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INTRODUCTION EN FRANÇAIS

Contexte de recherche
Un challenge important de l’ingénierie logicielle est le développement et la maintenance
de systèmes complexes. Des exemples récents de tels systèmes sont l’internet des objets
ou les systèmes cyber-physiques. La conception de ces systèmes complexes implique de
nombreux partie prenante, avec des points de vue variés et hétérogènes. Ce qui soulève
de nombreux défis d’ingénierie. Par conséquent, le succès de la conception de systèmes
complexes requière l’application de méthodes et d’outils d’ingénierie spécifiques.

Une solution dédiée au développement de systèmes complexes est l’Ingénierie Dirigée
par les Modèles (IDM). Plus précisément, l’IDM promeut la réduction de la complexité
accidentelle inhérente au développement de systèmes complexes en faisant le pont entre
l’espace des problèmes et l’espace des solutions à l’aide de modèles. Un modèle est une
représentation d’un aspect spécifique d’un système et fournis des abstractions pertinentes
aux experts métiers. Même si les modèles eux même sont des vues spécifiques sur un aspect
d’un système, leur représentation est par défaut générique. Toutes fois, de nombreuses
études montrent que les modèles sont mieux appréhendés sous la forme de représentation
spécifiques [75, 117]. Les langages (informatiques) dédiés sont une solution couramment
utilisée pour la réalisation de tels représentations spécifiques. Les langages dédiés sont
des langages spécialisés à un domaine d’application en particulier, en opposition avec les
langages généralistes, qui ont pour but objectif d’être universels. Dans ce contexte, les
langages dédiés sont alors utilisés comme moyen privilégié d’interagir avec les modèles.

Toutes fois, les langages sont des logiciels à part entière [57], ce qui implique l’ap-
plication des pratiques de l’ingénierie logicielle à leur développement. Et ce à toutes les
étapes de leur cycle de vie : définition des exigences, conception, développement, test,
déploiement, maintenance, etc. Dans ce cadre, la discipline de l’ingénierie des langages
est une sous discipline de l’ingénierie informatique qui se concentre sur la construction
rationnelle et scientifique de langages. Cela à travers l’intégration de multiple disciplines
tels que l’analyse de programmes, la construction de compilateurs, la transformation de
logiciels ou la rétro-ingénierie.

Énoncé du problème
Les langages dédiés peuvent prendre différentes formes. On distingue deux grandes caté-
gories de langages dédiés, les langages dédiés internes et externes. Les langages dédiés
internes sont intégrés dans la syntaxe d’un langage existant (par exemple sous la forme
de méthodes chainées, ou par staging [81]) et sont donc soumis à la sémantique et aux
outils du langage dans lequel ils s’intègrent. Les langages dédiés externes ont quant à

i



Introduction en français

eux une syntaxe et une sémantique et des outils périphériques qui leur sont propres. Dans
cette thèse nous nous intéressons plus particulièrement aux langages dédiés externes car,
contrairement aux langages dédiés internes, ils ne sont pas contraints par le fonction-
nement d’un langage préexistant et offrent donc plus d’opportunité de personnalisation.
En contrepartie, la création de langages dédiés externes requière la définition de toutes
les composantes d’un langage à partir de zéro. Par conséquent la création de langages
dédiés externes requière des efforts de développement beaucoup élevés et des compétences
spécialisés en ingénierie des langages. De plus, les langages dédiés ont, par définition, un
base d’utilisateurs restreinte car très spécialisée, en particulier en comparaison avec des
langages généralistes. La combinaison de ces facteurs limite l’applicabilité des langages
dédiés externes.

Les langages dédiés externes sont créés à l’aide d’environnements de développement
intégré appelé language workbenches1. Les language workbenches assistent le développe-
ment de langage en proposant la manipulation d’abstraction pertinentes, associées avec des
approches génériques ou génératives. Ces abstractions sont manipulées par les ingénieurs
de langage sous la forme de métalangages, c’est-à-dire des langages spécialisés dans la
définition de certains aspects des langages. Loin de seulement permettre la spécification de
langages à l’aide d’abstraction dédiées, les métalangages sont aussi conçus pour répondre
aux challenges inhérents à l’ingénierie des langages. Cela comprend les challenges de la
réutilisation, de la modularité ou des performances, parmi tant d’autres. Enfin, les language
workbenches assistent la traduction des spécifications de langages à l’aide de métalangages
opérant à un haut niveau d’abstraction, vers des implémentations de services permettant
la manipulation des langages par des développeurs (par exemple des interpréteurs, des
éditeurs ou encore des débogueurs). Toutes fois, les abstractions dédiées aux langages
qui sont au cœur des métalangages ne sont généralement pas exploitées au mieux lors de
leur traduction vers les implémentations de services de langages. Par exemple, un langage
spécifié de manière modulaire peut souffrir d’une absence de support de la compilation
séparée, entrainant une absence de la modularité au niveau de son implémentation.

Cela force les ingénieurs de langages à être confrontés aux subtilités de bas niveau des
implémentations de services de langage. Les conséquences sont soit 1) une augmentation
des coûts de développement (par exemple la réécriture manuelle de fragments de code
ayant des performances insuffisantes) 2) une impossibilité de réaliser certains scénarios de
développement (par exemple la réutilisation de code ancien).

Quels sont les meilleures manières d’exploiter l’information disponible
dans les spécifications de langages dans le but d’améliorer les propriétés
non-fonctionnelles des implémentations de leurs services?

Question de Recherche

1Language workbench : Banc de création de langage.
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L’information inexploitée disponible au sein des spécifications de langages peut per-
mettre l’amélioration de plusieurs aspects non-fonctionnels des implémentations de ser-
vices de langages : leur réutilisabilité et leurs performances. Par conséquent, nous tirons
les deux challenges ci-dessous de notre question de recherche :

Challenge #1 : Quels sont les patrons d’implémentation de services
de langage qui permettent l’amélioration de leur réutilisabilité ? Quelle
part de l’information disponible dans les spécifications de langages peut
être exploitée pour la traduction des spécifications vers de tels patrons
d’implémentation?

Challenge #2 : Quels sont les patrons d’implémentation de services
de langage qui permettent l’amélioration de leurs performances ? Quelle
part de l’information disponible dans les spécifications de langages peut
être exploitée pour la traduction des spécifications vers de tels patrons
d’implémentation?

Contributions

Nous adressons les deux challenges identifiés ci-dessous à travers deux contributions.
Pour répondre au challenge #1, il est important d’équiper les ingénieurs de langages
avec des solutions autorisant la réutilisation opportuniste (par exemple par extension ou
composition) de langages dédiés existant afin d’en définir de nouveaux. Les approches
existantes de réutilisation de langages requièrent de l’anticipation, demandent l’usage de
fonctionnalités avancée rarement disponible dans les langages populaires, ou ne sont pas
applicable dans le contexte de l’ingénierie des langages dédiés basés sur des modèles.
Pour répondre à la question de la réutilisabilité dans ce contexte, nous proposons le patron
d’implémentation REVISITOR en tant que réponse à la question de la réutilisabilité des
langages. Le REVISITOR autorise l’extensibilité à la fois syntaxique et sémantique des
langages de langages dédiés basés sur des modèles, supporte la compilation incrémentale
et ne requière pas d’anticipation.

Les approches récentes dans ce domaine sont nombreuses mais souffrent habituellement
de deux problèmes principaux : soit elles ne supportent par la composition modulaire de
langages au niveau de leurs spécifications et de leurs implémentations, soit elles demandent
des connaissant pointues sur ds paradigmes de développement avancés. Ces problèmes
limitent leur adoption généralisée dans l’industrie. Non introduisons donc une approche
non intrusive de développement modulaire de langages, proposant la définition de modules
de langages avec une interface explicite qui peuvent être composés modulairement, à la
fois au niveau de leurs spécifications et de leurs implémentations.
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Nous évaluons dans un premier temps le patron d’implémentation REVISITOR dans
le cadre de l’extension de langages [104]. Ensuite, nous évaluons le REVISITOR dans le
cadre de la composition de langages [103].

Ensuite, pour répondre au challenge #2, nous proposons une approche pour optimiser
automatiquement les performances à l’exécution des interpréteurs de langages dédiés.
Dans de nombreux domaines les performances sont essentielles (par exemple pour le calcul
scientifique ou à hautes performances) et l’adoption des langages dédiés est freinée par
leur performance parfois insuffisante. Cela force les ingénieurs à optimiser manuellement
et intrusivement les implémentations de langages dérivées des spécifications. Dans cette
seconde contribution, nous proposons l’exploitation systématique des informations fournies
par les abstractions disponibles dans les métalangages utilisés pour la spécification des
langages afin d’améliorer automatiquement leurs performances. Nous réalisons notre
approche par-dessus un cadriciel de modélisation industriel appelé Eclipse Modeling
Framework (EMF) [150]. Pour cela nous complétons la chaine de compilation d’EMF
avec des optimisations spécifiques aux langages dédiés. Un des points importants de notre
approche est qu’elle ne demande pas aux développeurs de changer leurs habitudes de
développement ou d’assimiler de nouveaux concepts. Notre approche a donc le double
bénéfice d’isoler les développeurs des détails de bas niveau nécessaires à sa réalisation et
d’être directement applicable sur du code existant, sans modification préalable.

L’outillage qui entoure la réalisation d’outils qui répondent aux deux challenges dé-
veloppés dans cette thèse sont réalisé à l’aide du cadriciel EMF. Nous réutilisons le
métalangage Ecore pour la définition de la syntaxe des langages et un langage d’action,
appelé ALE pour la définition de la sémantique des langages. Nous utilisons ces deux
métalangages pour la définition des langages utilisés pour l’évaluation de nos approches.

Applications : Implémentations et Évaluations
Afin de valider et d’évaluer nos contributions, nous utilisons Ecore et ALE pour le déve-
loppement de plusieurs langages. Premièrement, afin d’évaluer la capacité de nos outils
à autoriser l’extension de langages, nous avons réimplémenté le langage de diagrammes
d’activité initialement proposé dans le cadre du TTC’152. Initialement monolithique, nous
validons notre approche par la modularisation par extension de ce langage.

De plus, nous évaluons l’impact du patron d’implémentation REVISITOR en comparant
notre implémentation basée sur le patron d’implémentation REVISITOR aux performances
de plusieurs implémentations du langage de diagrammes d’activité, chacune basée sur un
patron d’implémentation issu de l’état de l’art. Cette évaluation nous permet de conclure
que l’impact du patron d’implémentation REVISITOR sur les performances est modéré tout
en proposant une extensibilité accrue.

Ensuite, dans le but d’évaluer les capacités de réutilisation par composition de notre
approche, nous avons réimplémenté un langage dédié à la définition de systèmes de l’in-

2Tool Transformation Contest 2015 [111]
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ternet des objets, initialement proposé par Degueule et al. [41]. L’implémentation initiale,
bien que modulaire dans ses spécifications, ne supporte pas la compilation indépendante
de son implémentation. À l’inverse, notre implémentation suivant notre approche supporte
la compilation indépendante des implémentations de modules de langage.

Enfin, dans le but de valider notre approche d’optimisation des performances de
langages, nous avons implémenté quatre langages : un sous-ensemble de Java appelé
MiniJava [136], a un petit langage fonctionnel nommé Boa et inspiré d’OCaml, un langage
de définition de systèmes de machines à états finis et une copie du langage éducatif Logo.
Ensuite, nous avons évalué le gain de performance induit par notre approche en mesurant
les performances de nos implémentations en comparaison de techniques d’implémentations
issues de l’état de l’art.

Ces mesures de performance nous permettent de conclure que notre approche permet
l’obtention d’un gain de performance intéressant sans aucun effort de développement et
sans demander de connaissances supplémentaires aux ingénieurs de langages. Addition-
nellement, notre approche est aussi applicable de manière non intrusive sur des langages
existants.

i
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CHAPTER 1

INTRODUCTION

In this chapter, we first place this thesis in its research context (Section 1.1)
and detail the challenges we address (Section 1.2). Then, we present the
scientific contributions (Section 1.3), and the applications we built to validate
them (Section 1.4). Finally, we present the organization and the reading
flows (Section 1.5) of this manuscript. A list of publications produced in the
context of this thesis is also available (Section 1.6).

1.1 Research Context
An important challenge in software engineering is the development and maintenance of
complex systems. They involve many components that interact with each other, leading
to dependencies and interactions that lead to behaviors that are difficult to reason about.
Recent examples of complex systems are the Internet of Things or cyber-physical systems.
The design of such complex systems exceeds the cognitive and intellectual capacities of
a single actor. Consequently, their design must involve many stakeholders with diverse
and heterogeneous points of view, to address the multiple components and aspects of such
complex systems. The multiplication of the number of actors, views, and components
needed to define complex systems leads to many engineering challenges. Therefore, the
success of such engineering work requires the application of dedicated methodologies and
tools.

One solution dedicated to the challenge of developing complex systems is Model-
Driven Engineering (MDE) [143]. More precisely, MDE promotes the mitigation of the
accidental complexity inherent to the development of complex systems by bridging the
gap between the problems and solutions spaces through the use of models. A model is
a representation of a particular aspect of a system and provides relevant abstractions to
the domain experts. Even if models themselves are specific views of the system, their
representations are usually generic by default. However, multiple studies show that models
are better expressed using domain-specific representations [75, 117]. Such representations
are usually realized using Domain-Specific Languages (DSLs). That is to say, software
languages dedicated to a particular application domain. In this context, the dedicated
means of interaction with the models is then DSLs.

However, since “Software languages are software too” [57], this implies the application
of Software Engineering (SE) practices to the development of software languages, at every
step of software languages lifecycle: requirements, design, testing, deployment, evolution,
maintenance. In this context, the field of Software Language Engineering (SLE) is the
sub-discipline of SE that focuses on the rational and scientific construction of software
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languages — including DSLs — through the integration of various disciplines such as
program analysis, compiler construction, software transformation, and reverse engineering.

1.2 Problem Statement

Because of the diversity of the contexts in which DSLs are used, they come in many
shapes and forms. We distinguish two main categories of DSLs, Internal, and External
DSLs. Internal DSLs1 are embedded in the syntax of existing languages (e.g., fluent
APIs, staging [81]). Consequently, their embedding in an existing language makes them
dependent on the syntax, the semantics, and the tooling of this language. Conversely,
External DSLs provide their own syntax and semantics. This absence of dependency on an
existing language’s syntax and semantics requires the definition of dedicated tool support
to accompany the use of External DSLs.

In this thesis, we focus on the engineering of External DSL because, unlike Internal
DSLs, they are not constrained by the characteristics of a pre-existing language. Therefore,
External DSLs offer more opportunities for customization, which is necessary to meet the
diversity of uses that exist in the context of complex systems.

In counterpart, the creation of External DSLs requires to fully define the syntax, the
semantics, and the tooling. This task is extremely costly and requires specific engineering
knowledge that is not very widespread. Additionally, by definition, a DSL has a narrow
user-base of experts of the application domain targeted by the DSL, this is especially
true in comparison to popular General-Purpose Languages (GPLs). The combination of
these factors limits the applicability of External DSLs, and dedicated solutions must be
developed to mitigate such limitations.

External DSLs are created using specialized Integrated Development Environments
(IDEs), called language workbenches. Language workbenches assist in the development
of DSLs by offering useful language abstractions associated with generic or generative
approaches. Language engineers manipulate these abstractions through metalanguages;
in other words, languages specialized for the definition of specific aspects of languages.
Far from solely allowing the specification of languages using dedicated abstractions,
metalanguages are also designed to address the challenges inherent to the engineering of
languages. This includes the challenges of reuse, modularity, or performances, to name a
few. Finally, language workbenches assist in the transformation of language specifications
to implementations of services supporting the use of software languages (e.g., interpreters,
editors, debuggers).

However, the language-specific abstractions at the core of metalanguages are often not
exploited at their best for the implementation of the tool support essential to the use of soft-
ware languages by the language engineers. For instance, independently defined language
modules can suffer from the absence of a separate compilation of their implementations,

1Internal DSLs are also sometimes called Embedded, but the term is ambiguous [114] and will not be
used in this document
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leading to the loss of modularity of the language services implementation.
This forces language engineers to be confronted to the low-level intricacies of language

service implementations, which are either 1) costly to address in term of development
time (e.g., the manual definition of glue between modules, or the re-implementation
of slow language implementations) 2) preventing the realization of useful engineering
scenarios (e.g., the reuse of legacy artifacts).

How to best exploit the information available in the metalanguage ab-
stractions to improve the non-functional properties of software language
services implementation?

Research Question

The unexploited information available in language specification can be employed to
improve the non-functional properties of software language implementations. In this thesis,
we focus on two non-functional properties: reusability and performance. Consequently, we
draw the two challenges below from our research question:

Challenge #1 What are the relevant language implementation patterns
to improve the reusability of software language implementations? Which
information available in language specifications is useful to the transla-
tion of software language specification to these patterns?

Challenge #2 What are the relevant language implementation patterns
to improve the performances of software language implementations?
Which information available in language specifications is useful to the
translation of software language specification to these patterns?

1.3 Contributions
We tackle the aforementioned challenges through two contributions. In the context of
the reuse of software language implementations (challenge #1), it is important to provide
language engineering facilities for opportunistic reuse (e.g., extension and customization)
of existing DSLs to ease the definition of new ones. Current approaches to language
reuse either require anticipating reuse, make use of advanced features that are not widely
available in programming languages, or are not directly applicable in the context of
model-based DSLs. To do so, we propose a new language implementation pattern, named
REVISITOR, that enables the independent extensibility of the syntax and semantics of
metamodel-based DSLs with incremental compilation and without anticipation.
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Recent approaches in this area are plentiful but usually suffer from two main prob-
lems: either they do not support modular language composition both at the level of language
specifications and the level of language service implementations, or they require advanced
knowledge of specific paradigms which hampers wide adoption in the industry. We in-
troduce an approach to the modular development of language modules with well-defined
interfaces that can be composed modularly at the level of language specifications and
the level of language services implementation. We first demonstrate the REVISITOR

implementation pattern in the context of software language extension [104]. Then, we
demonstrate the REVISITOR implementation pattern in the context of software language
composition [103].

Then, to address the challenge of the performances of software language implemen-
tations (challenge #2), we propose an approach to optimize the runtime performances of
DSL interpreter implementations automatically. In many domains where performance
is key (e.g., scientific and high-performance computing), the implementations of DSLs
interpreters suffer from performance issues. These forces language engineers to handcraft
ad-hoc optimizations in the generated interpreters code. In this contribution, we propose to
systematically exploit the information available in the language specifications to derive
optimized language interpreters. We implement our approach on top of an industrial
standard (i.e., Eclipse Modeling Framework (EMF) [150]) by complementing its existing
compilation chain with specific optimizations. A key benefit of our approach is that it lever-
ages existing language specifications and does not require additional development effort
from language engineers who remain oblivious of low-level intricacies while preserving
the tool support accompanying External DSLs.

Our approaches have been implemented on top of the EMF ecosystem. We reuse the
Ecore metalanguage to define language’s abstract syntaxes and build two-compilers for
ALE, a metalanguage dedicated to the definition of operational semantics on top of Ecore
metamodels.

1.4 Implementations and Evaluations
To evaluate and validate our contributions, we use Ecore and ALE for the development of
several languages. First, to evaluate the aptitude of our tools to allow the extensions of
languages, we reimplemented the fUML language initially proposed in the context of the
Tool Transformation Contest of 2015.2 Initially monolithic, we validated our approach by
the modularization of both its specification and implementation.

Then, to validate the composition capabilities of our approach, we reimplemented an
existing DSL for the Internet of Things, initially proposed by Degueule et al. [41]. The
initial implementation is modular at the specification level but does not support the separate
compilation of its language services implementation. Instead, we propose an approach
that, although also modular at the specification level, supports the separate compilation of

2Tool Transformation Contest, 2015: http://www.transformation-tool-contest.eu/2015/
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the language services implementation.
Finally, to validate our contribution to the automatic optimization of the performance

of software language implementations (challenge #2), we implemented four languages: a
subset of Java [136], a small functional language inspired by OCaml called Boa, a system
of Finite State Machine (FSM) language and the educational Logo language. Then, we
evaluate the performance gain allowed by our approach in comparison to standard language
implementation approaches.

These experimentations allow us to conclude that our approach provides interesting
performance speedups without additional development effort and without requiring ad-
ditional knowledge from language engineers. Besides, our approach is also seamlessly
applicable to existing EMF-based languages.

1.5 Outline
The content of this thesis is structured into four parts. A graphical view of the structure of
this document is presented in Figure 1.1.

The first part (Part I) is composed of two chapters and introduces the preliminaries that
lead to this thesis’ contributions. Chapter 2 introduces the general background required for
the understanding of the remainder of this thesis. This chapter presents current practices
in SLE, with a focus on the engineering of DSLs in an MDE context. Chapter 3 reviews
the state of the art of the two aspects of DSLs addressed in this thesis: reuse and runtime
performances.

The second part (Part II) is composed of two chapters and presents our contributions.
The first chapter addresses the reusability (challenge #1), and the second chapter addresses
runtime performances (challenge #2). Chapter 4 presents our work on the safe and modular
reuse of software language modules. Finally, Chapter 5 presents our work on optimizing
compilers for DSLs interpreter implementations.

While this document is written to be read linearly, we propose alterna-
tive reading orders for the various interested readers. Readers wishing
to improve their understanding of the subject of MDE and SLE can
read Chapters 2 and 3 independently of the remainder of the rest of
the document, as a reference of the global context of the model-based
specification of DSLs, and the state of the art of DSLs reuse and runtime
performances.
Additionally, readers interested solely in language reuse can skip Chap-
ter 5 and Chapter 8, whereas readers interested only in language runtime
performance can skip Chapter 4 and Chapter 7.

Alternative reading orders
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Ch2. Background

Ch3. State of the
Art

Ch6. Technical
Background 

Ch9. Conclusion
and Perspectives

Ch1. Introduction

Part I - Preliminaries

Part II - Contributions

Part III -  Implementation
and Evaluation

Part IV - Conclusion
and Perspectives

Ch4. Language
Reuse

Ch7. ALE Compiler
for Language

Reuse

Ch5. Language
Performance Optimization

Ch8. ALE Compiler for
Language Performance

Optimization

Figure 1.1 – Outline of this thesis. Chapters are expected to be read from top to bottom,
following the dashed lines.
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The third part (Part III) contains three chapters and details the implementation and
evaluation of our contributions. First, Chapter 6 presents the technical background required
for the understanding of the remainder of the chapters of this part. Then, Chapter 7 presents
the implementation and evaluation of our approach to language reuse (challenge #1).
Finally, Chapter 8 presents the implementation and evaluation of our approach to the
automatic optimization of the runtime performance of DSLs (challenge #2).

The last part of this thesis (Part IV) contains a single chapter (Chapter 9) that summa-
rizes our contributions and presents the line of works resulting from the contributions of
this thesis.

1.6 List of Publications
The list of publications achieved during the development of this thesis is presented be-
low and separated between the accepted publications strictly related to this thesis (Sec-
tion 1.6.1), the publications currently under minor revision (Section 1.6.2), and other
publications (Section 1.6.3).

1.6.1 Main Publications

The Software Language Extension Problem (Experts voice) Manuel Leduc, Thomas
Degueule, Eric Van Wyk, Benoît Combemale. In International Journal on Software and
Systems Modeling (SoSyM), 2020 [105].

Modular Language Composition for the Masses (Conference paper — distinguished
artifact award) Manuel Leduc, Thomas Degueule, Benoît Combemale. In Proceedings of
the 11th International Conference on Software Language Engineering (SLE), 2018 [103].

Modular Language Composition for the Masses (Poster) Manuel Leduc, Thomas
Degueule, Benoît Combemale. Presented during the 11th International Conference on
Software Language Engineering (SLE), 2018.

Revisiting Visitors for Modular Extension of Executable DSMLs (Conference Pa-
per) Manuel Leduc, Thomas Degueule, Benoît Combemale, Tijs van der Storm, Olivier
Barais. In Proceedings of the 20th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (MODELS), 2017 [104].

1.6.2 Publications Under Minor Revision

Automatic generation of Truffle-based interpreters for Domain-Specific Languages
(Conference Paper) Manuel Leduc, Gwendal Jouneaux, Thomas Degueule, Gurvan Le
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Guernic, Olivier Barais, Benoît Combemale. Submitted to the 16th European Conference
on Modelling Foundations and Applications (ECMFA), 2020.

1.6.3 Other Publications
Concern-Oriented Language Development (COLD): Fostering Reuse in Language
Engineering (Journal Paper) Benoît Combemale, Andreas Wortmann, Erwan Bousse,
Gunter Mussbacher, Jean-Marc Jezequel, Jörg Kienzle, Manuel Leduc, Matthias Schöttle,
Misha Strittmatter, Olivier Barais, Philippe Collet, Robert Heinrich, Sébastien Mosser,
Tanja Mayerhofer, Thomas Degueule, Walter Cazzola. In Computer Languages, Systems
and Structures (COMLAN), 2018 [35].

SLEBOK: The Software Language Engineering Body of Knowledge (Dagstuhl Sem-
inar 17342) (Report) Benoît Combemale, Ralf Lämmel, and Eric Van Wyk. Edited by
Manuel Leduc. In Dagstuhl Reports 7.8, 2018 [33].

KevoreeJS: Enabling Dynamic Software Reconfigurations in the Browser (Confer-
ence Paper) Maxime Tricoire, Olivier Barais, Manuel Leduc, François Fouquet, Gerson
Sunyé, Brice Morin, Johann Bourcier, Grégory Nain, Ludovic Mouline. In Proceed-
ing of the 19th International ACM Sigsoft Symposium on Component-Based Software
Engineering (CBSE), 2016 [156].
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CHAPTER 2

BACKGROUND

In this chapter, we introduce the theoretical and technical background used in
this thesis. The presentation of these preliminary concepts eases the under-
standing of the State of the Art (Chapter 3). First, we introduce Model-Driven
Engineering (Section 2.1). Then, we present an overview of the notions re-
lated to Software Languages (Section 2.2). Finally, we focus on Software
Language Engineering (Section 2.3) and present its application in the context
of Model-Driven Engineering.

2.1 Model-Driven Engineering
Model-Driven Engineering (MDE) is a development paradigm that aims at mitigating the
accidental complexity inherent to the development of complex systems through the use of
models. While the term is overloaded and used with slightly different meanings in many
scientific and engineering communities, we base our work on the following definition,
quoting France et al. [62]:

“A model is an abstraction of some aspect of a system. The system de-
scribed by a model may or may not exist at the time the model is created.
Models are created to serve particular purposes, for example, to present a
human-understandable description of some aspect of a system or to present
information in a form that can be mechanically analyzed.”

MDE aim at taming the development of complex systems in two ways [34]:
• Separation of concerns: Multiple models are used to describe a system, each

describing a specific aspect of the system. Hence, the system’s aspects are defined by
relevant abstractions, notations, and modeling tools. Consequently, domain experts
can focus on independent aspects of complex systems (e.g., security, environmental
impact).

• Raising the level of abstraction: MDE helps to bridge the gap between high-level
and low-level concepts. To do so, MDE promotes the automatic code generation
from models to software artifacts (e.g., documentation, tests, components).

The MDE methodology reasons at four levels (cf. Figure 2.1). The description given
in the Engineering Modeling Languages book [34] inspires the following description of
the four levels, initially drawn from the Model-Driven Architecture (MDA) approach [56].
The real world (i.e., the modeled system) is presented at the right (M0 level). Models
representing this system correspond to the M1 level. Metamodels for the definition of these

11



Background

rep. of

meta-metamodel

⋹
metalanguage

conforms to

rep. of

metamodel

conforms to

rep. of
model

⋹
language system

M0M1M2M3

Figure 2.1 – Summary of MDE levels and their relations to models and languages [78].

models (e.g., the UML metamodel) correspond to the M2 level. Finally, meta-metamodels
are at the left (M3 level). Each level corresponds to a particular use/purpose of models (M1
for modeling systems, M2 for modeling languages, M3 for modeling metalanguages).

It should be noted that such a hierarchy arrangement of models according to their
particular purposes is not specific to MDA and has been used in other areas of computer
science. For instance, we see such hierarchy in other technological spaces [96] such as
grammarware in the context of grammars.

Metamodels Metamodels are at the core of MDE [5] and materialize the knowledge of
an application domain. Metamodels conform to meta-metamodels, and a meta-metamodel
is a representation of a metalanguage. Metalanguages are used by language engineers for
the specification of languages.

A language engineer exploit the metalanguages and their correspond-
ing language workbenches (M3) to specify languages and build their
corresponding tooling (M2).

Language Engineer

Many metamodeling formalism exist, such as entity-relationship metalanguages (e.g.,
AToM3 [101]) or object-oriented metalanguages (e.g., Meta-Object Facility (MOF) [127]).
MOF is the current industry standard for the definition of models and is used for the
remainder of this thesis. EMF [150] is a framework dedicated to the definition and
manipulation of models and is aligned with MOF. The MOF formalism freely inspires the
illustrative examples that follow.

Figure 2.2 presents an excerpt of a self-descriptive meta-metamodel (i.e., sufficient
to model itself). Using this meta-metamodel, we are also going to define the metamodel
of Petri nets (Figure 2.3). The concept of Package represents the containment of the
classes common to a metamodel. The concept of Class is qualified by a name. A Class
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Class

name: String

abstract: Boolean

Attribute

type: Type

Relation

containement: Boolean

Package

classes 0..*

properties 0..*

type
1..1

Property

name: String

maxMultiplicity: Int

minMulitiplicity: Int

generalization 0..*

Figure 2.2 – Extract of self-descriptive meta-metamodel.
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can eventually be abstract, can have a list of classes from which it generalizes and a
list of properties containing classes of type Property. Property is an abstract class
qualified by a name, minimal and maximal multiplicities (i.e., minMultiplicity and
maxMultiplicity). Two classes inherit (i.e., generalize) from Property: Attribute
and Relation. The concept of Attribute is qualified by all the properties of Property
by inheritance and by a type attribute (e.g., String, Boolean, Integer). In the same way, the
concept of Relation is qualified by all the properties of Property, can eventually be a
containment, and has a relation named type that holds a reference to Class. The notion
of containment is conceptually equivalent to UML’s composition relations [1].

Figure 2.3 illustrates the use of a meta-metamodel to define a metamodel. Our meta-
model example is based on Petri nets, a mathematical modeling language often used for
the description of distributed systems. A Petri net is composed of nodes and arcs. A node
can be either a transition or a place. This is modeled by the inheritance of the Transition
and Place classes to the abstract Node class. An oriented arc connects an incoming node to
an outcoming node (i.e., from and to relations). Finally, an arc is qualified by its weight of
type integer. The graphical representation of the metamodel follows UML’s class diagram
notation.

In addition to the conformance relation between a model and a metamodel, com-
plementary well-formedness rules are sometimes required. These rules express static
constraints that cannot be expressed using metamodeling formalisms. In the context of
MOF, well-formedness rules are defined using Object Constraint Language (OCL) [126].
As an example, in a Petri net an arc can only connect a transition to a place, or a place
to a transition, but should not connect two nodes of the same type (e.g., a transition to
another transition). One can observe that the Petri net metamodel presented here does
not enforce such constraint. In this case, an OCL rule can allow the static validation of
the well-formedness of Petri net models. An example of such OCL rule is presented in
Listing 2.1 and validates if the two nodes of an arc are of two different types. Similarly,
the weight of the arcs of a Petri net must be a strictly positive integer. Another OCL rule
can be used to validate this constraint.

Models Models conform to metamodels, and metamodels are representations of lan-
guages. Languages allow the specification of models by domain experts. One can observe
that the same set of relationships is repeated between levels M3 and M2 as well as between
levels M2 and M1.

Figure 2.4 presents an object diagram of an illustrative example of a Petri net that can

1 context Arc
2 inv arcsTypes: (self.from.oclIsKindOf(Place) and

self.to.oclIsKindOf(Transition)) or (self.from.oclIsKindOf(Transition) and
self.to.oclIsKindOf(Place))

Listing 2.1 – Example of well-formedness rule for Petri net

14



Background

Petrinet

Transition Place

Node

name: String

Arc

weight: Int

nodes 0..* arcs 0..*

from
1..1
to

1..1

Figure 2.3 – Illustrative Petri net metamodel conforming to the meta-metamodel of Fig-
ure 2.2.

be modeled from the Petri net metamodel of Figure 2.3. It is composed of two transitions –
T1 and T2 – and four places – from P1 to P4. Six arcs connect the places and transitions.
P1 is connected to T1, and T1 is connected to P2 and P3. P2 and P3 are connected to
T2. Finally, T2 is connected to P4. This representation of a Petri net, while accurate
and valid, is somewhat technical and does not represent the usual way of representing
Petri nets. Indeed, they are usually represented graphically using circles for the places,
rectangles for the transitions, and arrows between nodes for the arcs. Consequently, it is
not straightforward to reason on the modeled Petri net from its generic representation. We
will show in Section 2.3.1.b how languages can be exploited to provide domain-specific
representations of models.

A domain expert exploit the languages and their corresponding tool-
ing (M2) to define models (M1) of the systems of interest (M0).

Domain Expert

In this thesis, we focus on the specification of metamodels using metalanguages, in the
objective of defining languages. In the next sections, we present the notion of software
languages (Section 2.2) and their engineering (Section 2.3).

2.2 Software Languages
Software languages are artificial languages that can be defined with software [98]. They
hold an important role in computer science and SE, highlighted by the increasing number
of newly created software languages [97]. Software languages can be classified according
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Figure 2.4 – A model conforming to the Petri net metamodel of Figure 2.3.

to the intended application domain of the language. We present a non-exhaustive but
illustrative selection of application domains and associated software languages:

• configuration formats (e.g., json, and yaml).
• markup (e.g., html, and markdown).
• data query (e.g., SQL).
• security (e.g., ATSyRa [133]).
Another orthogonal axis of classification for software languages is the distinction

between General-Purpose Languages (GPLs) and Domain-Specific Languages (DSLs) [44].
GPLs are not attached to solve the problems of a specific application domain and intend to
be universal (e.g., Java, UML), whereas DSLs are specialized to solve the problems of a
well-identified application domain (e.g., SQL, awk). In practice, the border between DSL
and GPL is blurry, and some software languages initially designed to be domain-specific
are now considered as general-purpose (e.g., Fortran or Lisp) [44].

The main benefit of DSLs is their ability to allow the expression of problems at the
level of abstraction of the problem domain [43, 44]. Additionally, DSLs are a way to
reify the knowledge of an application domain on software and to make this knowledge
explicitly available to users. Similarly, the expression of problems at the application
domain level avoids the loss of knowledge when applied to lower levels of abstraction.
Additionally, reasoning at the level of abstraction of the problem simplifies the development
of peripheral tools such as tests, validators, model checkers, or optimizers. For instance,
it is easier to identify an unreachable state in a state machine program defined using a
dedicated formalism compared to the same analysis applied on a similar program defined
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using a GPL. Besides, there is some evidence that DSLs allow their users to be more
productive [92], but it is fair to observe the lack of a strong consensus on the topic [8].

However, DSLs are not as widely adopted as it could be expected from its promises. In
practice, DSLs are costly to develop and maintain. Indeed, DSL development is a complex
task that requires specialized knowledge and tools. Also, linking concepts between
languages is notoriously challenging [28], and the accumulation of small languages caused
by the adoption of DSLs can lead to compatibility and integration issues that increase the
cost of DSLs.

From a design point of view, languages are composed of two fundamental concerns: the
syntax and the semantics. These terms are inspired by the natural language vocabulary and
hold similar meanings.1

The syntax governs the form and notation of a language, and the semantics defines the
meaning associated with its syntax. In the context of software languages, we distinguish
between the concrete syntax and the abstract syntax. The concrete syntax can be textual or
graphical, and represent the visual notation manipulated and observed by the language’s
users. The abstract syntax is the minimal representation of the syntax of a software
language, containing only purely structural information, and striped from concepts needed
only for the language’s visual representation. Figure 2.5 presents those concerns and their
relations, annotated with the common approaches used for the specifications, described
in Section 2.3.1. The core of a language is conceptually constituted of an abstract syntax,
complemented with concrete syntaxes and semantics. The concrete syntaxes and semantics
are decoupled and can evolve independently. Degueule et al. relaxed the constraints of the
abstract syntax and propose an approach where semantics can be modularly applied on
multiple abstract syntaxes [40, 41].

It should be noted that the conceptual relation between language concerns does not
constrain the order of definition of their specifications, that often co-evolve in practice.
The two main language technological spaces are named grammar-first and model-first,
where respectively a textual concrete syntax is first defined and an abstract syntax is —
eventually implicitly — derived from the former, or the abstract syntax is defined first in
the form of a metamodel, and a concrete syntax is specified in a second step.

2.3 Software Language Engineering
Software languages face the same development challenges as other software (e.g., mainte-
nance, test, evolution). Addressing these challenges implies the application of Software
Engineering (SE) practices to the development of software languages at every step of
the software language lifecycle: requirements, design, testing, deployment, evolution,
maintenance. Software Language Engineering (SLE) is a sub-discipline of SE dedicated
to the engineering of languages. SLE abstract away from specific kinds of languages, as
presented in Section 2.2, but focuses on the engineering aspect of language construction.

1We acknowledge that we exclude the pragmatics from this analogy.
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Figure 2.5 – Relationship and cardinality of software language concerns.

This involves the application of rational and scientific methods to produce the best engineer-
ing results. Concretely, SLE applies the methods of various disciplines such as program
analysis, compiler construction, software transformation, and reverse-engineering.

In the context of SLE, languages are developed using specialized languages, dedicated
to the specification of the various aspects of languages. Language specifications are then
translated to language services, for instance, editors, interpreters, or validators. Languages
used for the specification of languages are called metalanguages and often take the form of
DSLs applied to the specification of specific aspects of languages. For instance, the gram-
mar of a textual language can be specified using metalanguages with formalism close to
the Extended Backus-Naur Form ((E)BNF) notation [175] (e.g., Xtext [55], ANTLR [129]
or SDF [69]). The translation of language specification to language services can follow dif-
ferent patterns, usually by compilation to a GPLs, or by interpretation (e.g., Spoofax [85],
Rascal [89]).

A large part of the SLE research effort focuses on the study of the relevant metalan-
guages and their transformation into language services implementation. In the following
section, we present the concepts used for the specification of languages (Section 2.3.1), the
patterns used for the implementation of language services (Section 2.3.2), and the language
workbenches that support DSLs development (Section 2.3.3).

2.3.1 Domain-Specific Language Specification

DSL specifications are a cornerstone of SLE and are used as high-level formalism providing
the relevant abstraction to describe languages. From those specifications, a large diversity
of language service implementations can be derived. Usually, the main artifact is a
language interpreter, complemented with peripheral tools such as language editor services,
debuggers, profilers, documentations, or tests.

Dedicated metalanguages exist for every layer of languages, from the concrete syntax
and the semantics to more specific layers such as type systems, scopes, or tests. In the next
sections we focus on the three central layers of languages: abstract syntax (Section 2.3.1.a),
concrete syntax (Section 2.3.1.b), and semantics (Section 2.3.1.c).
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The term specification is greatly overloaded in computer science and
often includes descriptive specifications, eventually defined using natural
languages. In this thesis, we focus on prescriptive specifications that can
be systematically manipulated by software to produce useful results.

Specifications

2.3.1.a Abstract Syntax

The abstract syntax of a language is a data structure that represents the logical repre-
sentation of its concepts and their relations, without reference to its concrete representa-
tion (i.e., its concrete syntax, presented in Section 2.3.1.b). For instance 1 + 2 * 3 and
add(1, mult(2,3)) are different notations for equivalent arithmetic expression.

Abstract syntaxes are an essential part of language specifications, allowing the auto-
mated processing of language concepts without relying on its concrete syntax, usually
presented in the form of an Abstract Syntax Tree (AST).

Abstract syntax formalisms intend to define the set of valid AST instances of the
language. The three most widely used formalisms are metamodels, (context-free) gram-
mars, and Abstract Data Types (ADTs). Many works study these formalisms and present
the commonalities and conceptual relations between them [3, 12, 95]. The notions of
metamodeling are already presented in Section 2.1. Consequently, the remainder of this
section focuses on grammars and Abstract Data Types (ADTs).

Grammars are historically used to formally specify the abstract syntax and concrete
syntax of textual languages [7], but their use has been extended to other aspects such as
editor support (e.g., code outline), parser, or error reporting. More precisely, a grammar is
a way to define a data-structure and its notation in a single formalism. The most current
example of grammar is (E)BNF-like notations, but data format definition (e.g., XML’s
DTD or JSON schema) can be seen as a way to define a grammar on top of general-purpose
data formats.

ADTs are inspired by the mathematical notion of algebraic structure and are defined
by the set of possible values and the set of operations that can be applied to the values. In
practice, and ADT has a name, encapsulates its concrete implementation, and provides a
set of operations (e.g., create, read, combine) [36].

Figure 2.6 shows two illustrative definitions of the abstract syntaxes using a grammar
formalism (Figure 2.6a) and an ADT (Figure 2.6b). These abstract syntax definitions
use, respectively Antlr4 [129] and Scala [122]. The grammar formalism defines the
abstract syntax and the concrete syntax in the same formalism, whereas an ADT represents
purely the concepts of the application domain using classes. The ADT instead allows the
explicit definition of the relations between the language’s concepts, whereas the grammar
formalism defines only identifiers (i.e., ID tokens), and an additional analysis phase is
required to proceed to the identification of relations between the language’s concepts.
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The term grammarware is introduced by Klint et al. [88] to designate the technical
space of grammars and grammar-dependent softwares. Similarly, the term modelware is
used to designate the technical space of models and model-dependent softwares.

2.3.1.b Concrete Syntax

The concrete syntax of a language represents the interface with which users of the language
interact, and may be either textual or graphical. Textual languages are represented as a
structured sequence of characters, whereas graphical languages have their own ad-hoc
data-structures that are presented to the user through graphical interfaces.

Textual concrete syntaxes are defined in terms of production rules, often using variations
of the (E)BNF notation [174], that defines rules that specify the — possibly infinite — set
of valid sequences of characters of the language. A parser generator is a tool that generates
a parser implementation from language specifications.

Graphical concrete syntaxes are usually represented to the user using geometric
shapes (e.g., box and arrows) annotated with text, with which users can interact mainly
using the mouse or a touch screen [144]. Moreover, some graphical concrete syntax for-
malisms promote the use of mathematical or tabular notations [166]. Well-known examples
of language with a graphical syntax are UML or Scratch [135].

Figure 2.7 shows two illustrative concrete syntaxes for the Petri net use case presented
in Section 2.1. Both are logically equivalent to the object diagram of Figure 2.4, but
instead of proposing a generic view, they offer domain-specific representations of the
model. On the left (Figure 2.7a), is shown a graphical concrete syntax that matches
the usual representation of Petri nets in the literature. On the right (Figure 2.7b), a
textual concrete syntax of the same Petri net model is proposed. The domain-specific
graphical representation of the Petri net model uses its traditional representation, using
circle, rectangle, and arrows. Instead, the textual representation uses common language
design idioms, such as a scoping based on nested brackets and keywords to identify
concepts (e.g., petrinet, place, transition, arc).

2.3.1.c Semantics

The semantics is the part of the language that gives meaning to its concepts. It is realized
by the interpretation or compilation of the abstract syntax to obtain a result. Regardless
of the mean of execution of the semantics, the results can either be side effects (e.g., text
printed on the standard output) or software artifacts (e.g., documentation, logs or binary
executables).

The dynamic semantics defines the runtime behavior of the language and often have
a notion of state or evolution over time. There exists three main kinds of dynamic
semantics: Axiomatic, Operational, and Translational. They are not exclusive, and a
language can have multiple cohabiting dynamic semantics of each kind, for instance, for
performance or portability reasons. While they are all presented below, the remaining of
this thesis focus on operational semantics.
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1 grammar Petrinet;
2

3 petrinet : ’petrinet’ ’{’ (node|arc)* ’}’ ;
4

5 node: transition|place;
6

7 transition: ’transition’ ID;
8 place: ’place’ ID;
9

10 arc: ’arc’ ’from’ ID ’to’ ID ’weight’ INT;
11

12 ID : [a-z]+ ;
13 INT : [0-9]+ ;
14 WS : [ \t\r\n]+ → skip ;

(a) Illustrative grammar definition for the Petri net abstract syntax of Figure 2.3 using Antlr4.

1 case class Petrinet(nodes: List[Node], arcs: List[Arc])
2 abstract class Node
3 case class Transition(name: String) extends Node
4 case class Place(name: String) extends Node
5 case class Arc(from: Node, to: Node, weight: Int)

(b) Illustrative ADT definition for the Petri net abstract syntax of Figure 2.3 using Scala.

Figure 2.6 – Two illustrative abstract syntaxes using grammars and ADT for the Petri net
use case presented in Section 2.1.

1

1

1

1

1 1

P3

P1

P2

P4

T1 T2

(a) Graphical representation of the Petri net instance
of Figure 2.4.

1 petrinet {
2 place P1
3 transition T1
4 place P2
5 place P3
6 transition T2
7 place P4
8

9 arc from P1 to T1 weight 1
10 arc from T1 to P2 weight 1
11 arc from T1 to P3 weight 1
12 arc from P2 to T2 weight 1
13 arc from P3 to T2 weight 1
14 arc from T2 to P4 weight 1
15 }

(b) Textual representation of the Petri
net instance of Figure 2.4

Figure 2.7 – Two illustrative concrete syntaxes for the Petri net use case presented in
Section 2.1.
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Axiomatic Semantics is an approach that relies on mathematical logic, e.g., Hoare logic.
An axiomatic semantics defines the behavior of programs by defining assertions that always
hold. The intended use of axiomatic semantics is to reason in terms of properties satisfied
by a program, for instance, its termination or memory access safety.

Operational Semantics defines how a program is executed by describing transition func-
tions between program states. Operational semantics are divided into two kinds, small-step
operational semantics define the execution as a sequence of small state transformations,
whereas big-step operational semantics describes an execution as a single big transfor-
mation step — from the initial state to the final state — composed of sub-transformation
steps.

Translational Semantics defines programs in terms of their outputs, often in the form
of a translation from an input language to an output language (e.g., compilers). The term
denotational semantics can also be found in the literature whenever the constructs of the
translation are mathematical objects.

2.3.2 Domain-Specific Language Services Implementation
DSLs are specified at high levels of abstraction using metalanguages. To be usable by
domain experts, DSLs are translated into language services. For instance: interpreters,
debuggers, or editors. These implementations rely on regular and well-documented
implementation patterns.

Such implementation patterns come with non-functional properties that impact signif-
icantly the scenarios offered to language engineers and domain experts, for instance, in
terms of modularity, performance, or tool support.

The translation from highly abstract metalanguages to language services implementa-
tion is a complex task that involves compilers construction knowledge in addition to the
understanding of the expected shape of the implementations. In the context of SLE and
MDE, this translation is realized using model transformation techniques.

The patterns involved in the implementation of language aspects are a deeply studied
topic that aims at defining reproducible implementation patterns with well-defined and
documented properties. Hills et al. propose a comparison of two implementation patterns
in terms of maintainability and efficiency [72]. Spinellis [147] propose a classification of
language implementation patterns, later extended by Mernik et al. [115].

2.3.3 Language Workbenches
The term language workbench was introduced by Martin Fowler in 2005 [61], but the
idea is not new and can be traced back to the CENTAUR system [17], in the late eighties.
A language workbench is an IDE dedicated to the creation of languages. They usually
support a predefined set of metalanguages and provide tools supporting the engineering
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tasks involved during the development life-cycle of languages. Examples of recent language
workbenches are LISA [116], Melange [41], MontiCore [93], Neverlang [157], Rascal [89],
or Spoofax [85], to name a few. Erdweg et al. compared ten language workbenches
and their features [51]. Coulon et al. propose an approach to synchronize models or
programs between multiple language workbenches, to bridges the gap between language
workbenches and benefit from their combined strengths [38].

2.4 Summary
In this chapter, we introduced MDE as a relevant approach for the definition of complex
systems. We also presented DSLs as a solution to raise modeling tools to the level of
abstraction at which domain experts reason when modeling complex systems. Finally,
we show how the development of DSLs benefits from the practice of SLE. In the next
chapter, we detail the current state of the art of reuse and performances in the context of
the engineering for software languages for MDE.
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CHAPTER 3

STATE OF THE ART

In this chapter, we first define a scope for our state of the art (Section 3.1).
Then, we explore the state of the art of Software Language Engineering
regarding reuse in software language engineering (Section 3.2) and automatic
optimization of language runtime performances (Section 3.3) exhaustively.
Finally, we explore and compare the contributions to tool support for the
development of languages (Section 3.4). To do so, we review the body of work
that contributes to those concerns. We close this chapter by presenting the
conclusions we can draw from this study (Section 3.5).

In Section 1.2, we identified two challenges drawn from the need for deeper ex-
ploitation of information available in the abstractions used for the specification of DSLs.
Challenge #1 aims at improving the reusability of software language implementations,
and challenge #2 aims at improving the runtime performance of DSLs.

In order to support the integration of DSLs in an MDE context, both challenges have
the additional requirement to be compatible with the tools support, which is essential to the
work of language engineers. Indeed, the work of language engineers is supported by tools
and methods that focus on abstractions specific to the definition of languages. However,
improving the non-functional properties of language implementation is often realized by
introducing new abstractions on the tools that support the definition of languages. We
claim that the optimization of the non-functional properties of language implementation
can instead be improved by deeper exploitation of the existing abstraction manipulated by
language engineers.

The objectives and motivations underlying these challenges are not new, and a tremen-
dous amount of work is already available to support them. Section 3.1 defines further the
three concerns that help us scope our state of the art. The first concern relates to language
reuse in the context of SLE (Section 3.2). Then, the second concern relates to the automatic
optimization of language runtime performances (Section 3.3). Finally, the third concern
relates to the tools supporting the development of DSLs (Section 3.4).

3.1 Context and Scope
In this section, we present the concerns that help us scope our state of the art, and that led
to the identification of the contributions presented in Part II. Figure 3.1 presents the three
concerns we follow to explore this state of the art.

We select two concerns derived from our research question: improving the reusability of
DSLs implementations and improving their runtime performances. Also, placing ourselves
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Tool Support (§3.5)
- IDE integration 
- Exploit Language Abstractions 
- Type Safe 
- Explicit AST 

Reuse (§3.2)
- Opportunistic 
- Independent Extensibility 
- Incremental Compilation 

Performance (§3.3)
- Language-Specific Optimizations 
- Application Domain Agnostic 

Figure 3.1 – Presentation of the concerns of the State of the Art.

in the context of the development of complex systems, supported by MDE, we aim at
preserving the use of existing high-level metalanguages and their tool support.

From these observations, we selected the three following concerns: reuse, performance,
and tool support detailed below. Each concern presents the dimensions we deem of interest
to qualify them.

Reuse To evaluate if an approach to language development promotes reusability is not a
trivial task. We focus on three dimensions to qualify language reuse: opportunistic reuse,
independent extensibility, and incremental compilation. Those dimensions are drawn from
the Language Extension Problem, presented in Section 4.1.

The Language Extension Problem is inspired by the seminal Expression Problem ini-
tially proposed by Walder [169], and later explored by many [155, 180]. More specifically,
the Language Extension Problem lifts the Expression Problem at the level of software
languages.

Opportunistic Reuse In the spirit of information hiding and encapsulation, the
development of language must not necessarily be done with reuse in mind; in other words,
reuse should not have to be anticipated. At the level of language service implementations,
that also implies the use of implementation patterns that adapt modularily to existing legacy
artifacts. In other words, without the need to regenerate or edit existing code to proceed to
the composition.

Independent Extensibility It should be possible to extend languages independently
in terms of syntax and in terms of semantics. New syntactic variants should be easily
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adapted to handle existing semantics, and new semantic variants should handle pre-existing
syntaxes. It should be possible to extend languages in a non-linear way, allowing the
composition of independent extensions together.

Incremental Compilation Existing implementations of the syntax and semantics of
language modules should not be modified, duplicated, or recompiled. Whole language
compilation would require access to the source code of the base language — which might
not be available — and would incur a non-linear performance penalty when compiling
extensions.

Performance We focus on two dimensions to qualify the performance concern: language-
specific optimization, and application domain agnostic.

Language-Specific Optimization We already stated that software languages are soft-
ware too [57]. Consequently, general-purpose performance optimizations apply to software
language implementations. However, additional optimizations can be applied to language
implementations by taking into account the language-specific concepts manipulated on the
language specifications. Indeed, reasoning at the level of language specifications allows
the application of more relevant optimizations on the language implementations. Hence,
achieving better runtime performance compared to general-purpose optimizations.

Application Domain Agnostic Whereas performance optimizations should take into
account the specificities of languages, optimizations must not anticipate the application
domain of languages. In other words, optimizations should be universal and should not
anticipate specific application domains. With this dimension, we promote the applicability
of performance optimization techniques to more and possibly unanticipated application
domains.

Tool Support The work of software engineers is best done with the support of the
relevant tools, and the introduction of additional reusability or performance should not
interfere with the existing tool support of languages. While our goal is to improve the
non-functional properties of language implementation, we consider that this should not
be achieved at the cost of more restrictive or more complex language development tools
and methods. Consequently, we selected four dimensions that help us qualify tool support
in the context of MDE: IDE Integration, Exploit Language Abstractions, Type Safe, and
Explicit AST.

IDE Integration The tool support of language development should be integrated
into a language workbench that supports the tools that reflect the methodology supporting
existing language development paradigms. Additionally, switching paradigms is costly
and slow and eventually breaks the compatibility with legacy language specifications.
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Exploit Language Abstractions The integration of non-functional properties on
language implementation should not require the introduction of specific abstractions
(e.g., patterns or annotations) at the level of language specifications. In other words,
it should be done based solely on abstraction dedicated to the definition of languages,
allowing language engineers to focus on the functional aspect of languages.

Type Safe We aim at maintaining the static type safety usually found in popular
modeling workbenches such as EMF.

Explicit AST We place our works in a modelware approach. That entails additional
properties required for the compliance to existing metamodeling tools. Metamodels are
typed structure, guaranteeing the well-formedness of their models, hence the typing relation
between models, metamodels, and semantics must be enforced and verifiable.

3.2 Reuse in Software Language Engineering
Languages are complex artifacts that require specialized development skills. Moreover,
the same development process typically repeats itself from scratch for every new DSL. In
other words, reuse rarely occurs in practice during the development of DSLs. Moreover,
to foster their adoption, the productivity benefits of DSLs must offset the initial effort
invested in their creation. Therefore, researchers have provided tools and techniques to
assist language engineers in the development of new DSLs by reusing — part of – legacy
DSLs.

DSLs are, by their very nature, meant to be tailored to a particular domain of application.
Although this may suggest that there are few opportunities for reuse from one DSL to
another, it is not uncommon to see different DSLs share recurring paradigms (e.g., state-
transition, workflows, actions, and queries, units) [132]. Over the years, researchers have
proposed many approaches seeking to improve language reuse. We give a brief overview
of these in the following sections. Many of these techniques ultimately materialize as
features of a language workbench, as presented in Section 2.3.3.

One important notion related to the reuse of languages is their variability. Svahnberg
et al. [153] distinguish two types of variability, open and closed variability that encompass
the two main views on reuse and are defined in those terms: “[...] a variation point is open
for adding new variants or for removing old ones. During all other phases, it is not possible
to change the set of available variants, and then the variation point is closed”. We discuss
later how each type of variability impacts the reusability of languages.

Specification techniques for DSLs reuse are diverse, and this diversity is reflected by
the richness of the contributions to the topic. From attribute grammars [179] to Parsing
Expression Grammars [60] and scannerless parsing [163], the literature is rich in reuse
techniques for grammars. The same can be said of the metamodeling world, where the
problem of language reuse often boils down to the problem of metamodel reuse [49]. In
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both cases, solutions either require the definition of explicit language modules that have
built-in modularity mechanisms (e.g., extension points) or propose reuse operators that
operate on existing languages to build new ones [41].

On the semantics side, formal approaches have been modularized (e.g., modular
structural operational semantics [118], modular denotational semantics [106]) as well as
their concrete realization e.g., in K [141], Redex [58], or DynSem [161].

The question of language reuse is also studied at the language implementation level.
Researchers have thus developed reuse-oriented design patterns to implement such con-
crete artifacts modularly (e.g., [66, 104]). While most of these seek to reuse languages
that are developed within the same technological space or that run on the same virtual
machine, other authors tackle the problem of composing heterogeneous languages [9].
Recent advances in projectional editing also pave the way for tool-supported language
composition [164].

A recent advance in SLE is the notion of language product lines [112, 94]. Language
product lines are derived from software product lines [134]. A software product line can be
defined as a set of software that shares a common core of functionalities while presenting
different features dedicated to the adaptation of the core to specific contexts. Language
product lines are then product lines where the products are languages. Engineering a
language product line requires expressing the variability of such a family of languages.
Typically, features of the variability model correspond to language features. Language
features are reusable pieces of language that can be composed to derive a new specialized
language variant from the family, according to a particular configuration. Language product
lines typically make explicit the closed variability of a family of languages: the set of
features of a language can be tailored, but it is hard to further adapt the resulting language
to a new context of use.

Finally, the question of composition is not restricted to language engineering. Ferré
et al. [59] address the construction of customized logics by the composition of indepen-
dently defined logic functor, than can be considered as a form of modules. Their approach
distinguishes between the Programmer that defines the logic functors, and the Application
Designer that uses the functors to defines a customized logic for specific domains. This is
comparable to the relation between Language Engineers and Domain Experts presented in
our work.

In the remainder of this section, we study the approaches that address the reusability
of languages: first at the syntactic level (Section 3.2.1), then at the semantic level (Sec-
tion 3.2.2).

3.2.1 Syntax Reuse

As explained in Section 2.3.1.a, two main abstract syntax formalisms exist: metamodels
and (context-free) grammars. The question of reuse is studied for both alternatives and
resulted in different, yet complementary, contributions.
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Syntax Reuse and Grammarware The reuse of grammar is a topic that raised much
interest over the years and is known to be challenging for two reasons: parsing performance
and ambiguity resolution. Indeed, the composition or extension of grammars often leads
to exponential combinatorial complexity or ambiguities. The initial research challenge
regarding reuse in grammarware was the exploration of parser implementation patterns that
support efficient and modular parsing. However, parsing implementations, even following
well-defined patterns, are notoriously difficult to write and maintain. Hence, a large body
of work focuses on the definition of high-level formalisms that allow the specification of
modular grammars while ensuring essential properties such as debugability, error reporting,
safe and modular reuse, or separate compilation. Schwerdfeger et al. present a summary of
parsing techniques and their limitations regarding their extension and composition [145].
Of course, many works offer approaches to mitigate such limitations.

Kaminski et al. [84] propose an approach that allows the static identification of com-
position conflicts of attribute grammar and the automatic (i.e., without expert knowledge
from the part of the user that proceed to the choice and composition of the composed
languages modules) composition of extensions over a base language.

Butting et al. [22] propose an approach to the systematic composition of software
language syntaxes by allowing the definition of under-specified grammars with abstract
production rules. This modular definition of grammar allows closed-world reasoning
through the definition of language families using language product lines [183, 94].

Xtext offers a bridge between the grammarware and modelware technological spaces
by synchronizing a metamodel from a type-annotated (E)BNF notation that relies on
the LL(*) parser generator Antlr 4 [130], and vice-versa. Xtext supports only the linear
extension of grammars by overloading or addition of production rule. Hence, it does not
allow the modular composition of independently developed grammars.

Object Grammars [151] tackles the bidirectional mapping between graph-based object
models and BNF grammars. Hence, bridging the gap between grammarware and model-
ware. In addition, Object Grammars also address the question of reusability through the
questions of composability and extensibility.

Syntax Reuse and Modelware In the context of modelware, the syntax is represented
by a metamodel. We saw in Section 2.1 that metamodels are also models. Hence, the
question of syntax reuse can be reduced to the question of model reuse. The question of
metamodel reuse has been introduced early [102], and lead to research efforts dedicated to
a better understanding of metamodels and their properties. Emerson et al. [49] identify
the need for a tool-supported approach of MDE, in particular for tasks related to reuse.
Similarly, Vallecillo [159] motivates the use of DSL composition to mitigate the complexity
inherent to the development of complex systems using models.

The effort toward syntax reuse on modelware can be classified into two categories. On
the one hand, approaches that promote the definition of modules with a strict notion of
encapsulation. First, the keywords-based modularization [31] supports the construction of
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DSLs through the definition of DSLs modules and their composition. The abstract syntax is
defined in an object-oriented model, conceptually close to a metamodel, and the semantics
is defined using a translational semantics formalism. Then, Zivkovic et al. [182] introduce
the notion of language modules with explicit interfaces and emphasize the interest of
information hiding and its impact on module composition. Finally, Wende et al. [171]
propose a role-based approach to the definition of language modules, integrated into the
LanGems language workbench [46].

On the other hand, we can find approaches that define new kinds of relationships
between modules. First, Meta Programming System (MPS) [77] is a projectional editor in
which users directly manipulate the AST through graphical projections of the AST in the
editor. Projectional editors can mimic the look and feel of textual editors by fine-tuned
interaction with the graphical projection of characters streams. MetaMod [152] is built
on top of MPS and defines a metamodel formalism dedicated to the definition of modular
metamodels. Modularity specific concepts are introduced in an ad-hoc metalanguage
formalism build to improve reusability in modeling. Steel et al. propose the notion of
model typing [149], later extended to model subtyping by Guy et al. [67]. Both works
formalize the notion of typed relation between models to improve their safe and flexible
reuse. Degueule et al. exploit the notion of interfaces and study the specificities of its
application on languages [40]. The notion of language interface is applied as a first-class
entity in the Melange language workbench [41], which allows the composition of language
modules while preserving the compatibility with pre-existing tool support. Melange none
the less requires access to language module specification and does not provide support for
incremental compilation. MetaDepth [100] introduces the notion of a-posteriori typing
that allows the definition of a typing relationship between two modeling levels at use
time instead of definition time. This flexibility in typing opens the opportunity to reuse
metamodels in unanticipated contexts. Finally, Cuadrado et al. [39] propose an approach
to the reuse of metamodels in unanticipated contexts by defining an open Meta-Object
Protocol mechanism [86, 87] for metamodels. That way, metamodel semantics can be
extended modularly.

3.2.2 Semantics Reuse

The idea of reusing language specification is a topic well-studied for the definition of
language semantics too. Similarly to the syntax, the reuse of semantics has been explored
at the level of language specifications as well as language services implementation.

Starting with language specifications, the time-honored Structural Operation Seman-
tics (SOS) notation, used to define operational semantics formally, have been modularized
through many incremental modifications of its notation [118, 119]. The notion of reusable
components of semantics specification is proposed on top of these notations [29]. Those
components are called funcons and are intend to be defined “once and for all” and be highly
reusable. While funcons are dedicated to being reusable for the specification of language
semantics, funcons are composed of the specification of their syntax and semantics, which
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are built to be composed with all the other funcons. Experiments have been conducted to
port the funcons to the K framework [120] and Spoofax [14], allowing the specification of
executable and reusable language interpreters modules.

More generally, semantics formalisms have the expressiveness to abstract away the
modularity-specific details and provide type checking mechanisms to ensure the well-
formedness of modules composition. Kermeta [79] allows the specification of operational
semantics over metamodels, following an open-class mechanism [32].

Kaminski et al. [84] extends the Expression Problem and introduce an additional
constraint, the automatic composition of language extensions. No “glue code”, i.e., code
dedicated solely to the interconnection of extensions, must be required from the user to
compose a collection of language extensions. Consequently, language extensions can be
composed safely by users, even without knowledge of language engineering.

3.2.2.a Interpreter-Based Implementations Reuse

At the level of language semantics implementation, the operational semantics of languages
is often implemented in the form of interpreters [64]. Many variations of the interpreter
pattern have been proposed to address the problem of semantics implementation reuse.

In the functional programming paradigm, many approaches to modular interpreters
have been proposed. This includes tagless interpreters [24], monad transformers [107],
lightweight modular staging [139], Cake Pattern [74], or Data Types à la Carte [154]. All
those approaches share the capability to define extremely reusable language modules. How-
ever, they all rely on advanced type-system mechanisms that are not found in mainstream
object-oriented languages, which hampers their larger adoption.

In the object-oriented paradigm, many works address the implementation of modular
interpreters. First, Object Algebras [124] bridges the gap between functional and object-
oriented styles by allowing the definition of tagless-like interpreters, where the structure of
programs is defined in the form of abstract operations. However, unlike tagless interpreters,
Object Algebras does not require advanced type systems features such as F-bounded
quantification [23]. Multiple contributions extend over the Object Algebras. Oliveira
et al. [142] apply Object Algebras to the feature-oriented definition of language modules.
Inostroza et al. [76] define reusable modular languages on top of Object Algebras, by
lifting existing semantics in unanticipated contexts. Finally, Zhang et al. [181] propose
an approach that allows the definition of extensible visitors on explicit metamodels using
mainstream object-oriented features and code generation from annotated Object Algebra.

3.2.2.b Visitor-Based Implementations Reuse

The Visitor pattern [64] is probably the most used object-oriented implementation pat-
tern for language semantics but suffers from a lack of modularity when new syntactic
variants are introduced. Many approaches aim at mitigating the limitations of the Visitor
pattern. Oliveria proposes two approaches to implement modular visitor components [123]
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but requires the use of features specific to the Scala language and not available in main-
stream object-oriented languages. Wang et al. [170] propose a variation of the Visitor
pattern by exploiting the covariant type refinement of return types, available in most main-
stream object-oriented languages, to implement modular visitor. However, this approach
is limited in its applicability because it forces reuse to be anticipated, contradicting to
Opportunistic Reuse dimension. Finally, Torgersen proposes four solutions to the Expres-
sion Problem [155] in the form of variations of the usage of genericity in Object-Oriented
programming. Nonetheless, the applicability of those solutions requires anticipation during
the definition of the reused module.

3.3 Runtime Performance Optimization in Software Lan-
guage Engineering

In this section, we first describe the main concepts and research related to the runtime
platforms underlying the execution of languages. Then, we explore the contributions
related to the optimization of the languages themselves.

Performances of compilers and interpreters [54] have been deeply studied, and com-
piled programs are usually more efficient, especially when the compiler performs opti-
mizations that benefit from platform-specific performance features (e.g., according to a
given processor architecture). Additionally, interpreted programs pay the price of the
interpretation overhead. This overhead is due to the execution of the interpreter itself,
in addition to the program. With regard to performance optimization, one interesting
advantage of interpreted languages over compiled ones is their ability to take into account
their runtime information (e.g., input parameters or runtime data). Such information is
either unavailable at compilation time, or difficult to infer and can help interpreters to take
performance-related decisions during program execution.

At the frontier of compilation and interpretation stands the Just-In-Time (JIT) com-
pilation [6]. The JIT performs the compilation of fragments of a program during its
interpretation. The objective of such a mechanism is to: identify the relevant parts of the
program that would benefit the most from the compilation; then, proceed to their compila-
tion in parallel to the interpretation. This JIT compilation process itself has a price in terms
of performance. This price is expected to be compensated by the speedup induced by the
substitution to a faster compiled version. Conceptually, JIT and static compilation — also
called Ahead Of Time (AOT) compilation — are similar, but are constrained differently.
When AOT lacks knowledge of the runtime context, JIT is instead constrained by its own
execution cost.

The lightweight modular staging [139] approach addresses the performance challenge
by introducing staging information in interpreter implementations in the form of typing
information. The compiler can then infer from the types which expressions can be directly
interpreted during the compilation, reducing the amount of interpretations steps and
indirections required during the execution of the compiled interpreter. LMS has been
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applied for the implementation of multiple high-performance embedded DSLs, for instance,
an SQL interpreter [138], and a regular expressions parser [140].

To the best of our knowledge, only two approaches address the language-agnostic
performance optimizations: tracing and partial evaluation. Only one implementation of
each approach exists, respectively RPython [15, 16] and Truffle [178, 176]. Smarr et al.
compare their performances by implementing SOM [68], a subset Smalltalk dedicated
to teaching and research on virtual machines, once on each platform, and running per-
formance benchmarks. This kind of approach has the great advantage of offering more
accurate runtime optimizations by reasoning in terms of language concepts. Nevertheless,
writing language implementations using such approaches requires advanced language
programming skills in addition to the understanding of the advanced concepts related to
tracing or partial evaluation.

Vergu et al. [162] address the optimization of the performance of the metainterpreter of
DynSem, a metalanguage integrated into the Spoofax language workbench. By operating
at the level of metainterpreters, Vergu et al. are application domain agnostic. Nonetheless,
this approach does not allow the introduction of language-specific optimizations prior to
its execution.

Recently, Shaikhha et al. [146] propose a performance-oriented approach to the defini-
tion of Internal DSLs. They offer a set of dedicated scala annotations (e.g., compiler or
reflected types) to language engineers that assist the compiler in its analysis of the DSL
specification. This approach is based on the explicit definition of performance concepts by
language engineers and requires the introduction of dedicated concepts on top of language
specifications.

Another less explored research direction is to trade accuracy for performance, namely
the field of approximate computing. Such an approach has been applied to various optimiza-
tion goals, such as energy consumption [70], and of course, runtime performance [137].
However, efforts are focused on specific application domains and are not applicable to
more general application contexts.

Languages can also be optimized by introducing domain-specific optimization to
existing languages. This vision if often realized by the definition of a base GPL and an
extension mechanism that allows the modular introduction of domain-specific optimization.
That way, language engineers can adapt base GPLs to specific contexts. Contributions
to this vision have been realized on top of Haskell’s compiler [80], extensible compiler
frameworks [121], and Attribute Grammars [48].

In summary, language runtime performance optimization requires development efforts
and performance-specific knowledge from language engineers. Furthermore, many ap-
proaches break the compatibility with the existing tool support of languages or are not
applicable on the context of MDE due to their lack of support for the mutability of the
AST.
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3.4 Tool Support in Software Language Engineering

In the previous sections, we have listed the approaches that contribute to the reusabil-
ity (Section 3.2) and the performance optimization of languages (Section 3.3). In this
section, we study how dedicated language engineering tools support language develop-
ment. More precisely, we list language workbenches and study how they support the
development of languages. In addition, we study how the optimization of non-functional
properties impacts the tool support of those language workbenches. To do so, we study the
existing language workbenches dedicated to the definition of External DSLs and details
their properties regarding the selected dimensions.

The GEMOC Studio The GEMOC Studio is a language workbench built on top of
Eclipse and EMF. It targets both language engineers and domain experts. It focuses on
the automatic and generative production of services supporting the development and use
of languages (e.g., debuggers, executions traces). Ecore is used for the specification of
abstract syntaxes and Kermeta [79] for the modular specification of operational semantics
on the Ecore metamodels. Melange [41] is integrated into the GEMOC studio and builds on
top of these specifications and provides a metalanguage to specify the modular composition
of language modules. Méndez-Acuña et al. provide solutions for the top-down and bottom-
up manipulation of language product lines using the GEMOC Studio [113]. Current reuse
approaches based on the GEMOC studio either presume a close-world, which contradicts
the non-anticipation or does not support incremental compilation at the implementation
level.

LISA LISA is a language workbench that supports the definition of textual DSLs using
attribute grammars. From attribute grammars specification, LISA derives compilers
or interpreters and a set of language-specific tools (e.g., editors, visualizers). LISA
supports multiple inheritance of attribute grammars [116], allowing incremental language
development through various composition operators [114]. However, LISA fails to support
modularity at the implementation level, which prevents the opportunistic reuse of existing
languages.

Monticore Monticore [93] is a language workbench dedicated to the definition of textual
DSLs using a Grammar-based metalanguage that mixes an (E)BNF notation with concepts
required to define abstract syntax in the form of arbitrary graphs of objects, similar to
metamodels. Monticore allows the construction of languages by reuse through multiple
inheritance and embedding [71]. Recent contributions on the definition of the notion of
language module interface have been integrated into Monticore through the definition of
partially defined language modules, allowing the safe composition of independently defined
language modules [22, 21]. However, Moticore requires the manipulation of paradigms
specific to its approach, contradicting the Exploit Language Abstraction dimension.
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MPS The Meta Programming System (MPS)1 is a language workbench developed by
JetBrains and based on projectional editing. MPS has been notably exploited for the
definition of a C development environment [167], or the definition of a modular, reusable,
and extensible expression language [165]. MPS offers dedicated metalanguages for
each aspect of language definition (e.g., syntax, projectional rules, types-system). Being
projectional, MPS circumvents the issues related to the composition of concrete syntaxes.

Neverlang Neverlang [158] is a language workbench that promotes the idea of feature-
oriented language development, in which languages can be built by composition of small
reusable fragments, called slices, that embody the syntax and semantics of a language
feature. The syntax is specified using a context-free attributed grammar formalism, and the
semantics is specified using a translational semantics formalism. Slices can be compiled
separately. Artifact resulting from slices compilation can then be reused independently
of their specifications [27]. Such modularity has been applied to the idea of Language-
Oriented Programming (LOP) to grow a family of Javascript-like languages for teaching
purposes [25]. However, Neverlang requires the manipulation of specific concepts, out of
the scope of the usual paradigms manipulated by software engineers, contradicting the
Exploit Language Abstractions dimension.

Rascal Rascal is a metalanguage dedicated to the analysis and transformation of source
code [89]. Additionally, it can be used as a language workbench integrated into the
Eclipse IDE. The extreme expressiveness of Rascal allows the definition of the concrete
syntax, abstract syntax, and semantics of languages in a single metalanguage. Rascal
supports the generation of Eclipse plug-ins that act as tool support for DSLs (e.g., text
editors, web integration, IDE outlines) from their specifications. The modularity of
Rascal has been evaluated [11], by growing the Oberon-0 language [173] through multiple
modular extensions. Rascal breaks the Exploit Language Abstraction dimension by offering
advanced, yet powerful, metaprogramming concepts to the user, out of the scope of the
usual paradigms exploited in the context of SLE.

Spoofax Spoofax is a language workbench built on top of the Eclipse IDE that provides
a set of interconnected domain-specific metalanguages, each dedicated to the specification
of an aspect of languages [85]. The SDF3 metalanguage is dedicated to the specification
of concrete syntaxes using a context-free grammar formalism. ATerm is used for the
specification of the abstract syntax, in the form of abstract data types. Language semantics
are specified using Stratego [20], or more recently using DynSem [161]. Spoofax supports
language extension and composition but requires anticipation in the design of the reuse
language modules.

1MPS: https://www.jetbrains.com/mps/
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Xtext Xtext is a language workbench that allows the definition of the abstract and con-
crete syntax of languages using a unified metalanguage. It mixes a (E)BNF notation
annotated with type information, allowing the derivation of an EMF metamodel addition-
ally to the generation of a parser from the grammar. An alternative mode can be chosen,
where the metamodel already exists. In this case, the syntax is type-checked against the
metamodel structure. Xtext relies on Antlr for the generation of the parser implementa-
tion. Xtext allows the modular extension of the abstract syntax by a single inheritance
mechanism, allowing the overloading of existing rules or the introduction of new rules.
While modular at the specification level, the compilation of the extensions involve the full
recompilation of the parser implementation. Xtext semantics are realized by interpretation
of Ecore models. Xtext uses Xtend2 for the specification of language semantics. Xtend
supports a dispatch mechanism, allowing a Visitor-like mechanism directly in the language
syntax. It also has a native template system, easing the specification of translational
semantics. Xtext is seamlessly integrated into the Eclipse IDE and supports the integration
of many editing services (e.g., editor, jump to the declaration, outlines, error reporting...)
and is based on mainstream object-oriented mechanisms, but fail at supporting proper
language reuse because of its single inheritance mechanism.

3.5 Advancing the State of the Art
Table 3.1 and Table 3.2 summarize the concerns referenced in this study and their alignment
with the dimensions we identified for each concern. Table 3.1 shows the approaches related
to the concerns of language reuse and tool support. Approaches focusing mainly on the
reusability of the syntax are qualified as out of scope regarding semantics extensibility.
Approaches based on interpretation of language specification are qualified as out of scope
regarding incremental compilation. Table 3.2 shows the approaches related to the concerns
of language performance and tool support. We can observe that for each combination of
axes, no existing approach fulfill the selected dimensions entirely. Approaches that rely on
extensible compilers are not included as they require compiler construction skills that are
outside of the scope of this thesis.

In summary, most of the approaches we introduced in this chapter support the definition
of reusable language modules, or the definition of efficient languages but requires software
engineers to learn new paradigms, and does not rely on existing language abstractions.
Similarly, tool-supported approaches to language development fail on the axes of reuse or
performance. The dimensions related to the reuse concern are often not reached, often due
to a lack of support for incremental compilation at the implementation level. Regarding
the performance concern, whereas many contributions target the runtime performance of
internal DSLs, very few works target the automatic optimization of external DSL.

Finally, no existing contributions address the challenge of improving the tool-supported
development of languages while ensuring their reusability and optimizing their runtime

2Xtend is itself developed using Xtext.
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Table 3.1 – Summary of language reuse approaches and their tool support.
 = supported, G# = partially supported, # = not supported, / = out of scope

Approaches
Performance Tool Support

Opportunistic
Independent Extensibility

Incremental Compilation IDE Integration
Exploit

Language Abstractions
Type Safe Explicit AST

Syntax Semantics
Interpreter [64] G#  # G# # # G#  

Visitor [64] # #  G# # # G#  
Object Algebras [124]     # #  #

Kermeta [79]    #     
Trivially [170]     # #   

AbelC (Kaminski et al.) [84] G#   # #   #
MontiCore [93]    #  #   

Xtext [55]   /      
Antlr 4 [130]   / #     

Object Grammars [151]    /  #   
MPS [77]      G#   

Metamod [152] #     #   
Melange [41]    #     

MetaDepth [100]    /  #   
tagless interpreters [24]    / # #  #

monad transformers [107]    / # #  #
lightweight modular staging [139]     # #   

cake pattern [74]     # #  #
datatype à la carte [154]    # # #   

EVF [181] #     #   
Oliveria’s visitors [123]     # #   

Torgersen [155] #    #    
LISA [116]    #     

Neverlang [158]     G# #   
Rascal [89]    /  #   

Spoofax [168]      #   

Table 3.2 – Summary of language performance optimization approaches and their tool
support.
 = supported, G# = partially supported, # = not supported.

Approaches
Performance Tool Support

Langage-specific optimizations Application Domain Agnostic IDE Integration
Exploit

Language Abstractions
Type Safe Explicit AST

Lightweight Modular Staging [139]   # #   
RPython [15, 16]   # # #  

Partial Evaluation [178, 176]   # # #  
Dynsem + Truffle (spoofax) [162] #      

Shaikhha [146]   G# # #  
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performances.
In the next part (Part II), we present new contributions that address the identified

limitations by providing approaches to reuse and performance optimization of languages
while providing tool support for software engineers through their integration in language
workbenches.
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CHAPTER 4

LANGUAGE REUSE

In this chapter, we develop our contribution to the reusability of DSLs. We first
introduce the Language Extension Problem (LEP), inspired by the Expression
Problem (EP), and detail its implications to language reuse (Section 4.1).
Then, we present two motivating examples and an overview of our approach
to language reuse (Section 4.2). Finally, we present in detail our approach for
language reuse (Section 4.3). We close this chapter drawing some conclusions
on the proposed contribution (Section 4.4). This chapter is partially based on
our MODELS’17 [104] and SLE’18 [103] publications.

4.1 The Language Extension Problem
With the advent of language workbenches, the problem of modular language extension
has garnered considerable interest from the research community in the past decade. This
problem informally refers to the capability of extending the syntax and semantics of
an existing language while reusing its specification (e.g., grammars, semantic inference
rules) and implementation (e.g., parsers, interpreters). Various authors have attempted
to formalize this problem (e.g., [50]) but the lack of a clear definition makes it hard to
evaluate and compare the strengths and weaknesses of existing solutions w.r.t. a common,
well-defined framework. This section is an attempt to define language extensibility in the
form of a well-defined problem.

4.1.1 From the Expression Problem to the Language Extension Prob-
lem

Philip Wadler coined the term “Expression Problem” to name a well-known problem in
the programming languages community and this name has been in common use for more
than two decades [169]. As Oliveira and Cook put it [124]:

The “expression problem” (EP) is now a classical problem in programming
languages. It refers to the difficulty of writing data abstractions that can be
easily extended with both new operations and new data variants.

Over time, the EP has made it possible to structure the discussions around the capabili-
ties of different programming paradigms and languages regarding data types extensibility
using a common set of constraints that candidate solutions should address. There are differ-
ent variations of the EP, but its canonical definition includes the following constraints [180]:
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Extensibility in both dimensions: It should be possible to add new data variants and
adapt existing operations accordingly. Furthermore, it should be possible to introduce
new operations.

Strong static type safety: It should be impossible to apply an operation to a data variant
that the operation cannot handle.

No modification or duplication: Existing code should neither be modified nor dupli-
cated.

Separate compilation: Compiling datatype extensions or adding new operations should
not encompass re-type-checking the original datatype or existing operations.

Independent extensibility: It should be possible to combine independently developed
extensions so that they can be used jointly.

There is a striking parallel between the problem of modular language extension and the
Expression Problem. As a matter of fact, most approaches to modular language extension
end up discussing and addressing the EP in some way [84, 104]. However, in the context of
Software Language Engineering (SLE), “data variants” are groups of syntactic categories
and their constructors and “operations” over these data variants define their semantics. Due
to the ambiguity in the name Expression Problem, in which “expression” may refer to a
language of expressions, one might naively think that the EP and the problem of modular
language extension are equivalent.

In this section, we demonstrate that instantiating the EP in the context of SLE requires
a reformulation and refinement of the existing constraints of the EP and to introduce
new ones, leading to a new problem: the Language Extension Problem (LEP). While
the EP is merely a programming problem concerning programmers and focusing
on the extensibility of a single datatype, the LEP is a Software Language Engineer-
ing (SLE) problem concerning language engineers and considering the extensibility
of languages (i.e., group of datatypes representing the language constructs). The
LEP must also account for engineering practices that are specific to software lan-
guages such as the use of language workbenches, the duality of language specifica-
tions and implementations, and the specificities of syntax definition. As extending
a group of datatypes entails extending the datatypes it is composed of, in many cases
solving the LEP (in the large) entails solving the EP (in the small). We identify what is
the meaning of the two extension axes in this context and what is the set of constraints
that must be used to assess the success of a given solution. Naturally, many partial so-
lutions to the LEP already exist in the literature, scattered from programming language
theory (e.g., modular visitor components [123], Revisitors [104], Recaf [13]), to language
workbenches (e.g., Rascal [89], Melange [41], Silver [179, 83]). We purposely limit
ourselves to the definition of the LEP, and leave to future work the positioning of existing
solutions w.r.t. the constraints we list.
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4.1.2 The Language Extension Problem

The Expression Problem has been initially introduced in the context of datatype extension
and composition, hence presented in terms of datatypes and functions over the datatypes.
Conversely, the Language Extension Problem focuses on language extension and composi-
tion, presented in terms of, respectively, syntax in the form of multiple syntactic categories
and constructors for each category, and semantics over that syntax. In the following, we
introduce the Language Extension Problem by paraphrasing the original definition of
the Expression Problem by Wadler [169], but lifting the vocabulary from datatypes to
languages.

The Language Extension Problem (LEP) is a new name for an old problem.
The goal is to define a family of languages, where one can add a new language
to the family by adding new syntax (i.e., new constructors for existing syntactic
categories as well as new categories) and also new semantics over existing and
new syntax, while conforming to constraints similar to those in the Expression
Problem but specialized to language extension.

As an example, consider a language family regarding state machines which starts from
a core language over simple finite state machines with a simple pretty-printing semantics
and constructs a new language by adding syntax to specify hierarchical state machines and
a new semantics to evaluate state machines given an input sequence.

According to this characterization of the LEP, we now review the constraints initially
identified in the EP, and express them in the context of SLE for the LEP:

Extensibility in both dimensions: It should be possible to extend the syntax and adapt
existing semantics accordingly. Furthermore, it should be possible to introduce new
semantics on top of existing syntax.

Strong static type safety: All semantics should be defined for all syntax.
No modification or duplication: Existing language specifications and implementations

should neither be modified nor duplicated.

extension

base base'

(e) (d)

base

extension extension'

(c)

base

extension

extension'

(b)
base

extension

(a)

base

extension

Figure 4.1 – Approaches for language extension, applicable at the specification and
implementation levels. (a) mix up the extension into the base language, while (b)-(e) keep
them separated and use explicit operators (e.g., references, static/dynamic introduction) or
glue code.
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Separate compilation: Compiling a new language (e.g., syntactic extension or new
semantics) should not encompass re-compiling the original syntax or semantics.

Independent extensibility: It should be possible to combine and use jointly language
extensions (syntax or semantics) independently developed.

Moreover, the distinction between the specification and the implementation of new
engineered languages raises a new concern regarding automatic composition [84]. Indeed,
“glue code”, i.e., code dedicated solely to the interconnection of extensions, must be limited
or avoided from the user’s point of view to compose a collection of language extensions.

4.1.3 The Language Extension Problem in Practice

Numerous approaches have been explored in the past decade to address specific scenarios
of language extension, either at the specification level (e.g., [22, 42, 52, 83, 103, 114,
157, 164, 168, 180]) or at the implementation level (e.g., [72, 155, 180, 181]). The
specification level is based on meta-languages that provide the relevant abstractions, often
with limited and domain-specific expressiveness. The specification level is then turned
into an implementation thanks to compilation or interpretation, often by targeting general-
purpose programming languages and following language implementation patterns specific
to each approach.

While all those approaches are heterogeneous and conceptually operate at different
levels, they share common extension mechanisms which are summarized in the five
approaches depicted in Figure 4.1 [50].

Complying exhaustively to the identified constraints is extremely challenging, and
trade-offs must be considered for a given context. We present a selection of scenarios
illustrating such trade-offs. First, the constraint of separate compilation usually impacts
other non-functional properties such as performance, readability, and accidental complex-
ity (e.g., large and complex glue code, unclear modules dependencies). Consequently, it
can be worthwhile to relax the separate compilation constraint in order to comply with
other non-functional properties. Second, various actors can be responsible for language
extension. They each come with very different skills, ranging from SLE experts with a
deep understanding of languages and language workbenches internals, to end users with
minimal knowledge of software development. While the former are capable of performing
composition using complex handwritten glue specifications, the latter will typically require
fully automatic composition approaches. Finally, the boundaries of a language family are
important to consider. Two statuses can be considered, closed (i.e., all its languages are
known) and open (i.e., new languages can be added organically). Indeed, in the context
of closed families, the compatibility of the extensions can be checked in advance and
conforming to the type safe constraints is not an issue. On the contrary, in the context of
open language families, restrictive type systems can lead to difficulty or impossibility to
extend languages in unanticipated contexts.

The constraints of the Language Extension Problem define a framework for comparing
language extension approaches. It is worth noting that conforming or not to some of the
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constraints is often the consequence of interesting language design choices, relative to
some specific scenarios.

4.1.4 Wrap up of the Language Extension Problem
In this section, we have described the Language Extension Problem, a lift of the Expression
Problem at the language level. We lift the constraints drawn from the Expression Problem
to the context of software language engineering, and introduced an additional constraint
specific to this context. Through the Language Extension Problem, we hope to provide a
framework to reason on language extension and its challenges and help the comparison of
existing and future SLE contributions.

4.2 Reusable Languages Motivation and Overview
In this section, we first present two motivational scenarios, addressing language exten-
sion (Section 4.2.1) and language composition (Section 4.2.2). Then, we introduce the
notion of language module interfaces Section 4.2.3, and define the requirements that allow
us to evaluate language reuse Section 4.2.4. Section 4.2.5 presents the application of
our approach to language extension, and Section 4.2.6 presents the application of our
approach to language composition. Finally, we discuss the scope and limitation of our
approach Section 4.2.7.

4.2.1 Reuse of a Finite State Machine Language by Extension
Just as any software, DSL implementations are bound to evolve to meet new requirements
of language users or the specificities of a new domain of application. One solution
to do so is to reuse an existing language module and extend it to introduce the required
specificities. This situation is highlighted by the idiomatic FSM language example depicted
in Figure 4.2. The figure presents three variants of the language: a simple FSM modeling
language, later extended to implement its operational semantics (represented as a set of
methods woven on the corresponding concepts), and then extended to enable the expression
of complex guards on the transitions. The latter requires to override part of the semantics
of the xFSM language (namely the step method on Transition), to take into account the
newly-introduced guards.

This refinement of a language by the successive introduction of more specific layers
is close to the notion of mixin layers [99]. However, this approach does not address the
question of reuse at the implementation level. Melange [41] also addresses the same kind
of scenario but rely and subtype polymorphism instead of parametric polymorphism [40].

When facing such kind of language engineering scenarios, language engineers must be
provided with appropriate tools to extend existing languages, customize their semantics,
and combine such extensions. A solution to these problems in the context of model-driven
engineering must satisfy a set of situational constraints: it must operate on an explicit and
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Figure 4.2 – Extensions of an FSM language

mutable AST, whose structure is prescribed by a metamodel, and maintain the static type
safety usually found in popular modeling workbenches such as EMF.

4.2.2 Reuse of a Finite State Machine Language by Composition
We saw in the previous section the specialization of an FSM to a specific application
domain by extension. In the case of language extension, a single language module is
reused and specialized for a new application domain. Another interesting use-case is the
reuse of independently developed languages by composition.

Let us consider the motivating example presented in Figure 4.3 depicting the metamodel
of a simple FSM language module, quite similar to the FSM presented in the previous
section (Figure 4.2). The main difference being the introduction of guards and actions on
the transitions.

From a language engineer’s point of view, multiple expression languages can be good
candidates to express the guards. Similarly, multiple action languages are adapted for the
expression of actions. Rather than defining new guard and action languages from scratch,
including their syntax, semantics, and tooling, it would be handy to reuse and plug existing
languages that provide these functionalities into the base FSM language. For instance,
OCL [30] for the guards and Xbase [47] for the actions. This would allow domain experts
to build FSM models by combining the expressiveness of the base FSM language with the
expressiveness of dedicated expression and action languages, including their tool support.

The question that naturally arises is: how to express the required interface of the
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Figure 4.3 – An FSM language module with an explicit reuse interface.

FSM language? The notion of language interface, in general, is the subject of ongoing
research [40]. In this section, we are specifically interested in the interfaces required for
language composition. From the FSM’s standpoint, a guard is merely “an expression
whose evaluation returns a Boolean.” That is, the signature of its evaluation function
is eval : Context → Bool. The internals of the expression language employed, e.g., its
syntax (the set of Boolean operators it offers) and semantics (how they are evaluated)
do not matter. In Figure 4.3, the Guard and Action construct annotated with «required»
denote the required interface expected by the base FSM language. The key idea here is
that most of the language’s semantics can be implemented independently from the syntax
and semantics of guards and actions. Knowing that actions and guards can be evaluated
with their respective evaluation function is sufficient to express the semantics of transitions
— only the signature of their evaluation function is needed. In pseudocode, the semantics
of the fire evaluation function of transitions could be written as follows:

1 fire(Transition t, Context ctx) {
2 if (t.guard.eval(ctx))
3 t.action.exec(ctx);
4 }

An interpreter for the evaluation semantics of the FSM language can be type-checked
and compiled independently; but to be run, it needs concrete implementations of the
execution functions of guards and actions. These will be provided later by other language
modules at composition time.

4.2.3 On Language Module Interfaces
A language module interface should expose the information needed to (i) use and (ii)
compose a module [35]. Using a language first involves producing a conforming model.

49



Language Reuse

The structural information, in the form of a metamodel, must thus be part of the module’s
interface. Then, execution functions are invoked on the different model elements. The
set of execution functions, linked to the corresponding domain constructs, must also be
part of the module’s interface. In contrast, details of the syntax of the required constructs,
as well as the implementation of their execution functions can be encapsulated behind
the interface, and it should not be necessary to inspect them in order to use or compose a
language module.

Another design choice to be considered by language engineers is the boundaries
of a module. While we do not enforce strict rules for the definition of language module
boundaries, we suggest following the well-known modularity principle of package cohesion
which, in this context, states that (i) domain constructs that are commonly used together
should belong to the same module, and (ii) a module should not have more than one reason
to change. For instance, when designing the FSM module of Figure 4.3, the language
engineer may wonder whether guards should be included as part of the language module
or as part of its required interface. The Guard construct is clearly needed, but its concrete
realization is subject to discussion. First, the implementation of the various constructs
enabling the expression of guards is complex and will probably overtake the complexity
of the rest of the module if it would be included. Besides, there are already existing
expression languages that could fulfill this functionality and are evolving at their own pace,
independently from the FSM module. Hence, the Guard construct is defined as «required»
and is expected to be provided later by another language module through composition.

4.2.4 Language Reuse Requirements
From the introduction, motivating examples, and the notion of language module interface,
we derive a list of seven requirements that must be addressed for the definition of reusable
language modules.

One can observe that such requirements are very similar to the LEP constraints pre-
sented in Section 4.1. This is not fortuitous, but we list again the minimum constraints
needed in the context of language extension and composition.

Independent Extensibility (R1) It should be possible to extend languages both in terms
of syntax and in terms of semantics. New syntactic variants should be easily adapted
to handle the existing semantics, and new semantic variants should handle pre-existing
syntax modules. It should be possible to extend languages in a non-linear way, allowing to
compose independent extensions together.

Incremental Compilation (R2) Language modules should be type-checked and com-
piled separately, and should not have to be edited or recompiled to be reused with other
language modules. Whole language compilation would require access to the source code
of the modules (which might not be available) and would incur a non-linear performance
penalty when compiling languages build through reuse. Furthermore, language modules
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should not make any assumption on the way they will be reused, i.e., they should not
anticipate reuse.

Opportunistic reuse (R3) It should be possible to reuse existing implementations of
languages without anticipation. A pattern relying on anticipation would require refactoring
current modeling frameworks (e.g., EMF) to regenerate existing code, for instance, to
insert accept methods to support the Visitor pattern. This would prevent the applicability
of the solution to legacy artifacts generated from widely-used modeling frameworks and
complicate the work of language engineers.

Module Encapsulation (R4) Language modules should be composed without having
to inspect their internal implementation. In other words, the information exposed in the
interfaces of language modules should be sufficient to enable the type safe composition of
language modules.

Explicit Required Interfaces (R5) Required interfaces of language modules should
explicitly state the requirements a module has towards other modules. Knowing the
interfaces only should be sufficient to state the validity of the composition of different
modules. A composition is valid if the requirements expressed by the required interface
of a module are fulfilled by other modules, and if it can be ensured that the generated
implementation will compile. Checking the validity of the composition of modules should
be possible at the level of the metalanguage used for the definition of language modules,
without requiring code generation.

Module Substitutability (R6) Two language modules providing constructs that match
the same interface should be substitutable to one another in the context where this interface
is required. From the requiring module’s point of view, the choice of a particular language
module should be transparent. Substitution of a language module by another should not
require any modification of the language module which depends on it.

Non-intrusivity (R7) The definition of language modules satisfying the requirements
above should not disrupt widespread language engineering processes, such as abstract
syntax definition in the form of object-oriented metamodels. It should not require a new
paradigm for the specification of language modules to be broadly applicable to mainstream
language engineering technologies and to foster its adoption.

4.2.5 Language Extension Overview
Figure 4.4 shows a high-level visualization of our approach to language extension. At
the specification level, a DSL is specified through a classical metamodeling process: an
abstract syntax defined by a metamodel (an Ecore model [150] in our case), complemented
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with an operational semantics which defines both the execution data through an additional
metamodel, and the execution functions that are weaved across the metamodel in the form
of operations that manipulate the execution data. Any action language can be used for
defining the execution functions according to the modeling framework employed. We
use ALE (Action Language for Ecore), a simple imperative Java-based action language
for Ecore that uses static introduction to weave the execution functions in corresponding
Ecore classes. Whereas we will not detail further ALE in this part, it is used extensively to
evaluate our contributions. Chapter 6 proposes an exhaustive description of ALE features.

The explicit specification of a DSL enables its safe design and reuse. First, it supports
specifying both the syntax and semantics in a uniform way while making it independent
of the complex implementation details required for supporting advanced reuse, extension,
and customization. Second, the DSL specification makes explicit the concept of language
as a first-class entity, before it gets diluted at the implementation level. This concept of
language is used for checking the safe reuse and manipulation of a given DSL thanks to a
dedicated type groups checker [42].

DSL specifications are compiled to Java, following the REVISITOR language implemen-
tation pattern, which we discuss in detail in Section 4.3.1. The abstract syntax (possibly
extended with runtime data) is compiled to regular Java classes using the EMF compiler
from Ecore to Java (gray arrow in Figure 4.4). This standard compilation chain is then
seamlessly complemented by compiling ALE semantics specifications to REVISITOR

artifacts (black arrow in Figure 4.4). The compilation of a DSL specification is incremental
thanks to the REVISITOR pattern; classes representing base syntax or behavior do not have
to be recompiled.

4.2.6 Language Composition Overview

Figure 4.5 gives a high-level overview of our approach to language composition. At the
specification level, a language module is expressed following a standard metamodeling
process. More precisely, we use the same language definition approach as for the extensible
language modules approach, presented in the previous section (Section 4.2.5).

As mentioned in Section 4.2.2, language modules may expose a required interface
that materializes their requirements towards other modules. To express these interfaces,
we rely on the built-in annotation mechanism of Ecore to enable language engineers to
add a «required» annotation on classes of the metamodel that constitute the required
interface. The execution functions woven on such constructs consist of signatures only.
Such functions does not have a concrete implementation. The exact implementation
of these functions is expected to be defined in the language modules that realize the
composition.

The very same metalanguages are used to express how to compose two modules. To
specify that a required construct is realized by an external construct in another module,
we employ a simple delegation pattern between the two constructs: the required metaclass
is extended by a new metaclass, in a new metamodel, that holds a reference towards the
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external construct. A new Ecore metamodel is created to bind all constructs of the required
interface of a module in this way. The glue between the signatures of the execution
functions of required constructs and the implementation of these execution functions in
another module is expressed in ALE itself. The metaclass that holds the delegate reference
implements the required signature in ALE; its body expresses how to glue together the
two modules semantically. Concretely, this means that the skills required to define new
modules are the very same as those required to express how to compose these modules.

Language modules are compiled to Java code using two separate compilers: the built-in
Java compiler of EMF that compiles Ecore metamodels to a set of Java interfaces and
classes, and our own compiler of the ALE metalanguage that generates a set of Java
interfaces following the pattern introduced in Section 4.3. Language modules can be
type-checked and compiled independently of each other. The very same compilation chain
is reused to compile the specification of the composition of two language modules. From a
description of the bindings between two modules in the form of an Ecore metamodel and
the glue between their semantics in the form of ALE execution functions, a separate set of
Java interfaces that composes the two modules is generated.

In the next section, we dive into the implementation pattern itself and highlight how it
enables modular reuse of such language modules.

4.2.7 Modular Language Reuse Discussion
It is important to observe that our approach focuses on the modular reuse of abstract
syntaxes and semantics, and does not address the modular reuse of the concrete syntax of
software languages.

Many works already address the question of the modular reuse of concrete syntaxes, as
presented in Section 3.2.1. In addition, many approaches to the definition and composition
of language modules address the question of the concrete syntax [22, 26, 84, 125, 11, 164].

However, those approaches are either outside of the scope of this thesis or do not
comply with the requirements we defined to qualify modular approaches to language
reuse (Section 4.2.4). For instance, Xtext does not support the independent extensibil-
ity of its grammars. Hence, its integration with our approach would limit the possible
composition scenarios.

Nonetheless, proposing modular language modules that cover all the concerns of
languages while preserving non-functional properties such as modularity or performance
in language implementations is an important challenge for the future of SLE.

4.3 Reusable Language Implementation
In this section, we first introduce the REVISITOR implementation pattern (Section 4.3.1).
Then, we present how we applied this implementation pattern to modular language ex-
tension (Section 4.3.2). Finally, we present how we extended our use of the REVISITOR

implementation pattern to modular language composition (Section 4.3.3).
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4.3.1 The REVISITOR Pattern

The REVISITOR pattern is a language implementation pattern that reconciles the modular
extensibility offered by Object Algebras [124] with the requirements of having an explicit,
metamodel-based abstract syntax to describe graph-structured, mutable models. While the
REVISITOR pattern itself is independent of a particular programming language, we present
it in plain Java 8 code, using interfaces to leverage multiple inheritance. For this section,
metamodels are assumed to be defined by plain Java classes; Section 4.3.2 discusses how
the pattern can be applied in the context of EMF.

4.3.1.a REVISITOR Interfaces

REVISITOR interfaces (IRevisitor in Figure 4.6) are generic abstract factory interfaces
declaring factory methods corresponding to AST constructs. Like an Object Algebra
interface, a REVISITOR interface declares an extensible mapping from syntactic objects to
semantic objects, captured by generic type parameters of the interface. Concrete operations
are then defined by implementing the interface, thereby mapping a syntactic structure to a
semantic structure which can be used to perform the operation.

An example of the REVISITOR interface for the FSM language of Figure 4.2 is shown
in Listing 4.1. A REVISITOR interface defines generic, abstract factory methods for each
syntactic concept of the metamodel where each factory method has a single parameter
which represents the corresponding concept (the c1, ...,cn methods in Figure 4.6). In this
case, there are four such methods: for Machine, State, FinalState, and Transition. Each
factory method is declared as returning a generic type parameter which will be instantiated
by concrete REVISITORs.

In addition to the abstract factory methods, a REVISITOR interface implements concrete
methods for dispatching from an actual model object to the corresponding factory method.
By convention, these methods are named $, and there is a $-method for every concept in
the metamodel. In the FSM example, the dispatching methods for Machine, FinalState,
and Transition simply call the respective factory method. In the case of State, however, the
$-method uses runtime type-checks to dispatch to the most specific factory method.

Note that the REVISITOR interface is generic: whatever the factory methods return is as
of yet unspecified. For every concept in the metamodel, there is a corresponding, distinct
type parameter representing a possible semantics for that syntactic concept. Inheritance in
the metamodel is expressed by additional bounds on the type parameter. For instance, the
type parameter F is bounded by S because FinalState is a subclass of State. This ensures
that syntactic subtypes map to semantic subtypes and that the $-methods can return more
specific semantic objects for more specific syntactic types.1

1In the specific case of Java, multiple bounds on a single type parameter are not allowed, which prevents
the use of this technique in case of multiple inheritance. We discuss workarounds in the context of EMF in
Section 4.3.1.c.
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Figure 4.6 – The REVISITOR Pattern maps syntactic objects of types C1, ...,Cn to semantic
objects of types Op1, ...,Opn. Different implementations of the REVISITOR interface of
a language lead to different interpretations. Note that the $-methods are implemented in
IRevisitor and reused for all interpretations.

4.3.1.b REVISITOR Implementations

A REVISITOR interface defines the basic infrastructure to map a model into some semantics.
Concrete semantics of a language is defined by implementing this interface, and explicitly
invoking the $-methods when a model element needs to be mapped to its semantic object.
Implementing a REVISITOR interface thus defines a case-based mapping from syntactic
model objects to corresponding semantic objects, where the mapping is executed lazily,
and explicitly, through invocations of the $-methods.

Listing 4.2 shows an excerpt of a concrete REVISITOR that defines a pretty-printer
for the FSM language. The Pr interface defines the type of semantic denotations that the
FSM model will be mapped to (Op1, ...,Opn in Figure 4.6). The actual printing semantics
is then defined as a concrete interface, binding the type parameters of FsmAlg to Pr. The
default methods override the generic factory methods, returning Pr objects (here, using
Java 8 closure notation) to print each model element. Note that whenever a factory method
navigates the argument model (e.g., State it), and requires its corresponding semantics,
the $-method is used to obtain it. In Listing 4.2 this is shown on line 6, where the machine’s
states are printed by first invoking $ on the state elements, and then invoking print.

The printing of a machine’s states also shows why the type bound on the generic
type parameters (cf. F extends S in Listing 4.1) is required. The collection of states in a
machine abstracts over the difference between ordinary states and final states. As a result,
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1 interface FsmAlg<M, S, F extends S, T> {
2 M machine(Machine it);
3 S state(State it);
4 F finalState(FinalState it);
5 T transition(Transition it);
6

7 default M $(Machine it) { return machine(it); }
8 default F $(FinalState it) { return finalState(it); }
9 default T $(Transition it) { return transition(it); }

10 default S $(State it) {
11 if (it instanceof FinalState) return finalState((FinalState) it);
12 return state(it);
13 }
14 }

Listing 4.1 – REVISITOR interface for the FSM language depicted in Figure 4.2

the $-method on State objects needs to return the most general semantic type (i.e., S for
states). Yet, final states might require specialized semantics, and hence a more specific
semantic type. The type bound ensures that this type will indeed be a subtype of the
semantic type of ordinary states so that the abstraction over the syntactic type carries
over to abstraction over the semantic types. In the example, both State and FinalState are
mapped to Pr, so the bound is trivially satisfied. However, it would be possible to let the
finalState method return an object of a type that is more specific than Pr; in either case,
the $(s).print() call on line 6 of Listing 4.2 is valid.

The use of Pr-closures in the example is not essential to the approach. If more than
one method is needed in the semantic type, separate classes can be defined external to the
REVISITOR; the factory methods will simply instantiate them passing a reference to the
REVISITOR (in order to be able to call the $-methods) and the actual model element to the
constructor.

The following code shows how the print semantics is used on an actual model:

Machine fsm = ... // load a model conforming to FSM
Pr p = new PrintFsm(){}.$(fsm);
System.out.println(p.print());

The model is first loaded into an object structure conforming to the metamodel (i.e.,
whose root element is of type Machine). The concrete REVISITOR is then instantiated, and
the model is passed to $. The result is a Pr object which is then printed.

4.3.1.c Multiple Inheritance

The REVISITOR pattern as presented in Section 4.3.1 uses type bounds on type param-
eters to allow syntactic subclasses to be mapped to semantic subclasses. Unfortunately,
some languages (e.g., Java) do not support multiple abstract type bounds on type parame-
ters (Foo<A, B, C extends A & B>, for instance, would be rejected). As a result, multiple
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1 interface Pr { String print(); }
2

3 interface PrintFsm extends FsmAlg<Pr, Pr, Pr, Pr> {
4 default Pr machine(Machine it) {
5 return () → it.states.stream()
6 .map(s → $(s).print())
7 .collect(Collectors.joining("\n"));
8 }
9

10 default Pr state(State it) { ... /* omitted for brevity */ }
11 default Pr finalState(FinalState it) {
12 return () → "*" + state(it).print();
13 }
14 default Pr transition(Transition it) {
15 return () → it.event + " ⇒ " + it.tgt.name;
16 }
17 }

Listing 4.2 – A REVISITOR implementation for FSM implementing a pretty-printer

inheritance used in the metamodel cannot be directly represented. The workaround in this
context is not to introduce one factory method per class in the metamodel, but one per
class-superclass pair, returning the semantic type as expected from the context where the
$-method is invoked.

As an example, consider a metamodel which contains three concepts, A, B, and C,
where C extends both A and B. The generated REVISITOR interface would then be as shown
in Listing 4.3. The type parameter CT has no type bounds here. Instead, two additional type
parameters are used to model the semantics of C in the context of a particular parent class.
Both $-methods for A and B include runtime type-checks for model elements of type C, and
delegate to the specific factory methods, c_as_a, and c_as_b, respectively.

4.3.2 Modular Extension with REVISITORS

We now discuss how the REVISITOR pattern provides modular and independent extensibil-
ity (R1) on both dimensions (syntax and semantics), with incremental compilation (R2)
and without requiring anticipation (R3). In particular, we discuss the following extension
scenarios: semantic extension (provide a new interpretation of a language), syntactic exten-
sion (extend a language with new syntactic concepts), and independent extension (combine
two separate languages into one language).

4.3.2.a Semantic Extension

Semantic extension consists of providing a different implementation of the REVISITOR

interface of a language. In the example of FSMs, for instance, a different semantics could
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1 interface ABC<AT, BT, CT, CT_A extends AT, CT_B extends BT> {
2 AT a(A a);
3 BT b(B b);
4 CT c(C c);
5 CT_A c_as_a(C c);
6 CT_B c_as_b(C c);
7

8 default AT $(A it) {
9 if (it instanceof C) return c_as_a(it);

10 return a(it);
11 }
12

13 default BT $(B it) {
14 if (it instanceof C) return c_as_b(it);
15 return b(it);
16 }
17

18 default C $(C it) { return c(it); }
19 }

Listing 4.3 – Multiple inheritance in REVISITOR interfaces

be executing FSMs. Listing 4.4 shows the skeleton code of an execution semantics for
FSMs.

1 interface St { void step(String ch); }
2

3 interface ExecFsm extends FsmAlg<St, St, St, St> {
4 default St machine(Machine it) { return ch → { ... }; }
5 default St state(State it ) { ... }
6 ...
7 }

Listing 4.4 – Executing Finite State Machines

The St interface captures the semantic type of each model element; in this case, it
represents a simple step method that receives a character. Then the FsmAlg interface is
implemented using St to bind all type parameters. The concrete factory methods provide
semantic interpretation for each syntactic type. Note that this definition is fully modular: no
existing code needs to be changed or duplicated.

4.3.2.b Syntactic Extension

Extending the syntax of a language presupposes that its metamodel is extended with
new concepts. Suppose the FSM language is extended with a new kind of transition,
called TimedTransition, with an additional integer attribute time. To support the new
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construct in the definition of FSM semantics, the REVISITOR interface FsmAlg is extended
as TimedFsmAlg as shown in Listing 4.5. The new type parameter TT (extending the transition
parameter T) will represent the semantics of timed transitions.

1 interface TimedFsmAlg<M, S, F extends S, T, TT extends T>
2 extends FsmAlg<M, S, F, T> {
3

4 TT timedTransition(TimedTransition it);
5

6 default TT $(TimedTransition it) {
7 return timedTransition(it);
8 }
9

10 @Override
11 default T $(Transition it) {
12 if (it instanceof TimedTransition)
13 return timedTransition((TimedTransition) it);
14 return transition(it);
15 }
16 }

Listing 4.5 – Extending FsmAlg to support timed transitions

The interface defines a factory method for timed transitions (timedTransition) and a
corresponding $-method. Furthermore, since the inheritance hierarchy has changed, the
$-method for Transition is overridden to deal with the new subconcept.

Given this new REVISITOR interface, we can now incrementally define the printing
semantics for FSMs containing timed transitions, reusing the existing PrintFsm code. This
is shown in Listing 4.6: the interface PrintTimedFsm extends the PrintFsm interface for
the existing semantics, and the TimedFsmAlg interface to provide semantics for the new
construct. The latter is achieved by defining timedTransition in terms of the Pr interface.
Note how the ordinary transition semantics is reused by invoking the transition method
directly within the body of the closure (Line 4).

1 interface PrintTimedFsm extends PrintFsm, TimedFsmAlg<Pr, Pr, Pr, Pr, Pr> {
2 default Pr timedTransition(TimedTransition it) {
3 return () → it.time + "@" +
4 transition(it).print();
5 }
6 }

Listing 4.6 – Printing timed transitions
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4.3.2.c Independent Extensiblity

The extensibility scenarios presented up to now can all be characterized as forms of linear
extension: a single abstract or concrete REVISITOR interface is extended or specialized.
Independent extensibility allows multiple language components to be extended at once
through multiple inheritance.

Listing 4.7 shows skeleton code illustrating independent extensibility in the context of
the FSM example. A visual illustration of the extension relations is shown in Figure 4.7.
In this case, a new variant of the FSM language is defined that features guarded transitions;
this language is captured by the REVISITOR interface GuardedAlg. Guard conditions are
represented by an independently developed expression language (ExpAlg). The evaluation
of expression is defined as EvalExp.

The GuardedAlg then combines both FsmAlg and ExpAlg, and extends the combination
of these two languages with the guarded transition concept (Guarded). Additionally, it
defines a dispatch method for Guarded transitions and overrides the dispatch method for
Transition because the inheritance hierarchy has changed.

Finally, ExecGuarded defines the execution semantics of the combined language, reusing
the execution semantics of base FSMs (ExecFsm) and the evaluation of expressions (EvalExp).
The semantics of the new language construct is defined by implementing the guarded fac-
tory method. Within the closure returned by this method, the $-method is used to obtain
the semantics of the guard (inherited from EvalExp), and the base trans method is reused
to obtain ordinary transition behavior after the guard has evaluated to true.

4.3.3 Modular Composition with REVISITORS

In this section, we describe how to derive modular language module implementations
from specifications of language modules as described in Section 4.2.6, and exploiting the
independent extensibility presented in the previous section (Section 4.3.2.c).

The modular implementation pattern we propose relies on two main ideas that make it
intuitive. First, it leverages two well-known concepts of object-oriented programming: in-
heritance and the delegation pattern. Second, the same pattern and compilation scheme is
employed to implement both the language modules themselves and the specification of the

GuardedAlg ExpAlg

FsmAlgExecFsm

EvalExpExecGuarded

Figure 4.7 – Independent extension of FSMs and expressions, via guarded transitions,
reusing existing execution semantics
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1 // finite state machine execution
2 interface ExecFsm extends FsmAlg<St, St, St, St> { ... }
3

4 // expression language
5 interface ExpAlg<E, ... > { ... }
6

7 // semantic type for expression evaluation
8 interface Ev { Object eval(); }
9

10 // expression evaluator
11 interface EvalExp extends ExpAlg<Ev, ... > { ... }
12

13 // "metamodel" extension
14 class Guarded extends Transition {
15 Exp guard;
16 }
17

18 // FSM + expression + guarded transitions as glue
19 interface GuardedAlg<E, ... , M, S, F extends S, T, G extends T>
20 extends FsmAlg<M, S, F, T>, ExpAlg<E, ... > {
21

22 G guarded(Guarded it);
23

24 @Override
25 default T $(Transition it) { ... }
26 default G $(Guarded it) { ... }
27 }
28

29 // guarded FSM execution reusing ExecFsm and EvalExp
30 interface ExecGuarded extends GuardedAlg<Ev, ... , St, St, St, St, St>,
31 ExecFsm, EvalExp {
32

33 default St guarded(Guarded it) {
34 return ch → {
35 Object gv = $(it.guard).eval();
36 if (gv.equals(true))
37 trans(it).step(ch);
38 };
39 }
40 }

Listing 4.7 – Independent extensibility: combining FSMs and expressions through guarded
transitions.
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composition between them.
Our pattern extends the REVISITOR pattern that was used in earlier work to support

modular and independent extension of the syntax and semantics of DSLs [104]. In this
section, we describe how we extend it to account for required interfaces and go beyond
strict extension to support arbitrary composition of language modules. Our extensions
retain the desirable properties of the REVISITOR pattern: the syntax and semantics of
language modules can be independently extended in a modular and type safe way, without
requiring anticipation.

4.3.3.a Language Module Implementation

As we have shown in Section 4.3.2, it is possible to automatically generate a REVISITOR

interface from the same metamodel, which specifies an extensible mapping from syntactic
objects to semantic objects, captured by generic type parameters of the interface [104].

We extend the REVISITOR implementation pattern to account for «required» con-
structs. We enable language engineers to annotate certain elements of the metamodel with
a «required» annotation, using the native EMF annotation mechanism [150]. «required»
classes must be declared abstract, as they cannot be instantiated in the current language
module without being bound first. Annotating a class with «required» is a simple lan-
guage module interface documentation which is both understandable by humans, who can
quickly understand if a language is fully defined and what are its extension points, and by
computers which can exploit them to check interfaces and bindings at the specification
level automatically.

A first part of the pattern, the semantic mapping, specifies a mapping from metaclasses
to abstract execution functions and is implemented by a REVISITOR interface. In a standard
REVISITOR interface, each metaclass leads to the introduction of (i) an abstract factory
method and (ii) a dispatch method that dynamically dispatches from static metamodel
types to the appropriate factory method according to the runtime type of the argument. As
the «required» classes are not meant to be fully implemented in the current module, the
generated REVISITOR includes an (abstract) dispatch method but skips the generation of a
factory method for the «required» classes. The generation of abstract factory methods is
postponed until concrete implementations of «required» classes are known, i.e., until the
requirements expressed by «required» classes are fulfilled by one or several other modules
at composition time.

Listing 4.8 depicts an excerpt of the REVISITOR interface generated from the FSM
metamodel of Figure 4.3.2

The GFSMRev REVISITOR interface declares one generic type parameter per class in the
metamodel (including the «required» ones) and one factory method per non-«required»
class. Consequently, there is no factory method for Action and Guard. Finally, the RE-
VISITOR interface declares one dispatch method (named $) per class in the metamodel.
The $-methods define a case-based mapping from syntactic constructs to corresponding

2In the listings, . . . depicts peripheral code left out for the sake of clarity.
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1 interface GFSMRev<M, T, A, ... > {
2 M machine(Machine it);
3 T transition(Transition it);
4 ... // No factory methods for Action and Guard
5

6 default M $(Machine it) { return machine(it); }
7 default T $(Transition it) { return transition(it); }
8 // Abstract dispatchs
9 A $(Action it);

10 G $(Guard it);
11 ...
12 }

Listing 4.8 – REVISITOR interface for the FSM language module depicted in Figure 4.3

semantic objects, where the mapping is executed lazily, and explicitly, through invocations
of the $-methods. As concrete implementations of Action are not known yet, its dispatch
method is left abstract.

A second part of the pattern, the semantic interface, is realized by a set of Java interfaces
— one per metaclass in the module — that define the signatures of the execution functions
of the constructs included in a module. The signatures are then mapped to the appropriate
constructs through the definition of a concrete semantic mapping, a Java interface that
inherits from the REVISITOR interface and binds every generic type parameter to the
corresponding Java interface.

Listing 4.9 presents a pretty-printing semantic interface for the FSM of Figure 4.3. The
IPrint Java interface defines the signature of a print() method which returns a String. The
PrintGFSMRev interface inherits from GFSMRev and binds each of its generic type parameters
to the IPrint interface. So, every construct of the module, as defined in its metamodel, are
mapped to the print() execution function through invocations of the $-methods. At this
point, the whole public interface of the language module is defined, without any concrete
implementation of the execution functions yet.

1 interface IPrint { String print(); }
2 interface PrintGFSMRev extends GFSMRev<IPrint, IPrint, IPrint, ... > {}

Listing 4.9 – Semantic interface and semantic mapping for a pretty-printer of the FSM
language module depicted in Figure 4.3

Finally, the semantic implementation is realized by a Java interface that inherits from
the concrete semantic mapping and implements the factory methods to provide the imple-
mentation of execution functions. Each implementation is realized by returning instances
of the semantic interfaces corresponding to the bindings defined in the semantic mapping.

Listing 4.10 depicts the pretty-printing semantic implementation for the FSM module
of Figure 4.3. A new ImplPrintGFSMRev interface is defined, extending PrintGFSMRev with
concrete implementations of the factory methods using anonymous classes that give the
semantics of every non-«required» construct.
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1 interface ImplPrintGFSMRev extends PrintGFSMRev {
2 default IPrint machine(Machine it) {
3 return () → "machine " + it.name + "\n" +
4 it.states.stream().map(s → $(s).print()) + "\n" +
5 it.trans.stream().map(t → $(t).print());
6 }
7

8 default IPrint trans(Trans it) {
9 return () → it.event +

10 "[" + $(it.guard).print() + "]" +
11 " / " + $(it.action).print();
12 }
13 ...
14 }

Listing 4.10 – Implementation of a pretty-printer for the FSM language depicted in
Figure 4.3

It is important to note that the semantics of every non-«required» construct can already
be implemented, even though the concrete syntax and semantics of «required» constructs
are not known yet. For instance, in Listing 4.10, printing a transition consists of printing
its event, the associated guard, and the associated action. Invoking the $-methods on
Guard and Action returns the semantic interfaces of guards and transitions, which have
been mapped to IPrint in Listing 4.9 and allow to type-check and compile the FSM
module independently. One can observe that Listing 4.10 is very close to the definition
of the FSM pretty-printer of Listing 4.2. What distinguishes them is their instantiability.
Indeed, in the context of Listing 4.2, the language implementation is complete and can
be used directly for the interpretation of FSM models. Conversely, in the context of
Listing 4.10, the concrete implementations of print() for Guard and Action is left abstract.
Consequently, ImplPrintGFSMRev cannot be instantiated and executed in its current state. It
must be composed in order to form a fully defined and instantiable language semantics.

4.3.3.b Composition of Language Modules

As mentioned earlier, the composition of two language modules is realized by a language
module itself. In this scenario, the metamodel of this new module binds the «required»
constructs of a requiring module to the concrete constructs of one or several providing
modules. The operational semantics of this new module specifies how the signatures of the
execution functions of the «required» constructs are bound to concrete execution functions
of the providing modules, possibly with some glue in-between. In this section, we first
present the details of the syntactic bindings between constructs. Then, we present the
details of the semantic gluing between execution functions.
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BindAction BindGuard
delegate delegate

FSM

AL

Exp
FullFSM

Machine
+ name: String

+ exec(event:String[], ctx: Context)

State
+ name: String

+ step(event: String, ctx: Context)

Trans
+ event: String

+ fire(ctx: Context)

«@Required» 
Action

+ exec(ctx: Context)

«@Required» 
Guard

+ eval(ctx: Context): Boolean
Block

+ eval(env: Env)

«abstract» 
Stmt

+ eval(env: Env)

«abstract» 
Exp

+ eval(env: Env): Boolean

void exec(Context ctx) {
  al.Env env = new al.Env(); 
  ctx.env.forEach((k, v) -> if(v instanceof Integer) env.put(k, v));
  delegate.eval(env); 
  env.forEach((k, v) ctx.bind(k, v));
}

void eval(Context ctx) {
  exp.Env env = new exp.Env(); 
  ctx.env.forEach((k, v) -> if(v instanceof Boolean) env.put(k, v));
  delegate.eval(env); 
  env.forEach((k, v) -> ctx.bind(k, v));
}

Figure 4.8 – Composing the FSM language module with an action language module and an
expression language module. For the sake of conciseness, only excerpts of these modules
are depicted here

Metamodel Composition The first step in composing two language modules is to com-
pose the metamodels defining their abstract syntax. Composing the metamodels can be
done regardless of the semantics of the composed language modules, i.e., two language
modules can be mapped syntactically without having to consider their semantics.

Metamodel composition is realized by reusing the built-in inheritance mechanism of
Ecore and the syntactic extension mechanism provided by the REVISITOR implementation
pattern. A new metamodel is created containing one Bind metaclass per «required»
construct. Each Bind metaclass inherits from a «required» construct and holds a single
reference delegate to the construct that fulfills the interface in the providing module,
following the well-known object-oriented delegation pattern. This way, the binding
mechanism is modular and does not require any modification in either of the two composed
modules.

Figure 4.8 illustrates the composition of the FSM language module to an Action
Language module and an Expression Language module. The FullFSM metamodel specifies
the bindings between constructs of the three modules. Two bindings are defined for the
«required» classes Action and Guard, respectively to the Block and Exp classes, materialized
by the BindAction and BindGuard metaclasses. Following the same generation process as
introduced in Section 4.3.3.a, this leads to the generation of a new REVISITOR interface
which inherits from the REVISITOR interfaces of all composed language modules and
specifies factory and dispatch methods for the Bind metaclasses. The FullFSMRev interface
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depicted in Listing 4.11 is the REVISITOR interface generated from the FullFSM metamodel
shown in Figure 4.8. As the concrete types of Action and Guard are now known, the
FullFSMRev gives concrete implementations for the dispatch methods that were left open in
Listing 4.8.

1 interface FullFSMRev< ... , ActionT, ... ,
2 BindActionT extends ActionT, ... >
3 extends FSMRev< ... , ActionT, ... >,
4 ALRev< ... >,
5 ExpRev< ... > {
6

7 BindActionT bindAction(BindAction it);
8 ...
9

10 default ActionT $(Action it) { return bindAction((BindAction) it); }
11 default BindActionT $(BindAction it) { return bindAction(it); }
12 ...
13 }

Listing 4.11 – REVISITOR interface generated from the FullFSM metamodel depicted in
Figure 4.8

Semantic Interface Composition Once «required» constructs are bound to concrete
constructs syntactically, their semantics must be bridged. In the FSM example, the three
modules support variable binding and manipulation. As they have been defined indepen-
dently, however, the stores that hold variables and their values do not match: the Action
Language module uses the al.Env store which holds integer variables, the Expression
Language module uses the exp.Env store which holds Boolean variables, and the FSM
language module uses its own fsm.Ctx. It is nonetheless essential that the variables declared
in the FSM can be manipulated by guards and actions. In the FSM example, the semantic
glue thus mainly consists of the translation of variables from one store to the other and the
invocation of the appropriate execution functions.

The two boxes at the bottom of Figure 4.8 depict a possible glue between these modules.
As shown in the bottom left, executing an action requires to extract the integer variables
declared by the FSM from the fsm.Ctx store and to provide them to the actions using their
own al.Env store. Then, invoking the eval() execution function of Block is done through
the delegate reference hold by BindAction, passing the appropriate store. Finally, the local
fsm.Ctx store of the FSM is updated back to account for possible updates of the values by
the actions. As shown in the bottom right, a similar glue is defined between Guard and Exp,
this time passing the Boolean variables around.

Listing 4.12 depicts how the glue is implemented following our implementation pattern.
The glue is specified as the implementation of the semantics of the Bind metaclasses
introduced in Section 4.3.3.b. The FullFSMEvalRev interface inherits from the REVISITOR
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interface of the composed module shown in Listing 4.11 and implements the execution
functions of BindAction and BindGuard. These execution functions are the glue itself. For
instance, the implementation of the factory method for BindAction is the implementation
in Java of the glue depicted in Figure 4.8.

1 interface FullFSMEvalRev
2 extends FullFSMRev< ... , EvalBindAction, ... >,
3 FSMEvalRev,
4 ALEvalRev,
5 ExpEvalRev {
6

7 default EvalBindAction bindAction(BindAction it) {
8 return (ctx) → {
9 al.Env env = new al.Env();

10 ctx.env.forEach((k, v) → if(v instanceof Integer) env.put(k, v));
11 delegate.eval(env);
12 env.forEach((k, v) → ctx.bind(k, v));
13 }
14 }
15 ...
16 }

Listing 4.12 – Semantic implementation generated from the glue depicted in Figure 4.8

In conclusion, the composition of two language modules is realized through syntactic
bindings and semantic glue. This composition is implemented by a language module
itself and follows the exact same implementation pattern as that of a language module.
The semantic mappings, semantic interfaces, concrete semantic mappings, and semantic
implementations, along with syntactic bindings and semantic glue, can all be written,
type-checked, and compiled separately.

4.4 Conclusion on Language Reuse
In this chapter, we propose the REVISITOR language implementation pattern, which brings
modular extensibility, composition, and customization to the definition of DSLs. The
pattern can be seen as a variant of Object Algebras [124], allowing seamless application in
the context of MDE, where explicit abstract syntax structures and mutability of models are
prevalent.

The REVISITOR pattern can further be used as a compilation target for high-level
specification languages, thus bringing separate compilation to model-based semantics
specification. The specification level eases the definition of DSLs in a uniform object-
oriented way and offers advanced type checking to ensure safe definition and manipulation
of DSLs.

We show how REVISITORS facilitate modular extension of both syntax and semantics
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when applied directly in Java, and that our implementation fulfills our requirements: inde-
pendent extensibility (R1), incremental compilation (R2), and opportunistic reuse (R3).

Additionally, we have presented a modular implementation pattern for the definition and
composition of language modules, fulfilling the module encapsulation requirements (R4).
Language modules are equipped with well-defined required interfaces that enable en-
capsulation and information hiding, and make explicit the requirements a module has
towards other modules (R5). When equipped with an explicit syntax and semantic in-
terface, modules can be substituted modularly by any alternative module conforming to
the same interface (R6). Finally, Language modules can be composed safely and modu-
larly (i.e., with separate compilation and without anticipation), and without having to dive
into their internal implementations. Our approach is integrated into ALE, a high-level
object-oriented language dedicated to the definition of operational semantics on top of
Ecore metamodels (R7).
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CHAPTER 5

LANGUAGE PERFORMANCE
OPTIMIZATION

In this chapter, we develop our contribution to the optimization of DSLs imple-
mentations. First, we introduce the problems related to performance in the
context of DSLs (Section 5.1). Then, we present some background (Section 5.2),
complementing the general background of Chapter 2, and we discuss the cur-
rent approach to DSLs design and implementation in the context of language
performance (Section 5.3). Next, we present our approach to the automatic
optimization of DSLs (Section 5.4). Finally, we draw some conclusions on the
benefits of our contribution (Section 5.5).

5.1 Introduction to Language Performances
The main objective of language workbenches is to support domain experts by reifying
concepts dedicated to a given application domain to ease the development of future complex
systems in this particular domain. They rely on generative and generic approaches to
produce language services implementation from language specification. By their very
nature, such approaches hamper the incorporation of language-specific optimizations,
making the resulting language runtimes much less efficient than the optimized runtimes
of general-purpose languages (e.g., just-in-time (JIT) compilation in the current JDK or
V8 JS engine). Indeed, DSL runtime generators apply the same generic patterns for the
generated code of every DSL. Different generators may apply different patterns, but a
given generator always applies the same patterns, which prevents specific optimizations
tailored to the specificities of a particular application domain or execution environment.
For instance, from any given metamodel, EMF always derives visitor-like Java classes
based on runtime-type inspection.

Recently, various execution frameworks have been proposed to support the definition of
languages over the JVM and assist in the generation and optimization of interpreters based
on JIT compilation – a process that transforms frequently used interpreted code pieces to
machine code during execution. Truffle [172] relies on the Partial Evaluation capabilities
provided by the GraalVM [128] to realize such optimizations. Truffle offers facilities to
complement an initial DSL interpreter implementation with patterns and annotations to
benefit from specific runtime optimizations. Performance gains reported in the literature
are significant [177]. However, efficiently using these frameworks requires strong expertise
in language development and the intricacies of the framework itself, which industrial DSL
designers often lack.
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In addition, we do so without breaking the compatibility with other tools surrounding
the DSLs (e.g., editors, debuggers). We introduce a systematic approach to generate
optimized Truffle-based language interpreters from model-based DSLs specifications
automatically, inducing a complementary speedup on top of language interpreters based on
the Interpreter pattern. Our systematic approach exploits high-level information contained
in language specifications to drive the application of Truffle-based optimizations. We also
propose an implementation of our approach integrated with the compilation chain of EMF,
enabling its application to many already existing and future DSLs.

In summary, we propose and evaluate an approach to the automatic optimization of
model-based interpreter performance.

We evaluate our approach on a representative set of four languages and eight con-
forming programs (from programming languages to modeling languages to “end-user”
languages, from arithmetic-intensive to structure-intensive, from recursive style to iterative
style). Our experiments demonstrate the benefits of our approach in all cases. The average
speedup is of x1.14, ranging from x1.07 to x1.26.

To summarize, the approach proposed in this chapter enables language designers
to automatically obtain efficient language interpreters while remaining oblivious of the
technical details of the interpreter optimizations.

5.2 Background

In this section, we complement the background on language engineering presented in
Chapter 2 with notions specific to language runtime and performance. We first introduce
Graal and the Graal Virtual Machine (GraalVM) in Section 5.2.1, and the Truffle language
implementation framework in Section 5.2.2.

5.2.1 Graal and GraalVM

GraalVM is a Java Virtual Machine (JVM) resulting from an internal project of Oracle [176]
and has shown promising performance improvement results. GraalVM is a universal virtual
machine targeting the execution of arbitrary languages (e.g., JavaScript, Python, Ruby, R,
or LLVM). It includes a new high-performance JIT compiler, called Graal, which produces
native code from Java bytecode. It is used as a replacement for the JIT of the HotSpot
VM in GraalVM. Graal is also used as an ahead-of-time compiler by the Substrate VM1,
allowing the compilation of Java bytecode to native machine code outside of a virtual
machine.

1Substrate VM documentation: https://www.graalvm.org/docs/reference-manual/
aot-compilation/
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5.2.2 Truffle

Truffle [172] is a framework designed to ease the development of efficient interpreters on
the JVM. Several works demonstrate the speedup offered by Truffle-based interpreters [148,
109]. This makes it interesting to study in the context of DSL performance. Truffle provides
a set of classes, annotations, and built-in operations in order to produce efficient Java
implementations of interpreters following the Interpreter pattern. The Interpreter pattern is
additionally decorated with annotations that assist in the definition of efficient language
implementations.

At runtime, Truffle relies on Partial Evaluation [108, 63]. This consists of the combi-
nation of an interpreter with its program to produce an optimized interpreter, specialized
for this given program. While the optimizations are processed by Graal, Truffle pro-
vides the expressiveness to define language-level information that assists Graal to apply
language-specific optimizations.

In our context, Partial Evaluation works by combining a method of an interpreter with
data (i.e., parts of a program) to produce an optimized Graal Intermediate Representation
(IR). The Partial Evaluation process allows the application of various optimizations such
as constant folding, indirect to direct call substitution, or dead code elimination.

During Partial Evaluation, Truffle can make optimistic assumptions (e.g., a variable is
never null, a method always returns true), and propagate such decisions (e.g., removing an
unreachable else branch) in the resulting optimized machine code. If runtime data later
contradict future executions of the optimized code (e.g., the variable is finally not-null),
Truffle can deoptimize the code and goes back to using the interpreter version of the code.

Without constraints, Truffle explores the execution graph eagerly during Partial Evalu-
ation. Consequently, this process might lead to code explosion [177], failing due to the
production of too large specialized interpreters (i.e., too large to be compiled). This is why
Truffle requires the definition of explicit boundaries in order to prevent such undesirable
behaviors. Würthinger et al. [177] shared their experience building interpreters with Truffle.
They tried to define boundaries automatically but did not find a suitable automated solution
in the context of the abstractions proposed by Java.

5.3 DSL Design and Implementation
As presented in Section 2.2 the definition of a DSL encompasses the definition of its
abstract syntax and semantics. The abstract syntax specifies the domain concepts and their
relations. In the modeling world, it is typically defined by a metamodel. Object-Oriented
formalisms such as Ecore, represent language concepts as a set of metaclasses and their
relations. The semantics of a DSL assign meaning to its constructs. In order to support the
operational execution of the conforming models, it is typically defined by an interpreter. It
implements its operational semantics in the form of a transition function over model states.
In the modeling world, it is defined using an action language that extends the language
concepts with operations. In this chapter, we use ALE, presented in Chapter 6.
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The operational semantics defines the evolution of the state of the execution of a
program. This evolution is realized by the modification of the model by the operational
semantics at runtime. The set of concepts modified during the execution is called the
Execution metamodel [18].

One solution to make metamodels and operational semantics executable is to compile
them to general-purpose languages. In this context, their implementations follow well-
defined implementation patterns [124, 160, 53, 178, 2], the most common being the
Interpreter and Visitor patterns [64].

While functionally equivalent, both patterns offer different advantages, notably regard-
ing their modularity, but also regarding their performances. By default, EMF provides the
generation of a variation of the Visitor pattern, named the Switch pattern. Consequently,
this implementation pattern is found in EMF-based language implementations and is used
as a reference in this chapter.

In the remainder of this chapter, we study our approach to improve further the per-
formances of the implementation of languages specified using model-oriented language
specifications, as presented in this section.

5.4 Automatic Generation of Truffle-based Interpreters

This section presents a general overview of our approach and presents the optimizations
that can be derived from the abstraction provided by the metalanguage in the context of
the approach to language specification presented in the previous section.

Our approach and its context are illustrated in Figure 5.1. The first column presents
the state of practice of language interpreter implementation using the standard EMF
Switch pattern for the language interpreter implementations and uses HotSpot VM for
the program’s execution. Then, the second column presents a solution that substitutes the
Switch for the Interpreter implementation pattern and uses GraalVM for the program’s
execution. This column exploits state of the practice solutions exclusively but already
provides performance speedup and helps to position our approach. Finally, the third
column presents our contribution and introduces a new EMF to Java compiler, allowing
the automated introduction of Truffle optimizations while staying compatible with existing
EMF implementation patterns. This way, language engineers benefit from performance
optimization allowed by Truffle without having to be exposed to its technical details.

In Section 5.4.1, we present some preliminary results that help understand the scope of
our approach, corresponding to the transition from the first to the second column. Then,
Section 5.4.2 presents the metamodels generation while complying with the constraints
of Truffle, and Section 5.4.3 presents the automatic introduction of Truffle boundaries.
Finally, Section 5.4.4 details the aspects of Truffle that are not included in our approach.
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Figure 5.1 – General overview of the proposed approach. Decimal numbers prefixed with
an x represent performance speedups. * Abstract Syntax. ** Semantics.

5.4.1 Preliminary Results

The choice of runtime and implementation pattern for model-based DSLs is composed
of HotSpot VM and the Switch implementation pattern. As we target GraalVM and the
Interpreter implementation pattern, we first investigate the impact of the transition to
the latter. Even if this is not strictly part of our contribution, it is still useful to have an
estimation of the expected speedup of such design decisions.

Table 5.1 summarizes the performance speedups observed from our benchmarks on sev-
eral languages and programs. The speedups presented here are computed from the average
speedups of the programs between executions using different choices of virtual machine
and implementation patterns. We refer the reader to Section 8.2 for an in-depth explanation
of our benchmark methodology to better understand how these numbers are computed.
The results of our measurements show the impact of the transitions from HotSpot VM to
GraalVM with a speedup of x1.56, from the Switch to Interpreter implementation pattern
with a speedup of x1.23, and both combined with a speedup of x1.75. We can observe that
each transition, independently, is very beneficial, and even more when combined.

5.4.2 Truffle-Compliant Object Model Implementation

Starting from a language implementation based on the Interpreter pattern and running on
GraalVM, the next challenge is to translate Ecore metamodels to an object model, in the

Table 5.1 – Average speedups resulting from the transition from HotSpot VM to GraalVM
and from the Switch implementation pattern to the Interpreter implementation pattern.

HotSpot VM GraalVM
Switch pattern x1.00 x1.65
Interpreter pattern x1.23 x1.75
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form of a set of Java classes that can be efficiently optimized by Truffle. Truffle expects
Java classes to form an immutable AST, whereas Ecore defines graph-based and mutable
set of classes. Consequently, the translation from Ecore is not straightforward, and multiple
steps are needed to produce an efficient Truffle compliant implementation.

The first step is the discrimination between the immutable metaclasses, that can be
part of Truffle object models, and mutable metaclasses of the Execution metamodel, that
cannot. Metaclasses that match this definition can be compiled into Truffle nodes, whereas
the others are compiled to standard Java classes.

We proceed to this classification by analysis of the ALE specifications. Metaclasses
instantiated using the create() operation (i.e., possibly created at runtime) are part of the
Execution metamodel, whereas the other metaclasses are part of the Abstract Syntax. Only
metaclasses of the later are compiled as Truffle nodes.

Truffle nodes are identified by their inheritance to the Truffle Node class. We duplicated
the usual EMF class hierarchy in order to create a Truffle specific hierarchy by introducing
the Node class at the top of the hierarchy. Classes of the Execution metamodel inherit
from the standard EMF hierarchy, whereas classes of the Abstract Syntax inherit from the
Truffle specific hierarchy.

The second step is the identification of the metaclasses’ references that can be trans-
lated into Truffle parent-child relation, which defines the tree-shaped hierarchy in the
object model. We identified the following constraints i) Metaclasses’ references must be
containment references; ii) the references must take place between metaclasses that can
be translated into Truffle nodes; iii) the reference cannot be mutated during the language
execution. References that conform to these three constraints are promoted as parent-child
relations.

The identification of the containments is realized by a straightforward analysis of the
metamodel. We presented above how Truffle nodes are identified. Finally, the mutability
analysis is realized by analyzing the occurrences of field modification operations (e.g., call
to setters or modification of collections). If a relation between two metaclasses conforms
to the three constraints above, the compiler introduces a parent-child relation.

If the reference has an upper multiplicity of one, parent-child relations are realized
by the annotation of the field with the @Child annotation. When its upper multiplicity is
greater than one, the @Children annotation is added to the field, but this introduces an
additional constraint on the generated code. Indeed, Truffle constrains the fields annotated
with @Children to be a Java array, instead of the usual EMF EList. Additionally, in order
to preserve the compatibility with EMF model loading (i.e., one of EMF’s tool support),
all the fields derived from references with an upper multiplicity greater than one must be of
type EList. We satisfy those contradictory constraints by introducing a new field, named
after the original reference and suffixed with Arr, and typed by an array of elements of the
same type as the original reference.

Listing 5.1 shows an example of the resulting compilation for a Block class with
a statements field containing Statement objects. This array is initialized the first
time one of the methods declared in ALE is called (Line 14), by copying the element
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1 @NodeInfo(description="Block")
2 class Block extends Node {
3 private List<Statement> statements;
4

5 @Children
6 private Statement[] statementsArr;
7

8 public List<Statement> getStatements() {
9 if(statements == null) statements = new ArrayList<>();

10 return statements;
11 }
12

13 public void execute() {
14 if(this.statementsArr == null) {
15 CompilerDirectives.transferToInterpreterAndInvalidate();
16 if(statements != null) statementsArr = statements.toArray(Statement[0]);
17 else statementsArr = new Statement[] {};
18 }
19 // ... statementsArr is used whenever statements is used
20 // in the semantics specification.
21 }
22 }

Listing 5.1 – Integration of the Children annotation on a Block statement.

from the list to the array (lines 16 and 17). CompilerDirectives.transferToInterpreterAnd-
Invalidate() (Line 15) warns Truffle to return to the Java bytecode interpreter because
a JIT-compiled machine code would be deprecated (i.e., deoptimized), in case of early
Truffle Partial Evaluation.

5.4.3 Truffle Boundaries

We explained in Section 5.2.2 the challenge of Truffle boundaries identification. Placing
relevant Truffle boundaries is crucial to obtain interesting performance speedups. We can
take advantage of our approach based on metalanguages with domain-specific expressive-
ness and a generic compilation scheme, allowing the safe reification of boundaries in the
compiler.

Consequently, we can identify exhaustively the places where boundaries are relevant
without the need for advanced heuristics or static analysis, allowing the safe generation
of interpreters without risks of Partial Evaluation failure during program interpretation.
For instance, the Java sources produced by EMF introduce involved proxy mechanisms to
guarantee models consistency (e.g., bidirectional reference, where referential integrity is
required), which leads to code explosion when partially evaluated. Hence, they are placed
behind Truffle boundaries.

Truffle boundaries are defined by annotating methods with the @TruffleBoundary
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annotation. Boundaries are placed on every method that is not directly derived from ALE
specifications. In other words, we isolate the code directly derived from ALE specification,
from the code that implicitly supports it. For instance, the call to the classes of the library
supporting EMF, or the code indirectly called from it (e.g., the operations of the reflective
API of the classes) are placed behind boundaries.

In practice, the code directly derived from ALE specifications is compiled to simple
operations that are not subject to code explosion (e.g., accessors, variable affectation, Java
operators) and isolated from code subject to code explosion.

5.4.4 Discussion of Additional Truffle Optimizations
For the approach presented in this chapter, we set the constraint to exploit existing abstrac-
tions of language specifications and to preserve the compatibility with the tool support of
languages. This section discusses possible performance improvement that could not be con-
sidered given such constraints. We first illustrate this idea by presenting the Polymorphic
Inline Cache optimization (Section 5.4.4.a), before discussing other optimizations (Sec-
tion 5.4.4.b).

5.4.4.a Polymorphic Inline Cache

Using Truffle allows the definition of Polymorphic Inline Cache (PIC) [73]. PIC is a
language optimization historically implemented in the Smalltalk language [45] that aims
at optimizing dynamically the performance of the call sites frequently dispatched to
different methods. Würthinger et al. [178] present the use of PICs for the optimization of
Truffle-based language interpreter implementations.

The introduction of the PIC optimization raises the challenge of the automatic identi-
fication of the call site that would benefit from such optimization. Indeed, badly placed,
PICs can be detrimental to the performances of programs.

In practice, the identification of the methods that benefit from the introduction of PIC
optimizations in language implementations is challenging and can even lead to slowdown
or runtime errors if done wrong. We tried to identify the relevant uses of PICs in the

1 class LogService {
2 @TruffleBoundary
3 static void log(Object self, String level) {
4 if (level.equals("INFO"))
5 Logger.info(self);
6 ...
7 }
8 }

Listing 5.2 – Extract of an ALE service. Methods are annotated with @TruffleBoundary
in order to anticipate Partial Evaluation issues at runtime.
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implementation of languages by benchmarking a large sampling of usage. To do so, we
introduced a dispatch keyword in ALE, that can be used as a method declaration prefix by
language engineers to define the introduction of PICs explicitly.

We proceeded by automatic mutation of the MiniJava object-oriented language pre-
sented in Section 8.2.1 to introduce the dispatch keyword on random method declarations.
The results of our experiment are available on the companion webpage2. The conclusions
of our experiments clearly show that the use of PICs has a strong influence on the per-
formance of the language but did not permit us to infer actionable rules to automate the
placement of the PICs.

The companion webpage3 presents additional technical details on the use of Truffle on
the implementation of the Polymorphic Inline Cache.

5.4.4.b Other Optimizations

Truffle offers a profiling library, allowing the fine-tuning of the interpreter implementation
by the introduction of runtime state monitoring at relevant places (e.g., by monitoring the
condition of an if statement). Placing those profiling probes is highly context-sensitive and
requires knowledge that goes beyond the abstractions available in operational semantics
specifications. Consequently, using the profiling capabilities of Truffle is outside the scope
of our approach.

Truffle also provides loop unrolling capabilities, assisted by specific annotations and
classes. To properly exploit loop unrolling requires to be able to estimate the size of the
content of a loop. Since programs of DSLs are very diverse in shapes and sizes, it leads to
challenges similar to the one raised for the profiling library.

Truffle provides a Frame object, that assists in the definition of stack located variables,
instead of the heap. Frame objects are non-trivial to manipulate as they are sensitive
to escape analysis, and cannot, among others, be assigned to fields or be type-casted.
The choice of the runtime data that is beneficial to move into frames is context-specific.
Consequently, it falls into the same limitations as the optimizations presented above.

Finally, Truffle support method specialization. This technique is the foundation of
various Truffle implementation patterns (e.g., type boxing). But it requires to define
multiple methods (e.g., equal0(int,int), equal1(String,String)) for a single op-
eration (e.g., here, the equality of the values returned by two child nodes). The relevant
method is called by inspection of the type of the value returned by the child nodes. This
multiplication of methods breaks the public interface of the classes, hence making it
possibly incompatible with the surrounding tool support.

2Companion webpage: https://manuelleduc.github.io/ecmfa-2020/
#automated-feature-selection

3Companion webpage: https://manuelleduc.github.io/ecmfa-2020/
#polymorphic-inline-cache-implementation
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5.5 Conclusion on Language Performance Optimization
In this chapter, we propose an optimized alternative to the standard execution framework
for EMF-based interpreted DSLs. The optimized interpreter is obtained by using more
efficient implementation patterns and virtual machines and leveraging information obtained
from higher levels of abstraction provided by a model-based approach to automatically
incorporate Truffle optimizations. Hence, we propose an approach that both allows the
introduction of Language-Specific optimizations while remaining Application Domain
Agnostic. In addition, we preserve the tool support that accompanies DSLs. In other
word, language engineers can benefit from improved language performance but are not
required to have knowledge of the underlying intricacies of the language performance
optimization (i.e., the integration of Truffle)

However, we also emphasize the complexity introduced by the use of Truffle. To
address this challenge, we leverage on an approach to language implementations based
on high-level metalanguages, dedicated to the specification of important aspects of a
language (i.e., abstract syntax, and semantics). This approach is complemented with the
identification of a useful set of four general-purpose Truffle based optimizations. We
show how the expressiveness of our metalanguages is useful to automatically compile an
optimize language implementation, guided by the metalanguages definitions. Our approach
to language implementation is based on mainstream, high-level object-oriented languages
dedicated to the definition of languages.

The implementation details and the concrete speedup results of our approach are
presented in Chapter 8.
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CHAPTER 6

TECHNICAL BACKGROUND

In this chapter, we introduce the technical background required for the un-
derstanding of the implementation and evaluation of our approaches. First,
we introduce the ALE metalanguage (Section 6.1). We use ALE for the
specification of the semantics of the languages developed in the context of
our evaluations. Furthermore, we later extend ALE with two compilers, ded-
icated to the challenges of this thesis (Chapters 7 and 8). Then, we present
our environment dedicated to the definition of repeatable performance bench-
marks (Section 6.2).

6.1 Introducing the ALE Metalanguage
ALE is an existing interpreted metalanguage that is part of the GEMOC Studio and
integrates seamlessly with the EMF ecosystem. In particular, it relies on Ecore for defining
the abstract syntax of language modules in the form of a metamodel and allows the
definition of operations on top of metaclasses. The interoperability with EMF enables
language engineers to benefit from other tools of the ecosystem, such as graphical editors
implemented with Xtext or Sirius. In practice, ALE is an alternative to other approaches to
the definition of semantics in the EMF ecosystem (e.g., Kermeta, Xtend), with a particular
focus on modularity and composition.

ALE is close the other action languages of the Eclipse ecosystem such as the Epsilon
Object Language (EOL) [91], but can be differentiated by its open class mechanism.
This open class mechanism is inspired by Kermeta [79] and follows the same open-class
principle [32]. Indeed, ALE allows to “re-open” metaclasses of a metamodel to weave
operational semantics as a set of methods. Method bodies are written in a superset of
AQL (Acceleo Query Language)1, extended with control flow operations (e.g., if, while),
and variable declaration and assignment. AQL is itself a dialect of OCL [126].

As an illustrative example, Listing 6.1 depicts the definition, using ALE, of the fire()
method giving the semantics of a transition for the FSM language depicted in Figure 4.3.
The open class keyword re-opens the Transition metaclass, to weave the fire method into
it. The Transition metaclass is imported from the fsm.ecore file using the import ecore
keywords (e.g., Line 3). In the same way, ALE files are imported using the import ale
keywords.

ALE allows the import of Java-based operations with the use keyword. This import
mechanism is based on the extension method mechanism that allows adding new methods

1Acceleo Query Language website: https://www.eclipse.org/acceleo/documentation/aql.
html
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1 behavior evalfsm;
2

3 import ecore "fsm.ecore";
4

5 use LogService;
6

7 ...
8 open class Transition {
9 def void fire(Context ctx) {

10 if(not self.guard.eval(ctx)) {
11 ’Unsatisfied guard’.log();
12 } else {
13 self.action.run(ctx);
14 ctx.current := self.tgt;
15 }
16 }
17 }
18 ...

Listing 6.1 – Definition of the fire method in the Transition class of the FSM language in
ALE.

to existing types without modifying them. This mechanism can be found in Xtend2, for
instance. In our example, the LogService class (Line 5) presented in Listing 6.2 is imported,
and its log method is added to the scope. The log method is called Line 11 and prints a
warning in the standard output if the evaluation of the guard evaluates to false.

The self keyword is equivalent to this in Java and refers to the currently re-opened
metaclass. The remainder of the statement and expressions used is the body follows a
standard object-oriented expressiveness.

1 class LogService {
2 static void log(Object log) {
3 System.out.println(log);
4 }
5 }

Listing 6.2 – LogService class in Java.

Complementarily, we present how ALE is used for the specification of modular
language semantics. Listing 6.3 presents a printing semantics defined using ALE for the
FSM language presented in Figure 4.2. It shows the ALE specification equivalent to the
Java code of Listing 4.2.

Listing 6.4 presents an example of language extension. First timed.ecore extends

2Xtend extension method documentation: https://www.eclipse.org/xtend/documentation/
202_xtend_classes_members.html#extension-methods
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1 behavior printfsm;
2

3 import ecore "fsm.ecore";
4

5 open class Machine {
6 def String print() {
7 String ret := "";
8 for (s in self.states)
9 ret := ret + s.print();

10 result := ret;
11 }
12 }
13

14 open class State {
15 def String print() {
16 result := ... ;
17 }
18 }
19

20 open class FinalState { // extends State implicitly
21 def String print() {
22 result := "*" + super.print();
23 }
24 }
25

26 open class Transition {
27 def String print() {
28 result := self.event + " ⇒ " + self.tgt.name;
29 }
30 }

Listing 6.3 – FSM pretty printer implemented with ALE

fsm.ecore and introduces the TimedTransition metaclass. TimedTransition inherits
from Transition. Then, the existing printfsm ALE specification is imported and
TimedTransition is re-opened to weave a new print operation that specifies the semantics
of the print operation in the context of a timed transition. Doing so, we modularly extend the
syntax and the semantics of the original FSM language to define a Timed FSM language.

Finally, Listing 6.5 presents the definition of a Guarded FSM language by the modular
composition of the FSM language with an expression language, used for the definition of
the guards. Using ALE, language composition is conceptually close to language extension,
but involves the import of multiple existing language specifications. In this context of our
example, a new guarded.ecore metamodel is introduced, that reuses the metamodels
of the FSM and expression languages. This example follows the same scenario as the
independent extensibility example presented in Listing 4.7. A Guarded metaclass is
introduced that inherits from the Transition metaclass from the FSM language, but
also holds a reference — named guard — to the Exp metaclass from the metamodel
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1 behavior printtimed;
2

3 import ecore "timed.ecore";
4 import ale printfsm;
5

6 open class TimedTransition { // extends Transition implicitly
7 def String print() {
8 result := self.time + "@" + super.print();
9 }

10 }

Listing 6.4 – Printing timed transitions in ALE

of the expression language. Then, the new guarded.ecore metamodel and the ALE
specifications of the execution semantics of the two reused languages are imported. Finally,
the Guarded metaclass is re-opened to weave the fire method that defines the semantics
of the step operation of the guarded transition.

1 behavior execguarded;
2

3 import ecore "guarded.ecore";
4 import ale execfsm;
5 import ale evalexp;
6

7 open class Guarded { // extends Transition implicitly
8 def void step(String ch) {
9 if (self.guard.eval()) {

10 super.step(ch);
11 }
12 }
13 }

Listing 6.5 – Executing guarded transitions in ALE

The compilation of an ALE specification to reusable language modules is presented in
Chapter 7. First, the compilation of ALE specifications to the reusable REVISITOR pattern
is presented in Section 7.1. Then, the evaluation of our approach for the reuse of language
specifications, by extension and composition are respectively presented in Section 7.2 and
Section 7.3.

The compilation of ALE specifications to Java implementations optimized for runtime
performances is presented in Chapter 8. The technical details and evaluation of this
compiler are presented respectively in Section 8.1 and Section 8.2.
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6.2 Benchmarking Setup
Validating our approaches requires to perform performance measurements. However,
measuring performances of programs is a non trivial task that requires the definition of
dedicated experimental environments.

In this section, we present the benchmarking environment used for the evaluation of our
approaches. The methodology presented below aims at producing repeatable performance
measurement of language interpreter executions [65]. We qualify the performance by using
the steady-state performance. In other words, we evaluate the performance of the programs
once it has reached a stable execution state. This is representative of the execution of DSL
interpreters, which are long running programs (i.e., more than a few milliseconds), and are
not expected to have fast startup times.

All the benchmarks presented below are executed on a dedicated desktop running
on Debian 9, with 15Gb of RAM and an Intel(R) Xeon(R) W-2104 CPU (Quad Core -
3.20GHz).

Besides, we use JMH v1.213 to run our experiments. JMH is a Java framework that
mitigates the nondeterministic behaviors inherent to the JVM internals (e.g., dead code
elimination or constant folding). JMH is primarily developed from the definition of micro-
benchmark (i.e., to measure programs that have an execution time of the order of magnitude
of milliseconds), but it is also relevant for the benchmarking of programs that have larger
execution time (i.e., execution time of the order of magnitude of seconds).

Additionally, we execute our benchmarks using Krun [10]. Krun is a framework
that assists in the definition of repeatable benchmarks. For instance, Krun restarts the
benchmarking computer between each new measurement, to avoid the influence of pre-
cached data on the program’s execution. Krun also checks and sets various hardware
settings known to influence the repeatability of measurements. For instance, Krun fixes the
CPU frequency and checks the CPU temperature at the beginning of each measurement.
With this setup, we mitigate the nondeterministic behavior at the hardware, system, and
virtual machine levels, improving the repeatability of our benchmarks [82].

3Java Microbenchmark Harness (JMH): https://openjdk.java.net/projects/code-tools/
jmh/
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CHAPTER 7

ALE COMPILER FOR LANGUAGE
REUSE

In this chapter, we present the technical details and the implementation and
evaluation of our approach to language reuse (Chapter 4) using the ALE
metalanguage. We first present the implementation details of the compiler we
developed in order to validate our approach to language reuse (Section 7.1).
Then, we present two evaluations of the reuse capabilities of our approach,
first by extension (Section 7.2), then by composition (Section 7.3). Finally, we
draw some conclusions on the modular reuse of languages (Section 7.4).

7.1 The REVISITOR compiler

In this section, we present our compiler from ALE specifications to Java implementation,
following the REVISITOR implementation pattern. Listing 7.1 presents this compiler,
implemented using Xtend. The complete source code of the compiler is available online1.

Xtend provides template expressions, surrounded by triple-quotes (’’’). Two main
control operations are available, FOR/ENDFOR loops and IF/ELSE/ENDIF conditions.
FOR loops are parameterized by an iterator and three parameters BEFORE, SEPARATOR,
and AFTER, respectively inserted at the start of the produced string, between each iteration
and at the end of the produced string. The template placed between the FOR and ENDFOR
operators is parameterized by the iterator.

IF blocks are idiomatic and return the value of one block according to the result of the
evaluation of the IF expression.

The compile method takes an EPackage class in parameter and produces a REVISITOR

Java interface. Lines 16 to 17 deal with the generation of the REVISITOR interface generic
types, and their binding with inherited REVISITOR interfaces. Each directly referenced
EPackage produces an inheritance relation. One generic type is produced by EClass
directly or transitively referenced. Lines 18 to 20 generate one factory method per concrete
EClass of the EPackage.

Finally, the rest of the generation produces one $-method by EClass. If the current
EClass is annotated as «required», the method is left abstract, and no implementation
is provided. Otherwise, each $-method inspect the dynamic type of the it parameter,
eventually cast the parameter and pass it to the corresponding factory method, found either
directly in the current REVISITOR interface, or one of its parents.

1The ALE compiler on github: https://github.com/manuelleduc/ale-lang/
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1 /*
2 Omited for undestandability and conciseness:
3 - Multiple inheritance;
4 - naming conflicts (e.g., 2 classes with the same name in separate packages);
5 - generic types declaration order.
6 */
7

8 ...
9 def compile(EPackage t) {

10 val > = true
11 val ⊥ = false
12

13 ’’’
14 package «t.name»;
15

16 interface «t.rn»«t.gts(>)»
17 «FOR p: t.rps BEFORE=’extends’ SEPARATOR=’,’»«p.rn»«p.gts(⊥)»«ENDFOR» {
18 «FOR c: t.alc.filter[!abstract]»
19 «c.gt(⊥)» «c.name»(«c.name» it);
20 «ENDFOR»
21

22 «FOR c: t.acs»
23 «IF c.rq»
24 «c.gt(⊥)» $(«c.name» it);
25 «ELSE»
26 default «c.get(⊥)»(«c.name» it) {
27 «FOR sc: c.ascs»
28 if (it.getClass() == «sc.name».class)
29 return «sc.name»((«sc.name») it);
30 «ENDFOR»
31 return null;
32 }
33 «ENDIF»
34 «ENDFOR»
35 }
36 ’’’
37 }
38

39 // revisitor name.
40 def rn(EClass c) ’’’«c.name»Revisitor’’’
41

42 // packages directly referenced from p.
43 def List<EPackage> rps(EPackage p) { ... }
44

45 // generic type declaration name generation.
46 def gts(EPackage p, boolean ext)
47 ’’’
48 «FOR c: p.acs BEFORE=’<’ SEPARATOR=’,’ AFTER=’>’»«c.gt(ext)»«ENDFOR»
49 ’’’
50
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51 // all classes transitively referenced from p.
52 def List<EClass> acs(EPackage p) { ... }
53

54 // classes directly declared in p.
55 def List<EClass> alc(EPackage p) { ... }
56

57 // generic revisitor type name, eventually with type bound.
58 def gt(EClass c, boolean ext) {
59 ’’’«c.name»T «IF ext && c.hasParent»extends «c.parents.head.gt(⊥)»«ENDIF»’’’
60 }
61

62 // return True if ecls has a super type.
63 def hasParent(EClass ecls) { ... }
64

65 // return True if the class is required.
66 def rq(EClass c) { ... }
67

68 // list of all concrete subclasses, including c itself.
69 def List<EClass> ascs(EClass c) { ... }
70 ...

Listing 7.1 – Compiler of Ecore packages to Java interfaces following the REVISITOR

implementation pattern.

References to inherited interfaces are resolved by fully qualified name conventions.
Generic parameters are sensible to declaration order. We ensure consistency between
declared and bound generics by sorting generic parameter declarations according to their
EClass fully qualified name’s alphabetical order.

Generating implementations consists mainly in the generation of a concrete REVISITOR

interface in which generic types are bound to concrete implementations of the factory
methods. The body of the concrete factory methods contains a compilation of the ALE
classes’ methods in Java. Most of the compilation process is straightforward, translating
ALE code to the equivalent code in Java.

An interesting point is the implicit introduction of the $-methods call at the relevant
places in the REVISITOR implementations, to map the syntactic objects to their respective
semantics objects. The introduction is systematic and, from our experience, is the only
point that distinguishes the compilation of ALE method bodies to REVISITOR compared to
other implementation patterns (e.g., interpreter, visitor). More precisely, $-method calls are
introduced on dot notations whenever the left-hand side is typed with a metaclass that is
part of the language, and the right hand is a method that is part of the left-hand side’s ALE
class signature. For instance, the guard call presented in Listing 6.1: self.guard.eval(ctx)
is compiled to the following Java code: this.revisitor.$(this.getGuard()).eval(ctx).

The ALE compiler reads an ALE file, generates the abstract REVISITOR interface
based on the imported syntax — if it does not exist yet — and an implementation of the
REVISITOR interface defining the actual execution semantics.

To illustrate the behavior of our compiler, we present some interesting parts of the com-
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pilation process, drawn from the modular language specifications presented in Section 6.1.

Syntax extension is specified by importing additional Ecore metamodel(s), as shown
in Listing 6.4. In this case, the REVISITOR interface generated for the current language
module extends the REVISITOR interface from the extended language module. For instance,
the printime ALE specification (Listing 6.4) imports the print ALE specification. In
this case, TimedAlg inherits from FsmAlg, following the extension pattern presented
in Listing 4.5. The generated REVISITOR implementation will extend any preexisting
implementation for the same behavior. For instance, in this case, PrintTimed will extend
both the PrintFsm REVISITOR implementation as well as TimedAlg REVISITOR interface.

In the same way, in the example of Listing 6.5 where multiple ALE specifications are
composed, the GuardedAlg REVISITOR interface is generated. GuardedAlg inherits from
TimedAlg and ExpAlg because it imports two ALE specifications. Besides, the generated
REVISITOR implementation inherits from the newly generated GuardedAlg REVISITOR

interface, and from the REVISITOR implementations generated from the imported ALE
specifications.

In summary, reusing existing language specification does not involve the modification
or regeneration of previously derived language artifacts.

7.2 Language Extension Evaluation

In this section, we evaluate our approach to language reuse in the context of language
extension. To do so, we redefine modularly the semantics of the fUML language as
specified in the model execution case of the Transformation Tool Contest, 2015 (TTC’15).
Our implementation is then compared to three alternative implementations of the same
semantics. All material presented in this section is available online.2

7.2.1 Scenario

The model execution case of the TTC’15 consists of a subset of the fUML language [111],
an executable subset of UML. Defining the execution semantics of fUML proceeds in two
steps. First, the static metamodel of the activity diagram is extended by another metamodel
that specifies the runtime data needed for capturing the state of executing models. Then,
the execution semantics of the fUML language is defined on the resulting metamodel. The
organizers of the contest provide a reference implementation, inspired by the Interpreter
pattern, where operations are directly embedded in a non-modular way within the Java
code generated from the Ecore metamodel.
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Figure 7.1 – A modular implementation of fUML using REVISITORS and ALE; dashed
lines denote generation flows

7.2.2 fUML with ALE

The architecture of the fUML implementation using ALE is shown in Figure 7.1. The
syntax is defined by the static metamodel (AD) and the runtime data metamodel (RT) as
defined by the TTC’15 use case. Metaclasses contained in the RT metamodel either
extend existing metaclasses of the AD metamodel to insert new syntactic features that hold
the runtime state (e.g., a reference from Activity to the Tokens it holds), or insert new
metaclasses that only play a role at runtime (e.g., Token and Offer). These metamodels are
compiled to corresponding Java classes using the EMF compilation chain (indicated by the
dashed arrow on the left of Figure 7.1).

The ALE compiler generates the corresponding REVISITOR interfaces from the same
Ecore files. The REVISITOR interface of RT extends the REVISITOR interface of AD to take
into account the new metaclasses, just like the RT metamodel extends the AD metamodel.
Both refer to the classes generated by EMF.

The execution semantics of fUML is defined in an ALE file that imports the AD and
RT metamodels and defines its operations using the open class mechanism. From this
ALE specification, the compiler generates a REVISITOR implementation, along with the
corresponding semantic interfaces. The REVISITOR implementation modularly extends
both previously generated REVISITOR interfaces, and provides concrete implementations
for the factory methods.

Altogether, the ALE/REVISITOR implementation of fUML supports independent ex-
tensibility and incremental compilation since every artifact generated in a given phase is
reused as is in the following phases. Furthermore, our implementation reuses the meta-
models proposed in the TTC’15 model execution case and does not make any assumption

2http://gemoc.org/ale/revisitors/revisitor-artifacts.pdf
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on the way they are designed, thus fulfilling the opportunistic reuse requirement.

7.2.3 Performance Evaluation

To investigate the performance overhead of the REVISITOR pattern, we compare the
performance of the ALE implementation to three other implementations: the reference
implementation that follows the Interpreter pattern, a traditional Visitor-based implemen-
tation, and an implementation based on the Switch mechanism provided by EMF. Each
implementation executes the three performance-oriented benchmarks proposed by the
TTC’15 case. The first one (UC1) executes a model of 1000 activity nodes where every
activity n is solely connected to the n+1-th activity. The second one (UC2) executes a
model where one node forks into 1000 intermediate parallel activities that all reconnect
to a single join node. The third one (UC3) is similar to UC2, but the 1000 intermediate
activities are aggregated in groups of 10 and every consecutive nth group n increments a
counter Cn from 0 to 10.

We use two distinct implementations generated from ALE for the benchmarks. The
first one is a monolithic implementation of fUML where the semantics is defined on a
monolithic metamodel where the runtime concepts are already merged, without using class
extension, leading to a single REVISITOR interface and implementation. The second one
is the modular implementation presented in Section 7.2.2. Having two versions based
on the REVISITOR pattern with different modularity allows us to identify the impact of
modularity on language performances. Note that the implementation of the body of the
methods of the semantics is identical across all implementation variants: method bodies
are copied from the reference implementation. The only difference is the way the code is
structured and how dispatch on a model element is realized.

For each benchmark, we proceed to 10 measurements — each running on a new
instance of a HotSpotVM version 1.8.0_222 JVM. A measurement consist of 50 warmup
iterations, followed by 150 measured iterations.

Figure 7.2 gives an overview of the results of performance evaluation. For each
implementation and each use case, it gives the standard deviation and mean of the execution
time (in milliseconds).

The Visitor-based implementation show an execution time increased by 6.30% in
comparison to the Interpreter-based implementation. This confirms the behavior observed
earlier between those two implementation patterns [72]. The implementation based on
EMF Switch mechanism is slightly slower than the Interpreter and Visitor variants. In
this case, dispatch is implemented by checking EMF’s generated classifierId, an unique
integer identifying each class. As a result, this style of dispatch is outside the realm of the
Java language, and hence cannot be optimized as aggressively by the JVM.

The monolithic REVISITOR implementation and modular REVISITOR implementation
are both slower than the alternatives. This can be explained by additional object allocation
in the factory methods, as well as two levels of indirection: first from within the $-method to
the appropriate factory method, and then invoking the method that implements the required
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Figure 7.2 – Time measurements of the three use cases. The bar plots present the mean
and standard deviation (c=99) for each program and pattern.

behavior (e.g., run, fire, etc.). Since this is a non-standard form of double dispatch, we
assume the JVM is less able to optimize it.

The modular REVISITOR implementation is somewhat slower than the monolithic
REVISITOR implementation, and shows a 3.57% increase in its execution time. This can
be explained by the fact that the inheritance hierarchies in the metamodel are deeper in the
modular case: addition of runtime features to the metamodel is defined by subclassing. In
the activity diagram implementation the added inheritance leads to almost four times as
many potential runtime checks in the $-methods.

To summarize, these results suggest that the added modularity features of the REVISI-
TOR pattern do introduce additional performance overhead. Nevertheless, we claim that
the overhead is an acceptable price to pay for additional benefits in terms of reuse, and that
it does not prevent ALE or REVISITORS from being applied in an industrial setting.

7.3 Language Composition Evaluation
This section evaluates the composability of languages specification using ALE and is
divided in three parts. First, Section 7.3.1 presents the Internet of Things (IoT) case study
used to evaluate our approach. Then, Section 7.3.2 presents the implementation of the
case study using ALE. Finally, Section 7.3.3 discusses the impact of our approach on
metamodel complexity and runtime performance.

7.3.1 The IoT Case Study

To illustrate our approach, we re-implement a case study that was used to evaluate Melange
in earlier work [41]. This case study consists in the definition of an executable modeling
language for the Internet of Things (IoT) domain. It targets the definition of systems com-
posed of multiple sensors and actuators deployed on resource-constrained micro-controller
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devices (e.g., Arduino, Raspberry Pi, etc.). This language is built by reusing various
existing modeling languages and composing them to form the targeted IoT modeling
language. We keep the same list of requirements, reminded below:

• the language must provide an Interface Definition Language (IDL) to model the
sensor interfaces in terms of provided services;

• the language must support the modeling of concurrent sensor activities;
• the primitive actions that can be invoked within the activities must be expressed with

a popular language IoT developers are familiar with.
To fulfill those requirements, Melange’s case study selected respectively: the OMG’s

Interface Definition Language (IDL),3 the UML Activity Diagram language extracted from
the Transformation Tool Context,4 and the scripting language Lua.5 We reuse the same
language modules for our implementation.

Each language module is implemented in its own Eclipse plug-in. Dependencies
between the modules are realized by the standard plug-in dependency mechanism offered
by Eclipse.

7.3.2 Case Study Implementation

We implement the case study by composing the three modules detailed in Section 7.3.1,
together with a fourth module named IoT which introduces the domain-specific constructs
of an IoT system.

Figure 7.3 depicts how those four modules are composed together. The blank rectangles
represent language modules and the red squares represent «required» concepts of the
interfaces of the modules. Arrows between «required» concepts and modules represent
the glue and binding defined to compose the modules. They are annotated by labels in the
form required concept→ bound concept.

The IoT module has two «required» concepts, IoTActivity and IoTOperationDef. They
are respectively bound to Activity in the AD module and OperationDef in the IDL module.
The AD module has two «required» concepts: Expression, and BooleanVariable. The
former is bound twice: to OperationDef in the IDL module, and to Statement in the Lua
module. The BooleanVariable concept is bound to Statement_Assignment in the Lua mod-
ule. Finally, the IDL module has a «required» IdlStmt concept, bound to Block of the Lua
module. This way, every «required» construct is bound to a concrete concept, and the IoT
language is fully defined.

The binding of the concepts of the modules metamodels is defined by introducing a
metaclass for each binding. For instance, the binding IoTActivity→ Activity is realized
by the introduction of a IoTActivityBindActivity metaclass, that inherits from IoTActivity
and holds a reference to Activity, following the pattern presented in Section 4.3.3.b.

3https://www.omg.org/spec/IDL/
4http://www.transformation-tool-contest.eu/
5https://www.lua.org/
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Figure 7.3 – Definition of the IoT language as a composition of four language modules

The glue is realized by re-opening the binding metaclasses with ALE and defining
the semantics of the glue. For instance, Listing 7.2 presents an excerpt of the glue for the
binding Expression→ OperationDe f . The ExpressionBindOperationDef is defined in the
metamodel of the IoT language. It inherits AD’s Expression and has a field named delegate
which references the OperationDef of IDL. In Listing 7.2, ALE is used to define the glue be-
tween Expression and OperationDef in the execute method of ExpressionBindOperationDef.

First, it initializes an Environment as expected by the IDL module and populates it with
the local variables of the AD module. Then, it invokes the execute execution function
of OperationDef through the $-method, passing the environment as an argument. Finally,
once the operation has been executed, it reads the values that have been possibly updated
and translate them back in the AD context.

Finally, from these definitions, we use the built-in EMF compiler and our own custom
compiler for ALE to derive Java implementations of the modules themselves6 and the
code of their composition following the pattern presented in Section 4.3.3.

In the context of this case study, the glue between language modules is mostly expressed
at this level of abstraction and consists of the translation of variables and stores from one
module to the other.

7.3.3 Discussion
Starting from the case study presented above, we can question the consequences of the
introduction of intermediate glues and bindings on the integration of tools on top of
language built by composition.

Indeed, the use of the delegation pattern, described in Section 4.3.3.b, leads to the
introduction of new Bind metaclasses in the metamodels of composed modules. These
classes are needed to compose language modules but are merely technical artifacts that are

6unless they have already been compiled, and in this case no re-compilation is needed
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1 open class ExpressionBindOperationDef {
2 def void execute(Context c) {
3 // Initialize the OperationDef environment
4 val e = Environment.create()
5 for(iv in c.inputValues) {
6 e.putVariable(iv.variable.name, iv.value)
7 }
8 for(l in self.eContainer.oclAsType(OpaqueAction).activity.locals) {
9 e.putVariable(l.name, l.currentValue.value)

10 }
11

12 // Invoke the execution semantics of OperationDef
13 self.delegate.stmt.execute(e)
14

15 // Update the local context back
16 for(p in self.delegate.parameters) {
17 if(#[PARAM_OUT, PARAM_INOUT].contains(p.direction)) {
18 for( l in c.activity.locals) {
19 if(l.name() == p.identifier) {
20 l.currentValue.setValue(e.getVariable(p.identifier))
21 }
22 }
23 }
24 }
25 }
26 }

Listing 7.2 – Glue for the Expression→ OperationDe f binding in ALE

not related to the domain constructs materialized by metamodels. Still, language engineers
must deal with them when adding new tools on top of the composed language modules.

In order to evaluate the additional cost of the introduction of these extra classes on the
development of tools supporting languages, we studied the implementation of an Xtext
grammar for the resulting IoT language.

1 ExpBindOpDef returns activitydiagram::Exp:
2 {iot_lua::ExpressionBindOperationDef} delegate=[idlmm::OperationDef];

Listing 7.3 – Production rule for the Expression→ OperationDe f binding.

We observe that managing the extra Bind metaclasses requires to introduce additional
intermediate production rules in the grammar. For instance, Listing 7.3 presents a pro-
duction rule for the Expression → OperationDef binding. These new production rules
are only needed to simulate delegation between the production rules of the composed
language modules. Such production rules are simple and do not require advanced grammar
engineering knowledge. They account for 20 out of 555 lines in the grammar (<4%).
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We claim that this cost is largely compensated by the benefits of our approach regarding
modularity and reuse.

7.4 Conclusion on Modular Language Reuse
To close this chapter, we discuss the requirements of Section 4.2.4, on the modular reuse
of languages.

Independent Extensibility (R1) Language modules can be extended, both syntactically
and semantically, and without anticipation. This requirement is presented extensively in
the language extension evaluation. However, this is also a fundamental prerequisite of the
language composition evaluation too, allowing the definition of the glue language module,
which realizes the composition of the independently defined language modules.

Incremental Compilation (R2) Each language is clearly isolated in its own Eclipse
plug-in containing an Ecore model for its abstract syntax and an ALE file for its semantics.
Each plug-in is type-checked and compiled separately. This means that the IoT language
module of the language extension evaluation, could be implemented by importing the
Eclipse plug-ins of the other modules from various places (including remotely, for instance)
by using the standard Eclipse update site mechanism. This highlights the modularity of
our approach. At the implementation level, modules interact with each other only through
inheritance and reference to publicly exposed artifacts of the other modules. As long as
the interfaces of the modules do not change, each module can evolve internally without
having to recompile other language modules.

Opportunistic reuse (R3) This requirement is highlighted in the language extension and
language composition evaluations. The language extension evaluation shows the capability
of our approach to reuse pre-existing language modules and to compose them modularly.
In addition, in the language composition evaluation, the Ecore metamodel, and conforming
models were existing well before the beginning of our research, but we were still able to
reuse them without recompilation.

Module Encapsulation (R4) The definition of the glue is fully realized through inher-
itance and invocations of the semantic interfaces of language modules. For instance, in
order to compose the four language modules that are part of our language composition
evaluation, we extend six classes, five methods are overridden for the definition of the glue,
and two classes are needed to express how the internal evaluation contexts of different
modules are translated. Language modules without requirements do not have external
dependencies towards other language modules. Finally, the glue definitions only interact
with a small and well-defined part of the reused language modules. Those observations
highlight the isolation capabilities of our approach.
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Explicit Required Interfaces (R5) Module requirements are easily identified by looking
at the Ecore classes annotated with «required». While most of them are presented in
Figure 7.3, the number of «required» classes per language modules is zero for Lua, one for
the IDL, three for the AD, and two for the base IoT module itself. Each of those «required»
classes is bound exactly once except for the Exp class of the AD module that is bound
twice, one time to the IDL module, and another time to the Lua module. Each «required»
construct declares a single execution function, except for the IoTOperationDef construct
that has no associated semantics. This sums up the information needed for the composition
and explicitly exposed in the language modules interfaces.

Module Substitutability (R6) Language modules can be substituted by either providing
an alternative modules with an interface that is similar to the one of the initial module, or
by modifying the glue. In the first case, the substitution is fully modular. For instance, Lua
can be substituted by another language providing the set of concepts referenced by the
glue: Statement, Statement_Assignement, and Block. In this case, no other modules
has to be modified or recompiled. If the newly introduced module has a different interface,
the glue must be adapted to fit the interface of the new module. In this case, only the glue
must be recompiled to proceed to the composition.

Non-intrusivity (R7) The definition of the «required» interface is based only on the
annotation of classes in the metamodel. This mechanism is built-in EMF directly and
does not require any intrusive change. The definition of modular languages leverages
inheritance and the delegation pattern [64], which are well-known object-oriented concepts.
The REVISITOR implementation pattern is based on three object-oriented concepts: (i)
parametric polymorphism (i.e., generics) with bounded type parameters (ii) multiple class
or interface inheritance, and (iii) single dynamic dispatch. Such requirements are readily
fulfilled by many mainstream object-oriented languages (e.g., Java, C#) and their under-
lying runtime platforms (e.g., JVM, CLR). In conclusion, every part of our approach is
based on existing and well-known object-oriented concepts, which can be easily adapted
to similar technological stacks.

This concludes the reuse aspect of this thesis, addressing challenge #1. In the next
chapter, we present the implementations and evaluations related to the automatic optimiza-
tion of DSLs interpreters, addressing challenge #2.
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CHAPTER 8

ALE COMPILER FOR LANGUAGE
PERFORMANCE OPTIMIZATION

In this chapter, we first present the implementation details of our compiler
dedicated to the optimization of language performance (Section 8.1). Then,
we present our evaluation of four languages and eight programs of the per-
formance speedup obtained by the application of our approach (Section 8.2).
Finally, we draw some conclusions on the evaluation of our approach to the
automatic optimization of language performances (Section 8.3).

8.1 The Truffle Compiler
Figure 8.1 presents an overview of the existing Ecore compiler provided by EMF, and
the Ecore + ALE compiler we build to validate our approach. On the left of Figure 8.1,
we present the existing Ecore to Java compiler provided as part of the EMF framework,
based on the Jet template engine [150]. This compiler allows the generation of Java object
models that conform to Ecore semantics and comes with a mechanism to support the
re-generation of Java source from an updated Ecore metamodel while preserving the code
previously introduced manually in the generated code. This is the base mechanism to
follow the Interpreter pattern using EMF.

On the right of the figure, we present our Ecore + ALE compiler that conceptually
extends EMF’s compiler by supporting the modular introduction of operations on top
of Ecore metamodels using ALE. Our initial prototype was developed by extending the
existing JET template, but our experience showed the limitation of such a template system
during the integration of the compilation of ALE. Indeed, the compilation of the body
of ALE methods and the introduction of more variation points in the compilation pro-
cess (e.g., exploration of different Truffle implementation patterns during our experiments),
lead to really large and challenging to maintain templates.

Consequently, we chose to develop our compiler using Xtend and Javapoet. Xtend is
one of the technologies at the core of the Xtext framework [55] and proved itself a relevant
solution for the implementation of language interpreters and compilers. Javapoet1 is a Java
library dedicated to the generation of Java source code and comes in the form of a fluent
API.

At the bottom of Figure 8.1, we present the implementation relation between the
Java object model generated by EMF’s compiler and the Java object models with Truffle
concepts generated by our compiler. Indeed, the object model produced by our compiler

1Javapoet: https://github.com/square/javapoet
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Figure 8.1 – EMF’s compiler and our compiler dedicated to the optimization of DSLs
performance.

implements the same interface as the object model produced by the Ecore compiler of
EMF, making the former fully substitutable for the latter. Second, the introduced Truffle
concepts are built to preserve the semantics. Consequently, the execution of two versions
of the same specification compiled with and without our approach produces the same
results. Meaning that our compiler is a safe replacement to EMF’s compiler, allowing a
fully automated gain of performance on top of interpreters running on GraalVM.

Our compiler is about 4000 lines of code. The Truffle specific parts are composed of
7 lines of code in the method body compiler, 180 lines of code in the classes structure
generation, mainly related to the introduction of @TruffleBoundary annotations, and 2
lines of code in the EMF factory compiler, also for the introduction of @TruffleBoundary
annotations. The integration of our approach in an EMF compiler required 189 lines of code
in total. Porting back our approach to the official EMF implementation is straightforward
and is the matter of translating the 189 lines into the JET template formalism.

8.2 Language Performance Evaluation
In this section, we present the evaluation of our approach. In Section 8.2.1, we present
the languages and programs used for the evaluation. Finally, Section 8.2.2 presents and
analyzes the experimentation results.

8.2.1 Benchmarked Languages and Programs
To evaluate our results, we implemented four languages: MiniJava [136], a teaching-
oriented subset of Java, a functional language inspired by OCaml named Boa2, a Finite
State Machine language3, and the educational procedural Logo language.

2Programming languages Zoo: http://plzoo.andrej.com/language/boa.html
3Finite State Machine language: https://github.com/gemoc/MODELS2017Tutorial/
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MiniJava is used to implement: the Fibonacci algorithm (m_fibonacci), a bubble sort
algorithm [37] (m_sort), a binary tree manipulation algorithm4 (binarytree), and an
implementation of the fannkuch algorithm5 [4] (fannkuchredux). Boa is used to imple-
ment a Fibonacci algorithm (b_fibonacci) and an insert sort algorithm [90] (b_sort).
The Finite State Machine language is used to define a set of four communicating state
machines, sending messages to each other, presented in more detail on the companion
webpage6 (buffers). Finally, the Logo language is used to define a program that draws a
Koch snowflake fractal7 (fractal).

This selection represents a gallery of languages. The choice has been made for being a
maximum representative of targeted languages and conforming programs or models. This
includes one functional language, one object-oriented language, a language dedicated to
domain experts, and an “end-user” language. For the languages with paradigms allowing
various sort of implementation, we propose programs covering different styles from
arithmetic intensive programs to structure intensive programs, and from recursive style to
iterative style.

8.2.2 Results
Table 8.1 summarizes the measured performance of the programs on our benchmark. The
results presented below are measured using HotSpot VM version 1.8.0_222, GraalVM
version 19.1.1 and Truffle version 19.1.1.

The Mean is calculated by benchmarking each combination of a virtual machine, an
implementation pattern, and a program by measuring three times 50 executions.

By manual inspection of the measured time, we observe that the ten first executions
are enough to warm up the virtual machine and to reach a steady-state. We calculate the
performance of the programs using the mean of the 120 remaining executions, once the
ten warmup iterations of each run have been excluded. Additionally, we evaluated the
confidence interval of the measurements for a confidence level of 99%. All the confidence
intervals are below 0.03 seconds, which allows a safe and unambiguous analysis of our
results.

The HotSpot VM + Switch, HotSpot VM + Interpreter, and GraalVM + Interpreter lines
present the measurements of respectively: the Switch implementation on the HotSpot VM;
the Interpreter implementation on the HotSpot VM; and the Interpreter implementation on
the GraalVM. The ATG + Interpreter line presents the measurements of language compiled
with our approach. Each Mean line presents the calculated mean time of the measurements
in seconds.

4Binarytree algorithm: https://benchmarksgame-team.pages.debian.net/benchmarksgame/
description/binarytrees.html#binarytrees

5Fannkuch algorithm: https://benchmarksgame-team.pages.debian.net/benchmarksgame/
description/fannkuchredux.html#fannkuchredux

6Companion webpage: https://manuelleduc.github.io/ecmfa-2020/
#system-of-finite-state-machines-example

7Koch snowflake: https://en.wikipedia.org/wiki/Koch_snowflake
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Table 8.1 – Benchmarks measurement summary. Mean = mean execution time in second;
SHS=Speedup relative to the HotSpot VM + Switch; SHI = Speedup relative to the HotSpot
VM + Interpreter; SGI = Speedup relative to the GraalVM + Interpreter; ATG = Automatic
Truffle Generation

Minijava Boa FSM Logo
Geo.
Meanm_fibonacci m_sort binarytree fannkuchredux b_fibonacci b_sort buffers fractal

parameters: (30) (1000) (11) (8) (30) (500) (5 ·107) (17)
HotSpot VM + Switch

Mean (s) 11.80 16.39 7.06 6.67 2.04 1.94 7.84 12.44
HotSpot VM + Interpreter

Mean (s) 9.18 14.91 5.86 5.28 1.79 1.71 4.64 11.14
SHS x1.28 x1.10 x1.20 x1.26 x1.14 x1.13 x1.69 x1.12 x1.23

GraalVM + Interpreter
Mean (s) 5.29 9.89 3.32 3.17 1.49 1.57 4.04 7.87

SHI x1.74 x1.51 x1.77 x1.66 x1.22 x1.09 x1.15 x1.42 x1.42
SHS x2.23 x1.66 x2.13 x2.10 x1.40 x1.23 x1.94 x1.58 x1.75

ATG + Interpreter
Mean (s) 4.21 9.23 2.98 2.72 1.25 1.43 3.54 7.24

SGI x1.26 x1.07 x1.11 x1.17 x1.17 x1.10 x1.14 x1.09 x1.14
SHI x2.18 x1.61 x1.97 x1.94 x1.43 x1.19 x1.31 x1.547 x1.61
SHS x2.81 x1.78 x2.37 x2.45 x1.63 x1.35 x2.21 x1.72 x1.99

Each SHS line presents the speedup of the current implementation compared to the
HotSpot VM + Switch implementation. Each SHI line presents the speedup of the current
implementation compared to the HotSpot VM + Interpreter implementation. Finally, the
SGI line presents the speedup of the current implementation compared to the GraalVM +
Interpreter implementation.

The speedups discussed below are produced using the geometric mean of the speedups
obtained for each program on a given configuration and are presented in the rightmost
column. We use the term general speedup when talking about the speedup calculated using
the geometric mean.

First, as presented in Section 5.4.1, the straightforward transition from HotSpot VM +
Switch to GraalVM + Interpreter already allows a general speedup of x1.75, ranging from
x1.23 to x2.23.

Our approach, built on top of the GraalVM + Interpreter implementation, yields an
additional general speedup of x1.14, ranging from x1.07 to x1.26. This adds up to a general
speedup of x1.99, ranging from x1.35 to x2.81, when compared to the HotSpot VM +
Switch implementation. While the effect of our contribution leads to smaller speedups
than the straightforward switch from HotSpot VM + Switch to GraalVM + Interpreter,
is it important to consider the opportunity offered by our approach to provide additional
performance gains to language engineers at zero cost. Indeed, the only manual operation
to perform is the recompilation of languages using a new compiler.

Complementarily, we also evaluate the manually introduced PIC presented in Sec-
tion 5.4.4.a. Introducing the PIC yield a general speedup of x1.08, ranging from x0.92 to
x1.19 relatively to the ATG + Interpreter implementation, making it detrimental in some
cases and forces language engineers to manipulate performance-specific concepts during
language specification.

In conclusion, our results show the benefit of our approach in all cases, especially when
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improving the performance of language interpreters to their maximum is required while
preserving the compatibility with existing EMF tool support.

8.3 Conclusion on the Automatic Optimization of Lan-
guage Performances

In this chapter, we presented the evaluation of our approach to the automatic optimization of
language performances. Through the implementation and evaluation of four representative
languages and eight programs, we show a speedup of x1.14 on average, ranging from
x1.07 to x1.26, while requiring no additional development effort from language engineers.
When asking the language engineers to use an additional declarative keyword, for the
Polymorphic Inline Cache optimization, we obtain a speedup of x1.23 on average, ranging
from x1.05 to x1.36.
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CHAPTER 9

CONCLUSION AND PERSPECTIVES

In this chapter, we summarize the contributions of this thesis (Section 9.1).
Then, we propose some research directions that emerge from our results (Sec-
tion 9.2).

9.1 Conclusion
The development of DSLs in the context of MDE involves the use of metalanguages.
These metalanguages provide useful abstractions that assist language engineers in two
ways. On the one hand, they offer abstractions dedicated to the specification of language
concepts (e.g., abstract syntax, concrete syntax, semantics). On the other hand, they ensure
the applicability of software engineering practices (e.g., modularity, tests, performances).
However, some useful properties available on language specification are lost when they
are translated to language service implementations, especially regarding reusability and
performance.

We state that these limitations can be alleviated by better exploiting the abstractions
available at the language specification level. In other words, without impacting the current
way of specifying languages. From this observation, we draw two challenges, improving
the reusability of language service implementations (challenge #1), and improving the
performances of language service implementations (challenge #2).

We address the challenge of language reuse (challenge #1) by proposing the REVISI-
TOR implementation pattern. The REVISITOR pattern allows the reuse of language modules.
This reuse can be realized safely and modularly, both syntactically and semantically, while
relying solely on object-oriented programming concepts.

We evaluate the REVISITOR implementation pattern by defining heterogeneous DSL
modules. First, we build a modular fUML language, by copying the existing mono-
lithic specification of the existing fUML language from the Transformation Tool Contest,
2015 (TTC’15). Second, we build an IoT language by the composition of independently
defined language modules. This IoT language is a copy of an existing modular language
specification, initially specified using Kermeta [79] and composed with Melange [41].

Moreover, we evaluate the impact of the REVISITOR implementation pattern on the
runtime performances of interpreter implementations by comparing the execution time of
four implementations of the fUML language. Each implementation conforms to a different
implementation pattern [64]: the Interpreter pattern, the Visitor pattern, the EMF Switch
pattern [150], and the REVISITOR pattern [104]. We observe that the REVISITOR has
a performance overhead comparable to that of the other implementation patterns while
offering additional benefits in terms of reuse while remaining compliant with the existing
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tool support of languages.
Then, we address the automatic introduction of language-specific optimizations in lan-

guage interpreter implementations (challenge #2). We evaluate our approach by measuring
the speedup induced by the optimizations on eight programs defined in four languages.
We select the evaluated languages to be representative of the existing diversity found in
languages. Our selection of languages includes an object-oriented GPL (MiniJava), a func-
tional GPL (Boa), a modeling language (a Finite State Machine DSL), and an educative
language (Logo). From the eight programs, we implement four programs in MiniJava,
two in Boa, one in the Finite State Machine DSL, and one in Logo. We also select the
evaluated programs to be as diverse as possible. This selection includes iterative and
recursive programs as well as arithmetic-intensive and structure-intensive programs. We
compare our automatically optimized language implementations to the standard language
implementation patterns, running on the JVM. Our measurements show a speedup of
x1.14, ranging from x1.07 to x1.26.

These optimizations are introduced without impacting the usual development method
of language engineers and preserve the compatibility with the tool support of languages.

All our contributions are seamlessly integrated into the EMF ecosystem, a de facto
standard both in academia and in the industry.

In conclusion, we exploit the abstractions available in language specifications to
improve the reusability and the performances of language service implementations. Ad-
ditionally, we did not impact the usual development methodology of language engineers
and present its integration in a well known and exploited framework. Thus, we believe
our contributions are widely applicable in an industrial context, both on legacy language
specifications and for the development of new languages.

9.2 Perspectives
This work is the first step towards more in-depth exploitation of high-level abstractions
manipulated by language engineers. We identified some promising research directions
during the thesis. We present three research directions: Reusability and Performance trade-
off (Section 9.2.1), Automatic Domain Adaptation (Section 9.2.2), and Safer Language
Reuse (Section 9.2.3).

9.2.1 Reusability and Performance Tradeoff
The two challenges of this thesis are aimed at improving the reusability and performance of
DSLs. We address these challenges by proposing implementation patterns and translations
from existing metalanguages to those implementation patterns. So far, each implemen-
tation pattern addresses a single challenge. One way to go further in this direction is
to support implementation patterns that support both the improvement of the reusability
and performance of DSLs. Merging these two challenges would require first to study
performance-oriented implementation patterns that support the constraints of reusability.
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For instance, reusability induces modularity, which implies information hiding, which
can be detrimental to software performances. Consequently, it is interesting to provide
language engineers with clear guidelines and tradeoffs of such implementation patterns.

9.2.2 Automatic Domain Adaptation

DSLs are bound to be used and executed in new and unanticipated contexts. Consequently,
language engineers should be able to understand the impact of their design choices better
and should be provided with the tools and methods to adapt existing languages to new
development environments quickly.

Design Choices Impact Quantification Throughout this thesis, we ask ourselves the
question of the relevant design choices, at every level, to improve the non-functional
properties of languages. We observed that such design choices could have a complex
impact on the resulting language services implementation. Furthermore, the order of
magnitude of the impact of such choices, and in which circumstances, are difficult to
anticipate.

For instance, we observed during our researches on language performance that the
introduction of the some optimizations (e.g., the PIC) could be beneficial for some
programs while being detrimental to some others. Also, our effort to quantify the speedup
of language interpreter implementations repeatably highlight the complexity of the task,
which requires to apply carefully crafted benchmarking environments and methodologies.

This makes it difficult and costly for language engineers to make informed design
decisions and to anticipate the impact of their design choices on the non-functional
properties of languages. Consequently, language engineers should be equipped with
tools and methods to evaluate the impact of their design choices.

From these observations, we propose two possible axes of research. First, we propose
to study the relevant properties to quantify and to explore the context in which design
decisions impact such properties. Second, we propose to study how such properties can be
communicated in an actionable way to language engineers. Furthermore, we propose to
study how such additional information impacts the language engineering process and its
results.

Development Environment Agility Traditionally, modeling is done in a desktop appli-
cation running locally and with very few network interactions, if we exclude dependency
management. With the introduction of programming scientific notebooks and IDE in-
tegrated into web browsers, activities related to modeling are quickly shifting towards
distributed and web-based platforms. This shows a trend towards the integration of lan-
guages into new kinds of environments.

In this quickly evolving context, it is not realistic to ask language engineers to port
legacy languages to new environments at such a fast pace.
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From those observations, we propose to address the challenge of the adaptation of
language specification to new development environments without being intrusive of legacy
language specifications.

Besides, the shift of language to new environments gives access to programming
activities to new kinds of users. Consequently, it is interesting to study the capability of new
and possibility untrained users to perform programming tasks in these new development
contexts.

9.2.3 Safer Language Reuse
In this thesis, we studied some challenges related to language reuse. Doing so, we identified
multiple research directions we deem interesting, presented below.

Automatic composition In this thesis, the reuse of language modules is realized by the
introduction of glue code, dedicated to the connection of the language modules. This
addresses the problem using the tool familiar to the language engineers. Nonetheless,
this task is error-prone and can quickly become time-consuming when composing large
language modules. Consequently, it is interesting to explore the challenge of the automatic
composition of language modules. Either to diminish the amount of work required by
language engineers or even to allow domain experts to choose and compose language
modules for their needs without the intervention of language engineers.

Language Module Granularity The long-studied field of object-oriented software de-
velopment led to the definition of well-defined guidelines for choosing the right granularity
of objects [110], i.e., how to distribute roles and constructs among objects. In particular,
this leads to the definition of design patterns [64] that guide developers with well studied
and reusable patterns of object-oriented software design.

The same question, applied to the development of languages, does not yield a clear
answer, and no guidelines exist to define the granularity of language modules.

In principle, language modules may range from small generic language modules (e.g.,
Expressions) to large framework-like language modules (e.g., automotive business pro-
cesses languages). From these observations, we believe it is interesting to explore the
definition of a set of generalized and well-studied granularity guidelines that would be
beneficial for the production of reusable language modules.
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Titre: Modularité et performances des implémentations de
langages dédiés externes
Mot clés : réutilisation, performances, langages dédiés, ingénierie des langages

Resumé : L’Ingénierie Dirigée par les
Modèles (IDM) a pour but d’assister les
experts métiers dans le développement de
systèmes complexes, en séparant les préoc-
cupations par l’utilisation de modèles. Les
modèles sont des représentations d’aspects
spécifiques des systèmes et sont définis à
l’aide d’abstractions dédiées. Ces abstrac-
tions sont définies avec des langages dédiés.
Ces langages dédiés sont créés à l’aide
d’Environnements de Développement In-
tégré (EDI) spécialisés, appelés language
workbenches.1 Les language workbenches
aident à l’ingénierie de langages dédiés en
proposant des abstractions utiles. Première-
ment, ces abstractions sont dédiées à la déf-
inition des différents aspects des langages.
Ensuite, elles répondent aux préoccupations
inhérentes au développement de logiciels
tels que la modularité ou la testabilité.

Cependant, les bénéfices de telles ab-
stractions peuvent être perdues quand
traduites vers des implémentations de ser-
vices de langages (p. ex. éditeurs, inter-
préteurs, débogueurs...). Cela entraîne de
nombreux inconvénients, en particulier con-
cernant la réutilisabilité et les performances.
Les experts métiers sont confrontés à ces
limitations et sont forcés de raisonner à
travers les détails d’implémentations com-
plexes des implémentations des services de

langages.

Ces problèmes peuvent être atténués
en exploitant les informations fournies
par les abstractions de langages dédiés.
Pour ce faire, nous proposons deux pa-
trons d’implémentation qui supportent la
réutilisation et les performances. Ainsi
qu’une traduction systématique depuis les
spécifications de langages vers ces pa-
trons. Le premier patron d’implémentation
s’attaque à la réutilisation de langages et
s’appelle REVISITOR. Le REVISITOR per-
met la réutilisation sûre et modulaire de
langages, à la fois syntaxiquement et sé-
mantiquement, tout en s’appuyant unique-
ment sur des concepts courants de program-
mation orientée objet. Le second patron
d’implémentation adresse la performance
des langages. Celles-ci sont améliorées par
l’introduction d’optimisations spécifiques au
langage. Ces optimisations sont introduites
automatiquement, sans être intrusif de la
manière usuelle de définir les langages.

Nous intégrons de manière transparent
notre approche dans l’écosystème de l’EDI
Eclipse. Pour ce faire, nous utilisons deux
métalangages : Ecore et ALE. Ecore sup-
porte la spécification de syntaxes abstraites
sous la forme de méta-modèles. Ecore
est fourni dans le cadriciel EMF2, stan-
dard du monde industriel. ALE supporte

1Language workbench: Banc de création de langages.
2Eclipse Modeling Framework (EMF) : un cadriciel dédié à la modélisation dans Eclipse.



la spécification modulaire de sémantiques
de langages par-dessus les méta-modèles
Ecore. Nous fournissons deux compilateurs
pour ces langages. Ils autorisent respec-
tivement la compilation des spécifications
de langages vers le patron REVISITOR ou
l’introduction automatique d’optimisation
de performance dans les implémentations
des interpréteurs. Nous évaluons les béné-
fices de ces approches par l’implémentation
d’une sélection variée et hétérogène de lan-
gages dédiés.

Nos contributions rendent possible
l’implémentation de langages dédiés réu-
tilisable et efficaces (bien qu’actuellement
séparées, nous travaillons à leur intégra-
tion) pour les experts métiers. En pratique,
notre approche est à la fois non-intrusive
de l’ingénierie des langages et basée sur
une génération systématique des implémen-
tations. Par conséquent, notre approche est
directement applicable dans un contexte in-
dustriel et peut être intégrée avec des arte-
facts de langages dédiés existants.

Title: On modularity and performance of External
Domain-Specific Language implementations
Keywords: reuse, performances, domain-specific languages, software language engineer-
ing

Abstract: Model-Driven Engineering
(MDE) aims at supporting Domain Experts
when developing complex systems, by sepa-
rating concerns through the use of models.
Models are representations of specific as-
pects of a system and are defined using
relevant abstractions. Such abstractions
are defined using Domain-Specific Lan-
guages (DSLs). DSLs are created with spe-
cialized Integrated Development Environ-
ment (IDE), called language workbenches.
Language workbenches assist the engineer-
ing of languages by offering useful language
abstractions. First, these abstractions have
the benefit of providing the relevant level
of abstraction for the specification of lan-
guages. Second, they address the concerns
inherent to software development, such as
modularity or testability.

However, the benefits of these abstrac-

tions can be lost when translated to language
service implementations (e.g., editors, inter-
preters, debuggers). This has many draw-
backs, especially in terms of reusability and
performance. Domain Experts are subject
to these limitations and are forced to rea-
son in terms of the low-level intricacies of
language services implementation.

These problems can be alleviated by ex-
ploiting the information provided by the ab-
stractions available in the DSL specifica-
tions. To do so, we propose two new im-
plementation patterns supporting reuse and
performances, and a systematic translation
of language specifications to these patterns.
The first implementation pattern tackles lan-
guage reuse and is called REVISITOR. The
REVISITOR pattern allows the safe and mod-
ular reuse of languages, both syntactically
and semantically, while relying solely on



mainstream object-oriented programming
concepts. The second implementation pat-
tern addresses language performances. Lan-
guage performances are improved by in-
troducing language-specific optimizations.
These optimizations are automatically intro-
duced without being intrusive of the usual
language development methods.

We seamlessly implement our ap-
proaches on top of the Eclipse IDE ecosys-
tem by using two metalanguages: Ecore and
ALE. Ecore supports the specification of
abstract syntaxes in the form of metamod-
els. Ecore is provided by the de facto indus-
trial standard Eclipse Modeling Framework
(EMF). ALE supports the modular specifi-
cation of language semantics on top of Ecore
metamodels. We provide two compilers for

these metalanguages. They support respec-
tively the compilation of language specifica-
tions to the REVISITOR pattern and the auto-
matic introduction of performance-specific
optimizations in DSL interpreter implemen-
tations. We evaluate the benefits of our ap-
proaches by implementing a varied selection
of heterogeneous DSLs.

Our contributions make possible the im-
plementation of reusable or efficient DSLs
for Domain Experts — while currently sepa-
rated, future work aims to integrate them. In
practice, our approach is both non-intrusive
of the usual methodology of language engi-
neering and based on automated code gener-
ation. Consequently, our approach is directly
applicable to industrial contexts and can be
integrated with legacy DSLs artifacts.
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