N. Bases and . Meg,

G. Buzsáki, A. Costas, C. Anastassiou, and . Koch, The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes, 2012.

A. S. Dubarry, J. M. Badier, A. Trébuchon-da-fonseca, M. Gavaret, R. Carron et al., Simultaneous recording of MEG, EEG and intracerebral EEG during visual stimulation: From feasibility to single-trial analysis, NeuroImage, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01495223

P. Gloor, Neuronal generators and the problem of localization in electroencephalography: application of volume conductor theory to electroencephalography, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society, vol.2, pp.327-354, 1985.

M. Hämäläinen, R. Hari, J. Risto, J. Ilmoniemi, O. V. Knuutila et al., Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain, Reviews of Modern Physics, 1993.

R. Hari, A. Puce, and O. Primer, , 2017.

E. R. Kandel, J. H. Schwartz, T. M. Jessel, S. A. Siegelbaum, and A. J. Hudspeth, Principles of neural science, vol.9780071390118, 2012.

H. Lindén, H. Klas, G. T. Pettersen, and . Einevoll, Intrinsic dendritic filtering gives low-pass power spectra of local field potentials, Journal of Computational Neuroscience, 2010.

E. Niedermeyer, F. H. Lopes-da, and . Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, Fifth Edition. Lippincott Williams and Wilkins, 2004.

H. Yoshinaga, T. Nakahori, Y. Ohtsuka, E. Oka, Y. Kitamura et al., Benefit of simultaneous recording of EEG and MEG in dipole localization, Epilepsia, vol.20, 2002.

. .. Source-space-modeling, , p.30

M. and .. .. ,

. Forward and . Signals,

P. W. Nicholson, Specific impedance of cerebral white matter, Experimental Neurology, vol.13, issue.4, pp.90126-90129, 1965.

S. Rush and D. Driscoll, Current distribution in the brain from surface electrodes, Anesthesia and analgesia, vol.47, issue.6, pp.717-740, 1968.

J. Sarvas, Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem, Physics in Medicine and Biology, 1987.

S. Vallaghé and T. Papadopoulo, A Trilinear Immersed Finite Element Method for Solving the Electroencephalography Forward Problem, SIAM Journal on Scientific Computing, vol.32, issue.4, pp.2379-2394, 2010.

C. H. Wolters, L. Grasedyck, and W. Hackbusch, Efficient computation of lead field bases and influence matrix for the FEM-based EEG and MEG inverse problem. Inverse Problems, 2004.

C. H. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M. A. Koch et al., Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling. NeuroImage, vol.30, pp.813-826, 2006.

M. Eeg,

Y. Bekhti, F. Lucka, J. Salmon, and A. Gramfort, A hierarchical Bayesian perspective on majorization-minimization for non-convex sparse regression: application to M/{EEG} source imaging. Inverse Problems, vol.34, p.85010, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01970744

B. Belaoucha and T. Papadopoulo, Large brain effective network from EEG/MEG data and dmr information, 2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI), pp.1-4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01533445

M. Benning and M. Burger, Modern regularization methods for inverse problems, Acta Numerica, vol.27, pp.1-111, 2018.

G. Birot, L. Albera, F. Wendling, and I. Merlet, Localization of extended brain sources from EEG/MEG: The ExSo-MUSIC approach, NeuroImage, vol.56, issue.1, pp.102-113, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00588305

E. J. Candes and T. Tao, Decoding by linear programming, IEEE Transactions on Information Theory, vol.51, issue.12, pp.4203-4215, 2005.

E. J. Candès, M. B. Wakin, and S. P. Boyd, Enhancing sparsity by reweighted l1 minimization, Journal of Fourier Analysis and Applications, vol.14, issue.5, pp.877-905, 2008.

V. Caselles, A. Chambolle, D. Cremers, M. Novaga, and T. Pock, An introduction to total variation for image analysis. Theoretical Foundations and Numerical Methods for Sparse Recovery, Radon Series Comp. Appl. Math, vol.9, pp.263-340, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00437581

J. M. Rasheda-arman-chowdhury, E. Lina, C. Kobayashi, and . Grova, Meg source localization of spatially extended generators of epileptic activity: Comparing entropic and hierarchical bayesian approaches, PLOS ONE, vol.8, issue.2, p.2013

M. Problem,

C. Clarke and B. , The solution of the biomagnetic inverse problem by maximum statistical entropy, Inverse Problems, vol.5, issue.4, pp.483-500, 1989.

M. Clerc and R. Keriven, Imaging methods for meg/eeg inverse problem, International Journal of Bioelectromagnetism, vol.7, 2005.

F. Costa, H. Batatia, T. Oberlin, and J. Tourneret, Skull conductivity estimation for EEG source localization, IEEE Signal Processing Letters, vol.24, issue.4, pp.422-426, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01681070

F. Costa, H. Batatia, T. Oberlin, D. Carlos, J. Giano et al., Bayesian EEG source localization using a structured sparsity prior, NeuroImage, vol.144, pp.142-152, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01502837

M. Anders, A. K. Dale, . Liu, R. L. Bruce-r-fischl, J. W. Buckner et al., Dynamic Statistical Parametric Mapping: Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity, Neuron, vol.26, issue.1, pp.55-67, 2000.

I. Daubechies, M. Defrise, and C. De-mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Communications on Pure and Applied Mathematics, vol.57, issue.11, pp.1413-1457, 2004.

A. Mark, M. F. Davenport, Y. C. Duarte, G. Eldar, and . Kutyniok, Introduction to compressed sensing, pp.1-64, 2012.

S. Deslauriers-gauthier, J. Lina, R. Butler, K. Whittingstall, G. Gilbert et al., White matter information flow mapping from diffusion mri and eeg, NeuroImage, vol.201, p.116017, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02187859

L. Ding, Reconstructing cortical current density by exploring sparseness in the transform domain, Physics in Medicine and Biology, 2009.

M. Problem,

T. Bradley-efron, I. Hastie, R. Johnstone, and . Tibshirani, Least angle regression, Ann. Statist, vol.32, issue.2, pp.407-499, 2004.

D. Engemann, D. Strohmeier, E. Larson, and A. Gramfort, Mind the noise covariance when localizing brain sources with m/eeg, 2015 International Workshop on Pattern Recognition in NeuroImaging, pp.9-12, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01183551

A. Denis, A. Engemann, and . Gramfort, Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals, NeuroImage, vol.108, pp.328-342, 2015.

A. Ewald, F. Shahbazi-avarvand, and G. Nolte, Wedge MUSIC: A novel approach to examine experimental differences of brain source connectivity patterns from EEG/MEG data, NeuroImage, vol.101, pp.610-624, 2014.

. Seyedeh-rezvan, R. N. Farahibozorg, O. Henson, and . Hauk, Adaptive cortical parcellations for source reconstructed EEG/MEG connectomes, NeuroImage, vol.169, pp.23-45, 2018.

J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, Pathwise coordinate optimization, Ann. Appl. Stat, vol.1, issue.2, p.2007

K. Friston, L. Harrison, J. Daunizeau, S. Kiebel, C. Phillips et al., Multiple sparse priors for the M/EEG inverse problem, NeuroImage, vol.39, issue.3, pp.1104-1120, 2008.

M. Fukushima, O. Yamashita, T. R. Knösche, and M. Sato, Meg source reconstruction based on identification of directed source interactions on whole-brain anatomical networks, NeuroImage, vol.105, pp.408-427, 2015.

M. Problem,

G. Gasso, A. Rakotomamonjy, and S. Canu, Recovering sparse signals with a certain family of nonconvex penalties and dc programming, IEEE Transactions on Signal Processing, vol.57, issue.12, pp.4686-4698, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00439453

A. Gramfort, D. Strohmeier, J. Haueisen, M. S. Hämäläinen, and M. Kowalski, Time-frequency mixed-norm estimates: Sparse M/EEG imaging with nonstationary source activations, NeuroImage, vol.70, pp.410-422, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00773276

A. Gramfort, M. Kowalski, and M. Hämäläinen, Mixednorm estimates for the M/{EEG} inverse problem using accelerated gradient methods, Physics in Medicine and Biology, vol.57, issue.7, pp.1088-1090, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00690774

R. Grave-de-peralta-menendez, O. Hauk, S. G. Andino, H. Vogt, and C. Michel, Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography, Human Brain Mapping, vol.5, issue.6, pp.454-467, 1997.

M. S. Hämäläinen and R. J. Ilmoniemi, Interpreting magnetic fields of the brain: minimum norm estimates, Medical & Biological Engineering & Computing, vol.32, issue.1, pp.35-42, 1994.

T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer series in statistics

. Springer, , 2009.

H. Liu and P. H. Schimpf, Efficient localization of synchronous eeg source activities using a modified rap-music algorithm, IEEE Transactions on Biomedical Engineering, vol.53, issue.4, pp.652-661, 2006.

E. J. Candès, J. K. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Communications on Pure and Applied Mathematics, p.59, 2006.

K. Liao, M. Zhu, L. Ding, S. Valette, W. Zhang et al., Sparse imaging of cortical electrical current densities via wavelet 55

M. Transforms, Physics in Medicine and Biology, vol.57, issue.21, pp.1088-1090, 2012.

M. Lim, J. M. Ales, R. Benoit, T. Cottereau, A. M. Hastie et al., Sparse eeg/meg source estimation via a group lasso, PLOS ONE, vol.12, issue.6, p.2017
URL : https://hal.archives-ouvertes.fr/hal-02342036

T. Fa-hsuan-lin, . Witzel, P. Seppo, . Ahlfors, M. Steven et al., Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates, NeuroImage, vol.31, issue.1, pp.160-171, 2006.

J. M. Lina, R. Chowdhury, E. Lemay, E. Kobayashi, and C. Grova, Wavelet-based localization of oscillatory sources from magnetoencephalography data, IEEE Transactions on Biomedical Engineering, vol.61, issue.8, pp.2350-2364, 2014.

F. Lucka, S. Pursiainen, M. Burger, and C. H. Wolters, Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: Depth localization and source separation for focal primary currents, NeuroImage, vol.61, issue.4, pp.1364-1382, 2012.

J. Mairal and B. Yu, Complexity analysis of the lasso regularization path, 2012.

N. Mäkelä, M. Stenroos, J. Sarvas, and R. J. Ilmoniemi, Truncated RAP-MUSIC (TRAP-MUSIC) for MEG and EEG source localization, Neu-roImage, 2018.

K. Maksymenko, B. Giusiano, N. Roehri, -. Christian, J. Bénar et al., Strategies for statistical thresholding of source localization maps in magnetoencephalography and estimating source extent, Journal of Neuroscience Methods, vol.290, pp.95-104, 2017.

M. Problem,

J. C. Mosher, P. S. Lewis, and R. M. Leahy, Multiple dipole modeling and localization from spatio-temporal meg data, IEEE Transactions on Biomedical Engineering, vol.39, issue.6, pp.541-557, 1992.

C. John, R. M. Mosher, and . Leahy, Recursive MUSIC: A framework for EEG and MEG source localization, IEEE Transactions on Biomedical Engineering, 1998.

S. Muthukrishnan, Data Streams: Algorithms and Applications. Foundations and trends in theoretical computer science, 2005.

D. Roberto and . Pascual-marqui, Standardized low-resolution brain electromagnetic tomography (sloreta): technical details. Methods and findings in experimental and clinical pharmacology, vol.24, pp.5-12, 2002.

I. W. Selesnick and ?. Bayram, Sparse signal estimation by maximally sparse convex optimization, IEEE Transactions on Signal Processing, vol.62, issue.5, pp.1078-1092, 2014.

F. Shahbazi, A. Ewald, and G. Nolte, Self-consistent music: An approach to the localization of true brain interactions from eeg/meg data, Neu-roImage, vol.112, pp.299-309, 2015.

D. Strohmeier, Y. Bekhti, J. Haueisen, and A. Gramfort, The iterative reweighted mixed-norm estimate for spatio-temporal meg/eeg source reconstruction, IEEE Transactions on Medical Imaging, vol.35, issue.10, pp.2218-2228, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01079530

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological), vol.58, issue.1, pp.267-288, 1996.

J. Nelson, E. Trujillo-barreto, P. A. Aubert-vázquez, and . Valdés-sosa, Bayesian model averaging in EEG/MEG imaging, NeuroImage, vol.21, issue.4, pp.1300-1319, 2004.

M. Problem,

J. Nelson, E. Trujillo-barreto, W. Aubert-vázquez, and . Penny, Bayesian M/EEG source reconstruction with spatio-temporal priors, Neu-roImage, vol.39, issue.1, pp.318-335, 2008.

K. Uutela, M. Hämäläinen, and E. Somersalo, Visualization of magnetoencephalographic data using minimum current estimates, NeuroImage, vol.10, issue.2, pp.173-180, 1999.

W. Van-drongelen, M. Yuchtman, B. D. Van-veen, and A. C. Van-huffelen, A spatial filtering technique to detect and localize multiple sources in the brain, Brain Topography, vol.9, issue.1, pp.39-49, 1996.

B. D. Van-veen and K. M. Buckley, Beamforming: a versatile approach to spatial filtering, IEEE ASSP Magazine, vol.5, issue.2, pp.4-24, 1988.

J. P. David-p-wipf, . Owen, T. Hagai, K. Attias, . Sekihara et al., Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG, NeuroImage, vol.49, issue.1, pp.641-655, 2010.

M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society Series B, vol.68, pp.49-67, 2006.

Y. Zerouali, C. L. Herry, B. Jemel, and J. Lina, Localization of synchronous cortical neural sources, IEEE Transactions on Biomedical Engineering, vol.60, issue.3, pp.770-780, 2013.

, FAST APPROXIMATION OF EEG FORWARD PROBLEM conductivity and EEG source location estimation, NeuroImage, vol.124, pp.168-180, 2016.

F. Costa, H. Batatia, T. Oberlin, and J. Tourneret, Skull Conductivity Estimation for EEG Source Localization, IEEE Signal Processing Letters, vol.24, issue.4, pp.422-426, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01681070

M. Dannhauer, B. Lanfer, C. H. Wolters, and T. R. Knösche, Modeling of the human skull in EEG source analysis, Human Brain Mapping, vol.32, issue.9, pp.1383-1399, 2011.

I. Sónia, J. C. Gonçalves, . De-munck, P. A. Jeroen, F. Verbunt et al., In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head, IEEE Transactions on Biomedical Engineering, vol.50, issue.6, pp.754-767, 2003.

A. Gramfort, T. Papadopoulo, E. Olivi, and M. Clerc, OpenMEEG: opensource software for quasistatic bioelectromagnetics, BioMedical Engineering OnLine, vol.9, issue.1, p.45, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00467061

G. Jan-s-hesthaven, B. Rozza, and . Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, SpringerBriefs in Mathematics, 2016.

R. Hoekema, G. H. Wieneke, F. S-s-leijten, C. Van-veelen, P. C. Van-rijen et al., Measurement of the conductivity of skull, temporarily removed during epilepsy surgery, Brain Topography, 2003.

J. Kybic, M. Clerc, T. Abboud, O. Faugeras, R. Keriven et al., A common formalism for the Integral formulations of the forward EEG problem, IEEE Transactions on Medical Imaging, vol.24, issue.1, pp.12-28, 2005.

S. Lew, C. H. Wolters, A. Anwander, S. Makeig, and R. S. Macleod, Improved EEG source analysis using low-resolution conductivity 77

, FAST APPROXIMATION OF EEG FORWARD PROBLEM estimation in a four-compartment finite element head model. Human Brain Mapping, 2009.

E. Niedermeyer, F. H. Lopes-da, and . Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, Fifth Edition. Lippincott Williams and Wilkins, 2004.

R. Pohlmeier, G. Buchner, . Knoll, . Rienäcker, J. Beckmann et al., The influence of skull-conductivity misspecification on inverse source localization in realistically shaped finite element head models. Brain topography, 1997.

S. Rush and D. A. Driscoll, Current Distribution in the Brain From Surface Electrodes, Anesthesia and Analgesia, vol.47, pp.717-723, 1968.

F. Tadel, Y. Haruta, T. Ei-ichi-okumura, and . Asakawa, Yokogawa/KIT tutorial: Median nerve stimulation, 2016.

F. Tadel, S. Baillet, J. C. Mosher, D. Pantazis, and R. M. Leahy, Brainstorm: A user-friendly application for MEG/EEG analysis, Computational Intelligence and Neuroscience, pp.1-13, 2011.

S. Vallaghé and M. Clerc, A global sensitivity analysis of three-and four-layer EEG conductivity models, IEEE Transactions on Biomedical Engineering, 2008.

S. Vallaghé, M. Clerc, and J. M. Badier, In vivo conductivity estimation using somatosensory evoked potentials and cortical constraint on the source, 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro -Proceedings, 2007.

R. Van-uitert, C. Johnson, and L. Zhukov, Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models, IEEE Transactions on Biomedical Engineering, 2004.

G. Wang and D. Ren, Effect of brain-to-skull conductivity ratio on EEG source localization accuracy, BioMed Research International, 2013.

. .. Overview, 96 6.2 Simulated MEG data: single active region

.. .. Results,

, Best projection error by candidate. First 4 candidates have significantly lower error and are chosen for further analysis. (b) Error as a function of a region size for selected candidates. (c) Upper bound of candidates location on the cortex. Lighter is the shade of red, lower is the error of corresponding region

C. Figure, Source 2. (a) Best projection error by candidate. First 4 candidates have significantly lower error and are chosen for further analysis. (b) Error as a function of a region size for selected candidates. (c) Upper bound of candidates location on the cortex. Lighter is the shade of red, lower is the error of corresponding region, vol.19

C. Results,

, Best projection error by candidate. First 4 candidates have significantly lower error and are chosen for further analysis. (b) Error as a function of a region size for selected candidates. (c) Upper bound of candidates location on the cortex. Lighter is the shade of red, lower is the error of corresponding region

, CLUB-MUSIC RESULTS Bibliography Brainstorm software. Brainstorm software

S. Brown, M. J. Martinez, and L. M. Parsons, Music and language side by side in the brain: a PET study of the generation of melodies and sentences. The European journal of neuroscience, 2006.

S. Rahul, F. Desikan, B. Ségonne, B. T. Fischl, B. C. Quinn et al., An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, NeuroImage, 2006.

A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier et al., Teon Brooks, Lauri Parkkonen, and Matti Hämäläinen. MEG and EEG data analysis with MNE-Python, Frontiers in Neuroscience, 2013.

P. Mne-tutorial, Brainstorm auditory tutorial dataset

E. Niedermeyer, F. H. Lopes-da, and . Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, Fifth Edition. Lippincott Williams and Wilkins, 2004.

A. C. Papanicolaou, R. L. Rogers, S. Baumann, C. Saydjari, and H. M. Eisenberg, Source localization of two evoked magnetic field components using two alternative procedures, Experimental Brain Research, vol.80, issue.1, pp.44-48, 1990.

G. B. Remijn, E. Hasuo, H. Fujihira, and S. Morimoto, An introduction to the measurement of auditory event-related potentials (ERPs), vol.35, pp.229-242, 2014.

F. Tadel, S. Baillet, J. Mosher, D. Pantazis, and R. Leahy, Brainstorm: A user-friendly application for MEG/EEG analysis, Computational intelligence and neuroscience, p.879716, 2011.

M. A. Uusitalo and R. J. Ilmoniemi, Signal-space projection method for separating MEG or EEG into components, Medical and Biological Engineering and Computing, vol.35, issue.2, pp.135-140, 1997.

D. Woods, The component structure of the N1 wave of the human auditory evoked potential, Electroencephalography and clinical neurophysiology. Supplement, vol.44, pp.102-111, 1995.

G. Girard, K. Whittingstall, R. Deriche, and M. Descoteaux, Towards quantitative connectivity analysis: reducing tractography biases, NeuroImage, vol.98, pp.266-278, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00991846

M. Côté, E. Garyfallidis, H. Larochelle, and M. Descoteaux, Cleaning up the mess: tractography outlier removal using hierarchical QuickBundles clustering, Proceedings of: International Society of Magnetic Resonance in Medicine (ISMRM), 2015.

S. Tomasi, R. Caminiti, and G. Innocenti, Areal differences in diameter and length of corticofugal projections, Cerebral Cortex, vol.22, pp.1463-1472, 2012.

S. Deslauriers-gauthier, J. Lina, R. Butler, P. Bernier, K. Whittingstall et al., Inference and Visualization of Information Flow in the Visual Pathway using dMRI and EEG, MICCAI 2017 Medical Image Computing and Computer Assisted Intervention, 2017.

F. I. Karahanolu, Total activation: fMRI deconvolution through spatiotemporal regularization, Neuroimage, 2013.

Y. Farouj, Regularized spatiotemporal deconvolution of fMRI data using gray-matter constrained total variation, 2017.

I. Khalidov, Activelets: Wavelets for sparse representation of hemodynamic responses, Signal Processing, 2011.

B. Efron, Least angle regression, The Annals of statistics, 2004.

D. C. Van-essen, T. Wu-minn, and H. , NeuroImage, 2013.

I. Costantini, P. Filipiak, K. Maksymenko, and S. Deslauriers-gauthier, Rachid Deriche Inria Sophia Antipolis-Méditerranée