas, we are now able to prove more meaningful properties
about the behaviour of messages that can be typed.

The following lemma states that the typing rules for destructors, used in rule PLET, are
sound. More precisely, we establish that when a destructor is given typed T by these rules, then
instantiating it in a well-typed manner produces a term that either fails to evaluate on both sides,
or evaluates on both sides to messages of type T'. In addition, in the second case, typing the
messages produces as constraints a subset of the constraints associated with the instantiation.

Lemma 5 (Soundness of destructor rules). Consider destructors d, d', and T, T, ¢ such that
I'td~d :T. Let o, o' be ground substitutions such that dom(o) = dom(o’) = vars(d)Uvars(d'),
and 'y t=0 ~ o' :T'x = cq, where T =Ty UT |qom(e)- Then

1. (do)l= L <= (d'd')|= L
2. And if (do)l# L then there exists ¢ C ¢, such that

Lyt (do)~ (d'o"): T — ¢

Proof sketch. We prove this property by examining, for each sort of destructor (symmetric and
asymmetric decryption, signature verification, pair projection) which of the rules can lead to
the judgement I' = d ~ d’' : T. For instance, in the case of symmetric decryption, one possibility
is that this judgement was obtained by rule DDECL. In that case we know that 7' = LL, and
that d = d’' = dec(x, k) for some z, k, T such that T'(k, k) <: key"™(T") and I'(z) = LL. Hence, by
well-typedness, I'y i - o(z) ~ o/(x) : LL — ¢ for some ¢ C ¢,. Lemma 4 then guarantees us that
if o(x) is indeed an encryption with key k, then so is ¢/(z), and conversely. This proves the first
point: decryption either succeeds on both sides, or fails on both sides. In addition, Lemma 4 also
implies that when decryption succeeds, the plaintexts in the two encryptions have type LL with
a constraint ¢’ C ¢ C ¢,. This proves the claim for that case. All the other cases have similar
proofs, that use the other technical lemmas mentioned earlier. ]

This property is required to establish our invariant: indeed, we need to know that after
performing a reduction step in well-typed processes, we still obtain well-typed processes. In the
case of a destructor application, if the processes were typechecked using rule PLET, we know
that the (uninstantiated) destructor is given some type 7' by the destructor typing rules. We
also know that the two else-branches typecheck, as well as the two then-branches when adding to
the environment that the destructor produced a term of type 7. This suffices to show that the
two processes still typecheck after reduction only if we can be sure that the two processes follow
the same branch (i.e., both then-branches or both else-branches), and that when the destructor
application succeeds, it indeed yields a term of type T'. This is precisely what Lemma 5 tells us.

We also prove the following property. It states that when two messages can be typed (with
any type), then their evaluation either succeeds for both, or fails for both. Note that messages
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do not contain destructors: thus the only reason why the evaluation might fail is the use of
something other than a key in a key position in the message.

Lemma 6 (Typable messages either reduce on both sides, or fail on both sides). For all
(well-formed) T, for all messages M, M', for all T, ¢, if

TFM~N:T > e

then
Ml=1 < N|=1.

Proof sketch. The proof is by induction on the type derivation of ' M ~ N : T — c.

The most interesting case is arguably that of rule TENC: in that case M = enc(My, M),
N =enc(Ny,Ng) and T = (Tl)T2 for some My, My, N1, N, c1,co,T1, Ty such that '+ M; ~ N; :
T; — ¢; (for i = 1,2), Ty is either LL or a key type, and ¢ = ¢; U co. The evaluation of M (resp.
N) fails when My|l= L (resp. Nj), or when Ms] (resp. Na) is not a key. By induction, M= L
if and only if NiJ= L. In addition, it can be proved that since I' - My ~ Ny : T — ¢5 and 15
is LL or a key type, My and Ny are necessarily either two keys, or none of them is a key (this
property is one of the technical lemmas mentioned earlier). This proves the claim for this case.
The other cases are similar, again relying on technical properties established earlier. O

As for the previous lemma, this property is required to prove our invariant. It is important
when considering the output of messages. Consider processes out(M).P, out(N).Q) that were
typechecked using rule POUT. We need (among other conditions) to ensure that if the output
can be performed in the first process, then it can also be performed in the second one.

The semantics specifies that a message can only be output if it successfully evaluates. We
cannot now a priori that M and N do. It may indeed be possible that the messages are e.g.
encrypted with a key provided by the attacker, in which case, depending on whether the attacker
gave an actual key or some other message, the processes might reduce or not. This lemma
guarantees us that M and N will either evaluate on both sides or fail on both sides, and thus
that if the left process reduces, then so does the right process.

We next prove another key lemma, which formally confirms the intuition given earlier, that
the attacker should only be able to construct messages of type LL. More precisely, it states that
from two frames of messages of type LL (one on the left, one on the right), by applying attacker
recipes, the attacker (1) cannot construct terms that would evaluate on one side and fail on the
other, (2) can only obtain messages of type LL (when the evaluation succeeds).

At this point we introduce a notation for such frames of type LL, that represent the knowledge
of the attacker:

Definition 15 (LL frames). Consider two frames ¢, ¢' with the same domain. We say that
¢, ¢ have type LL in an environment I' with constraint ¢, and write ' = ¢ ~ ¢’ : LL — ¢, if
Vo € dom(¢). I'= ¢(z) ~ ¢'(x) : LL — ¢, for some ¢, such that ¢ = U cdom(e) Cx-

Formally, the aforementioned property is then:

Lemma 7 (LL type is preserved by attacker terms). Consider T', and two frames ¢ and ¢’ such
that T ¢ ~ ¢ : LL — c4. Then for all attacker term R with vars(R) C dom(¢), either

't Rpl~ R¢'|: LL — ¢ for some ¢ C ¢y

or

Rél= R¢|= L.
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Proof sketch. This proof is by induction on the attacker recipe R. We describe here the case
where R = dec(S, K) for some recipes S, K. The other cases are mostly similar. We apply the
induction hypothesis to K, and distinguish three cases.

1. if K¢|/= L, then by induction K¢'|= 1, and thus R¢|= R¢'|= L.
2. otherwise, by induction, I = K¢|~ K¢'|: LL — ¢ for some ¢ C ¢4. Then:

e cither K¢/ is not a key, and then we can show that K¢'| cannot be a key either (this is
one of the technical lemmas, provided in Appendix A.1). Thus, again, R¢|= R¢'|= L.

e or K¢| is a key k, and the same technical lemma shows that K¢'| is necessarily the
same key k, and that either I'(k, k) <: key™"(T) (for some T), or k € FK is a key
produced by the attacker. We then apply the induction hypothesis to S: either
Sol=S¢'|= 1, or T'F S|~ S¢'|: LL — ¢ for some ¢’ C ¢4. In the first case, again,
R¢l= R¢'|= 1 and the claim holds. In the second case, we apply Lemma 4:

— either S¢| and S¢'| are both encryptions with k: i.e. S¢|= enc(M, k) and S¢'|=
enc(N, k) for some M, N, and Lemma 4 also tells us that ' M ~ N : LL — ¢”

for some ¢’ C ¢’ C ¢4. Since in this case Rgpl= M and R¢'|= N, this proves the
claim.

— or neither of them are: then again, R¢l= R¢'|= L and the claim holds.

O]

This property validates the fact that we assign type LL to messages input from the network.
It is crucial in order to prove the invariant, in particular in the case where we consider processes
of the form in(x).P, in(z).Q (rule PIN). Indeed, these will reduce to P and @ respectively, with
some message constructed by the attacker using the frame of previous outputs being stored in
variable z. To show that P and @ still typecheck, we will want to use the premise of rule PIN:
it guarantees that they typecheck provided x is considered to have type LL. We know that the
message actually stored into = has this type thanks to Lemma 7.

As mentioned, the invariant we prove will guarantee that for processes that typecheck with
consistent constraints, any execution produces frames that are of type LL, with consistent
constraints. For this to imply trace equivalence, we need to show that such frames are statically
equivalent.

As we explained earlier, the intuition is that the constraints produced when typechecking
messages with type LL contain all the information the attacker learns when observing these
messages. Static equivalence of the constraints, which is intuitively what consistency entails,
then implies the frames to be statically equivalent.

More precisely, we first show the following property, which formalises that intuition. It states
that messages of type LL can always be reconstructed by the attacker using only the messages
contained in the constraints, as well as public names and keys.

Lemma 8 (LL terms are recipes on their constraints). Consider ground messages M, N, such
that ' = M ~ N : LL — c¢ for some I', c. Then there exists an attacker recipe R without
destructors such that M = R(¢¢(c) U diy) and N = R(¢,(c) U dly).
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Proof sketch. We actually prove an equivalent formulation: we show that this holds as soon
as messages have any type T' <: LL. That statement is equivalent to the one above, thanks
to rule TSUB, but it allows us to prove the claim by induction on the typing derivation for
' M ~ N :T — c (the first formulation is indeed not inductive in the case of rule TSuB). We
study each possible case for the last rule applied in that derivation.

Most cases are rather straightforward, either directly or just by applying the induction
hypothesis. For instance, in the case of rules TENCH or THASH, M ~ N is directly added to the
constraint, which makes the claim trivial. For rules such as TPAIR or THASHL, ¢ contains the
constraints generated when typing each component of the pair (resp. the message being hashed).
By induction, these components can therefore be constructed by the attacker by applying some
recipe on (a subset) of the constraints. Then M and N themselves can be obtained by pairing
(resp. hashing) these recipes.

Some cases are slightly more involved and require the use of some technical lemmas. We
will not detail all cases here, but only, for the sake of example, that of rule TENCL. In that
case, we know by the premise of the rule that I' = M ~ N : (LL); — ¢ with 77 <: key™"(T")
(for some T"). By Lemma 4, we then know that M, N are encryptions of messages M’, N’ of
type LL (with some constraint ¢ C ¢) with some untrusted key. By induction®, we then know
that M’, N’ can be constructed by the attacker using the constraint c. Since the attacker knows
the untrusted encryption key, he can thus also construct M, N, which prove the claim in that
case. O

Using that lemma, we can then prove that frames of type LL with consistent constraints are
statically equivalent.

Lemma 9 (LL frames with consistent constraints are statically equivalent). For all ground
frames ¢, ¢' such that T+ ¢ ~ ¢’ : LL — ¢ for some ¢ consistent in Unrxc, ¢ and ¢ are statically
equivalent.

Proof. Consider two attacker recipes R, R’, that use variables in dom(¢)(= dom(¢’)). Since
'k ¢~ ¢ :LL — ¢, by definition for any z € dom(¢) ¢(x) and ¢'(x) have type LL in T' for some
subset of ¢. Thus, by Lemma 8, there exists a recipe R, such that ¢(z) = R.(¢¢(c) U ¢i;) and
¢' () = Re(¢y(c) Ugl,). By replacing in R and R’ each occurrence of every such variable z with
R, we obtain two attacker recipes R, R/, such that R¢ = R(¢¢(c) U ¢iy), R¢' = R(¢y(c) U dly),
R'¢ = R'(¢¢(c) Uty), and R'¢' = R'(¢,(c) Uply). Since ¢, ¢ are ground, it is easy to see from
the typing rules for messages that so is ¢. Thus, by definition of consistency, ¢¢(c) U ¢l and
¢, (c) U ¢i, are statically equivalent. Hence

R(¢e(c) UoLy) = R (¢e(c) U L) < Ry (c) Udp) = R (¢p(c) U )

i.e.
Rp=R¢ < Ry =R¢

which proves that ¢, ¢’ are statically equivalent. ]

Note that this lemma only applies to ground frames, and not to symbolic frames where
variables remain uninstantiated. According to the semantics of pi-calculus, when a process

4 Applying the induction hypothesis requires us to show that the type derivation for T - M’ ~ N’ : LL — ¢’ is
shorter that the one for ' - M ~ N : LL — c¢. This is done in the complete proof by actually proving a stronger
version of Lemma 4, that does not only guarantee the existence of this derivation, but also that it is shorter than
the one for ' M ~ N : (LL),, — c.
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reduces, a symbolic frame ¢ is produced, as well as a ground substitution ¢ that contains the
instantiation of each variable in ¢ for the current execution. We will then apply the previous
lemma to the ground frame ¢o. The invariant that follows lets us know that this frame (together
with the corresponding frame from the right process) has type LL, with consistent constraints.

Let us now state formally the invariant. For legibility, we present here a slightly simplified
statement, where some conditions regarding the domains of the substitutions and the set of
variables bound in processes are omitted. The complete statement can be found in Appendix A.1.

Lemma 10 (Invariant). Consider an environment I', and multisets of processes P = {P;},,
Q = {Q;}: with |P| = |Q| such that Vi.I' b P; ~ Q; — C; for some C;. Also consider frames ¢p,
¢g such that I' = ¢p ~ ¢g : LL — ¢y for some cy. Let op, og be ground substitutions such that
Iyt op~og:Txy = co for some co. Assume ¢, C [cg] and that [(Ux,;C;)Uvcy]

op,0Q’ op,0Q
is consistent. Consider a reduction step on the left: (P,¢p,op) — (P, "o, 0p).

Then there exists a sequence of actions w =, «, such that (Q, ¢g,0q) —x« (Q, qb’Q, oq) for
some Q', ¢, 0g, with |Q'| = |P'| and Vi.l" = P} ~ Q; — Cj for some I, Cj. In addition
I"bF ¢p ~ ¢t LL = ¢y and 'y = op ~ o : 'y — ¢ for some ¢, ¢, such that
c. C HC;S}] ., and [[(Uxicg)uvc;&]] ., s consistent.

Tp:0g b0
Proof sketch. Basically, according to the semantics of pi-calculus, the reduction step performed
on P, i.e. (P,¢p,op) — (P',¢)p,d’), is more precisely affecting only one of the processes
P; € P: outputting or inputting a message, performing a conditional branching, etc. is only done
in one of the processes at a time.

The proof then consists in a case disjunction on the last typing rule applied in the type
derivation for P;, i.e. ' - P, ~ Q; — C;.

We do not give all details here, but rather explain in general how the proof goes. In each
case, the proof has the following structure.

e The typing rule imposes some conditions on the form of processes P;, Q;: e.g. if this rule is
POUT then P, = out(M).P/ (and similarly for @Q;), if the rule is PIN then P; = in(x).F/,
and so on.

e In turn, the form of P; gives us information about which reduction rule is applied to P; in
the reduction step. In the cases of POUT and PIN for instance, it can only be rule Out
(resp. In).

e Since the typing rules require that @); has the same head symbol as P;, the same reduction
rule can be applied to @;. Depending on the case, additional conditions may need to be
checked. For instance, in the case of an output, we need to make sure that the message
in @; is legal to output, knowing that the one in P; is. That is, we must show that that
message successfully evaluates. As explained earlier, this is done using Lemma 6. In other
cases we similarly use other lemmas that were omitted here.

e This shows that Q can be reduced too, with the same actions as P (in some cases, silent
actions may need to be performed before actually performing in Q the same observable
action as in P; we omit such details here).
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e We then need to show the conditions on the type of processes, frames and substitutions
hold after the reduction. Most of the processes are unchanged and still typecheck, although
the environment may have been extended with new variables, e.g. in the input case: in
such cases we use Lemma 1. For the processes actually being reduced, these conditions
usually follow from the premises of the typing rule. For instance in the output case, one
premise of the rule guarantees us that the continuation processes after the output still
typecheck. The conditions on the frames is that they should have type LL: the only case
where some messages are added to the frame is the output case, in which the premises
of rule POUT enforce this condition. Regarding the substitutions, what we must show is
basically that the messages actually stored in variables in the execution have the type the
typing rules assign to these variables. For instance in the input case, the variable in which
the message is stored is supposed to have type LL. We thus need to show the messages
actually input have this type: as explained earlier, this is done thanks to Lemma 7. In the
case of a destructor application, we similarly use Lemma 5; other cases use some lemmas
we omitted in this presentation.

e Finally, we need to prove the consistency of the constraints after reduction. More precisely,

we know that [(Ux,;Ci)Uvcg], o 18 consistent and must show that [[(UMC’{)UVC;)H
) oﬂj,a’Q
is. Basically, what may happen during a reduction step is that some constraints disappear

from the constraints C; of the processes, and are added to the constraint ciﬁ of the frames.
That is typically the case when the reduction step is an output: typing the continuation
processes after the output no longer generates constraints for the messages output, however
these messages are added to the frames, and thus these constraints are instead generated
when typing the frames. We thus use some technical lemmas regarding consistency and
union and instantiation of constraints, such as Lemma 2 to prove consistency of the new
constraints. 0

The intuition behind the constraint C' = [[(Uxioi)uv%ﬂop,m may be a bit difficult to get.
Before we get to the remainder of the proof, let us give an informal description of the role this
constraint plays, omitting all technical details, just to explain the intuition. One way to do
this is to examine how C' evolves during a reduction. Basically, in the beginning, the frames
and substitutions are empty, and C' is thus simply the constraint set for the initial processes.
In particular, it contains the constraints for all (uninstantiated) messages that will be output
during the reduction. During the reduction, each time a message is output, it is added to
¢. Conversely the output operation disappears from the process remaining to be reduced, as
it has been executed. The constraints for the message, thus initially present in (Uy;C;), are
hence “passed” to cy. Thus, intuitively, (Ux;C;)Uycy as a whole does not really change, which is
basically what allows us to prove in the invariant that its consistency is preserved. Once the
end of the execution has been reached, intuitively, no processes are left to reduce, and thus
C only consists in the instantiation of cy. The invariant thus lets us know us that [[c¢]]UP7GQ
is consistent. As discussed earlier, we will need to know that the instantiated frames ¢pop,
$gog have consistent constraints (in order to show their static equivalence). By Lemma 3, this
constraint is basically ¢, U [[C(b]]UP,JQ: as the invariant also establishes that ¢, C [[c¢]]UP7UQ, its
consistency follows from the previous observation.

Note that we show, as part of the invariant, that the constraints ¢, from the instantiations
o, o' are contained in the (instantiated) constraints [cg] _, of the frames. This justifies the
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intuition presented in Section 2.4 that considering only such instantiations in the definition of
consistency is sufficient.

Using the invariant, together with Lemma 9, we can now prove that typing implies trace
inclusion:

Lemma 11 (Typing implies trace inclusion). For all P, @, and C, for all " containing only
keys, if ' P~ @Q — C and C is consistent, then P C; Q.

Proof sketch. Consider a sequence of reductions ({P},0,0) =+, (P, ¢p,op) on the left process.
By applying successively the invariant (Lemma 10), we can construct a sequence of reductions

{Q1},0,0) L* (Q,¢q,0q) on the right process. To prove the claim, it is then sufficient to
show that ¢pop and ¢gog are statically equivalent. First, by the invariant, we know that
I'Fo¢p~¢g:LL = cy and Iy = op ~ 0g : [y — ¢ for some I', ¢y, c,. Using Lemma 3,
we have I'y x - ¢pop ~ ¢pgog : LL — ¢ for some ¢ C H%]]UP,UQ U ¢y, which is itself a subset of
[[c¢]]aP’0Q by the invariant. Lemma 9 will conclude the proof if we can show that c is consistent
in 'y . By the invariant, [[CUV%]]UP,UQ is consistent, where C' is the constraint obtained when
typechecking processes in P, Q. Using technical lemmas analogous to Lemma 2, we can prove this
implies the consistency of [[%]]gp,an which (again using technical lemmas) implies the consistency

of c. O

It is clear from the typing rules that the type system is symmetric, in the sense that if
I'P~Q — C,thenT - Q ~ P — C, where I' and C are obtained from I" and C by
exchanging the left and right terms in constraints, as well as the left and right types in refinement
types, and the left and right keys in bikeys. It is clear from the definition of consistency that
consistency of C' and C are equivalent.

Therefore, by symmetry, the soundness theorem (Theorem 1) follows from Lemma 11.

Since we do not have typing rules for replication, Theorem 1 only allows us to prove equivalence
of protocols for a finite number of sessions. Thanks to our infinite nonce types, we can however
still prove equivalence for an unbounded number of sessions, as detailed in the next section.

2.6 From bounded to unbounded number of sessions

In this section, we show how we can lift the soundness result from the previous section to the
case of replicated processes, i.e. with an unbounded number of section, while still only needing
to typecheck a finite number of sessions.

For more clarity, without loss of generality we consider that for each infinite nonce type T,l,fo
appearing in the processes, the set of names BN also contains an infinite number of fresh names
{m; | i € N} which do not appear in the processes or environments. We will denote by A the
set of unindexed names in BA and by N; the set of indexed names. We similarly assume that
for all the variables x appearing in the processes, the set X’ of all variables also contains fresh
variables {x; | ¢ € N} which do not appear in the processes or environments. We denote X the
set of unindexed variables, and X; the set of indexed variables. Finally, we assume for all key
k declared in the processes with type seskey">(T') that the set BK contains keys {k; | i € N}.
This is simply a naming convention, and we do not lose any generality.
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Intuitively, whenever we can typecheck a process of the form new n : Tfl’l. new m: TTZ;LOO. P
with the rules presented in Section 2.3.4, we can actually also typecheck

Y

new n : 751, (new my T,,l71L11.P1 | ... | newmy : Tfﬁi.Pk)
where in P;, the nonce m has been renamed to m; and variables z have been renamed to x;.
That is, if we can typecheck a process representing a single session of a protocol, then we can
also typecheck any number of copies of this process in parallel, even if new nonces are generated
within the replicated process, provided they are given a nonce type with a = cc.

We will now first define formally this operation of expanding a process to n sessions, and
then formally state the claim above.

2.6.1 Definitions: expansion to n sessions

Formally, we define the renaming of a term ¢ for session ¢ as follows.

Definition 16 (Renaming of a term). We denote by [t ]}, the term t in which names n such
that T'(n) = 75°° for some | are replaced with n;, keys k such that T'(k, k) = seskey">(T) for
some l, T are replaced with k;, and variables x are replaced with x;.

M Tll),7°°]], it intuitively represent a value generated
in a replicated process. As briefly mentioned earlier, the intended meaning of that infinite
refinement type is that when actually expanding the replication to n copies of the process, the
type could represent values generated in any of the copies, as long as they are created in the
same copy on the left and on the right. That is, values of type ﬂqun{ : TIZJ;’I]], for any 1.

Similarly, when a message is of type [75>°

The nonce type 75> represents infinitely many nonces (one for each potential session). That
is, for n sessions, the type [75; T]l,lvoo]] is intended to represent all [7}! ; T]l);’l]].

Formally, given a type T', we define its expansion to n sessions, denoted [T']", as follows.

Definition 17 (Expansion of a type).

[ =1
(T+T']" = [T]"«[T']"
[key'(T)|" = key'((T]")
[eakey!(T) | = eqkey'([T]")
[seskeyl’a(T) r = seskey"! ([T']")
[ pkey(T)|" = pkey([T']")
[vkey(T) " = vkey([T]")

=TT e
[TV T "= [T]"Vv[T]"

’ n ’
[ ] = Tkt it

/ n /
[Lriees 7| = Vil 7'l

]
]

(D" = (T
]
]

where 1,1 € {LL,HH,HL}, k € K.
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’ n
The crucial point is the last one: infinite refinement types for nonces { [rlboe T}l, ] } are

expanded into a union type V;_; [[T,lnﬁ ; T[l)/j’lﬂ. We may also note that, contrary to infinite nonce
refinement types, infinite session key types are not turned into union types. The reason for this
is that the refinement types carry information regarding the value of the messages they can be
given to. When expanding the replicated copies of a process, there are now several possibilities
for the value of a message that had previously an infinite refinement type: it could be the value
generated in any of the n copies. Hence the need for a union type. However, session key types do
not carry information about the value of the key, but only about the type of messages it should
encrypt or sign. This information does not change once the key may have several values, from
different copies of the process: thus there is no need for a union type here.
Note finally that the size of the expanded type [T']" depends on n.

We need to adapt typing environments accordingly.

Definition 18 (Renaming and expansion of typing environments). For any typing environment
I', we define its renaming for session i as:

[T];={zi:T|'(x)=T}
U{(k, k") : T | T(k, k') = T AVI, T'.T # seskey">(T")}
U {(ks, ki) : seskey" (T) | T'(k, k) = seskey">(T)
U {m: 75! | D(m) =751}

)
m

ALl _ . loo
U {m;: 7y, | T(m) =77}
and then its expansion to n sessions as

[T = {wi - [T]"

[T (i) = TYU{(kK) - [T]" [ [T ];(k, k') =T}
U {m:va’l1 | [

PJi(m) = 741},

The idea is that [I'], is simply renaming all variables, names, keys by indexing them with the
session number 7, and giving them the corresponding finite nonce or key type. However renaming
does not expand any types: the types of variables, or the payload types in key types may still
contain infinite refinement types. The expansion [I']! then replaces these with their expansion,
i.e. replacing all refinements with a union of n finite types, for each of the n sessions. Note that
in [T'], due to the expansion, the size of the types (potentially) depends on n.

By construction, the environments contained in the constraints generated by typing do not
contain union types (see rule PZERO). However, refinement types with infinite nonce types
introduce union types when expanded. In order to recover environments without union types
after expanding, which, as we will explain in the next subsection, is needed for our consistency
checking procedure, we will use the branches(-) operation defined in Section 2.3.2.

We define the renaming of a process for session ¢ in a similar way.

Definition 19 (Renaming of a process). For all process P, for all i € N, for all environment T,
[P} as the process obtained from P by:

e for each nonce n declared in P by newn : 7o, and each nonce n such that T'(n)

for some 1, replacing every occurrence of n with n;, and the declaration new n : 75> with
new n; : ngil ;

_ Al
= Tn
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o for each key k declared in P by new k : seskey’™(T'), and each key k such that T'(k, k) =
seskeyl’oo(T) for some I, T replacing every occurrence of k with k;, and the declaration
new k : seskey!™(T') with new k; : seskey" ([ T]");

e replacing every occurence of a variable x with x;.

Finally, when typechecking two processes containing nonces with infinite nonce types, we
collect constraints that represent “families” of constraints. That is, the constraints we collect
represent all the constraints that would correspond to typechecking each replicated copy of the
process. We therefore also need to expand them.

Definition 20 (Renaming and expansion of constraints). Given a set of constraints ¢, and an
environment I', we define the renaming of ¢ for session i in I' as

[e]i = {[ul; ~[v]; lu~vech

This is propagated to constraint sets as follows: the renaming of C for session i is
[Cli=A{(c)i.[T]) ] (eT) € C}
and its expansion to n sessions is
[C1'={([c]},T") | 3T. (¢,T) € C A T’ € branches(|T' ")}

Again, note that the size of [C' |, does not depend on the number of sessions considered,
while the size of the types present in [ C'|;" does. For example, for

€ = {({n(a) ~ bla)}. o : [ 7)),

we have
[C]; = {({&(z) ~n(z)}, [ = [ 7))}

and

[C]7 ={({h(wi) ~h(z:)} \/[[ s T 1)

We now have all the notations required to formally state the previous claim, that typechecking
one session is sufficient to know that any number of sessions typecheck.

2.6.2 Soundness for replicated processes

Our type system is sound for replicated processes provided that the collected constraint sets are
consistent, when instantiated with all possible instantiations of the nonces and keys. In fact, we
can even typecheck processes with a replicated part and a non-replicated part.

Theorem 2. Consider processes P, Q, P' ,Q' such that P, Q and P', Q' do not share any
variable. Consider I, containing only keys and nonces with finite key or nonce types. Assume
that P and Q only bind nonces and keys with infinite nonce types, i.e. using new m : 75> and
new k : seskey" (T) for some label | and type T'; while P' and Q' only bind nonces and keys with
finite types, i.e. using new m : 7h! and new k : seskeyl’l(T).

Let us abbreviate by new T the sequence of declarations of each nonce m € dom(I") and session
key k such that T'(k, k) = seskey" (T) for some 1, T

If
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e 'FP~Q—C,
e I'FP ~Q — (',
o C'Us(Uxi<icnl C13) is consistent for alln > 1,

then
newn. ((IP) | P') ~ynewm. ((!1Q) | Q).

Basically, if P, @ typecheck with C' and P/, Q' with C’, assuming finite and infinite nonce
types are used as expected, then P’|!P and Q'|!Q are trace equivalent, provided the constraints
formed of C” and any number of (renamed) copies of C' are all consistent.

We provide in later sections a procedure to prove that such constraints of unbounded size are
consistent.

For now, we present the main steps of the proof of Theorem 2. As for the proof of soundness
in the non-replicated case, we do not give here the detailed proof, but rather state the main
lemmas and briefly sketch their proofs. All detailed proofs can be found in Appendix A.2.

We first show that if two messages can be given type 7' in I', then the renaming of these
messages for session 4 has type [T']" in (any branch of) the expansion of T' to n sessions.

Lemma 12 (Typing terms with replicated names). Consider messages M, N such that T = M ~

N :T —c for someT, T, c. Then for alln € N and alli € [1,n], for all " € branches([I']}"),

r r r

E[M] ~ [N [T]" = [e];

Proof sketch. This property is proved by induction on the type derivation Il for ' - M ~ N :
T — c. We study each possibility regarding the last typing rule applied in this derivation.

In most cases, the claim directly follows from the definition of the expanded types, environ-
ments and constraints, and the induction hypothesis. For instance in the case of rule TNONCE,
the form of the rule entails that M, N are two names m, n, and that T € {HH,HL}. The derivation
is then

It is clear from the definition of [T']!" that IV([m]}) = T[l’;]r, and that T'([p]}) = T[l;jl]

by rule TNONCE, we have I'' - [ M ]5 ~[N ]{ : I — () which proves the claim for this case.

r- Then,

Another example would be the case of rule TENCH: then 7' = LL and there exist 17", k, ¢/
such that
H/
IEM~N: (T — T" <: key™(T")
B I'FM~N:LL—=c=cdU{M~ N}

By applying the induction hypothesis to II', since [ (I")g ]" = ([T"]") v n, there exists a
proof I" of I t= [M ] ~ [N} : ([T ") gupn — [ €]}
In addition it is clear by the definitions of [-]" and of subtyping that since T" <: key™(T"),

we have [T"]" <: key™([T"]"). Therefore by rule TENCH, we have
DM~ [N] b= [T U{ M) ~ [N} =[]

7
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Let us finally describe one last case, which is a bit more involved: the case of rule TLR’. In
that case there exist m,p, [l such that T'= [, and
H/
I'EM~N: [ ] —e

'FM~N:l—c

Let us distinguish the case where a is 1 from the case where a is occ.

1,1
pay Wi Ty I, we

e If a is 1: by applying the induction hypothesis to II’, since [ [rhe, TIZ;“]] }n = [rb1;
have
D (M~ [N [l 7] - el

Thus by rule TLR’, we have [T]* - [ ML ~ [N]] i1 = [e]}

A % i
e If a is oo: by applying the induction hypothesis to IT’, since
La. lLay]™ _ L1, 11
[ [ 71 } =V [ 5 7, 1
1<j<n

we have
(M)~ [N\ ks = [ely

m; 7"
1<j<n

We can prove’ that this implies the existence of some j € [1,n] such that

M~ NI [ it = [e)f

i i

Thus, by rule TLR’, we have I" + [ M LF ~ [N]ZF = [c]ir, which proves the claim. [

We also prove the following lemma, that is the analogous property to Lemma 12 for the
destructor rules used by rule PLET:

Lemma 13 (Typing destructors with replicated names). For all T, t, ', T, if
Pht~t:T
then for all i,n € N such that 1 <i <mn,

[Tt ~[¢]; [T]"

(2

The proof of this property is immediate by examining the typing rules for destructors.

Using these last two lemmas, as well as some additional technical lemmas omitted here, we
then prove the claim made in the beginning of this section, that typechecking processes with
replicated types is sufficient to ensure any renamings of these processes still typecheck when
expanding the environment to n sessions.

Lemma 14 (Typing processes with expanded types). Consider processes P, @Q such that
I'P~Q—C for someT, C. Then for alln € N and i € [1,n], there exists C' C [C'] such
that

[T E[P] ~[Q) = C

7

5This is again using some of the technical lemmas established when proving the first soundness theorem
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Proof sketch. This proof is by induction on the derivation Il of ' H P ~ @ — C. We study
each case for the last rule applied in this derivation. We will not detail all cases here, as they
are all rather similar. Basically, we show that, in each case, as the renamed process have the
same structure as the original ones, the same typing rule can be applied to typecheck them
in the expanded environment. To do this, we need to show that the premises of the rule still
hold. When the premise involves typechecking processes, this is usually done by applying the
induction hypothesis. For all rules whose premises require to typecheck some messages (e.g.
POur, PIFL,...), we apply Lemma 12 to show that these messages, once renamed, still have
the correct type in the expanded environment. In the case of rule PLET, we apply Lemma 13 to
show that the (renamed) destructors still have the correct type in the expanded environment.

As an example, let us detail the case of rule POUT. In that case, then P = out(M).P’,
Q@ = out(N).Q' for some M, N, P', @', and

H/ H//
- I'-P ~Q =’ 'FM~N:LL—c
N I'FP~Q—C=C"Uyc '

By Lemma 12, for all IV € branches([T']}"), there exists a proof IIf., of the type judgement
I'H[M]} ~ [NV LL =[]}

Moreover, by induction, there exists C” C [C' ]! and a proof II" of the type judgement
[T]PF[P']} ~[Q ] — C”. We can show (again, with some technical properties omitted in
this proof sketch) that this implies, for all branches I of [T'], that I - [ P’ ]zF ~[Q ]zF — Cp
for some Cp» CC” C [C']}.

In addition, we have [ P]} = [out(M).P']} = out([ M ]}).[ P']}, and similarly for process Q
[Q]F =out([N]}).[ Q' ]IF Therefore, using I, II}, and rule POUT, we have for any branch

(2

I € branches([T']7) that TV + [ P]} ~ [Q]} — CrUy[ ]l C [ Puy[clt.

It can then be proved that typechecking processes in all branches of [T'];" like this implies
they typecheck in [T ]} itself, i.e.

[T E[P] ~[Q; = C" C[C' ] uylc]; =[CT}

1

which proves the claim for this case. O

Using this lemma, we then show that any number of (renamed) copies of P, @) in parallel
typecheck:

Lemma 15 (Typing n sessions). Consider processes P, Q such that T'H P ~ Q — C for some
T, C. Then for alln € N then for all n > 1, there exists C' C Uy <;c,[C']i" such that

1

(I[P | o [ [PE~IQE | o (1@ =

n

where [T']" is defined as Uj<;<, [T ]}

(2

Proof sketch. Note that the union ;<;<,, [T ;" is well-defined, as for any indices i # j, we have
dom([T' ") Ndom([I']}) € K UN, and the types associated to keys and nonces are the same in
each [T']7.

)

The property follows from Lemma 14. Indeed, that lemma guarantees that for all ¢ € [1,n],
[T]PF[P]} ~[Q]} — C; for some C; C [C']". Using technical lemmas such as Lemma 1, we

(2
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2.7. Checking consistency

can then show that [T']" - [P ]} ~ [Q]i — C! for some C!. More precisely, the environments in
the elements of C; do not contain all renamed keys, names and variables, but only those indexed
with ¢, similarly to [T']}". Thus, typechecking in [I']" adds all the other renamed elements to
these environments: performing this operation on C; yields constraint C.
By applying rule PPAR n — 1 times, we thus have
[CT"E[PLL] o [ [PLn~ QL] .. [Qlin = Uxi<i<,Ci

K3 3

Only a technical point remains to be proved: that Usx<;<,,Ci C Uxi<;<,[C'];'. We omit this

proof here, as it is more technical than insightful, and provide it in Appendix A.2 instead. [

Theorem 2 then follows from Lemma 15 and the soundness theorem (Theorem 1).

Indeed, consider P, Q and P’, Q' that typecheck with respectively C and C’ in I', and assume
they satisfy the assumptions on finite and infinite types from Theorem 2. Using Lemma 15
and rule PPAR we can show (we omit the details here) that for any n, P’ in parallel with n
(renamed) copies of P and @' in parallel with n (renamed) copies of @) typecheck with (a subset
of) constraint set C"Ux (Ux1<;<,[ C Ji"). These two processes are not replicated: Theorem 1 then
applies, and if we know that C"Uy (Ux;<;«,[ C']1") is consistent for any n, implies that they are
trace equivalent. That is, that P’ in parallel with n copies of P and @’ in parallel with n copies
of Q are trace equivalent for any n. Therefore, P’ in parallel with !P and @’ in parallel with !Q
are trace equivalent, which proves Theorem 2.

Theorem 1 requires to check consistency of one constraint set. Theorem 2 now requires to
check consistency of an infinite family of contraint sets. Instead of deciding consistency, we
provide in the next sections a procedure that checks a slightly stronger condition, which allows
us to efficiently prove consistency of this infinite family by only considering a finite number of its
elements.

2.7 Checking consistency

2.7.1 Procedure for consistency

As defined earlier (Definition 14), checking consistency of a set of constraints basically amounts to
checking static equivalence of the corresponding frames, for any possible well-typed instantiations
of their variables.

We devise a procedure check_const(C) for checking consistency of a constraint set C,
depicted in Figure 2.9. Basically, we need to make sure that any equality test the attacker may
perform on terms constructed from the left side of the constraint yields the same result when
performed on the right side.

Using properties established in Section 2.5, we are able to show that it suffices to check that
the messages in the constraints (without applying any attacker recipe) satisfy the same equalities.

The procedure then works as follows:

e First, variables of refined type [7h!; 7£°1] are replaced by m on the left-hand-side of the
constraint and n on the right-hand-side.

e Second, we check that terms have the same shape (encryption, signature, hash) on the left
and on the right and that asymmetric encryption and hashes cannot be reconstructed by
the adversary (that is, they contain some fresh, secret nonce).
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e The most important step consists in checking that the terms on the left satisfy the same
equalities than the ones on the right. Whenever two left terms M and N are unifiable, their
corresponding right terms M’ and N’ should be equal after applying a similar instantiation.

From now on, we only consider constraint sets that can actually be generated when typing
processes, as these are the only ones for which we need to check consistency.

Formally, the procedure check const is described in Figure 2.9. It consists of three steps.
First, we replace variables with refinements of finite nonce types by their left and right values.
In particular a variable with a union type is not associated with a single value and thus cannot
be replaced. This is why the branching operation needs to be performed when expanding
environments containing refinements with types of the form 75°°. Second, we check that the
resulting constraints have the same shape. Finally, as soon as two constraints M ~ M’ and
N ~ N’ are such that M, N are unifiable, we roughly check that M’ = N’, and conversely. The
actual condition, as seen in Figure 2.9, is slightly more involved, especially when the constraints
contain variables of refined types with infinite nonce types. More precisely, the actual condition
that would need to be checked is that whenever M, N can be unified with a unifier u, then any
substitution p’ such that p and p' are well-typed unifies M’ and N’ (and conversely). Indeed, the
type system guarantees that the instantiations of variables that can occur in actual executions
are well-typed (see Lemma 10). We consider for the procedure a stronger, but easier to ensure
condition. We discard cases where M, N can only be unified by unifiers that do not respect the
refinement types, as such instantiations cannot occur in actual executions. Moreover when M,
N can be unified by i, we check that M’ and N’ are equal, after replacing each variable with
a refinement type (that p respects) with the corresponding value, as well as instantiating each
variable of type LL to which p associates a nonce n with this same nonce n. This overapproximates
the actual condition stated earlier: indeed, any well-typed p’ would respect these two conditions.

Example 5. Consider the simplified model of Helios from Example 2. When typechecked with
appropriate key types (as detailed in Introduction of this chapter), these processes yield constraint
sets containing notably the following two constraints.

{ aenc({0,7,), pk(ks)) ~ aenc((1,rq4), pk(ks)),
aenc((1,7p), pk(ks)) ~ aenc((0, ), pk(ks)) }

For simplicity, consider the set ¢ containing only these two constraints, together with a typing
environment I' where r, and 1, are respectively given types Tﬁf’l and Tf:*l, and ks is given type
key™(T) for some T.

The procedure check__const({(c,I')}) can detect that the constraint c is consistent and returns
true. Indeed, as ¢ does not contain variables, stepip(c) simply returns (¢,I'). step2p(c) then
returns true, since the messages appearing in c are messages asymmetrically encrypted with
secret keys, which contain a secret nonce (rq or ry) directly under pairs. Finally step3p(c)
trivially returns true, as the messages aenc((0,7,),pk(ks)) and aenc({1,7),pk(ks)) cannot be
unified, as well as the messages aenc((1,7,),pk(ks)) and aenc((0,ry), pk(ks)).

Consider now the following set ¢, where encryption has not been randomised:

¢ = { aenc(0, pk(ks)) ~ aenc(l, pk(ks)),

aenc(1, pk(ks)) ~ aenc(0, pk(ks)) }
The procedure check_const({(¢/,T")}) returns false. Indeed, contrary to the case of c,
step3p () fails, as the encrypted message do not contain a secret nonce. Actually, the cor-

responding frames are indeed not statically equivalent since the adversary can reconstruct the
encryption of 0 and 1 with the key pk(ks) (in his initial knowledge), and check for equality.
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2.7. Checking consistency

steplp(c) := ([[c]]aF’U%,F’), with

F:={z € dom(T) | Im,n,1,I". T(z) = [7L': 711}

m )

and op, o defined by

o dom(op) = dom(of) = F
eVz e F.Vm,n, LI T(z) = [rh!; 75 ] = op(@) =m A ohp(z) =n

and I" is T'|gom(ry\ r extended with I'(n) = 7L1 for all nonce n such that 751 occurs in T.

step2r(c) := check that for all M ~ N € ¢, M and N are both
e enc(M’',M"), enc(N’,N") where M", N are either
— keys k, k' where 3T. T'(k, k') <: key™ (T);
— or a variable x such that 37. I'(x) <: key™ (T);
e or encryptions aenc(M’, M"), aenc(N’, N"') where

— M’ and N’ contain directly under pairs a nonce n such that I'(n) = 7% or a secret key
k such that 3T, k". T'(k, k') <: key™(T) or T'(k', k) <: key™(T), or a variable z such that
Im,n,a. ['(x) = [t 78La] or a variable x such that 37. T'(z) <: key™ (T);

— M" and N" are either
* public keys pk(k), pk(k’) where 3T T'(k, k') <: key™ (T);
* or public keys pk(z), pk(z) where 3T. T'(z) <: key™ (T);
% or a variable z such that 37, 7". I'(z) = pkey(T) and T <: key™ (T");
e or hashes h(M’), h(N'), where M’, N’ similarly contain a secret value under pairs;

e or signatures sign(M’, M"), sign(N', M") where M” ) N are either

— keys k, k" where 3T. T'(k, k') <: key™(T);
— or a variable z such that 3T. T'(z) <: key™ (T);

step3p(c) := If for all M ~ M’ and N ~ N’ € ¢ such that M, N are unifiable with a most general
unifier u, and such that

Ve € dom(p). 31,1, m,p. (T(z) = [75>; Tzl)/’oo]]) = (zp e X V Fi.zp=m;)

m

we have
M'af = N'af
where )
Va € dom(p). VI,I',m,p,i. (D(z) = [r5°°; 'r;, A plz) =my) = 0(x) = p;

and « is the restriction of p to {x € dom(u) | I'(z) =LL A p(z) € N'};
and if the symmetric condition for the case where M’, N’ are unifiable holds as well, then return
true.

check_const(C) := for all (¢,I") € C, let (c1,T1) := stepip(c) and check that step2p (c1) = true
and step3p (c1) = true.

Figure 2.9: Procedure for checking consistency.
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2.7.2 Soundness in the bounded case

For constraint sets without infinite nonce types, check const entails consistency. We now sketch
the proof for this claim. The reader may notice that the procedure does consider the case of
infinite nonce types: this will be useful to prove consistency of replicated constraints in the next
section. As before, we only sketch the structure of the proof here. All details are provided in
Appendix A.3.

Formally, we prove the following.

Theorem 3. Let C be a set of constraints such that
V(C, F) e C.VI, l/, m, p. :[‘(33) ?é [[Tfﬁoo : T[l)/’oo]],

If check__const(C') = true, then C is consistent.

We prove this theorem by first showing that the first step of the procedure preserves
consistency.

Lemma 16. Consider a constraint (c,I') obtained by typing some processes. Let (¢,I') =
steplp(c). If € is consistent in I, then c is consistent in I.

Proof sketch. Assume ¢ is consistent in . Let ¢ C ¢ and I'" C T, such that dom(I") contains
all bikeys and names from dom(I"), as well as all variables occurring in ¢’. Let o, ¢’ be two
substitutions such that Iy c - o ~ o' : I"x — ¢, (for some ¢, C [],, ).

To prove the claim, we need to show that the frames ¢y Uge(['], /) and (g1, U, ([], )
are statically equivalent. The idea of the proof is to consider the constraint set ¢ obtained by
instantiating all variables with refinement types in ¢’ with the corresponding values. Since o, o’
are well-typed, they correctly instantiate such variables with the same values. Hence, [¢/ ]](w, can
be seen as the instantiation of ¢” with some @, o’ that are restrictions of o and ¢’ to variables
without refinement types.

On the other hand, ¢’ is a subset of ¢, by construction, and we can show (we omit the technical
details here) that &, o’, being restrictions of o, o’ are well-typed in a subset of I' that satisfies
the conditions from the definition of consistency. From this, we get that ¢i; U ¢¢([c” I577)) and

(Pt U, ([ [557)) are statically equivalent, which proves the claim. O

It then suffices to check the consistency of the constraint and environment produced by
steplp(c). Provided that step2r holds, we show that this constraint is saturated in the sense
that any message obtained by the attacker by decomposing terms in the constraint already occurs
in the constraint.

Lemma 17. Consider a constraint (c,T') obtained by typing some processes. Let (¢,T) =
steplir(c), and assume step2g(c) holds. Consider ground, well-typed instantiations o, o', i.e.
Iy bo~o :Tx = cs for some c, C[e], .. Also consider an attacker recipe R such that

vars(R) € dom(¢ly U ¢¢ (). Assume R(¢5y U ¢e([el, ) 1# L and R(¢5 U ¢ ([e],, ) ) L.
Then there exists a recipe R without destructors, i.e. in which dec, adec, checksign, 7y,
w9, do not appear, such that

e vars(R') C vars(R),
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b R((bFL U gbf([[é]]a,o"))\l/: R/<¢fL U (bf([[é]]a,o‘/));

o R(¢LL U, ([el,0))= R (61 U 6 ([l o).
In addition, if

Proof sketch. This property is proved by induction on the attacker recipe R. Basically, when
R starts with a constructor, the claim follows easily from the induction hypothesis. The cases
of destructors are more involved. The idea is that step2 guarantees that the messages in the
constraint cannot be opened by the attacker. Hence, the destructor in R is actually being
applied to a message constructed by the attacker, and by removing both the constructor and
the destructor, we obtain a smaller recipe that produces the same message, and to which the
induction hypothesis can be applied.

We present here the case where R = dec(S, K) for some recipes S, K. Since R successfully
evaluates when applied to either side of ¢, K must evaluate to a key when applied to it. In
addition we can show (again, we omit technical details here) that the messages in a constraint
obtained by typing (and thus those in ¢) have type LL with a subset of this constraint. By
Lemma 7, K applied on either side of ¢ is therefore a key of type LL.

In addition, by induction, we may replace S with a recipe without destructors S’ that produces
the same messages when applied to the constraint. Since R successfully evaluates, this means S’
applied to either side of the constraint evaluates to an encryption with k. As k is of type LL, by
step2, this encryption cannot already be present in the constraint. Thus it was constructed by
the attacker: S’ = enc(S”, K') for some S”, K" without destructors (and such that K" produces
the correct key). When applied to the constraint, R thus produces the same result as S”: using
this S” as the R’ specified in the statement of the lemma proves the claim. O]

In addition, if follows rather easily that if the checks in step2 succeed, then the constraint
only contains messages which cannot be reconstructed by the attacker from the rest of the
constraint. Indeed, they are all encryptions or signatures with secret keys, or contain a secret
nonce. Using Lemma 17 and this property, we finally prove that the simple unification tests
performed in step3 are sufficient to ensure static equivalence of each side of the constraint for
any well-typed instantiation of the variables.

Lemma 18. Consider a constraint (c,T') obtained by typing some processes. Let (¢,T) =
stepirp(c), and assume step2r(C) and step3y(c) hold. Consider ground, well-typed instantiations
0,0, ie. Tyxbo~ad Ty — ¢, for some ¢, C [€], /- Also consider attacker recipes R, S

such that vars(R) U vars(S) C dom(qﬁfL U ¢¢(€)).
Then

(R(OLUde ([l o)) b= (S(@FL Ut ([, o ) = (R(GEL U (], o)) b= (S(OFL Uy ([e],5.00)) )4 -

Proof sketch. We only give the main ideas of this proof, and omit here all technical details.
Basically, we first use Lemma 7 to take care of the case where either of the recipes evaluate to L.
Then, assuming all recipes successfully evaluate, Lemma 17 allows us to consider only recipes R,
S without destructors.

We then do the proof by induction on (the sum of) the sizes of R, S. Both directions of the

equivalence are similar, we show (=). Assume (R(¢L. U ¢¢([7] oo )= (S (65 U e ([e] o))

Since R, S do not contain destructors, and successfully evaluate, this means that R(d){L U
oe(lel, o)) =S (¢t U ¢e([e], ). Therefore, we can distinguish three cases regarding R, S:
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e either none of them are variables: then they necessarily start with the same symbol, which
can be a name or a constructor. In the first case, the claim is trivial, and in the second case
it follows by induction: indeed, if R = f(R’) and S = f(S’), we can apply the induction
hypothesis to R, S’ to get that they produce the same message when applied on the right.
It then follows that the same holds for R, S and the claim holds.

e or one of them is a variable and the other is not: this case is impossible by the observation
that no message in the constraints can be reconstructed from the others.

e or both of them are variables: then the test being performed is simply an equality check
between messages of the instantiated constraint. Using the fact that step3(¢) holds, we
can prove that this check also succeeds on the right side of the instantiated constraint. [J

Lemma 18 proves that, if the procedure succeeds on ¢, I', then € is consistent in I', where
(¢,T) = stepip(c). By Lemma 16, this proves that c is then consistent in T', which proves the
soundness result (Theorem 3).

As a direct consequence of Theorems 1 and 3, we now have a procedure to prove trace
equivalence of processes without replication.

For proving trace equivalence of processes with replication, we need to check consistency of
an infinite family of constraint sets, as prescribed by Theorem 2. As mentioned earlier, not only
the number of constraints is unbounded, but the size of the type of some (replicated) variables is
also unbounded (i.e. of the form \/7_, [[T,% ; T]l;j’l]]). We use here two ingredients: we first show
that it is sufficient to apply our procedure to two constraints only. Second, we show that our
procedure applied to variables with replicated types, 4.e. nonce types of the form 75 implies
consistency of the corresponding constraints with types of unbounded size.

2.7.3 Unbounded case: two constraints suffice

Consistency of a constraint set C' does not guarantee consistency of Uy ;<[ C ]i". For example,
consider

C = {({n(m) ~ b(p)}, [ : 78, 71))}
which can be obtained when typing

. ~HH,00
new m: T,

. ~HH,0c0
newm: T,,

-new p : A1 out(h(m)) ~

.newp: T}};{H’l. out(h(p)).

C' is consistent: since m, p are secret, the attacker cannot distinguish between their hashes.
However Uy <;<,[C ]i" contains (together with some environment):

{h(ml) ~ h(p), h(mQ) ~ h(p), ce 7h(mn) ~ h(p)}

which is not, since the attacker can notice that the value on the right is always the same, while
the value on the left is not.

Note however that the inconsistency of Ux;;~,,[C']! would have been discovered when
checking the consistency of two copies of the constraint set only. Indeed, [ C']]Ux[C ]} contains
(together with some environment):

{h(m1) ~h(p),h(mz) ~ h(p)}
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which is already inconsistent, for the same reason.

Actually, checking consistency (with our procedure) of two constraints [ C' |} and [ C |5 entails
consistency of Uyx«;<,[ C']i'. Note that this does not mean that consistency of [ C']{ and [C |3
implies consistency of Ux1<ij<nl C]7. Instead, our procedure ensures a stronger property, for

which two constraints suffice.
Theorem 4. Let C and C' be two constraint sets that

e do not share any common variable, i.e.

V(c,I') € C.V(d,T") € C'. dom(T'y) Ndom(I" x) = 0;

e only share nonces which have the same finite nonce type, i.e.

V(c,T') € C.V¥(c,T") € C'. ¥m € dom(I') N dom(I") NN 31. T'(m) = T (m) = 751;

o only share keys which are paired in the same way and have the same types, i.e.

V(c,T) € C.V(,T) € C'. Vk € keys(T") Nkeys(I").VK' € K.
((k, k') € dom(T") & (k, k') € dom(T")) A ((K',k) € dom(T') < (K, k) € dom(T"))

and

V(c,T) € C.V(d,T") € C". V(k, k') € dom(T") N dom(T"). T'(k, k") = T'(k, k).

For alln € N, if check const([C [JUx[C J5Ux[C"]]) = true, then
check_const(Uy ;e[ C 1 )Ux[C']]) = true.

Proof sketch. We only sketch the ideas of the proof here, all technical details can be found in
Appendix A.4. To prove Theorem 4, we first (easily) show that if

check_const([C]TUx[CJ5Ux[C']]) = true,

then the first two steps of the procedure check const can be successfully applied to each element
of (Ux1<i<nl C I7)Ux[C" Y.

However the case of the third step is more intricate. When applying the procedure
check const to an element of the constraint set (Ux;<;<,[ C']7)Ux[C" ]}, if step3 fails, then
the constraint contains an inconsistency, i.e. elements M ~ M’ and N ~ N’ for which the
unification condition from step3 does not hold. More precisely, M and N can be unified with an
acceptable (in the sense of step3) unifier, while M’ and N’ are still different once their variables
with refinement and LL types are instantiated as in step3.

Then we show that we can find a similar inconsistency when considering only the first
two constraint sets, i.e. in [C |7Ux[C |3Ux[C"]7. This is done by reindexing the nonces and
variables. The proof actually requires a careful examination of the structure of the constraint set
(Uxq<icnl C 11U [ C" ], to establish this reindexing. More precisely, we examine the origin of

the elements M ~ M’ and N ~ N’ in the constraint set (Ux;;<,[ C])Ux[C"]T.

e If they both come from the same constraint set [ C'|!" for some i: then we can show that
n

the same inconsistency occurs in [ C'|}, which is just a renaming of [ C']".
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e If they come from two sets [C']!

i and [C']}, for some i # j: then similarly the same
inconsistency occurs with the corresponding elements of [ C']] and [ C |5. Note that we
still need to consider two different indices (i and j, or 1 and 2) to retrieve the inconsistency.
Indeed, it might be for instance that this inconsistency uses two renamings of the same
element of the original C', and is thus not present in [ C']] alone.

e Finally if one of them comes from some [ C']" and the other from [C’]}: then similarly

the same inconsistency can be found between [ C']] and [ C']5.

O]

Note that the rather lengthy hypotheses for this theorem only serve to ensure that the
environments in all the constraint sets are compatible, but do not really change the intuition of
the result. They are clearly satisfied when considering constraints produced by typechecking
processes that satisfy the assumptions of Theorem 2.

We now know that checking two copies of the constraint set suffices to establish consistency
of any number of copies. However, in these two copies, the infinite nonce types are still unfolded
into union types of size n. The next step is to reduce the problem to checking constraints with
fixed, bounded types.

2.7.4 Reducing the size of types

We prove that the procedure check const applied to replicated types, i.e. nonce and refinement
types with a = oo, implies consistency of corresponding constraints with unbounded types.

Theorem 5. Let C, and C' be two constraint sets without any common variable (with the same
assumptions as in Theorem /). Then:

check const([C ];Ux[C ],Ux[C"];) = true =
Vn. check const([ C'JfUx[CJ3Ux[C"]]) = true.

Proof sketch. Again here, it is rather easy to show that if check const([C |;Ux[C ],Ux[C"];) =
true then the first two steps of the procedure check const can successfully be applied to each
element of [ C'|7Ux[ C |3Ux [ C"]]. The case of step3 is more involved. The property holds thanks
to the condition on the most general unifier expressed in step3. Intuitively, this condition is
written in such a way that if, when applying step3 to sets of constraints in [ C' |JUx [ C |sUx [ C" 7,
two messages can be unified, then the corresponding messages (with infinite, non expanded types)
in [ C'];Ux[C ]yUx[C"]; can be unified with a most general unifier that also satisfies the condition.
The proof uses this idea to show that if step3 succeeds on all sets in [C |;Ux[C'],Ux[C"],
then it also succeeds on the sets in [ C'[fUx[ C' ]3Ux[C”]]. The detailed proof is provided in
Appendix A.4. O

2.7.5 Checking the consistency of the infinite constraint

Theorems 3, 4, and 5 prove that our procedure check const is sound for checking consistency
of replicated constraints.

Theorem 6. Let C, and C’ be two constraint sets without any common variable (in the sense
of Theorem /). Then

check const([C],Ux[C ,Ux[C"],) = true = Vn. [’ ]?UX(UXISZS”[C]?) is consistent.
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This theorem is a direct consequence of Theorems 3, 4, and 5.

It shows that it suffices to check to renamed copies of the constraints, without having to
extend the types they contain, to ensure consistency of the unbounded constraints produced
when typechecking replicated processes.

2.8 Conclusion

Summarising all the results presented in this chapter, we have introduced a type system that
typechecks two processes, and produces constraints, as well as a procedure to check the consistency
of this constraint. We have proved that the type system, together with the procedure, are sound,
in the sense that they imply trace equivalence, both for processes with bounded and unbounded
numbers of sessions. Formally, the following theorem summarises Theorems 2, and 6:

Theorem 7. Consider processes P, Q, P ,Q' such that P, Q and P', Q' do not share any
variable. Consider I, containing only keys and nonces with finite key or nonce types. Assume
that P and Q only bind nonces and keys with infinite nonce types, i.e. using new m : 75> and
new k : seskeyl"x’(T) for some label | and type T'; while P' and Q" only bind nonces and keys with
finite types, i.e. using new m : 7h! and new k : seskey"!(T).

Let us abbreviate by new T the sequence of declarations of each nonce m € dom(I') and session

key k such that T'(k, k) = seskey" (T) for somel, T
If

e I'FP~Q—C,
e I'-P ~Q —
e check const([C|;Ux[C],Ux[C"];) = true,

then
newn. ((IP) | P) ~ newn. ((1Q) | Q).

This constitutes an efficient way of checking trace equivalence of processes with or without
replication, and even processes with a replicated and an unreplicated part.

In the next chapter, we give relevant examples where this feature is useful. In addition, we
designed a prototype implementation of a typechecker for the type system, and of the procedure
for consistency, to experimentally validate the efficiency of our approach.
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Examples and Experimental Results

3.1 Introduction

In the previous chapter, we introduced our type system for equivalence, together with the
companion procedure for consistency. We will now illustrate how this type system can be used
to typecheck protocols. We first study the Helios voting protocol already evoked in Section 2.1.
We describe how our typesystem can be used to show that it guarantees vote secrecy, assuming
the ballot box is not trusted. This case study illustrates well an interesting feature of our type
system: we can consider processes involving a mix of some replicated and unreplicated parts.
This is notably useful when modelling voting systems, to represent scenarios that honest voters
are not allowed to revote (hence their processes are not replicated) but we still want to prove
security assuming the attacker controls any number of dishonest voters (represented by replicated
processes).

As a second example, we study the Private Authentication protocol already mentioned in
Section 2.2. In this protocol, an agent A is trying to authenticate to another agent B, who can
accept or reject this request. The protocol aims to prevent an attacker from learning whether
B accepted A’s request or not. Studying this property illustrates another feature of our type
system: its ability to prove equivalence even in case the execution is not uniform, i.e. branches
differently on the left and on the right. This models the fact that, in the equivalence we prove
for Private Authentication, authentication typically succeeds on the left and fails on the right,
leading to non uniform execution.

Finally, to validate experimentally the efficiency of our approach, we implemented together
with Niklas Grimm a prototype of a typechecker for our type system, as well as the procedure for
consistency of the constraints. We apply it to several examples of protocols, notably our two case
studies, as well as several key exchange protocols from the literature, for which we prove a strong
secrecy property on the exchanged key. We then compare the performance of our prototype to
that of other existing automated tools for symbolic process equivalence. The source code for the
implementation, as well as the files from the benchmark, are available at [1].

3.2 Helios

In this section, we apply our type system to the Helios voting protocol described in Section 2.2.
We show how our type system can prove vote privacy for Helios, and present the most interesting
parts of the type derivation.
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3.2.1 Modelling vote privacy for Helios

Recall that the protocol was informally described in Section 2.2 as follows

S =V T
V,—S: sign(aenc((v;, (i, 7l)), pk(ks)), ki)
S —=>Vi,..., Vv, 0,

Voters receive a random value r; from the server (in clear and unauthenticated). They encrypt
their vote with the election key pk(ks), randomising the encryption with both r; and a fresh
value r} they generate. They sign this ciphertext with their private key and send it to the server
(modelling an authenticated communication channel with the server). The server receives all
ballots, and removes duplicate ciphertexts (we call this operation weeding). This phase is crucial,
as otherwise the protocol is subject to an attack, as explained in introduction and Section 2.2.
Finally, the server, who knows the decryption key ks, decrypts the ballots, and publishes (in an
arbitrary order) the list of votes in clear.

That model is an abstraction of the actual Helios protocol: in the real scheme, the voting
server that collects the ballots and the tallying authority are distinct entities, and the decryption
key ks is split among several trustees that form the tallying authority. We consider here the
case where the talliers are honest, as well as the server (although the attacker, who controls the
network has the ability to block honest ballots, or send fake ballots to the server). Hence, we use
a very abstract model for the tally, that conflates the tallying authority and the voting server
into a single entity who collects ballots, decrypts them and computes the result.

In addition, we model the initial phase where the election key pk(ks) is distributed to the
voters before the actual election starts. We represent this distribution by having the server
generate a fresh election key, and send it to voters in an authenticated way: the key is signed
with some long-term key ko, and we assume voters already know the verification key vk(ko).

We model the role of a voter with private key k voting for candidate v by the following
process V (k,v):

V(k,v) = in(z).
let x), = checksign(x,vk(kg)) in receiving the election public key
in(z,).new r’.
out(sign(aenc({(v, (z,, 7)), zk), k)) sending the signed ballot

The model of the role of the voting server is a bit more intricate. As already explained in
earlier chapters (e.g. Section 2.1), we will model the privacy property by considering two honest
voters Alice and Bob with secret keys k1 and ks, in parallel with other, compromised, voters. We
will additionally call r] the nonce generated by Alice, and 75 the one from Bob. In order to be
able to consider an unbounded number of compromised voters, we split the voting server into two
parts: one that handles only the ballots from Alice and Bob, and that will not be replicated, and
one that handles all ballots from dishonest voters, that will be replicated. In order to prevent
false attacks, we require that the server only proceeds to the tallying if ballots signed by Alice
and Bob have correctly been received: otherwise, the attacker could simply prevent Alice from
voting, and the result would only contain Bob’s vote, which trivially breaks privacy.

Then, to be able to correctly perform weeding, the voting server dedicated to dishonest voters
needs to know Alice and Bob’s ciphertext. Actually, for technical reasons which will become
clear later on, we model the weeding as comparing the random values used to randomise the
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encryption, rather that the ciphertexts themselves. While this may not be possible or make sense
in practice with the actual cryptographic primitive used, in our symbolic model, since the values
of the random nonces generated by the voters are not published, comparing the random value or
the whole ciphertext amounts to the same. Hence, we require that the voting server for Alice
and Bob first receives their ballots, and sends privately to the other part of the voting server the
two random values |, 75 they contain. When receiving a dishonest ballot, the second part of
the voting server will then compare its random nonce to r, 75, and discard it if it is equal to
one of the two. This private communication is modelled as sending these values symmetrically
encrypted using a key &’ that only the two parts of the voting server know. We take advantage
of this step to also sends the secret key k of the election, generated by the server for Alice and
Bob, to the other part of the server. This communication between the two parts of the server
does not represent any real part of the protocol. It is simply a modelling artefact we need to
use to represent the two parts of the server sharing their internal state, which is not natively
possible in our pi-calculus.

Another point in our model is that we do not generate honest signature keys for dishonest
voters. Instead, we consider that these are directly generated by the attacker, and the server for
dishonest voters simply asks the attacker for a verification key to be used. For better readability,
we omit this from the presentation, and simply assume here that dishonest votes are not signed.
Finally, we model the publication of the result in a randomised order by simply outputting the
votes in clear in a non-deterministic order, i.e. in two outputs in parallel.

The voting server for voters Alice and Bob with verification keys vk, vky is modelled by the
following process:

S(vki,vke) = new k.out(sign(pk(k),ko)). generating and sending the election key
new rj.new ry.out(ry).out(rs). sending the random values to A and B
in(x1). in(x2). receiving ballots
let y; = checksign(zy,vk) in opening A’s ballot

let (2zy1, 2r1, 201) = adec(y1, k) in
let yo = checksign(zg,vks) in opening B’s ballot

let (2zy2, 2r2, 219) = adec(y2, k) in
out(enc(((z, 2l9), k), k")) sending values to other server
(out(zy1) | out(zy2)) publishing the result

Note that when opening a ballot, we wrote the decomposition of the plaintext into three variables
(zu1, 2r1, #1.1) as a single destructor application for clarity, while in the actual process it consists
in a succession of several destructors.

The voting server handling dishonest voters is then modelled by the following process:

S’ = in(y). let (yr1,yr2, yr) = dec(y, k') in. receiving the values from the server
in(ys). receiving a dishonest ballot
let (2zu3, 2r3, 213) = adec(ys, k) in opening the ballot
if 2z/3 = yr1 then 0 weeding
else if 2/3 = Y, then 0
else out(zy3) publish the vote in clear

There is no need for a process modelling dishonest voters: they are entirely controlled by the
attacker. Finally we add another process Setup, in charge of publishing the public keys to the
attacker:
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Setup = out(vk(ky), vk(kz), vk(ko)).

Altogether, our model for Helios, with Alice voting for v; and Bob for vy is then the following
process:

Helios(vy,v2) = Setup | V(k1,v1) | V(k2,v2) | S(vk(ky),vk(ks)) | 1S’

As explained earlier (introduction, Section 2.2), the vote privacy property states that the
attacker should not be able to distinguish between Alice voting for 0 and Bob for 1 from Alice
voting for 1 and Bob for 0°. Formally, we thus prove the following equivalence:

Helios(0,1) ~; Helios(1,0)

To help the proof go through, we actually slightly rewrite the process on the right into
Helios'(1,0), which is identical to Helios(1,0), except that in the server for Alice and Bob, the
final outputs of the votes in parallel are swapped, i.e. out(z,1) | out(zy2) is replaced with
out(zy2) | out(zy1). This process clearly has the same behaviours as the original one, as the
parallel branching is executed in a non deterministic order. However it makes the proof easier:
in practice z,; will contain 0 on the left and 1 on the right, while z,; will contain 1 on the left
and 0 on the right. Hence this swapping makes it so that the first message (2,1 on the left, zy9
on the right) always contains 0, and the second one 1.

3.2.2 Typechecking Helios

A key point when proving this equivalence is that we need to keep track precisely of the value
of the contents of the two variables z,1 and z,2, to be able to typecheck the final output in the
server process. The second key point is the typechecking of the weeding phase. This phase is
intended to prevent the attacker from resubmitting a copy of Alice’s or Bob’s ballot. We need
precise enough types to express that when the weeding succeeds, the ballot we are decrypting
comes from the attacker, and is thus safe to output.
To do this, we annotate the key k generated in process S with the following type:
T}, = seskey™ ! ((HL * HL * TZH’l) V (HL % HL % TZHl))

This type specifies that & is a trusted session key (label HH), that is used by honest agents (i.e.
Alice and Bob) to encrypt tuples whose last component is either 1 or 9. Of course, dishonest
agent (i.e. the attacker) may also use it to encrypt any value (which will thus be of type LL).
This type will be helpful when typechecking the weeding phase, as it gives information regarding
the value of the variable being compared, i.e. the last component of the tuple.

: : HH,1 _HH1 . 5. ..
We also annotate the nonces 77, r5 respectively with types 7., , T, indicating they are
1 2

secret. The nonces rq, 79 are respectively annotated with 721 and 7101

o ", indicating they may be
published (as they are sent in clear on the network).

We then type the protocol using the initial environment I' below.

50 and 1 are represented as public constants in our model
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L(k1, k1)) = eqkey™ ({[r™" s 71"'] « HL x 73)
BRIR! TL L Pkey(Tk)
[(ks ky) = eqkey™({[r}™!; 75" « HL + 71}
HH 2 " pkey(Ty)
['(ko, ko) = eqkey™ (pkey(T}))
(

LK k) = eqkeyHH(T:I,H’1 * T;-I,H’l * Ty)
1 2

Since, in this protocol, we do not use different keys on either side, we give all keys an eqkey™(-)
type. The type of k; states that it signs encryptions of vote 0 on the left and 1 on the right,
together with the nonce 77, with a key of type pkey(T}). Similarly, the type of ko states it signs
encryptions of 1 on the left and 0 on the right. Indeed, these keys are only used by honest voters
to encrypt their votes with &k (that they received from the network). The type of kg states that it
signs a key of type pkey(7}): indeed in practice it signs pk(k). This type will let us know when
typechecking V' that the key received signed with kg has indeed the correct type. Finally the
type of the key &’ used for internal communication between the two parts of the server states
that it encrypts 7, r5, and k (or rather, a key with the same type).

We focus first on the voter process for Alice, i.e. V(k1,0) ~ V(k1,1). We start by applying
rule PIN, which requires us to typecheck the rest of the process with x : LL. Rule PLET they
lets us typecheck the signature verification checksign(z,vk(kp)): we need to typecheck the
two then-branches, and the two else-branches. The else-branches are 0 and trivially typecheck,
without generating constraints’. In the then-branches, the type of ky in I' indicates that x;, has
type pkey(7)). Rule PIN then applies, followed by rule PNEW, and these require us to typecheck
the continuation process with z, : L and 7} : T:,{,H’l. We then apply rule POUT to typecheck the
last instruction, which is the output of the balllot. We must give type LL to the messages, 7.e.
prove

I F sign(aenc({0, (x,,7')), 1), k) ~ sign(aenc((1, (x,, ")), k), k) : LL

where I is T" extended with types for z, xy, etc. as stated above. Figure 3.1 displays the type
derivation for this. Typing the ballot produces constraint

¢={M ~ N,sign(M, ki) ~ sign(N, k1)}

where M = aenc((0, (z,, 7)), zx) and N = aenc((1, (z,,7})), zk).
Rule PZERO ends the typing of the voting process for Alice, which thus produces constraint

Ca ={(c,T)}
for the ¢ and I defined above.
The voter process for Bob is typed similarly as the one for Alice®, and produces
Cy = {(¢,T")}

where ¢ is similar to ¢, except that the votes are swapped and are signed with ko instead of ki,
and T is similar to IV, with the nonce 7/, instead of r}.

"They actually generate constraint sets containing only the empty set of constraints. We omit these from the
presentation, for clarity, as they do not matter for consistency.

8In Bob’s process, variables have to be renamed to avoid collisions with the variables in Alice’s. We omit this
detail here.
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I =

1
T LT TLR' ————— THicH ' T 0 TLR
'O~ 1:[rgtts i ] — 0 I'ta, ~z, :HL = 0 i~
*] = . " . TPAIR X2
A0, (@r,m1)) ~ (1 {mr, 1)) : T — 0
* I (zx) = pkey (T
, , 1 / , (zx) = pkey(Tk) TVar
. T F (0, (@r, 1)) ~ (L, {@r,r1)) : T — 0 " b g ~ i : pkey(Tr) — 0 TAENC
g =
I'FM~NA{T) iy — 0
F/(Tll) — TS}"J .
1
———— THIGH ———— THiGcH TLR
I'F0~1:HL— 0 I'F 2, ~ 2  HL = 0 R S
n 7 ) TPAIR X2
I {0, (zr, 1)) ~ (1, (T, 71)) HL + HL * 7" —0
o TOR
’ I F (O, (e, ri)) ~ (L D)) T = 0
* I = pkey(7
7 7 : 7 7 7 (zk) P CY( k) TVAR
I (0, (xr,m1)) ~ (1, {mr,7)) : T" — 0 b zp ~ o : pkey(Tk) — 0 TAENC
I'FM~N:{T -0 ’
g = . Ty TAENCH
I'FM~N:LL— {M~N}
*2 *q
I'tM~N: {T}pkey(n) -0 I'FM~N:LL - ¢ [(k1, k1) = eqkey™ (T)pkey(T}) TSIGNH
I F sign(M, k1) ~ sign(N, k1) : LL — ¢
where

c={M ~ N,sign(M, k) ~ sign(N, k1)},
M = aenc((0, (x,, 7)), %), N = aenc((L, (z,,17)), xk),
= [[T(I)“L’l ; Ti“L’l]] * HL * TH,H’I,

HH,1

T = (HL *HL % 77" L)

)V (HL*HL*T,

Figure 3.1: Type derivation for the ballot of Alice

We then proceed with the server process S. The beginning is rather straightforward: rule
PNEWKEY stores k : Ty in the environment, rule POUT then requires that we give type LL to
the message containing the election public key has type LL. This can be done without generating
any constraints using rule TSIGNL. The same goes for the output of the two random values rq,
ro. Then rule PIN assigns type LL to x1, 2, and we proceed to the signature verification.

The verification is typechecked using rule PLET, and the type of k1 inform us that y; has
type {[r5" Lot s L A1 . Using rule PLET again (with destructor rule DADECT"),

"1 pkey(T)
we get in particular that z,; has type [, J. Similarly, after checking the signature for
LL,1, _LL1
I

Bob’s ballot and decrypting it, we get that Zv2 has type [T 5 T

LL1 LLl

We then only have to typecheck the publication of the votes in clear. We then use rule PPAR
to typecheck the two parallel outputs separately. As explained earlier, we swap these two outputs
on the right, so that we have to typecheck out(z,1) ~ out(zy2) and out(zy2) ~ out(z,1). These
two branches are similar, we describe the first one. By rule POUT, it requires us to give type
LL to 2zy1 ~ 2y2. This is done using rule TLRVAR, which allows us to use the two variables’
refinement types to give type [ L1 LL 1]] to them. Then rule TLRL’ lets us give them type LL,
without generating any constralnts.

The server process for honest voters S thus typechecks without generating any constraints.

We now typecheck the second part of the server process S’. Again, the beginning is easy: rule
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PIN assigns type LL to g, and following the type of &/, rule PLETDEC? for decryption assigns
types L CHLL nd Ty, respectively to 9,1, yr2, Y- The dishonest ballot y3 is given type LL

o Ty

again by1 rule P%IN . The intricate point is the decryption of this ballot and weeding. At this point,
the ballot received could be either a copy of Alice’s, a copy of Bob’s, or a ballot generated by the
attacker. Rule PLET (with destructor rule DADECH’) reflects these three cases: since we decrypt
with a variable with type T}, we need to typecheck the continuation process three times, which
will correspond to each of these three cases, and then combine all constraints obtained. More
precisely, there are three possible types for variables zy,3, 23, 2l.5: two from the two branches of
the union type in the payload type of T (which we split using POR), and one for the case where
the ciphertext is produced by the attacker. Formally we have to typecheck the rest of the process

with the following types for variables:

e once with z,3 : HL, 2,3 : HL, 2/5 : 7’:I,H71. Then when performing the first equality check, rule
1

PIFLR can use the refinement types of z/.; and y,; to show that the test always succeeds.
We thus only have to typecheck the then-branch, which is 0 and trivially typechecks with
no constraints.

e once with z,3 : HL, 2,3 : HL, 204 : T:I,H’l. This time, rule PIFLR similarly shows that the
2
first test fails, and the second (i.e. z.5 = yr2) succeeds. Similarly, we thus only have to

typecheck the second then-branch, which is 0.

e once with z,3 : LL, 2,3 : LL, 20,5 : LL. The refinements of both y,; and y,2 allow us to give
them type HH (without constraints) using rule TLR’. Using this information, rule PIFS
detects that, since z/4 has type LL, both equality checks fail, and we only have to typecheck
the last else-branch, i.e. the output of z,3. This is easily done using POuUT, without
creating any constraints, since this variable has type LL.

Notice that the typechecking of the weeding entirely relies on the use of refinements. Indeed,
in the first two cases, z,3 has type HL, and thus cannot be output. It has to be this way, since,
intuitively, in that case, this variable contains the vote of Alice or Bob, which is different on the
left and on the right. It is therefore crucial for the typechecking that in the first two case we can
statically detect that the weeding removes this ballot, and that there is no need to typecheck the
output of z,3. This is only possible thanks to the refinements of variables z|5, yr1, and yra.

In addition, the Setup process just consists in the output of public values, which can easily
be given type LL without any constraints. It then clearly typechecks with an empty constraint
set using rule POUT.

Altogether, after applying rule PPAR, the constraint set for the non-replicated part of the
process, i.e. for Setup | V(ky,v1) | V(k2,ve) | S(vk(k1),vk(ka)), is C = CyUxCy. That is to say,
omitting from the environment all variables and names that do not occur in the messages:

C={ ({M ~ N,sign(M,ky)~ sign(N, k1), M' ~ N' sign(M’ ky) ~ sign(N' ko)},
[ : LL, 2y : Tk, @, : LL, 2}« Tk, 7] - Tr},I,H’l,ré : T:I/H’l]) }
1 2
where M = aenc((0, (x,, 7)), zr) and N = aenc((1, (z,,7])), ) are Alice’s ballots, and M’ =
aenc((1, (z!, 7)), z}) and N' = aenc((0, (z},74)), z},) are Bob’s'’.

9Since the key &’ is used only for this purpose, it is never matched with other keys in I', and thus in that case
rule PLETDEC does not create many proof obligations.
0As stated earlier, we renamed the variables x, and x; in Bob’s ballots.
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The replicated part of the process, i.e. S’, does not generate any constraints when typechecked.
Therefore, we only need to check the consistency of C.

3.2.3 Consistency for Helios, and conclusion

We do not detail entirely the application of the procedure check const to C here, but only the
most relevant points.

e stepl actually leaves the constraints unchanged, since no variables in the messages have
refinement types.

e step? is satisfied on all elements in C': in particular, all encryptions are with honest keys
and contain the nonce | or 75, whose types have label HH.

e step3 is satisfied on all elements in C, as none of the messages M, M', sign(M,k;),
sign(M’', ko) (resp. N, N', sign(N, k1), sign(N’, k2) on the right) are unifiable with one
another. Indeed, M and M’ contain different votes (0 and 1 respectively), and thus cannot
be unified, and similarly for the two signatures; and the encryptions M and M’ of course
cannot be unified with the signatures. Hence, the check const procedure applied to C
succeeds. It also clearly succeeds on [ C']; which is just a renaming of C.

Therefore, Theorem 7 proves that Helios indeed satisfies the vote privacy property, when
considering two honest voters Alice and Bob, and an unbounded number of dishonest voters.

Note that this proof only holds thanks to the fact that Alice and Bob each vote only once.
Having Alice vote several times would require the election public key to have a more general type,
that allows it to encrypt several different ballots from Alice. When typechecking the decryption
performed by the server S’, we could then not discard the case where the ballot received is a
copy of Alice’s: we cannot statically know that the weeding test will succeed (i.e., that the ballot
will be rejected) in that case. In fact, as already mentioned, there is an attack (discovered by
Roenne) in case voters revote. The attacker may block one of Alice’s ballots, and submit a copy
of it in his name, which could not be detected by weeding, as the server has never seen it. This
attack corresponds exactly to the case we could not typecheck, as we just described. However
this attack is not possible if voters do not revote: our type system is able to leverage this by
encoding in the types the information that each voter can only produce one ballot.

3.3 Private Authentication

We now show how our type system can be applied to type the Private Authentication protocol
evoked in Section 2.2, by showing the most interesting parts of the derivation.

3.3.1 Modelling anonymity for Private Authentication

Recall that the protocol was informally described as follows

A — B: aenc({Ny,pk(ks)), pk(ks))
aenc((Ng, (Ny, pk(ks))), pk(kq)) if B accepts A’s request

B— A:
aenc(Ny, pk(k)) if B declines A’s request
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3.3. Private Authentication

where aenc(Ny, pk(k)) is a decoy message indicating that B refuses to communicate with A, and
pk(k) is a decoy key (no one knows the private key k).

As briefly mentioned in Section 2.2, we model the role of the initiator A with key k, trying
to authenticate an agent with public key pk; as the following process:

P,(kq,pky) = new N,.out(aenc((Ngy, pk(kq)), pks)). in(z)

We model the role of agent B with key k, willing to authenticate to an agent with public key
pky (and refusing requests from other agents) as the following process Py(ky, pky):

Py(ky,pks) = mnew Np. in(x).
let y = adec(z,kp) in let y; = m(y) in let yo = mo(y) in
if y9 = pk, then
out(aenc({y1, (N, Pk(ks))), pka))
else out(aenc(Ny, pk(k)))

The protocol aims to provide anonymity, that is, intuitively, an attacker should not be able
to tell whether B is willing to accept authentication requests from agent A, or rejects them and
is only willing to communicate with another honest'! agent C'?. Following the model proposed
in [14], we formalise this property as the following equivalence:

Po(ka,pk(kp)) | Po(ky, pk(ka)) =t Pa(ka,pk(kp)) | Po(ks, pk(ke))

3.3.2 Typechecking Private Authentication

The key point when proving this equivalence is that the execution is not uniform. The authentica-
tion request can typically succeed on the left and fail on the right in the corresponding execution.
In that case, the real response, encrypted with &, is output in the left process, while the decoy
response, encrypted with the decoy key k, is output on the right. For each possible such case,
where a different key is used on either side, the typing environment must contain a binding for
the corresponding bikey.

We type the protocol using the initial environment I' presented earlier in Figure 2.1, and
reproduced here.

[(ky,kp) = key™(HL *LL) initial message uses same key on both sides
[(kq k) = key™(HL) authentication succeeded on the left, failed on the right
I'(k,k.) = key™(HL) authentication succeeded on the right, failed on the left
[(kq,ke) = key™(HL) authentication succeeded on both sides
[(k,k) = key™(HL) authentication failed on both sides

We also annotate the declarations of N, and Nj respectively with type T]}\I,i’l and T]}{,}i’l,

specifying they should be secret.

We of course first apply rule PPAR, to typecheck independently the initiator and responder
processes, i.e. Po(ka,pk(kp)) ~ Fa(ka, pk(ky)) and Fy(kp, pk(ka) ~ Py(ks, pk(ke).

H1f ¢ were dishonest, the attacker would know his private key and could simply try to send a request with it to
see who B is willing to talk to.

2Note that this is possible even though the decoy message and the true response have different length since, as
mentioned in Chapter 2, we model length-hiding encryption.
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. _ //(yl, (Np, pk(ksp))), Np well formed THicH
I+ <y1, <Nb,pk(kb)>> ~ Ny :HL — 0
['(ka, k) = key™ (HL)
I F ko ~Fk:key™HL) = 0
* I F pk(ka) ~ pk(k) : pkey(key™ (HL)) — 0
I+ aenc({y1, (No, pk(ks))), pk(ka)) ~ aenc(Ny, pk(k)) : {HL} ) oo (eymmy) — 0
I'" - aenc((y1, (Np, pk(ks))), pk(kqa)) ~ aenc(Ny, pk(k)) : LL — ¢

where ¢ = {aenc((y1, (No, pk(ks))), pk(ka)) ~ aenc(Ny, pk(k))}.

TKEY
TPUBKEY

TAENC
TAENCH

Figure 3.2: Type derivation for the response to A and the decoy message

We focus first on the responder process P,. We start by applying rule PNEW, which simply
adds to I' the binding N : T]I;I[IZ’I. Then, rule PIN requires us to typecheck the rest of the process
with z : LL. Let us write I =T,z : LL, N}, : T]}\I[i’l.

We then proceed with the asymmetric decryption. As we use the same key kj in both processes,
we apply rule PLETADECSAME. We have I'V(z) = LL from rule PIN and I (ky, ky) = key™ (HL*LL).
We do not have any other entry using key k;, in I'. We hence need to typecheck the two then
branches once with I,y : (HL * LL) and once with I,y : LL, as well as the two else branches
(which are just 0 in this case, and are trivially typed using rule PZERO).

Typing the let expressions where the message in y is projected onto its two components
is straightforward using rule PLET. When typechecking with y : LL, they specify that the
continuation must be typechecked with IV, y : LL,y; : LL,y2 : LL. Otherwise, when y : (HL % LL),
it must be typechecked with I,y : (HL % LL), y; : HL, y3 : LL.

In the conditional we check y2 = pk(k,) in the left process and yo2 = pk(k.) in the right
process. In any case, we only know at this point that y2 has type LL. This variable is compared
to messages pk(k,) and pk(k.), which on the contrary cannot be given type LL, as observing
them would let the attacker distinguish between the two sides. Hence we cannot guarantee which
branches are taken, or even if the same branch is taken in the two processes. We therefore use
rule PIFALL to typecheck all four possible combinations of branches. Note that in doing this we
also typecheck cases where the authentication succeeds on the right, which should not happen in
real executions, as the agent C' that B accepts requests from is not present. This is expected:
when typechecking, we overapproximate the behaviours of the processes. With finer typing
rules, we might be able to statically determine that such cases cannot happen, producing less
constraints to check for consistency. Since the constraints produced here are consistent anyway,
this is not an issue here, and we can still prove the property despite this overapproximation.

We now focus on the case where A’s request is successful in the left process and is rejected
in the right process. We then have to typecheck B’s positive answer together with the decoy
message: I F aenc((y1, (Ny, pk(kp))), pk(ka)) ~ aenc(N,,pk(k)) : LL, where I'” is either T} =
I yy : HL,yo : LL, or Ty =TV 4y : LL, yo : LL, depending on which of the two proof obligations
created by rule PLETADECSAME we are proving.

Figure 3.2 presents the type derivation for this example. We apply rule TAENC to give type
LL to the two terms, adding the two encryptions to the constraint set. Using rule TAENCH
we can show that the encryptions are well-typed with type {HL}pkey(keyHH(HL)). The type of the
payload is trivially shown with rule THiGH. To type the public key, we use rule TPUBKEY
followed by rule TKEY, which looks up the type for the bikey (kq, k) in the typing environment
.

The other three cases can be typechecked similarly, regardless of the type of y;, yielding
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3.3. Private Authentication

each time a constraint containing a single pair of messages: either two honest responses, a decoy
message and a honest response, or two decoy messages.

Altogether, typechecking the responder process thus yields the constraint set C; = Cy, 1 U Cy 2,
where'?

Co1={ ({aenc((y1, (Ny, pk(ks))), Pk(ka)) ~ aenc((y1, (Ny, pk(ks))), Pk(ke))}, I'Y),
({aenc({y1, (Ny, pk(ks))), pk(ka)) ~ aenc(Ny, pk(k))}, T'7),
({aenc(Ny, pk(k)) ~ {aenc({y1, (Ny, Pk(ks))), Pk(kc))}, I'7),
({aenc(Ny, pk(k)) ~ aenc(Ny, pk(k))}, I'Y) }

and Cpo is identical to Cp 1 except its elements contain I'y instead of I'}.

The initiator process P, is more easily typechecked: as for the responder, rule PNEW first
simply adds N, HH ! to the env1ronment Then we use rule POUT, which requires to give type LL

to the request message, i.e. T, Ny : TNa’ F aenc((Ng, pk(kq)), pky) ~ aenc({N,, pk(kq)), pks) : L
This is done in the same way as the response message, and yields constraint

aenc((Ng, pk(kq)), pky) ~ aenc({Ny, pk(ka)), pkp)-

The rest of the process trivially typechecks with rules PIN and PZERO, and the initiator
process thus typechecks with constraint

C, = {({aenc((Na, pk(ka)), pky) ~ aenc((Na, pk(ka)), pks)}, (T, No : T, 2 1 LL)) ),

Altogether, after applying rule PPAR, the constraint set for the whole process is thus
C = CQUXCb, i.€e.

C:{ ({QNQaRNR,}arl)a({ QaRND}7P1)7
{Q@~Q.D~FR}T1),{Q~Q,D~D} T,
{Q ~Q, R~ R} Ts), ({Q ~Q,R~ D}, Ty),
({Q ~Q,D ~ R/}a F2)a ({Q Q,D ~ D}>F2) }

where Q = aenc((Ng, pk(kq)), pkp) is the request, R = aenc({yi, (Ny, pk(ks))), pk(ks)) and
R’ = aenc({y1, (Ns, pk(kp))), pk(ke)) are the responses to A and C' respectively, and lastly
D = aenc(Ny, pk(k)) is the decoy message. I'y is the environment

I, Ny 7yt Nyt 7yt @t L,y t HL+ LL, g1 t HL, o : LL, 2 : LL

and I's is identical except that I'o(y) = I'2(y1) = LL.

3.3.3 Consistency for Private Authentication, and conclusion

We do not detail entirely the application of the procedure check const to C here, but only the
most relevant points.

e stepl is actually the identity function here, as neither I'; nor I'y contain refinement types:
it leaves the constraints unchanged.

13The actual constraint set also contains empty sets of constraints generated when typechecking the else-branch
corresponding to the case where decryption or projection fails on both sides. We omit them here for clarity, as
they do not matter for consistency.

91
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e step? is satisfied on all elements in C': in particular, all encryptions are with honest keys
and contain the nonce N, whose type is T]}\I,};’l in both I'y and I's.

e step3 is satisfied on all elements in C', as none of the messages ), R, D are unifiable with
one another (and similarly on the right for Q, R', D).

Therefore, the soundness theorems (Theorems 1 and 3) prove that Private Authentication
indeed satisfies the anonymity property, when considering one session of the initiator and one
session of the responder.

We may even use Theorem 7 to consider an unbounded number of sessions of both the
initiator and the responder, and prove that

V(Pa(ka; Pk(ke)) | Po(ke, Pk(ka))) =t ! (Pa(ka,pk(ks)) | Py(ks, pk(ke))).

According to the theorem, we still need to typecheck only one session to prove this equivalence:
we have already done this above. The names N, and N, now have infinite types 7_]13:00 and T]}\I,IZ’OO,
but this has no influence on the typechecking since no rules where this distinction matters were
used.

As there is no unreplicated part here, what remains to be done is simply to ensure that
check const([C ];Ux[C'],) = true.

The reasoning for this is the same as in the bounded case for the first two steps. For the
third step, the only new unifications that could potentially happen would be between the two
(renamed) copies of @, the two copies of R (or R’), or the two copies of D. However, all of these
messages contain one of the nonces N, Ny. Since these now have infinite types T]}\I,IZ’OO and T]}\I,I:’OO,
they are renamed in each of the copies, and therefore prevent these unifications. Therefore the
procedure succeeds, and Theorem 7 proves the equivalence above: Private authentication satisfies

anonymity with an unbounded number of sessions of both the initiator and the responder.

3.4 Experimental Results

We have implemented in collaboration with Niklas Grimm a prototype type-checker for our type
system, which we will call TypeEq in the following, and applied it on various examples briefly
described below. Its source code, as well as the files from the examples, are available at [1].

Symmetric key protocols For the sake of comparison, we consider two symmetric key
protocols taken from the benchmark of [55], and described in [53]: Needham-Schroeder and
Yahalom-Lowe. These protocols aim at exchanging a key symmetric k. In both cases, we prove
key usability of the exchanged key. Intuitively, we show that an attacker cannot distinguish
between two encryptions of public constants: P.out(enc(a,k)) =~ P.out(enc(b,k)). Note in
particular that this equivalence is immediately broken if the attacker is able to learn k.

Asymmetric key protocols In addition to the symmetric key protocols, we consider the
well-known Needham-Schroeder-Lowe (NSL) protocol [29] and we again prove strong secrecy of
the nonce sent by the receiver (Bob).
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Helios We model the Helios protocol for two honest voters and infinitely many dishonest ones,
as described in Section 3.2. As emphasised in Section 2.2, Helios is secure only if honest voters
vote at most once. Therefore the protocol includes non replicated processes (for voters) as well
as a replicated process (to handle dishonest ballots).

BAC The Basic Access Control (BAC) protocol is one of the protocols embedded in the
biometric passport [5]. We show anonymity of the passport holder P(A) ~; P(B). Actually,
the only data that distinguishes P(A) from P(B) are the private keys. Therefore, to make the
property non-trivial, we consider an additional step where the passport sends the identity of the
agent to the reader, encrypted with the exchanged key.

Private Authentication Finally, we consider the private authentication protocol, as described
in the previous section.

All our experiments have been run on a single Intel Xeon E5-2687Wv3 3.10GHz core, with
378GB of RAM (shared with the 19 other cores). Actually, our own prototype does not require a
large amount of RAM. However, some of the other tools we consider used more than 64GB of
RAM on some examples (at which point we stopped the experiment).

3.4.1 Bounded number of sessions

We first compare our tool with tools designed for a bounded number of sessions. We ran our
benchmarks using the latest public versions at the time of writing of SPEC [658], APTE (and its
APTE-POR variant) [15, 18], Akiss [13], SAT-Equiv [55], and Deepsec [18]. The protocol models
may slightly differ due to the subtleties of each tool. For example, several of these tools require
sitmple processes where each sub-process emits on a distinct channel. We do not need such an
assumption. Moreover, Helios involves non-trivial else branches, which are not supported by all
of the tools.

The number of sessions we consider denotes the number of processes (modelling protocol roles)
in parallel in each scenario. For symmetric key protocols, we start with a simple scenario with
only two honest participants A, B and a honest server S (3 sessions). We consider increasingly
more complex scenarios (6, 10, and 14 sessions) featuring a dishonest agent C'.

In the complete scenario (14 sessions) each agent among A, B (and C) runs the protocol
once as the initiator, and once as the responder with each other agent (A, B, C). In the case of
NSL, we similarly consider a scenario with two honest agents A, B running the protocol once (2
sessions), and two scenarios with an additional dishonest agent C, up to the complete scenario
(8 sessions) where each agent runs NSL once as initiator, once as responder, with each agent. In
some cases, we further increase the number of sessions (replicating identical scenarios) to better
compare tools performance. For Helios, we consider 2 honest voters, and one dishonest voter
only, as well as a ballot box. The corresponding results are reported in Figure 3.3.

In several cases the tools were not able to prove the protocol, for different reasons. We write
TO for Time Out (we stopped the experiments after 12 hours), MO for Memory Out (we stopped
the experiments when the tool used up more than 64 GB of RAM), SO for Stack Overflow, BUG
in the case of APTE, when the proof failed due to bugs in the tool, and x when the tool could
not handle the protocol for the reasons discussed previously. In all cases, our tool is almost
instantaneous and outperforms by orders of magnitude the competitors.
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Protocols (# sessions) | Akiss | APTE | APTE-POR | SPEC | SAT-Equiv | Deepsec - Typekiq
Time | Memory
Needham - 3 4.2s 0.39s 0.086s 59.3s 0.05s 0.007s | 0.006s | 4.0 MB
Schroeder 6 TO TO 9m22s TO 0.27s 0.017s | 0.009s | 4.7 MB
(symmetric) 10 SO 1.9s 0.10s | 0.012s | 5.0 MB
14 10s 19s 0.015s | 6.9 MB
3 1.0s 2.9s 0.095s 10s 0.040s 0.008s | 0.006s | 3.8 MB
Yahalom - 6 MO TO 11m20s MO 0.20s 0.021s | 0.017s | 4.9 MB
Lowe 10 SO 3.2s 0.92s 0.015s | 4.9 MB
14 20s 3ml2s | 0.019s | 5.0 MB
Needham- 2 0.10s 3.8s 0.06s 28s 0.051s 0.007s | 0.004s | 3.1 MB
Schroeder- 4 1m8s | BUG BUG TO 0.13s 0.010s | 0.005s | 3.4 MB
Lowe 8 TO 54s 0.547s | 0.009s | 4.7 MB
Private 2 0.19s 1.2s 0.034s X X 0.012s | 0.004s | 3.2 MB
Authentication 4 99m TO 24.6s 18s 0.013s | 4.9 MB
8 MO TO TO 1s 37 MB
Helios 3 MO BUG BUG X X TO 0.005s | 3.5 MB
2 4.0s 0.20s 0.032s X X 0.016s | 0.004s | 2.9 MB
BAC 3 SO 185m 2.6s 50s 0.004s | 3.1 MB
5 TO 107m TO 0.005s | 3.4 MB
7 TO 0.006s | 3.8 MB

TO: Time Out (>12h) MO: Out of Memory (>64GB) SO: Stack Overflow

Figure 3.3: Experimental results for the bounded case

3.4.2 Unbounded numbers of sessions

We then compare our type-checker with the latest public version of ProVerif [35] at the time of
writing, for an unbounded number of sessions, on a the same examples as for the bounded case.
As expected, ProVerif cannot prove Helios secure since it cannot express that voters vote only
once. This may sound surprising, since proofs of Helios in ProVerif already exist (e.g. [65, 15]).
Interestingly, these models actually implicitly assume a reliable channel between honest voters
and the voting server: whenever a voter votes, she first sends her vote to the voting server on a
secure channel, before letting the attacker see it. This model prevents an attacker from reading
and blocking a message, while this can be easily done in practice (by breaking the connection).

The execution times are very similar between the two tools. The corresponding results are
reported in Figure 3.4.

Protocols ProVerif | TypeEq
Helios X 0.006s
Needham-Schroeder (sym) 0.17s 0.017s
Needham-Schroeder-Lowe 0.055s 0.010s

Yahalom-Lowe 0.43s 0.020s
Private Authentication 0.025s 0.009s
BAC 0.026s 0.006s

Figure 3.4: Experimental results for an unbounded number of sessions
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We presented a novel type system for verifying trace equivalence in security protocols. It can
be applied to a large class of protocols, with support for else branches, standard cryptographic
primitives, dynamic key generation, non-uniform branching, as well as bounded and unbounded
numbers of sessions.

We believe that our prototype implementation demonstrates that this approach is promising
and opens the way to the development of an efficient technique for proving equivalence properties
in even larger classes of protocols.

Our type system requires a light type annotation: the user must specify the type of the keys.
While it seems reasonable to expect the user to provide the label (is the key supposed to be secret
or not), the type of the payload the key should encrypt or sign can be more complex. In our case
study, in most cases this type simply describes the structure and security labels of the messages
encrypted by the key. Such types could possibly be inferred automatically by looking at the
messages the keys encrypt in the process. However the case of the Helios protocol in particular
is rather intricate: the user has to write a refined type that corresponds to an overapproximation
of any encrypted message. As future work on this topic, it would be interesting to develop
an automatic type inference system, and in particular to explore whether such types could be
inferred automatically. A possible heuristic to do this would be to start the typechecking without
the information on the payload types for the keys, until we reach a point where a key is used
to encrypt a message. A type for that message would then be determined, using its structure
and the currently available typing environment, and added as a payload type to the key. We
would then have to backtrack, and start the typechecking over with this new key type, until
we encounter a message that cannot be typechecked with it. Again the type for this message
would be added to the key type, we would backtrack, and so on until — hopefully — a key type is
reached that lets the whole process typecheck.

We also plan to study how to add phases to our framework, in order to cover more properties,
that involve several stages in the protocol. For instance, a variant of the unlinkability property
could be formulated by considering the scenario where the attacker first observes and interacts
with a session run by Alice, and only after this session has ended can interact with a second
session, and try to determine whether that second session is also with Alice, or with another
user Bob. Incorporating phases to our type system would require to generalise it, to account for
the fact that the type of a key may depend on the phase in which it is used. For instance in
the unlinkability case, a key could have a type specifying that, during the first phase, it only
encrypts messages from Alice, while in the second phase it can additionally encrypt messages
from Bob.

Several other interesting problems remain to be studied. Notably, a limitation of our type
system is that it does not address processes with too dissimilar structures. Our type system goes
beyond diff-equivalence (where the executions must be the same on both sides, and only the
messages themselves may differ), e.g. allowing else branches to be matched with then branches.
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However we cannot prove equivalence of processes where traces of P are dynamically mapped to
traces of ), depending on the attacker’s behaviour. Such cases occur for example when proving
unlinkability of the biometric passport. An interesting direction would be to explore how to
enrich our type system with additional rules that could cover such cases, taking advantage of the
modularity of the type system. Intuitively, this would require us to express for instance that a
key is used in a different way, e.g. paired with a different key in a bikey, depending on which
branch of a conditional we are typechecking.

Finally, another interesting problem would be the treatment of primitives with algebraic
properties (e.g. Exclusive Or, or homomorphic encryption). A direction to explore would be to
extend the type system with simple rules — compared to the current ones for encryption — that
discharge these primitives and their difficulty to the consistency of the constraints. Algebraic
properties of primitives intuitively seem easier to handle in the constraints, since they capture
the static case.

96



Part 11

Vote Privacy
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Introduction to Part 11

In order to carefully analyse electronic voting systems, several classes of security requirements
have been defined. As explained in introduction, two of the main security properties are:

e privacy: no one should know how I voted;
e verifiability, which is typically described through the three following sub-properties.

— individual verifiability: a voter can check that her ballot is counted;

— wundversal verifiability: anyone can check that the result corresponds to the published
ballots;

— eligibility verifiability: only legitimate voters may vote.

These two main properties seem antagonistic. Basically, privacy requires that as little information
as possible should be made public by the authorities, besides the result of the election. On the
other hand, for a system to be verifiable, some information has to be published, to allow voters
to verify — in some way specified by the scheme — that their vote was counted. Intuition hence
seems to indicate that making a verifiable system creates a risk that some information will be
revealed on the votes, causing privacy breaches.

Related work In fact, as mentioned in introduction, an impossibility result has even been
established [19], stating that verifiability is incompatible with unconditional privacy. That notion
of privacy requires that the votes remain perfectly secret even from an adversary with unlimited
computational power. No such result however has been established when considering privacy
notions that feature a polynomially bounded attacker. A polynomial attacker is usual when
studying cryptographic protocols — most protocols achieve only such computational privacy,
rather than unconditional privacy. Many game-based privacy definitions have been proposed, as
surveyed in [26]: they all consider a polynomial adversary.

[70] establishes a hierarchy between privacy, receipt-freeness, and coercion resistance, while
in a quantitative setting, [38] shows that this hierarchy does not hold anymore. [58] recasts
several definition of verifiability in a common setting, providing a framework to compare them.
Besides [19], none of these approaches relates privacy with verifiability.

Contribution — privacy and verifiability In the following chapters, we study the relations
between these two security properties. Our first important contribution is to establish that,
in fact, (computational) privacy implies individual verifiability, that is, guarantees that all the
honest votes will be counted. This result holds for arbitrary primitives and voting protocols
without anonymous channels. To show that this implication is not due to a choice of a very
particular definition, over the next two chapters, we prove it in two very distinct contexts, namely
symbolic and cryptographic models (respectively, Chapters 4 and 5). In symbolic models, such as
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the one we considered in Part I, messages are represented by terms and the attacker’s behaviour
is typically axiomatised through a set of logical formulas or rewrite rules. Cryptographic models
are more precise. They represent messages as bitstrings and consider attackers that can be any
probabilistic polynomial time Turing machines. Proofs of security are made by reduction to well
accepted security assumptions such as hardness of factorisation or discrete logarithm. In both
models, we consider a standard notion of privacy already used to analyse several protocols. In
the symbolic setting, as explained in previous chapters, we express privacy as an equivalence
property between two scenarios where the votes of two voters Alice and Bob are swapped. In
the computational case, we use (an adaptation of) Benaloh’s definition [24]. That game-based
definition follows a similar intuition to the symbolic notion. The adversary wins if he can
distinguish between two scenarios where the set of votes from all (honest) voters produces the
same result — which generalises the symbolic case, where this set contains only Alice and Bob’s
votes, and is therefore the same in the two scenarios. In both settings, we establish that privacy
implies individual verifiability for a (standard) basic notion of individual verifiability, namely
that the result of the election must contain the votes of all honest voters.

To briefly explain our idea, let us consider a very simple protocol, not at all verifiable. In this
simple protocol, voters simply encrypt their votes with the public key of the election. The ballot
box stores the ballots and, at the end of the election, it provides the list of recorded ballots to
the talliers, who detain the private key, possibly split in shares. The talliers compute and publish
the result of the election. The ballot box is not public and no proof of correct decryption is
provided so voters have no control over the correctness of the result. Such a system is of course
not satisfactory but it is often viewed as a “basic” system that can be used in contexts where
only privacy is a concern. Indeed, it is typically believed that such a system guarantees privacy
provided that the attacker does not have access to the private key of the election. In particular,
the ballot box (that is, the voting server) seems powerless. This is actually not the case. If the
ballot box aims at knowing how a particular voter, say Alice, voted, he may simply keep Alice’s
ballot in the list of recorded ballots and then replace all the other ballots by encryptions of valid
votes of his choice, possibly following a plausible distribution, to make the attack undetected.
When the result of the election is published, the ballot box already knows the value of all votes
but Alice’s, and will therefore be able to deduce how Alice voted. We show how to generalise
this idea to produce an attack on privacy from any attack on individual verifiability.

Our result may seem counter-intuitive when thinking of existing analysis of voting schemes.
Indeed, if privacy implies individual verifiability, how is it possible to prove Helios [2&] or
Civitas [17] without even modelling the verification aspects? How can a system that is not fully
verifiable like the Neuchétel protocol be proved private [78]? This apparent contradiction can be
resolved by closely examining the trust assumptions we consider: we in fact prove that privacy
implies individual verifiability with the same trust assumptions w.r.t. all election authorities for
both properties. In previous work, verifiability is typically studied against a dishonest ballot box,
while privacy notions assume a trusted ballot box.

Contribution — privacy against a dishonest ballot box Our second contribution in this
part is to propose new notions of vote privacy, in the context of an untrusted ballot box. Indeed,
as pointed out above — a similar observation was made in [29] — existing cryptographic definitions
of privacy implicitly assume an honest voting ballot box. That is the case for all definitions
surveyed in [26]: honest ballots are assumed to be properly stored and then tallied. Actually, we
notice that the same situation occurs in symbolic models. Although the well adopted definition
of privacy [71] does not specify how the ballot box should be modelled, most symbolic proofs of
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privacy (see e.g. [71, 66, 65, 17]) actually assume that the votes of honest voters always reach
the ballot box without being modified and that they are properly tallied. The reason is that the
authors were aware of the fact that if the adversary may block all ballots but Alice’s ballot, he can
obviously break privacy. However, to avoid this apparently systematic attack, they make a very
strong assumption: the ballot box needs to be honest. This means that previous cryptographic
and symbolic privacy analyses only hold assuming an honest ballot box while the corresponding
voting systems aim at privacy without trusting the ballot bozx. This seriously weakens the security
analysis and attacks may be missed, like the attack of Roenne [94] on Helios, for which there is
no easy fix.

In Chapter 6, we attempt to close that gap, by proposing a new definition for ballot privacy,
that circumvents this problem and remains meaningful in the context of an untrusted ballot box.
Intuitively, vote privacy tries to capture the idea that, no matter how voters vote, the attacker
should not be able to see any difference. The key issue is that the result of the election does leak
some information (e.g. the sum of the votes) and the adversary may notice a difference based on
this. Typically, as soon as some voters do not check (in the way specified by the voting scheme)
that their votes are counted, an adversary may remove these votes without being detected, which
leads to the result leaking more information than it should on the remaining votes. Our idea is
to solve this issue by designing a definition that allows us to acknowledge this inevitable leakage,
and specifically express that we do not wish to consider it as an attack on privacy.

We actually go further than that. In some schemes, such as Helios, when voters do not
verify, the adversary is even able to not only remove, but also replace their ballots with his own,
containing votes of his choice. Similarly to the discussion above, this additional ability may let
him obtain even more information on the remaining votes from the tally. Depending on the
context and use case of the scheme, this may or may not be considered an issue. Hence we may
wish to specify that such a behaviour — modifying votes of people who do not check — does or
does not constitute an attack on privacy.

To handle such cases in a general way, we thus formally define a family of games for privacy
against a dishonest ballot box, that explicitly exclude some adversarial behaviours — removing
votes, changing them, etc.— from constituting attacks. We do this in a modular way: our
definition is a cryptographic game that is parametrised by the class of behaviours we wish to
allow, 7.e. not to consider an attack. To show that our definition is still sufficiently robust, we
relate it to a family of simulation-based notions of privacy: in these, the voting scheme must
securely implement an ideal functionality, that describes precisely what power an adversary
can have against the scheme. We show that each instance of our game-based notion implies
simulation-based security for a corresponding ideal functionality. Finally we conduct a case study,
applying our definition to several existing voting schemes, that prevent or allow different classes
of adversarial behaviours, to showcase its flexibility.

Related publications Chapter 4 and Chapter 5 are based on the results from the article [64],
written with Véronique Cortier and published at the CCS’18 conference (ACM Conference on
Computer and Communications Security). Chapter 6 presents yet unpublished work, which was
conducted with Véronique Cortier and Bogdan Warinschi.
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Chapter 4

Privacy Implies Verifiability:
Symbolic Model

In this chapter, we establish that privacy implies individual verifiability for voting systems in
a symbolic model. We first present our model for voting protocols and the associated security
properties in the symbolic setting. We then detail under which assumptions our result holds,
and formally state and prove it.

4.1 Model

Let us first introduce the symbolic model we will use to represent voting systems. In this section,
we consider a generalisation of the process algebra presented in Chapter 1, in the spirit of the
applied pi-calculus [6].

4.1.1 Messages

The model here is quite similar to the one we considered earlier in Chapter 1, except we now
allow any signature of function symbols, to model any cryptographic primitive, rather than the
fixed set of constructors and destructors considered before.

As in Part I, we consider an infinite set of names N that model fresh values such as nonces
and keys. We distinguish the set FN of free nonces (generated by the attacker) and the set BN
of bound nonces (generated by the protocol agents). We also assume an infinite set of variables
Y =X W AX where X' contains variables used in processes (agent’s memory) while AX contains
variables used to store messages (adversary’s memory). Cryptographic primitives are represented
through a signature F, i.e. a set of function symbols with their arity. We assume an infinite set
C C F of public constants, which are functions of arity 0.

As before, we model messages by terms: the set 7 (F,V,N) of terms is inductively defined
by applying functions to variables in ¥V and names in /. The set of names (resp. variables)
occurring in a term ¢ is denoted names(t) (resp. vars(t)). A term is ground if it does not contain
any variable. The set of terms T (F, AX, FN') represents the attacker terms, that is, terms built
from the messages sent on the network and stored thanks to the variables in AX. As in Part I,
we call substitution a mapping from variables to messages, and we denote by to the application
of o to a term ¢, i.e. the term obtained by replacing each variable x € dom(o) occurring in ¢
with o(z).
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Chapter 4. Privacy Implies Verifiability: Symbolic Model

Contrary to the model considered in Part I however, we do not consider a specific signature
F modelling a fixed set of primitives. Instead, we leave the signature abstract, as our result is
general with respect to the signature used.

Indeed, depending on the voting protocol we wish to model, the signature may need to contain
symbols for cryptographic primitives not covered by the signature considered in Part 1. For
instance, some protocols use homomorphic encryption, so that the encrypted votes can be added
together, and only the aggregated ciphertext needs to be decrypted. Another example would be
randomisable encryption. In some protocols it is important that ballots can be re-randomised:
ciphertexts are randomised with a random value when created, and given a ciphertext ¢, anyone
can generate a new ¢ encrypting the same plaintext as ¢ by updating the random value used in
¢, without knowing the decryption key. This may be used for instance to have the server in the
election re-randomise all ballots before publishing them, so that they still contain the same votes
but can no longer be linked with voters. One last example would simply be the + operator, i.e.
an associative and commutative operator, that can be used to sum all votes together to compute
the result of the election. Such primitives are not covered by the signature from Chapter 1.

In addition their behaviour cannot always be modelled as a destructor application similar to
the ones used in Chapter 1. Instead, the properties of the cryptographic primitives are modelled
through an equational theory.

Definition 21 (Equational theory). An equational theory E, is a finite set of equations of the
form M = N, where M, N € T(F,X,0) are messages without names.

Equality modulo E, denoted by =g, is defined as the smallest equivalence relation on terms
that makes M and N equal for each equation M = N in E, and is closed under context and
substitution. Formally:

Definition 22 (Equality modulo an equational theory). Given an equational theory E, =g is
the smallest equivalence relation on terms such that

e for all equation M = N in E, M =g N.

e for all function symbol f € F of arity n, for all messages My,... My, Ni,... Ny, if
Vi. M; =g N; then
f(My, ..., M) =g f(N1,...,Np).

e for all messages M, N, for all substitution o, if M =g N then Mo =g No.

We denote disequalities modulo E by M #g N
A consequence of this modelling, and of considering arbitrary signatures and equational
theories, is that we no longer have the restriction from Chapter 1 that keys must be atomic.

Example 6. Consider the signature F. U FqUC from Chapter 1. Recall that it contained
constructors and destructors for symmetric and asymmetric encryption, signatures, and pairs.
We can easily define the properties of these primitives using an equational theory, by turning the
rewriting rules for destructors (from Section 1.2) into equations, as follows.

dec(enc(:p Y),y) =x
adec(aenc(z,pk(y)),y) =«
checksign(si ( y),vk(y)) = x
m((z,y)) ==

m((z,y)) =y
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4.1. Model

Processes:
P,Q ==
0
| newn.P for n € BN (n bound in P)
| out(e, M).P
| in(c,x).P for x € X (x bound in P)
| event(My,...,M,).P for event € Ev of arity n
| PlQ
| letz=MinP for x € X (z bound in P)
| if M = N then P else ()
| 1P
where M, N, My, ..., M, are messages and ¢ € Ch is a channel.

Figure 4.1: Syntax for processes.

We could enrich it with a + symbol representing the sum, and characterise + as an associative
and commutative operator using the following equations.

e+ y+2)=(@+y) +2
rT+y=y+zx

Homomorphic encryption could then for instance be formalised by adding a second associative
and commutative operator x, and the following equation.

aenc(r, z) * aenc(y, z) = aenc(x + v, 2).

Randomisable encryption could be modelled for instance by adding a third argument to the
aenc symbol, that represents the randomness used, and a rerand symbol for the randomisation
operation. Randomising a ciphertext that uses randomness r with a new random value ' would
be modelled by the equation

rerand(aenc(z,r,y),r’) = aenc(z,r + 1, y).

4.1.2 Processes

The behaviour of protocol parties is described through processes. The syntax of the process
calculus is depicted in Figures 4.1 and 4.2. As usual, we identify processes up to a-renaming, to
avoid capture of bound names and variables.

As in Chapter 1, the semantics of processes is given through a transition relation — on
configurations, given in Figure 1.2, where « is the action associated to the transition. We still
denote by —, the reflexive transitive closure of ——, where w is the concatenation of all actions.

Both the syntax and semantics of the calculus are very similar to those presented in Chapter 1,
with a few additions which we will now present.

First, while it was useful in Part I to consider the symbolic, uninstantiated frame and the
instantiation of variables, this is no longer needed here. Hence, for better readability, we combine
the two together. What we will now call a frame ¢ is a substitution with dom(¢) C AX that
contains ground messages, and represents the instantiated messages sent on the network. It
corresponds to what would earlier have been 1o, where 1) was the sequence of uninstantiated
messages, and o the instantiation of variables.
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({ P[P} UP; ) - ({Pr, P2} UP; 9) PAR

({0} UP;9) - (P; ®) ZERO

({newn.P} UP; ) o {P}UP;0) NEwW

({out(c, M).P} UP;¢) —HmoutCatn) (6 py (1 p: U {M/az,}) out
if M is a ground term, az, € AX and n = |¢| + 1

({in(c,2).PYUPig) 0 ((P[Re/a]} UP; ) N
if R is an attacker term such that vars(R) C dom(¢)

({event(My, ..., M,).PyUP;¢) Sl py iy p. o) EVENT
if Vi. M; is a ground message

({let x = M in P} UP;¢) — ({P[M/x]} UP; o) LET-IN
if M is ground

({if M = N then P else Q} UP;¢) L ({P}UP;0) IF-THEN
if M, N are ground messages such that M =g N

({if M = N then P else Q} UP;¢) - {QYUP;0) IF-ELSE
if M, N are ground messages such that M #g N

({'P}UP; ) - ({P,'P}UP;¢) REPL

Figure 4.2: Semantics

Moreover, since we no longer consider a fixed set of constructor and destructors, but rather
an arbitrary signature and equational theory, we no longer restrict the let construction to a
fixed list of destructors. Instead, any message can be stored in any variable.

In addition, we extend the calculus with different communication channels: when sending or
receiving messages, processes must now specify a channel name, that identifies which channel
is used. All channels will be public: the attacker has access to all of them and can e.g.
intercept messages from one channel and resend them on another. We consider different channels
nevertheless to model the fact that an attacker can identify the provenance of a message. When
a message is sent or received, he can now observe on which channel this action is performed,
which gives him potentially useful information when trying to distinguish between two processes.

Formally, we consider an infinite set Ch of channel names, representing the channels on which
the messages are exchanged. As seen in Figure 4.1, the out and in instructions now take as an
additional argument a channel name. Accordingly, rules OUT and IN (Figure 4.2) now record in
the trace the channel on which the action is performed.

Finally, we also extend the calculus with events. These are steps in the processes that do not
actually model the behaviour of the protocol, but are rather used to record that participants
have reached a certain step in the protocol, with some associated knowledge. Events can be
emitted by processes, and can contain some messages the process wants to record. They are
stored in the trace, but are invisible to the attacker. That is, in the eyes of the attacker, two
traces with the same observable actions (inputs, outputs) are the same, even if they contain
different events. Events are a rather standard feature in symbolic models, for instance when
modelling agreement properties between two parties. Such cases can be modelled by having both
parties emit an event containing the message (e.g. a session key) on which they think they agree.
Basically, agreement is then modelled by requiring that, for instance, any event emitted by the
responder is matched by an event emitted by the initiator containing the same message. As we
will explain in the next section, we use events here to record (secretly to the attacker) which
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voters have voted, and for which candidate, in order to express verifiability properties.

Formally, we consider a finite set Ev of event symbols, given together with their arity. The
syntax of processes (Figure 4.1) allows them to trigger an event event € Ev of arity n with
messages My, ..., M, by using instruction event(M, ..., M,). As displayed in Figure 4.2, when
this instruction is reached in an execution, the event, including the messages M, ..., M, is
registered in the trace. As we said, events are invisible to the attacker: formally, they are
considered similarly as 7 for the equality =,. That is, two sequences w, w’ that only differ by
adding or removing silent actions 7 or events will be considered equal up to silent actions, written
w =, w.

As in Chapter 1, a trace of a process P is any possible sequence of transitions starting from

P. Traces correspond to all possible executions in the presence of an attacker that may read,
forge, and send messages. Formally, the set of traces trace(P) is defined as follows.

trace(P) = {(w, ®)|({P};0) ==+ (P; )}
We will in addition consider the following notion of blocking trace.

Definition 23 (blocking trace). A sequence of actions t is blocking in a process P if it cannot

be executed. Formally:

blocking(t, P) v, (t,¢) ¢ trace(P).

4.1.3 Equivalence

We consider the same notion of trace equivalence as in Part I, rewritten here with the equational
theory-based formalism. Two sequences of messages are indistinguishable to an attacker if he
cannot perform any test that could distinguish them. Two processes P and () are in equivalence
if no matter how the adversary interacts with P, a similar interaction may happen with @Q, with
equivalent resulting frames.

Definition 24 (Static Equivalence). Two ground frames ¢ and ¢' are statically equivalent
if and only if they have the same domain, and for all attacker terms R,S with variables in

dom(¢) = dom(¢'), we have
(R¢ = S¢) <= (R¢' = S¢')

Definition 25 (Trace Equivalence). Let P, Q be two processes. We write P Ty Q if for all
(s,¢) € trace(P), there exists (s',¢') € trace(Q) such that s =; ' and ¢ and ¢’ are statically

equivalent. We say that P and Q) are trace equivalent, and we write P ~; @, if P C; Q and
QLC; P.

4.2 Voting Systems and Security Properties

In this section, we present the modelling of voting protocols as pi-calculus processes we will use,
as well as the formal definitions of the security properties we consider in this framework.

4.2.1 Notations

We start with a few notations. The multiset of elements a,a,b, ¢ is denoted {a,a, b, c[}. The
union of two multisets S7 and SS9 is denoted S7 W Ss. If k € N, for any value v, k - v denotes the
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multiset containing k instances of v. If S is a multiset, we denote S(v) the number of instances
of vin S.

We assume a set V of messages representing possible votes (e.g. constants) and a set R
of values representing possible results. We also assume R is equipped with an associative and
commutative operator x. This operator maps two elements of R onto an element of R, and
represents the operation of combining results together (e.g. adding them). This operator does
not have to be a function symbol from the signature F, as illustrated in the following example.

Example 7. For instance, with the signature and equational theory from Exzample 6, + would
be a wvalid choice for %, if R is e.g. the set of all messages.
If R is the set of pairs of messages, another example of a * operator would be the function

(M, N), (M',N') = (M + M',N + N').

The values in R do not necessarily have to be messages: they can be abstract values not
defined in terms of the signature and equational theory considered. For instance, R could contain
multisets of votes (i.e. multisets of messages). In our symbolic model, the result of the election
r € R will then be encoded as a term. Depending on the choice of this encoding, the same
abstract result r € R may have several representations, i.e. several terms may encode the same
abstract result. For instance, in the case of multisets, say the signature does not contain a
construction for multisets, but only for lists of terms. Then a multiset may be represented
e.g. by any list containing its elements, in any order. We want our result to be independent
of a particular choice of representation. Therefore, we will simply assume the existence of a
representation function, that associates a result to messages representing it:

Definition 26 (Representation). A representation R is a function that associates to an abstract
result ¥ € R a finite set of possible representations, i.e. a finite set of messages that encode this
result, with an injectivity property:

Vr#£r . R(r)NR('") =10

Intuitively, a result can be associated to several representations, but a given representation must
be unambiguous, i.e. it can correspond to at most one result.

A counting function is a function p that associates a result r € R to a multiset of votes. We
assume that counting functions have a partial tally property: it is always possible to count the
votes in two distinct multisets and then combine the results.

Definition 27 (Counting function with partial tallying). A counting function p has partial
tallying #f
YWV p(Ve V') = p(V) * p(V')

A vote is said to be neutral if it does not contribute to the result.

Definition 28 (Neutral vote). A vote v is neutral w.r.t. a counting function p if p(v) is neutral
w.r.t. *.

Example 8. Consider a finite set of constants representing candidates C = {ai,...,ax}. In
case voters should select between ki and ko candidates or vote blank, assuming a construction for
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vectors in the signature F considered, we can represent valid votes by vectors that encode the
selection of candidates

k
Vk1,k2 = {’U c {O, 1}k ’ k‘l < Zvi < k2} U {,Ub|ank}

1=0

where v®2" s the null vector (0, .. .,0), representing a blank vote. For a vote v € Vi1 ka» Vi being
1 means that candidate a; has been selected, and v; being 0 means it has not.

In a voting scheme with mirnet-based tally, all the individual votes are shuffled before being
revealed, in a random order. Thus the set R of results is the set of multisets of votes in Vi, 1,
and * is the union of multisets. The corresponding counting function is ppmiz(V) =V, where V.
is a multiset of elements of Vi, p,.

In a system with homomorphic-based tally, the votes are added together. Thus R = NF is
the set of vectors of k elements, and * is the addition of vectors. The corresponding counting
function is ppom (V) = X pey v-

Both pmiz and prom have the partial tally property. The vote v s a neutral vote w.r.t.
Phom but 1ot ppmiz. Indeed adding a null vector does not change the sum of the votes, but it does
change the multiset of votes.

blank

4.2.2 Voting protocols

We consider two disjoint, infinite subsets of C: a set A of agent names or identities, and a set V
of votes. We assume given a representation function R of the result.
A voting protocol is modelled as a process. It is composed of:

e processes that represent honest voters;

e a process modelling the tally;

e possibly other processes, modelling other authorities.
Formally, we define a voting process as follows.

Definition 29 (Voting process). A voting process is a process of the form

—_—
P = new cred.new cred; .. .new cred,. (

= — >
Voter(ay, vy, , €1, cred, credy) | - - - | Voter(an, vq, , Cn, cred, credy,)
| Tally, (¢, cred, credy, ..., credy)
| Others,(¢’, cred, credy, . .., credy))

where n is the number of honest voters, a; € A, va, €V, ¢, ¢, ¢’ are (distinct) channels, cred
and cred; are (distinct) names. cred represents the election credentials, that all voters have access
to (e.g. a public key to encrypt their votes). cred; represents the private credential that voter i
has access to (e.g. a signature key).

A woting process may be instantiated with various voters and vote selections. Given A =
{b1,...,bn} € A a finite set of voters, and a mapping o : A — V that associates a vote to each
voter, we define P, by replacing a; with b; and v; with a(b;) in P. We call such a mapping o a
distribution of votes.
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Moreover, P must satisfy the following properties.

e Process Voter(a,v,, €, @, cred) models an honest voter a willing to vote for v,, using
the channels €. credentials cred (e.g. a signing key) and election credentials cred. Tt is
assumed to contain an event Voted(a,v) that models that a has voted for v. This event is
typically placed at the end of process Voter(a,v,, €, E“—cg, cred). This event cannot appear
in process Tally, nor Others,,.

e Process Tallyp(E’7 %i), credy, ..., cred,) models the tally. It is parametrised by the total
number of voters p (honest and dishonest), with p > n. It is assumed to contain exactly
one output action on a reserved channel ¢,.. The term output on this channel is assumed
to represent the final result of the election, in any execution trace. Formally, we require
that this term is at least always the representation of some result:

Va. Y(tr, ¢) € trace(Py). out(c,,r) € tr = 3V. ¢(r) € R(p(V))
Tally, may of course contain other input /output actions, on other channels.

e Process Others, (¢, %Z, credy, ..., credy) is an arbitrary process, also parametrised by
p. It models the remainder of the voting protocol, for example the behaviour of other
authorities. It also models the initial knowledge of the attacker by sending appropriate
data (e.g. the public key of the election or dishonest credentials). To be more generic, we
leave this process unspecified, and simply assume that it uses a set of channels disjoint
from the channels used in Voter and Tally,,.

The channel ¢, used in Tally, to publish the result is called the result channel of P.

Note that this notion of voting process does not assume honest authorities, e.g. a honest tally.
We only require that the tally is modelled by some process, but this process does not necessarily
follow the specification of the voting protocol. For instance, to model a fully dishonest tally
controlled by the attacker, process Tally, could simply output its entire knowledge, including
the election private key k., to the attacker, and receive instructions from the attacker (on some
channel other than ¢,) regarding which result to publish on c¢,.

Example 9. The models of the Helios protocol presented earlier (e.g. Sections 1.3 or 3.2) can
easily be adapted into a model that fits this generic notion of voting process.

For clarity, we describe here a simple version with only two honest voters A and B, a dishonest
voter C, and a voting server S. The protocol can be modelled by the following process.

PHelios(Uayvb) =
new kg, kp, ke, ke.
(out(e, k.).out(c, pk(ke)) |
Voter(A, vq, ¢q, Cy, ko, ke) | Voter(B, vy, ¢y, ¢, kp, ke) |
Tallyhelios (Cas Cbs Cey Csy Kay kb, ke ke))

Voter(a, v, ¢, k, k.) simply sends vote v encrypted with the election public key pk(ke). To
model the fact that voters communicate with the ballot box through an authenticated channel,
we assume, as before, that a voter Alice sends her ballot to the server signed with a signature
key k, which we will consider as her credential. Note that this is just a modelling artefact to
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abstract away the underlying password-based authenticated channel. After sending her ballot,
Alice triggers the Voted event to indicate she has voted.

Voter(a,v,c,c, k, ke) = newr. out(c, sign(aenc({v,r), pk(ke)), k)). Voted(a, v).

The voting server receives ballots from voters A, B, and C, performs weeding as explained
earlier, and then outputs the decrypted ballots, after some mizing, which is modelled through the
+ operator from Ezample 6.

TallyHelios(Cas Cbs Ces Csy Kay kb, ke, ke) =
in(cq, z1).in(cp, v2).in(ce, x3).
let y; = checksign(z;, vk(ky)) in
let yo = dec(x2,vk(kp)) in
let y3 = dec(x3,vk(k.)) in
if 1 #x9 N x1 # 23 N T2 # x3 then
out(cs, m(adec(yi, ke)) + mi(adec(y2, ke)) + mi(adec(ys, ke)))

where we omit the null else-branches. A is syntactic sugar for a succession of tests, and
if M # N then P is syntactic sugar for if M = N then 0 else P.

Here, the process Others, consists in the output of the election public key, and the credential
of the dishonest voter C' controlled by the attacker: out(c, k.).out(c, pk(ke)).

We can use the Voted event to read which voters voted from a trace. Formally:

Definition 30 (Voters in a trace). Given a sequence tr of actions, the set of voters Voters(tr)
who did vote in tr is defined as follows.

Voters(tr) = {a € A | Jv € V. Voted(a,v) € tr}.
The result of the election is emitted on a special channel ¢, and can thus also be read from a
trace. Formally:

Definition 31. Given a trace (t,¢) and a multiset of votes V', the predicate result(t, ¢, V') holds
if the election result in (t,¢) corresponds to V.. That is, if t ends with an output on the result
channel ¢, and ¢ indicates that this output is a valid representation of p(V):

result(t, ¢, V) = Jz,t’. t =t .out(c,,z) A d(x) € R(p(V)).

4.2.3 Security properties

We now formally define in our model the two properties we study: individual verifiability
and vote privacy.

Verifiability. Several definitions of verifiability have been proposed. In the lines of [87, 57],
we consider a very basic notion, that says that the result should at least contain the votes from
honest voters.

111



Chapter 4. Privacy Implies Verifiability: Symbolic Model

Definition 32 (Symbolic individual verifiability). Let P be a voting process with result channel
cr. P satisfies symbolic individual verifiability if, for any distribution o of votes, and any trace
(t,¢) € trace(P,) that ends with an output on c,, there exists a multiset of votes V. such that the
result in t corresponds to V, W V., where V, is the multiset of honest votes.

That is, P is individually verifiable if

Va. Y(t, ¢) € trace(Py). V(t, ¢)
where

V(t,¢) = VYt x. (t=1t.out(c,,z)) = IV.. ¢(x) € R(p({v | Ja. Voted(a,v) € t[} W V,)).

This property intuitively means that whenever a result is produced in an execution of the
protocol, this result must account for at least all honest votes produced in this execution (plus
some arbitrary set of dishonest ones).

Usually, individual verifiability typically guarantees that voters can check that their ballot
will be counted. Our notion of individual verifiability goes one step further, requiring that the
corresponding votes will appear in the result, even if the tally is dishonest. Note that this
definition of verifiability does not explicitly mention any verification steps performed by voters.
Typically, voting schemes specify some steps voters should take to ensure their vote is counted,
such as for instance checking that their encrypted ballot correctly appears on a public bulletin
board published by the authorities. Our notion does not explicitly deal with these steps, but
requires instead that a vote is counted as soon as the Voted event is triggered. In some cases
(depending on which protocol is modelled, and on whether the authorities are assumed honest in
the model considered), this may only be achievable if the voter process correctly performs the
verification steps before triggering the Voted event.

One of the first definitions of verifiability was given in [36], distinguishing between individual,
universal, and eligibility verifiability. Intuitively, our own notion of individual verifiability sits
somewhere between individual verifiability and individual plus universal verifiability as defined

in [36]. A precise comparison is difficult as individual and universal verifiability are strongly tied
together in [36]. Moreover, [26] only considers the case where all voters are honest and they all
vote.

Privacy. We consider the privacy definition already presented in Section 2.2, initially
proposed in [71] and widely adopted in symbolic models: an attacker cannot distinguish when
Alice is voting v; and Bob is voting v from the scenario where the two votes are swapped.

Definition 33 (Privacy). Let P be a voting process. P satisfies privacy if, for any distribution
of votes «, for any two voters a,b € A\dom(«) and any two votes vi,ve € V, we have

Pau{a}—wl,br—wz} ~ PaU{m—)vg,b»—ml}

Having formally defined the properties we consider, we can now state and prove our main
result.

4.3 Main Result

We show that privacy implies verifiability under a couple of assumptions, typically satisfied in
practice.
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4.3.1 Assumptions

First, we assume a light form of determinacy: two traces with the same observable actions yield
the same election result. This excludes for example cases for voters choose non deterministically
how they vote. Formally, we define the notion of election determinacy.

Definition 34 (Election determinacy). We say that a voting process P with result channel c,
is election determinate if, for any distribution of votes a, for any two sequences of actions t,t'
such that t =, t', if (t.out(c,, ), d) € trace(Py), and (t'.out(c,, ), d’) € trace(P,), then

VV. ¢(x) € R(p(V))) = ¢'(x) € R(p(V))

This assumption still supports some form of non determinism but may not hold for example
in the case where voters use anonymous channels that even hide who participated in the election.

Second, we assume that it is always possible for a new voter to vote (before the tally started)
without modifying the behaviour of the protocol. We formalise this assumption as the notion of
voting friendliness.

Definition 35 (Voting friendliness). A wvoting process P is voting friendly if for all voter a € A,
there exists t" (the honest voting trace) such that for all « satisfying a ¢ dom(a),

e for all (t,¢) € trace(Py), such that t = t'.out(c,,x) for some t', x, for all v, there exists
tr, ¢ such that tr =, t", Voted(a,v) € tr, (t'tr.out(c,,r),v) € trace(Pou{asv}), and
VV. ¢(z) € R(p(V)) = ¢(z) € R(p(V U{v})). Intuitively, if a votes normally, her vote

will be counted as expected, no matter how the adversary interfered with the other voters.

e for allt', x such that blocking(t'.out(c,, z), P,), for all v, tr, ¢ such that tr =, t", we have
blocking(t'.tr.out(c,, ), Paufasv}). Intuitively, the fact that a voted does not suddenly
unlock the tally if it was blocked before.

In practice, most voting systems are voting friendly since voters vote independently. In
particular, process Phelios modelling Helios, as defined in Example 2, is voting friendly. The voting
friendly property prevents a fully dishonest tally since the first item requires that unmodified
honest ballots are correctly counted. However, we can still consider a partially dishonest tally
that, for example, discards or modifies ballots that have been flagged by the attacker.

Finally, we need an assumption that some vote is counted in a particular way. The reason why
such an assumption is useful will become clear when proving our theorem. Formally, we identify
two variants of this condition. Our result holds provided one of the two following assumptions is
true:

1. There exists a neutral vote vneutral € V, such that p({{vneutrall}) is neutral for .

2. There exists a special vote vspecial € V, wWhich is counted separately in the result. That is,
Uspecial Must satisfy the following properties.

Definition 36 (Special vote). A vote Vspecial s said to be special if

e the result associated with a multiset determines the number of instances of vspecial-
vV, V' P(V) = P(V/) - V(Uspecial) = V/(Uspecial)-
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o and the count of Uspecial can be simplified
VYV, V' k. p(V Wk - vepecial) = p(V' Wk - vpecial) = p(V) = p(V').

For example, for ppom, all the votes are special, therefore this property always holds. For
Pmiz, it depends on the set of valid votes. In the standard case where a vote is a selection
of candidates (for example between k; and ks candidates), then a special vote could be, for
instance, a vote that includes the selection of an extra candidate, not used before.

4.3.2 Theorem
We can now state and prove our main result about symbolic privacy and verifiability.

Theorem 8 (Privacy implies individual verifiability). Let P be a voting friendly, election
determinate voting process. Assuming there exists either a neutral vote or a special vote, if P
satisfies privacy then P satisfies individual verifiability.

The proof of this result intuitively relies on the fact that in order to satisfy privacy w.r.t.
two voters Alice and Bob, a voting process has to guarantee that the vote of Alice is, if not
correctly counted, at least taken into account to some extent. For instance, if an attacker, trying
to distinguish whether Alice voted for 0 and Bob for 1, or Alice voted for 1 and Bob for 0, is
able to make the tally ignore completely the vote of Alice, the result of the election is then Bob’s
choice. Hence the attacker learns how Bob voted, which breaks privacy.

Therefore, we first prove that if a protocol satisfies privacy, then if we compare an execution
(i.e. a trace) where Alice votes 0 with the corresponding execution where Alice votes 1, the
resulting election results must differ by exactly a vote for 0 and a vote for 1. Formally, we show
the following lemma.

Lemma 19 (Privacy implies F'). If a voting friendly, election determinate voting process P
satisfies privacy, then it satisfies the following property F:

F =Va.Va € A\dom(a). Yo, v € V.V, 1, 6,8, V, V.
[t =-t" N (t,0) € trace(Paufasv}) N (', ¢") € trace(Paufamsv,}) A
result(t, ¢, V) A result(t', ¢, V)] =
p(V'&{vilt) = p(V & {ual}).

Proof. We prove this by contradiction: assuming F' does not hold, we construct an attack on
privacy.

Assume F is false. Hence there exists a scenario where changing the vote of one agent does not
change the result by one. That is to say, there exist a distribution of votes «, an agent a ¢ dom(«),
votes v1, vy € V, traces (t, ¢) € trace(Pay{asv,}) and (', ¢') € trace(Payfasv,}) such that t =, ¢,
and two multisets V', V', such that result(t, ¢, V'), result(¢’, ¢/, V'), and p(V'W{v1}) # p(V i {val}).

Since result(t, ¢, V'), there exist x, t; such that ¢t = ¢1.out(c,, ) and ¢(z) € R(p(V)). Similarly,
there exist y, ¢} such that ¢’ = t}.out(c,,y) and ¢'(y) € R(p(V')). Since t =, t/, x = y.

Note that we necessarily have v; # vy: indeed, assume v; = vg. Then (t,¢) and (¢,¢")
are traces of the same process Paufasv} = Paufases)- Since ¢(x) € R(p(V)), by the election
determinacy assumption (Definition 34), this implies that ¢'(x) € R(p(V)). Since we already
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know that ¢'(x) € R(p(V")), and since by assumption R is injective (Definition 26), we have
p(V)) = p(V"). Thus, as v; = va, we have p(V)xp({val}) = p(V') % p({v1]}), which is contradictory.
Hence vy # vo.

The attack on privacy consists in the fact that, since changing a’s vote does not produce a
change of exactly one in the result, even in presence of another agent b whose vote is the opposite
of a’s, the result will be different depending on the vote of a.

Formally, let b ¢ dom(a) U {a}. By the voting friendliness assumption (Definition 35), b can
cast a vote after the traces t and ¢/. That is, there exist sequences of actions ty, t;, and frames 1),
1)’ such that

(tl.tb.OUt(C»p, 37), w) € trace(PaU{a»—}vl,bHUQ})7
(tll'tgy'out(cﬁ 1‘), wl) € trace<PaU{a'—>v2,bl—>v1})?

Voted(b,v2) € t, Voted(b,v1) € t, t, =71},
U(x) € R(p(V @ {v2f})), and ¢'(z) € R(p(V' W {v1]})).
Since p(V' W {v1[}) # p(V W {uval}), by the injectivity assumption on R, we have ¢(x) # ¢'(z).

We have constructed two frames, obtained by the same actions in P,y{a s, bsv,} and
PoU{arsv psvr > Which yield different results for the election. Using the election determinacy
assumption, this lets us prove that these two processes are not trace equivalent.

Indeed, let us denote to déftl.tb.out(cr,x) and th d:eft’l.t;).out(cr,:c). We have (t2,7¢) €
trace( Paufarsv; sue})- FOr any trace (t5,4¢") € trace(Paufasvs bsvi})s if 5 =r t2 =1 t3, then
by election determinacy we have 9" (z) € R(p(V' & {v1[})). Hence, by injectivity of R, since
p(V W {ualt) # p(V' W {v1[}), we have ¢"(z) ¢ R(p(V W {uva]})). Checking whether a message
belongs to R(p(V W {val})) is a test the attacker can perform, as this set is finite by definition of
R. Since 1(x) € R(p(V W {ual})), 1, 0" are therefore not statically equivalent.

Thus, the trace (t2,v) of Pay{a—v; by} cannot be mimicked by any trace of Poufasvn bser}-
In other words, Py {av, bsvs} #t Pau{asvsbsvi}- Lhis violates P, which concludes the proof.
O

This lemma is used as a central property to prove the theorem. Intuitively, the rest of the
proof will be as follows. We apply this lemma repeatedly, changing one by one all the votes from
honest voters into neutral or special votes (depending on which one we assume). Let r denote
the result before this operation, and r’ the result after. Let V, denote the multiset of honest
votes, and V} the multiset containing the same number of neutral (or special) votes. Thanks
to Lemma 19, we can show that r x p(V,) = ' x p(V,). The properties of neutral and special
votes will let us prove that this implies r contains all votes in V. The neutral case is perhaps
the clearest: then V, only contains neutral votes, and we have r = r/ x p(V,). This means that r
contains all honest votes, hence the voting process satisfies individual verifiability.

Formally, we show the following lemma, that uses the property F' from Lemma 19. It describes
how the result changes when we turn any subset Viyanteq 0f the votes cast by honest voters into any
arbitrary multiset of votes Vchange (With the same cardinality). Following the intuition exposed
earlier, we will later on use the set of all honest votes V, as Viyanted, and neutral or special votes
as Vchange-
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Lemma 20 (Privacy and F imply FF'). Consider a voting process P that is election determinate
and voting friendly. Assume P satisfies privacy, and the F' property from Lemma 19. Then P
satisfies the following property FF':

FF % Ya.Y(t,¢) € trace(Py). YV, Venange: "Waanted € {0 | Ja. Voted(a, v) € t].
result(t, o, V) =
|V::hange| = |Vwanted| =
EI‘/c p(V) * p(‘/change) = p(vwanted) * p(‘/c)

Proof. Assume that both privacy and F hold. Consider a distribution « of votes, and a
trace (t,¢) € trace(P,). Let V be such that result(¢,¢,V’), i.e. there exist ¢/, x such that
t =t'.out(c,, z) and ¢(x) € R(p(V)). Let Vianted € {lv | Ja. Voted(a,v) € t}, and Vepange such
that |Vchange| = |Vwanted|-

To prove FF', we need to show that the result in this trace augmented with Vipange contains
at least the subset Viyanted Of the (intended) votes of the honest voters. That is to say, we must
show that there exists V. such that p(V) * p(Vehange) = p(Vivanted) * p(Ve).

The idea of the proof is to compare p(V') to the result p(V’) obtained by turning, one by one,
all votes from Viyanted into the votes from Vpange, and performing the same sequence of actions.
As we will see, this is possible, otherwise privacy would break; and V' & Vcpange contains more
instances of the honest votes than V' ¥ Vjyanted, since F' holds.

Let us denote the Voted events appearing in ¢ (not necessarily in that order) by
Voted(al, Ul), R ,Voted(al, Ul)

for some pairwise distinct agents a1, ...,a; € Voters(t), and some [ € N.
By definition, each element of Viyanted is associated with one of these Voted events. Let
md§f|Vwanted|. Without loss of generality, we may assume that Viyanted = {v1, - - -, Um|}-

Note that |Vehange| is also equal to m by assumption. Let us then denote Vepange d:'Efﬂvﬂ, N

Since, by assumption on the form of the processes, the Voted(a, v) event can only be emitted
by the process Voter(a, v, ¢) for some credential ¢, we have a(a;) = v; for all i € [1,m].

For i € [0,m], let o; denote the affectation of votes obtained from a by turning the first ¢
votes from Viyanted t0 Vehange, i-€

° ai(aj) = 1)9 ifj S [[l,iﬂ;
° ai(aj) = vy ifje [[i—i— l,m]];
e oi(a) = afa) if a € dom(a) is not one of the a;, j € [1,m].

Let 8 def a,,. Note that ag = «, and that all the «; have the same domain.
Let us show that for all 7, the same actions as ¢ can be performed in F,, with the same agents
emitting Voted events, i.e. that

Vi € [0,m]. 3t;. t; =r t A —blocking(t;, Pa,)-

By contradiction, assume this property does not hold, and let ¢ be the smallest index that falsifies
it. Hence,
Vti. t; =+ t = blocking(t;, Pa,)- (4.1)
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In addition, note that since the property is clearly satisfied at the Oth step, ¢ > 1. Hence,
it holds for ¢ — 1, i.e. there exists ¢;_; such that ¢;_; =, ¢, and —blocking(t;—1, Pa, ,). Since
t = t'.out(c,, x), we also have t,_; = t;_,.out(c,,z) for some t;_; such that ¢, ; =, ¢.

Then, for all t; = t,_, (=, t'), by (4.1), blocking(t;.out(c,,x), P,,) holds.

The same sequence of actions t;_1 is blocking at step ¢ and not at step ¢ — 1, which differs only
by the vote of of a;. This lets us construct an attack on privacy, which constitutes a contradiction.
Indeed, by the voting friendliness assumption, we may add a voter b ¢ dom(«), who votes for v;

at step i — 1, and for v; at step i, and there exists ¢r such that
e there exists tr’ = tr and ¢ such that (£_;.tr".out(c;, ), ) € trace(Py,_, ufposw})-

e for all t, =, t;_, (=, t'), we have shown that blocking(t;.out(c,, ), P,,), and thus for all
tr" =, tr and all ¢', (t].tr".out(c,, x),9’) ¢ trace(Pu,ufbv;})-

Therefore, the processes Py, (p ;) and Paiilu{bva} are not trace equivalent. Since they
only differ by the votes of a; and b, who respectively vote for v;, v on the left and v}, v; on the
right, this breaks privacy, which contradicts the hypotheses.

Thus, for all 4, there exists ¢; such that ¢t; =, ¢, of the form ¢.out(c,,z), such that
—blocking(t;, P,,). In other words, there exists ¢; such that (¢;, ¢;) € trace(P,,). By assumption,

%

only results may get published on ¢,. Hence, there exists V; such that ¢;(x) € R(p(V;)), i.e.

result(t;, ¢i, Vi). Let V' V... Note that Vp = V.

For all i € [0,m — 1], o; and «;41 only differ by the vote of a;41, which is U§+1 in a;41 and
viy1 in a;. Hence, by F', we have p(V; & {vi[}) = p(Vig1 W {lvig1}).

That is to say, since p is assumed to have partial tallying, that

p(Vi) = p(Juisa ) = p(Visr) * p({visa ).

Therefore, by rewriting these m equalities successively, we have
p(Vo) = p(Jorl) ... % p({uialt) = p(Vin) = p(Jor ) - . % p({uml}),
i.e., again by partial tallying,
p(V) * p({vi i € [1,m]}) = p({vi | i € [1,m]}) = p(V").
By definition, this means
p(V) % p(Vehange) = P(Viwanted) * p(V')

which concludes the proof. O

As announced earlier, we now apply property FF' to either neutral or special votes, and use
it to establish individual verifiability.
First, let us show the case of the neutral vote.

Lemma 21 (FF implies V' with a neutral vote). Consider a voting process P that is election
determinate and voting friendly. Assume that there exists a neutral vote vpeutral- If P satisfies
property FF (from Lemma 20), then P satisfies individual verifiability.
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Proof. Let a be a distribution of votes, and let (¢.out(c,, x), ¢) € trace(P,). Let ¢4 t'.out(c,, x).
To prove individual verifiability, we need to show that the result in this trace contains at least
the (intended) votes of the honest voters. That is to say, we must show that there exists V. such
that ¢(x) € R(p({v | Ja. Voted(a,v) € t} W V,)).

By assumption, only results are published on channel ¢.. Hence there exists some multiset of
votes V' such that ¢(x) € R(p(V)). We then have result(¢, ¢, V).

Let Vivanted déf{]v | Ja. Voted(a, v) € t[} be the multiset of all intended honest votes in ¢. Let

def def
k= |Vwanted|7 and Vchange = k - Uneutral-

By FF, there exists a multiset V. such that p(V') % p(Vehange) = P(Vivanted) * p(Ve).

Since p is assumed to have partial tallying, p(Vchange) = p(ﬂvneutra|ﬂ)k. AS Vneutral 1S a neutral
vote, p({{Vneutrall}) is neutral for *, and thus so is p(Vechange)-

Therefore, p(V') = p(Vianted) * P(Ve) = p(Vivanted ¥ V2), which proves the claim. d

The case of a special vote is slightly more involved.

Lemma 22 (FF implies V with a special vote). Consider a voting process P that is election
determinate and voting friendly. Assume that there exists a special vote vVspecial- If P satisfies
property FF (from Lemma 20), then P satisfies individual verifiability.

Proof. Let a be a distribution of votes, and let (t'.out(c,, ), @) € trace(P,). Let ¢4t t'.out(cy, x).
To prove individual verifiability, we need to show that the result in this trace contains at least
the (intended) votes of the honest voters. That is to say, we must show that there exists V, such

that ¢(z) € R(p({v | Ja. Voted(a,v) € t} W V,)).

By assumption, only results are published on channel ¢,. Hence there exists V such that
¢(z) € R(p(V)). We then have result(¢, ¢, V).

Let Viyanted dﬁfﬂv | Ja. Voted(a,v) €t A v # Vspecial|} be the multiset of all intended honest

votes in ¢ that are not vspecial-

Let I{:d§f|Vwanted|, and Vehange ety Uspecial- BY FF', there exists a multiset V. such that

p(V) * P(Vchange) = p(Vivanted) * p(Ve)-
We may rewrite this equality as
P(V Wwk- 'Uspecial) = p(vwanted W V;:)

by the partial tallying property of p. Since vspecial is assumed to be special (Definition 36), we
can deduce that

(V Wk- Uspecial)(vspecial) = (Vwanted W Vc)(”special)~

Yet, Vivanted (Uspecial) = 0 by definition. Therefore, V.(vspecial) > &, and we may decompose V, into
Ve = V! Wk - Uspecial for some V. We then have

P(V Wk- vspecial) = p(vwanted ) ‘/cl Wk - Uspecial)v
which implies, by definition of a special vote, that
p(V) = p(vwanted S Vc/)
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Since Viyanted contains all the intended honest votes different from vspecial, it remains to be
proved that V; contains sufficiently many instances of vspecial-

Let &' défH]Voted(a, Uspecial) € t | a € A[}| the number of intended votes for vspecial in ¢; and

!
wanted

Let v € V such that v # vspecial- Let
By FF, there exists V" such that

p(V) * P( c/hange) = p(vvflanted) * ,O(VC”),

def ,,
=k - Uspecial -
def
/ lef ; /
change — K- w.

i.e., by partial tallying,
p(VWE -v) = p(k" - vspecial & V).

By definition of a special vote, we then have
(V G k/ : U)(”special) - (k/ : Uspecial W ‘/Z,)(Uspecial)-

As before, since v # Vspecial, this means that V(vspecial) > k'

We already know that p(V) = p(Vivanted W V). Again by definition of a special vote, we
thus have (Vwanted O] ‘/c/)(vspecial) - V(Uspecial) Z k/- Since Uspecial ¢ Vwanted7 (‘/c/)(vspecial) Z ]{Z/, i.e.
V! = V" Wk - vspecial for some V.

Therefore we have
p(V) = p(Vivanted & K - Uspecial ¥ V" = p({v | Ja. Voted(a,v) €t} w V"),

which concludes the proof. ]

Theorem 8 then directly follows from Lemmas 19, 20, 21 and 22.

We have established that privacy implies individual verifiability under some mild assumptions
on the voting scheme in our symbolic model. At this point, it is interesting to note that this
result holds only when considering the same trust assumptions with respect to the election
authorities (ballot box, tally, ...) for both properties. That is, privacy against some attacker
model implies verifiability against the same attacker model. Indeed, in this symbolic model, these
trust assumptions are encoded in the way the voting process is written. For instance, a honest
ballot box would be modelled by a process that correctly authenticates voters and stores their
ballots, while a dishonest one could be modelled by giving control of this step to the attacker,
and letting him propose an arbitrary list of ballots to be tallied. This would e.g. allow him to
remove some ballots after they have been cast. Looking carefully at the statement of Theorem 8,
the same voting process is considered for privacy and verifiability. Therefore, the encoding of
the trust assumptions has to be the same for both. We will discuss this observation later on.
For now, in the next chapter, we show that the same implication also holds in a computational
model for cryptography.
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Chapter 5

Privacy Implies Verifiability:
Computational Model

In this chapter, we show that a private voting system must be individually verifiable, in a
computational setting. We first describe our model for voting system, and the definitions we
consider for privacy and verifiability. In a nutshell, we consider the well established definition of
privacy by Benaloh [24], and a notion of individual verifiability which states that the result must
account for at least all the votes cast by honest voters. We then detail a few assumptions under
which our result holds, and finally prove it.

5.1 Voting Systems and Security Properties

In this section we introduce the model and terminology we consider for voting systems and
security properties.

Computational models define protocols and adversaries as probabilistic polynomial-time
algorithms.

5.1.1 Voting systems

Let us start with the terminology and notations we will use to describe voting systems. Votes
are simply bitstrings. A ballot is also a bitstring, that is intended to contain a voter’s vote. The
exact nature of the ballots depend on the protocol we consider: for instance, they could simply
be ciphertexts, or also contain some public credential identifying the voter.

During an election, ballots are typically collected by an authority, and displayed on a bulletin
board.

Definition 37 (Bulletin board).
A bulletin board BB is a list of ballots. BB[j] denotes the jth element of BB.

We will also in the following use the term ballot box interchangeably with bulletin board.

As in the symbolic case presented in Chapter 4, we will call counting function a function p
that associates a bitstring to a multiset of votes. That bitstring is intended to represent the
result of the election. As before, we will in this Chapter consider counting functions with the
partial tallying property, i.e. such that YV, V' p(V W V') = p(V) x p(V"), where * is an associative
and commutative operation.
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In addition, in our cryptographic setting, we will also assume that given an election result r
and a multiset of votes V', one can decide efficiently (in polynomial time) whether r includes all
the votes of V. That is, we will assume a polynomial-time algorithm algorithm D that decides
whether there exists V'’ such that r = p(V W V’):

vr,V. D(r,V)=1 <= V. .r=p(VuV).

This condition is satisfied by the pmi; and ppom functions from Example 8, and all standard
counting functions.

Notation: We will in the following consider lists containing pairs (id, z) of a voter’s identity
and some element x (votes, ballots,...). We may for such a list L write (id, %) € L as a shorthand,
meaning that there exists an element of the form (id,z) in L for some z. If V is a multiset of
elements of the form (id,v), we define p(V') = p({v | (id,v) € V'}).

We model voting systems as follows.

Definition 38. A voting scheme consists in seven probabilistic polynomial-time algorithms
V = (Setup, Register, Pub, Vote, Tally, Valid, ValidTally)

where
e Setup(1?), given a security parameter X\, computes a pair of election keys (pk, sk).

e Register(1%,id) creates a private credential ¢ for voter id, for example a signing key. The
credentials may be empty as well, if the protocol does not use any. The correspondence
(id, c) is stored in a list U, used for modelling purposes. For better readability, we will
sometimes refer to this list as a table, and write U[id] = ¢ to denote that U contains a
correspondence between id and c, Ulid] < ¢ to denote that (id, ¢) is added to U, and Ulid]
to denote to the credential associated to id in U.

e Pub(c) returns the public credential associated with a credential c. For instance, this could
be the associated verification key if ¢ is a signing key. Again, depending on the protocol,
this public credential might be empty.

e Vote(pk, id, c,v) constructs a ballot containing the vote v for voter id with credential c,
using the election public key pk.

e Tally(BB,sk,U) uses the board BB, the election secret key sk and the list of voter iden-
tities and credentials U to compute the tally of the ballots in BB, i.e. the result of the
election, and potentially proofs of correct tallying. The Tally algorithm first runs some
test ValidTally(BB, sk, U) that typically checks that all ballots of BB are valid. Tally may
return L if the tally procedure fails (invalid board or decryption failure for example). If
Tally(BB, sk, U) # L then it must correspond to a valid result, that is, there exists V' such
that Tally(BB, sk, U) = p(V).

e Valid(id, b, BB, U, pk) checks that a ballot b cast by a voter id is valid with respect to the
board BB using the election public key pk. The nature of this check depends on the protocol

considered. For example, the ballot b may be required to have a valid signature or valid
proofs of knowledge. The ballot b will be added to BB only if Valid(id, b, BB, U, pk) succeeds.
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We will always assume a consistent voting scheme, that is, such that tallying honestly
generated ballots yields the expected result.

Definition 39 (Consistency). A wvoting scheme is consistent if for all distinct voter identities
idy, ..., idy, for all votes vi,..., vy, for all election keys (pk,sk) produced by Setup, if for all i
¢; = Register(1*,id;) and U = [(id;, ¢;)|i € [1,n]], and

BB = [Vote(pk, id;, ¢, v;)|i € [1,n]],
then with overwhelming probability

Tally(BB, sk,U) = p({lv1, ..., vnl}).

The Tally algorithm typically applies a revote policy. When voters may vote several times,
the revote policy states which vote should be counted. The two main standard revote policies
are 1. the last vote counts or 2. the first vote counts (typically when revote is forbidden). In
what follows, our definitions are written assuming the last ballot revote policy. However, they
can easily be adapted to the first ballot revote policy and all our results hold in both cases.

To apply a revote policy, the tallying authority must be able to associate each ballot to
the voter who cast it. Hence, we will assume a function extract;; which, given a ballot b, the
election secret key sk, and the table U of registered voters and credentials, retrieves the identity
associated with b. Formally, for any id, ¢, pk, v, with overwhelming probability

extract;q(vote(pk, id, ¢,v),sk,U) = id

Depending on the scheme, this might be done directly if ballots contain the identity, e.g. if the
encrypted votes are displayed to the bulletin board next to the corresponding voter’s identity.
In other cases, ballots may only contain the voter’s public credential, e.g. their verification key,
or in some cases the private credential in an encrypted form. In such cases, the list U could
be used to retrieve the identity associated with a credential. Note that we do not require that
the tallying authority actually has access to the table U containing the correspondence between
identity and credentials, nor that it actually computes extract;;. We simply require that such a
function exists.

Note that some schemes do not satisfy this condition, in particular when the ballots contain
no identifier. Such schemes typically assume that voters do not revote since there is no means to
identify whether two ballots originate from the same voter.

Finally, we make three mild assumptions on the tallying and validity check algorithms. The
first one is that the tally only counts ballots cast with registered identities, i.e.

VBB, sk, U. Tally(BB, sk, U) = Tally(BB', sk, U)

where BB’ = [b € BB | (extract;q(b, sk, U), *) € U]. The second is that registering more voters does
not change the tally: if U, U’ have no id in common and Vb € BB. (extract;q(b,sk, U || U), %) ¢ U,
then

Tally(BB, sk, U) = Tally(BB, sk, U U U").

The last one is that a ballot being declared valid for some user only depends on that user’s
credential and the one contained in the ballot, and not of other users’ credentials, i.e. that for
all U, U, id

(U[id] = U'[id] A Ulextract;q(b,sk,U)] = U'[extract;q(b, sk, U)]) —>
Valid(id, b, BB, pk, U) = Valid(id, b, BB, pk, U').
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Oreg(id) Ocorr(id)
if (id,*) € U then stop  if (id,*) ¢ U V id € D then stop
else else

¢ + Register(1*, id) D« D] id

Ulid] + ¢ return U[id]

return Pub(U[id])

Figure 5.1: Registration and corruption oracles

5.1.2 Security properties

As usual in computational models, an adversary is any probabilistic polynomial time Turing
machine (PPTM). We define verifiability and privacy through game-based properties.

Verifiability

For verifiability, we propose a simple definition, inspired from [$7, 57]. Intuitively, we require
that the election result contains at least the votes of all honest voters. This notion was called
weak verifiability in [57] but we will call it individual verifiability to match the terminology
used in symbolic settings (Chapter 4). More sophisticated and demanding definitions have been
proposed, for example controlling how many dishonest votes can be inserted [57] or tolerating
some variations in the result [37].

The main missing part (in terms of security) is that our definition does not control ballot
stuffing: arbitrarily many dishonest votes may be added to the result. The reason is that ballot
stuffing seems unrelated to privacy. Moreover, our definition assumes an honest tally, and
thus does not capture universal verifiability aspects. The main reason is that existing privacy
definitions in computational settings assume an honest tally, and we compare the two notions
under the same trust assumptions.

Verifiability is defined through the game Exp‘{ff}{(A) displayed in Figure 5.2. In a first step'?,
the adversary may use oracles Oreg(id) and Ocore(id) (defined in Figure 5.1) to respectively register
a voter and get her credential (in this case, the voter is said to be corrupted, or dishonest).
Private credentials are stored in list U, and public credentials are published by Oreg. Ocorr stores
the list of corrupted voter identities in D. Then the adversary may ask an honest voter id to vote
for a given vote v through oracle OY.(id,v). In this case, the adversary sees the corresponding
ballot. The fact that id voted for v is registered in the list Voted, replacing id’s previous votes
if necessary, to apply the revote policy. The adversary may also cast an arbitrary ballot b in
the name of a dishonest voter id through oracle Ocast(id, b). Provided b is valid w.r.t. BB, it is
added to the ballot box.

Finally, once the adversary gives control back to the challenger, the election result is computed.
The adversary wins if the result does not contain all the honest votes registered in Voted.

Definition 40 (Individual verifiability). A voting system is individually verifiable if for any
adversary A,

P [Exp‘ﬁﬁ()\) = 1] is negligible.

1n the games, we leave implicit that when the adversary proceeds in several steps, it may transmit a state
containing some knowledge to be used in further steps.
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EXP\{f,r(itﬁll ,As) (A) Olote (i, v) Ocast (id, b)
(pk, sk) « Setup(1?) if (id,*) € UAid ¢ D then if id e D A
U,D « [] b < Vote(pk, id, U[id], v) Valid(id, b, BB, U, pk)
A?vegyocorr(pk) BB <« BBI||b then
BB, Voted + || Voted < Voted'||(id, v) BB «+ BB||b
return b

A;Q\}/otwocast (pk)
r + Tally(BB, sk, U)
if 7 # L A YV, (finite) .
r# p({viti<i<k WVe) then
return 1
where Voted = {(id1,v1),. .., (idg, vx)}

where Voted’ is obtained from
Voted by removing all previous

instances of (id, *)

Figure 5.2: Verifiability

As mentioned in introduction of Part II, [19] shows an impossibility result between (uncondi-
tional) privacy and verifiability. [19] considers another aspect of verifiability, namely universal
verifiability, that is, the guarantee that the result corresponds to the content of the ballot, even
in presence of a dishonest tally. Interestingly, the same incompatibility result holds between
individual verifiability and unconditional privacy, for the same reasons. Exactly like in [19], a
powerful adversary (i.e. not polynomial) could tally BB and BB’ where BB’ is the ballot box
from which Alice’s ballot has been removed and infer Alice’s vote by difference. More generally,
unconditional privacy is lost as soon as there exists a function of the votes that is meaningfully
related to the result, which is implied by individual verifiability.

Privacy

For privacy, we consider the old, well established definition of Josh Benaloh [24], that we slightly
extend and adapt to fit our model and notations. More sophisticated definitions are been proposed
later. Notably, [20] surveys existing game-based notions of vote privacy, and propose and a
unifying definition, which we present and extend in the next chapter. These aim in particular at
getting rid of the partial tally assumption (needed in [24]). Note however that they all assume an
honest ballot box. Since we also assume partial tally, the original Benaloh definition is sufficient
for our needs.

Intuitively, a voting system is private if, no matter how honest voters vote, the adversary
cannot see any difference. The game for privacy will formalise this intuition by letting the
adversary propose two possible choices of votes for each honest voter. One will be used, and the
adversary will try to guess which. However, the adversary always sees the election result, that
leaks how the group of honest voters voted (altogether). Therefore, we can only require that
the adversary cannot guess which of the two vote choices was used provided that the election
result w.r.t. the honest voters remains the same for both choices. More formally, in a first step,
the adversary uses oracles Oyeg(id) and Ocorr(id) (Figure 5.1) to respectively register a voter and
corrupt one to get her credential. As before, in that case, the voter is then said to be corrupted.

The adversary may then request an honest voter id to vote either for vy or v; through oracle
Ol e (id, v, v1). Voter id will vote vg depending on the bit 8. The adversary may also cast an
arbitrary ballot b in the name of a dishonest voter id through oracle Ocast(id, b). The election
will be tallied and shown to the adversary only if the set Vj of votes vy yields the same result
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Expd ™ (\) O e id, v0, v1) Ot (id, )
(pk, sk) < Setup(1*) if (id,*) € U A id ¢ D then if id e D A
U,D <[] b < Vote(pk, id, U[id], vg) Valid(id, b, BB, U, pk)
ACree:Ocor (k) BB + BB||b then
BB, Vo, Vi + || Vo + V| (id, vo) BB « BB||b
AOerOst (k) Vy « Vi||(id,v1)
if p(Vo) = p(V1) then return b
r + Tally(BB, sk, U) where Vj (resp. V1) is obtained
B« A(pk, ) from Vg (resp. Vi) by removing
return all instances of (id, *)

Figure 5.3: Privacy

than the set V; of votes v1 (where only the last vote is counted). Finally, the adversary wins if

he correctly guesses 5. Formally, privacy is defined through the game Exp?,r’iz’ﬂ (\) displayed on

«

Figure 5.3

Definition 41 (Privacy [24]). A wvoting system is private if for any adversary A,
‘IP’ {Exp%ri;{o()\) = 1} —-P [Expgiﬁl()\) = 1” is negligible.

Note that this definition of vote privacy implicitly assumes that voters do not communicate
with the ballot box through an anonymous channel: indeed, the voting oracle lets the adversary
know which voter produced which ballot.

5.2 Main Theorem

We show that privacy implies individual verifiability, under a few assumptions.

5.2.1 Assumptions

As for the symbolic case, we assume the existence of a neutral vote vneutral, that does not
contribute to the result (Definition 28).

We also require that the tallying of ballots can be performed piecewise, which is a similar
requirement to the partial tallying property of the counting function on votes. That is, informally,
as soon as two boards BB;, BBy are independent then Tally(BB; || BB2) = Tally(BB;)  Tally(BB2).
This property is satisfied by most voting schemes. Typically it holds as soon as the tallying
algorithm correctly implements a counting function that has the partial tallying operation.
Formally, we characterise this notion of “independence” using the extract;; function defined in
the previous section.

Definition 42 (Piecewise tally). A voting scheme has the piecewise tally property if for any two
boards BBy and BBy that contain ballots registered for different agents and such that BB || BBs
is valid, that is, for all key sk generated by Setup and list of users U created by Register, if

ValidTally(BB; || BB2, sk, U) A Vb € BB;. Vb’ € BBy. extract;q(b, sk, U) # extract;q(b’, sk, U),
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Expy7i (M) Ottyelid, v)
(pk, sk) < Setup(1*) if (id,*) € U A id ¢ D then
U,D « ] return Vote(pk, id, U[id], v)

AOreg Ocorr (pk)

(BB, id, v) « A% (pk)

if (id,*) ¢ U then stop;

b < Vote(pk, id, U[id],v)

if id ¢ D A
(Vb' € BB. extract;q (b, sk, U) # id) A
ValidTally(BB, sk, U) A
—ValidTally(BB||b, sk, U) then

return 1

Figure 5.4: ValidTally game

then their tally can be computed separately, i.e. with overwhelming probability:

Tally(BB; || BBa, sk, U) = Tally(BBy, sk, U)  Tally(BBs, sk, U). (5.1)

We say that a voting scheme is strongly correct if whatever valid board the adversary may
produce, adding a honestly generated ballot still yields a valid board. A similar assumption was
introduced in [26]. For example, Helios is strongly correct.

Definition 43 (Strong correctness). A voting scheme V is strongly correct if for any adversary
A,
P {Expxﬂdn”y()\) = 1] is megligible

where the game Exp\é?idTally(/\) is defined in Figure 5./.

5.2.2 Theorem

We can now state and prove our main result about computational privacy and verifiability.

Theorem 9 (Privacy implies individual verifiability). Let V be a consistent and strongly correct
voting scheme that has the piecewise tally property. If V is private, then V is individually
verifiable.

Let us first give the general intuition of the proof of this theorem. This proof is inspired
by the same intuition as in the symbolic case from Chapter 4. If an attacker manages to break
verifiability, that is, to obtain that not all votes from the honest voters are counted correctly,
then there also exists an attack against privacy. Indeed, consider a scenario with additional,
new voters, whose votes should compensate those cast by the initial voters. By performing the
attack on verifiability for the initial voters, the attacker reaches a state where, in the result of
the election, they are no longer compensated by the new votes. This allows the attacker to break
privacy.
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More precisely, the general idea of the proof is as follows. Consider an attacker A that breaks

individual verifiability, 7.e. wins the game Exp‘{;‘”i'f with non negligible probability. We construct

an attacker B that breaks privacy, i.e. wins Expgiv’ﬂ . B starts by registering, and corrupting,

the same voters as A, using oracles Oreg and Ocorr. Let idy, ..., id, be this first set of voters. B
then registers another set of n voters id}, ..., id), where the id, are fresh identities, that A does
not use.

B then simulates A, using the oracle OV, to simulate A’s calls to OY,.. Specifically, when A

calls O, (id,v), B calls the oracle Ol (id, v, v*2"k), where vP'2"% is a neutral vote. Once B is
done simulating A, it triggers the new voters id; to vote, by calling the oracle Ob (id}, v®'2"% v;),
where v; is the (last) vote cast by id;. The vote of each id; compensates the vote of id;, so that
the condition p(Vo) = p(V1) from Exp(;" holds. B then obtains the result r of the election, which
is equal to rq * r9, where ry is the tally of the ballots cast by A, and ro the tally of the additional

ballots cast by B. Then:

e if 3 =0: then all the votes cast by the id, were vPlnk and the result is thus = 7. Since
A breaks individual verifiability, 71 does not contain the honest votes, i.e., for all multiset
V. of votes, r # p(vi,...,vy) * p(Ve).

e if 3 =1 however, the votes cast by the id; were the v;, and the partial tally ro is therefore
ro = p(v1,...,vy,). Hence, the result r» does contain the honest votes.

Therefore, by observing whether the final result of the election contains the honest votes, B is
able to guess 3, and wins Exp}".

We now give the detailed proof of the theorem.

Proof. Let A= Aj, A2 be an adversary that breaks individual verifiability, i.e. wins Exp‘{frif. We
construct the adversary B = B, Be, B3 that attacks privacy, i.e. plays Exp%”v’ﬂ , as follows.

. B?’eg’om"(pk) first simulates A?’eg’oc”"(pk). Bj registers and corrupts the same identities as

A using its own oracles. B; keeps a list I; of the identities it registers by calling Oyeg. Once

Ay returns, By calls Oyeg another |I;| times, on fresh identities that are simply bitstrings of

length A drawn uniformly and independently at random.It keeps a list I3 of these fresh

identities. Let us denote U = Uy || U the list of identities and credentials in the Expf) v.p

game at this point, where U; and Uz respectively contain the credentials of the identities

in I; and I>. Note that the list D of dishonest identities is the same in Exp?,r"é’ﬂ and the

corresponding execution of Exp‘{fﬁ{.

'4
° Bg) v°te’O‘”’St(pk) maintains a list L, initially empty, which will be used to record the calls to

OP . Bs internally runs Agvv“e’om(pk), answering its queries to the oracles as follows.

— When Ay calls OY,.(id,v), provided id € I, B calls Ol (id,v, Uneutral). Bz then
applies the revote policy to list LL: it removes any previous couple (id,v’) (for any
v') from L, and then appends (id,v) to L. If OF . (id, v, Vneutral) T€tUrnSs a ballot b, B

returns it to As.

— When Ay calls Ot (id, b), provided id € I, B calls Ocast(id, b).
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If at any point during the simulation As blocks or fails, B stops the simulation. At this
point, it is clear that if 8 = 0, A has been accurately simulated. Indeed in that case A is
shown a board where the votes it wanted to cast have indeed been cast.

Let then Voted be the list of the votes in L: Voted = [v for (id,v) € L]. Let also BB, be

the value of the board BB in game Expf,r’ié’ﬁ at that point. By the previous observation, if

verif

p =0, then BB, is also equal to the value of BB in game Expy;'y at this point.

Let us show that, except with a negligible probability that we will denote p;(\), BB,
contains no ballots with identities from Ug, 7.e. ballots b such that extract;q(b, sk, U) € I.
There exists a polynomial g(\) that bounds A’s running time. Consider a game Exp"¢()),
where ¢()\) bitstrings of length A\ are drawn uniformly independently at random, and the
adversary C must propose a bitstring, and wins if this guess is one of the ¢(\) randomly
drawn strings. It is clear that there no adversary C has a non-negligible probability to win
that game. If I; N I5 # 0, an adversary C for game Exp™™ could simply run A internally
(running the Setup and Register algorithms by itself) and propose at random any of the
(at most g(A)) identities in I;. Assimilating the identities drawn at random by B with
those drawn by Exp™"d, C would win as soon as it picked an id € I; N Io. Thus, [; NI = 0
except with negligible probability.

Now, for each b € BB,:

— either b was added to BB by a call B made to O),.. By definition of B, such
a call is OV (id,vp,v1) for some id € I; and some votes vy, vi. Thus, b =
Vote(pk, id, U[id], v5), and by assumption on extract;; we have extract;q(b,sk,U) =
id € I. Thus, unless Iy NI # 0, id ¢ I>.

— or b was added to BB by a call made by B to Ocst(id, b) for some id. Hence, by
definition of this oracle, id € D and Valid(id, b, BB, pk). Assume there exists such a
b that does not satisfy extract;q(b,sk,U) ¢ I». Let us consider the first such ballot
bo that is cast by A. Consider an adversary C for Exp™", that runs an election by
itself, i.e. running the Setup, Register, etc. algorithms by itself. C does just as B,
except that it does not draw and register the identities in I: from the point of view
of C, the strings drawn by the game Exp™"?, that C does not have access to, will play
the role of I5. C thus only has access to U;. C continues the execution of B: the
only point (before tallying) where C would need to use Us is when running the Valid
algorithm to answer B’s calls to Ocast. C instead uses U; when that situation arises.
C chooses at random one of the polynomially many calls to Ocast(id, b) that B makes,
and returns extract;q(id, b, sk, U). With non-negligible probability, the call chosen was
Ocast(ido, bp). In that case, the execution of C accurately follows that of B. Indeed, as
explained, the only point where that execution might not be accurate is when C has
run Valid using U; instead of U; U Uy. By assumption, up to that point, no ballots
that extract to an identity in Iy were submitted. By assumption, the validity of a
ballot depends on no other credential that those of the id under which it is submitted
and of the id it extracts to. Thus, only using U; up to the Ocast(idy, bg) call yields
the same execution as using U; U Us. Therefore, the ballot returned by C is indeed
the by created by A such that extract;g(bo, sk, U) € I, and C wins Exp™".

This establishes that, except with negligible probability, all ballots b cast by A satisfy
extract;q(b,sk,U) = id ¢ I».
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By then calls OF . (id1, vneutral, V1)5 - - -, Obore(idy, Uneutral; V1), Where v1, ..., v are the ele-
ments of Voted, and idy,...,id; are pairwise distinct identities from I5. Note that this
is possible since all identities in L are distinct and in I1: [ = |L| is hence smaller than
|I1| = |I2|. Let then BBy = [by,. .., b;] be the set of new ballots added to the board by these
[ calls, i.e. ballots for vpeytral if 5 =0 and vq,...,v if 5= 1.

At this point, we have BB = BB, || BB;. By construction, except with negligible prob-
ability pa(A), BBy only contains ballots with identities from Us, i.e. ballots b such that
extract;q(b, sk, U) € I.

By then returns.
Exp®" will then check that p(Vo) = p(V1), where Vo and V; are the lists it keeps, which

contain the last votes OL,. has been called on for each id. Considering the definition of
Ba, at this point we always have

p(VO) = p(vl) = P(Ula -+ U, Uneutraly - - - 7Uneutra|)

[ times

Hence this check necessarily succeeds, and Exp\p,riv computes Tally(BB, sk, U).

B3 obtains a result r. If r = |, B3 returns 1. If A5 blocked previously during its simulation,

B3 also returns 3’ = 1. Indeed, as explained earlier, when 3 = 0, A is accurately simulated.

Hence, intuitively, whenever A wins Exp‘{frif, the simulated A, failing means that 8 = 1.

Otherwise, B computes D(r, Voted) and:

— if V.. r = p(Voted) x p(V,) then B returns g’ =1

— otherwise, B returns 3’ = 0.

We will now prove that if A breaks individual verifiability, then B wins the privacy game
except with negligible probability.

Let us first establish that if ValidTally(BB,, sk, U1) holds, then ValidTally(BB,wBBy, sk, U UUz2)
also holds, except with negligible probability.

ValidTally

We construct an adversary C, who plays the strong correctness game Exp, as follows.

C; is identical to Bj.

Cy first draws at random a bit 3”, and then simulates By up to the point where Bo has
finished simulating As. Co keeps a list BB, initially empty. It simulates each call to
Ol e(id, vo,v1) B makes by calling OU..(id,vz), and appending the obtained ballot to
BB. It simulates each call to Ocast(id, b) by appending b to BB, provided id is corrupted

and Valid(id, b, BB, pk).

Once Cy has finished simulating By, it draws at random a number k € [1,[] Recall that [ is
the number of different ids Ol (and thus OY,,) has been called on, and is also the number

of additional calls to O, B has yet to make. Note that, at this point, BB in Expx?nga”y

is the same as BB, in Exp\p,r’ié’ﬁ " C then simulates the next k — 1 calls to O e (iid, v, v1),
again by calling O, (id,vgr). If the kth call is Oy (id, vy, v1), C returns (BB, id, vgn).
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The adversary C is polynomial, i.e. there exists a polynomial ¢(A) bounding its number of
operations.

For any 3, assume ValidTally(BB,, sk, U1) holds and ValidTally(BB, & BBy, sk, U; U Us) does
not. Let us write Uy = [(id1, c1), ..., (idi, ¢)]. Hence, there exists a smallest k € [1,[] such
that ValidTally(BB, W [b1, ..., bx_1],sk,U; U U,) holds and ValidTally(BB, W [by, . .., bg],sk,U; U
U5 U [(4dy, ¢ig,,)]) does not, where Uy = [(id1, c1),. .., (idg—1, ck—1)]. by definition, by has been
added to BBy by the kth call to O, made by B after it had finished running A. Therefore,
by, = Vote(pk, idy, ¢, vg) for some vg. Thus, provided C correctly guesses 8 = § and k, C returns
(BBaW[b1, ..., bk—1], idy, vg). The conditions on BB in Expy¢® " holds, and thus Expye® " = 1.

Therefore, ValidTally(BB,,sk,U;) holds and ValidTally(BB, W BB, sk, U; U Us) does not with
probability at most 2/ P {Exp\é‘;’gdﬁ”y = 1}, which is smaller than 2¢(\) P [Exp\fnga”y = 1} since
I < g(XA). Let us denote p3(A) this probability. By the strong correctness assumption, it is

negligible.

As noted earlier, BB, contains no ballots cast for identities in Is (except with probability
p1(A)) and BBy only ballots for identities in Io (except with probability pa(A)). In addition,
I NI, = 0, except with some negligible probability ps(A). Thus, by the piecewise tallying
assumption, if ValidTally(BB, W BBy, sk, U; U Us), then we have (regardless of )

r = Tally(BB, sk, U) = Tally(BB, W BBy, sk, U) = Tally(BB,, sk, U) * Tally(BBj, sk, U)

In addition, by assumption, registering more users does not change the tally, i.e. Tally(BB,,sk,U) =
Tally(BBg, sk, Uy).
Hence, if ValidTally(BB, W BBy, sk, U; U Us), then

r = Tally(BBy, sk, Uy ) x Tally(BBy, sk, U)

except with some negligible probability ps(\).

e If 3 = 0: then Exp{"jj}é’o(/\) = 1 if and only if B3 returns 1 in this game, which happens
either when A (simulated by B) blocks, or when it does not and 3V.. r = p(Voted) * p(V,)
orr=_1.

Assume ValidTally(BB,, sk, U;1) = ValidTally(BB,WBB;, sk, U), which, as we have established,
holds except with probability ps()).

Let us first examine the case where A does not block and r # 1. Since r # 1,
ValidTally(BB,, sk, U1) holds. Hence, ValidTally(BB,WBBy, sk, U) also holds, and as explained
previously we thus know that r = Tally(BB,, sk, U1) * Tally(BBy, sk, U) (except with proba-
bility ps5(A)). Since 8 = 0, BBy only contains ballots for vpeutral- Hence, by consistency of
the voting scheme, Tally(BBy, sk, U) = p(vneutral)! = p(Vneutral)- Thus r = Tally(BBg, sk, U1).

The condition V.. r = p(Voted) * p(V;) is therefore equivalent to V.. Tally(BB,, sk, U;) =
p(Voted) * p(V,). Since, in this case, .4 has been accurately simulated without blocking,

does not return 1, and BB, is the board after its execution, this is exactly the condition
verif

under which Expyi(\) does not return 1.

Hence Expf,rjé’o()\) = 1 if and only if either A (simulated by B) blocks, or constructs a board
whose tally is L, or it does not and Exp‘ﬁjf()\) # 1.
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Since Exp"e”f(/\) also does not return 1 when A blocks or when the tally is L, this implies that
(except with probability at most p3(\) +p5(A)) ExpprIV %(X\) = 1 if and only if Exp"e”f( ) # 1.
Thus

B[Expf () = 1] — P [Exp¥d (V) # 1]] < ps(0) +p5(M). (5.2)

o If 3 =1: then Exppr'v Y(A\) = 1 if and only if Bs returns 1 in this game, which happens

either when A (smmlated by B) blocks, or when it does not and 3V.. r = p(Voted) * p(V,)
orr=_1.
Assume ValidTally(BB,, sk, U;) = ValidTally(BB,WBB, sk, U), which, as we have established,
holds except with probability ps(A). Let us first examine the case where A does not block and
r # L. As in the § = 0 case, we thus have r = Tally(BB,, sk, Uy) * Tally(BB;, sk, U) (except
with probability ps(A)). Since f = 1, BBy contains ballots for vy, ..., v, i.e. for Voted.
Hence, by consistency, Tally(BBy, sk, U) = p(Voted), and therefore r = Tally(BBy, sk, Uy) *
p(Voted). By definition of Tally, there exists V' such that Tally(BBg,sk,U1) = p(V'). Hence
the condition 3V.. r = p(Voted) x p(V.) necessarily holds.

Therefore, except with probability at most p3(\) + ps(N), Exppm’ Y(A) = 1 if and only if
either A (simulated by B) blocks, or it does not and returns a board whose tally is L, or it
does not and returns a board whose tally is not L. Hence

=P Bl () = 1] <ps()) +p5(). (5.3)

We thus have, using 5.2 and 5.3

PlExpy() =1] = (P[ElE’ () = 1] - P[Bxeyi () #1])
+ P{Expp”“( )= 1] [Exppr'vo()\) = 1})
+(1- Py () = 1))
< |P[Exefis () = 1] = P[Bxpf (1) = 1] |+ 2(ps(N) + (V)

Therefore, if A breaks individual verifiability, 7.e. if P [Exp‘ﬁﬁ()\) = 1} is not negligible, then
B breaks privacy, which proves the theorem. ]

Note that, in these reductions, for each id in Uy, B makes at most as many calls to OV, as
A makes to Ole, and at most as many calls to Ocast as A makes to Ocasr. In addition, for each
id in Ug, B makes at most one call to O, and no call t0 Ocast- Thus, the exact same proof
proves that the result also holds if both the games Expv and ExpVerlf are modified to prevent
revote, by allowing only one call to Oh../OU,. and/or to Ocast/Ocast for each id.

We have shown that, with a standard game-based definition for privacy and an intuitive
notion of individual verifiability, under some mild assumptions on the voting scheme, privacy
implies individual verifiability.

As we already observed in the previous chapter regarding symbolic models, this implication
only holds when considering the same trust assumptions w.r.t. the election authorities for both
properties. In fact, Benaloh’s definition for privacy assumes a honest ballot box. In the game,
as soon as a ballot is emitted by a honest voter, it is added to the ballot box, and cannot be
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removed by the adversary: the adversary can only add new ballots to the ballot box, but not
control it. For this reason, we considered a definition for verifiability that also assumes a honest
ballot box. This assumption is actually shared by almost all existing game-based definitions for
vote privacy. As we discuss in the following Chapter, this highlights a gap in existing definitions.
Indeed, voting protocols typically aim at being private without having to trust the ballot box,
but the privacy notions usually considered assume it to be honest, and are thus too weak.
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Conclusion on Privacy and
Verifiability

In Chapters 4 and 5, we have shown a subtle relation between privacy and verifiability, namely
that privacy implies individual verifiability, which is rather counter-intuitive. Our result holds in
a cryptographic as well as a symbolic setting, for various trust assumptions.

As we have explained, if an adversary who controls the ballot box wishes to learn the vote of
some voter Alice, he can simply remove all ballots except Alice’s from the list of recorded ballots,
and replace all of them with encryptions of valid votes of his choice. When seeing the result of
the election, the adversary, who already knows the value of all votes except Alice’s — he chose
them himself — will deduce how Alice voted.

As noted in previous chapters, our result holds when the same trust assumptions are made
regarding the election authorities, 7.e. when the same entities (ballot box, channels, tallying
authority, etc.) are trusted for privacy and verifiability. Our findings thus point out that if voters
wish for their vote to be private without having to trust some authorities, then the system must
also ensure that their votes are counted without trusting these same authorities. That is, an
entity that has the power to cheat on the result, and make it so that the votes are not counted
correctly, also has the power to learn information about how voters voted, even for entities that
do not have access to the secret keys.

Limitations. Individual verifiability is only one part of verifiability. It does not account for
universal nor eligibility verifiability. So our result cannot be used to conclude that a private
voting scheme ensures all desirable verifiability properties. Instead, it demonstrates that there
is no hope to design a private voting system if it does not include some degree of verifiability,
namely individual verifiability at least.

Our result assumes counting functions that have the partial tally property. The proof
technique does not extend immediately to more complex counting functions such as STV or
Condorcet, but as we will see in the next chapter, the implication still holds at least in some
cases without this assumption. Also, our results implicitly discard anonymous channels: our
computational model does not account for anonymous channels while our election determinism
assumption discards at least some use of anonymous channels. Intuitively, in presence of such
channels, an attacker may be able to modify a ballot without being able to tell which one, hence
breaking verifiability without breaking privacy. It would be interesting to identify which kind of
anonymous channels and, more generally, which form of non determinism can still be tolerated.

Dishonest ballot box. As discussed earlier (see introduction of Part II), the apparent contra-
diction between our result and the fact that known protocols have been proved private without

135



Conclusion on Privacy and Verifiability

being verifiable (e.g. Helios without verification steps) is explained by closely looking at the
trust assumptions.

Our main theorem states that privacy implies individual verifiability with the same trust
assumptions. Verifiability is typically studied against a dishonest ballot box. However, the
privacy definition introduced by Benaloh assumes an honest ballot box, as well as most existing
game-based privacy definitions of the literature [20] that are used to study protocols. Therefore,
our main theorem in the computational model shows that whenever a voting scheme is private
w.r.t. an honest ballot box, then it is also individually verifiable w.r.t. an honest ballot boz,
which is of course a rather weak property.

This highlights a crucial need for a ballot privacy definition in the context of a dishonest
ballot box, in a cryptographic setting. So far, privacy has only been proved assuming an honest
ballot box, which forms a very strong trust assumption that was probably never made clear to
voters nor election authorities: voting schemes aim at being private without needing to trust the
ballot box.

As already pointed out in Introduction of Part II, defining privacy against a dishonest ballot
box is hard, as naively adapting usual definitions typically yields properties that are too strong,
and can never be satisfied. This problem is the subject of the next chapter.
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Chapter 6

Privacy against a Dishonest Ballot
Box

6.1 Introduction

Electronic voting systems usually try to ensure that the votes remain private. Typically, votes
are encrypted with a public key, and the associated decryption key is shared among several
trustees, so that at least a certain number of them are required in order to decrypt and compute
the tally. In particular, a typical design choice is not to give access to this secret key to the
ballot box, i.e. the server in charge of collecting the ballots from all voters. The idea behind this
choice is that it should ensure that even if this server is not trusted, it should not be able to
learn any information on the votes, i.e. to break the voters’ privacy.

However, as we pointed out in the previous chapters, this trust assumption is not captured
properly by existing game-based security definitions. A similar observation has been made e.g.
in [67, 29]. In brief, existing definitions (e.g. [25, 26, 50]) consider a game where the adversary
controls the votes cast by honest parties but cannot control the resulting ballots: these get placed
on the bulletin board before it is tallied and cannot ever be modified or removed. In other words,
current security notions allow to prove security of schemes only under the assumption that the
bulletin board is honest, even if they are designed (and claimed) to resist a dishonest voting
server.

This gap between security goals and security definitions has recently been confirmed by
Roenne [94] in the case of Helios [10]. As already described e.g. in Chapter 3, the attack shows
that a malicious board can break privacy of votes if users are allowed to revote. Furthermore, it
seems non-trivial to prevent it even if voters and external auditors carry out additional checks
(e.g. forbidding duplicate ballots, a.k.a. weeding). Even detecting the attack would require
unrealistic countermeasures where every voter carefully records any of her ballots, even the ones
that failed to reach the ballot box.

In this chapter we propose a way to fill that gap. We design novel security definitions which
allow the rigorous study of privacy of electronic voting in presence of a malicious bulletin board,
study relations between the notions which we propose, and apply them to several well-established
schemes.

In [64], we made a first attempt at modelling privacy against a dishonest board, where we
assumed that all honest voters perform the verifications specified by the protocol. Such an
assumption was unrealistic: in a realistic setting, it is more likely that a (small) fraction of honest
voters perform the required tests while the others stop after casting their vote. The notion of
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privacy we propose in this chapter is much more precise and general than that initial definition,
which we will thus not present here.

Before we outline our results it is useful to discuss the security of Helios against an adversary
who can control the bulletin board. Recall that in Helios voters encrypt their vote and send their
encrypted ballot to a bulletin board, that displays them. The tally is done through mixnets or
using the homomorphic property of the encryption. Importantly, voters can and should in fact
check that their ballot appears on the bulletin board. First, notice that by changing the board
an adversary may influence the final result and indirectly learn information about the votes of
the honest party. This can be easily seen by considering the extreme case, already discussed
earlier, where the adversary culls all but one ballot from the board: the tally then reveals the
value of the underlying vote. The following three scenarios show that different usages of Helios,
defined by how voters cast/check their ballots, lead to different security guarantees.

e The scheme offers the strongest guarantees when all honest voters vote and check that
their vote appears on the ballot box. In this case the result of the election contains all of
the honest votes plus at most as many votes as the number of voters controlled by the
adversary. However, such assumptions on honest voters are unrealistic — in practice, only a
small fraction of voters perform the checks.

e Assume now that not all honest voters vote. Then the security of Helios decreases. Indeed,
a malicious board may use absentee voters to place ballots of her choice. So the privacy of
the election is as good as what an attacker can learn from a result formed from the honest
voters that did vote and any choice of votes from the remaining voters (dishonest or not).

e Finally, the most common scenario is that not all honest voters vote and only a fraction of
them actually conduct the suggested verification steps. In this case the security of Helios
decreases further. Indeed, a malicious board may now selectively remove ballots that have
been cast by voters that do not check. Hence a malicious board has now even more control
on the result, that may leak more information since it may contain fewer votes (at the will
of the adversary).

What does this example tell us? The strongest security is only achieved under unreasonable
assumptions and more plausible uses lead to weaker guarantees. Furthermore, the level of
control the adversary has on the board (and therefore over the verifiability of the scheme/the
election result) may vary considerably not only between schemes, but even between different
usage scenarios of the same scheme. Therefore, as already hinted at in the previous chapters,
taking into account the verification mechanisms, and the fact that only some of the voters would
actually perform them, seems inevitable if one aims to characterise the privacy of a voting scheme.
One crucial conclusion of this brief discussion is that it is difficult to pin down “the right” level
of privacy. Instead, an appropriate security definition should account for the possibility of a
spectrum of privacy levels derived from varied trust assumption and usage scenarios.

Another important observation is that the distinction between the different levels of guarantees
can be quite subtle, and the associated security implications difficult to evaluate. From this
perspective, not only it is difficult to define security but it is also very hard to compare voting
schemes and select the ones that should be used, if a malicious board is a concern. All of these
concerns highlight the need for a framework that allows for a systematic analysis of existing
schemes.
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Contributions and outline of the chapter. We make several contributions which address
the challenges outlined above. We first provide a family of rigorous game-based definitions
for ballot privacy against malicious bulletin boards. Different instantiations capture different
levels of ballot privacy and in particular we can accurately capture the distinct levels of security
discussed above.

Next, we introduce a family of ideal functionalities for defining simulation-based security.
Over the typical functionality which collects the votes and applies a result function, our notions
permit adversarial control over the result of the computation (see below for the details). These
functionalities specify precisely the expected abilities (and therefore the limitations) of an
adversary who tampers with the ballot box, so that the resulting level of security can be more
easily evaluated than for game based security definitions.

We then relate these two families of privacy notions: we show that under mild assumptions
the former imply the latter. Our proof for this implication is generic in that we do not relate
members of the two families of definitions instance by instance.

Then, we use our definitions to study the security of several well established protocols.

One aspect of our work which is worth discussing is that it reflects the subtle interplay
between verifiability and privacy exposed in the previous chapters. Our different flavours of ideal
functionalities reflect different adversarial capabilities to modify honest votes. Is this a privacy
or a verifiability property? Intuitively, ballot privacy says that the adversary should not learn
more information about the votes than the result itself. Hence, whether or not the adversary
can remove or alter honest votes, or add more votes, gives more control to the adversary over
the result, which interferes with the level of privacy offered by the voting scheme. Actually, we
show that our privacy notion, as soon as a sufficiently strong instance of it is considered, implies
individual verifiability against a dishonest ballot box. This confirms the results from the previous
chapters. Interestingly, this proof is completely different than the previous ones: we leverage the
relation we prove between our notion and simulation-based security to prove directly in the ideal
world that individual verifiability holds, which is much easier.

Finally, we try to get a better insight on how to compare different instances of our family
of ideal functionalities, and on what level of privacy they guarantee. To do this we quantify
the amount of information they allow to be leaked to the adversary, by exploring the notion of
entropy. Following the formalism proposed in [27], we consider votes as random variables, and
assume the adversary is trying to make some specific observation on them. This observation
is expressed by a target function, i.e. a function that associates a list of votes to some value
intended to represent the information the adversary tries to determine. We then compute the
conditional entropy on the target function (applied to the votes), given the view of the adversary,
i.e. all the messages it receives and his internal state. We compare that entropy for different
ideal functionalities, and discuss our findings.

More details about our privacy notion. We build upon the security notion BPRIV intro-
duced in [26]. To understand our approach it helps to recall the general idea behind BPRIV,
and more generally existing game-based definitions. Essentially, the adversary has to distinguish
between two situations. The first is a situation where honest voters submit ballots containing
votes selected by the adversary. The second is where the ballots submitted by the honest voters
are “fake”. In BPRIV these are simply ballots of some value, also chosen by the attacker. In
the process the adversary is allowed to learn the result of the tally process. Ignore for the
moment the ballots cast by dishonest parties. In the case of an honest bulletin board (where
all ballots are placed on the bulletin board to be tallied) we always return to the adversary the
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tally corresponding to the real ballots. If no adversary can tell the two situations apart then the
ballots themselves, together with the result learned by the adversary, do not leak information
about the underlying votes.

We capture security against an adversary who can tamper with the bulletin board, by
requiring that there exists a recovery algorithm which, essentially, can detect how the adversary
has tampered with the ballots issued by the honest users. The output of the recovery algorithm
can be thought a small program, written in a small programming language with commands that
act on the bulletin board (delete honest votes, modify votes, re-order votes, etc.). If such a
recovery algorithm exists, we return to the adversary the tally of the real ballots but after the
tampering program has been applied. A voting scheme is said to satisfy mb-BPRIV — shorthand
for “BPRIV against a malicious ballot box” — when no adversary can distinguish the real world
from the fake one.

The typical definition for simulation based security involves a functionality which collects
the list of votes of all parties (honest and corrupt) and simply returns the result of the election
determined by the list. To capture the setting where an adversary can to some extent tamper
with the bulletin board (and therefore the list of votes that is tallied) we modify the ideal
functionality to reflect this adversarial ability. We now give a high level (and imprecise) sketch of
how we proceed as follows. The functionality is parametrised by a what we could call a “guard”
P, that is, a predicate that limits what power the functionality gives to the adversary. After
it collects the votes, but before it returns the result, the functionality allows the adversary to
tamper with the list of votes via an arbitrary program f. However, it will only accept to compute
the result if that program satisfies the predicate P. Roughly, showing that a voting scheme
implements this ideal functionality for a given guard P therefore guarantees that no adversary
against the scheme can have more power than what P specifies.

We can then establish a link between security w.r.t. mb-BPRIV parametrised by recovery
algorithm f and idealised security with respect to an ideal functionality parametrised by guard
P. If f and P are compatible, that is, roughly, if the tampering that f can detect are allowed by
P, then any scheme which is mb-BPRIV secure and strongly consistent — a notion introduced
in [26] — is secure with respect to the ideal functionality. As observed by [26], mb-BPRIV alone is
not sufficient for simulation-based security, as it does not account for the case where a badly
conceived tallying algorithm leaks some unwanted information on the votes: indeed, since the
tally is always computed on the real ballots, such a leakage would not help the adversary to
distinguish between the real and fake ballots, i.e. to break mb-BPRIV. Hence [26] introduced
the notion of strong consistency, which demands that the tally reveals only the desired result
function on the votes (and no additional information).

Related work. The first game-based definition which considers a malicious board has been
proposed by Bernhard and Smyth [29]. Their definition extends Benaloh’s approach [25]. The
adversary submits a board and the tally is performed only if the ballots on the board that come
from honest voters are such that the subtally does not differ in the “left” and “right” worlds. This
somehow corresponds to one possible instance of our recovery algorithm in mb-BPRIV, where the
attacker may remove any honest vote and add an arbitrary number of votes, independently of
whether honest voters do check their ballot and independently of the number of dishonest voters.
Note that [29] requires that ballots cannot be modified at all (e.g. they cannot contain a tag
such as the date). Perhaps the most important technical difference from our approach is that
Benaloh’s definitional approach does not seem to allow a formal link with a simulation-based
notion of security. In brief, Benaloh’s definition does not allow to construct a simulator which
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can simulate on the fly a fake board towards an adversary: the global consistency requirement
between the subtally of the real votes seems to preclude an on-line simulator which can fake
a board. Furthermore, this approach assumes that the counting function admits partial tally,
which discards many modern counting functions such as Condorcet or STV.

The shortcomings that stem from the use of Benaloh’s approach are also shared by [64]. This
definition can be again seen as an extension of Benaloh’s definition but which assumes that all
honest voters check that their ballot appears on the bulletin board.

Recently, Bursuc, Dragan and Kremer [10] have studied the security of encryption schemes where
ballots can be partially modified, for example by a malicious device. They propose a variant
of BPRIV that accounts for such behaviours. The case of a malicious board corresponds to the
case where ballots can be fully modified. Then for malicious boards, vote privacy defined in [10]
can be seen as an instance of mb-BPRIV where the recovery algorithm lets the adversary tamper
arbitrarily with the honest ballots. However, in such a case, all schemes would be declared
insecure. So the model of [10] does not seem suitable to reason about malicious boards in general.
Instead, it addresses a class of schemes where security is due to the part of the ballot that is
securely transmitted to the (honest) board, despite the adversary tampering with the other parts
of the ballot.

6.2 Background

The computational model we consider for voting protocols is the same as in the previous chapter,
with a few extensions and additional assumptions that we describe in this section. We also
present the original BPRIV notion that we build upon.

6.2.1 Notations

In the previous chapter, corruption of voters was dynamic: the adversary had access to a
registration oracle to generate credentials for any number of voters, and a corruption oracle, to
corrupt any of them.

Instead, we now fix beforehand the identities of voters. We consider a finite set Z =H U D of
voter identities, partitioned into the sets H and D of honest and dishonest voters. H is further
partitioned into sets Hepeck and Hgoo, meant to contain the identities of voters who verify their
vote (resp. do not verify).

The interest of fixing voter identities will become clear later in the chapter. Basically, we will
relate two notions of vote privacy, showing that one implies the other. Having fixed the sets of
honest and corrupted voters beforehand will then let us know that this implication holds when
considering the same number of adversary-controlled voters for both notions, which would not
be the case if the voters were dynamically corrupted. In a model with dynamic corruption, we
could only prove the weaker claim that the implication holds with potentially different numbers
of corrupted voters for each notion.

We study schemes for which the adversary can tamper with the bulletin board, which, as
before, is simply a list of ballots. We make an additional mild assumption regarding the format
of the ballots: we assume them to be pairs of bitstrings.

Definition 44 (Bulletin board). A bulletin board BB is a list of pairs of bitstrings which we
call ballots. For a ballot (p,b), we call the bitstring p a public credential and the bitstring b is a
ciphertext. BB[j]| denotes the jth element of BB.
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We will also call extended bulletin board a board where elements are associated to an identity,
i.e. a list of elements of the form (id, (p,b)).

While the exact nature of the ballots, i.e. public credentials and ciphertexts, depends on
the protocol considered, we intuitively intend the public credential to link to the identity of the
voter who casts the ballot, and the ciphertext to contain the vote expressed by the ballot.

As in the previous chapters, we call counting functions the functions which calculate the
result of an election. To be more general, we no longer assume a partial tallying property. In
addition, we will no longer explicitly encode the revote policy in the games defining properties
(e.g. having ballots cast by oracles replace previous ballots, to encode that the last vote counts).
Instead, the revote policy will be encoded in the counting function. That is, we now consider
counting functions that 1. take the identities of voters into account, 2. apply to lists rather than
multisets of votes. This way, any revote policy can be expressed by a counting function. We will
express our results generically (for an arbitrary unspecified counting function p), so that they
are independent of the choice of a particular revote policy.

Definition 45 (Counting function). A counting function p is a mapping that takes as input a
sequence S of pairs (id,v), where id € T and v is a vote, and returns a value (bitstring) intended
to represent the result of tallying the votes in S. It may use the ids contained in S to apply a
revote policy.

We assume a special value L, intended to represent an invalid identity and vote (e.g. obtained
by decrypting a ballot that was incorrectly generated), that should not be counted. Formally, we
require that counting functions ignore this value, i.e. that for all 1, I', p(l||L||I") = p(l||I).

6.2.2 Original BPRIV notion

As mentioned in introduction, the privacy notion we propose in the next section builds upon
the definition for ballot privacy BPRIV introduced by Bernhard et al [26]. To provide some
context, in this section we briefly present this existing definition (adapted to the notations and
model we use here), as well as some associated properties. Finally we recall the result from [26],
which states that BPRIV together with the associated notions imply a simulation-based notion of
privacy. We take this opportunity to make explicit an assumption required for this result that
was missing from the original paper.

Ballot privacy states that ballots themselves do not reveal information about the underlying
votes (even after tallying).

The original BPRIV notion models an honest ballot box whereas we consider a malicious
one. To distinguish between the two notions we will from now on refer to the original one as
hb-BPRIV security (for “honest ballot box”) and to the notion we introduce in the next section
as mb-BPRIV (for “malicious ballot box”).

hb-BPRIV. Essentially, in hb-BPRIV, the adversary is interacting with an execution of the
voting protocol, and sees either the real ballots, or fake ballots containing fake votes, depending
on a secret bit 5. Using oracles, he can choose the values of the real and fake votes, and cast
any ballot he can construct (in the name of a corrupted voter). In the end, regardless of 3, the
adversary is shown the result of tallying the real ballots. He must then guess 5, and the privacy
property is that he should not be able to correctly do so. Intuitively, this notion of ballot privacy
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ExpliP RV () OvotelR(id, v, v1) for id € H
BBy, BB «+ 0 (po, bo) <+ Vote(pk, id, U[id], vo)
(pk, sk) < Setup(1*) (p1,b1) < Vote(pk, id, U[id], v1)
for all id € T do if Valid(id, (ps,bs), BBg, pk) = L
¢ + Register(1*, id) then return L
Ulid) + ¢, PUlid] < Pub(c) else BBo «— BBy || (po,bo); BB1 < BB1 || (p1,b1)

for all id € D do CU[id] « U[id] ~ return (ps,bs).
AOVOtELR<pk, CU, PU)
d — AOta”yEBO,EBl ()

output d.

Otallygg, g, () for 8 =0  Otallygg g, () for 3 =1
(,T1) < Tally(BBo, k) (r,T1) < Tally(BBo, sk)
return (r,1I) IT" < SimProof (BB, )

return (r,I1')

Figure 6.1: The hb-BPRIV game.

means that when interacting with the election, all honest voters’ ballots might as well contain
fake votes, and the adversary would not notice: thus no information on the votes is leaked.

There is however an issue: in many protocols, the Tally algorithm does not only publish
the result, but also associated data, e.g. zero-knowledge proofs intended to guarantee that the
result correctly corresponds to the tally of the bulletin board. As explained above, the adversary
always gets to see the result of tallying the real ballots. Hence, showing him a correct tallying
proof would always let him distinguish between the two scenarios. Indeed, when he sees fake
ballots, the result he sees does not match the tally of the bulletin board he observes, which would
become apparent if the adversary had access to the real proofs of correct tallying. To solve this
problem, the authors in [20] require that the challenger in the hb-BPRIV game is able to simulate
these proofs. That is, there must exist an algorithm SimProof (BB, r) that intuitively returns a
simulated proof that r is the correct result for BB. This algorithm is used to produce a fake
proof to show the adversary when he sees the fake ballots. Note that the SimProof algorithm is
not explicitly assumed to produce a convincing fake proof, but if it does not then the hb-BPRIV
property will most likely be unsatisfiable. Also note that the SimProof algorithm only has access
to public data that the adversary sees, and not to e.g. the election private key: this ensures it
cannot leak such confidential data to the adversary. Typically, the challenger can implement such
a simulator for zero-knowledge proofs by manipulating the random oracle, when considering the
random oracle model. We abstract from such details here, and will simply require the existence
of the SimProof algorithm, regardless of how it is implemented.

Formally, the hb-BPRIV property is defined as follows.

Definition 46 (hb-BPRIV [26]). Let V be a voting scheme. Consider the game Exp%”fPR’V’B

defined in Figure 6.1. V satisfies hb-BPRIV if for any polynomial adversary A,
hb-BPRIV,0 hb-BPRIV,1
IP(Exp 4y (A) =1) = P(Expy)y (A) =1

s negligible in .

In [26], the authors introduce two additional properties of voting systems, that are required
alongside hb-BPRIV to actually guarantee vote privacy.
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Strong consistency. The first one is strong consistency. This property can be seen as a stronger
version of the consistency assumption we made in the previous chapter. It intuitively states that
the result computed by the Tally algorithm on some board BB is always equal to the counting
function applied to the votes contained in the ballots in BB. This should hold even if BB has
been produced by the adversary, as long as he only proposes ballots that satisfy some validity
sub-condition ValidInd, that is a consequence of the actual validity check Valid. Informally, strong
consistency ensures that the Tally algorithm itself only computes the counting function, and
cannot accept some commands from the adversary encoded in dishonest ballots, that would
trigger it e.g. to leak unwanted information or consider a bulletin board invalid. Formally, strong
consistency is defined as follows.

Definition 47 (Strong consistency [20]). A voting scheme V is strongly consistent if there exist
algorithms extract and ValidInd such that:

e For any id € I, and any vote v, if (pk,sk) are generated by Setup, U by Register, and (p,b)
by Vote(pk, id,U[id],v), then extract(sk,U,p,b) = (id,v) with overwhelming probability.

e For any pk produced by Setup, and any BB, id, (p,b) produced by an adversary,

Valid(id, (p,b), BB, pk) = T => Validind(p,b) = T.

e For any adversary A that only returns boards BB such that Validind(p,b) = T for each
(p,b) € BB, the advantage ]P)(Expicy()\) = 1) is negligible, where Expic,v is defined as the
following game:

EXPJS4(,:V (N

(pk, sk) < Setup(1*)

for all id € 7 do
U[id] < Register(id)

BB « A(pk, U)

(r,IT) + Tally(BB, sk)

if 7 # p(extract(sk,U,p1,b1), ..., extract(sk, U, p,, by))
where BB = [(p1,b1), ..., (Pn, bn)]

then return 1

else return 0

Strong correctness. The second companion property to hb-BPRIV introduced in [26] is strong
correctness. This property basically ensures that no matter what ballot the adversary manages
to cast to the ballot box, honestly generated ballots can always be accepted afterwards.

). A wvoting scheme satisfies strong correctness if for any

) = 1] is negligible, where Expi&}r is defined by

Definition 48 (Strong correctness |

]
adversary A the advantage P[Exp%ﬁr(}\
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Expiy (V)
(pk, sk) < Setup(1*)
for all id € 7 do
U[id] < Register(id)
(BB, id, v) < A(pk, U)
(p, b) < Vote(pk, id, U[id], v)
if Valid(id, (p,b), BB, pk) # T

then return 1

else return 0

Ideal functionality. The authors of [20] show that if a voting scheme is hb-BPRIV, strongly
consistent and strongly correct, then it satisfies a simulation-based notion of vote privacy.
Informally, assuming an honest ballot box, the scheme then securely implements an ideal
functionality, that describes a system where honest voters secretly send their votes to the
functionality. In this ideal system, the adversary can only add his own dishonest votes and see
the result as computed by the counting function, but he has no way of learning the honest voters’
votes.

We will formally define such simulation-based properties in the following sections, as we prove
that our mb-BPRIV notion implies stronger variants of this property.

Missing assumption. While designing our definition, it came to our attention that the authors
of [26] missed an assumption that is necessary for their proof that hb-BPRIV implies simulation-
based security. This property is a correct authentication notion, that requires that the protocol
correctly ensures that voters are authenticated when they cast their votes. We capture this by
requiring that the Valid algorithm that is run before adding a ballot to the ballot box ensures
that the identity used to cast the ballot is the same as the one that can be extracted from it, as
defined below.

Definition 49 (Correct authentication). A voting scheme has the correct authentication property
if P[Expféﬂ%?()\) = 1] is negligible for any adversary A, where

Expit§P (M) =
(pk, sk) < Setup(A)
(BB, id, (p, b)) + ACre:Ocor(pk)
(id’,v) < extract(p, b, sk, U)
If Valid(id, b, BB, U, pk) A id' # id
then return 1 else return 0.

Indeed, in a scheme that does not guarantee this property, the adversary might be able to
cast ballots in the name of honest voters. This would intuitively let him break the verifiability
property, and, following the same ideas as in the previous chapters, the privacy property. Consider
for instance a scheme where voters send ballots formed of their encrypted vote together with
their identity in clear, but the server does not ensure that the ballot contains the correct
identity. Assume a “last vote counts” revote policy is applied, based on the identities in
ballots. For instance, in an election with two honest voters Alice and Bob, the tally of BB =
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[(Alice,0), (Bob, 1), (Alice,1)] would be {1, 1]}, as only the last vote of Alice is counted. Note
that, as there is no correct authentication, the second ballot (Alice, 1) could very well have been
cast by the adversary. Such a scheme should therefore intuitively not be deemed private. Indeed,
if the adversary wishes to learn Bob’s vote, he could simply cast the ballot (Alice,1) (in the
name of a dishonest voter he controls), and replace Alice’s real vote with 1, as shown above. The
result then immediately lets him know that Bob voted 1.

However, this very simple attack is not caught by the original hb-BPRIV. Indeed, an adversary
trying to perform it would e.g. call OvoteLR(Alice,0,1) and OvoteLR(Bob, 1,0), to make honest
voters Alice and Bob vote. The adversary would then cast the ballot intended to replace Alice’s:
Ocast(Charlie, (Alice, 1)) (where Charlie is a dishonest voter). As before, since no authentication
check is performed, this ballot is accepted. The board that is tallied, both on the left and on
the right (i.e. when =0 and 8 = 1) is then [(Alice,0), (Bob, 1), (Alice,1)], and the associated
result is thus {1, 1[} on both sides. This does not let the adversary distinguish between both sides.
This attack can only be captured by requiring that the protocol has the correct authentication
property, which is clearly not the case here.

We proved that this additional assumption indeed fixes the problem, 7.e. that it is sufficient
(along with strong consistency and correctness) to ensure that hb-BPRIV implies simulation-based
security. A corresponding technical report is currently being written. We will not detail this any
more here, as it is not relevant to the case we consider, of a dishonest ballot box. Indeed, the
correct authentication property only makes sense if the ballot box is trusted: we cannot require
that an untrusted ballot box still properly authenticates voters. Hence, as we will see in the next
sections, we do not make this assumption when studying our mb-BPRIV notion.

The next subsection presents how we adapt our model of voting systems to the case of a
dishonest ballot box.

6.2.3 Model

We consider the same computational model for voting protocols as in the previous chapter, except
for a few extensions. Following the insight on the links between privacy and verifiability from
the previous chapters, we will incorporate the verification mechanisms of the protocols in our
privacy definition. Indeed, as we pointed out previously, when considering a dishonest ballot
box, not modelling these mechanisms defeats any hope of proving a voting scheme private: if
no verification at all is performed, the adversary could simply remove all ballots but one from
the ballot box, and the result would let him learn the content of that one ballot. From now
on, we thus extend our model with a Verify algorithm modelling the verification steps voters
should perform. To do that, the voter may need some knowledge they obtained when creating
the ballot (e.g. the ballot itself, a verification code, ...). Thus the Vote algorithm now returns a
state modelling this knowledge. We will however not assume that all voters actually perform
the verifications: such an assumption would be unrealistic in general. Instead, in our model, an
arbitrary, fixed subset Hepeck of the honest voters will perform them, while the others Ho—- will
not.

In addition, since we will consider an untrusted ballot box, we have no guarantee that any
validity condition will be checked on ballots before them being added to the bulletin board. Thus,
there is no longer a point to consider a Valid(id, b, BB, pk) algorithm that, as before, determines
whether id can validly cast a ballot b in BB. Instead, we will from now on simply assume a
ValidBoard(BB, pk) algorithm, that is applied to the whole bulletin board BB before tallying,
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to check that the board is valid. Potentially, this algorithm could correspond to successively
applying Valid to each ballot in BB, but we do not require this, and just leave ValidBoard abstract.

Definition 50 (Voting scheme). A voting scheme is a collection of seven algorithms:
V = (Setup, Register, Pub, Vote, ValidBoard, Tally, Verify).

e Setup(11) computes a pair of election keys (pk,sk) given a security parameter \.

e Register(1%,id) generates a private credential ¢ for voter id and stores the correspondence
(id,c) in a list U, used for modelling purposes.

e Pub(c) returns the public credential associated with a credential c.

e Vote(pk, id, c,v) constructs a ballot (p,b) for user id with private credential ¢, containing
vote v, using the public election key pk. It also returns a state to the voter, that models what
a voter should record, e.g. her ballot. One can think about this state as any information a
voter would need to record, e.g. to verify if the ballot has been cast.

e ValidBoard(BB, pk) checks that the board BB is valid.

e Tally(BB,sk) uses the board BB and the secret election key sk to compute the result of the
election, and potentially proofs of good tallying.

o Verify(id, state, BB) represents the checks a voter id, with local state state, should perform
on a board BB to ensure her vote is counted.

With this new, extended model for voting protocols, we can now formalise our privacy notion.

6.3 Game-based Security against a Dishonest Ballot Box: mb-
BPRIV

In this section we detail two security notions for voting schemes. Ballot privacy ensures that
ballots do not reveal information about the underlying votes. Strong consistency guarantees
that the result calculated by the tally does not reveal any additional information beyond what is
revealed by the counting function which the scheme should implement. We start with the latter.

6.3.1 Strong consistency

As briefly explained in the previous section, strong consistency demands that the tallying process
behaves as expected, i.e. it returns the result of tallying the votes which underly the ballots on
any given board, even a dishonestly produced one. In particular, strong consistency excludes
insecure tally functions that would e.g. remove the first ballot if it corresponds to a vote for
candidate A, hence breaking privacy of the first voter.

We slightly adapt the notion introduced by Bernhard et al [26], and presented in Section 6.2.
As before, the property considers an adversary who is given the public key for the election, as
well as public information for a set Z of registered users. The adversary returns an arbitrary
bulletin board. The definition uses an efficient algorithm which from any given ballot can extract
a vote and an identity. Strong consistency requires that tallying the board returns the same
result as running the desired counting function on the votes underlying the ballots on the board.
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However, since in our model we no longer consider that validity checks are performed on ballots
before they are cast, the strong consistency property no longer imposes any conditions regarding
the validity algorithm. The next definition formalises these ideas.

Definition 51 (Strong consistency). A voting scheme V is strongly consistent if there exist two
algorithms extractq, extract, such that:

e For any id € I, and any vote v, if (pk,sk) are generated by Setup, U by Register, and (p,b)
by Vote(pk, id, U[id],v), then extractiq(U,p) = id and extract,(sk,b) = v with overwhelming
probability. We then write extract(sk, U, p, b) = (extractiq(U, p), extract, (sk, b)) the extraction
function that extracts (id,v) from (p,b).

e For any adversary A, the advantage P(Expi(fv(/\) = 1) is negligible, where Expifv is defined
as the following game:

Exp2y (V)

(pk, sk) « Setup(1*)

for all id € 7 do
U[id] < Register(id)

BB «+ A(pk, U)

(r,II) + Tally(BB, sk)

if r # p(extract(sk,U,p1, b1), ..., extract(sk, U, p,, b,))
where BB = [(p1,b1), ..., (Pn, bn)]

then return 1

else return 0

Notation: for any board BB = [(p1,b1),...,(pn,bn)], any sk, U and extract, we denote
extract(sk, U, BB) the list of extractions of the ballots in BB, i.e.

[extract(sk, U, p1,b1), ..., extract(sk, U, p,, by)].

We also write extract(sk, U, BB) the list obtained by removing all L elements from extract(sk, U, BB).
Note that, by definition of a counting function (Definition 45), we have

p(extract(sk, U, BB)) = p(extract(sk, U, BB)).

6.3.2 mb-BPRIV

We start with a high level discussion of the notion which we introduce in this section, discuss its
salient features over hb-BPRIV, and then provide a formal definition.

We consider a game which pits an adversary A against a voting scheme. Just as in hb-BPRIV,
the adversary has partial information about honest users’ votes: for each such user he selects
a left-or-right challenge consisting of two votes vy and v;. The game computes the ballots
corresponding to the votes but returns to the adversary the ballot which corresponds to vg,
for some hidden bit 5 which the adversary needs to determine. The game keeps track of both
BBy and BB; (the ordered list of ballots calculated in response to the adversary’s queries) — the
adversary sees, essentially, BBg.

The adversary then creates a public bulletin board BB, by using the honest votes and arbitrary
other votes it creates (potentially, using the voting credentials of the set of corrupt voters). This
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models the adversary being in control of the ballot box, and is a crucial difference with hb-BPRIV:
A can now manipulate the contents of the ballot box in any way he wants, by submitting any
sequence of ballots he can construct, rather than only being allowed to add his own ballots to it.

Following the insights from our result on privacy and verifiability from the previous chapters,
we now model the verification steps of the protocol. Before we get to the tallying phase, voters
in Heheck Will perform these steps, which are intuitively intended to check that their votes are
indeed represented in the board BB provided by the adversary. If some of these verifications fail,
the election is called off and no tally is computed. This will turns out to be most important:
since the adversary now controls the ballot box, he could potentially manipulate its content, e.g.
removing ballots. These verifications mean that if he wants to see the result, he has to be careful
not to upset the voters in Hepeck. As we will see later on, this intuitively introduces a distinction
between the privacy level that voters who check and do not check get. Of course, Hcheck can be
set to the empty set if we do not want to consider any verification steps. Provided all voters in
Hcheck are satisfied with BB, the game then proceeds to the tallying phase.

The key aspect of the definition is how the game computes the tally it returns to the adversary.
When the adversary is in the “real” world where he sees BBy the game simply tallies BB (as in
hb-BPRIV). The case of the “fake” world where he sees BB is much more complex. In hb-BPRIV,
the intuition was that he should still see the tally from the “real” board. However, there is no
longer a real and a fake board (as was the case in hb-BPRIV): the only board we have is the one
produced by the adversary.

Therefore, our key idea is that we need to determine how the adversary manipulated the votes
on BB; to produce the board he returned to be tallied. That is, we need to somehow (efficiently)
determine which of the honest ballots have been cast, on which position on the bulletin board,
and which ones have been removed. Once this transformation is determined, the game applies it
to BBy, tallies the resulting board and returns the result to the adversary. We explain a bit later
how an insecure scheme would allow a distinguishing attack in the game we outlined above.

Technically, we represent the transformation which describes how the adversary constructs BB
from BB as a selection function, and we formalise the process of recovering this transformation
as a recovery algorithm.

Definition 52 (Selection function). For m,n > 1, a selection function for m, n is any mapping
T [[Ln]] — [Lmﬂ U ({07 1}* X {07 1}*)

Intuitively, 7 represents the process used by an adversary to construct a bulletin board BB of
n ballots from a given board BB; of m ballots. For ¢ € [1,n], 7(i) indicates how to construct
BB

e 7(i) = j € [1,m] means this element is the jth from BBy;
e (i) = (p,b) means that this element is (p,b).
A bit more formally:

Definition 53 (Applying a selection function to a board). Consider a selection function 7 for
m,n > 1. The function T associated to m maps an extended board BBy of length m to a board
T(BBo) of length n such that for any j € [1,n],

7(BBo)[j] = { Eﬁ;: Zg Z ZE?; - Z@?Z;i BBoi] = (id, (p,b))
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The “recovery” algorithm which recovers the selection function used by the adversary takes
as input two boards and some additional data d (intuitively, this piece of data contains the link
between voter identities and public credentials).

Definition 54 (Recovery algorithm). We call recovery algorithm any algorithm RECOVER that,
given a board BB, an extended board BB1, and some additional data d as input, returns a selection
function for |BB1|, n for some n.

We discuss the role of RECOVER and how it can be interpreted after we provide our formal
definition for mb-BPRIV.

The following definition formalises ballot privacy of some scheme V in a setting where the
adversary A controls the ballot box. Recall that we consider some fixed set of voter identities 7
partitioned between two sets H and D of honest and dishonest voters. We also assume that some
fixed subset Hcpeck of H of users perform whatever checks the scheme expects to be executed
before the tally is performed. The execution described in Figure 6.2 starts with the generation
of a public key for the election and its associated secret key (to be used for tallying). Next, a
number of voters from an arbitrary set Z are registered. As before, we keep this aspect of the
execution fairly abstract: we assume the registration algorithm/protocol is executed for each
user ¢d € 7 and we only record the secret credential ¢ and its associated public credential Pub(c).
We use respectively arrays U and PU to record these. We also use array CU to record the secret
credentials for some (arbitrary) set of dishonest users D.

The adversary gets as input the public data pk, PU, and the corrupt credentials CU. It also
gets access to a left-right voting oracle. On input an identity ¢d and two potential votes vy and
v1, the oracle computes two ballots for id, one for each adversarially selected vote. It records the
first ballot in list BBy and the second in list BB;. Recall that we model a voting algorithm which
is stateful. This is a necessary feature if one wants, as we do, to consider voters who perform
additional actions after they have voted (e.g. checking that their ballot has been cast). For
each user, we store the resulting state (for both worlds) in arrays Vo and Vi, respectively. This
phase corresponds to the voting phase where the users submit their ballots. Then, the adversary
prepares a bulletin board BB which it would like to be tallied. If the bulletin board does not
pass the validity test then the tallying does not occur and the adversary needs to output his
guess at this point.

Otherwise, the adversary gets control over the users who check via the oracle Overify, to
which it submits arbitrary identities. The oracle records the set of users who have checked in
variable Checked and the set of users for which the check was successful in variable Happy.

To force the adversary to trigger verifications for all of the voters who should check, the game
halts without letting A output his guess if Checked does not contain Hepeck-

If all of the voters who should check do check successfully, then the adversary gets to see the
tally of the election. Otherwise, i.e. if some voters are not satisfied with their verifications, the
election is called off, i.e. the adversary must produce his guess without seeing the tally.

Finally, a crucial aspect of our definition is how the experiment calculates the tally. In the
real execution (i.e. 8 = 0) the tally is simply executed on BB. In the fake execution (i.e. § =1)
the tally first employs the RECOVER algorithm which parametrises the game to determine how
the adversary has tampered with the votes it has seen (i.e. BB1) to produce the board it asks to
be tallied. We explain later precisely how the choice of the RECOVER algorithm influences the
security level guaranteed by this definition. Then the game applies the transformation obtained
this way to BBy. The resulting board is tallied and the result, together with a simulated proof
(as in hb-BPRIV), is returned to the adversary.
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Expliny I RECOVET () OvotelR(id, vy, v1)

Vo, V1, Checked, Happy « 0 if id ¢ H then return L

(pk, sk) < Setup(1*) (po, bo, stateg) < Vote(pk, id, U[id], vo)

for all id € T do (p1, b1, statey) <= Vote(pk, id, U[id], vy)
¢ + Register(1*,id) U[id] + ¢, PU[id] < Pub(c) Volid] « stateo, V1[id] « states

for all id € D do CU[id] + Ulid] BBy «— BBy || (id, (po, bo))

BBl — BBl H (Zd, (pl;bl))

BB « APV tR (pk, CU, PU)
return (pg, bg).

if Heheek € Vo, V1 then return L

if ValidBoard(BB, pk) = L th d + A(); output d . . .
! I rd(BB, pk) en (); outpu Overifygg(id) for id € Hcheck

AOverifyes ()

if Hepeck € Checked then return L Checked «— Checked U {id}

if Heneck £ Happy then d < A(); if Verify(id, Vg[id],BB) = T then
if Hepeo C Happy then d « A€W s, () Happy < Happy U {id}

output d.

Otallygg g, g8, () for =0  Otallygg g, ps, () for =1

(r,II) < Tally(BB, sk) 7 < RECOVERy(BB;, BB)
return (r,II) BB’ « 7(BBy)

(r,IT) < Tally(BB’, sk)

II" + SimProof (BB, r)

return (r,II)

Figure 6.2: The mb-BPRIV game.

Definition 55 (mb-BPRIV w.r.t. arecovery algorithm). Let V be a voting scheme, and RECOVER
a recovery algorithm. Consider the game Expzb]}BPRIV’RECOVER”B defined in Figure 6.2. V satisfies

mb-BPRIV w.r.t. RECOVER if for any polynomial adversary A,

|P(Expﬂ,b1;BPRIV,RECOVER,O()\) — 1) _ P(Expﬂg;BPRIV,RECOVER,l ()\) — 1)’

is megligible in \.

Our definition is parametrised by a recovery algorithm, which is a rather non-standard feature.
We explain the role it plays through an example. One way to think about the recovery algorithm
is that it aims to detect the actions which the adversary took when tampering with the board.
That is, informally, RECOVER tries to understand how each ballot on the bulletin board to be
tallied has been created, i.e. was it submitted by an honest user, was it created by the adversary,
was it submitted by an honest user but modified by the adversary, etc. We will now describe
the role of the recovery algorithm, but let us first emphasise that its presence does not restrict
the adversary’s abilities. The adversary may still perform any (polynomial-time) computation
to obtain the bulletin board he submits to the game. Depending on the recovery algorithm we
choose, and on the scheme we consider, it may or may not be possible for the adversary to have
behaviours against this scheme that the recovery algorithm cannot detect.

Our main idea is that, as explained in introduction on the Helios example, depending on the
context (trust assumptions, usage scenario,...) we may wish to consider that some of the possible
behaviours of the adversary — some ways in which he manages, against the studied scheme, to
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tamper with the votes, e.g. remove votes, modify them, and so on — should not constitute an
attack. We use the recovery algorithm to finely specify which such behaviours are considered
an attack against mb-BPRIV, and which are not. More precisely, as we explain later on, for a
given recovery algorithm, any behaviour that is correctly detected by it will not be considered
an attack against mb-BPRIV, while any behaviour that is not will constitute an attack.

The following example sheds some light on how RECOVER plays this role. We show how an
adversary can win mb-BPRIV when interacting with a voting scheme that fails to prevent him
from tampering with the board in a way undetected by RECOVER.

Assume a voting scheme that is flawed, in the sense that it fails to prevent the adversary
from copying the vote underlying a ballot. To win mb-BPRIV against that scheme, the adversary
can proceed as follows. First, he submits (id, 1,0) to the voting oracle. The game calculates by
and by and returns bg to the adversary (for legibility, we omit the public credentials here). The
adversary returns for tallying a board containing bg, b’ﬁ, where the adversary turned bg into an
equivalent ballot blﬁ’ which contains the same vote as bg. In the left world, the tally returns 2.
What happens in the right world depends on which recovery algorithm we consider. If we pick a
recovery algorithm that does not detect that b’ﬂ is a duplicate of bg, then it interprets b% as a
fresh adversarial ballot. The board which will be tallied is then by, b}, so the result would be 1.
The result would differ from the left world, and the adversary would win the game. Our flawed
scheme would thus be declared insecure for this recovery algorithm: as expected, the behaviour
not detected by RECOVER is considered an attack. Conversely, if we instead pick a recovery that
detects that b} is a copy of by, then the board submitted to tally would be by, bf,, where b is
obtained from by using the same action the adversary used on by, so the result would also be 2,
and it would not help the adversary to distinguish. The scheme, although flawed, would then
be declared mb-BPRIV for this recovery algorithm, which detects the copying action. That is,
the adversarial behaviour made possible by the flaw would not be considered an attack against
mb-BPRIV with that recovery algorithm. Intuitively, such a variant of mb-BPRIV corresponds to
studying privacy when we already know that copying attacks are feasible, but are considered
tolerable. In that case we wish to know whether other attacks exist.

We see here that the RECOVER we choose determines which adversarial behaviours, if they
are possible against the scheme considered, constitute an attack against mb-BPRIV. In other
words, RECOVER determines the security level provided by mb-BPRIV. Our example of a scheme
that fails to prevent ballots from being copied would be declared insecure for a RECOVER that
does not detect copied ballots, as this RECOVER is unable to detect what the adversary did.
However it would be secure for a RECOVER that does detect copies. The second RECOVER
detects more possible actions from the adversary, and hence allows the adversary to do more
against the scheme without breaking mb-BPRIV. Therefore, this variant of recovery algorithm
yields weaker security guarantees.

More generally, only transformations which RECOVER can detect will be “acceptable” be-
haviours from the adversary against the scheme, i.e. will not be considered attacks. An adversary
that manages, against the considered scheme, to perform some actions that RECOVER does not
detect will break mb-BPRIV, as in the example. Thus, proving a given voting scheme mb-BPRIV
for a RECOVER that detects less behaviours from the attacker gives stronger security guarantees:
it means that the scheme prevents any behaviour not detected by RECOVER, otherwise mb-BPRIV
would be violated.

Finally, coming back to our examples, it is instructive to consider the case where the scheme
itself correctly detects and discards such ballot copies (to offer better privacy). Then, even if we

152



6.3. Game-based Security against a Dishonest Ballot Box: mb-BPRIV

pick the first recovery algorithm, the one that does not detect that b/IB is a duplicate of bg, the
scheme would satisfy mb-BPRIV. Indeed, as the scheme itself detects and prevents the adversary
from copying ballots, that behaviour will not be possible against the scheme, and cannot be
used to break mb-BPRIV, even if RECOVER does not detect this behaviour. Just as intuition
should say, such a scheme would be mb-BPRIV with a recovery algorithm that detects less, which
ensures a stronger level of security.

In the case of the Helios protocol, the scheme does not prevent an adversary from modifying
the votes of voters who do not verify. As explained in introduction, depending on the usage
scenario, this may or may not be an issue. Hence we may want it to be considered an attack
or not, depending on the context. In a context where this should constitute an attack, we
would study the scheme with a recovery algorithm that is unable to detect ballots that have
been modified, and simply discards such ballots. If however we want to specifically exclude this
behaviour as an attack, we would pick a recovery algorithm that detects this modification, and
applies it on the real board. In the first case, a scheme such as Helios would be considered
insecure. In contrast, in the second case it could be secure, provided it prevents any adversarial
behaviours other than the one we specifically allowed — e.g. it still must prevent the adversary
from changing the votes of voters who do verify. We present examples of such recovery algorithms
in the next subsection.

6.3.3 Instantiations of mb-BPRIV

In this section we describe three instantiations of mb-BPRIV with a few relevant recovery
algorithms, that will later on be used for the schemes of our case study. Recall that the recovery
algorithm aims to determine how the adversary tampered with the board. For clarity, in our
examples we indicate in the indices of the recovery algorithms the actions which we expect each
recovery algorithm to be able to detect. For example, RECOVER""®"" would be expected to
detect, for each vote in turn, if the adversary has blocked it from appearing in the final tally, or
if it has changed the order in which it was cast. We detail this recovery algorithm and discuss
how it works. We then provide two variations: one which detects adds an additional class of
adversarial behaviours (and thus makes the associated mb-BPRIV variant weaker) and one which
restricts the power of the recovery algorithm, detecting fewer adversarial behaviours (and thus
makes the associated variant stronger).

Recovery that detects del + reorder

We start with a recovery algorithm that detects adversarial behaviours where the adversary
changes the order of the votes in the ballot box, and removes the votes of the voters who do not
run the verification algorithm. However this recovery algorithm does not accept the adversary
replacing these votes with other votes of his own choosing. In other words, analysing a scheme
with mb-BPRIV using this recovery algorithm means that we consider that even if the scheme
does not prevent the adversary from reordering and removing votes, this does not constitute not
an attack. However, the scheme not preventing the adversary from changing votes will be.

Below, we informally describe the transformation the recovery algorithm recovers (as it is
applied to the board in the right world).

Given BB; and BB, when applied to BBy, RECOVERY""ere" wil] construct a board BB’ where

e Each ballot in BB that comes from BBj is replaced with the ballot at the same position in
BB.
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RECOVER(, "' (BB, BB)

L 1l;
for (p,b) € BB do
if 35, id. BB1[j] = (id, (p,b)) then
L+ L j (in case several such j exist, pick the first one)
else if extractiy(U,p) ¢ H then

L+ Ll (p,b)
L' « [i|BBy[i] = (id, (p,b)) A id € Heheek A (p,b) ¢ BB
L'« L|L

return (\i. L"[7])

Figure 6.3: The RECOVER®®""" algorithm.

e The other ballots in BB are considered to be cast, provided they do not belong to a honest
voter, i.e. if they do not extract to a honest identity. They are added to BB’ as is.

e In addition, all ballots in BBg created by honest voters who check their votes are added to
BB’, regardless of whether these voters’ ballots actually occur in BB.

The details of the RECOVERYM®°"er algorithm are in Figure 6.3.

Recovery that detects del + change + reorder

Here we describe a recovery algorithm that accepts adversarial behaviours where the adversary
changes the order of the votes in the ballot box, or removes or changes the votes of the voters who
do not verify. The associated variant of mb-BPRIV hence considers that the adversary managing
to reorder, remove, or change these votes against the scheme does not constitute an attack.

Intuitively, given BB; and BB, when applied to BBy, algorithm REcovEgrdehreorder.change 1]
construct a board BB’ where

e Each ballot in BB that comes from BB; is replaced with the corresponding ballot from BBy.

e The other ballots in BB are considered to be cast, even if they belong to an honest voter.
They are added to BB’ as is.

e All the ballots registered for voters who check in BBy are added to BB’, regardless of
whether these voters’ ballots actually occur in BB.

Formally, REcovERYelreorderchange is jefined in Figure 6.4.

Ideal recovery algorithm

We finally describe a recovery algorithm that, so to speak, does not accept any adversarial
behaviour. That is, it will always discard any modification (removing, blocking, reordering. . .)
performed by the adversary on any honest vote, rather than detecting it and applying it to
the left board. Studying a voting scheme with this recovery intuitively means that we wish to
consider the scheme insecure as soon as it fails to prevent the adversary from tampering in any
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I{ECOVERfJeI,reorder,change(BB1 7 BB)

L[}
for (p,b) € BB do
if 35, id. BB1[j] = (id, (p, b)) then
L+ L1 j (ifseveral such j exist, pick the first one)
else if extractig(U, p) ¢ Hepeck then
Le L ()
L' + [i|BB;[i] = (id, (p,b)) A id € Heheek A (p,b) ¢ BB]
L'+ L|L
return (\i. L"[i])

Figure 6.4: The RECOVER®ehreordenchange oqrithm.

way with the honest votes — even of voters who do not verify. Of course, such a strong notion of
security will typically be impossible to achieve unless we consider a scenario where every honest
voter verifies.

Intuitively, given BB; and BB, when applied to BBy, REcOVER? will construct a board BB’
where

e Each ballot in BBy is added to BB’, in the same order, regardless of whether the corre-
sponding ballot from BB; actually occurs in BB.

e The other ballots in BB that belong to a dishonest voter are considered to be cast, and are
added to BB’ as is.

Formally, the RECOVER” algorithm is displayed in Figure 6.5.

RECOVER% (BB, BB)

L+ [1,...,|BB]l;
for (p,b) € BB do

if extractiq(U,p) ¢ H then L < L || (p,b)
return (Xi. L[i])

Figure 6.5: The RECOVER? algorithm.

We have stated several times by now that the class of transformations a recovery algorithm
can detect relates to the level of security provided by the protocol. To express formally this
notion of “level of security”, we introduce in the next section a family of simulation-based notions
of privacy, which specify precisely what power an adversary has against a voting system.

6.4 Simulation-based Security

In this section we introduce simulation based definitions for the security of voting systems. As
usual, we describe a real and an ideal execution scenario for the protocol. The definitions are
fairly standard in terms of the underlying communication models, and to a large extent in terms
of the ideal functionalities we consider. A major departure from functionalities used in the

155



Chapter 6. Privacy against a Dishonest Ballot Box

literature, e.g. [31, 20], is that our ideal functionalities explicitly allow the adversary to influence
the list of votes to be tallied, so that they can be implemented by voting schemes where such
behaviours are known to be possible, especially when the ballot box is untrusted.

6.4.1 Real execution

We describe the real execution of the protocol in a hybrid model where the protocol is implemented
using ideal functionalities for registration and for tallying. As for our game based approach,
some parameters are fixed. These include the sets H and D of honest and corrupt voters and the
set Hcheck Of voters who check. All these parameters are assumed hardwired in the algorithms
defining the execution. We illustrate in Figure 6.6 the execution setting. It comprises:

e The environment £ is in charge of deciding on the execution phases of the protocol (setup,
vote, tally); the environment also decides on the votes of the honest users.

e The adversary A: it receives the ballots of the honest users, controls the corrupt users and
produces the bulletin board to be tallied. The adversary is controlled by the environment
via a direct communication channel.

e An entity H models the honest parties in the system. In particular it models the honest
voters (for simplicity we do not consider separate entities for each individual voter in the
system) and the generation of keys for the election.

e The functionality for registration R, in charge of generating and distributing credentials to
voters.

e The functionality for tallying 7.

The execution consists of three phases (a setup phase, a voting phase, and a tallying phase).
The environment £ sends commands to H to trigger these phases. H then informs the other
entities of the phase change.

Setup phase. During the setup phase, H runs the Setup algorithm to generate the election
keys (pk, sk), sends pk to the other entities, and sk to 7. H also asks R to generate credentials. R
runs the Register algorithm to generate credentials for each voter. It returns the secret credentials
of all voters to H, who forwards the secret credentials of voters in D to A. It also sends the list
of public credentials (computed with Pub) to all other entities (not represented in Figure 6.6).
Once this is done, H returns the control to £.

Voting and checking phase. During the voting phase, £ may send any number of vote(id, v)
to H, for honest voters id € H. When receiving such a command, H runs the Vote algorithm to
obtain a ballot for id containing v, it records the state returned by the voting algorithm and
sends ¢d and the ballot to A. Voters in Hepeck are supposed to perform some verifications later
on, which only makes sense if they have cast a vote. Hence, we only consider environments £
that sends at least one vote(id,v) command for each id € Hepeck- At some point, £ notifies H
that the voting phase is done. At that point, H asks A to provide a board BB. H checks that
ValidBoard(BB, pk) = T, and continues the execution. If the check fails, it informs £ that no
result will be published. H then performs the verifications of honest voters. It asks A in which
order the voters should verify. H then runs the Verify algorithm on BB for each voter in Hcpeck,
in the order specified by A. If all of these checks succeed, it continues the execution. Otherwise,
it informs & that no result will be published.
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ok setup vote(idy,vy)
votin
ciq, for id € D . & : r
voting done A
tally vote(id,, vy,)

idy, (p17 bl)7 ooy By, (pna bn)

A s
verif. order

pk, id | | ciq
for id € T

R T

Figure 6.6: The real execution
with idi,...,id, € H

pk,sk | | BB r, 11

res-ok

Tallying phase. During the tallying phase, H sends BB to 7 and asks for the result. 7 runs
the Tally algorithm, to compute a result (r,II), and sends it back to H. H forwards this result to
A, asking if the result should be published. Depending on A’s decision, H sends £ either r or
a message informing £ that no result is published. Finally, the environment £ outputs a bit 3
which serves as the output of realexec(&||A||V).

6.4.2 Ideal voting functionality and ideal execution

The ideal execution replaces the honest participants and the functionalities for registration
and tallying with a single idealised functionality F,. The resulting structure of the system is
illustrated in Figure 6.7. It comprises

e The environment £: as in the real execution the environment decides changes between
the different phases of the execution, decides on the votes of the honest parties, and
communicates with the ideal world adversary. As in the real case, we will only consider
environments that choose to make each voter in Hchecx vote at least once.

e The ideal world adversary S, also called the simulator;

e The ideal voting functionality F,: this component captures the idealised voting scheme.
Very roughly, it receives the votes from the honest parties and, when queried, it returns
the result of the election. We give a precise description of the voting functionality in the
next section.
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e The entity H’ is a dummy interface between the environment and the voting functionality
(7.e. it only forwards the messages between £ and F,).

&

setup vote(idy,vy)
voting .
voting done A
setup tally vote(idy, vy)
voting

voting done

modif? Hl

setup vote(idy,vy)
voting . .
voting done A
tally Vote(ldn, U?L)
result(r) F
res-ok v

Figure 6.7: The ideal execution
with idl, ey idy, € H

As in the real execution the environment decides when to switch between the three phases of
the execution (setup, vote and check, tally) and decides on the votes of the honest parties via
messages it sends to H'. In this world H’ is simply a forwarding channel between the environment
and the ideal functionality (we explain below how the functionality operates). At some point the
environment outputs a bit 5 which is also the output of idealexec(&||S||Fy).

Next we describe the ideal functionality which is the key component of the execution, and
which encapsulates the level of security guaranteed.

Ideal voting functionality. We consider several ideal functionalities which share the same
basic design idea: they collect the votes of the honest parties (in a way which hides them from
the adversary). Nonetheless, since we treat the setting where the adversary controls the bulletin
board, and can therefore influence what is being tallied, our functionalities reflect this ability.
The difference between the functionalities we consider is reflected in how permissive they are
with respect to this step.

The functionality ]-}‘,je"reorder(p) is displayed in Figure 6.8. In brief, 1. it ensures that an
adversary only learns who voted, and learns the result of the election, computed using p, but not
what the votes were; 2. it ensures that the votes of honest voters who verify are not removed
(though they may be reordered); 3. it allows an adversary to delete the votes of voters who do
not verify, but not to change them.
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Technically, the functionality maintains a list L of votes submitted by honest voters. Once the
voting phase is over, it allows the ideal world adversary S to submit a vote tampering function,
i.e. a function that describes how S wishes to manipulate the votes in L, and needs to satisfy a
couple of restrictions. Formally:

Definition 56 (Vote tampering function). A vote tampering function is a function f with
domain [1,n] for some n, such that for any i, f(i) is either an index j, or a pair (id,v) of an
identity and a vote.

Similarly to selection functions introduced in the previous chapter, f is intended to describe
how S wishes to construct a list of n = |dom(f)| votes using the votes in L. Basically, f(7)
describes how to obtain the ith element in this list: if f(i) = j, it should be the jth element from
L, and otherwise f(i) = (id,v) and it should be (id,v).

Definition 57 (Applying a tampering function). Applying a vote tampering function f (with
domain [1,n]) to the list L of honest votes results in list f(L) of length n defined by

Vi € [1,n]. f(L)[i] = { ([;5’]@) Z;Eg zzz :)nfi?ﬂd:jme id, v

Note that, in Fd e"reorder(p), the function f is applied only if it satisfies the requirements
outlined above on how it affects the votes corresponding to the honest voters who check. That is,
as specified in Figure 6.8, all votes of voters who check must be kept (although not necessarily in
order), and no honest votes can be modified (but they can be simply removed). Otherwise, f is
rejected, 4.e. no result is computed and the functionality returns no tally instead.

del,reorder,ch - . . .
Next, we define JFy, "8 (p) " a more permissive functionality for voting schemes.

This functionality is similar to the previous F el’reorder(p) but it allows an adversary to change
(and not only delete) the votes of honest voters, as long as they do not verify. Technically,

el reorder,change ) 4 ccepts the same commands as Foo ™" (), and answers them identically,
except for the modif(f) command. In that case, in Fec e change ) “the checks performed

before computing the result are:

e f keeps the votes of all voters who check (as before):

Vi. Vid € Hepeek. V0. Lli] = (id,v) = 3j. f(j) = i.

e no votes from voters who verify are modified by f:

Vi, id,v. f(i) = (id,v) = id € D UHo—r

check”

Note that the simulator is thus allowed by ]-'f,j eI’reorder’change(

voter who does not verify.

p) to modify the vote of any honest

Finally we define a functionality f\?(p), that gives the strongest security guarantees, as it
does not allow the adversary to delete, change, nor reorder the votes of honest voters, even
if they do not verify. All the adversary may do is cast votes in the name of dishonest voters.
This functionality is similar to the previous two, except it checks a stronger condition before

del,reorder

computing the result. More precisely, F?(p) is identical to Fy (p), except that the test

performed before computing p(f(L)) on command modif(f) is that:
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ffe"'eorder(p) accepts the following commands:

e on setup from H’: send setup to S.

e on voting from H': send voting to S.

e on voting done from #H': send voting done to S.

e on vote(id,v) (for id € H) from H':
L <+ L | (id,v); send ack(id) to S.

e on tally from H':
send modif? to S.

e on modif(f) from S: (only once, after tally)

— if f keeps the votes of all voters who check:
Vi. Vid € Hepeck- Y. L[i] = (id,v) = Fj. f(j) = i.
— and if no honest votes are modified by f:
Vi, id,v. f(i) = (id,v) = id € D.

Then let r = p(f(L)) else let r =no tally.
Send result(r) to S.

e on res-ok from S: (only once, after modif)
send r to H'.

e on res-block from S: (only once, after modif)
send no tally to H'.

Figure 6.8: The ideal functionality ffe"'e“de'( ).

e f keeps the votes of all honest voters in the same order:
[f(5),5 =1...[dom(f)[ [ f(j) e N] =[1,...,|L]]
e and no honest votes are modified by f:

Vi, id,v. f(i) = (id,v) = 1id € D.

This functionality enforces that no honest votes can be deleted or even reordered. Intuitively, in
the presence of a malicious ballot box, this level of security can be guaranteed only if we assume
all honest voters verify their votes.

6.4.3 Simulation

As is usual for simulation-based notions, we define security by demanding that environments
cannot distinguish between the interaction with the real protocol, or with the ideal functionality
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(together with some simulator). However, as the motivating examples from the introduction
show, the level of security guaranteed depends on the fact that (some) voters (i.e. those in
Hcheck) check that their vote had been cast. Our security definition captures this by considering
certain restrictions. Specifically, as mentioned earlier, we will only consider environments who
direct all voters in Hcpeck to cast at least one vote, so that it makes sense for this vote to be
verified. We call such an environment well-behaved.

Definition 58 (Secure implementation). We say that a voting scheme V securely implements an
ideal functionality F, if for any adversary A there exists a simulator S such that for any well-
behaved environment £ the distributions of the outputs of realexec(&||A||V) and idealexec(&||S||Fy)
are computationally indistinguishable. That is, no probabilistic polynomial-time algorithm should
be able to distinguish between these two outputs.

6.5 mb-BPRIV implies Simulation-based security

Our main technical result, detailed in this section, is that for strongly consistent voting schemes,
game-based ballot privacy implies simulation security with respect to a suitable ideal functionality.

Both our game-based security notion and the ideal functionalities are parametrised. The
former is parametrised by a recovery algorithm which aims to “detect” how the adversary has
tampered with the bulletin board. The latter allows the adversary to submit a tampering function,
but only allows certain tampering functions. We show that the two parameters are closely related:
mb-BPRIV with respect to some specific recovery algorithm implies simulation-based security, if
the tampering function recovered by the recovery algorithm is permitted by the ideal functionality.

6.5.1 Warm-up

To make this relatively complex statement more palatable, we start by writing it in a particular
case: we state a warm-up theorem, which establishes this type of relation between the three
instantiations of mb-BPRIV from Section 6.3.3 and simulation based security which uses the
three ideal functionalities from Section 6.4.2, respectively. Then, we provide a powerful, general
theorem which links mb-BPRIV with simulation based security under an abstract assumption on
their parameters.

Before we provide our warm-up theorem, we motivate and introduce a mild assumption
required by the scheme. All of the recover algorithms considered earlier in this chapter identify
the ballots on the board by matching them with the specific calls to the voting oracle which
produced them. For this reason, a precondition for the recovery algorithms to work as intended
is that distinct calls to the Vote algorithm produce two different ballots (except with negligible
probability). We say that a scheme with this property does not produce duplicate ballots.
Formally:

Definition 59 (Voting scheme without duplicate ballots). A voting scheme V does not produce
duplicate ballots if for all adversary A, the following probability is negligible in A.

P[ (pk, sk) < Setup(1*);

U < Register(1*,7);

(id,v,id',v") + A(pk, U);

(p, b, s) < Vote(pk, id, U[id],v); (p/, ¥/, s') < Vote(pk, id’, U[id'],v");
(p,0) = (', V)]
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Pw(L, f) =T ift: PdEI’re"'der(L, f) =T ift:
e f keeps the votes of all honest voters e f keeps the votes of all voters who check:
in the same order: Vi. Vid € Hepeek- V.
[£(5),5=1...|dom(f)| | f(5) e N]=[L,...,|L]] L[i) = (id,v) = 3j. f(§) =
e and no honest votes are modified by f: e and no honest votes are modified by f:
Vi, id,v. f(i) = (id,v) = id € D. Vi, id,v. f(i) = (id,v) = id € D.

Pdel,reorder,change(L f) =T it

e f keeps the votes of all voters who check:
Vi. Vid € Hepeek- Yo. L[i] = (id,v) = 3j. f(j) =1

e and no votes from voters who check are modified by f:
Vi, id,v. f(i) = (id,v) = id € DUHs—

check”

Figure 6.9: Predicates associated with the three functionalities ), Fgehreerder = pdelreorder,change

Note that this assumption is only required by the specific RECOVER algorithms described
earlier, but is not necessary in general.

We can now state the following warm-up theorem.

Theorem 10. Consider a strongly consistent voting scheme V for counting function p which does
not produce duplicate ballots. Let power € {(), (del, reorder), (del, reorder, change)}. If V satisfies
mb-BPRIV with RECOVERP™'", then V securely implements F§°" (p).

This theorem will be proved later on, as a particular case of our general theorem, that we
explain next.

6.5.2 Parametric ideal functionality.

The three ideal voting functionalities from Theorem 10, F?(p), Fe e (p) and Fgehreorderchange )
differ only by the check they perform on the tampering functlon prov1ded by the simulator. They
can be seen as instances of a more general functionality, which is parametrised by a predicate
P that expresses this check. In other words, P characterises the ability of the simulator to
manipulate the votes. The predicate P takes as inputs a list L of pairs (id, v), where id is a voter
identity and v is a vote, and a tampering function f. It returns T or 1, indicating whether the
modifications specified by f are allowed on L or not. For instance, in the case of Foe"" (),
the predicate Pdelreorder( £ 1) checks that f keeps from L the votes of all voters who check, and
that it does not modify the votes of any honest voters. If f does not satisfy these two conditions,
Pdel,reorder(f’ L) —

The generalisation is then straightforward: we consider the functionality F. (p) with the
same interface and mostly the same internal behaviour as Fe="""(p) (Figure 6.8). The only
distinction is that the checks performed on f before applying it to L are replaced with a single
check that P(L, f) =T

The three functionalities from Section 6.4 are then instances of the parametric functionality
FP(p), with the predicates PO pdelreorder ;1 pdelreorder.change (isp]aved in Figure 6.9.

Our generic theorem links mb-BPRIV w.r.t. some recovery algorithm RECOVER with an
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ideal functionality which allows tampering satisfying some predicate P whenever the RECOVER
algorithm returns'® (with overwhelming probability) only tampering functions which satisfy P.

Below, we develop the technical machinery that captures these ideas.

First we relate selection functions (which are the type of functions returned by recovery
algorithms) with tampering functions (the functions the simulators provide to the ideal function-
alities). This definition can be seen as the analogous definition of applying a selection function to
a bulletin board, except that now we operate at vote level (rather than ballot level). In particular,
this requires that we recover the votes underlying ballots in the selection function.

Definition 60 (Tampering function associated to a selection function). Assume a strongly
consistent voting scheme V. Let (pk,sk) be a pair of keys generated by the Setup algorithm, and
U be a list of credentials issued by Register. Let m be a selection function for two integers m, n.
Let then L be the list of length n defined by

. L) m(D) if (i) € [1,m]
vie[l,n]. L{i _{ extract(sk, U, p, b) if w(i) = (p,b) for some p,b
The vote tampering function modsy y(m) associated to m for sk and U is the function Xi. L'[i]
(with L' denoting L where L elements have been removed).

As explained above we want to relate mb-BPRIV with some RECOVER algorithm with an
ideal functionalities which put restrictions on how the adversary (the simulator) can tamper with
the list of votes collected by the functionality. Which restrictions we can consider depends on
the RECOVER algorithm we choose. As explained previously, the intuition is that if a scheme is
mb-BPRIV for a recovery algorithm, then this necessarily entails that the scheme prevents the
adversary from performing actions that are not detected by that RECOVER. Hence, mb-BPRIV
will guarantee simulation security w.r.t. any ideal functionality that allows such actions to the
simulator.

We capture this intuition by the notion of compatibility, which we first express on individual
selection functions (in practice, produced by RECOVER). Basically, such a function is compatible
with the testing predicate associated to the functionality if the associated vote tampering function
is allowed by this predicate.

Definition 61 (Selection function compatible with a testing predicate). Let (pk,sk) be a pair of
keys generated by the Setup algorithm, and U be a list of credentials issued by Register. Let P
be a predicate, and 7 be a selection function for m, n. Let L;q be a list of ids of length m. We
say that w is compatible with P w.r.t. sk, U, and L4 if for any list L of pairs of the form (id,v)
such that [id | (id,v) € L] = L;q, we have P(L,modg y(7)) = T.

This notion of compatibility can then be extended from individual selection functions to
recovery algorithms which return selection functions. As explained in the paragraph above, the
general intuition we want to capture is that RECOVER is compatible with P if RECOVER (almost)
always returns selection functions compatible with P in normal executions of the scheme (i.e.
where parameters and ballots are generated honestly).

15In this description we overloaded the semantics of the recovery algorithm. Strictly speaking this algorithm
returns a selection function, which in turn defines a tampering function.
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Definition 62 (Recovery algorithm compatible with a testing predicate). Let P be a predicate,
and RECOVER be a recovery algorithm. We say that RECOVER is compatible with P if for any
comp, P, RECOVER comp, P, RECOVER is

adversary A, the advantage P(Exp 4y, (A) = 1) is negligible, where Exp 'y,
defined as the following game.

Expi”r{}p’P’RECOVER(A) Ovote(id,v) for id € H
(pk, sk) < Setup(1™) (p, b, s) < Vote(pk, id, U[id], v)
for all id € Z do BBy «— BBy || (id, (p,)));

¢ + Register(1*, id) Lia <= Lia || id;

U[id] < ¢, PU[id] < Pub(c) return (p,b).

for all id € D do CU[id] < UJid]
BB «+ A9Vt (pk, CU, PU)

if ValidBoard(BB, pk) = L V Hcheck € Lig then return 0
7 < RECOVERy (BB, BB)
if m is not compatible with P w.r.t. sk, U, L;g

then return 1 else return 0

For example, we will show later on that the algorithms RECOVER?, RECOvERdehreorder

and REcovEeRdehreorderchange 1y1.050nted earlier are respectively compatible with P(D, pdelreorder
Pdel,reorder,change

Using the notion of compatibility to relate recovery algorithms and ideal functionality (via
their testing predicates), we can now state and prove our general theorem.

6.5.3 General theorem

Our main technical result regarding mb-BPRIV establishes a relation between game-based and
simulation-based security for voting, under a minimal compatibility between the parameters of
the respective definitions.

Theorem 11 (mb-BPRIV implies simulation). Let P be a predicate, and RECOVER a recovery
algorithm compatible with P. Let V be a strongly consistent voting scheme for counting function
p.

If V satisfies mb-BPRIV w.r.t. RECOVER, then V securely implements FL (p).

Before we get to the proof of this result, it is interesting to note that, since we considered
arbitrary fixed sets of voters (honest, corrupt, who verify their votes), it means that mb-BPRIV
with any such sets of voters entails simulation-based security with the same sets of voters. In
particular, for an adversary against the scheme that controls n dishonest voters, the secure
implementation property guarantees the existence of a simulator (i.e. ideal adversary) that
only needs to control the same number n of dishonest voters. This would not be possible if we
had considered a dynamic corruption scenario: the theorem would then only have established
the existence of a simulator, that could possibly choose to corrupt more voters than the real
adversary does. An interesting question is to study e.g. how the proportion of voters who verify
among honest voters influences the security of the scheme. Since we relate the real and ideal
systems with the same numbers of honest voters, corrupt voters, and voters who verify their vote,
it is meaningful to perform this study directly on the ideal system, which we do in a later section.
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Proof. Let us first explain the intuition of this result, before detailing its proof. We prove
this theorem by constructing a simulator & that, given black-box access to a real adversary
A, ensures that for any well-behaved environment £, the outputs of realexec(€||A||V) and
idealexec(&||S||FF (p)) are indistinguishable.

The idea is to have S run A internally, letting A communicate with £ through S, and simulate
the real execution of the voting scheme to A. To do this, S generates election keys and credentials
on its own, and shows them to A. S then needs to provide A with ballots when £ makes voters
vote, to obtain a board BB from A. Finally S must determine which vote tampering function it
should submit to FX'(p) to get the tally of BB that A expects to see.

The issue is that S does not have access to the actual votes of the voters: F'(p) only informs
S of who voted, but not of the values of the votes. Hence S cannot construct ballots containing
the real votes to show to A. Instead, S will construct fake ballots, containing always the same
arbitrary fixed fake vote v*.

After the voting phase is over the adversary returns a bulletin board BB and demands to see
the result of the tally. At this point, S uses the RECOVER algorithm on the board BB (and its
own list of ballots) to determine how A manipulated the ballots. The recovery algorithm returns
a selection function (which encodes how A has tampered with the honest votes). & submits the
associated vote tampering function to FZ (p). Notice that from the adversary’s point of view the
simulation is as in the experiment that defines compatibility of RECOVER and P (Definition 62).
So P, and therefore F.F'(p), will accept the output of RECOVER. The functionality will return a,
result to S, who will forward it to the (internally simulated) adversary A, together with a fake
proof calculated using the SimProof algorithm on (r, BB).

Intuitively, when adversary A is placed in the real execution (7.e. is in realexec(&|].A|[V)), its
view is as in Expg b-BPRIV,RECOVERO, 416 hallots contain the "real” votes for honest parties, and
the tally is the tally of the board it provides. When A is run internally by S when executing
idealexec(£||S||FF (p)), the view of the adversary is as in Expgb'BPRIV’RECOVER’lz the ballots contain
"fake" votes, and the tally is a fake tally (with a simulated proof). Strong consistency ensures
that the result for which & simulates the proof is exactly the result seen by the adversary in
Exp;',q b-BPRIV.RECOVER,L " Note that strong consistency is a separate assumption from mb-BPRIV: it
can be defined independently from mb-BPRIV, but both properties are needed to entail simulation
security.

Since security with respect to mb-BPRIV guarantees that the adversary cannot tell the two situ-
ations apart, the environment cannot distinguish between realexec(€||.A||V) and idealexec(&||.Al|V).
This will conclude the proof: this simulator & can simulate any real adversary A in the eyes of
any well-behaved environment.

A bit more formally, we proceed to construct S by a succession of game hops, progressively
going from realexec(&||A||V) to the ideal execution against S.

Game 0. is just the real execution realexec(&||A||V).

Game 1. is a variant of realexec(&||A||V), where A does not see ballots for the actual votes
chosen by &, but rather fake ballots containing an arbitrary fixed vote v*. The execution of
Game 1 follows that of Game 0, except that

e on vote(id,v) from &£ for some id € H:
‘H generates two ballots: a real one for v, and a fake one for v*. That is, if ¢;4 is the credential
generated for id by R during the setup phase, H runs (p, b, state;y) = Vote(pk, id, ¢;d, v)
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(as in the real execution), and (p/, V', statel;) = Vote(pk, id, ¢;q4, v*). It records the voter’s
internal state, and stores (id, (p,b)) and (id, (p/,b")) respectively in lists BBy and BB;. H
then returns (id, (p/,b')) to A (instead of (id, (p,b)) in Game 0).

e on tally from &: After obtaining the board BB and the order in which to verify from A4,
when H is performing the verification for a voter id € Hepeck, it runs Verify(id, state/,;, BB)
(instead of Verify(id, state;q, BB) in Game 0).

e During the tallying phase: if all verifications have succeeded, H does not send BB to T for
tallying, but rather BB’ = 7(BBy), where m = RECOVERy (BB, BB), and U is the association
between identities and secret credentials, that H knows from the setup phase.

e When H gets a result (r,II) from 7T in the tallying phase:
it simulates a proof II' = SimProof(r, BB), and sends (r,II') to A (instead of (r,II) in Game
0).

We now show that, for any A and &, the outputs of Game 0 and Game 1 are indistinguishable,
using the assumption that V is mb-BPRIV. As explained above, the intuition is that Game 0
corresponds to the execution of Expﬂg}BPRIV’RECOVER’ﬁ when 5 = 0, and Game 1 to the execution
when 8 = 1. Since V is mb-BPRIV, we are able to show that the outputs of £ in Games 0 and 1

are indistinguishable.

More formally, assume there exists a distinguisher D for the outputs of Game 0 and Game
1. We then construct an adversary B playing the game Exp??}BPRMRECOVERﬁ . Bruns A and £
internally as follows.

e When B is first allowed to run in Expg};BPRIV’RECOVER’B , it receives pk, CU and PU. It sends

pk, CU and PU to A, simulating the setup phase. B then returns the control to &£.

e When £ wishes to send the command vote(id,v) to H, B uses its voting oracle by calling
OvotelLR(id,v,v*). B receives a ballot (p,b), and sends (id, (p,b)) to A.

e Once £ sends voting done, B asks A for a board. A responds with some BB, which B

-BPRIV,REC
returns to the game Expgli; ;RECOVER,S

o If the Exp™BPRV game finds BB invalid, B is then asked to guess a bit. It sends no tally
to £, who will output a bit. B applies the distinguisher D to £’s output, and returns the
result to Exp™P-BPRIV.

e Otherwise, B is then provided by Expgﬁ;BPRIV’RECOVER’ﬁ with an oracle Overifygg to make

voters verify. BB obtains from A the order in which verifications should be performed, and
calls Overifygg on each voter in Hepeck following this order. If some verifications have failed,
here too, B is asked for its guess for the bit 3, which it obtains by sending no tally to &,
and applying D to £’s output.

e Otherwise the game goes on to the tallying phase, and B is provided with the tallying
oracle. B calls the tallying oracle, and obtains a result (r,II). B sends (r,II) to A, asking if
the result should be published. Depending on A’s response, B either sends r or no tally
to £, and waits for its output.

e During the execution, B forwards between £ and A any messages they wish to exchange.
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e When £ stops, B runs the distinguisher D on the output of £, and answers to the game

Expgg}BPRIV’RECOVER”@ the guess D returns.

It is clear from the definitions of realexec and ExpEE}BPRIV’RECOVER’ﬁ that, if 8 = 0, B provides
the £ and A it runs internally with the same view they would have in the corresponding execution
of realexec(&||A||V). Similarly, if 5 = 1, the views of £ and A as run by B are the same as
their view in Game 1. Hence, the output of £ (run by B) is the output of Game 0 or Game 1,
depending on 5. Thus, whenever D correctly distinguishes Game 0 and Game 1, B correctly
guesses 3. Therefore, the advantage of a distinguisher between the outputs of Game 0 and Game

1 is at most the advantage of an adversary in Exp;?b'BPRIV’RECOVER’B , and is thus negligible.

Game 2. establishes an invariant on BB’. It is as Game 1, but has #H store, in addition to BBy
and BB, the list of votes submitted in clear in BBs. Once H has determined m, it additionally
computes the associated tampering function f = modg y(7), and applies it to BB to obtain a
list BBY. It then checks that BB correctly contains the votes in the ballots of BB’. Only in that
case H lets the execution go through.

More precisely, Game 2 is identical to Game 1, except:

e on vote(id,v) from & for some id € H:
in addition to computing ballots for v, v* and sending them to the other parties, H also
stores (id,v) into a list BBs.

e on obtaining the board BB from A:
H computes f = modg y(m) (recall that 7 = RECOVERy(BB1, BB)). H then lets BB, =
f(BBs). Before sending BB’ to T for tallying, H checks that BB} = extract(sk, U, BB'), and
if not, halts the execution.

Game 1 and 2 can only be distinguished when the added check BB/, = extract(sk, U, BB') fails.
We show by the first point of strong consistency that this has only negligible probability.

We actually show the stronger statement that BB} = extract(sk, U, BB") except with negligible
probability, where BB} = f/(BB5), and f’ is such that for all i, f/(i) = extract(sk, U, (i)) if
7(i) is a ballot, and f/'(i) = 7w(i) otherwise. Note that by construction, f = X\i.L'[i], where
L' =[f'(i),i € dom(f)|f'(¢) # L] is the list obtained by removing all L elements from f’. Hence,
BB, is obtained from BB} by removing all | elements. Since, by definition, extract(sk, U, BB’)
is also obtained from extract(sk, U, BB’) by removing all L elements, BB} = extract(sk, U, BB')
indeed implies BB/, = extract(sk, U, BB').

We construct an adversary B that breaks strong consistency with the same probability as the
probability that BB/ # extract(sk, U, BB') in Game 2.

B runs Game 2 internally, simulating £, A, H, ...by itself. If BB} # extract(sk,U, BB'), B
retrieves a ballot (p,b) € BB’ that makes this test fail. That is, BB'[i]] = (p,b) for some i, and
BBY[i] # extract(sk, U, p,b). B then simply returns this ballot.

Intuitively, this ballot cannot be a dishonest one, as BB) contains their extraction by
construction; it is thus a honestly constructed ballot, whose extraction is not the vote used to
construct it. This breaks strong consistency.

Formally, 7 is RECOVERy (BB, BB). By definition of RECOVER, either 7(i) = j for some j,
or m(i) is a ballot. The second case is actually impossible: indeed, in that case, BB'[i] = 7 (i)
by definition of 7, and f’(i) = extract(sk, U, p,b) by definition of f’. Hence BBj[i] = f'(i) =
extract(sk, U, p, b), This contradicts the assumption that BBj[i] # extract(sk, U, p, b).
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Hence, 7(i) = j for some j. By construction, BB’ = 7(BBy). Thus by definition of 7,
BBo[j] = (id,BB'[i]) = (id, (p,b)) for some id. By construction of f’, we also have f'(i) = j.
Then, since BB} = f/(BBs), we have BB} [i] = BBz[j] = (id’, v) for some id’,v. By construction of
BBy and BBy, BB2[j] = (id’,v) was added to BBs by H at the same time (id, (p,b)) was added to
BBy, which means that id = id’, and (p, b) was generated by voter id calling Vote(pk, id, U[id], v).
Since extract(sk, U, p,b) # BBj[j], we have extract(sk,U,p,b) # (id,v), which breaks strong
consistency.

Therefore, the advantage of a distinguisher between the outputs of Game 1 and Game 2 is at
most the advantage of an adversary against strong consistency, and is thus negligible.

Game 3. then makes use of this invariant: it is as Game 2 except H directly computes the
result as r = p(BBY)), instead of calling 7. Since this was the only action performed by 7 in
Game 2, 7 is actually absent from Game 3.

By the previous invariant, and the second point of the strong consistency property, this yields
the correct result except with negligible probability, and the two games are indistinguishable.

Indeed, the invariant introduced in Game 2 ensures that the tally is only computed if
BB, = extract(sk, U, BB’). The outputs of Game 2 and Game 3 then only differ if 7’ # r, where
(r',II') = Tally(BB', sk), that is, if 7’ # p(extract(sk, U, BB')).

We can construct an adversary B that breaks strong consistency with the same probability
as this occurring. B receives the key pk and the credentials U. It internally runs the setup and
voting phases of Game 3 using pk and U, running &, A, H by itself. B retrieves the board BB’ in
this execution, and returns it: the condition 1’ # p(extract(sk, U, BB")) is exactly the condition
under which B wins the strong consistency game.

Hence, the advantage of an adversary distinguishing the outputs of Game 2 and Game 3 is at
most the advantage of an adversary against strong consistency, and is thus negligible.

Game 4. removes the invariant introduced in Game 2. It is identical to Game 3, except that H
does not check that BB, = extract(sk, U, BB) before computing the result.

The outputs of Game 3 and Game 4 are indistinguishable thanks to the first point of the
strong consistency assumption, which follows from exactly the same reasoning as the hop between
Game 1 and Game 2.

Game 5. entirely removes the ballots containing the real votes, as these are now no longer used
to compute the result. H now only keeps track of BB; and BBs, but not BBy:

e on vote(id,v) from &£ for id € H:
H only computes (p', V', state;) = Vote(pk, id, c;q,v*) (and sends (id, (p',b")) to A), and
not Vote(pk, id, ¢;qg,v). As in Game 4, H still updates the lists BBy (with (id, (p',b'))) and
BBy (with (id,v)), but no longer keeps BBy.

As these ballots were unused, removing them has no bearing on the execution, and Game 5
is thus indistinguishable from Game 4. To sum up, the execution of Game 5 is as follows.

1. &€ sends setup to H to start the setup phase. H performs the setup: it generates (pk, sk)
using Setup, and sends pk to the other entities A, R. For each id € Z, ‘H then sends
register(id) to R.

2. On register(id) from H, R lets ¢, = Register(id), and sends ¢;4 to H, who records it.
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10.

11.

12.

13

. Once all voters have been registered, H sends the list of (id, Pub(c;q)) for all id to A. H
also sends all dishonest credentials [(id, ¢;q4)|id € D] to A, and gives control back to £.

. € then sends voting to H (and gets control back), starting the voting phase. It may then
send any number of messages vote(id,v) to H for any v and id € H.

. On vote(id, v) from £, H computes a fake ballot (p/, V', state);) = Vote(pk, id, ¢;q,v*), stores
(id, (p',b")) in BBy and (id,v) in BBy, and sends (id, (p/, b)) to A.

. At some point, £ sends voting done to H. H then asks A for a board. A4 computes some
bulletin board BB, and sends it to H.

H then checks whether ValidBoard(BB, pk) = T. If so, it continues the execution, otherwise
it sends no tally to &.

. H then obtains from A the order in which to verify. For each id € Hepeck, in the specified
order, ‘H successively runs Verify(id, state’;, BB).

. Once all verifications have been performed, if any of them failed, H sends no tally to £.
Otherwise, H computes m = RECOVERy (BB, BB), f = modsk y(7), and BB, = f(BB2). H
then computes r = p(BB}) and II' = SimProof (r, BB).

H then sends (r,II'), tally? to .A.
A may then answer either res-ok or res-block to H.
Following A’s request, H then either sends r or no tally to .

. Finally, £ outputs a bit 5. This bit is the output of Game 5.

Ideal adversary. We can now finally define the simulator S, that runs .4 internally as a
black-box, taking care by itself of most of the actions that were performed by H and R in Game

5, i.

e. the cryptographic setup of keys and credentials, generation of fake ballots, computing

of m and f. The only thing & cannot do on its own is store BB/, and apply f to it, as it does

not

know the real votes. Instead S sends the tampering function f to F(p), who accepts it as

RECOVER is allowed by P. FF(p) will then apply f to the list of honest votes, and compute the
result, that S will show A together with a simulated proof.
Formally & answers commands as follows:

e On setup from FF(p):

S runs Setup to obtain (pk,sk), and Register(id) for each id € Z. It stores the generated
secret and public credentials (computed with Pub) in tables U, PU. It also stores the
credentials of dishonest voters into CU. § internally runs A in this simulated election: it
transmits pk, CU and PU to A.

e On voting from F(p):

S gives control back to £.

e On ack(id) from FF(p) during the voting phase:

S generates a fake ballot for id: (p', V', state];) = Vote(pk, id, U[id], v*). S records state],,
transmits (id, (p',b')) to A, and stores (id, (p/,V’)) in BB;.
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e On voting done from FY (p):
S gives control back to &.

e On modif? from FF(p):
S asks A for a board, and obtains BB. & then checks that the board is valid, i.e.
ValidBoard(BB, pk) = T, and, if so, asks A for the order in which verifications should
be performed. S then runs Verify(id, state],;, BB) for each id € Hcpeck, in the order chosen
by A. If the validity check on the board and all voter verifications succeed, S will then
compute the tally (next point).

Otherwise, S must prevent the publication of the result. S sends modif(fy) to FX(p),
where fj is the empty tampering function fj : ) — (). Either the functionality accepts
this tampering function, and computes a result, or it refuses it. In either case, S receives
result(r) from F (p) for some r (which may be no tally). S then answers res-block
to FF(p). H', and then the environment &, will then receive no tally.

e If all verifications succeeded, S must compute the tally, to simulate it for A. S computes
7 = RECOVERy(BBy, BB), and f = mods y (). S then sends modif(f) to F(p). Let Lig
be the list of ids contained in BB;. By construction of BB, L;4 is the list of the identities
of all honest voters for whom vote queries were submitted, in the same order. Note that,
since £ is well-behaved, if this point is reached, £ has requested each voter in Hcpeck to vote
at least once. Hence BBy, and L;; as well, contain at least one entry for each id € Hcpeck-

In addition, by definition of the ideal execution, L;q is also the list of all ids occurring
in the list L of votes recorded by FX(p). By assumption, RECOVER is compatible with
P. Hence, by definition, since BB is valid, 7 is compatible with P w.r.t. sk, U, and
L;q, except with negligible probability. Indeed, an adversary could otherwise win the
Expfj’mp’P’RECOVER game by running internally £, A, S, and submitting to the game the
board BB. Thus, P(L, f) = T, except with negligible probability, which means FX (p)

accepts the modifications submitted by S.

e On result(r) from FZ(p), for some result r # no tally:
S computes II' = SimProof (r, BB), and sends (r,II'), tally? to A. A either answers res-ok
or res-block. S forwards this message to FL (p).

e In addition, during the whole execution, S forwards between £ and A any message they
wish to exchange.

It is clear that in the ideal execution with this simulator S, both £ and A have the same view
as in Game 5, provided m is compatible with P w.r.t. sk, U. As explained above, this condition
holds except with negligible probability. Hence, the outputs of Game 5 and idealexec(£||S||FF (p))
are indistinguishable, which concludes the proof. Therefore, the outputs of idealexec(€||S||FL (p))
and realexec(&||A||V) are indistinguishable, which concludes the proof. O

We can also state a variant of this theorem, for the case where revote is not allowed.

Theorem 12. Let P be a predicate, and RECOVER «a recovery algorithm compatible with P. Let
V be a strongly consistent voting scheme for counting function p.

If V satisfies mb-BPRIV w.r.t. RECOVER with the restriction that the adversary may only call
oracle OvotelR at most once for each id, then V securely implements FX (p), when considering
only environments £ that make each voter vote at most once.
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Proof. The proof of this theorem is exactly the same as for the previous one, except that in
the hop between Games 0 and 1 we need to make sure that the adversary B that plays game
ExpEﬁ}BPRIV’RECOVER’ﬁ makes at most one call to oracle OvotelR for each id. By definition of B,
a call to OvotelLR(id, v, v*) is made whenever £ sends a query vote(id,v), and only then. By
assumption on £, £ does not make voters revote, and therefore indeed makes at most one such

query for each id. O

The warm-up theorem stated earlier (Theorem 10) is a particular case of our main theorem
(Theorem 11), applied to the predicates PY pdelreorder - pdel,reorder,change ) the associated recovery
algorithms RECOVERQ), }{ECOVERdeI,reorder7 RECOVERdeIJeorder,change'

It directly follows from Theorem 11, provided we show that each of these recovery algorithms
is compatible with the corresponding predicate.

Lemma 23 (Compatibility of the example recovery algorithms). Consider a strongly consistent
voting scheme V for counting function p which does not produce duplicate ballots. For each
power € {(), (del, reorder), (del, reorder, change)}, RECOVERP®™" is compatible with PPO™".

Proof. We prove this property, in all three cases, by considering an adversary A, that will play
the game Expfj’r‘n,p’Ppower’RECOVERpower.

Following this game (the three games follow the same structure), let (pk,sk) < Setup(1*),
U < Register(1*,Z), CU « [U[id]|id € D], and PU « [Pub(U[id])|id € Z]. A has access to the
Ovote oracle, to generate honest ballots, that get stored in a board BB;. For each (id, (p, b)) € BBy,
by construction, (p,b) was constructed by calling Vote(pk, id, U[id], v) for some v. Let BB be the
board returned by A in the game. Note that, by the assumption that Vote creates no duplicate
ballots, BB; contains no duplicate ballots either, except with negligible probability. If BB is not
valid, or BB does not contain at least one entry for each id € Hcpeck, A loses the game.

Otherwise, let m; = RECOVER!)(BBy, BB), m2 = RECOVER{S"**“" (BB}, BB), and lastly m3 =
RECOVERfJeI’reorder’Cha"ge(BBl, BB). Let us show that 71, w2, m3 are compatible respectively with
PV pdelreorder - pdel reorder.change ), 1. 4 sk U, L;4, except with negligible probability. Assume BB;

contains no duplicate ballots, which, as explained, holds with overwhelming probability.

1. We first show that for any L such that [id|(id,v) € L] = Lig, P*(L, modg y(m1)) = T.
Consider the list LL constructed by the following process:

LL + [1,...,|BB]];
for (p,b) € BB do
if extractiq(U,p) ¢ H then
LL < LL || extract(sk,U, p,b)

By definition, modsk y(71) is Ai.LL'[i], where LL' is the list obtained obtained by removing
all L elements from LL. We have to show that P@(L, modsk y(71)) = T. That is, that

e No honest votes are modified by modgy y(71):
Vi. ¥(id,v). modgy y(m)[i] = (id,v) = id € D.

Let i, id, v be such that mods y(m1)[i] = (id,v). Hence LL[j] = (id,v) for some j.
Thus, by construction of LL, id € D.

171



Chapter 6. Privacy against a Dishonest Ballot Box

e modg y(71) keeps the votes of all honest voters in the same order:

[modgu(m1)(5) | modsiu(m)(5) € N = [L,..., |L]]

that is, since the non-_1 elements in LL' and LL are in the same order,
[LL[j} | LL[j] € N = [1,...,[L]]

which clearly holds by construction of LL.

2. We now show that for any L such that [id|(id,v) € L] = Lyg, Preeder ([, modgy y(m2)) = T.
Consider the lists LL, LL', LL" constructed by the following process:

LL < [];
for (p,b) € BB do
if 37, id. BB1[j] = (id, (p, b)) then
LL+« LL|j
(by assumption on BB, this j is unique)
else if extractiq(U,p) ¢ H then
LL + LL || extract(sk,U, p,b)
LL + [”BBl[l] = (Z'da (pa b)) A id € Heheck A (pv b) ¢ BB]
LL" « LL | LL

By definition, modg y(m2) is Ai.LL"'[i], where LL" is the list obtained obtained by removing
all L elements from LL”. We have to show that Pdehreorder ([, modg j(m2)) = T. That is,
that

e No honest votes are modified by modg y(m2):
Vi. ¥(id,v). modg y(m2)[i] = (id,v) = id € D.

Let i, id, v be such that modsy y(m2)[i] = (id,v). Hence LL[j] = (id,v) for some j.
Thus, by construction of LL, id € D.

e mods y(72) keeps the votes of all honest voters who check:
Vi. Vid € Hepeck- Yv. L]i] = (id,v) = 3j. modsy y(m2)(j) = 1,
that is,
Vi. Vid € Hepeek- V(p, b). BB1[i] = (id, (p,b)) = 3j. LL"[j] = i.
Let 4,p, b, id € Hcheck such that BB1[i] = (id, (p,b)). Either (p,b) ¢ BB, and then by

definition of LL', i € LL'. Or (p,b) € BB, and by construction ¢ € LL. In any case,
i€ LL".

3. We finally show that for any L such that [id|(id,v) € L] = L;g, PAehrecrderchange( 1, 'mody y(m3)) =
T.
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Consider the lists LL, LL', LL"” constructed by the following process:

LL < [];
for (p,b) € BB do
if 37, 4d. BB1[j] = (id, (p,b)) then
LL<« LL|j
(by assumption on BBy, this j is unique)
else if extractig(U,p) ¢ Hcheck then
LL + LL || extract(sk,U,p,b)
LL" + [i[BB1[i] = (id, (p,b)) A id € Heheek A (p,b) ¢ BB]
LL" + LL| LL

By definition, modsy y(73) is Ai.LL"'[4], where LL" is the list obtained obtained by removing
all L elements from LL"”. We have to show that pdebreorderchange( 1, 'mod, (7r3)) = T. That
is, that

e No votes from voters who verify are modified by modgy y(73):
Vi. V(’id, U). modsk,u(ﬂ'g)[i} = (id,v) = 1id € D.

Let i, id, v be such that modsy y(m2)[i] = (id,v). Hence LL[j] = (id,v) for some j.
Thus, by construction of LL, id € D UH——

check”

e mods y(73) keeps the votes of all honest voters who check:
Vi. Vid € Hepeck- Yu. L]i] = (id,v) == 3j. mods y(7m3)(j) = 4,
that is,
Vi. Vid € Heheek- V(p, b). BB1[i] = (id, (p,b)) = 3j. LL"[j] = i.

Let 4,p, b, id € Hcheck such that BB1[i] = (id, (p,b)). Either (p,b) ¢ BB, and then by
definition of LL', i € LL'. Or (p,b) € BB, and by construction i € LL. In any case,
ieLL".

O]

6.6 Application to voting schemes

We use the general framework developed in previous sections to study the resilience of three
protocols of the literature, namely Helios [(4], Belenios [57], and Civitas [54], in the presence
of malicious boards. For each of them, we identify which ideal functionalities they achieve.
Interestingly, the guarantees differ depending on the revote policy in place and the counting
function p.

We consider security with respect to the three functionalities introduced in Section 6.4.2 plus
a new functionality we introduce here. ]-'9 is the very ideal functionality where honest votes are
registered and processed exactly as they are received, F9¢' (which is the functionality associated
with the predicate P9 defined in Figure 6.10) lets the adversary remove some honest votes
(from voters that do not check), but requires that the votes of voters who check are kept and not
reordered, while Fdelreorder fther lets the adversary reorder the votes. Finally, del,reorder,change

even lets the adversary modify honest votes, from voters who do not verify.
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Pe(L, f) =T iff:

e f keeps the votes of all voters who check, in the same order for each voter:
Vid € Heheek- [2 € [1,|L]]|3v. L[i] = (id,v)] =
[FG),d = 1. [dom()][3v. LIf(G)] = (id, )
e and no honest votes are modified by f:
Vi, id,v. f(i) = (id,v) = id € D.

Figure 6.10: Predicate P%, associated with functionality F2¢(p).

6.6.1 Overview of the protocols

Helios. Helios is the simple voting protocol we already presented and studied in earlier chapters
(e.g. Chapter 3). It aims at guaranteeing privacy and verifiability in a low-coercion environment.
It has been used in several elections, e.g. to elect the president of the university of Louvain-la-
Neuve [11], or for student elections at Princeton [91].

In Helios, voters cast a vote by computing a ballot Vote(id, pk, ¢,v) = (s, id, (enc(v, pk), 7)),
where the state s records the ciphertext (enc(v, pk),7) and id is the identity of the voter (or
possibly a pseudonym). If the voter id votes again then the state is updated with the new
ciphertext. The ciphertext is simply formed of an ElGamal encryption enc(v, pk) of v under the
public key of the election pk, together with 7, a zero-knowledge proof that guarantees that v is a
valid vote. Helios does not use credentials, hence ¢ is not used. The check Verify(id, s, BB) done
by a voter id consists in verifying that the ciphertext recorded in s appears on BB.

The ValidBoard algorithm checks all the zero-knowledge proofs in each ballot in BB. In
addition Helios features a weeding process, i.e. the operation of rejecting duplicate ciphertexts,
as already described in Chapter 3. We leave this process to the adversary, and encode this
by simply having the ValidBoard algorithm reject any board submitted by the adversary that
contains duplicate ciphertexts. In cases where we want to consider an election where revote is
not allowed, the ValidBoard algorithm will also reject any board with several ballots for the same
voter identity.

Finally, the tally can either be mixnet-based or homomorphic. In the mixnet case, it performs
a random permutation of the ballots, decrypts all of them and returns the multiset of the votes
they contain. In the homomorphic mode, the tally homomorphically computes the sum of
the ciphertexts in the ballots in BB, decrypts the resulting ciphertext and returns the result.
Moreover, the tally returns a proof of correct decryption.

Belenios. Belenios [77] enhances Helios with credentials, so that a compromised voting
server cannot add votes. It has been launched in 2016 and used in more than 200 elec-
tions [9]. At registration, each voter id receives a signing key k;4, with an associated ver-

ification key pk;q. The voting procedure Vote(id, pk, (k;q, pkia), v) produces the state and ballot
(s, pkiq, (signElGamal(v, pk, kiq), 7)), where signElGamal(v, pk, k;4) denotes the ElGamal encryp-
tion of v, signed with k;3. The other algorithms are modified as expected.

To ease the verification step made by voters, in Helios and Belenios, only the last ballot
for each voter is presented in the bulletin board. This can be modelled by a Verify(id, s, BB)
algorithm that checks that the last ballot recorded in s is the last ballot appearing in BB for
voter id.

Formally, we model the scheme as the following algorithms.

174



6.6. Application to voting schemes

o Register(id) generates a pair (k;q, pksq) of a secret signing key k;; and the associated
verification key pk;q.

e Pub(k;q, pkiq) = pkig is simply the public verification key.

e Vote(id, pk, (kiq, pkiq),v) = (8, pkiq, (signEIGamal(v, pk, k;q),7)). The state s records the
ballot. The public credential/pseudonym is the public key pk;;. 7 is a zero-knowledge
proof that v is a valid vote.

e ValidBoard(BB, pk) checks for each (p,b) in BB the zero-knowledge proof in b, and ensures
that p is a valid verification key, and that b is indeed signed with the associated signing key.
When modelling a situation where revote is forbidden, it would finally check that BB does
not contain several ballots (p, b), (p,b") that use the same public key, i.e. such that p = p'.

e Tally can either run the ballots through a mixnet, decrypt them, and publish the decrypted
votes; or homomorphically compute the sum of all ballots, before decrypting and publishing
the result.

e Verify(id, s,BB) checks whether the last ballot recorded in s, i.e. the last ballot generated
by id, is the last ballot that appears next to the public key of id in BB, or, equivalently
when the board is valid, the last ballot signed with id’s key in BB.

Civitas. Civitas [5/] has been designed to protect voters against coercion. Each voter privately
receives a credential, and can produce a fake credential when she is under coercion. Ballots cast
with invalid credentials are removed thanks to plaintext equality tests (PET), after some mixing
phase, to avoid a coercer noticing that his ballots have been excluded.

o Register(id) generates a private credential c;g
e Pub(c) = enc(c, pk) encrypts the credential ¢

e Vote(id, pk, c,v) = (s,enc(c, pk), (enc(v, pk), 71, m2)). The state s records the ballot. The
public credential/pseudonym is enc(c, pk). 71 is a zero-knowledge proof that v is a valid
vote, and w9 is a zero-knowledge proof that the agent generating the ballot knows both ¢
and v. In Civitas, the voting server can no longer select the “last” ballot for each voter
since ballots cannot be properly linked to an identity. So when revote is allowed, a voter
who revotes should additionally link her new ballot to the previous one (e.g. adding a copy
of the previous ballot, or its hash), and prove (with zero-knowledge proofs) that she knows
the credential and the choices used in both ballots.

e ValidBoard(BB, pk) checks for each (p,b) in BB the zero-knowledge proofs in b, and ensures
that p is a valid public credential, using Pub(U) and a PET. In case we model a situation
where revote is not allowed, it additionally checks, also with a PET, that BB does not
already contain several ballots (p,b), (p’,b’) where p and p’ encrypt the same credential.

e Tally only keeps the parts of the ballots containing the encrypted votes. These are then
run through a mixnet, decrypted, and published.

e Verify(id, s, BB) checks whether the ballot recorded in s, i.e. the last ballot generated by
id, appears on BB.
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Voting scheme ‘ }—\? ]:del F\([iel,reorder Sel,reorder,change
General case | Hecheeck = H v

Helios - without revote X : v if p stable A id-blind | X X v if p id-blind
Helios - revote X X X X X

Belenios - without revote X : v if p stable v v v

Belenios - revote X L/t p stable A p = last voif p = last v if p = last v if p = last
Civitas - without revote X : v if p stable v v v

Civitas - revote X ! v if p stable v v v

Figure 6.11: Case study.

6.6.2 Our findings

The results of our study are gathered in Figure 6.11. For each protocol, we distinguish the case
where revote is allowed from the case where it is not. When revote is not allowed then we assume
that (honest) voters do not revote. As we will discuss in this section, this is not equivalent,
security-wise, to the case where voters may revote but only the first vote is counted.

(in)security of Helios. As mentioned already in introduction, Helios is subject to an attack [94]
if the attacker controls the bulletin board (or simply the communication channel between the
voter and the server). Indeed, an attacker may block and copy the first ballot b4 sent by Alice,
say for candidate 0. The attacker can then pretend that the communication was lost, so that
Alice starts over the procedure and sends again a ballot, b/, still for candidate 0 (there is no
reason that she changes her mind). Then since ballots are not cryptographically authenticated
in Helios, the attacker may submit b4 as his own ballot, introducing a bias in the result. This
attack cannot be prevented, even if the auditors check for duplicates before the tally. Therefore
Helios with revote does not satisfy any of the four functionalities.

Assume now that there is no revote. Since in Helios the identity of a voter is not strongly
linked to the ciphertext containing her vote, an adversary is able to swap two voters’ ciphertexts,
e.g. replacing [(A,ba), (B,bg)] with [(A,bp), (B,ba)]. This is fine as long as the counting function
processes the votes independently of the actual identity of a voter, so that attributing Alice’s
vote to Bob and vice versa does not change the result. We call this property id-blindness. Most
voting functions enjoy this property but not all of them. For example, for elections with weighted
votes, which can be done homomorphically [I 1], each vote is associated to a weight depending on
the status of the voter. For example, it could be the case that Alice’s vote is counted 10 times
while Bob’s vote is counted only 3 times. For id-blind counting functions, then Helios satisfies

d el’reorder’Change, the weakest functionality, since an attacker may reorder votes and remove and
even modify the ballots of voters that do not check.

No revote vs p = first. Interestingly, the Helios example illustrates why it is not possible
to properly emulate the “no revote” policy by letting voters revote and considering a function
p where only the first ballot is counted for each voter. In fact, if voters may revote then the
adversary has more power. In particular, Helios with revote is still subject to Roenne’s attack,
even if only the first ballot is counted.

No reordering in Civitas. Our findings highlight that Civitas is the only scheme that
prevents an adversary from reordering the votes, thanks to the link made by voters between
their ballots. Note that if the attacker controls the board, then he can always permute Alice and
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Bob’s ballots without anyone noticing. However, this does not influence the result for all the
result functions p we know, namely stable functions, that is counting functions where reordering
the votes does not influence the result (provided that the for each voter id, the order of all the
votes of id is preserved). Formally, we say that p is stable if p(L1) = p(L9) for any two lists L;
and Lg such that, for any voter id, if (id,v1),..., (id,v,) is the sequence of votes from voter id
in Ly, then (id,v1),...,(id,v,) is also the sequence of votes from voter id in Ly (in the same
order). We believe that all existing result functions are stable, since intuitively whether Alice
voted before Bob or after Bob should not influence the result.

So now the question is: which schemes can prevent an adversary from reordering the votes of
a given voter? This would be a priori a real attack since it does change the result. Our results
show that only Civitas protects again such a re-ordering, thanks to the chain between ballots cast
by the same voter. Belenios provides weaker security guarantees since the adversary may reorder
the votes. However, this does not affect the result as long as only the last ballot is counted,
since Alice checks that her last ballot appears in the final board. To render Belenios suitable
for arbitrary (stable) counting functions, we would need to require that each voter records her
ballots in order, and checks that they appear in the same order in the final board. This would of
course not be realistic. Alternatively, the most reasonable approach is probably to chain ballots
thanks to an additional zero-knowledge proof, like in Civitas. Note however that this chain is
only briefly sketched in [51] for Civitas, and no proper definition is provided.

“Perfect” functionality ]-"\(,B. As one might expect, none of the three schemes satisfy in general
the strongest ideal functionality, where the attacker cannot tamper at all with honest votes. This
is due to the fact that an adversary can always drop the ballots of voters that do not check.
This limitation applies to many other schemes as well. If we assume now that all honest voters
actually vote and conduct all required checks, the three schemes (except Helios with revote)
satisfy ]-"9. This requirement is however not realistic in practice.

Proofs. To establish security with respect to ideal functionalities in Figure 6.11 we leverage
the framework we have developed in this chapter in two distinct ways. On the one hand, for
each scheme in turn we prove game based security with respect to appropriately chosen recovery
algorithms and then employ Theorem 11 (or Theorem 12 when revote is forbidden) to conclude
simulation-based security. Depending on the protocol considered, we define additional recovery
algorithm, that are associated to the same ideal functionality (i.e. compatible with the same
predicate), but are better suited to the protocol studied. Examples of such algorithms, as well as
the proofs for all examples in our case study, can be found in appendix B.

Interestingly, we also employ reasoning about ideal functionalities directly. Specifically, we
show that F2¢' A p stable A H = Hepeck = .7:9) and the desired results in the column H = H¢peck
(under the F? heading) follow from those in column with heading F2¢'. The formal statement
and the proof of this result are provided in appendix B.1.

6.6.3 Comparing privacy

We also take this opportunity to compare our mb-BPRIV notion with different existing notions
of privacy, with and without an honest ballot box, on the three protocols listed above, as well
as the Neuchatel protocol [78]. We first briefly introduce that protocol, and then describe the
different notions of privacy we compare.
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The Neuchitel protocol In that protocol, used in Switzerland, voters privately receive a
code sheet, where each candidate is associated to a (short) code. To cast a vote, voters send their
encrypted votes to the ballot box, similarly to Helios. The ballot box then provides a return
code allowing the voter to check that the ballot has been received and that it encrypts their
candidate, as intended. This offers a protection against a dishonest voting client (e.g. if the
voter’s computer is corrupted). No revote is allowed. Since the bulletin board is not published,
voters cannot check that their ballots really belong to the final board (used for tally). Voters
have to trust the entity generating the return code on this aspect. The model for voting systems
we consider here cannot accurately describe voters having to receive a return code from some
authority. Hence our mb-BPRIV definition cannot be applied as-is to that voting scheme, which
is why we did not include it in the case study above.

Different notions of privacy We compare mb-BPRIV to privacy against a honest board (as
formalised by Benaloh’s definition or hb-BPRIV), as well as the naive adaptation of Benaloh’s
definition to a dishonest board we described earlier, which we denote PrivDis-Naive. In that
naive definition, the adversary .4 may propose two possible affectations of votes for honest voters
through an oracle OvotelLR, and then propose any board BB. Provided the votes submitted to
the oracle yield the same tally on both sides, A obtains the tally of BB. He is then asked to
guess which of the two affectations was used.

To our knowledge, the only other definition of privacy with a dishonest ballot box is the
privacy notion introduced by Bernhard and Smyth [29], which we discuss below.

Bernhard and Smyth’s definition As we discussed in introduction of this chapter, that
definition is similar in spirit to Benaloh’s definition (presented in Chapter 5). We recall it in
Figure 6.12 (PrivacyBS). It takes the form of a game where the adversary A may propose two
possible affectations of votes, i.e. has access to an oracle Oegte(id,vo,vl), that returns to A
a ballot for either vy or vy, depending on a secret bit 5. The adversary is asked to produce
a ballot box BB, and, as in Benaloh’s definition — but contrary to mb-BPRIV — the tally is
always computed on BB (i.e. on both sides). To avoid trivial attacks, following the same idea as
Benaloh’s definition, the tally is only performed provided that, looking at honest ballots that
appear in BB, counting the corresponding left and right votes yields the same result.

The main interest of [29] is to highlight the fact that previous definitions implicitly assume
an honest ballot box. That attempt at defining privacy w.r.t. a dishonest ballot box (PrivacyBS)
however has several limitations. First, it strongly assumes that the ballots that appear in the
ballot box are exactly the same than the cast ballots. This is not the case for example of the
ThreeBallots protocol [93] where the ballot box only contains two shares (out of three) of the
original ballot. It is not applicable either to a protocol like BeleniosRF [14] where ballots are
re-randomised before their publication. Second, it requires ballots to be non-malleable [29]. This
means that, as soon as a ballot includes a malleable part (for example the voter’s id like in Helios,
or a timestamp), privacy cannot be satisfied. This severely restricts the class of protocols that
can be considered. Third, PrivacyBS does not account for a revote policy. As soon as revote is
allowed (for example in Helios), then PrivacyBS is broken since some ballots may not be counted.
Indeed, an attacker may call 0%, (idy,1,0), followed by O, (idy,0,1), obtaining ballots by,
b}, and return the board BB = [by,}]. The equality condition on the number of ballots in BB
produced by 0%, holds, since for v = 0, 1:

[{b € BB|F'. (b,v,v") € L}| = |{b € BB|F. (b,v',v) € L} =1
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Expo>?(\) Olsee(id, vo, v1) Oreg (i)

(pk, sk) < Setup(1™) if (id,*) € U A id ¢ D then if (id,*) € U then stop
U,D « ] b < Vote(pk, id, U[id], vg) else

ACre:Ocorr (k) L < L||(b, vo,v1) ¢ + Register(1*, id)
L+ ] return b Ulid] + ¢

Ao\l/)oste(pk) return Pub(U[id])

if Vo.

[{b|b € BB A F'. (b,v,v") € L} = Ocorr(id)
[{blb € BB A . (b,v,v) € L} if (id,x) ¢ U V id € D then stop

if p(Zop) = p(Z1) then else
r < Tally(BB, sk, U) D+ D|id
B+ A(r) return U[id]
return g8

Figure 6.12: PrivacyBS [29]

Protocol Honest board | PrivDis-Naive | PrivacyBS mb-BPRIV “Secure”
Helios — no revote v X X v for Flehreorderchange X
Helios — revote v X X X X
Belenios — no revote Ve X e v/ for Fd¢ Ve
Belenios — revote v X X v for F v
Civitas — no revote Ve X e v/ for Fd¢ Ve
Civitas — revote Ve X X v for F v
Neuchéatel v X ? - ?

Figure 6.13: Comparison of several privacy definitions
v': the protocol is private, X: there exists an attack on privacy, ?: unknown, -:definition does not appl
Y, Yy

where L = [(b1,1,0), (b7,0,1)].
Hence the tally is computed. According to the revote policy, only b is counted, and the
result is 3, which lets the attacker win Exp®®.

Comparison We summarise our findings in Figure 6.13. All of our four protocols satisfy privacy
against an honest ballot box. We rely here on previous results of the literature. Regarding
dishonest boards, we first consider the naive extension of Benaloh’s definition to a dishonest
board (PrivDis-Naive), described above. As explained earlier, it is immediately violated for any
protocol. We also include Bernhard and Smyth’s PrivacyBS notion [29], which we also discussed
above. Finally, we recall in the last column the strongest ideal functionality our mb-BPRIV
notion allowed us to establish for each protocol in our case study.

We do not know whether the Neuchéatel protocol satisfies PrivacyBS — the protocol was never
studied with that definition. Moreover that protocol cannot be accurately represented in our
model — our definition does not apply to it. As discussed above, PrivacyBS is immediately violated
as soon as revote is allowed.

In addition, we indicate in the rightmost column of Figure 6.13 whether, in our opinion, the
protocol should be considered secure in the context of a malicious board. This is of course a
subjective matter, but we think that Belenios and Civitas do satisfy privacy in that threat model,
with or without revote. On the other hand, it is our opinion that Helios does not — when revote
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is allowed, Helios is subject to Roenne’s attack, for which no easy fix is known. Even without
revote, an attacker against Helios is able to replace ballots from honest voters who do not verify
with any ballot for arbitrary vote. Such a behaviour is prevented by both Belenios and Civitas,
and we think that it should be considered an issue when the ballot box is not trusted. Regarding
the Neuchatel protocol, the situation is less clear: it seems to depend on whether we consider
that the entity issuing the return codes is a part of ballot box — and thus untrusted — or not.
This comparison first shows that mb-BPRIV is much more precise than the other definitions,
allowing to finely describe what security protocols guarantee. For instance, it does not broadly
declare Helios (without revote) insecure, but rather allow us to show that, although it does
not achieve the strongest guarantees, it still provide some security if we wish to consider that
changing votes of voters who do not verify is not an attack. It also seems to indicate that
our intuition for a secure scheme more or less corresponds to the ideal functionality F9¢', that
prevents the adversary from removing, changing, or reordering votes of voters who do verify, and
additionally from changing the votes of voters who do not. While this is one of the stronger
functionalities we consider, it is still achievable, as shown by our case study, and seems like a
reasonable goal in a context where the board is not trusted, and not all voters verify their vote.

6.7 mb-BPRIV implies verifiability

We established in Chapter 4 that (under reasonable assumptions) privacy implies individual
verifiability, for Benaloh’s privacy notion, that considers a honest ballot box. Interestingly,
this implication still holds in the case of a malicious ballot box for our new mb-BPRIV notion,
although not with the same proof.

Intuitively, the simulation-based notion of security means that a voting scheme implements
the parametric ideal functionality F (p) we defined earlier. While we designed this functionality
with privacy in mind, it actually captures stronger guarantees than just privacy. It guarantees
that the adversary cannot tamper with the votes in any other way than those authorised by the
predicate P. With a well-chosen P, that forbids changing or removing the votes from voters who
verify, this functionality thus also provides individual verifiability guarantees. In turn, by our
main Theorem 11, mb-BPRIV also entails individual verifiability, provided the recovery algorithm
considered is compatible with such a predicate.

6.7.1 Properties and assumptions

To prove this result formally, we first need to define individual verifiability against a malicious
ballot box. We adapt the game-based definition from the previous chapter (Section 5.1.2), that
modelled the case of an honest ballot box. Basically, as we did earlier for privacy, we modify
the game so that the adversary can submit an arbitrary board, rather than only giving him
access to the board through oracles. This yields the game Exp™> " displayed in Figure 6.14.
As before, the after the setup phase, the adversary is given access to all public information,
as well as the credentials of corrupt voters, and an oracle to choose the votes of honest voters.
When a honest voter id votes for v, a ballot for v is honestly generated using id’s credential,
and returned to the adversary. The voter’s identity and internal state are recorded in V, and in
addition, if id € Hcheck, then (id,v) is recorded in Voted. The adversary is asked to provide a
board BB. If this board is invalid, or if not all voters supposed to verify have voted, the game
halts. Otherwise, the adversary is given access to oracle Overifygg(id), that triggers voter id’s
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EXPT\}VGM(A) Ovote(id,v) for id € H

V, Voted, Happy + || (p, b, state) + Vote(pk, id, U[id], v)

(pk, sk) < Setup(1*) V[id] + state

for all id € 7 do if id € Heheek then Voted <+ Voted || (id, v)

¢ + Register(1*,id) U[id] + ¢, PU[id] + Pub(c) ~ return (p,b).
for all id € D do CU[id] < U[id]

BB « AO"(pk. CU, PU) Overifygg(id) for id € Hcpeck

if Hepeck € dom(V) then return L; if Verify(id,V[id],BB) = T then
if ValidBoard(BB, pk) = L then return L; Happy < Happy U {id}
AOverifyBB ()

if Heheek € Happy then return 1
r < Tally(BB, sk)
ifr£1 AVV,.
(V(id, v) € Ve. id ¢ Henea) = 1 # p(Voted || V)
then return 1

else return 0.

Figure 6.14: The individual verifiability game, against a dishonest ballot box.

verifications. If the verification is successful, id is added to the set Happy (initially empty). Once
the adversary gives control back, provided all voters in Hcpeck are satisfied with BB (i.e. were
added to Happy), BB is tallied. We finally check whether the result r contains at least all votes
in Voted in that order (i.e. all votes from voters who verified). That is, we check whether there
exists a list V. of pairs (id,v) (with id ¢ Hcheck) such that r = p(Voted || V.). If not, the game
returns 1, and the adversary wins.

Note that in this definition, when writing p(Voted || V), we grouped all votes from voters in
Hcheck in the beginning of the list (without changing their order), and all additional votes in the
end. For this to make sense, we will assume that the counting function p is stable, in the sense
defined in the previous section (i.e., changing the order of votes does not change the result, as
long as for any id, id’s votes remain in the same order).

As in the previous chapter, we will assume that given a result r and a sequence V' of identities
and votes, it is possible to efficiently decide whether r contains all votes in V. That is, we assume
a polynomial-time algorithm D such that

Vr,V. D(r,V) =1 < 3V’ (V(id,v) € V¥(id' ,v') € V'.id #id) A r=p(V | V).

Definition 63 (Individual verifiability). A voting system V for a stable counting function p is
individually verifiable against a malicious ballot box if for any adversary A,
P [Expﬂg}verif()\) = 1} is negligible.

As we explained above, for the ideal functionality FI to entail verifiability, we need P to
enforce it. We formalise this condition as follows.
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Definition 64 (Verification-friendly predicate). A predicate P is verification-friendly if it ensures
that the votes of all voters in Heneck are mot removed, reordered, nor modified. That is, if for all
L and f such that P(L, f) = T we have

Vid € Heneck- [Z S [[17 ‘LH”H'U L[Z] = (Zd,’U)] = [f(j)aj =1... ‘dOIIl(f)HH’U L[f(])] = (id, U)]

and

Vi7 Z‘d?U' f(l) = (ldav) = id ¢ HCheCk'

For instance, the predicates P9 and P? defined in earlier sections satisfy this property,
while pdelreorder 41y pdelreorderchange g 1ot since they allow votes to be reorder. With the
additional assumption that voters do not revote, this reordering issue disappear, and Pdelreorder
and pdelreorderchange w,]1q be verification-friendly.

For stable counting functions, the following property confirms that the verification-friendliness
correctly formalises the intuition that P enforces verifiability.

Lemma 24. Consider a stable counting function p and a verification-friendly predicate P. Let
L be a sequence of identities and votes, and f a vote tampering function such that P(L, f) =T.
Let Lepeck = [(id,v) € L | id € Hepeck| be the sublist of L containing only the votes from voters in

Hcheck-
Then there exists a sequence V. such that

V(’ld, 7)) e V.. id ¢ Heheck

and
p(?(L)) = p(Lcheck H Vc)

Proof. This property follows immediately from the definition of f(L) and the assumptions on
P and p. Indeed, the verification-friendliness of P means that f keeps all votes from voters in
Hcheek in the same order as in L, and does not modify any vote for these voters. Thus T(L)
contains Lepeck @s a sublist (possibly interleaved with other votes), and the remaining elements
of f(L) are pairs (id,v) such that id ¢ Heheck. By stability of p, permuting the elements of f(L)
so that Lcheck is upfront does not change the result, which proves the claim. O

We then lift this property to recovery algorithms as follows:

Definition 65 (Verification-friendly recovery). A RECOVER algorithm is verification-friendly if
there exists a verification-friendly predicate P such that RECOVER is compatible with P.

Note that the notion of individual verifiability considered here is a rather basic one, which
only requires that votes from voters who verify are counted. In particular it does impose any
restrictions on the number of dishonest votes that can be added, or on what happens to the votes
of voters who do not verify. A stronger notion of individual verifiability could e.g. require that
the adversary cannot add more dishonest votes than the number of corrupt voters, to express
that the protocol protects against ballot stuffing. This would be done in the game e.g. by
bounding the size of the list V. of dishonest votes. A way to further strengthen the property
would be to require that the votes of honest voters who do not verify can be removed, but not
arbitrarily modified — Belenios provides such guarantees for instance. It would likely be possible
to prove that mb-BPRIV implies such stronger notions of verifiability, by considering accordingly
a stronger notion of verification-friendliness for predicates.
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6.7.2 Results

Armed with these properties, we can now formally state and prove the claim from the beginning
of the section.

Theorem 13 (Simulation security implies individual verifiability). Consider a strongly consistent
voting scheme V, for a stable counting function p, and let P be a verification-friendly predicate.

If V securely implements FL (p), then V is individually verifiable against a dishonest ballot
box.

Proof. By contraposition, consider an adversary A that wins the individual verifiability game
Expﬂf’]}"e”f with non-negligible probability.

We then construct an adversary B and an environment £ for the real execution realexec(&||B||V),
such that B cannot be simulated in the eyes of £ by a simulator S in the ideal execution
idealexec(&||S||FF (p)). Intuitively, £ will run A internally, and instruct B how to tamper with
the ballot box following A’s behaviour. In the end, £ will check whether verifiability is broken or
not. Since A wins the verifiability game, in the real execution it will be; however no simulator

will be able to break it in the ideal world.

B and &’s executions is as follows. £ runs A internally, and starts by asking H to start the
setup phase. During that phase, B receives from H the public parameters of the election (the
key pk, and the public credentials of all voters), and the private credentials of corrupt voters. B
transmits those to £, who in turn transmits them to A. £ then asks H to start the voting phase,
and continues to run A. Whenever A calls oracle Ovote(id,v), £ sends vote(id,v) to H. B then
obtains the corresponding ballots from #, transmits it to £, who returns it to A. During this
process, & records the sequence Voted of identities and votes chosen by A for voters in Hcheck-
Once A returns some board BB, £ transmits it to B, and asks H to end the voting phase. H
then retrieves BB from B, checks its validity, and asks B for the verification order. £ continues
to internally run A, and transmits the order in which it makes Overify queries to B. B returns
this order to H, who runs the verifications. If they succeed, H asks T to tally BB, and asks B
whether to publish the result. B agrees to publish it, and H sends the result r to £. £ runs
D(r, Voted), and outputs 0 if r contains Voted (or is L), and 1 if it does not. If at any point
in its execution £ does not receive the expected messages from B, it returns 0 when asked for
a guess. In addition, if A did not make all voters in Hcpeck vote (and later verify), £ ends its
execution, and answers 0 as a guess.

It is clear that the real execution realexec(&||B||V) follows the execution of game Expﬂg}verif,

and therefore that P(realexec(&||B||V) =1) = P(Expﬂf’]}"e”f =1).

Consider now any simulator S for the ideal execution idealexec(&||S||FF (p)). For & to output
1 in that execution, it needs to receive a result r # L such that D(r, Voted) = 0. At some point
in this execution, S submits a tampering function f to FF(p). If f is rejected by P, £ does not
get any result, and thus answers 0. The only way for £ to guess 1 is that P(L, f) = T, where L
is the list of votes recorded by the functionality. FZ'(p) will then compute r = p(f(L)), and S
must accept this result so that £ receives it from H’, otherwise £ answers 0. By Lemma 24, we
have r = p(Voted || V.) for some V. that does not contain identities in Hcheck, Since Voted is the
sequence of votes submitted by £ for voters in Hcheck. Therefore, D(r, Voted) = 1, and & still
answers 0.
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Hence in the ideal execution, with any possible simulator, £ can never answer 1, while it
returns 1 with the non-negligible probability P(Expﬂ’b\}"e”f = 1) in the real execution with B.
Therefore, B cannot be accurately simulated, and V does not securely implements F.'(p), which

proves the theorem. O

This result extends to mb-BPRIV thanks to Theorem 11.

Theorem 14 (mb-BPRIV implies individual verifiability). Consider a strongly consistent voting
scheme V, for a stable counting function p, and let RECOVER be a verification-friendly algorithm.

IfV is mb-BPRIV w.r.t. RECOVER, then V is individually verifiable against a dishonest ballot
boz.

Proof. This directly follows from the previous theorem regarding the ideal functionality. Indeed,
by definition, there exists a verification-friendly predicate P with which RECOVER is compatible.
Thus by Theorem 11, V securely implements F. (p), and thus by the previous theorem, V is
individually verifiable. O

6.8 Entropy

In the parametric ideal functionality we defined, the simulator (i.e. the ideal adversary) is
allowed to tamper with the votes of honest voters, via a tampering function. As explained before,
allowing such tampering even in the ideal world is necessary when considering a malicious ballot
box. Indeed, in a real system, the ballot box can typically remove the ballots of voters provided
they do not verify their vote. Therefore, if one wants to consider the more complex, but realistic,
scenario where not everyone performs the verification steps, the adversary must be given at least
some power over the honest votes even in the ideal world.

Designing the ideal functionality in a parametric way as we have done has the advantage
of letting us characterise precisely in what way the adversary can tamper with the votes in the
scheme we consider, which, again, is mandatory if we want to model a dishonest ballot box. The
downside, however, is that even against the ideal system, the adversary is not powerless. That
makes it somewhat difficult to understand to what extent exactly a given instance of our ideal
functionality guarantees privacy.

For instance, it is pretty clear that the very restrictive functionality .7:9 (from Section 6.5.2)
provides a high level of privacy: recall that this functionality requires that, regardless of which
voters verify, no honest votes can ever be removed, reordered, or modified in any way. The
adversary can only add dishonest votes, and see the result. At the other end of the scope,
consider the most permissive functionality F,, associated with the predicate that is always
true. This functionality allows the adversary to tamper with the votes in any way he wishes, no
matter which voters verify. Here it is quite easy to see that this functionality does not provide
any privacy: a simulator who wishes to know some voter Alice’s vote can simply remove every
vote but hers, and of course the result lets him learn Alice’s vote. Between those two extremes
however, it is much less clear what exactly the adversary can learn about the votes. For example,
consider a functionality such as Fg= %" (Section 6.5.2) where the adversary cannot change the

184



6.8. Entropy

value of any honest vote, and in addition cannot remove the votes from the voters who verify!'®
Say the adversary is trying to learn Alice’s vote, and Alice has verified her vote. There the
adversary can no longer remove all votes except hers. However he can remove all votes from
voters who did not verify. The result then only contains the votes of voters in Hcheck. This does
not let the adversary learn Alice’s vote, but intuitively it leaks some information on her vote, or
more precisely, it leaks more information than if no votes at all were removed. It is not quite
clear a priori what privacy Alice gets in this setting.

In the same vein, it is not trivial in our model to understand precisely how different ideal
functionalities compare. Consider for instance functionality Foe reorderchange (Section 6.5.2). It
is similar to FJ€™" except the adversary can now also modify the value of the votes from
honest voters, provided they do not verify (while these can only be removed, but not changed, in
Foebreorder) "1t seems intuitively clear that the adversary can learn at least as much information on
Alice’s vote in .7-'\‘,j el,reorder,change . 5y .7-'\5’ e"reorder, as the functionality is more permissive. However,
it is not clear at all how much more information about this vote he can get. In fact, it is not even
obvious that he can obtain strictly more information: how exactly does the additional power he
gets compared to Foe" " help him?

One natural tool to try to quantify the information available to the adversary, and thus to
compare the ideal functionalities, is the notion of entropy. The question then becomes: how
much entropy is left in Alice’s vote (or any information the adversary is trying to learn) once the
adversary sees the result? Or more precisely: what is the minimal value of this entropy, when
considering all possible simulators against a given ideal functionality?

In this final section, we propose to explore how the notion of entropy can be used to get a

better insight on the privacy our ideal functionality provide, by trying to compare el reorder
del,reorder,change
and Fy .

Bernhard, Cortier, Pereira and Warinschi introduced in [27] a framework to formalise these
questions. In what follows, we present an adaptation this framework to our model, and establish
a general result to help compare the entropy for our family of ideal functionalities. We then
answer at least partially the previous question regarding the comparison of Fg""®%" and

del,reorder,change

v . Finally, we compute (by numerical simulation) the entropy in various examples,
and discuss our observations.

6.8.1 Entropy for voting protocols

Let us first recall some standard notions and notations regarding entropy.

Entropy

Entropy is a concept from information theory, that intuitively intends to measure the quantity
of information contained in a random variable. A well-established notion of entropy is Rényi
entropy, which constitutes a family of entropy functions parametrised by a real number «, defined
as follows:

Definition 66 (Rényi entropy). Let X be a random variable with values in X. For a € [0,00[\{1},
the Rényi entropy with parameter o of X is

1ialog (Z P(X—x)“).

zeX

Ha(X) =

Ignoring the “reordering” part, which allows the adversary to change the order of Alice’s votes in case Alice
submitted several. For simplicity we consider in this section the case where voters do not revote.

185



Chapter 6. Privacy against a Dishonest Ballot Box

We extend the definition to the cases of a =1 and o = oo by passing to the limit.
Some particular values of « yield some well-known entropy functions:

e For a = 0, Hartley entropy, which measures the number of possible values for X:

Ho(X) = log(|&1)-

e For a = 1, Shannon entropy intuitively measures the average over the value x of X’ of the
size in bits needed to store the information that X = a:

Hy(X) = - > P(X =2x)log(P(X = z)).
TEX

e For k = 0o, min-entropy measures the probability that the “best guess” as to the value of
X, i.e. the x that maximises P(X = x), is correct:

Hoo (X) = — log(max(P(X = z))).

TEX

For a given Rényi entropy function Hl,,, if X is a random variable and A some event, we
denote H, (X]|A) the conditional entropy of X given A, which is defined just as H(X), except the
probability P(X = z) is replaced with the conditional probability P(X = x|A).

We will next need to define the conditional entropy of X given Y, which intuitively measures
the entropy left in X once the value of Y is known. This does not trivially follow from H, (X]|A),
since “the value of Y” is not an event: for any y, “Y = y” is and the previous definition applies
to Ho(X|Y = y), but we need to define how to combine these over all values of y. In [27], the
authors consider three possible ways of doing this, which we reproduce here.

Definition 67 (Conditional entropy). For an entropy function H, the conditional entropy of X
given Y is the expected entropy of X given the value of Y, over all possible values of Y :

H(X[Y) (HX[Y =y)).

= E

yey
Definition 68 (Minimal entropy). For an entropy function H, the minimal entropy of X given
Y is the minimal entropy of X given the value of Y, over all possible values of Y :

H(X|Y) = min(H(X[Y = y)).
yeY

Definition 69 (Average min-entropy). In the case of the min-entropy He,, we consider the
average min-entropy of X given Y, defined

Ao (X|Y) = —log E Q—Hoo<X|Y:y>>
(X1Y) = ~1og ( E ).

i.e.

HL.(X]Y) = - log ( B max(B(X = a|Y = ))).

[27] then considers a general notion of conditional entropy, which all previous examples are
instances of.
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Definition 70 (Conditional entropy). A conditional entropy measure is a function H mapping
two random variables X, Y to a positive real number such that

o If X can be computed as a probabilistic function of Y, then H(X|Y) = 0.

e IfY, Y are two random variables such that Y' can be computed as a function of Y, then
for any X, H(X|Y’) > H(X|Y).

In the following we consider an arbitrary, fixed conditional entropy H.

Execution model and view of the adversary

We now present the model we use to characterise the entropy of the votes from the point of view
of the adversary, which is inspired from [27].

Consider the ideal functionality FZ (p), for a given predicate P and counting function p. Let
& be an environment, S a simulator, and consider the ideal execution of F(p) with £ and S
idealexec(&||S||FF).

In this execution, we denote V the random variable whose value is the list of votes chosen by
& for the honest voters (in a fixed order). We also denote V the set of possible votes: V thus has
values in VIMI (recall that H is the set of honest voters).

We also call view of S, and denote View(S, &, FF(p)), the sequence of the random coins
used by S and all messages received by S during the execution. View(S, &, FF(p)) is a random
variable, that depends on (i.e. can be computed as a function of) the random coins of £ and
S. Notably, it contains the result (or absence of result) of the election, that is sent to S by the
functionality during the execution.

For the purposes of computing entropy on the votes, they need to be random variables that
follow a certain probability distribution, intuitively representing the information known a priori
on the voters’ intentions. We make a few assumptions here, for simplicity. First, we will consider
that voters vote only once, and that all votes follow the same distribution, and are independent.
While not necessarily always accurate in real life — we might know a priori that a certain group
of voters have a tendency to vote the same for instance — this seems like a reasonable assumption
for a first look at how entropy can be useful in our setting. In addition, we will also assume that
the environment is not deliberately helping the adversary/simulator by sending him information
on the votes. By doing so, we model the case where all honest voters are trying to keep their
votes secret. Again, this may not reflect all real life scenarios — in a more complete study we
might for instance want to model the case where some voters, while honest, deliberately make
their choice public for instance — but is a reasonable assumption to simplify our study.

Formally, we now consider a restricted class of environments £p, parametrised by a probability
distribution D on votes. &p tells H’ to start the setup and then voting phases, then draws the
vote of each of the honest voters (in a fixed order) independently according to D, and submits all
these votes to the functionality (through H’). Ep then tells H' to end the voting phase and start
the tallying, and sends no further messages to any of the other entities.

We also restrict the class of ideal functionalities F’(p) we consider, by requiring that for
any L, f, P(L, f) can be computed (efficiently) using only the list of identities in L, and not
L itself. This way, in an execution, P(L, f) can be computed from the view of S. We denote
P the set of such predicates P. This class of predicates covers all examples described earlier:
the restriction is intuitively that whether a voter’s vote can be modified or not does not depend
the exact value of that vote, but only on the voter’s identity (typically, on whether that voter
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checks or not). Here again, while it might be interesting to investigate cases where the adversary
is able to tamper with a vote only for certain values of that vote, this seems like a reasonable
assumption for a first study.

It is clear that with such environments and functionalities, the view View(S, &, FF (p)) can
be computed from only the random coins of S and the result of the election.

Finally we split the simulators we will consider into several classes. For a fixed v € [0, |H|],
we denote S, the set of all simulators S that keep exactly v votes unmodified. That is, simulators
S such that in any execution, if L is the list of votes recorded by FI| S returns a tampering
function f such that |{i € dom(f) | f[i] € N}| =+~.

Entropy for voting systems

Following [27], we consider the following notion of target function that characterises what
information the adversary is trying to learn on the votes.

Definition 71 (Target function). We call target function any function T : VIRl — T for some
set T. Such a function will represent the information the adversary is trying to get on the list V
of honest votes.

We can now define the entropy of the target from the point of view of the best possible
simulator as follows.

Definition 72 (Entropy on the target function). Consider a probability distribution on votes D,
a target function T, an ideal functionality FX(p), a number of voters v € [0,|H|]. The entropy
of T(V) when keeping ~y votes is
Hp”(T(V)) = min H(T(V)|View(S, £, F/'(p))-
Y
This notion is what we will use to quantify the privacy of voters. For instance, if we consider
a target function that picks the vote from one specific voter Alice from the list, it measures
the minimum entropy that is left in Alice’s vote, given the view of any possible simulator (that
leaves v votes untouched). That is, intuitively, how much uncertainty regarding their votes the
best adversary still has. We can for instance compare the value of this entropy for different
functionalities, or different result functions.

6.8.2 Comparing entropies
General results

With this notion of entropy, we can formally prove the intuitive claim that a more permissive
functionality, i.e. one with a more permissive predicate, that gives more power to the simulator,
leaks more information about the votes. That is, the entropy left in any target given the result
is lower for the more permissive functionality.

Theorem 15. Consider a counting function p, and two predicates P, P’ in P, such that P is
more permissive than P’ i.e. VL, f. P'(L, f) = P(L, f). Recall that V is the random variable
consisting in the list of all honest votes. Then

VT. Vv. VD. HG? (T(V)) < Hp? (T(V)).
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Proof. Let T be a target function, let v € [0, |H|], and let D be a probability distribution on
votes. Let S’ € S, be a simulator for F!” (p).

We construct a simulator S € S, for FF'(p) as follows. S internally runs &', acting as an
interface and forwarding the messages between S’ and the other entities, until the point where
S’ wishes to send a tampering function f to the functionality. During the execution, S records
in a list I the identities id for which it receives an acknowledgement ack(id) from H’.

At that point, let L be the list of identities and votes kept by the functionality FX (p) in the
execution idealexec(Epl|S||FF (p)). Since, up to this point in the execution, FL' (p) and FF(p)
are identical, S has accurately simulated the execution of S’ in idealexec(Ep||S'||FF (p)). Thus
L is also the list recorded by FZ'(p) in that execution.

S then computes P'(L, f). By assumption, S can compute this value using only the list of
identities in L, i.e. I.

If P'(L, f) = 1, S sends no tally to &', and stops. Otherwise, S sends f to FI'(p). Since P
is more permissive than P’, P(L, f) = T. FF(p) thus accepts f, computes the result 7 = p(f(L)),
and sends it to S. S forwards this message to S’, and answers to the functionality what S’
answers.

It is clear that the simulated S’ sees the result if and only if S’ actually sees it in the
corresponding execution of idealexec(Ep||S’||FL (p)), and that in that case the result S’ sees is
the same in both executions. In other words, the view of the simulated S’ is the same as the
view View(S’, Ep, FF'(p)) that S has in idealexec(Ep||S'||FE (p)).

Since S was able to simulate such an &', the view View(S', Ep, FL' (p)) of S’ can therefore be
computed from the view View(S,Ep, FX (p)) of S. Thus, by the assumptions on the conditional
entropy H, we have

H(T(V)|View(S', &, FF' (p))) > H(T(V)|View(S. €0, FL (0)).
Hence,
¥S' € 8. 3S € S, H(T(V)|View(S', &, FF' (p))) > H(T(V)|View(S, &b, FF (p))),
which implies

min H(T(V)|View(S', Ep, FX'(p))) > min H(T(V)|View(S, &, FL (p))),
S'es, Sesy
i.€e.

Hp #(T(V)) > HE? (T(V)).

O

Applied to the functionalities .7-'\(,j elreorder -\ d , this theorem proves the intuition

that the former provides at least as much privacy as the latter to voters. As discussed previously,
the natural question is then: does it actually provide strictly more privacy or not? Thanks to
the following result, that generalises Theorem 15, we can partially answer this question.

}—del,reorder,change
v

Theorem 16. Consider a counting function p, and two predicates P, P’ in P. Assume there is
a way of turning a vote tampering function accepted by P into a tampering function accepted by
P’ without losing information. That is, there exist polynomial algorithms A and B such that

e A turns a function f accepted by P into a function A(f) accepted by P':
VL,f. P(L,f) = P'(L,A(f))-
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e In addition, the function returned by A always contains the same number of unchanged
votes as its input:

Vi [{i € dom(A(f)) [ A(f)(i) € N} = [{i € dom(f) | f(i) € N}|.

e B is able to compute the tally obtained when applying the tampering f, from the one
obtained when applying A(f). That is

VL, f. p(f(L)) = B(f, p(A(f)(L)))-

Then ]-"\fy leaks at least as much information as FL on any target:
P’ P,
VT. V. VD. HDAP(T(V)) < HD’fy(T(V)).

Proof. Let T be a target function, let v € [0, |H|], and let D be a probability distribution on
votes. Let S € S, be a simulator for F(p).

This proof follows a similar intuition to the previous one. As before, we construct a simulator
S' e S, for FF "(p), that will internally run S in order to internally compute its view, as follows.
S’ internally runs S, acting as an interface and forwarding the messages between it and the other
entities, until the point where S wishes to send tampering function f. During the execution, S’
records the list I the identities for which it receives an acknowledgement.

At that point, let L be the list of identities and votes kept by the functionality F. /(p)
in the execution idealexec(Ep||S’||FL (p)). As noted before, up to this point in the execution,
FP(p) and FF'(p) are identical, and thus S’ has accurately simulated the execution of S in
idealexec(Ep||S||FF (p)). Thus L is also the list recorded by FZ(p) in that execution.

S’ then computes P(L, f), which it can do using only f and I by assumption. If P(L, f) = L,
S’ sends no tally to S, and halts. Otherwise, S’ computes f' = A(f), and sends it to FL" (p).
Since P(L, f) = T, by assumption on A, P'(L, f') = T. FF'(p) thus accepts f’, computes the
result 7 = p(f’(L)), and sends it to S’. &’ then computes 7’ = B(f,r). By assumption on B, we

have 7' = p(f(L)).
S’ then sends ' to S, and forwards its response to the functionality.

It is clear that the simulated S sees the result if and only if S actually sees it in the
corresponding execution of idealexec(Ep||S||FY (p)), and in that case sees the same result. In
other words, the view of the simulated S is the same as the view View(S, &p, F¥ (p)) that S has
in idealexec(Ep||S||FL (p)).

Since 8" was able to simulate such an S, the view View(S, £p, FL (p)) of S can therefore be
computed from the view View(S’, &p, FF ' (p)) of §’. Thus, by the assumptions on the conditional
entropy H, we have

H(T(V)|View(S, &, FY (p))) = H(T(V)View(S', &p. F ().

By assumption on A, f’ contains the same number of unmodified votes as f, which means
that S’ € S,. Hence,

VS € S,.38 € S,. H(T(V)|View(S, &b, F (p))) > H(T(V)|View(S', o, FX' (p))),
which implies

min H(T(V)|View(S, &b, FX (p))) > min H(T(V)|View(S', Ep, FX (p))),
Ses, S’es,

- HE? (T(V)) > HE#(T(V).
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We can note that Theorem 15 is a particular case of Theorem 16, where A and B are simply
the identity functions: A(f) = f and B(f,r) =r.

. el,reorder,change del,reorde
Comparlng]—-f,i FEOrABRCNANEE and JFy o reoreer

Consider now the application of Theorem 16 to predicates Pdelreorder.change 51 4 pdelreorder = Aggyme
the counting function p has the partial tallying property, defined in earlier chapters.

We can in that case define algorithms A and B that satisfy the requirements of the theorem.
A(f) removes from f all votes cast by the simulator in the name of honest voters, since those
are not allowed by Pdebreorder  That is, A(f) returns a function f’ = \i.L'[i], where

L' =[f(i),i = 1..]dom(f)| | f(i) €N V id ¢ H.3v € V. f(i) = (id, v).

B(f,r) then computes 7 * p(L"), where L" is the list of votes cast by the simulator for honest
voters in f, i.e.

L" = [f(i),i=1...|dom(f)| | Jid € H.3v € V. f(i) = (id, v).

That is, B adds back to r the tally of all votes A discarded.

With these A and B, it is clear that the conditions of Theorem 16 are fulfilled. This proves
that the entropy for Pdehreorder i Jower than the entropy for pdelreorder.change

Since, on the other hand, Pdelreorderchange ig clearly more permissive than Pdebreorder
Theorem 15, the converse inequality also holds. Together, these two observations thus establish
that these entropies are equal, as formally stated in the following theorem:

Theorem 17 (.F\fiel’reorder and Foebreorderchange 1), ve the same entropy). For any target function,
any v, any distribution D, V being the list of votes, we have

del d del der,ch
pdel;reorder pdel,reorder,change

Hp, — "(T(V)) =Hp, "(T(V)).

That is, the most information a simulator that leaves exactly v votes unchanged can obtain
on T(V) is the same regardless of whether this simulator is allowed to change the votes of voters
that do not verify, or only to drop them.

That result may be surprising, as it intuitively seems that the adversary has much more power
in the first case. The confusion stems from the distinction between privacy and verifiability.

The result does not mean that the two functionalities F\?el’reorder and ffel’reorder":hange are

equivalent. Fo® " describes a system which guarantees that even if I do not perform any
verification, my vote cannot be modified, but only removed. As our case study showed earlier,
this can be realised in practice e.g. by signing the ballots as is done in Belenios. This gives
strictly stronger guarantees from the point of view of verifiability that Fgehreorder-change - A1though,
as proven in the previous section, both functionalities guarantee individual verifiability since we
consider here a case without revote, they are not the same. Indeed, for F e"reorder, we could have

proven the stronger version of verifiability described earlier, that prevents changing votes even
del,reorder,change

when voters do not check. Fy on the other hand does not guarantee this stronger
verifiability.
However, this result means that, purely from the point of view of privacy, \? elreorder 4,05 not

]:del,reorder,change
\%

give stronger guarantees than , at least in the case of a counting function with
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partial tallying. For such counting functions, ensuring that votes cannot be changed even for
voters who do not verify (as is done e.g. in Belenios) does not provide more privacy than letting
an adversary change these votes (as is the case e.g. in Helios).

A natural question is then: what if the counting function does not have the partial tallying
property? We do not have a general answer to this question, however in the next subsection we
investigate it on a few examples.

6.8.3 Experiments

A typical example of a function that does not have the partial tallying property is the winner
function. That is, the case where the result is simply the name of the winner, i.e. the candidate
that received the majority of votes, without any indication regarding the number of votes for
each candidate. Indeed, even if we know that candidate 1 got the majority of votes among the
first half of voters, and that candidate 2 got the majority among the other half, that does not let
us compute who is the winner when counting all the votes.

Intuitively, in that case, it seems that being able to change votes may leak more information
to the adversary. While just seeing the winner only tells him that that candidate has more than
50% of votes, changing some of the votes may give information about the margin by which the
winner wins. For instance, the intuition seems to indicate that turning 10% of the votes from
voters who did not check into votes for the losing candidate would let the adversary learn whether
the winner actually had more than 60% of votes; while simply removing these votes would not.

Even in simple cases, computing an exact expression for the entropy can be difficult. It
indeed requires to compute the probability distribution of the target function given the result of
the election, which seems to often lead to quite complex combinatorics problems, that we did
not study here. In what follows, we instead perform numerical simulations to approximate the
entropy in some examples involving the winner function, to get some insight on how changing
votes influences privacy in that case.

Setting
Concretely, we consider the following simplified setting:

e All voters are honest, i.e. the adversary does not control any voter. A number « of voters
verify their vote, and 3 voters do not. When considering the random variable V, we will
order them, first numbering the voters who verify from 1 to «, and then the others from
a+lton=a+0.

e Votes are vectors of d integers (in our examples we use d = 2, 3 or 4). Typically, this could
model an election with d candidates: a vote for candidate ¢ would then be a vector v such
that v; = 1 and v; = 0 for j # .

e We consider two result functions:

— the sum: summing all votes component by component, i.e.
Poum(Vi, - vp) = O _vits. ., Y via)
i i

If votes are for one candidate as described above, the sum gives the number of votes
for each candidate.
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— the winner: the index of the candidate with the most votes, i.e.

Pwinner(vla e ,Uk) = argmaxl(z Ui,l)

(2

or, equivalently, the corresponding vote, i.e. the vector with a 1 at that index.
e We consider two examples of target functions:

— The value of a fixed voter’s vote, say the first voter, i.e. Tfst(v1,...,v,) = v1. The
order specified above means that this voter verifies.

— The boolean "are at least a proportion p of the votes from the « voters who verify for
the first candidate?", for a fixed p € [0, 1], i.e.

Tp(v1,...,0,) =1 if Z v;,1 > pa, and 0 otherwise.
1<i<a

This function may seem strange, as it can trivially be observed from the result when
the counting function is psym. However, it cannot when the function is pwinner, and in
that case it formalises the intuition about learning information on the margin exposed
above.

The authors in [27] argue that the most relevant notion of entropy to study is the average
min-entropy. We did not dispute this claim, and in most cases we used this notion. However in
some cases we also had a look at the conditional Shannon entropy.

In addition we will only consider deterministic simulators. Hence, their view will only
depend on the tally they receive (which of course depends on the votes drawn at random by
the environment). We therefore compute an approximation of H(T(V) | p(V)) for a given
simulator, V' being a list of n votes, each drawn from the same distribution. To do this, we wrote
a small program that simulates many elections, drawing votes at random (following a specified
distribution). We fix a simulator, for which we wish to compute the entropy. Each time, the
program applies the tampering function that simulator would propose to the functionality. It
then records the value of the target T(V) and the result p(V). The entropy is then computed
using the expressions from the beginning of this section, using frequencies from the experiments
rather than probabilities. More experiments are run until the computed value stabilises (i.e.,
until its variations pass under an arbitrary threshold).

We are of course aware that this is in no way a proof, and gives no guarantee that we compute
the correct value for the entropy. This experiment was only a means to try to get a better
intuition on what happens in the scenario we considered. However, we still report these results,
as they lead to somewhat interesting observations.

Does psum leak more information than pyinner?

First we consider the case of an adversary (simulator) that does not try to change any votes, but
deletes all 8 votes from the voters who do not verify, as is allowed by both del reorder,change ), 4
Febreorder Hence the result is computed only on « votes that the adversary does not control.
Intuitively, removing these 5 votes is always a better choice for an adversary than leaving them,

as the targets we considered only count the o votes from those who verify.
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For this adversary, we investigate the difference between the counting functions psym and
Pwinner- Intuitively, the first seems to give strictly more information to the adversary than the
second. However, we observe that this is not always true.

Consider first that the target is the first vote s, and a simple setting where there are two
candidates (d = 2), and the environment makes voters pick at random among them following a
uniform distribution. Of course, the amount of information learnt by the adversary from the
result depends on the number « of voters who verify (since only their votes are counted): the
more voters there are, the more a specific vote is hidden in the result. Plotting the average
min-entropy of 7t (V) knowing the result yields the following graph.

Average min-entropy of the first vote given the result, depending on the number of voters
votes: {(1,0):0.50; (0,1):0.50}

1 T T T T T T T T T
rho = sum
rho = winner

H(targetlresult)

0 10 20 30 40 50 60 70 80 90 100
Number of voters
Contrary to what one would expect, it appears that the average min-entropy is the same for
the sum and winner functions psym and pwinner- Doing more experiments, with other numbers of
candidates and other distributions produces the same observations.

However, computing the conditional Shannon entropy rather than the average min-entropy
yields a different result, as displayed on the following graph.

Conditional Shannon entropy of the first vote given the result, depending on the number of voters
votes:{(1,0):0.50; (0,1):0.50}
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Here we see a difference between the two counting function: as expected, the winner function
leaks less information, leading to a higher entropy.

While this may be surprising, it can be explained in a fairly intuitive way. The intuition is
that the average min-entropy evaluates the average (over all results) of the probability of the best
possible guess (given the result) being correct. Here, knowing the sum, 7.e. the number of votes
for each candidate, the best guess is always the candidate with the most votes. Knowing the sum
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does not provide any additional information that would help an adversary guess the first vote,
compared to just knowing the winner. Therefore, the best guess regarding the first vote only
depends on the winner, and the probability of it being correct is, on average, the same whether
we know the sum or just the winner. The average min-entropy is thus the same in both cases.

The difference between the two cases is only in the confidence the adversary has in his guess:
while, on average, the best guess is as likely to be true whether we know the sum or the winner,
for a given sum, we know exactly how likely it is, while knowing the winner does not gives us
this information. This means that, as reflected by the conditional Shannon entropy, the sum
function does indeed leak more information than the winner function, however, as reflected by
the average min-entropy, this additional information does not help an adversary make a better
guess (on average) regarding the value of one specific vote.

6.8.4 Does changing votes give more power to the adversary w.r.t. privacy?

We finally investigate whether the adversary may gain information about the votes by changing
votes, i.e. whether or not he has strictly more power against privacy with Fgehreorderchange ).
with f\c/iel,reorder‘

We have proved that this is not the case when considering a counting function with partial
tallying: we will thus consider the winner function pyinner- Following the intuition exposed earlier
in this section, we study the case of the target function 7,. That is, the adversary is trying to
determine whether or not a proportion at least p of the voters who verify voted for the first
candidate. Of course, if p = 0.5, the result immediately let the adversary know this with absolute
certainty. In what follows, we will rather use p = 0.1.

We consider the scenario where

e the election involves two candidates (d = 2), and the initial distribution of votes (used by
the environment to draw the votes at random) is 10% for the first candidate, and 90% for
the second. That is, one candidate is a priori unpopular, and the adversary is trying to
determine whether that candidate had more support among people who verify than the
initial distribution would indicate.

e « voters verify, and thus their votes are unmodified;
e (3 voters do not check, and the adversary may change or remove their votes arbitrarily;

e there are no dishonest voters.

We first consider the particular case where the adversary chooses to remove all 3 votes, which
seems to be the best he can do when interacting with JFgjelreorder Plotting the entropy of the
target given the result, for different values of «, yields the following graph.
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Average min-entropy of "are at least 0.10 of the votes for the first candidate" given the result, depending on the number of voters
votes: {(1,0):0.10; (0,1):0.90}
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Of course, the more voters there are, the less information the result reveals about the target.
We can see that the entropy seems to be slightly lower with a high number of voters: we believe
t