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Résumé

Mots-clés: Génération de maillages, triangulations de Coxeter, triangulations de Freudenthal-
Kuhn, qualité des simplexes, triangulations de l’espace Euclidien.

Cette thèse s’adresse au problème du maillage d’une variété donné dans une dimension arbi-
traire. Intuitivement, on peux supposer que l’on est donné une variété — par exemple l’interieur
d’un tore plongé dans R9, et notre objectif est de construire une maillage de cette variété (par
exemple une triangulation).

Nous proposons trois contributions principales. La première est l’algorithme du tracé des var-
iétés qui reconstruit un complexe cellulaire approchant une variété compacte et lisse de dimension
m dans l’espace Euclidien Rd, pourm et d arbitraires. L’algorithme proposé utilise une triangula-
tion T qui est supposé d’être une transformation linéaire de la triangulation de Freudenthal-Kuhn
de Rd. La complexité dépend linéairement de la taille de la sortie dont chaque élément est cal-
culé en temps seulement polynomial en la dimension ambiante d. Cet algorithme nécessite que
la variété soit accedée par un oracle d’intersection qui répond si un simplexe (d−m)-dimensionel
donné intersecte la variété. À ce titre, ce cadre est général et couvre plusieures représentations
des variétés populaires, telles que le niveau d’une fonction multivariée ou les variétés données
par un nuage de points.

Notre deuxième contribution est une structure de données qui représente la triangulation de
Freudenthal-Kuhn de Rd. À chaque moment de l’execution, l’espace utilisé par la structure de
données est au plus O(d2). La structure de données supporte plusieures opérations d’une manière
efficace telles que la localisation d’un point dans la triangulation et accès aux faces et cofaces
d’un simplexe donné. Les simplexes dans une triangulation de Freudenthal-Kuhn de Rd sont
encodés par une nouvelle représentation qui généralise celle de Freudenthal pour les simplexes
d-dimensionels [Fre42].

Enfin, nous étudions la géométrie et la combinatoire des deux types de triangulations étroite-
ment liés : des triangulations de Freudenthal-Kuhn et des triangulations de Coxeter. Pour les
triangulations de Coxeter, on démontre que la qualité des simplexes d-dimensionels est O(1/

√
d)

comparé au simplexe régulier. Par ailleurs, nous établissons lesquelles des triangulations sont
de Delaunay. Nous considérons aussi l’extension de la propriété d’être Delaunay qui s’appelle la
protection et qui mesure la généricité de la triangulation de Delaunay. En particulier, nous mon-
trons qu’une famille de triangulations de Coxeter atteint la protection O(1/d2). Nous proposons
une conjecture que les deux bornes sont optimaux entre les triangulations de l’espace Euclidien.
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Abstract

Keywords: Mesh generation, Coxeter triangulations, Freudenthal-Kuhn triangulations, simplex
quality, triangulations of the Euclidean space.

This thesis addresses the manifold meshing problem in arbitrary dimension. Intuitively,
suppose we are given a manifold — such as the interior of a torus — embedded in a space like
R9, our goal is to build a mesh of this manifold (for example, a triangulation).

We propose three principal contributions. The central one is the manifold tracing algorithm,
which constructs a piecewise-linear approximation of a given compact smooth manifold of di-
mension m in the Euclidean space Rd, for any m and d. The proposed algorithm operates in an
ambient triangulation T that is assumed to be an affine transformation of the Freudenthal-Kuhn
triangulation of Rd. It is output-sensitive and its time complexity per computed element in the
output depends only polynomially on the ambient dimension d. It only requires the manifold to
be accessed via an intersection oracle that answers if a given (d−m)-dimensional simplex in Rd
intersects the manifold or not. As such, this framework is general, as it covers many popular
manifold representations such as the level set of a multivariate function or manifolds given by a
point cloud.

Our second contribution is a data structure that represents the Freudenthal-Kuhn triangu-
lation of Rd. At any moment during the execution, this data structure requires at most O(d2)
storage. With this data structure, we can access in a time-efficient way the simplex that contains
a given point, the faces and the cofaces of a given simplex. The simplices in the Freudenthal-Kuhn
triangulation of Rd are encoded using a new representation that generalizes the representation
of the d-dimensional simplices introduced by Freudenthal [Fre42].

Lastly, we provide a geometrical and combinatorial study of the Freudenthal-Kuhn triangu-
lations and the closely-related Coxeter triangulations. For Coxeter triangulations, we establish
that the quality of the simplices in all d-dimensional Coxeter triangulations is O(1/

√
d) of the

quality of the d-dimensional regular simplex. We further investigate the Delaunay property for
Coxeter triangulations. Finally, we consider an extension of the Delaunay property, namely
protection, which is a measure of non-degeneracy of a Delaunay triangulation. In particular,
one family of Coxeter triangulations achieves the protection O(1/d2). We conjecture that both
bounds are optimal for triangulations in Euclidean space.
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Introduction

Problem and motivation. In this thesis, we investigate the problem of manifold meshing. It is
formulated as follows. Assume that we are given a submanifoldM (with or without a boundary)
of arbitrary dimension m embedded in a high-dimensional Euclidean space Rd via a so-called
intersection oracle. The intersection oracle allows us to determine if a given (d−m)-dimensional
simplex intersects the manifoldM or not. Our goal is to find a piecewise-linear approximation
of the manifoldM.

The manifold meshing has many important applications, such as the computer graphics or
finding numerical solutions to partial differential equations. Notably, in the medical imaging,
computerized tomography (CT) scans and magnetic resonance imaging (MRI) scans provide the
surface of any organ in the human body as a manifold embedded in R3. However, the application
range of the implicit manifold reconstruction is not limited only to three dimensions. Even
problems that seem to be two- or three-dimensional may require higher-dimensional approaches
to find a solution. Take the example of the motion planning in robotics. If a robot has m degrees
of freedom, then its configuration space is an m-dimensional manifold that is embedded in some
high-dimensional Euclidean space Rd. It is often important to understand the topology of this
manifold in order not to lose potential solutions in motion planning.

The problem of manifold meshing has been extensively studied in the case of surfaces embed-
ded in R3, especially in the computer graphics and the geometry processing literature. However,
the applications such as motion planning require techniques that are generalized to higher di-
mensions. The existing methods for manifold meshing in R2 and R3, when generalized to the
ambient space of arbitrary dimension d, gain exponential complexity in d (a phenomenon in-
formally known as the curse of dimensionality). This makes these methods impractical for the
applications in high ambient dimensions [Bel57].

For some methods, this exponential complexity comes from the explicit storage by these
algorithms of a subdivision of the ambient space, the size of which grows exponentially with the
ambient dimension. This is the problem of many meshing algorithms that are based on Delaunay
triangulations and Voronoi diagrams (see [CDS12]). The famed marching cube algorithm [LC87]
is another example of exponential dependency in ambient dimension. It needs to explore 22d

sign configurations on the vertices of a d-dimensional cube and to store them in a lookup table
[BWC00]. Our primary goal in this thesis is to find an algorithm for the manifold meshing
that has a polynomial dependence on the ambient dimension per computed mesh element and is
efficient in practice.

Related work

Implicit manifolds. An important subclass of the manifold meshing problem is the implicit
manifold meshing, on which there is a vast body of literature. The most popular and the
most used is the so-called marching cube algorithm for the implicit surface reconstruction in
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Introduction

R3 introduced in [LC87]. See [NY06, Wen13] for extensive surveys on marching cubes and its
variants used for implicit surface reconstruction in R3.

We will now outline a quick description of the marching cube algorithm, following the original
paper [LC87]. The marching cube algorithm exploits a decomposition of a box-shaped domain of
interest into a cubical grid. The surface is given as the zero-set F−1(0) of a function F : R3 → R.
For each cube in the cubical grid, the marching cube algorithm evaluates the value of the function
F at the vertices of the cube. Depending on the values of F at the vertices of the cube, the
algorithm then associates a polygon that locally approximates F−1(0) in the cube. Once all
such polygons are constructed for all cubes in the cubical grid, the marching cube algorithm
terminates.

There is one polygon per so-called sign configuration of a cube. The sign configuration
consists of the signs of the values of the function F at the eight vertices of the cube. All sign
configurations and the corresponding polygons are stored in a lookup table that is precomputed
before the algorithm starts.

The marching cube, while being simple, does not provide, in its simplest formulation, a
topologically-consistent surface. This is due to a problem, known as the ambiguous configurations,
first pointed out by Dürst [Dür88] (illustrated in Figure 1). There has been numerous techniques
to handle the ambiguous configuration problem, as for example the ones proposed in [NH91,
MSS94, ZSK94]. See [Wen13] for a more complete overview on the topic.

Even in R3, the marching cube method and its variants do not provide guarantees of being
homeomorphic to the reconstructed surface. The only exception, to our knowledge, of a provably
correct implicit surface reconstruction method in R3 is described in the paper by Plantinga and
Vegter [PV04].

The marching cube has been extended to the implicit manifold reconstruction in a high-
dimensional ambient space in the work by Bhaniramka et al. [BWC00]. Their method is able
to reconstruct a codimension-one hypersurface using a lookup table, which takes into account
the ambiguous configuration problem mentioned before. A big disadvantage of the use of the
marching cube algorithm in high dimensions is the large size of the possible configurations stored
in the lookup table. Just generating the table is difficult, as all possible sign configurations of
the values of F on vertices need to be checked [BWC00]. There are 2d vertices, therefore the
number of sign configurations to be checked is 22d .

One way to overcome the combinatorial explosion in high dimensions is to use simplices

+ −

+−

+ −

+−

Figure 1: An ambiguous configuration in a square and two possible sets of polygonal pieces that
fit it. Here, the signs at the vertices of the square indicate the signs of the values of the implicit
function F at these vertices.

2



as ambient grid elements [Min03]. In numerous methods, these simplices come from simplicial
decompositions of the ambient cubes, such as the barycentric decomposition, used for example
in [WB96], or the Freudenthal-Kuhn’s decomposition, used for example in [Min03]. While the
number of possible sign configurations in a simplex is polynomial, the number of simplices in one
such decomposition of a cube is at least factorial in the ambient dimension [Min03].

It is therefore advantageous to look for methods that do not visit all the simplices in the
triangulation of the domain, but rather only the relevant ones. This idea lies at the core of
the manifold tracing algorithm. Bloomenthal also used this idea for the implicit surface recon-
struction in R3 [Blo88]. In this work, it is assumed that a seed point on the implicit surface is
given, and then the algorithm propagates the reconstruction from the simplex that contains the
seed point to all adjacent simplices in a front-like manner. This method was later known as the
seed propagation [Wen13], or the simplicial continuation method [Hen07]. The manifold tracing
algorithm that we present in this thesis belongs to the class of simplicial continuation methods.

To our knowledge, the only simplicial continuation algorithm that can be applied to arbitrary
ambient dimension and arbitrary dimension of the manifold is the so-called pattern algorithm
of Allgower and Schmidt [AS85, AG90]. However, by the choice of the representation, their
algorithm is inefficient and complex (more on this below).

There is some body of work on implicit submanifold reconstruction using Coxeter triangula-
tions. The tetrahedron that generates a Coxeter triangulation of type Ã3 was used as a marching
element in a tetrahedral generalization of marching cube in [CP98, TPG99, LS07]; however, all
these methods are limited to the three-dimensional ambient space.

While most of the related work is limited to the implicit manifold meshing problem, there exist
algorithms in the literature that work in a more generic framework. In particular, the meshing
algorithm by Boissonnat and Oudot in R3 [BO05] only needs to know the surface through an
oracle that can compute the intersection of any given segment with the surface (we call this
oracle an intersection oracle). Our manifold tracing algorithm works in a generalization of this
framework to any dimension of the Euclidean space and of the submanifold.
Coxeter triangulations and Freudenthal-Kuhn triangulations. One of the key tools that
we use to efficiently solve the implicit manifold meshing problem is a family of triangulations
of the Euclidean space Rd, which are called Coxeter triangulations. Coxeter triangulations are
hyperplane arrangements of Rd whose cells are d-dimensional simplices with a special property
that two adjacent d-dimensional simplices in a Coxeter triangulation are orthogonal reflections
of one another. Coxeter triangulations exist for any ambient dimension. We illustrate the three
possible Coxeter triangulations of R2 in Figure 2. There are two attractive properties that the
Coxeter triangulations share:

Ã2 C̃2 G̃2

Figure 2: The two-dimensional Coxeter triangulations.
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1. Coxeter triangulations have good simplex quality (defined further below), which is often
desirable in manifold reconstruction [CDR05, CDS12, BDG14], but also in such fields as
the finite element methods [BA76, Jam76, Kří92, Syn57];

2. Coxeter triangulations have rich structure. A compact and practical description of the d-
dimensional simplices in a subfamily of Coxeter triangulations was provided by Freudenthal
[Fre42], though formulated for a closely related but different Freudenthal-Kuhn triangula-
tion of Rd. It was shown much later in [DWLT90] that these triangulations are identical
up to a linear transformation, hence they have the same combinatorial structure. There-
fore, the compact representation of the d-dimensional simplices in the Freudenthal-Kuhn
triangulation of Rd can be used for this subfamily of Coxeter triangulations too.

The Freudenthal-Kuhn triangulation of the Euclidean space was invented independently by
Freudenthal [Fre42] (in German) and Kuhn [Kuh60]. This triangulation is known under many
names: K1 triangulations [Tod76], Freudenthal’s triangulations [Eav84, Dan95, EK12], Kuhn’s
triangulations [Moo92].

Both Freudenthal and Kuhn were not aware of the closely related work by Coxeter, who
introduced more general Coxeter triangulations in his study of the reflection groups [Cox34]. It
was only much later in the work by Dobkin et al. [DWLT90] that the link between Coxeter
triangulations of type Ãd and the Freudenthal-Kuhn triangulation of Rd was finally established.

The original motivation in Freudenthal’s pioneer paper [Fre42] was the construction of an
infinite series of triangulations of the unit cube, such that the next triangulation in the series is
a subdivision of the previous one and the simplices do not become arbitrarily flat as the series
progresses. In each triangulation of the unit cube, Freudenthal [Fre42] defined a representation
(which we call the Freudenthal representation in the thesis) for every d-dimensional simplex that
consists of two components:

• a vector y ∈ Zd that encodes the position of the minimal vertex v0 = y of the simplex in
the lexicographical order,

• a permutation π : {1, . . . , d} → {1, . . . , d} that defines all other vertices v1, . . . , vd of the
simplex in the following way:

vi = vi−1 + eπ(i) for i ∈ {1, . . . , d}.

This paper by Freudenthal [Fre42] seems to have been forgotten for almost thirty years after
its publication. Meanwhile, Kuhn reinvented the same Freudenthal-Kuhn triangulation of the
unit cube in his alternative proof of Brouwer fixed point theorem using Sperner’s lemma [Kuh60].

The first practical application of the Freudenthal-Kuhn triangulation appeared in a note by
Kuhn [Kuh68]. There, the author adapted the existing algorithm of Scarf [Sca67] to find a fixed
point given by Brouwer theorem by using the Freudenthal-Kuhn triangulation. In the same
work, Kuhn introduced two algorithms that use the Freudenthal representation of d-dimensional
simplices in the Freudenthal-Kuhn triangulation of Rd: point location and adjacent d-dimensional
simplex computation.

The Freudenthal-Kuhn triangulation of Rd appeared in the book by Todd [Tod76, Chapter
III]. It became a staple tool in the subsequent work on approximating the fixed point given by
Brouwer theorem (even further popularized by the survey [AG80]). It was in the same book that
Todd pointed out for the first time that Freudenthal’s triangulation and Kuhn’s triangulation
are in fact the same.
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The first application of the Freudenthal-Kuhn triangulation of Rd to the piecewise-linear
approximation of implicit submanifolds of Rd of arbitrary codimension appeared in Allgower
and Schmidt [AS85]. The authors used the Freudenthal representation for the d-dimensional
simplices and a collection of Cartesian coordinates of vertices to represent all other simplices.
This representation of simplices is inefficient and unnatural when applied to the algorithm.
The reader can find the PASCAL and FORTRAN codes in [Gnu88] and [AG90, Program 5]
respectively.

A related algorithm is the contour tracing algorithm by Dobkin et al. [DWLT90]. There,
the authors used Coxeter triangulations as the ambient triangulations to mesh one-dimensional
curves. Compared to the existing work by Allgower and Schmidt [AS85], the algorithm by Dobkin
et al. is simpler and more accurate when reconstructing curves embedded in the Euclidean space.
While the authors briefly discuss a possible extension to manifolds of general dimension, they do
not provide any details in how to do so.

Contributions

After the introductory Chapter 1, the three following chapters correspond to the three main
contributions of this thesis.

• In Chapter 2, we provide a comprehensive study of the geometric properties of the simplices
for all families of Coxeter triangulations in Euclidean space. We show that not all Coxeter
triangulations are Delaunay triangulations. We are also interested in the quality of simplices
in the Coxeter triangulations. Here, by simplex quality we mean the following ratio-based
qualities of a simplex that were previously used in the computational geometry community:

– the ratio of the minimal height to the diameter, called thickness [Mun66, Vav96],

– the ratio of the inscribed ball radius to the circumscribed ball radius, called radius
ratio [Whi57],

– the ratio of the volume to the dth power of the diameter, called fatness [CFF85].

For any simplex quality above, by taking the infimum over all d-dimensional simplices in
a triangulation, we can define the corresponding quality of the whole triangulation. For
Delaunay triangulations, we can add to the list of triangulation qualities the so-called
protection, introduced in [BDG13]. We show that one family of Coxeter triangulations (the
Ã family) consists of Delaunay triangulations with the currently best known protection
value over all triangulations in each respective dimension.

For each family of Coxeter triangulations, we provide explicit measurements of simplices
(all of which are similar in a given triangulation). This allows the reader to compute other
quality measures than the ones listed. We show an example of such a custom quality
measure, which is the ratio of the minimal height and the radius of the circumscribed ball
that we call aspect ratio.

• In Chapter 3, we present a new representation of simplices in the Freudenthal-Kuhn trian-
gulation of Rd called the permutahedral representation. The novelty of the permutahedral
representation with respect to the existing Freudenthal representation is that the permuta-
hedral representation can represent the simplices of arbitrary dimension in the Freudenthal-
Kuhn triangulation of Rd. The storage complexity of the permutahedral representation of
a simplex in the Freudenthal-Kuhn triangulation of Rd is O(d) — the same as for the
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Freudenthal representation. By encoding simplices in the Freudenthal-Kuhn triangulation
of Rd using the permutahedral representation, we can access in a time- and space-efficient
way:

– the simplex that contains a given point,

– the faces of a given simplex,

– the cofaces of a given simplex.

• In Chapter 4, we introduce a data structure that stores an arbitrary linear transformation
of the Freudenthal-Kuhn triangulation of Rd using only O(d2) storage. This data structure
is based on the permutahedral representation introduced in Chapter 3. We apply this data
structure for the manifold tracing algorithm that computes a piecewise-linear approxi-
mation of a given compact smooth manifold. We only assume that the manifold can be
accessed via an intersection oracle that answers whether a given simplex in the ambient
Euclidean space intersects the manifold or not. This makes the manifold tracing algorithm
applicable to various representations of the input manifold. In particular, we discuss two
such representations:

– the implicit manifolds given as the zero-set of a function,

– the manifolds given by point clouds.

We show the experimental results of the manifold tracing algorithm on the implicit man-
ifolds and the manifolds given by point clouds. This implementation is at the moment
under review to be included in Gudhi library [GUD].
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Chapter 1

Background

In this chapter, we will give an overview of the basic definitions, which will be useful in the
thesis. The chapter is split into three sections:

• In Section 1.1, we recall some basic definitions and results related to linear algebra, group
theory, graph theory, order theory, geometry, topology and algorithmics that will be useful
later in the thesis.

• In Section 1.2, we give the formal definition of the Coxeter triangulations of Rd. The
definition of Coxeter triangulations relies on the concepts of root systems and root lattices
that we present in Section 1.2 as well. The presentation of this section is largely based on
the lecture notes by Top [Top] and the book by Humphreys [Hum92].

• In Section 1.3, we study the face structure of a polytope, known as permutahedron, which
appears as the full-dimensional cells in the Voronoi diagram of a Coxeter triangulation of
type Ã. The results mentioned in this section are used later in Chapter 3, where we intro-
duce the permutahedral coordinates of simplices in the Freudenthal-Kuhn triangulation of
Rd.

Most of the results mentioned in Chapter 1 are known. For instance, the definitions in Section 1.1
and 1.2 are standard and any reader familiar with them should feel free to skip these sections and
consult them only when needed. In Section 1.3.2, we do a standard computation of the number
of the k-dimensional subfaces of a given l-dimensional face of a d-dimensional permutahedron,
for some given k, l and d. This result is part of folklore and is included for completeness.

For a more complete introduction we refer the reader to the pioneering paper on reflection
groups by Coxeter [Cox34], a book on Coxeter systems by Humphreys [Hum92] and the classical
book on Lie groups and algebras by Bourbaki [Bou02].

1.1 Basic notions

In this section, we recall standard definitions and fix the notations that are used in the thesis.

1.1.1 Notations in linear algebra

The Euclidean space (which is endowed with the standard scalar product) is denoted by Rd,
where d is a non-negative integer that stands for dimension. The vectors in the canonical basis
of Rd is denoted by e1, . . . , ed.

7



Chapter 1. Background

Vector spaces or linear spaces in this thesis always refer to the linear subspaces of Rd. There-
fore, all vector spaces in the thesis are finite-dimensional, and any set of vectors is of finite
rank.

The scalar product of two vectors x, y ∈ Rd will be denoted by 〈x, y〉 and the norm of a vector
x ∈ Rd is denoted by ‖x‖. In the following, we confound vectors and points in Euclidean space.
Sometimes, though, to make a separation between points and vectors, especially in geometrical
proofs, an arrow is used over the vectors, like ~x. This includes vectors between two points: for
example, −→xy denotes the vector y − x for two points x and y. The Euclidean distance between
two points x and y will be denoted by d(x, y) or alternatively by ‖x− y‖.

Finally, for any subset S ⊆ Rd, we will denote by aff(S) the affine hull of S.

1.1.2 Group theory

We will now recall some standard definitions from group theory that will be used in the thesis.
For most statements, we follow the formulation of Rotman [Rot12]. The same holds for the
notations, with the exception of dihedral groups.

Definition 1.1.1 (Group). A group (G, ?) is a non-empty set G equipped with an associative
operation ? : G×G→ G, such that:

1. There exists an element e ∈ G, which satisfies for all g ∈ G:

g ? e = e ? g = g.

The element e is called the identity.

2. For all g ∈ G, there exists an element h ∈ G, such that:

g ? h = h ? g = e.

The element h is called the inverse of g and is often denoted by g−1.

The ? notation for the operation will be dropped for the rest of the section.
We will see two types of products of groups in the following. We will now briefly recall the

definitions of these products.

Definition 1.1.2 (Direct product). If G and H are groups, then their direct product, denoted
by G×H, is the group with elements all ordered pairs (g, h), where g ∈ G and h ∈ H, and with
operation (g, h)(g′, h′) = (gg′, hh′).

Definition 1.1.3 (Normal subgroup). A nonempty subset H of a group G is a subgroup of G
if s ∈ H implies s−1 ∈ H, and s, t ∈ H implies st ∈ H.

A subgroup H of G is a normal subgroup, denoted by H /G, if gHg−1 ⊆ H for every g ∈ G.

Definition 1.1.4 (Semidirect product). Let H and Q be two subgroups of G. Denote by e the
identity of the group G. The subgroup Q is said to be a complement of H in G if H ∩Q = {e}
and every g ∈ G can be represented as kq for some k ∈ H and q ∈ Q.

A group G is a semidirect product of H by Q, denoted by G = H oQ if H /G and H has a
complement Q1 isomorphic to Q.

We will now introduce actions of groups on sets.
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1.1. Basic notions

Definition 1.1.5 (Action of a group). One says that a group G acts on a set X, if there exists
a function α : G×X → X, called (left) action1, denoted by α : (g, x) 7→ gx, such that:

(i). ex = x for all x ∈ X, and

(ii). g(hx) = (gh)x for all g, h ∈ G and x ∈ X.

Definition 1.1.6 (Orbit). Suppose that G acts on X. Let x ∈ X. Then the G-orbit of x is the
set:

O(x) = {gx : g ∈ G} ⊆ X.

Definition 1.1.7 (Transitive action). The action of a group G on a set X is called transitive,
if it has only one orbit; that is, for every x, y ∈ X, there exists g ∈ G with y = gx. The action
is called simply transitive if for any x and y, such an element g exists and is unique.

Now, we will recall a few important families of groups.

Definition 1.1.8 (Symmetric group). We call a permutation on a set {1, . . . , n} a bijective
function {1, . . . , n} → {1, . . . , n}. The group of all permutations on a set of {1, . . . , n} and
whose group operation is the composition, is called the symmetric group and is denoted as Sn.

Definition 1.1.9 (Dihedral group). The dihedral group Dn for n ≥ 2, is a group of order 2n
(meaning it contains 2n elements), which is generated by two elements s and t, such that:

s2 = e, tn = e and sts = t−1,

where e denotes the identity.

1.1.3 Graph theory

We will now recall basic definitions in graph theory. For more information on graph theory, we
refer the reader to standard textbooks, such as Harary [Har69].

Definition 1.1.10 (Graph). A directed graph (respectively undirected graph) is a pair of sets
G = (N,E), where E consists of the ordered (respectively unordered) pairs of elements in N .

The elements in N are called nodes, and the elements in E are called edges. The two nodes
n1 ∈ N and n2 ∈ N in an edge e = (n1, n2) ∈ E are called the endpoints of e.

Remark 1.1.11. Note that E in Definition 1.1.10 is a set. Therefore, no repetition of edges
can occur in a graph as defined above. Hence, we only consider here simple graphs (as opposed
to multigraphs, for which E is a multiset).

Definition 1.1.12 (Degree in a directed graph). Let G = (N,E) be a directed graph. For a
node n ∈ N , the cardinality of the set {n′ ∈ N | (n, n′) ∈ E} (respectively cardinality of the set
{n′ ∈ N | (n′, n) ∈ E}) is called the out-degree of the node n (respectively the in-degree of the
node n).

Definition 1.1.13 (Degree in an undirected graph). Let G = (N,E) be an undirected graph.
For a node n ∈ N , the cardinality of the set {n′ ∈ N | {n, n′} ∈ E} is called the degree of the
node n.

1One can also define the right action in the same way.
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Chapter 1. Background

Definition 1.1.14 (Path). A path in the graph G = (N,E) is a sequence of m pairwise distinct
edges Π = e0, e1, ..., em for some integer m ≥ 0, where for all (i, i + 1) ∈ {0, . . . ,m− 1}2, the
two edges ei and ei+1 share an endpoint.

Remark 1.1.15. Note that all graphs that we deal with in the thesis are finite. Since a finite
graph has a finite number of edges, this implies that any path is finite as well.

Definition 1.1.16 (Nodes on a path). Let Π = e0, e1, ..., em be a path for some integer m ≥ 0.
Let (ni)i∈{0,...,m} be the sequence of nodes such that for all i ∈ {0, . . . ,m− 1}, the edge ei has
endpoints ni and ni+1. For any i ∈ {0, . . . ,m}, we will say that ni lies on the path Π, or that ni
is a node on the path Π. We will call the elements n0 and nm the endpoints of the path Π. We
will also say in this case that Π is a path from n0 to nm.

Definition 1.1.17 (Connected graphs). A graph G = (N,E), such that for any two nodes n and
n′ in N , there exists a path from n to n′ or there exists a path from n′ to n, is called connected.
If from any node in G there exists a path to any other node, then G is called strongly connected.

Remark 1.1.18. Note that any undirected graph that is connected is also strongly connected.

Definition 1.1.19 (Cycle). A path is called a cycle if its endpoints are the same node. A loop
is a particular case of a cycle that consists of one edge.

The special type of graphs without cycles will be of special importance for the data structure
discussed in Chapter 4.1.

Definition 1.1.20 (Directed acyclic graph). A directed graph G = (N,E) that does not contain
any cycles is called a directed acyclic graph (abbreviated as DAG).

Definition 1.1.21 (Tree). Let G = (N,E) be a directed acyclic graph. If there exists an element
r ∈ N , such that from any node n ∈ N , there exists a unique path from n to r, the graph G is
called a (directed) rooted tree. The node r in such a graph is called the root of the tree G.

For a given edge (n, n′) ∈ E in a rooted tree G = (N,E), the node n is called a child node of
n′. Conversely, the node n′ is called a parent node of n. By extension, we will say that n′ is an
ancestor of n and that n is a descendent of n′ if there exists a path in G from n to n′.

A node in a rooted tree that has no child node (or equivalently has in-degree 0) is called a
leaf. The maximal length of a path from a leaf to the root in a rooted tree is called the depth of
the tree.

Remark 1.1.22. Note that the edges in Definition 1.1.21 point from children to parents. A
directed tree can equivalently be defined with edges pointing from parents to children.

Trees have an intrinsic recursive structure, which can be expressed in terms of subtrees.

Definition 1.1.23 (Subtree). To any node n ∈ N in a directed rooted tree G = (N,E) we can
put in correspondence a graph, such that its set of nodes N ′ consists of n itself and all descendants
of n in G, and the set of edges E′ consists of all edges in G with endpoints in N ′. Such a graph
will be called a subtree of G rooted at n, or alternatively a branch of G rooted at n.

An analogous definition of trees exists for the undirected graphs.

Definition 1.1.24 (Undirected tree). An undirected graph G = (N,E) that does not contain
any cycles is called an undirected tree (or simply a tree). A node in an undirected tree that has
degree 1 is called a leaf.

When it is clear that a graph is directed, the term tree in the following will denote a directed
rooted tree. If the graph is clearly undirected, the term tree will denote an undirected tree as in
the definition.
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1.1. Basic notions

a

b c

d

Figure 1.1: Hasse diagram of a partially-ordered set ({a, b, c, d},6) with 6 defined for the fol-
lowing pairs: a 6 a, a 6 b, a 6 c, a 6 d, b 6 b, b 6 d, c 6 c, c 6 d, d 6 d. All loops around
nodes are omitted from the figure.

1.1.4 Ordered sets

The goal of this section is to introduce the diverse notions of orders that are used in the thesis.
For more information, we refer the reader to textbooks on the topic, such as Simovici and Djeraba
[SD08]. We will start with the definition of a partially-ordered set.

Definition 1.1.25. A partial order 6 over a set S is a binary relation, which satisfies all of the
following:

(Reflexivity). For all a ∈ S, we have a 6 a.

(Antisymmetry). For all a, b ∈ S, if a 6 b and b 6 a, then a = b.

(Transitivity). For all a, b, c ∈ S, if a 6 b and b 6 c, then a 6 c.

A set (S,6) endowed with a partial order 6 is called a partially-ordered set (sometimes
contracted to poset).

If for two elements a ∈ S and b ∈ S, we have a 6 b, then we will say that b is greater than a
in the order 6. In this case, we also say that a is smaller than b in the order 6. We will omit
“in the order 6” whenever it is clear which partial order is implied.

A finite partially-ordered set can be represented with the help of a Hasse diagram.

Definition 1.1.26. The Hasse diagram of a partially-ordered set (S,6) is a directed acyclic
graph, where the nodes are elements of S, and there is an edge2 going from a node a ∈ S to a
different node b ∈ S if and only if both of the two statements below hold:

• a 6 b,

• for all c ∈ S such that a 6 c 6 b, we have either c = a or c = b.

An example of Hasse diagram of a partially-ordered set is illustrated in Figure 1.1.
A defining property of Hasse diagrams is that a 6 b is equivalent to the existence of a path

from a to b in the Hasse diagram.
It will be useful in the following to have the notions of upper and lower bounds in the context

of the partially-ordered sets.

Definition 1.1.27. Let (S,6) be a partially-ordered set and let R ⊆ S be a subset of S.
An element a ∈ S is an upper bound of R (respectively lower bound of R) if for all r ∈ R,

we have r 6 a (respectively a 6 r).
2An alternative definition with an edge going from b to a is also possible.
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If it exists, the smallest upper bound of R (respectively the greatest lower bound of R) is called
the supremum of R (respectively the infimum of R) and is denoted as supR (respectively inf R).

If the supremum of R (respectively the infimum of R) belongs to R, then it is called the
maximum of R (respectively the minimum of R), and is denoted as maxR (respectively minR).

In Section 1.3, we talk about the isomorphisms between two partially-ordered sets.

Definition 1.1.28 (Isomorphism between two posets). Let (S,6) and (T,6′) be two partially-
ordered sets. We say that a map ϕ : S → T is an order embedding, if for all a, b ∈ S, we
have:

a 6 b if and only if ϕ(a) 6′ ϕ(b).

An order embedding ϕ : S → T that is surjective is called isomorphism between the two partially-
ordered sets (S,6) and (T,6′). If there exists an isomorphism between (S,6) and (T,6′), then
we say that the two partially-ordered sets are isomorphic.

Lastly, we will define a stronger notion of linear order.

Definition 1.1.29 (Linear order). Let S be a set. A relation 6 is a linear order if it is a partial
order over S and for any two elements a and b in S, at least one of a 6 b and b 6 a is true.

When the set S is finite, it is possible to extend a given partial order 6 to a linear order 6∗.

Lemma 1.1.30 (Linear extension of a partial order). Let S be a finite set and 6 be a partial
order over S. There exists a linear order 6∗ over S such that for all a, b ∈ S, if a 6 b, then
a 6∗ b.

The proof of Lemma 1.1.30 is classical and is done constructively by a so-called topological
sort (see for example the depth-first search procedure PREORDER in [Tar76] applied to the
Hasse diagram).

Finally, for any linear order (and any partial order in general) we can associate a strict order.

Definition 1.1.31 (Strict order). For each partial order ≤ over a set S there exists an associated
relation <, such that for any a, b ∈ S, we have a < b if and only if a ≤ b and a 6= b. Such relation
is called a strict order.

1.1.5 General topology and geometry

In this section, we will present a few notions in general topology and geometry that will be
essential for the rest of the thesis. For a more complete introduction on topology, we refer the
reader to any standard book on topology, such as [Mun66].

There are two uses of the term closed in topological literature. The most standard one is closed
set, which refers to the complementary of an open set (as used for example in Munkres [Mun66]).
The other one is closed manifold, which refers to compact manifold without boundary (see for
example Spivak [Spi99, p.19]). In this thesis, we restrict the term closed only to closed sets, and
the closed manifolds are called compact manifolds without boundary to avoid any confusion.

We will now present the standard definition of the reach of a manifold (illustrated in Fig-
ure 1.2), introduced by Federer [Fed59].

Definition 1.1.32 (Reach [BCY18, Section 7.1.2]). LetM be a submanifold of Rd. The medial
axis of M is defined as the closure of the set of points x ∈ Rd that have more than one closest
point onM.

The reach of M, denoted by rch(M), is an infimum of the distance from a point on M to
the medial axis.
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rch(C)

Figure 1.2: Illustration of the reach of a curve in R2. The medial axis of the curve is shown in
red.

There are multiple notions of a “topological equivalence” that are mentioned in the thesis.
First of them is the notion of homeomorphism.

Definition 1.1.33 (Homeomorphism). Two topological spaces X and Y are called homeomor-
phic if there exists a bijective continuous map X → Y , such that its inverse is continuous as
well. Such a map is called a homeomorphism between X and Y .

A weaker notion of topological equivalence is that of homotopy equivalence.

Definition 1.1.34 (Homotopy equivalence). Let X and Y be two topological spaces. Two maps
f, g : X → Y are called homotopic if there exists a continuous map F : X× [0, 1]→ Y , such that
for all x ∈ X, we have F (x, 0) = f(x) and F (x, 1) = g(x). Such a map is called a homotopy.

Two topological spaces X and Y are called homotopy equivalent if there exist continuous
maps f : X → Y and g : Y → X, such that f ◦ g is homotopic to the identity map idY on Y
and g ◦ f is homotopic to the identity map idX on X. Both maps f and g are called homotopy
equivalences.

We will use the following notation for the volume of the unit sphere.

Definition 1.1.35 (Volume of the unit sphere). We denote by Vd the volume of the d-dimensional
unit sphere.

The volume of the unit sphere can be expressed using the Gamma function Γ(z) =
∫∞

0 tz−1e−tdt.

Proposition 1.1.36 (Volume of the unit sphere [DLMF, Equation 5.19.4]). The volume Vd of
the d-dimensional unit sphere is equal to:

Vd =
π(d−1)/2

Γ
(
d−1

2 + 1
) .

Using Stirling formula, we can also derive the following asymptotic approximation:

Vd = O

((
2πe

d

)d/2)
.
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There are two definitions of simplices in computational geometry: geometrical and abstract.
The definition that is used in this thesis is the geometrical one.

An m-dimensional simplex in Rd is defined as a convex hull of some m+ 1 points in general
position, with m 6 d called the dimension of the simplex. These points are called vertices of
the simplex, and are regarded as 0-dimensional simplices themselves. We will reserve the word
vertices only for simplices (as well as polytopes and polyhedra in general, see Definition 1.1.39
below) and use the word node for all other uses (for example, in graphs). If the dimension of a
simplex in Rd is d, we will call such simplex full-dimensional. The 1-dimensional simplices are
called edges (or sometimes segments), the 2-dimensional simplices are called triangles and the
3-dimensional simplices are called tetrahedra.

Definition 1.1.37 (Halfspace). A halfspace H is a subset of Rd of the form {x ∈ Rd | 〈n, x〉 ≤ b}
for some n ∈ Rd and b ∈ R.

Remark 1.1.38. Any hyperplane {x ∈ Rd | 〈n, x〉 = b} for some n ∈ Rd and b ∈ R defines two
halfspaces: {x ∈ Rd | 〈n, x〉 ≤ b} and {x ∈ Rd | 〈n, x〉 ≥ b}.

Definition 1.1.39 (Convex polyhedron). A polyhedron in Rd is the non-empty intersection of
a finite set of halfspaces. The dimension of a polyhedron is the dimension of its affine hull.

Any convex hull of a set of points in Rd is in fact a bounded polyhedron, which we will call
a convex polytope, or simply a polytope. In particular, any simplex is a polytope.

Definition 1.1.40 (Face). Let σ be a convex polyhedron in Rd. Let H be a hyperplane in Rd,
such that the intersection of σ and H is non-empty and σ lies entirely in one of the halfspaces
defined by H (see Remark 1.1.38). The intersection of σ and H is itself a polyhedron and is
called a face of σ.

In this thesis, we will deal with cell complexes and simplicial complexes.

Definition 1.1.41 (Cell complex). A (geometrical) cell complex is a collection K of polyhedra
such that:

• any face of a polyhedron in K belongs to K, and

• the intersection of any two polyhedra H1 and H2 in K is a face of both H1 and H2.

Polyhedra that belong to a cell complex are called cells of the cell complex.
A (geometrical) simplicial complex is a cell complex where all polyhedra are simplices.

Remark 1.1.42. Sometimes the word polyhedron refers to the cell complex itself. In this thesis,
we will reserve the word polyhedron only to the geometrical object defined in Definition 1.1.39.

In Section 1.3, we will use the following result.

Lemma 1.1.43 ([Zie12, Section 2.2]). The inclusion relation on the cells in cell complexes is a
partial order.

Lemma 1.1.43 implies that any cell complex equipped with the inclusion relation can be
regarded as a partially-order set.

Definition 1.1.44 (Face poset). The partially-ordered set of cells in a cell complex endowed with
the inclusion relation is called face poset.
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As a consequence of Lemma 1.1.43, Hasse diagrams (discussed in Section 1.1.4) are one of
the common ways to represent a cell complex [BCY18, p.18].

We will adopt the following vocabulary. An (m − 1)-dimensional face of an m-dimensional
polyhedron will be called a facet. A cell τ in a cell complex is a face (respectively a facet) of σ,
we will say that σ is a coface of τ (respectively a cofacet of τ).

Definition 1.1.45 (Star). Let K be a cell complex. The star of a simplex σ in the cell complex
K is the set of all its cofaces in K. The closed star is the minimal polytope that contains the
star.

The barycentre of a simplex is the barycentre of its vertices.
For a full-dimensional simplex we can define a unique Euclidean ball, the boundary of which

contains the d + 1 vertices of the simplex. This ball is called the circumscribed ball of the
simplex (or circumball); its boundary is called circumscribed sphere (or circumsphere) of the
simplex. The centre of the circumscribed ball is called the circumcentre and its radius is called
the circumradius. We can also define a unique Euclidean ball inside the full-dimensional simplex
that is tangent to all d + 1 facets of the simplex. This ball is called the inscribed ball of the
simplex. Similarly to circumscribed balls, we also define inscribed sphere, incentre and inradius.

The height of a simplex σ that falls on a facet τ of σ is the distance d(v, aff(τ)) from the
vertex v of σ not in τ to the affine hull of τ . For two facets τ and τ ′ of a polyhedron σ, such
that τ and τ ′ have a common facet υ, we can define the dihedral angle between τ and τ ′, which
is the angle between the affine hulls of τ and τ ′.

For an edge, its length is the distance between its vertices. A simplex such that all its edges
(1-dimensional faces) have the same length is called regular.

The maximum distance between two points in a compact subset S of Rd is called the diameter
of S. If the compact set is a simplex, its diameter coincides with maximum edge length.

Definition 1.1.46 (Triangulation). A triangulation of a topological space X is a simplicial
complex K, homeomorphic to X, together with the homeomorphism h : K → X.

Here, we only consider triangulations of adef Euclidean space Rd. The cell complex K from
Definition 1.1.46 will be embedded in Rd, as we will see in Section 1.2. This makes that the
homeomorphism h is the identity map of Rd.

Definition 1.1.47 (Monohedral triangulation). Two polyhedra are called similar, if one can be
obtained from the other by a transformation ϕ : Rd → Rd of the form:

ϕ(x) = rOx+ t,

where r ∈ Rd is a scale factor, O is an orthogonal d× d matrix and t is a translation vector.
If all d-dimensional simplices in a triangulation are similar, then such a triangulation is called

monohedral.

Coxeter triangulations, which are the main topic of this thesis, are an example3 of monohedral
triangulations of Rd. Some of these triangulations are also Delaunay triangulations.

Definition 1.1.48 (Delaunay triangulation). Let T be a triangulation of Rd (in the sense above).
We will say that the triangulation T is Delaunay, if for all d-dimensional simplices σ ∈ T , the
interior of the circumscribed ball of σ does not contain any vertices in T .

3Coxeter triangulations are not the only example of monohedral triangulations. See Figure 1.12 for an example
of a monohedral triangulation in R2, which is not a Coxeter triangulation.
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Figure 1.3: On the left: an example of a Delaunay triangulation of R2 with the circumscribed
circles in faint blue. On the right: the corresponding Voronoi diagram in red.

When a triangulation T is a Delaunay triangulation, one can associate a so-called Voronoi
diagram to it:

Definition 1.1.49 (Voronoi diagram). Let T be a Delaunay triangulation of Rd. For any simplex
σ in T , the dual of σ is the convex hull of the circumcentres of all full-dimensional cofaces of σ.
The set of duals of all simplices σ in T forms a cell complex, called Voronoi diagram.

This definition of Voronoi diagrams is compatible to a somewhat more traditional definition
of the Voronoi diagram of a point set [BCY18, Theorem 4.3]:

Definition 1.1.50. A Voronoi diagram of a discrete point set P in Rd is a cell complex induced
by a covering of Rd by the full-dimensional polyhedra Vor(p) for all p ∈ P , defined as follows:

Vor(p) = {x ∈ Rd | d(x, p) ≤ d(x, q), ∀q ∈ P}.

A Delaunay triangulation of the plane and the corresponding Voronoi diagram are illustrated
in Figure 1.3.

Another important class of cell complexes in this thesis are defined by a set of hyperplanes.

Definition 1.1.51 (Arrangement). Let H be a set of hyperplanes in Rd. The arrangement of
H is the cell complex that consists of the faces of the polyhedra defined as (the closures of) the
connected components of Rd \ (∪H∈HH).

Lastly, we will define the Cartesian products of two subsets of the Euclidean space.

Definition 1.1.52 (Cartesian product). Let P ⊆ Rm and Q ⊆ Rn be two subsets of Euclidean
spaces of dimensions m and n respectively. We define the Cartesian product of P and Q, denoted
by P ×Q, as the following subset of Rm+n:

P ×Q = {(p, q) ∈ Rm+n | p ∈ Rm, q ∈ Rn}.

In the thesis, we will be mostly concerned with the Cartesian products of polytopes. When-
ever we refer to the Cartesian products of polytopes, we will use the following classical result.

Lemma 1.1.53 ([Zie12, Chapter 0]). The Cartesian product of two polytopes is a polytope.
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1.1.6 Real RAM computational model for the description of algorithms

The computation model that we adopt when describing the algorithms in the thesis is that of real
random-access machine (or real RAM ). In this model, each memory unit can hold a real value
with unbounded precision. We will assume that all the following operations can be executed in
O(1) time:

1. reading a real number stored in a memory location,

2. comparing between any two real numbers,

3. the four arithmetic operations: addition, subtraction, multiplication and division,

4. the integer part (floor) computation.

As such, when discussing algorithms in this chapter, we distance ourselves from the problems
that are related to numerical accuracy, although they might be relevant in practice.

Representation of Cartesian coordinates. We store the Cartesian coordinates of a given
point x ∈ Rd in a data structure that supports random access. This means that the access to any
Cartesian coordinate xi ∈ R in a tuple (x1, . . . , xd) is done in time O(1). The space complexity
to store one tuple of Cartesian coordinates is O(d).

1.2 Root systems and Coxeter triangulations

The Coxeter triangulations we use originate in group theoretical studies of reflections. This
section provides a group-theoretical background for and gives a brief introduction to Coxeter
triangulations.

This section follows the lecture notes by Top [Top].
We first explain root systems as sets of vectors generated by undirected graphs. To an

undirected graph without loops we associate a symmetric matrix. If the matrix is positive
definite, it defines a (non-Euclidean) inner product and (non-Euclidean) orthogonal reflections.
These orthogonal reflections generate a group and a set of vectors, called a root system. A
classification of undirected graphs that generate finite root systems is presented.

We then proceed to study the geometrical properties of root systems in Euclidean space.
Ultimately, we state the classification of root systems, which expands on the classification of the
undirected graphs presented earlier.

After this, we proceed to define root lattices. Finally, we will give essential definitions and
results from Chapter 4 of Humphreys [Hum92] on affine reflection groups and conclude by defining
Coxeter triangulations and classifying them.

1.2.1 Graphs and Cartan matrices

We consider undirected connected graphs without loops with d nodes {n1, . . . , nd}. One can
associate an incidence matrix A = (aij) to any such graph. This is the symmetric d× d-matrix
with aij = 1 if there is an edge between ni and nj and aij = 0 otherwise.

Definition 1.2.1 (Cartan matrix). The Cartan matrix of a graph Σ with incidence matrix A is
defined by C = 2I −A, where I is the identity matrix.
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Chapter 1. Background

Note that Cartan matrices are symmetric. To each d× d Cartan matrix C we can associate
a symmetric bilinear form 〈·, ·〉C on Rd defined by 〈u, v〉C = utCv, with u, v ∈ Rd and where ut

denotes the transposition of u.
We are now interested in identifying the graphs for which the symmetric bilinear form is

positive definite and therefore defines an inner product. Each such d× d Cartan matrix gives us
d linear maps σi, one for each vector ei of the canonical basis, defined by:

σi : Rd → Rd
x 7→ x− 〈x, ei〉C ei = x− (xtCei)ei.

If the bilinear form 〈·, ·〉C is positive definite, the linear map σi is the orthogonal reflection4

through the hyperplane, which is orthogonal to ei with respect to the inner product determined
by C.

Definition 1.2.2 (Weyl group). The Weyl group WΣ of a graph Σ is the group of invertible
linear maps generated by all σi.

The roots of Σ are the vectors in the set

RΣ = {σ(ei) | 1 ≤ i ≤ d, σ ∈WΣ}.

We now have the following:

Theorem 1.2.3 ([Hum92, Section 1.3]). For a graph Σ with Cartan matrix C, Weyl group WΣ

and root set RΣ, the following three statements are equivalent:

• 〈·, ·〉C is positive definite, that is it defines an inner product.

• The root set RΣ is finite.

• The Weyl group WΣ is finite.

Section 1.8 of [Hum92] also gives us the following proposition:

Proposition 1.2.4. For any graph Σ with a positive definite inner product, the action of elements
of Weyl group WΣ is simply transitive on the root set RΣ.

The connected graphs Σ that give a positive definite form 〈·, ·〉C have been classified to be
the following (see Section 2.4 of [Hum92]):

Ad

Dd

...

...

E6

E7 E8

These graphs are called the Coxeter diagrams of type Ad, Dd, E6, E7 and E8. The definition
of Coxeter diagrams will be given in Definition 1.2.13.

4Usually, there is a 2 factor in the definition of the orthogonal reflection. This factor is hidden in the definition
of Cartan matrix C.
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R =

e2

e1

e1 + e2

−e2

−e1

−e1 − e2

in (R2, 〈·, ·〉C)

(
√
DO) ·R =

r1

r1 + r2

r2

−r2

−r1 − r2

−r1

in (R2, 〈·, ·〉)

Figure 1.4: An example of the root sets of the A2 diagram before and after multiplying by
√
DO.

1.2.2 Root systems in Euclidean space

We now want to make the Weyl groups as concrete as possible. To do this, we need to find vectors
r1, . . . rd ∈ Rm, for m ≥ d, and Rm endowed with the standard inner product 〈·, ·〉, such that
〈ri, rj〉 = cij . These vectors are linearly independent because the Cartan matrix C is invertible.
In general, such a matrix with scalar products as coefficients is called a Gram matrix.

Proposition 1.2.5. Let C = (cij) be a positive definite Cartan matrix. There exist vectors
r1, . . . , rd ∈ Rd, such that 〈ri, rj〉 = cij.

Proof. The matrix C is positive definite, so it can be diagonalized by an orthogonal matrix O
as OtDO = C. Let us write D = (dij), with dij = 0, if i 6= j. If

√
D denotes the matrix with√

dii on the diagonal, the vector ri can be found as the ith column of the matrix
√
DO (see

Figure 1.4).

Remark 1.2.6. Note that this choice is not unique. However, in the context of root systems,
nicer roots can be chosen, if we allow the roots to lie in Rm for m > d. According to Humphreys
[Hum92, Section 2.10], the nice choices are not so obvious, and historically arose from close
scrutiny of simple Lie algebras.

As we have seen in the previous section, a root set R of each of the diagrams Ad, Dd, E6,
E7 and E8 is stable under the reflections of its roots. These reflections therefore generate a
finite Weyl group. We will now construct more of finite Weyl groups based on root systems in
Euclidean space in a bit larger sense than what was discussed before.

Definition and properties. We work in Rd endowed with the standard inner product 〈·, ·〉.
For r ∈ Rd, with r 6= 0, the reflection σr in the hyperplane {v ∈ Rd| 〈v, r〉 = 0} is given by

σr(x) = x− 2
〈x, r〉
〈r, r〉

r.

We can now redefine root systems from a completely geometric point of view.

Definition 1.2.7 (Root system). A root system in Rd is a finite set R ⊂ Rd that satisfies:

• 0 /∈ R and R contains a basis of Rd,
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r

sσr(s) √
2r

(a) (b) (c)

Figure 1.5: Examples of root systems that are (a) not crystallographic, (b) not reduced, (c) not
irreducible.

• for all r ∈ R, σr(R) ⊂ R.

A root system is called crystallographic if for all r, s ∈ R, σr(s)− s is an integer multiple of
r.

A root system is called reduced if r ∈ R and λr ∈ R imply λ = ±1.
A root system is called irreducible if there is no decomposition R = R1∪R2 with R1 6= ∅ 6= R2

and 〈r1, r2〉 = 0 for all r1 ∈ R1 and r2 ∈ R2 (that is R1 and R2 are orthogonal to one another).

In Figure 1.5, we present examples of root systems that lack exactly one of the properties
from Definition 1.2.7. In the example (a) in Figure 1.5, the roots in the presented root system
lie on a regular octagon. It is easy to check that the root system is reduced and irreducible. As
we see, the image of the root s by a reflection σr differs from s by a vector

√
2r, which is not an

integer multiple of r. Therefore the presented root system is not crystallographic.
In the example (b) in Figure 1.5 there are more than two collinear roots, so the root system

is not reduced. It can be easily checked that the root system is, however, crystallographic and
irreducible.

In the example (c) in Figure 1.5 the set of vertical roots and the set of horizontal roots are
orthogonal one to another. Therefore, the root system is not irreducible. It can be easily checked
that the root system is however crystallographic and reduced.

As before, the Weyl group of a root system R is the (finite) group W generated by the
reflections σr for all r ∈ R. The root systems that are not reduced or irreducible are not
interesting for the classification of Weyl groups for the following reasons.

If a root system is not reduced, we can associate a corresponding reduced root system that
shares the same Weyl group. Now, assume that a root system R is not irreducible. Because R
is finite, by a simple induction, we can represent R as a union:

R =
m⋃
i=1

Ri

with:

1. all Ri being irreducible root systems in the sense of Definition 1.2.7, and

2. all Ri being orthogonal one to another.
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t

R+
t

R−t

s1

s2 s1 + s2 2s1 + s2

Figure 1.6: Illustration of positive and negative roots in a two-dimensional root system for a
given vector t ∈ R2. The simple root set St consists of s1 and s2.

The Weyl group that corresponds to R is, in fact, the direct product of the Weyl groups that
correspond to the Ri.

The crystallographic property of the root systems will be important for the definition of root
lattices and affine Weyl groups, so we will focus on root systems that are crystallographic. From
this point onward we will assume that every root system under consideration is crystallographic,
reduced and irreducible, unless stated otherwise.

Simple roots. We will now define simple roots that form a basis of a root system.

Definition 1.2.8. Assume that for a root system R we are given an arbitrary t ∈ Rd such that
〈t, r〉 6= 0 for all r ∈ R. The root system now decomposes as R = R+

t ∪ R
−
t into positive roots

R+
t = {r ∈ R | 〈r, t〉 > 0} and negative roots R−t = {r ∈ R | 〈r, t〉 < 0} (see Figure 1.6). A

root r ∈ R+
t is called decomposable if r = r1 + r2, with r1, r2 ∈ R+

t , and a root r ∈ R+
t is called

simple if it is not decomposable. The set of simple roots with respect to t is denoted by St.

An important result is that all sets of simple roots St are the same up to a reflection and a
rotation.

Lemma 1.2.9. The action of the Weyl group that corresponds to a root system R on the collection
of all sets of simple roots of R is simply transitive.

The proof of the lemma can be found in Section 1.8 of Humphreys [Hum92]. Because all St
are similar one to another (in the sense of Definition 1.1.47), we will omit the index t.

Lemma 1.2.10. Let R be a root system, and S be a set of simple roots in R.

• For any two distinct simple roots r, s ∈ S, we have 〈r, s〉 ≤ 0.

• The set S forms a basis of Rd.

• The Weyl group is generated by the reflections associated to the simple roots in S.

We refer to Sections 1.3 and 1.5 of Humphreys [Hum92] for the proof of the lemma.
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Chapter 1. Background

Definition 1.2.11 (Partial order on positive roots). Because simple roots S form a basis of
the root system R, any root can be decomposed as a sum of simple roots with integer coefficients.
Using the decomposition, the positive roots (see Definition 1.2.8) can be characterized as the roots
that have non-negative coefficients when expressed in terms of simple roots. For any two positive
roots r and r′, we can write r =

∑d
i=1 cisi and r

′ =
∑d

i=1 c
′
isi, where S = {s1, . . . , sd} and the

coefficients ci and c′i are integers. This gives a partial order 4 on the set of roots R, which
compares the coefficients of two roots meaning that r 4 r′ if and only if ci ≤ c′i for all 1 ≤ i ≤ d.

Angle between roots. The angle ϕ, with 0 ≤ ϕ ≤ π, between two roots r and s is given by
cosϕ = 〈r,s〉

‖r‖‖s‖ . Note that, due to the crystallographic condition, we have:

σr(s)− s = 2
〈r, s〉
〈r, r〉

r ∈ Z · r.

Definition 1.2.12. For any two roots r, s ∈ R, we define:

n(s, r) := 2
〈r, s〉
〈r, r〉

∈ Z.

This integer is called Cartan integer.

It follows that 4 cos2 ϕ = n(s, r)n(r, s) ∈ Z. In the case 〈r, s〉 6= 0, observe that the ratio of
the squared norms of these two roots is given by 〈s,s〉〈r,r〉 = 2〈r,s〉

〈r,r〉
〈s,s〉
2〈r,s〉 = n(s,r)

n(r,s) . This gives us, up to
symmetry, the following table (see also Figure 1.7):

4 cos2 ϕ n(s, r) n(r, s) ϕ length relation
4 2 2 0 ‖s‖ = ‖r‖
4 −2 −2 π ‖s‖ = ‖r‖
3 3 1 π/6 ‖s‖ =

√
3‖r‖

3 −3 −1 5π/6 ‖s‖ =
√

3‖r‖
2 2 1 π/4 ‖s‖ =

√
2‖r‖

2 −2 −1 3π/4 ‖s‖ =
√

2‖r‖
1 1 1 π/3 ‖s‖ = ‖r‖
1 −1 −1 2π/3 ‖s‖ = ‖r‖
0 0 0 π/2 (undetermined)

By inspection of the table, we observe that the length ratio of any two roots5 can only be 1,√
2 or

√
3. It implies that there are at most two different norms of roots. In this case, we speak

about short and long roots.
Because n(r, s) ∈ {−3,−2,−1, 0} and n(s, r)n(r, s) = 4 cos2 ϕ, the angle ϕ between r and s

equals one of π2 ,
2π
3 , 3π

4 or 5π
6 (see Figure 1.7).

From Lemma 1.2.9, we know that all simple root sets are similar one to another, therefore
have the same angles. The information about the angles of simple roots can be represented in a
graph.

Definition 1.2.13 (Coxeter diagram). Let R be a root system and S be a set of simple roots.
The Coxeter diagram of R consists of a graph with the following data: for each r ∈ S, we insert

5If all three ratios 1,
√
2 and

√
3 between norms were present, we would also have ratios

√
6 or

√
3
2
, which are

not possible.
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4 6

m(r, s) = 2 m(r, s) = 3 m(r, s) = 4 m(r, s) = 6

s

r

π/2

s

r

2π/3

s

r

3π/4

s

r

5π/6

Figure 1.7: All possible angles between two simple roots r and s and the corresponding values
of m(r, s). On the top, the corresponding edge in a Coxeter diagram is shown.

one vertex. For every pair r 6= s in S with 〈r, s〉 6= 0 we define a number m(r, s) ∈ {2, 3, 4, 6},
such that π

m(r,s) = arccos | cosϕ|, where ϕ is the angle between r and s (see Figure 1.7). We then
insert an edge between r and s and write the number m(r, s) next to it.

We further follow the convention not to draw an edge labelled 2 and not to denote label 3 next
to an edge.

Classification of root systems. We will now state the complete classification of Coxeter
diagrams of crystallographic, reduced and irreducible root systems.

Theorem 1.2.14. The complete list of Coxeter diagrams of crystallographic, reduced and irre-
ducible root systems consists of Ad, Dd, E6, E7 and E8 and the following diagrams:

Bd(= Cd)
4 ...

F4
4

G2
6

In this list, the root system Cd is defined as dual to Bd (see Definition 1.2.19). As dual root
systems, they share the same Coxeter diagram and Weyl group (see Section 1.2.3).

See for example Sections 2.4 and 2.7 of Humphreys [Hum92] for a proof and more information
on the classification of Coxeter diagrams.

The following theorem gives explicit sets of simple roots in Euclidean space:

Theorem 1.2.15 ([Bou02]). Let {e1, . . . , ed} be the canonical basis in Rd. The complete list of
simple root sets (up to scale, rotation and permutation) is the following:

• Ad (in Rd+1): s1 = e1 − e2, s2 = e2 − e3, . . . , sd = ed − ed+1.

• Bd: s1 = e1 − e2, s2 = e2 − e3, . . . , sd−1 = ed−1 − ed, sd = ed.

• Cd: s1 = e1 − e2, s2 = e2 − e3, . . . , sd−1 = ed−1 − ed, sd = 2ed.

• Dd: s1 = e1 − e2, s2 = e2 − e3, . . . , sd−1 = ed−1 − ed, sd = ed−1 + ed.

• E6 (in R8): s1 = 1
2(e1 + e8) − 1

2(e2 + e3 + e4 + e5 + e6 + e7), s2 = e1 + e2, s3 = e2 − e1,
s4 = e3 − e2, s5 = e4 − e3, s6 = e5 − e4.
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• E7 (in R8): s1 = 1
2(e1 + e8) − 1

2(e2 + e3 + e4 + e5 + e6 + e7), s2 = e1 + e2, s3 = e2 − e1,
s4 = e3 − e2, s5 = e4 − e3, s6 = e5 − e4, s7 = e6 − e5.

• E8: s1 = 1
2(e1 + e8)− 1

2(e2 + e3 + e4 + e5 + e6 + e7), s2 = e1 + e2, s3 = e2− e1, s4 = e3− e2,
s5 = e4 − e3, s6 = e5 − e4, s7 = e6 − e5, s8 = e7 − e6.

• F4: s1 = e2 − e3, s2 = e3 − e4, s3 = e4, s4 = 1
2(e1 − e2 − e3 − e4).

• G2 (in R3): s1 = e1 − e2, s2 = −2e1 + e2 + e3.

This list is important for the calculations in Section 2.4.

Remark 1.2.16. Later in Section 1.2.4, we define the hyperplane arrangements from crystallo-
graphic reduced and irreducible root systems. It is important to note that the choice of simple root
sets as in Theorem 1.2.15 of types Ãd, Ẽ6, Ẽ7 and G̃2 do not define hyperplane arrangements
that are essential6 in their respective ambient Euclidean spaces.

Remark 1.2.17. If we drop the hypothesis that the root system is crystallographic, then the list
of Coxeter diagrams also includes the following diagrams:

H3
5

H4
5

I2(n)
n

The corresponding reflection groups are the symmetry groups7 of the icosahedron (H3), the
isometry group of a regular 120-sided solid with dodecahedral faces in R4 (H4) and the dihedral
group Dn (I2(n)). We refer to Humphreys [Hum92, Sections 2.8 and 2.13] for further reading.

1.2.3 Root lattices

We can now define lattices based on the roots we discussed above. These lattices will be essential
later in Section 1.2.4.

Definition 1.2.18 (Root lattice). The root lattice ΛR of a crystallographic reduced and irre-
ducible root system R is defined as:

ΛR =

{∑
r∈R

nrr | nr ∈ Z

}
.

It is indeed a lattice in the sense that it is a group under addition of vectors, contains a basis
of Rd and any bounded region contains only a finite number of elements.

Definition 1.2.19 (Dual root system). For each root r ∈ R, define its coroot (or dual root)
to be r∨ = 2r

〈r,r〉 . The set of coroots forms a root system [Hum92, Section 2.9] called dual root
system and is denoted by R∨.

6The hyperplane arrangement is essential if the set of all normal vectors of the hyperplanes spans the ambient
space.

7Group of transformations under which a polytope is invariant.
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B2 C2 = B∨2

Figure 1.8: An example of two dual root systems B2 and C2 in R2.

Observe that coroots are rescaled versions of roots such that the inner product between the
root and the coroot is 2, see Figure 1.8. It implies that coroots share the same reflections σr as
roots. Therefore the dual root system generates the same Weyl group W . In most cases, the
root system R∨ is identical to R up to scale and rotation; however, the dual root systems Bd and
Cd are not isomorphic (see [Hum92, Section 2.9], see also Figure 1.8). Short roots in a system R
of type Bd give rise to long roots in a system R∨ of type Cd and vice versa.

The duals of the three root systems in R2 are illustrated in Figure 1.10.

Remark 1.2.20. Using the definition of the coroot, the Cartan integer n(r, s) from Defini-
tion 1.2.12 can be interpreted as:

n(r, s) = 2
〈r, s〉
‖r‖2

=
〈
r∨, s

〉
.

Definition 1.2.21 (Coroot lattice). Similarly to root lattices, we define the coroot lattice:

ΛR∨ =

{∑
r∈R

nrr
∨ | nr ∈ Z

}
.

Another important family of lattices is so-called weight lattices:

Definition 1.2.22 (Weight and coweight lattices). The set of points which has an integer inner
product with all coroots is called the weight lattice:

ΛwR =
{
x ∈ Rd |

〈
x, r∨

〉
∈ Z, ∀r ∈ R

}
.

Similarly, the coweight lattice is defined as:

ΛwR∨ =
{
x ∈ Rd | 〈x, r〉 ∈ Z, ∀r ∈ R

}
.

For a given root system, the coweight lattice in Definition 1.2.22 has a strong connection with
the set of vertices of the Coxeter triangulation that will be defined in the Section 1.2.4 (see also
Lemma 2.4.3).

25



Chapter 1. Background

r = r∨

Hr,−5

Hr,−4

Hr,−3

Hr,−2

Hr,−1

Hr,0

Hr,1

Hr,2

Hr,3

Hr,4

Hr,5

Figure 1.9: Root system A2 and the hyperplanes Hr,k corresponding to the root r. Here we have
‖r‖2 = 2, therefore the primal and the coroots coincide and the hyperplane Hr,1 goes halfway
through r = r∨, so the image of reflecting 0 by σr,1 is r∨.

1.2.4 Affine reflection groups

The goal for us now is to define a triangulation of the Euclidean space associated to every root
system.

First, we need the following definitions:

Definition 1.2.23. We call a family of parallel hyperplanes relative to a normal vector u ∈ Rd
and indexed by Z a set of hyperplanes Hu = {Hu,k, k ∈ Z} with Hu,k = {x ∈ Rd | 〈x, u〉 = k}.

An example of a family of parallel hyperplanes relative to a root in a root system is illustrated
in Figure 1.9.

Definition 1.2.24 (Affine Weyl group). Let R ⊂ Rd be a finite root system. The set of affine
hyperplanes Hr,k for all r ∈ R and k ∈ Z will be denoted as H. To each Hr,k we can associate an
affine reflection8 σr,k : x 7→ x− (〈x, r〉−k)r∨. These reflections generate a subgroup of the group
of affine transformations of Rd, which is called the affine Weyl group and is denoted by Wa.

Remark 1.2.25. Positive and negative roots define the same hyperplanes and affine reflections.
So the definition does not change if one restricts to only positive roots.

Roughly speaking, the affine Weyl group is a combination of the Weyl group and transla-
tions along a lattice. This can be made more precise using the coroot lattice ΛR∨ defined in
Definition 1.2.21:

8Note that the usual factor 2 is hidden in the definition of r∨.
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A2 B2 G2

A∨2 = A2 B∨2 = C2 G∨2

Figure 1.10: Above: Three root systems and corresponding affine hyperplanes in R2. Simple
roots are marked in red, the highest root in blue and the fundamental domain in green. Each
triangle in the background is an alcove. Below: The dual root systems put on the same grid of
affine hyperplanes.

Proposition 1.2.26. Let R be a root system, W be a corresponding Weyl group and T be the
translation group corresponding to the coroot lattice ΛR∨ . The group T is a normal subgroup of
the affine Weyl group Wa and Wa is a semidirect product T oW .

We refer to Section 4.2 of [Hum92] for more information.
The positions of hyperplanes Hr,k with respect to primal and dual root systems in R2 are

illustrated in Figure 1.10. We notice that the open regions in between the hyperplanes Hr,k

are similar triangles. These regions are called alcoves and are the subject of our study in the
following. We now formalize:

Definition 1.2.27 (Alcove). Define A to be the set of connected components of Rd \
⋃
H∈HH.

Each element in A is called an alcove.

Let R+ be a set of positive roots and S the corresponding simple system. An alcove is
characterized by a set of inequalities of the form: ∀r ∈ R+, kr < 〈x, r〉 < kr + 1, with kr integers.
We will denote by Ao the particular alcove for which all kr are equal to 0:

Ao = {x ∈ Rd | ∀r ∈ R+, 0 < 〈x, r〉 < 1}

Most of the inequalities that define Ao are redundant. If we want to eliminate the redundant
inequalities, we first need to define the so called highest root (illustrated in Figure 1.10).
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Proposition 1.2.28 (Existence and uniqueness of the highest root). For a root system R and
a set S ⊂ R of simple roots, there is a maximum s̃ ∈ R+ for the partial order 4 (see Defini-
tion 1.2.11), which is called the highest root.

For the proof of Proposition 1.2.28 and more details on the highest root, we refer to Section 2.9
of Humphreys [Hum92].

The following proposition states that there are exactly d + 1 hyperplanes that define the
facets of Ao: d hyperplanes corresponding to simple roots and one corresponding to the highest
root (see also Figure 1.10):

Proposition 1.2.29 ([Hum92, Section 4.3]). Let R be a root system and S ⊂ R a set of simple
roots. The alcove Ao is an open simplex delimited by d+ 1 hyperplanes. Of them, d hyperplanes
are of the form Hs,0 = {x ∈ Rd | 〈x, s〉 = 0}, one for each simple root s ∈ S and the final
hyperplane is Hs̃,1 = {x ∈ Rd | 〈x, s̃〉 = 1} where s̃ is the highest root.

Now, we are interested in the closure of the alcove Ao, which is a full-dimensional simplex.
This simplex will be the starting point of the triangulations we will now construct.

Definition 1.2.30. Let R be a root system and S ⊂ R a set of simple roots. Let Ao be the alcove
as above. The closure F of Ao is called the fundamental domain (or the fundamental simplex)
of R with respect to S.

The reason behind the name fundamental domain is the following proposition.

Proposition 1.2.31 ([Hum92, Section 4.3]). The affine Weyl group Wa acts simply transitively
on A.

By the simple transitivity of the action of Wa, all alcoves are similar to the fundamental
alcove. This means that the closures of elements of A are all full-dimensional simplices in a
monohedral triangulation of Rd.

Corollary 1.2.32. The arrangement of H is a triangulation of Rd.

We call such triangulations Coxeter triangulations.

Definition 1.2.33. The Coxeter diagrams for affine Weyl groups are defined in the same way
as in Definition 1.2.13, except that we use not only the simple roots, but also the opposite of the
highest root. This means that the nodes correspond to simple roots and the opposite of the highest
root, and the edges correspond to angles between them.

The classification of all affine Weyl groups is possible thanks to the notion of subgraph and
the following lemma:

Definition 1.2.34. A subgraph of a Coxeter diagram G is a Coxeter diagram G′ obtained by
omitting some nodes (and adjacent edges) of G′ or by decreasing the labels on one or more edges.

Lemma 1.2.35 ([Hum92, Corollary 2.6]). Every subgraph of an affine Coxeter diagram has a
positive definite Cartan matrix.

Based on these results we can now derive:

Theorem 1.2.36. The complete list of affine Weyl groups and the corresponding Coxeter dia-
grams is as follows:
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Ã2 C̃2 G̃2

Ã3 B̃3 C̃3

Figure 1.11: On the top: Coxeter triangulations in R2. On the bottom: simplices of Coxeter
triangulations in R3 represented as a portion of a cube.

Ãd, d > 2 ...

B̃d, d > 3
4...

C̃d, d > 2
4 4...

D̃d, d > 4 ...

Ẽ6

Ẽ7

Ẽ8

F̃4
4

G̃2
6

For a proof, we refer to Sections 2.5 and 2.7 of [Hum92].
All three two-dimensional Coxeter triangulations are presented on the top of Figure 1.11. On

the bottom of Figure 1.11, we illustrate the simplices of the three-dimensional Coxeter triangu-
lations with vertices placed in vertices, centres of edges, centres of faces and at the centre of a
cube.

We now have a classification of Coxeter triangulations, whose properties and applications are
the topic of this thesis.

Remark 1.2.37. It is important to note that Coxeter triangulations of Rd are monohedral tri-
angulations, generated by orthogonal reflections and that are arrangements of hyperplanes. The
condition of being an arrangement of hyperplanes is important, as Figure 1.12 shows. There, we
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Figure 1.12: Example of a monohedral triangulation of R2 generated by orthogonal reflections
that is not a Coxeter triangulation.

illustrate a triangulation of R2 that is monohedral and generated by orthogonal reflections, but is
not an arrangement of hyperplanes. It is easy to check that the triangulation in Figure 1.12 does
not match any of two-dimensional Coxeter triangulations (shown on the top of Figure 1.11).

Remark 1.2.38. If we drop the irreducibility condition from Definition 1.2.7, we can still define
affine Weyl groups. Let R be a crystallographic reduced root system. As in Section 1.2.2, we can
represent R as a union of orthogonal irreducible root systems: R =

⋃m
i=1Ri. We have seen that

the Weyl group that corresponds to R is the direct product of the Weyl groups that correspond to
Ri. The same is true for the affine Weyl group of R: it is, again, the direct product of the affine
Weyl groups that correspond to the root systems Ri.

Let d1, . . ., dm be the ranks of R1, . . ., Rm respectively. An alcove is not a simplex any more,
but it is, in fact, the Cartesian product of m simplices of dimensions d1, . . ., dm. Instead of
triangulations we now talk about cell complexes, each full-dimensional cell of which is a certain
Cartesian product of simplices. Here are some examples of such decompositions:

• Ã1× . . .×Ã1 corresponds to a decomposition of Rd into cubes, which are Cartesian products
of d segments.

• Ã2 × Ã1, B̃2 × Ã1 and G̃2 × Ã1 correspond to decompositions of R3 into triangular prisms
with bases being the fundamental triangles of Ã2, B̃2 and G̃2 respectively. Each prism is
the Cartesian product of the base and a segment.

1.3 The Voronoi diagram of a Coxeter triangulation of type Ãd

In this section we will give an overview of results on the cells of Voronoi diagrams of Coxeter
triangulation of type Ãd. This is well-defined, as we will establish in Section 2.4.1 that the
Coxeter triangulations of type Ãd are Delaunay triangulations. The combinatorial structure
of the Voronoi diagram (see Definition 1.1.50) of a Coxeter triangulation of type Ãd will be
important for the coface generation algorithm in the Freudenthal-Kuhn triangulation of Rd that
we define in Chapter 3. The cells in the Voronoi diagrams of the Coxeter triangulations of type
Ãd will also appear as the constructing blocks in the manifold tracing algorithm in Chapter 4.
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(1, 2)

(2, 1) (1, 2, 3)

(2, 1, 3)

(2, 3, 1)

(3, 2, 1)

(3, 1, 2)

(1, 3, 2)

Figure 1.13: The one- and two-dimensional permutahedra defined as convex hulls of permutations
in R2 and R3 respectively.

The Voronoi diagram of a Coxeter triangulation of type Ãd has been studied in [CS87, Chapter
21, Section 3.F]. Its cells are polytopes that are commonly known as permutahedra9.

Definition 1.3.1 (Permutahedron). A permutahedron is a polytope, which is similar (in the
sense of Definition 1.1.47) to the d-dimensional convex hull P of all points in Rd+1, the coordi-
nates of which are permutations of (1, 2, . . . , d+ 1) ∈ Rd+1. More formally, this convex hull can
be written as:

P = conv({(σ(1), . . . , σ(d+ 1)) ∈ Rd+1 | σ ∈ Sd+1}).

To see why the polytope P is at most d-dimensional, observe that all vertices in P lie on the
hyperplane: {

(x1, . . . , xd+1) ∈ Rd+1

∣∣∣∣∣
d+1∑
i=1

xi =
d(d+ 1)

2

}
.

By further observing that there are d + 1 affinely independent vertices in P, we can conclude
that P is exactly d-dimensional (see for example [MK92, Lemma 3.4] for the whole proof).

The one-dimensional permutahedron is a segment, the two dimensional permutahedron is
a regular hexagon (see Figure 1.13). The three-dimensional permutahedron is known as the
truncated octahedron, illustrated in Figure 1.14.

1.3.1 Faces of a permutahedron

The faces of a permutahedron are not necessarily permutahedra. For example, the square faces
on a three-dimensional permutahedron (see Figure 1.15) are not two-dimensional permutahedra
(recall that two-dimensional permutahedra are hexagons). Instead, these square faces can be
seen as the Cartesian products of two segments, which are one-dimensional permutahedra. The
following lemma is the generalization of this observation.

Lemma 1.3.2 ([MK92]). Any proper face of a permutahedron is the Cartesian product of some
lower-dimensional permutahedra.

The partially-ordered set of faces of a permutahedron (with the partial order from Lemma 1.1.43)
has a special structure [Zie12, Chapter 0]. To any face of a permutahedron, we can associate a
so-called ordered partition of the set {1, . . . , d+ 1}.

9In the literature, other spellings are sometimes used. Some works call this polytope a permutohedron (for
example in [CS87]), or even a permutation polytope (for example in [Tho93])
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Figure 1.14: The three-dimensional permutahedron. The faces of the permutahedron are labeled
by the corresponding ordered partitions of the set {1, 2, 3, 4}.
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{1}, {2}, {3}

{2}, {1}, {3}

{2}, {3}, {1}

{3}, {2}, {1}

{3}, {1}, {2}

{1}, {3}, {2}

{1, 2}, {3}{2}, {1, 3}

{2, 3}, {1}

{3}, {1, 2} {1, 3}, {2}

{1}, {2, 3}{1, 2, 3}

Figure 1.15: The ordered partitions of {1, 2, 3} that correspond to the faces of a two-dimensional
permutahedron. Note that each vertex has three parts, each edge has two parts and the hexagon
itself has one part in their corresponding partitions.

Definition 1.3.3 (Partition). Let T be a finite non-empty set and k be a positive integer that
is at most the cardinality |T |. A (non-ordered) partition P of T in k parts is a collection of k
subsets of T (called parts) that satisfy:

• all parts in the partition P are non-empty,

• all parts in the partition P are pairwise disjoint,

• the union of all parts in P is T .

Definition 1.3.4 (Ordered partition). Let T be a finite non-empty set and k be a positive integer
that is at most the cardinality |T |. Denote by P(T ) the collection of all subsets of T . An ordered
partition of T in k parts is a function π : {1, . . . , k} → P(T ) that maps indices i ∈ {1, . . . , k} to
subsets π(i) ⊆ T (called parts) such that {π(1), . . . , π(k)} is a partition of T in k parts.

Let π be an ordered partition of a set T in k parts, for some k ∈ {1, . . . , |T |}. We will follow
a convention to write a sequence of subsets π(1), . . . , π(k) to represent the ordered partition π.

The way the ordered partitions of {1, . . . , d+ 1} are associated to the faces of d-dimensional
permutahedra is illustrated in Figure 1.14 and Figure 1.15. Note that the order in which the
subsets are given matters, as it distinguishes different faces.

Now, we want to make a connection between the ordered partitions of {1, . . . , d+ 1} and the
partially-ordered set of faces of a d-dimensional permutahedron.

Definition 1.3.5 (Concatenation of ordered partitions). Let T be a finite set and k be a positive
integer that is less than the cardinality |T |. Let T1, . . . , Tk be k mutually disjoint sets and T be the
union T1 ∪ . . . ∪ Tk. Let ρ1, . . . , ρk be ordered partitions of T1, . . . , Tk respectively. Let a1, . . . , ak
be the numbers of parts in ρ1, . . . , ρk respectively. Define the integers:

c0 = 0, c1 = a1, c2 = a1 + a2 . . . ck =
k∑
j=1

aj .
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The concatenation λ of ρ1, . . . , ρk is an ordered partition of the set T , such that for all i ∈
{1, . . . , |T |}:

λ(i) = ρj(i− cj), with j is such that i ∈ {cj + 1, . . . , cj+1}.

Remark 1.3.6. Note that in Definition 1.3.5, we have ck = |T |. Therefore, for any i ∈
{1, . . . , |T |}, there exists an index j ∈ {1, . . . , k} such that i ∈ {cj + 1, . . . , cj+1}.

Definition 1.3.7 (Refinement). Let π and ρ be two ordered partitions of {1, . . . , d+ 1} in k parts
and l parts respectively, with k, l ∈ {1, . . . , d+ 1} such that k ≤ l. We say that ρ is a refinement
of π (in l parts), if there exist positive integers a1, . . . , ak and ordered partitions ρ1, . . . , ρk such
that ρ is a concatenation of ρ1, . . . , ρk and:

ρ1 = ρ(1), . . . , ρ(a1) is an ordered partition of π(1) in a1 parts,
ρ2 = ρ(a1 + 1), . . . , ρ(a1 + a2) is an ordered partition of π(2) in a2 parts,

...
ρk = ρ(a1 + . . .+ ak−1 + 1), . . . , ρ(a1 + . . .+ ak) is an ordered partition of π(k) in ak parts.

We denote the refinement relation by ρ v π.

Definition 1.3.8 (Set of refinements). Let π be an ordered partition of {1, . . . , d+ 1} in k parts,
for some k ∈ {1, . . . , d+ 1}. Let l ∈ {k, . . . , d+ 1} be such that k ≤ l. We denote by R(π, l) the
set of refinements of π in l parts.

Remark 1.3.9. In terms of Definition 1.3.7, from ρ being the concatenation of ρ1, . . . , ρk, the
number of parts in ρ is the sum of the number of parts in ρ1, . . . , ρk. It follows that the sum of
ai for all i ∈ {1, . . . , k} is l.

For example, let T = {1, 2, 3, 4, 5}. If {1, 5}, {2, 3, 4} is an ordered partition of T , then
{1, 5}, {2}, {4}, {3} is a refinement of {1, 5}, {2, 3, 4}. On the other hand, {2}, {1, 5}, {4}, {3} is
not a refinement of {1, 5}, {2, 3, 4}, despite being a (non-ordered) subpartition.

Definition 1.3.10. We denote by OP (T ) the set of all ordered partitions of a finite set T .

The refinement partial order v defines a partial order on the set of ordered partitions OP (T )
[MK92, Section 3.1.2]. Consequentially, (OP (T ),v) is a partially-ordered set, called refinement
poset.

Now, we are ready to state the main result of this section.

Theorem 1.3.11 ([MK92, Theorem 3.6]). The partially-ordered set of faces of a d-dimensional
permutahedron is isomorphic to the refinement poset (OP (T ),v).

Theorem 1.3.11 is illustrated in Figures 1.14 and 1.15. Note how the ordered partitions that
correspond to subfaces are refinements.

We will now state the connection between the dimension of a cell and the number of parts
in the corresponding partition.

Proposition 1.3.12 ([MK92, Corollary 3.12]). Let τ be a k-dimensional face of a d-dimensional
permutahedron, for some k ∈ {0, . . . , d}. The ordered partition of {1, . . . , d+ 1} that is associated
with the face τ via an isomorphism from Theorem 1.3.11 has d+ 1− k parts.

Remark 1.3.13. If σ is an m-dimensional simplex in a Coxeter triangulation of type Ãd and τ
is its k-dimensional dual cell in the Voronoi diagram, then we have m = d − k. It follows from
Proposition 1.3.12 that the ordered partition that corresponds to the dual face τ has m+ 1 parts.
We will use this observation when we define a general representation of simplices of arbitrary
dimensions in the Freudenthal-Kuhn triangulation of Rd in Section 3.3.

34
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1.3.2 Numbers of vertices and facets of a face of a permutahedron.

We now want to find an upper bound on the number of subfaces of a given dimension l of a
k-dimensional face in a d-dimensional permutahedron. The number of l-dimensional faces of a
d-dimensional permutahedron is well-known [Zie12, Chapter 0]:

(d− l)! S(d, d− l),

where S(d, d − k) is the Stirling number of the second kind (introduced by Stirling in [Sti30]).
However, we did not find in the literature the number of l-dimensional subfaces of a k-dimensional
face of a d-dimensional permutahedron. Perhaps, the reason for this is that this number is not
uniquely defined10 for given l, k and d. Here, we will partially fill this knowledge gap by expressing
upper bounds on the number of two particular kinds of faces: vertices (l = 0) and facets (l = k−1).
These upper bounds are used later in Chapter 4 to compute the complexity of the manifold tracing
algorithm. We also provide the lower bound on the number of vertices of a k-dimensional face
of a d-dimensional permutahedron that we will use in the proof of Proposition 4.2.8.

Number of vertices of a face in a permutahedron. First, let us start with counting the
vertices of a face of a d-dimensional permutahedron.

Proposition 1.3.14 (Number of vertices). Let τ be a k-dimensional face of a d-dimensional
permutahedron, for some k ∈ {0, . . . , d}. Let π be the ordered partition of {1, . . . , d+ 1} in
d+1−k parts that is associated to τ via an isomorphism from Theorem 1.3.11. Denote by W (τ)
the number of vertices of τ . Then:

W (τ) =
d+1−k∏
i=1

|π(i)|! .

Proof. By Theorem 1.3.11, each vertex of τ is in one-to-one correspondence with a refinement of
π in d+ 1 parts. Therefore, the number of vertices of τ is the cardinality of the set R(π, d+ 1).
To find the cardinality |R(π, d + 1)|, we will define a bijection χ : S|π(1)| × . . . ×S|π(d+1−k)| →
R(π, d + 1). The cardinality of S|π(1)| × . . . × S|π(d+1−k)| is

∏d+1−k
i=1 |π(i)|!. Hence, if such a

bijection χ indeed exists, then the result of the proposition follows.
Let σ = (σ1, . . . , σd+1−k) ∈ S|π(1)| × . . . × S|π(d+1−k)|. For all i ∈ {1, . . . , d+ 1− k}, we

define ρi to be an ordered partition of π(i) in |π(i)| singletons in the following way. Write the
elements of π(i) as π(i) =

{
p1, . . . , p|π(i)|

}
such that p1 < . . . < p|π(i)|. For all j ∈ {1, . . . , |π(i)|},

we pose:
ρi(j) = {pσi(j)}.

The concatenation of ρ1, . . . , ρd+1−k is an ordered partition of π in d+1 singletons. We define
χ(σ) to be this concatenation.

Now we will define the inverse function χ−1. Let ρ be an element of R(π, d+1). Because ρ is
a refinement of π in d+ 1 singletons, by Definition 1.3.7 there exist ordered partitions ρ1, . . . , ρk
such that ρ is a concatenation of ρ1, . . . , ρk and for all i ∈ {1, . . . , d+ 1− k}:

ρi = ρ

 i−1∑
j=1

|π(j)|+ 1

 , . . . , ρ

 i∑
j=1

|π(j)|


10For example, the two-dimensional faces in the two-dimensional permutahedron in Figure 1.14 have either 4

or 6 vertices.
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is an ordered partition of π(i) in |π(i)| singletons. We will define for all i ∈ {1, . . . , d+ 1− k},
a permutation σi ∈ S|π(i)| in the following way. Fix i ∈ {1, . . . , d+ 1− k}. Write the elements
of π(i) as π(i) =

{
p1, . . . , p|π(i)|

}
such that p1 < . . . < p|π(i)|. For all j ∈ {1, . . . , |π(i)|}, we pose

σi(j) to be such that the sole element in the singleton ρi(j) is pσi(j). We pose χ−1(ρ) to be the
tuple (σ1, . . . , σd+1−k) ∈ S|π(1)| × . . .×S|π(d+1−k)|.

From the definitions of the functions χ and χ−1 it follows that:

1. for any ρ ∈ R(π, d+ 1), we have χ(χ−1(ρ)) = ρ,

2. for any σ ∈ S|π(1)| × . . .×S|π(d+1−k)|, we have χ−1(χ(σ)) = σ.

Thus, the two functions χ and χ−1 are inverses of each another. It follows that χ is a bijection
from S|π(1)| × . . . ×S|π(d+1−k)| to R(π, d + 1), as desired. Thus, the cardinalities of these two
sets are the same, equal to:

d+1−k∏
i=1

|π(i)|! .

Since W (τ) = |R(π, d+ 1)|, the result follows.

The following corollary expresses the number of vertices in the big O notation.

Corollary 1.3.15 (Upper bound on the number of vertices). Let k ∈ {0, . . . , d}. The number
of vertices of a k-dimensional face of a d-dimensional permutahedron is:

O((k + 1)!).

Note that the bound (k + 1)! is tight for the k-dimensional faces of a d-dimensional permu-
tahedra which are themselves permutahedra.

Proof. Let τ be a k-dimensional face of a d-dimensional permutahedron.11 Let π be the ordered
partition of {1, . . . , d+ 1} in d + 1 − k parts that is associated to τ via an isomorphism from
Theorem 1.3.11. According to Proposition 1.3.14, the number of vertices of τ is:

W (τ) =
d+1−k∏
i=1

|π(i)|! .

Denote for all i ∈ {1, . . . , d+ 1− k}, the cardinality |π(i)| by bi. Recall that for all i ∈
{1, . . . , d+ 1− k}, we have bi ≥ 1 and the sum of all bi is d+ 1. Therefore, there is only finitely
many possibilities for the values of the bi. It follows that there exists at least one configuration
of the bi that maximizes the product of factorials.

Without loss of generality, assume that b1 ≥ b2 ≥ . . . ≥ bd+1−k. We want to show that this
maximum of the product of factorials of the bi is achieved when b1 = k + 1 and all other bi are
equal to 1.

Assume that there exists j ∈ {2, . . . , d+ 1− k} such that bj > 1. Define the sequence of
numbers b′i:

b′1 = b1 + 1

b′j = bj − 1

b′i = bi, for all i 6= j.

11The proof is taken from this answer on math.stackexchange.com.
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By definition, for all i ∈ {1, . . . , d+ 1− k}, we have b′i ≥ 1 and the sum of all b′i is d+ 1. On the
other hand, when we compute the ratio between the products of factorials of the b′i and of the
factorials of bi, we find:∏d+1−k

i=1 b′i!∏d+1−k
i=1 bi!

=
((b1 + 1)!)(b2!) . . . (bj−1!)((bj − 1)!)(bj+1!) . . . (bd+1−k!)

(b1!) . . . (bd+1−k!)
=
b1 + 1

bj
> 1.

Thus, whenever there exists j ∈ {2, . . . , d+ 1− k} such that bj > 1, there also exists a configu-
ration of the bi which yields a greater product of factorials. We conclude that the maximum of
the product of factorials of the bi is achieved when b1 = k + 1 and all other bi are equal to 1.
Thus, we have:

W (τ) =
d+1−k∏
i=1

|π(i)|! ≤ (k + 1)! .

We conclude that W (τ) = O((k + 1)!), as desired.

We can use the same proof for a configuration of the bi where each bi is either b d
d+1−kc or

d d
d+1−ke. This way, we also get the lower bound on the number of vertices of a k-dimensional

cell of a d-dimensional permutahedron.

Corollary 1.3.16 (Lower bound on the number of vertices). Let k ∈ {0, . . . , d}. The number of
vertices of a k-dimensional face of a d-dimensional permutahedron is:

Ω

((
d

d+ 1− k

)d+1−k
)
.

We will use this lower bound later in the proof of Proposition 4.2.8.

Number of facets of a face of a permutahedron. Now we will state a result for facets,
which is analogous to Proposition 1.3.14.

Proposition 1.3.17 (Number of facets). Let τ be a k-dimensional face of a d-dimensional
permutahedron, for some k ∈ {1, . . . , d}. Let π be the ordered partition of {1, . . . , d+ 1} in
d+ 1− k parts that is associated to τ via an isomorphism from Theorem 1.3.11. Denote by Y (τ)
the number of facets of τ . Then:

Y (τ) =
d+1−k∑
i=1

(
2|π(i)| − 2

)
.

Proof. By Theorem 1.3.11, each facet of τ is in one-to-one correspondence with a refinement of π
in d−k+2 parts. Therefore, the number of facets of τ is the cardinality of the set R(π, d−k+2).
To find the cardinality |R(π, d− k+ 2)|, we will define a bijection χ from the set R(π, d− k+ 1)
to a set X defined in the following way. Each element of X is a pair that consists of an index
j ∈ {1, . . . , d+ 1− k} and a non-constant map π(j)→ {0, 1}. For a fixed j, there are 2|π(i)| − 2
such maps. It follows that the cardinality |X | is

∑d+1−k
i=1

(
2|π(i)| − 2

)
. Hence, if a bijection

χ : R(π, d− k + 2)→ X exists, then the result of the proposition follows.
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Let ρ be an element of R(π, d−k+2). Since π consists of d−k+1 parts and ρ is a refinement
of π in d− k + 2 parts, there exists j ∈ {1, . . . , d− k + 1}, such that:

π(i) = ρ(i), for all i < j,
π(j) = ρ(j) ∪ ρ(j + 1),

π(i) = ρ(i+ 1), for all i > j.

Define a map µ : π(j)→ {0, 1} such that for all l ∈ π(j):

µ(l) =

{
0 if l ∈ ρ(j),
1 if l ∈ ρ(j + 1).

Neither of the sets ρ(j) and ρ(j + 1) is empty, hence the map µ is not constant. The pair (j, µ)
therefore belongs to the set X . We define χ to be this pair.

Now we will define the inverse function χ−1. Let σ = (j, µ) ∈ X be a pair of an index j and a
map µ : π(j)→ {0, 1}. Define an ordered partition ρ of {1, . . . , d+ 1} in d− k+ 2 parts defined
as follows:

ρ(i) = π(i), for all i < j,
ρ(j) = {l ∈ π(j) | µ(l) = 0},

ρ(j + 1) = {l ∈ π(j) | µ(l) = 1},
ρ(i) = π(i− 1), for all i > j + 1.

Because µ is not constant, no part in ρ is empty. The ordered partition ρ is hence a refinement
of π in d− k + 2 parts. We pose χ−1(σ) = ρ.

From the definitions of the functions χ and χ−1 it follows that:

1. for any ρ ∈ R(π, d− k + 2), we have χ−1(χ(ρ)) = ρ.

2. for any σ ∈ X , we have χ(χ−1(σ)) = σ,

Thus, the two functions χ and χ−1 are inverses of each another. It follows that χ is a bijection
from R(π, d − k + 2) to X , as desired. Thus, the cardinalities of these two sets are the same,
equal to:

d+1−k∑
i=1

(
2|π(i)| − 2

)
.

Since Y (τ) = |R(π, d− k + 2)|, the result follows.

The following corollary expresses the number of facets in the big O notation.

Corollary 1.3.18 (Upper bound on the number of facets). Let k ∈ {1, . . . , d}. The number of
facets of a k-dimensional face of a d-dimensional permutahedron is:

O
(

2k
)
.

38



1.3. The Voronoi diagram of a Coxeter triangulation of type Ãd

Proof. The proof follows similar arguments as in the proof of Corollary 1.3.15. Let τ be a k-
dimensional face of a d-dimensional permutahedron for some k ∈ {1, . . . , d}. Let π be the ordered
partition of {1, . . . , d+ 1} in d + 1 − k parts that is associated to τ via an isomorphism from
Theorem 1.3.11. According to Proposition 1.3.17, the number of vertices of τ is:

Y (τ) =
d+1−k∑
i=1

(
2|π(i)| − 2

)
≤

d+1−k∑
i=1

2|π(i)|.

Denote for all i ∈ {1, . . . , d+ 1− k}, the cardinality |π(i)| by bi. Recall that for all i ∈
{1, . . . , d+ 1− k}, we have bi ≥ 1 and the sum of all bi is d+ 1. Therefore, there is only finitely
many possibilities for the values of the bi. It follows that there exists at least one configuration
of the bi that maximizes the sum of the 2bi .

Without loss of generality, assume that b1 ≥ b2 ≥ . . . ≥ bd+1−k. We want to show that this
maximum of the sum of the 2bi is achieved when b1 = k + 1 and all other bi are equal to 1.

For this, assume that there exists j ∈ {2, . . . , d+ 1− k} such that bj > 1. Define the sequence
of numbers b′i:

b′1 = b1 + 1

b′j = bj − 1

b′i = bi, for all i 6= j.

By definition, for all i ∈ {1, . . . , d+ 1− k}, we have b′i ≥ 1 and the sum of all b′i is d+ 1. On the
other hand, when we compute the difference between the sum of the 2b

′
i and the sum of the 2bi ,

we find:

d+1−k∑
i=1

2b
′
i −

d+1−k∑
i=1

2bi =
(

2b1+1 + 2b2 + . . .+ 2bj−1 + 2bj−1 + 2bj+1 + . . .+ 2bd+1−k
)

−
(

2b1 + . . .+ 2bd+1−k
)

=
(

2b1+1 − 2b1
)

+
(

2bj−1 − 2bj
)

= 2b1 − 2bj−1 > 0.

Thus, whenever there exists j ∈ {2, . . . , d+ 1− k} such that bj > 1, there also exists a config-
uration of the bi which yields a greater sum of the 2bi . We conclude that the maximum of the
sum of the 2bi is achieved when b1 = k + 1 and all other bi are equal to 1. Thus, we have:

Y (τ) ≤
d+1−k∑
i=1

2|π(i)| ≤ 2k+1.

We conclude that Y (τ) = O(2k), as desired.

Remark 1.3.19. Note that the bound in Corollary 1.3.18 is tight for the following reason. For
any k, d ∈ Z such that 1 ≤ k ≤ d, a d-dimensional permutahedron has k-dimensional faces that
are themselves k-dimensional permutahedra. Any of these permutahedral k-dimensional faces
have 2k − 2 facets.
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Chapter 1. Background

Number of full-dimensional cofaces and cofacets of simplices in a Coxeter triangu-
lation. By duality, we can restate Corollaries 1.3.15, 1.3.18 and 1.3.16 in terms of the number
of full-dimension cofaces and cofacets of full-dimension cofaces of a given simplex in a Coxeter
triangulation of type Ãd.

Corollary 1.3.20. Let τ be a simplex of dimension k ∈ {0, . . . , d− 1} in a Coxeter triangulation
of type Ãd. Then:

1. The number of full-dimensional cofaces of τ is O((d− k + 1)!) and Ω

((
d

d−k+1

)d−k+1
)
.

2. The number of cofacets of τ is O(2d−k).
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Chapter 2

Quality of Coxeter triangulations

Well-shaped simplices are of importance for various fields of application such as finite element
methods and manifold meshing [Syn57, BA76, Jam76, Kří92, CDR05, CDS12]. Poorly-shaped
simplices may induce various problems in finite element methods, such as large discretization
errors or ill-conditioned stiffness matrices. Determining whether a simplex is well-shaped or not
can be done with the help of various quality measures. Some examples of quality measures are:
the ratio between minimal height and maximal edge length ratio called thickness [Mun66, Vav96],
the ratio between volume and a power of the maximal edge length called fatness [Whi57], and
the inradius-circumradius ratio [CFF85]. Bounds on dihedral angles can also be included in the
list of quality measures. We stress that there are many other quality measures in use and authors
often find useful to introduce measures that are specific to whatever problem they study (see for
example [She02] for an overview on quality measures). Finding triangulations, even in Euclidean
space, of which all simplices have good quality is a non-trivial exercise in arbitrary dimension.

In this chapter, we shall discuss the quality of Coxeter triangulations. To our knowledge,
Coxeter triangulations are the triangulations with the best quality in arbitrary dimension. In
particular, all dihedral angles of simplices in Coxeter triangulations are 45◦, 60◦ or 90◦, with the
exception of the G̃2 triangulation of the plane where we also can find an angle of 30◦. This is
a clear sign of the exceptional quality of the simplices involved. Our goal in this chapter is to
exhibit the extraordinary properties of Coxeter triangulations.

The self-similarity and symmetry are another of the attractive points of Coxeter triangula-
tions. Upon the first introduction, an unprepared reader might expect that the vertex sets of
such triangulations form lattices, however it is not necessarily true, as we show in Section 2.2.

We are also interested in the stronger requirement of protection [BDG13], which is specific to
Delaunay triangulations. For a point set P to have a unique well-defined Delaunay triangulation
in the Euclidean space Rd, one demands that there is no ball with at least d + 2 points in P
on the boundary and no point in P in the interior. Protection requires not only that there is
no other vertex on the (empty) circumsphere of d + 1 vertices, but that any other vertex is at
distance δ away from the circumsphere. It has been proven that protection guarantees good
quality [BDG13]. Some algorithms were introduced for the construction of a protected set, such
as the perturbation-based algorithms in [BDG14] and [BDG15]. Both of these algorithms take a
general ε-net in Rd as input and output a δ-protected net with δ of the order just Ω(2−d

2
ε). On

the other hand, take the d-dimensional Coxeter triangulation Ãd. As we will see in the following,
this highly-structured triangulation is Delaunay with protection O( 1

d2
ε). This protection value

is the greatest in a general d-dimensional Delaunay triangulation we know.
We start the chapter by defining the quality measures in Section 2.1. We also state the
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theorem of optimality of the regular d-simplex for each of the chosen quality measures. This
theorem justifies the definition of the normalized versions of these quality measures.

In Section 2.2, we state Theorem 2.2.1, which is the main result of the section. In the
theorem, we give explicit expressions of a number of quality measures of Coxeter triangulations
for all dimensions. This result is an extension of the work by Dobkin et al. [DWLT90] who
presented a table of the values of the inradius-circumradius ratio for the Coxeter triangulations
up to dimension 8.

We provide the proof of Theorem 2.2.1 in Sections 2.4 and 2.5. The proof is organized as
a case study for each family of Coxeter triangulations with the same plan for each case. We
provide explicit measures of the corresponding simplices in Section 2.4, allowing the reader to
compute quality measures other than the ones listed. Determining whether a given triangulation
is Delaunay or not is done using the criterion that we establish in Section 2.3.

We finish the chapter by providing tables with numerical values of simplex quality in Sec-
tion 2.6, similar to [DWLT90].

2.1 Quality definitions

The quality measures we are interested in are aspect ratio, fatness, thickness and radius ratio.
Their formal definitions are as follows:

Definition 2.1.1. Let h(σ) denote the minimal height, r(σ) the inradius, R(σ) the circumradius,
vol(σ) the volume and L(σ) the maximal edge length of a given d-simplex σ.

• The aspect ratio of σ is the ratio of its minimal height to the diameter of its circumscribed
ball: α(σ) = h(σ)

2R(σ) .

• The fatness of σ is the ratio of its volume to its maximal edge length taken to the power d:
Θ(σ) = vol(σ)

L(σ)d
.

• The thickness of σ is the ratio of its minimal height to its maximal edge length: θ(σ) = h(σ)
L(σ) .

• The radius ratio of σ is the ratio of its inradius to its circumradius: ρ(σ) = r(σ)
R(σ) .

To be able to compare the presented quality measures between themselves, we will normalize
them by their respective maximum value. As we show in Theorem 2.1.2, all of these quality
measures are maximized by regular simplices.

Theorem 2.1.2. Out of all d-dimensional simplices, the regular d-simplex has the highest aspect
ratio, fatness, thickness and radius ratio.

We prove Theorem 2.1.2 at the end of the current section. For a quality measure κ we will
define the normalized quality measure κ̂, such that for each d-simplex σ, κ̂(σ) = κ(σ)

κ(∆) , where ∆ is

the regular d-simplex. The continuity of the quality measures ρ̂, α̂, θ̂ and Θ̂ and Theorem 2.1.2
ensure that these quality measures take their values in [0, 1] surjectively.

Because some of the triangulations that interest us here are Delaunay, we will also look at
their protection values.

Definition 2.1.3. Let vert(σ) denote the set of vertices of a simplex σ. The protection of a
d-simplex σ in a Delaunay triangulation on a point set P is the minimal distance of points in
P \ vert(σ) to the circumscribed ball of σ:

δ(σ) = inf
p∈P\vert(σ)

d(p,B(σ)), where B(σ) is the circumscribed ball of σ.
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δ

Figure 2.1: Illustration of the protection δ of a d-simplex in a Delaunay triangulation.

The protection δ of a Delaunay triangulation T is the infimum over the d-simplices of the
triangulation: δ = infσ∈T δ(σ). A triangulation with a positive protection is called protected.

We define the relative protection δ̂(σ) of a given d-simplex σ to be the ratio of the protection
to its circumscribed radius: δ̂(σ) = δ(σ)

R(σ) .

The relative protection δ̂ of a Delaunay triangulation T is the infimum over the d-simplices
of the triangulation: δ̂ = infσ∈T δ̂(σ).

The protection of a simplex is illustrated in Figure 2.1.

Proof of Theorem 2.1.2 In this section we will prove Theorem 2.1.2. This section is added
for completeness and can be skipped on the first reading. The proof will be subdivided into
lemmas that are dedicated to each individual quality measure.

The first result for radius ratio is due to Klamkin [Kla85]:

Lemma 2.1.4 (Maximum radius ratio [Kla85]). Out of all d-simplices, the regular d-simplex ∆
has the maximum radius ratio equal to ρ(∆) = 1

d .

We can adapt the proof by Klamkin to show the result for aspect ratio:

Lemma 2.1.5 (Maximum aspect ratio). Out of all d-simplices, the regular d-simplex ∆ has the
maximum aspect ratio equal to α(∆) = d+1

2d .

Proof. Let σ be a d-simplex. We will now prove that α(σ) = h(σ)
2R(σ) ≤

d+1
2d .

Let Fi be the (d − 1)-dimensional volume of the ith facet (see Figure 2.2). Denote vi the
opposite vertex.

If p is an arbitrary point, we have by Cauchy-Schwarz inequality:

d∑
i=0

Fi ·
d∑
i=0

Fi
−→pvi2 ≥

(
d∑
i=0

Fi
−→pvi

)2

. (2.1)

Note that the equality takes place if and only if p is the circumcentre (making all −→pvi2 equal).
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F1

F
2F 3

v1

v2 v3

p

r1

r 2

r
3

h1

o

Figure 2.2: Construction for the proof of Lemma 2.1.5.

Let F =
∑d

i=0 Fi. Let o ∈ Rd be the circumcentre of σ and q ∈ Rd be such that −→oq =∑d
i=0 Fi

−→ovi/F . Then:

d∑
i=0

Fi
−→pvi2 =

d∑
i=0

Fi (−→op−−→ovi) (−→op−−→ovi) = F
(
R(σ)2 +−→op2 − 2−→op · −→oq

)
.

Since 2−→op · −→oq = −→op2 +−→oq2 − (−→oq −−→op)2
= −→op2 +−→oq2 −−→pq2, we have:

d∑
i=0

Fi ·
d∑
i=0

Fi
−→pvi = F 2

(
R(σ)2 +−→pq2 −−→oq2

)
. (2.2)

Denote by hi and ri the distances from vi and p respectively to the affine hull of the ith facet.
Then d(p, vi) is greater than hi − ri as the hypotenuse is greater than a leg in a right triangle
(see Figure 2.2). So:

d∑
i=0

Fi d(p, vi) ≥
d∑
i=0

Fihi −
d∑
i=0

Firi.

Note that if V denotes the volume of the simplex, then for a fixed i we have Fihi = dV .
On the other hand, for all i, the d-simplex formed by p and Fi has a height ri with respect

to Fi (see Figure 2.2). It yields that
∑d

i=0 Firi = dV . Therefore:

d∑
i=0

Fi d(p, vi) ≥ (d+ 1)dV − dV = d2V. (2.3)

As before, let h(σ) = mini hi. Now observe that:

(d+ 1)dV =
d∑
i=0

Fihi ≥
d∑
i=0

Fih(σ) = Fh(σ). (2.4)

Hence, if we combine the equations (2.3) and (2.4):

d∑
i=0

Fi d(p, vi) ≥
dFh(σ)

d+ 1
. (2.5)
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L

c

τ

p

h

≤ π/4

Figure 2.3: Illustration for the proof of Lemma 2.1.8. The plane of the figure contains the edge
of length L and the height h. The intersection of this plane and the simplex is an obtuse triangle,
and the angle adjacent to the longest edge is less than π/4.

Thus combining (2.1), (2.2) and (2.5), we get:

F 2
(
R(σ)2 +−→pq2 −−→oq2

)
=

d∑
i=0

Fi

d∑
i=0

Fi
−→pvi ≥

(
d∑
i=0

Fi
−→pvi

)2

≥
(
dFh(σ)

d+ 1

)2

.

Setting p equal to q removes the −→pq term:

R(σ)2 ≥
(

d

d+ 1
h(σ)

)2

+−→oq2 ≥
(

d

d+ 1
h(σ)

)2

,

which gives the inequality that we sought to prove.
By a simple computation, we can further establish that the aspect ratio of the regular simplex

is d
d+1 , and thus we conclude the proof.

To prove the result for thickness, we will use Jung’s theorem[Jun01].

Definition 2.1.6. The minimal enclosing ball of a bounded subset S of Rd is the Euclidean ball
of the smallest radius that contains S.

Theorem 2.1.7 (Jung’s theorem). Let S ⊆ Rd be a compact set. Let L(S) be its diameter and
Renc(S) be the radius of the minimum enclosing ball. Then:

Renc(S) ≤ L(S)

√
d

2(d+ 1)
.

We can combine Lemma 2.1.5 with Jung’s theorem[Jun01] to prove the result for thickness:

Lemma 2.1.8 (Maximum thickness). Out of all d-simplices, the regular d-simplex ∆ has the

maximum thickness equal to θ(∆) =
√

d+1
2d .

Proof. Assume that σ is a d-simplex. We will distinguish two cases: namely σ is self-centred or
not (as in Definition 2.3.1).

Let σ be not self-centred. Let τ be a facet of σ that separates σ from its circumcentre c. Let
p be the vertex of σ opposite to τ . Denote by h the height from p to τ and L be the length of
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the longest edge e adjacent to p (see Figure 2.3). By construction, h ≤ L/
√

2, because the angle
of the edge e with τ is less or equal to π/4. Therefore:

θ(σ) =
h(σ)

L(σ)
≤ h

L
≤ 1√

2
≤
√
d+ 1

2d
.

From now on we assume that σ is self-centred. This implies in particular that the circumradius
of σ is equal to the radius of the minimal enclosing ball of σ. So, by combining Lemma 2.1.5
and Jung’s theorem we get:

θ(σ) =
h(σ)

L(σ)
=

h(σ)

2R(σ)

2R(σ)

L(σ)
=

h(σ)

2R(σ)

2Renc(σ)

L(σ)
≤ d+ 1

2d
· 2

√
d

2(d+ 1)
=

√
d+ 1

2d
.

Jung’s theorem becomes equality in the case of the regular d-simplex [DGK63], so its thickness

is θ(∆) =
√

d+1
2d .

Finally, we prove the result for fatness.

Lemma 2.1.9 (Maximum fatness). Out of all d-simplices, the regular d-simplex ∆ has the

maximum fatness equal to Θ(∆) = 1
d!

√
d+1
2d

.

Proof. Let σd be a d-simplex. We define a sequence of faces σ1 ⊂ ... ⊂ σd of σd, such that for
each i ∈ {1, ..., d− 1}, σi has dimension i and the height falling on σi is the minimum height in
σi+1.

We can now express the volume of σ in the following manner:

V (σd) =
1

d!

d∏
i=1

h(σi).

Observe that for each i, the set of edges of σd is a subset of the set of edges of σ, therefore we
have L(σi) ≤ L(σd). By combining this fact with the volume expression we get:

Θ(σd) =
V (σd)

L(σd)d
=

1

d!

d∏
i=1

h(σi)

L(σd)
≤ 1

d!

d∏
i=1

h(σi)

L(σi)
=

1

d!

d∏
i=1

θ(σi).

From Lemma 2.1.8, we have for each i, θ(σi) ≤
√

i+1
2i . Therefore:

Θ(σd) ≤
1

d!

d∏
i=1

√
i+ 1

2i
=

1

d!

√
d+ 1

2d
.

By a simple computation we can further establish that the fatness of the regular simplex is
1
d!

√
d+1
2d

, and thus we conclude the proof.

The proof of Theorem 2.1.2 follows from Lemmas 2.1.4, 2.1.5, 2.1.8 and 2.1.9.
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Fatness Θ̂1/d Aspect Ratio α̂ Thickness θ̂ Radius Ratio ρ̂ Delaunay?
Ãd,
d odd

23/2

(
√
d+1)

1+2/d

√
6d

(d+1)(d+2)

2
√
d

d+1
√

6d
(d+1)(d+2) 3

Ãd,
d even

23/2(
√
d+1)1−2/d√
d(d+2)

2√
d+2

B̃d
21/2+1/d

√
d(
√
d+1)

1/d
d
√

2
(d+1)

√
d+2

1√
d+1

2d√
d+2(1+(d−1)

√
2)

7

C̃d
√

2√
d(
√
d+1)

1/d

√
2d

d+1
1√
d+1

2
√
d

2+(d−1)
√

2
3

D̃d
21/2+2/d

√
d(
√
d+1)

1/d
d
√

2
(d+1)

√
d+4

1√
d+1

d
√

2
(d−1)

√
d+4

7

Ẽ6
12

√
64

137781
2
7

1√
14

1
2 7

Ẽ7
14

√
1

177147
7
√

13
104

√
21

24
14
√

13
117 7

Ẽ8
8

√
1

3240
8
√

19
171

2
√

19
57

8
√

19
95 7

F̃4
8

√
1

405
4
√

2
15

2
√

5
15

4
√

2
3(2+

√
2)

3

G̃2

√
2

2
1√
3

1
2

2
1+
√

3
3

Table 2.1: Summary of quality measures of Coxeter triangulations.

2.2 Main result

In this section we present a table that summarizes explicit expressions of quality measures of
Coxeter triangulations. Many of the provably good mesh generation algorithms are based on
Delaunay triangulations [CDS12]. This motivated us to investigate if Coxeter triangulations
have the Delaunay property. We thus identify which Coxeter triangulations are Delaunay and
give their protection values. Finally, we identify which Coxeter triangulations have vertex sets
on a lattice.

Theorem 2.2.1. The normalized fatness, aspect ratio, thickness and radius ratio of simplices in
Coxeter triangulations, as well as Delaunay property are presented in Table 2.1. Out of Delaunay
triangulations, only Ã family triangulations have a non-zero relative protection value equal to:

δ̂ =

√
d2 + 2d+ 24−

√
d2 + 2d√

d2 + 2d
∼ 12

d2

Only Ã family, C̃ family and D̃4 triangulations have vertex sets on a lattice.

The proof of this theorem and the table without normalization can be found in Section 2.4.
The corresponding quality measures for the regular d-simplex ∆ (which does not correspond

to a monohedral triangulation of Rd in general) are:
Fatness Θ Aspect Ratio α Thickness θ Radius Ratio ρ

∆ 1
d!

√
d+1
2d

d+1
2d

√
d+1
2d

1
d

All simplex quality measures in the table above are normalized with respect to the regular
simplex. The non-normalized quality values are presented in Table 2.2.

Note that the fatness values in the table are given powered 1/d. This is due to the fact that
fatness is a volume-based simplex quality.
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Fatness Θ Aspect Ratio α Thickness θ Radius Ratio ρ
Ãd,
d odd

2d

(
√
d+1)

d+1
d!

√
3(d+1)
2d(d+2)

√
2
d+1

√
6

d(d+1)(d+2)

Ãd,
d even

2d(
√
d+1)d−1(√

d(d+2)
)d
d!

√
2(d+1)
d(d+2)

B̃d
2

dd/2d!
1√

2(d+2)

1√
2d

2√
d+2(1+(d−1)

√
2)

C̃d
1

dd/2d!
1√
2d

1√
2d

2√
d(2+(d−1)

√
2)

D̃d
4

dd/2d!
1√

2(d+4)

1√
2d

√
2√

d+4(d−1)

Ẽ6

√
3

174960
1
6

1
2
√

6
1
12

Ẽ7

√
3

14696640
1

2
√

13
1

4
√

3
2

9
√

13

Ẽ8
1

696729600
1

2
√

19
1

6
√

2
1

5
√

19

F̃4
1

576

√
2

6

√
2

6

√
2

3(2+
√

2)

G̃2

√
3

8

√
3

4

√
3

4
1

1+
√

3

Table 2.2: The non-normalized values for fatness, aspect ratio, thickness and radius ratio of
Coxeter triangulations.

Also note that all normalized simplex qualities for the families Ãd, B̃d, C̃d and D̃d behave as
O
(

1√
d

)
.

The numerical values of these quality measures are given in Tables 2.4, 2.5, 2.6 and 2.7
in Section 2.6, and plotted in Figure 2.4 below. A quick glance suffices to see that Coxeter
triangulations of type Ãd achieve the greatest aspect ratio, fatness, thickness and radius ratio
among the Coxeter triangulations in each dimension d.

2.3 Delaunay criterion for monohedral triangulations of Rd

The goal of this section is to establish a criterion that tells if a given monohedral triangulation
of Rd is Delaunay. We would like to stress that the triangulations in this section are infinite and
do not have boundary. Most of the results in this section are not applicable to triangulations
with a finite number of vertices.

This section deals with general monohedral triangulations of Rd; the criterion for the partic-
ular case of Coxeter triangulations is presented in Theorem 2.3.8 at the end of the section.

Definition 2.3.1. A simplex is called self-centred if it contains its circumcentre inside or on
the boundary.

From Rajan [Raj94] we know that:

Lemma 2.3.2 ([Raj94, Theorem 5]). If a triangulation of Rd consists of only self-centred sim-
plices, then it is a Delaunay triangulation.

For any monohedral triangulation of Rd, it is sufficient to check if one simplex in the trian-
gulation is self-centred to conclude that the triangulation is Delaunay.

Corollary 2.3.3. If a simplex in a monohedral triangulation of Rd is self-centred, then this
triangulation is Delaunay.
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Figure 2.4: The visual representation of the normalized aspect ratio value, thickness, fatness and
the radius ratio for simplices of Ãd, B̃d, C̃d and D̃d triangulations.

We now want to consider the converse:

Lemma 2.3.4. Let R be the maximum circumradius in a Delaunay triangulation D of Rd. Then
any simplex in D with the circumradius R is self-centred.

We would like to emphasize that Lemma 2.3.4 does not generalize to the standard definition
of Delaunay triangulation on a finite set of points. This can be seen on a simple example of three
points on a plane that lie on an obtuse triangle.

Proof. Let σ be a simplex in D with circumsphere S, whose circumcentre is c and circumradius
is R. We assume that the circumcentre c lies outside of σ and derive a contradiction. Because
the circumcentre lies outside σ, there exists a facet τ of σ whose supporting hyperplane Hτ

separates c from σ. We denote by σ′ the simplex in D that shares the facet τ with σ. We write
S′ for the circumsphere of σ′ and denote its circumcentre by c′ and circumradius by R′. The
(d− 2)-dimensional sphere T that forms the intersection of S and S′, divides S into a part that
lies inside S′ and a cap that lies outside S′.

We shall call ` the line on which c and c′ lie. If we restrict to any two-dimensional plane P
that contains `, we see that S ∩ P and S′ ∩ P are circles. We shall think of ` as vertical in P
(see Figure 2.5). The circumcentres cannot coincide, because otherwise they would lie on Hτ .
So the circles S ∩ P and S′ ∩ P intersect transversely in two points. This means that S ∩ P is
subdivided into two parts: a part inside S′ ∩ P and a cap outside S′ ∩ P .

49



Chapter 2. Quality of Coxeter triangulations

T

R′

R
c

c′

oq

S

S′`

Figure 2.5: Construction for the proof of Lemma 2.3.4. The construction is confined to the plane
containing the segments [oc] and [oq].

We shall assume that the cap lies below the part inside S′ ∩ P , see Figure 2.5. This implies
that c lies below c′ on `. This can be seen as follows: assume that both S and Hτ are fixed. This
means that points of intersection of S ∩ P and S′ ∩ P are fixed, but the circumcentre c′ can be
varied. We now let c′ descend along ` from +∞ to −∞. As long as c and c′ do not coincide, the
cap of S ∩ P outside S′ ∩ P remains stable. At the point of coincidence of c and c′ the inside
and outside switch. It follows by considering the limit cases that the cap S ∩ P outside S′ ∩ P
lies below the cap inside as long as c lies below c′ on `, as in Figure 2.5.

We now make two important observations. Firstly, because the triangulation D is Delaunay,
the sphere S′ does not contain the vertex p of σ not on τ . Hence p lies on the cap of S which is
outside S′. Secondly, as we assume that the circumcentre c lies outside of σ, c lies above Hτ ∩P .

Now let o be the centre of T = S∩S′ and let q be a vertex of τ . Because d(c, o) < d(c′, o), the
distance d(c, q) is strictly smaller than d(c′, q) (see Figure 2.5). By remarking that d(c, q) = R
and d(c′, q) = R′, we get R < R′, which is a contradiction with the hypothesis that R is the
largest circumradius in D.

In monohedral triangulations, all simplices have the same circumradius. So trivially, all
simplices have the maximum circumradius in the triangulation. This observation along with
Lemma 2.3.4 leads us to conclude that if a simplex in a monohedral triangulation of Rd is not
self-centred, then the triangulation is not Delaunay. Combining this with Corollary 2.3.3 yields:

Theorem 2.3.5. A monohedral triangulation of Rd is Delaunay if and only if its simplices are
self-centred.

In the spirit of Theorem 2.3.5, we can easily spot if a Delaunay triangulation of Rd is not
protected with the help of the following lemma:
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Lemma 2.3.6. A Delaunay triangulation of Rd where a simplex with the maximal circumradius
contains its circumcentre on the boundary is not protected.

Proof. We use the same construction and the same notations as in the proof of Lemma 2.3.4 (see
Figure 2.5). Observe that by hypothesis o coincides with c. If c was different from c′, then the
radius R′ would be greater than R, which would lead to a contradiction. Therefore c coincides
with c′, so σ and σ′ share the same circumball. We conclude the proof by observing that the
vertex of σ′ not in τ lies on the circumball of σ, therefore the protection of σ is zero.

We can state the converse of Lemma 2.3.6 for monohedral triangulations of Rd. For this, we
slightly modify Lemma 8 and Theorem 5 in [Raj94] by replacing all non-strict inequalities to
strict inequalities to get a criterion for a non-zero protection:

Lemma 2.3.7. If a simplex of a monohedral triangulation of Rd contains the circumcentre strictly
inside, then the triangulation is Delaunay with a non-zero protection.

By using the fact that Coxeter triangulations are monohedral, we derive from Theorem 2.3.5,
Lemma 2.3.6 and Lemma 2.3.7 the following theorem:

Theorem 2.3.8. Let T be a Coxeter triangulation.

• If a simplex in T is not self-centred, then T is not Delaunay.

• If a simplex in T contains its circumcentre on the boundary, then T is Delaunay with zero
protection.

• If a simplex in T contains its circumcentre strictly inside, then T is Delaunay with non-zero
protection.

2.4 Geometrical analysis of each family of Coxeter triangulations

In this section, we present the proof of Theorem 2.2.1. The proof consists of a case study for each
individual family of Coxeter triangulations. All cases are independent one from another. We
provide explicit measures, so that any reader interested in a quality measure that is not covered
by the current study can compute its value for Coxeter triangulations. This can be useful for a
comparison of Coxeter triangulations with any other triangulation based on any custom quality
measure.

The study for each case starts by presenting two Coxeter diagrams. Each vertex in the
Coxeter diagram on the left has a label. These labels are numbers proportional to the inverse
heights of the fundamental simplex in the Coxeter triangulation (recall from Proposition 1.2.29
that the fundamental simplex is defined by hyperplanes that are orthogonal to simple roots and
the highest root). This information is taken from [DWLT90]. The Coxeter diagram on the right
indicates the notations of the corresponding facets in the proofs.

Each case follows the same plan:

1. Let σ be the fundamental simplex in the Coxeter triangulation generated by the root system
with simple roots from Theorem 1.2.15. We give equations of the hyperplanes that contain
the facets τi of the simplex σ. The equations of the hyperplanes can be found in [Bou02]
or [CS87], or alternatively can be deduced from Theorem 1.2.15.
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Ãd, given in Rd+1,
d ≥ 2

u0 =
(
0{d+1})

uk =
(

(−d+1−k
d+1 ){k}, ( k

d+1){d+1−k}
)
, ∀k ∈ {1, . . . , d}

B̃d, given in Rd,
d ≥ 3

u0 =
(
0{d}

)
u1 =

(
1, 0{d−1})

uk =
(

1
2

{k}
, 0{d−k}

)
, ∀k ∈ {2, . . . , d}

C̃d, given in Rd,
d ≥ 2

uk =
(

1
2

{k}
, 0{d−k}

)
, ∀k ∈ {0, . . . , d}

D̃d, given in Rd,
d ≥ 4

u0 =
(
0{d}

)
u1 =

(
1, 0{d−1})

uk =
(

1
2

{k}
, 0{d−k}

)
, ∀k ∈ {2, . . . , d− 2}

ud−1 =
(

1
2

{d−1}
,−1

2

)
ud =

(
1
2

{d}
)

Ẽ6, given in R8

u0 =
(
0{8}

)
u1 =

(
0{5},−2

3

{2}
, 2

3

)
u2 =

(
1
4

{5}
,−1

4

{2}
, 1

4

)
u3 =

(
−1

4 ,
1
4

{4}
,− 5

12

{2}
, 5

12

)
u4 =

(
0{2}, 1

3

{3}
,−1

3

{2}
, 1

3

)
u5 =

(
0{3}, 1

2

{2}
,−1

3

{2}
, 1

3

)
u6 =

(
0{4}, 1,−1

3

{2}
, 1

3

)

Ẽ7, given in R8

u0 =
(
0{8}

)
u1 =

(
0{6}, 1

2 ,−
1
2

)
u2 =

(
−1

4

{6}
, 1

2 ,−
1
2

)
u3 =

(
1
6 ,−

1
6

{5}
, 1

2 ,−
1
2

)
u4 =

(
0{2},−1

4

{4}
, 1

2 ,−
1
2

)
u5 =

(
0{3},−1

3

{3}
, 1

2 ,−
1
2

)
u6 =

(
0{4},−1

2

{2}
, 1

2 ,−
1
2

)
u7 =

(
0{5},−1, 1

2 ,−
1
2

)

Ẽ8, given in R8

u0 =
(
0{8}

)
u1 =

(
0{7}, 1

)
u2 =

(
1
6

{7}
, 5

6

)
u3 =

(
−1

8 ,
1
8

{6}
, 7

8

)
u4 =

(
0{2}, 1

6

{5}
, 5

6

)

u5 =
(

0{3}, 1
5

{4}
, 4

5

)
u6 =

(
0{4}, 1

4

{3}
, 3

4

)
u7 =

(
0{5}, 1

3

{2}
, 2

3

)
u8 =

(
0{6}, 1

2

{2}
)

F̃4, given in R4
u0 = (0, 0, 0, 0)
u1 =

(
1
2 ,

1
2 , 0, 0

)
u2 =

(
2
3 ,

1
3 ,

1
3 , 0
) u3 =

(
3
4 ,

1
4 ,

1
4 ,

1
4

)
u4 = (1, 0, 0, 0)

G̃2, given in R2

u0 = (0, 0)
u1 = (1, 0)

u2 =
(
1,
√

3
)

Table 2.3: Vertices of a simplex per Coxeter diagram type. Although a partial list has been
provided by Conway and Sloane [CS87] we are not aware of any complete explicit overview. We
believe that such a list will be essential for many practitioners. The powers in point coordi-
nates correspond to duplications of the same coordinate, for example (1

2

{3}
,−1

2) is the same as
(1

2 ,
1
2 ,

1
2 ,−

1
2).
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2. We give the coordinates of the vertices ui of the simplex σ. The vertices for each of the
families of Coxeter triangulations are summarized in Table 2.3.

3. By using the augmented Coxeter diagram we find which height is the shortest (denoted
by h(σ)). We then compute it as the distance from the corresponding vertex to the corre-
sponding hyperplane.

4. We find the circumradius R(σ) and the inradius r(σ) of the simplex.

5. We find the length of the longest edge L(σ), using the coordinates of the vertices found
previously.

6. We compute the (non-normalized) thickness θ(σ) = h(σ)
L(σ) , the aspect ratio α(σ) = h(σ)

2R(σ)

and the radius ratio ρ(σ) = r(σ)
R(σ) .

7. We compute the volume vol(σ) and the (non-normalized) fatness Θ(σ) = vol(σ)
L(σ)d

.

8. We determine if the triangulation is Delaunay with the help of Theorem 2.3.8. If it is, we
also determine if its protection is non-zero. The computation of the protection value of
Coxeter triangulations of Ã family is done separately in Section 2.5.

9. We determine if the vertex set of the triangulation form a lattice.

We will adopt the following writing convention: the powers in point coordinates correspond
to duplications of the same coordinate. For example: (0, 1{3}, 0) is the same as (0, 1, 1, 1, 0).

2.4.1 Ãd,d > 2

1 1 1

1

1 1 1
...

τd−2 τd−1 τd

τ0

τ1 τ2 τ3
...

Figure 2.6: On the left: the Coxeter diagram for the Ãd triangulation. The labels on vertices
are the inverse ratios of heights. On the right: the notations of the facets of the fundamental
simplex that are used in the proofs.

1. The hyperplanes that contain the facets of the fundamental simplex σ in Rd+1 can be
defined as the intersection of the hyperplane

∑d
i=0 xi = 0 and the following hyperplanes:

for τ0 : −x0 + xd = 1
for τk : xk − xk−1 = 0 ∀k ∈ {1, . . . , d}.

2. From the equations of hyperplanes it is easy to check that the following points in Rd+1:
u0 =

(
0{d+1})

uk =
(

(−d+1−k
d+1 ){k}, ( k

d+1){d+1−k}
)
, ∀k ∈ {1, . . . , d}, are the vertices of σ.

3. According to Figure 2.6 left, all heights are equal. By computing, for example, the distance
from u0 to the hyperplane −x0 + xd = 1 we get:

h(σ) =
1√
2
.
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4. It is easy to verify that the barycentre:

c =

(
− d

2(d+ 1)
,− d− 2

2(d+ 1)
,− d− 4

2(d+ 1)
, . . . ,

d

2(d+ 1)

)
is equidistant from all vertices, so it is the circumcentre. The distance from c to vertices is
the circumradius: R(σ) =

√
d(d+2)
12(d+1) .

Again, it is easy to verify that c is also equidistant from all hyperplanes that contain τi,
therefore c is also the incentre. The distance from c to the hyperplanes is the inradius:
r(σ) = 1√

2(d+1)
.

5. The edges of σ are described by differences uk−uj , for certain j, k ∈ {0, . . . , d} with j < k.

The squared norm of such a difference is equal to ‖~uk − ~uj‖2 = (k−j)(d+1−k+j)
d+1 .

An easy analysis (substitute k − j as a new variable) yields that this function on k and j
is maximal when k − j = (d+ 1)/2.

So the maximal edge in σ has length L(σ) =

{ √
d+1
2 if d is odd,

1
2

√
d(d+2)
(d+1) if d is even.

6. The aspect ratio, the thickness and the radius ratio are:

α(σ) = h(σ)
R(σ) =

√
3(d+1)
2d(d+2)

θ(σ) = h(σ)
L(σ) =


√

2
d if d is odd,√
2(d+1)
d(d+2) if d is even.

ρ(σ) = r(σ)
R(σ) =

√
6

d(d+1)(d+2)

7.

Lemma 2.4.1. Simplices in the Ãd triangulation have fatness:

Θ(σ) =


2d

(
√
d+1)

d+1
d!

if d is odd,

2d(
√
d+1)d−1(√

d(d+2)
)d
d!

if d is even.

The lemma above comes mostly from the fact that the fundamental simplex σ has volume:

vol(σ) =
1√

d+ 1 d!
.

Proof. Fix the dimension d ≥ 2. Let ak denote −d+1−k
d+1 and bk denote k

d+1 .

Denote by σ the d-simplex of a Ãd triangulation described above. We build a (d + 1)-
simplex σ′, which consists of the d-face σ and a vertex ud+1 = (1{d+1}). Note that the edge
u0ud+1 is orthogonal to the face σ.
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The (d+ 1)-dimensional volume of σ′ can be expressed as a determinant:

vol(σ′) =

∣∣∣∣∣∣∣∣∣∣∣
1

(d+ 1)!
det


a1 a2 . . . ad 1
b1 a2 . . . ad 1
b1 b2 . . . ad 1
...

...
. . .

...
...

b1 b2 . . . bd 1



∣∣∣∣∣∣∣∣∣∣∣
.

First, we subtract the last row from all other rows. It gives us:

vol(σ′) =

∣∣∣∣∣∣∣∣∣∣∣
1

(d+ 1)!
det


a1 − b1 a2 − b2 . . . ad − bd 0

0 a2 − b2 . . . ad − bd 0
0 0 . . . ad − bd 0
...

...
. . .

...
...

b1 b2 . . . bd 1



∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1

(d+ 1)!
det


a1 − b1 a2 − b2 . . . ad − bd

0 a2 − b2 . . . ad − bd
...

...
. . .

...
0 0 . . . ad − bd


∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣ 1

(d+ 1)!

d∏
k=1

(ak − bk)

∣∣∣∣∣ =

∣∣∣∣∣ 1

(d+ 1)!

d∏
k=1

(
−d+ 1− k

d+ 1
− k

d+ 1

)∣∣∣∣∣ =
1

(d+ 1)!
.

The volume of σ can be found as:

vol(σ) =
(d+ 1)vol(σ′)

‖(1{d+1})‖
=

(d+ 1)√
d+ 1(d+ 1)!

=
1√

d+ 1 d!
.

8. Because the circumcentre coincides with the incentre, it lies strictly inside the simplex. So
by Theorem 2.3.8 the triangulation is Delaunay with non-zero protection. The exact value
of protection is shown in Section 2.5.

9.

Proposition 2.4.2. The vertex set of a Ãd triangulation is a lattice for all d ≥ 2.

As we will show, this lattice is in fact the coweight lattice introduced in Section 1.2.3. The
fact that the vertex set is a lattice is not entirely obvious. This lattice happens to be equal
to the permutahedral lattice studied in for example [CS87].

Before proving the proposition, we will need the following lemmas:

Lemma 2.4.3. Let R be a crystallographic root system. Let V be the vertex set of the
Coxeter triangulation corresponding to R. The coweight lattice ΛwR∨ is a subset of V .

Proof. Let S = {s1, . . . , sd} be a set of simple roots in R. For any point p in ΛwR∨ there exist
integers n1, . . . , nd such that for every i, 〈p, si〉 = ni. The point p lies in the intersection
of the hyperplanes Hsi,ki . Therefore, being in the intersection of d linearly independent
hyperplanes in H, it is a vertex in the Coxeter triangulation.
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Lemma 2.4.4. Let R be a crystallographic root system. The coweight lattice ΛwR∨ is stable
by the action of elements of the affine group Wa that corresponds to R.

Proof. Take x ∈ ΛwR∨ . Let r ∈ R and k ∈ Z. The image of x by the affine reflection σr,k is:

σr,k(x) = x− (〈x, r〉 − k)r∨.

Let r′ be another root in R. The scalar product of σr,k(x) with r′ is:〈
σr,k(x), r′

〉
=
〈
x, r′

〉
− (〈x, r〉 − k)

〈
r∨, r′

〉
. (2.6)

The first term in equation 2.6 is an integer by assumption that x lies in the coweight lattice.
By Remark 1.2.20, the second term in equation 2.6 can be expressed as (〈x, r〉 − k)n(r, r′)
(see the definition of n(r, r′) in Section 1.2.2). The scalar product 〈x, r〉 is an integer by
assumption that x lies in the coweight lattice. From Section 1.2.2, we know that n(r, r′) is
an integer, and k is an integer by definition.

We conclude that 〈σr,k(x), r′〉 is an integer for all r′ ∈ R. This implies that σr,k(x) lies in
the coweight lattice for all r ∈ R and k ∈ Z.

By definition, the affine Weyl group Wa is generated by the affine reflections σr,k for all
r ∈ R and k ∈ Z. So we conclude that the coweight lattice ΛwR∨ is stable by the action of
elements of the affine group Wa.

Now, we are ready to prove Proposition 2.4.2.

Proof (of Proposition 2.4.2). Fix a Coxeter triangulation of type Ãd that corresponds to
a root system R and let V be its vertex set. We will prove the proposition by double
inclusion.

The inclusion ΛwR∨ ⊆ V follows from Lemma 2.4.3. We will now prove that V ⊆ ΛwR∨ .

Let v be a vertex in V . Let σ be the fundamental simplex from the beginning of the section,
and σ′ be an simplex in the triangulation, such that v is its vertex. Let ω be an affine
group transformation that maps σ to σ′. In particular, ω maps a vertex in σ to v.

Observe that all vertices in σ have integer scalar products with all roots, so they lie in
the coweight lattice. With this observation, Lemma 2.4.4 yields that v lies in the coweight
lattice too.

Thus, we conclude that V ⊆ ΛwR∨ , so the double inclusion is complete.

2.4.2 B̃d,d > 3

4

1

1
2 2 2 2 √

2

... 4

τ0

τ1
τ2 τ3 τd−2 τd−1 τd

...

Figure 2.7: On the left: the Coxeter diagram for a triangulation of type B̃d. The labels on vertices
are the inverse ratios of heights. On the right: the notations of the facets of the fundamental
simplex that are used in the proofs.
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1. The hyperplanes that contain facets of the fundamental simplex σ can be defined as follows:
for τ0 : x1 + x2 = 1
for τk : xk − xk+1 = 0,∀k ∈ {1, . . . , d− 1}
for τd : xd = 0.

2. From the equations of hyperplanes it is easy to check that the following points:
u0 =

(
0{d}

)
u1 =

(
1, 0{d−1})

uk =
(

1
2

{k}
, 0{d−k}

)
,∀k ∈ {2, . . . , d}.

are the vertices of σ.

3. According to Figure 2.7, the minimal height falls on any of τk for k in {2, . . . , d− 1}. By
computing, for example, the distance from u1 to the hyperplane x1 − x2 = 0 we get:

h(σ) =
1

2
√

2
.

4. The circumcentre of the simplex is (1
2 , 0,

1
4

{d−2}
) and the circumradius is R(σ) =

√
d+2
4 ,

which is easily verifiable. The incentre is
(

1+(d−1)
√

2

2(1+(d−1)
√

2)
, 1+(d−2)

√
2

2(1+(d−1)
√

2)
, . . . , 1

2(1+(d−1)
√

2)

)
and

the inradius is r(σ) = 1
2(1+(d−1)

√
2)
, which is easily verifiable.

5. The longest edge is given by ~ud − ~u0 and is equal to L(σ) =
√
d

2 .

6. The aspect ratio is:

α(σ) =
h(σ)

R(σ)
=

1√
2(d+ 2)

.

The thickness is:
θ(σ) =

h(σ)

L(σ)
=

1√
2d
.

The radius ratio is:
ρ(σ) =

r(σ)

R(σ)
=

2√
d+ 2(1 + (d− 1)

√
2)
.

7. The volume of the simplex is given by the formula:

vol(σ) =
1

d!
det


1 1/2 . . . 1/2
0 1/2 1/2
...

. . . . . .
...

0 . . . 0 1/2

 =
1

2d−1d!
.

The fatness of the simplex is:

Θ(σ) =
vol(σ)

L(σ)d
=

2

dd/2d!
.

8. Observe that the inner products of the normal vector s2 to the hyperplane that contains
τ2 with the circumcentre and u2 have different signs:

〈s2, c〉 = −1

4
and 〈s2, u2〉 =

1

2
.

Therefore the hyperplane that contains τ2 separates the circumcentre c from u2, so by
Theorem 2.3.8 the triangulation is not Delaunay.

57



Chapter 2. Quality of Coxeter triangulations

9.

Proposition 2.4.5. No vertex set of a B̃d triangulation for d ≥ 3 is a lattice.

Proof. A point v ∈ Rd is a vertex of the triangulation if and only if it lies in the intersection
of at least d hyperplanes in H (as defined in Section 1.2.4) that are linearly independent.
Equivalently, the inner products of at least d linearly independent positive roots should be
integers.

Let E = {e1, ..., ed} be the canonical basis of Rd. Bourbaki [Bou02, Planche II] gives the
explicit expressions of positive roots:

R+ = {ei | i ∈ {1, . . . , d}} ∪
{ei − ej | i, j ∈ {1, . . . , d} and i < j} ∪
{ei + ej | i, j ∈ {1, . . . , d} and i < j}.

We will now prove that v = ud− ud−1 = 1
2ed is not in the vertex set, which implies that V

does not form a lattice.

The positive roots that have integer inner product with v are exactly:

{ei | i ∈ {1, . . . , d− 1}} ∪
{ei − ej | i, j ∈ {1, . . . , d− 1} and i < j} ∪
{ei + ej | i, j ∈ {1, . . . , d− 1} and i < j},

which is easily verifiable.

These roots span the vector space Vect(E \{ed}), which is (d−1)-dimensional. Thus, there
do not exist (r1, ..., rd) ⊆ R+ that are linearly independent and have integer inner products
with v. Therefore v does not belong to V .

2.4.3 C̃d,d > 2

4 4

1 √
2
√
2

√
2
√
2 1

... 4 4

τ0 τ1 τ2 τd−2 τd−1 τd
...

Figure 2.8: On the left: the Coxeter diagram for a triangulation of type C̃d. The labels on vertices
are the inverse ratios of heights. On the right: the notations of the facets of the fundamental
simplex that are used in the proofs.

1. The hyperplanes that contain facets of the fundamental simplex σ can be defined as follows:
for τ0 : 2x1 = 1
for τk : xk − xk+1 = 0,∀k ∈ {1, . . . , d− 1}
for τd : xd = 0.

2. From the equations of hyperplanes it is easy to check that the following points:

uk =
(

1
2

{k}
, 0{d−k}

)
, ∀k ∈ {0, . . . , d}. are the vertices of σ.
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3. According to Figure 2.8, the minimal height falls on any of τk for k in {1, . . . , d− 1}. By
computing, for example, the distance from u1 to the hyperplane x1 − x2 = 0 we get:

h(σ) =
1

2
√

2
.

4. The circumcentre of the simplex is (1
4

{d}
) and the circumradius is R(σ) =

√
d

4 , which

is easily verifiable. The incentre is
(

1+(d−1)
√

2

2(2+(d−1)
√

2)
, 1+(d−2)

√
2

2(2+(d−1)
√

2)
, . . . , 1

2(2+(d−1)
√

2)

)
and the

inradius is r(σ) = 1
2(2+(d−1)

√
2)
, which is easily verifiable.

5. The longest edge is given by ~ud − ~u0 and is equal to L(σ) =
√
d

2 .

6. The aspect ratio is:

α(σ) =
h(σ)

R(σ)
=

1√
2d
.

The thickness is:
θ(σ) =

h(σ)

L(σ)
=

1√
2d
.

The radius ratio is:
ρ(σ) =

r(σ)

R(σ)
=

2√
d(2 + (d− 1)

√
2)
.

7. The volume of the simplex is given by the formula:

vol(σ) =
1

d!
det


1/2 1/2 . . . 1/2
0 1/2 1/2
...

. . . . . .
...

0 . . . 0 1/2

 =
1

2dd!
.

The fatness of the simplex is:

Θ(σ) =
vol(σ)

L(σ)d
=

1

dd/2d!
.

8. Observe that all inner products of the normals si to hyperplanes that contain τi and the
corresponding opposite vertices ui are positive. Observe as well that the inner products
with the circumcentre 〈si, c〉 are either positive or zero. It implies that the circumcentre
lies on the boundary of the simplex, therefore by Theorem 2.3.8 the triangulation is non-
protected Delaunay.

9.

Proposition 2.4.6. The vertex set of a C̃d triangulation is a lattice for d ≥ 2.

Proof. A point v ∈ Rd is a vertex of the triangulation if and only if it lies in the intersection
of at least d hyperplanes in H (as defined in Section 1.2.4) that are linearly independent.
Equivalently, the inner products of at least d linearly independent positive roots should be
integers.
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Chapter 2. Quality of Coxeter triangulations

Let E = {e1, ..., ed} be the canonical basis of Rd. Bourbaki [Bou02, Planche III] gives the
explicit expressions of positive roots:

R+ = {2ei | i ∈ {1, . . . , d}} ∪
{ei − ej | i, j ∈ {1, . . . , d} and i < j} ∪
{ei + ej | i, j ∈ {1, . . . , d} and i < j}.

We will denote by V the vertex set of the C̃d triangulation that contains the simplex σ.
The goal is to prove that V is equal to (1

2Z)d, which is a lattice.

We will first prove that V ⊆ (1
2Z)d. This follows from the fact that (1

2Z)d is stable
by the action of elements of the affine Weyl group Wa. Indeed, for any x ∈ (1

2Z)d, its
image by an affine reflection σr,k for r ∈ R and k ∈ Z, as defined in Section 1.2.4, is
σr,k(x) = x − (〈x, r〉 − k)r∨. For any r ∈ R and x ∈ (1

2Z)d, the inner product 〈x, r〉 is
in 1

2Z, hence (〈x, r〉 − k) is in 1
2Z as well. The dual root r∨ has integer coefficients, so

σr,k(x) = x− (〈x, r〉 − k)r∨ is in (1
2Z)d. Now recall that one can obtain any simplex from

another one by an element of Wa, which is generated by affine reflections σr,k. All vertices
of σ are in (1

2Z)d, so with the above observation we conclude that any vertex in V is in
(1

2Z)d as well.

To prove the other inclusion, observe that {2ei | i ∈ {1, . . . , d}} is a set of d linearly
independent positive roots that have integer inner products with any element in (1

2Z)d.

With both inclusions proven, we conclude that V = (1
2Z)d, which is a lattice.

2.4.4 D̃d,d > 4

1

1

2 2 2 2

1

1

...
τd

τd−1

τd−2

τd−3

τ3 τ2

τ1

τ0

...

Figure 2.9: On the left: the Coxeter diagram for a triangulation of type D̃d. The labels on vertices
are the inverse ratios of heights. On the right: the notations of the facets of the fundamental
simplex that are used in the proofs.

1. The hyperplanes that contain facets of the fundamental simplex σ can be defined as follows:
for τ0 : x1 + x2 = 1
for τk : xk − xk+1 = 0, ∀k ∈ {1, . . . , d− 1}
for τd : xd−1 + xd = 0.

2. From the equations of hyperplanes it is easy to check that the following points:

u0 =
(
0{d}

)
u1 =

(
1, 0{d−1})

uk =
(

1
2

{k}
, 0{d−k}

)
, ∀k ∈ {2, . . . , d− 2}

ud−1 =
(

1
2

{d−1}
,−1

2

)
ud =

(
1
2

{d}
)
.

are the vertices of σ.
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2.4. Geometrical analysis of each family of Coxeter triangulations

3. According to Figure 2.9, the minimal height falls on any of τk for k in {2, . . . , d− 2}. By
computing, for example, the distance from u2 to the hyperplane x2 − x3 = 0 we get:

h(σ) =
1

2
√

2
.

4. The circumcentre of the simplex is
(

1
2 , 0,

1
4

{d−4}
, 1

2 , 0
)

and the circumradius is R(σ) =
√
d+4
4 , which is easily verifiable. The incentre is

(
1
2 ,

d−2
2(d−1) ,

d−3
2(d−1) , . . . ,

1
2(d−1) , 0

)
and the

inradius is r(σ) = 1
2
√

2(d−1)
, which is easily verifiable.

5. The longest edge is given by ~ud − ~u0 and is equal to L(σ) =
√
d

2 .

6. The aspect ratio is:

α(σ) =
h(σ)

R(σ)
=

1√
2(d+ 4)

.

The thickness is:
θ(σ) =

h(σ)

L(σ)
=

1√
2d
.

The radius ratio is:

ρ(σ) =
r(σ)

R(σ)
=

√
2√

d+ 4(d− 1)
.

7. The volume of the simplex is:

vol(σ) =
1

d!
det



1 1/2 . . . 1/2 1/2 1/2
0 1/2 1/2 1/2 1/2

0 0
. . .

...
...

...
...

...
. . . 1/2 1/2 1/2

0 0 . . . 0 1/2 1/2
0 0 . . . 0 −1/2 1/2


=

1

2d!
det


1 1/2 . . . 1/2 1/2
0 1/2 . . . 1/2 1/2
...

. . . . . .
...

...
0 . . . 0 1/2 1/2
0 . . . 0 0 1/2

+
1

2d!
det


1 1/2 . . . 1/2 1/2
0 1/2 . . . 1/2 1/2
...

. . . . . .
...

...
0 . . . 0 1/2 1/2
0 . . . 0 0 1/2

 =
1

2d−2d!
.

The fatness of the simplex is:

Θ(σ) =
vol(σ)

L(σ)d
=

4

dd/2d!
.

8. Observe that the inner products of the normal vector sd−2 to the hyperplane that contains
τd−2 with the circumcentre and ud−2 have different signs:

〈sd−2, c〉 = −1

4
and 〈sd−2, ud−2〉 =

1

2
.

Therefore the hyperplane that contains τd−2 separates the circumcentre from ud−2, so by
Theorem 2.3.8 the triangulation is not Delaunay.
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9.

Proposition 2.4.7.

(a) The vertex set of a D̃4 triangulation is a lattice.

(b) No other vertex set of a D̃d triangulation for d ≥ 5 is a lattice.

Proof. (a) A point v ∈ Rd is a vertex of the triangulation if and only if it lies in the
intersection of at least d hyperplanes in H (as defined in Section 1.2.4) that are lin-
early independent. Equivalently, the inner products of at least d linearly independent
positive roots should be integers.
Let E = {e1, ..., ed} be the canonical basis of Rd. Bourbaki [Bou02, Planche IV] gives
the explicit expressions of positive roots:

R+ = {ei − ej | i, j ∈ {1, . . . , d} and i < j} ∪
{ei + ej | i, j ∈ {1, . . . , d} and i < j}.

Denote by V the vertex set of the triangulation. Let Λ = {x ∈ (1
2Z)4 | x1 + x2 + x3 +

x4 ∈ Z}. We will now prove that V = Λ.
We will first prove that V ⊆ Λ. This follows from the fact that Λ is stable by the
action of elements of the affine Weyl group Wa. Indeed, for any x ∈ Λ, its image
by an affine reflection σr,k for r ∈ R and k ∈ Z, as defined in Section 1.2.4, is
σr,k(x) = x − (〈x, r〉 − k)r∨. For any r ∈ R and x ∈ (1

2Z)4, the inner product 〈x, r〉
is in 1

2Z, hence (〈x, r〉 − k) is in 1
2Z as well. The coefficients of the dual root r∨ are

integers, so (〈x, r〉− k)r∨ ∈ (1
2Z)4, hence σr,k(x) ∈ (1

2Z)4. By assumption, the sum of
coefficients of x is an integer. For any r ∈ R+ defined above, the sum of coefficients
of 1

2r is an integer as well. Therefore σr,k(x) ∈ Λ. Now recall that one can obtain
any simplex from another simplex by an element of Wa, which is generated by affine
reflections σr,k. All vertices of σ are in Λ, so with the above observation we conclude
that any vertex in V is in Λ as well.
To prove the other inclusion, observe that {e1 + e2, e1 − e2, e3 + e4, e3 − e4} is a set
of four linearly independent positive roots that have integer inner products with any
element in Λ.
With both inclusions proven, we conclude that V = Λ, which is a lattice.

(b) Let V be the the vertex set of the triangulation. We will now prove that v = u3−u2 =
1
2e3 is not in the vertex set, which implies that V does not form a lattice.
One can easily check that the positive roots that have integer inner product with v
are exactly:

{ei − ej | i, j ∈ {1, . . . , d} \ {3} and i < j} ∪
{ei + ej | i, j ∈ {1, . . . , d} \ {3} and i < j}

and these roots span the vector space Vect(E \ {e3}), which is (d − 1)-dimensional.
Thus, there does not exist (r1, ..., rd) ⊆ R+ that are linearly independent and have
integer inner products with v. We therefore conclude that v does not belong to V .
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1 2 3 2 1

2

1

τ1 τ3 τ4 τ5 τ6

τ2

τ0

Figure 2.10: On the left: the Coxeter diagram for a triangulation of type Ẽ6. The labels
on vertices are the inverse ratios of heights. On the right: the notations of the facets of the
fundamental simplex that are used in the proofs.

2.4.5 Ẽ6

1. The hyperplanes that contain facets of the fundamental simplex σ can be defined as follows:

for τ0 : 1
2((x1 + x2 + x3 + x4 + x5 + x8)− (x6 + x7)) = 1

for τ1 : (x1 + x8)− (x2 + x3 + x4 + x5 + x6 + x7) = 0
for τ2 : x1 + x2 = 0
for τ3 : x1 − x2 = 0
for τ4 : x2 − x3 = 0
for τ5 : x3 − x4 = 0
for τ6 : x4 − x5 = 0

2. The vertices of σ are (in R8) [CS87, Chapter 21]:

u0 =
(
0{8}

)
u1 =

(
0{5},−2

3

{2}
, 2

3

)
u2 =

(
1
4

{5}
,−1

4

{2}
, 1

4

)
u3 =

(
−1

4 ,
1
4

{4}
,− 5

12

{2}
, 5

12

)
u4 =

(
0{2}, 1

3

{3}
,−1

3

{2}
, 1

3

)
u5 =

(
0{3}, 1

2

{2}
,−1

3

{2}
, 1

3

)
u6 =

(
0{4}, 1,−1

3

{2}
, 1

3

)
3. According to Figure 2.10 left, the smallest height falls on τ4. By computing, the distance

from u4 to the hyperplane x2 − x3 = 0 we get:

h(σ) =

√
2

6
.

4. The circumcentre is (0{2},−1
6

{2}
, 1

3 ,−
1
3

{2}
, 1

3) and the circumradius is R(σ) = 1√
2
, which is

easily verifiable. The incentre is (0, 1
12 ,

1
6 ,

1
4 ,

1
3 ,−

1
3 ,−

1
3 ,

1
3) and the inradius is r(σ) = 1

12
√

2
,

which is easily verifiable.

5. The longest edge is L(σ) = 2√
3
.

6. The aspect ratio, the thickness and the radius ratio are:

α(σ) =
h(σ)

R(σ)
=

1

6
and θ(σ) =

h(σ)

L(σ)
=

1

2
√

6
and ρ(σ) =

r(σ)

R(σ)
=

1

12
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7. The volume of the simplex σ is: vol(σ) =
√

3
51840 .

Therefore, the fatness is:

Θ(σ) =
vol(σ)

L(σ)6
=

√
3

174960
∼ 9.900 · 10−6

8. Observe that the inner products of the normal vector n = (0{3}, 1, 0{4}) to the hyperplane
x4 = 0 with the circumcentre and the vertices have different signs: the inner product
〈n, c〉 = −1

6 is strictly negative, whereas the inner products 〈n, ui〉 are all non-negative.
Therefore the hyperplane x4 = 0 separates the circumcentre from the rest of the simplex,
so by Theorem 2.3.8 the triangulation is not Delaunay.

9.

Proposition 2.4.8. The vertex set of a Ẽ6 triangulation does not form a lattice.

Proof. A point v ∈ R8 is a vertex of the triangulation if and only if it lies in the intersection
of at least 6 hyperplanes in H (as defined in Section 1.2.4) that are linearly independent.
Equivalently, the inner products of at least 6 linearly independent positive roots should be
integers.

Let E = {e1, ..., e8} be the canonical basis of R8. Bourbaki [Bou02, Planche V] gives the
explicit expressions of positive roots:

R+ = {ej − ei | i, j ∈ {1, . . . , 5} and i < j} ∪
{ei + ej | i, j ∈ {1, . . . , 5} and i < j} ∪{

1

2

(
e8 − e7 − e6 +

5∑
i=1

(−1)ν(i)ei

) ∣∣∣∣∣
5∑
i=1

ν(i) is even

}
.

Let V be the vertex set of the corresponding triangulation. We will now prove that v =
−2u1 + 3u2 + 3u3− 2u4 = 3

2e2 is not in the vertex set, which implies that V does not form
a lattice.

One can easily check that the positive roots that have integer inner product with v are
exactly:

{ej − ei | i, j ∈ {1, 3, 4, 5} and i < j} ∪
{ei + ej | i, j ∈ {1, 3, 4, 5} and i < j}

and these roots span the vector space Vect({e1, e3, e4, e5}), which is 4-dimensional.

Thus, there do not exist (r1, ..., r6) that are linearly independent and have integer inner
products with v. We therefore conclude that v does not belong to V .

2.4.6 Ẽ7

1. The hyperplanes that contain facets of the fundamental simplex σ can be defined as follows:
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2.4. Geometrical analysis of each family of Coxeter triangulations

1 2 3 4 3 2 1

2

τ0 τ1 τ3 τ4 τ5 τ6 τ7

τ2

Figure 2.11: On the left: the Coxeter diagram for a triangulation of type Ẽ7. The labels
on vertices are the inverse ratios of heights. On the right: the notations of the facets of the
fundamental simplex that are used in the proofs.

for τ0 : x7 − x8 = 1
for τ1 : (x1 + x8)− (x2 + x3 + x4 + x5 + x6 + x7) = 0
for τ2 : x1 + x2 = 0
for τ3 : x1 − x2 = 0
for τ4 : x2 − x3 = 0
for τ5 : x3 − x4 = 0
for τ6 : x4 − x5 = 0
for τ7 : x5 − x6 = 0

2. The vertices of σ are (in R8) [CS87, Chapter 21]:

u0 =
(
0{8}

)
u1 =

(
0{6}, 1

2 ,−
1
2

)
u2 =

(
−1

4

{6}
, 1

2 ,−
1
2

)
u3 =

(
1
6 ,−

1
6

{5}
, 1

2 ,−
1
2

)
u4 =

(
0{2},−1

4

{4}
, 1

2 ,−
1
2

)
u5 =

(
0{3},−1

3

{3}
, 1

2 ,−
1
2

)
u6 =

(
0{4},−1

2

{2}
, 1

2 ,−
1
2

)
u7 =

(
0{5},−1, 1

2 ,−
1
2

)
3. According to Figure 2.6 left, the smallest height falls on τ4. By computing, the distance

from u4 to the hyperplane x2 − x3 = 0 we get:

h(σ) =

√
2

8
.

4. The circumcentre is (−1
8

{2}
, 0{3},−1

2 ,
1
4 ,−

1
4) and the circumradius is R(σ) = 1

4

√
13
2 , which

is easily verifiable. The incentre is (0,− 1
18 ,−

1
9 ,−

1
6 ,−

2
9 ,−

5
18 ,

17
36 ,−

17
36) and the inradius is

r(σ) = 1
18
√

2
, which is easily verifiable.

5. The longest edge is L(σ) =
√

3
2 .

6. The aspect ratio, the thickness and the radius ratio are:

α(σ) =
h(σ)

R(σ)
=

1

2
√

13
and θ(σ) =

h(σ)

L(σ)
=

1

4
√

3
and ρ(σ) =

r(σ)

R(σ)
=

2

9
√

13

7. The volume of σ is: vol(σ) =
√

2
2903040 .
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Therefore, the fatness is:

Θ(σ) =
vol(σ)

L(σ)7
=

√
3

14696640
∼ 1.179 · 10−7

8. Observe that the inner products of the normal vector s4 to the hyperplane that contains τ4

with the circumcentre and the vertices have different signs: the inner product 〈s4, c〉 = −1
8

is strictly negative, whereas the inner products 〈n, ui〉 are all non-negative. Therefore the
hyperplane that contains τ4 separates the circumcentre from the rest of the simplex, so by
Theorem 2.3.8 the triangulation is not Delaunay.

9.

Proposition 2.4.9. The vertex set of a Ẽ7 triangulation does not form a lattice.

Proof. A point v ∈ R8 is a vertex of the triangulation if and only if it lies in the intersection
of at least 7 hyperplanes in H (as defined in Section 1.2.4) that are linearly independent.
Equivalently, the inner products of at least 7 linearly independent positive roots should be
integers.

Let E = {e1, ..., e8} be the canonical basis of R8. Bourbaki [Bou02, Planche VI] gives the
explicit expressions of positive roots:

R+ = {ej − ei | i, j ∈ {1, . . . , 6} and i < j} ∪
{ei + ej | i, j ∈ {1, . . . , 6} and i < j} ∪{

1

2

(
e8 − e7 +

6∑
i=1

(−1)ν(i)ei

) ∣∣∣∣∣
6∑
i=1

ν(i) is odd

}
.

Let V be the vertex set of the corresponding triangulation. We will now prove that v =
−6u1 + 2u2 + 3u3 − 4u4 = e2 is not in the vertex set, which implies that V does not form
a lattice.

One can easily check that the positive roots that have integer inner product with v are
exactly:

{ej − ei | i, j ∈ {1, . . . , 6} and i < j} ∪
{ei + ej | i, j ∈ {1, . . . , 6} and i < j}

and these roots span the vector space Vect({e1, ..., e6}), which is 6-dimensional. Thus,
there does not exist (r1, ..., r7) ⊆ R+ that are linearly independent and have integer inner
products with v. We therefore conclude that v does not belong to V .

2.4.7 Ẽ8

1. The hyperplanes that contain facets of the fundamental simplex σ can be defined as follows:
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2 4 6 5 4 3 2 1

3

τ1 τ3 τ4 τ5 τ6 τ7 τ8 τ0

τ2

Figure 2.12: On the left: the Coxeter diagram for a triangulation of type Ẽ8. The labels
on vertices are the inverse ratios of heights. On the right: the notations of the facets of the
fundamental simplex that are used in the proofs.

for τ0 : x7 + x8 = 1
for τ1 : (x1 + x8)− (x2 + x3 + x4 + x5 + x6 + x7) = 0
for τ2 : x1 + x2 = 0
for τ3 : x1 − x2 = 0
for τ4 : x2 − x3 = 0
for τ5 : x3 − x4 = 0
for τ6 : x4 − x5 = 0
for τ7 : x5 − x6 = 0
for τ8 : x6 − x7 = 0

2. The vertices of σ are [CS87, Chapter 21]:

u0 =
(
0{8}

)
u1 =

(
0{7}, 1

)
u2 =

(
1
6

{7}
, 5

6

)
u3 =

(
−1

8 ,
1
8

{6}
, 7

8

)
u4 =

(
0{2}, 1

6

{5}
, 5

6

)
u5 =

(
0{3}, 1

5

{4}
, 4

5

)
u6 =

(
0{4}, 1

4

{3}
, 3

4

)
u7 =

(
0{5}, 1

3

{2}
, 2

3

)
u8 =

(
0{6}, 1

2

{2}
)

3. The circumcentre is (− 1
12

2
, 05, 1

2) and the circumradius is R(σ) =
√

38
12 , which is easily

verifiable. The incentre is (0, 1
30 ,

1
15 ,

1
10 ,

2
15 ,

1
6 ,

1
5 ,

23
30) and the inradius is r(σ) = 1

30
√

2
, which

is easily verifiable.

4. According to Figure 2.6 left, the smallest height falls on τ4. By computing, the distance
from u4 to the hyperplane x2 − x3 = 0 we get:

h(σ) =

√
2

12
.

5. The longest edge is L(σ) = 1.

6. The aspect ratio, the thickness and the radius ratio are:

α(σ) =
h(σ)

R(σ)
=

1

2
√

19
and θ(σ) =

h(σ)

L(σ)
=

1

6
√

2
and ρ(σ) =

r(σ)

R(σ)
=

1

5
√

19
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7. The volume of σ is: vol(σ) = 1
696729600 ∼ 1.435 · 10−9.

Therefore the fatness is:

Θ(σ) =
vol(σ)

L(σ)8
=

1

696729600
∼ 1.435 · 10−9

8. Observe that the inner products of the normal vector n = (0, 1, 0{6}) to the hyperplane
x2 = 0 with the circumcentre and the vertices have different signs: the inner product
〈n, c〉 = − 1

12 is strictly negative, whereas the inner products 〈n, ui〉 are all non-negative.
Therefore the hyperplane x2 = 0 separates the circumcentre from the rest of the simplex,
so by Theorem 2.3.8 the triangulation is not Delaunay.

9.

Proposition 2.4.10. The vertex set of a Ẽ8 triangulation does not form a lattice.

Proof. A point v ∈ R8 is a vertex of the triangulation if and only if it lies in the intersection
of at least 8 hyperplanes in H (as defined in Section 1.2.4) that are linearly independent.
Equivalently, the inner products of at least 8 linearly independent positive roots should be
integers.

Let E = {e1, ..., e8} be the canonical basis of R8. Bourbaki [Bou02, Planche VII] gives the
explicit expressions of positive roots:

R+ = {ej − ei | i, j ∈ {1, . . . , 7} and i < j} ∪
{ei + ej | i, j ∈ {1, . . . , 7} and i < j} ∪{

1

2

(
e8 +

7∑
i=1

(−1)ν(i)ei

) ∣∣∣∣∣
7∑
i=1

ν(i) is even

}
.

Let V be the vertex set of the corresponding triangulation. We will now prove that v =
−u1 + 3u2 + 4u3 − 6u4 = e2 is not in the vertex set, which implies that V does not form a
lattice.

One can easily check that the positive roots that have integer inner product with v are
exactly:

{ej − ei | i, j ∈ {1, . . . , 7} and i < j} ∪
{ei + ej | i, j ∈ {1, . . . , 7} and i < j}

and these roots span the vector space Vect({e1, ..., e7}), which is 7-dimensional. Thus,
there does not exist (r1, ..., r8) ⊆ R+ that are linearly independent and have integer inner
products with v. We therefore conclude that v does not belong to V .

2.4.8 F̃4

1. The hyperplanes that contain facets of the fundamental simplex σ can be defined as follows:
for τ0 : x1 + x2 = 1
for τ1 : x2 − x3 = 0,
for τ2 : x3 − x4 = 0,
for τ3 : x4 = 0
for τ4 : x1 − x2 − x3 − x4 = 0
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4

1 2 3 2
√
2
√
2

4

τ0 τ1 τ2 τ3 τ4

Figure 2.13: On the left: the Coxeter diagram for a triangulation of type F̃4. The labels on ver-
tices are the inverse ratios of heights. On the right: the notations of the facets of the fundamental
simplex that are used in the proofs.

2. From the equations of hyperplanes it is easy to check that the following points:

u0 = (0, 0, 0, 0)
u1 =

(
1
2 ,

1
2 , 0, 0

)
u2 =

(
2
3 ,

1
3 ,

1
3 , 0
)

u3 =
(

3
4 ,

1
4 ,

1
4 ,

1
4

)
u4 = (1, 0, 0, 0)

are the vertices of σ.

3. The inverse height proportions in Figure 2.13 left suggest that the smallest height cor-
responds to τ2. By computing, the distance from u2 to the hyperplane x3 − x4 = 0 we
get:

h(σ) =

√
2

6
.

4. The circumcentre of the simplex is (1
2 , 0, 0, 0) and the circumradius is R(σ) = 1

2 , which is

easily verifiable. The incentre is
(

6+5
√

2
6(2+

√
2)
, 4+

√
2

6(2+
√

2)
, 1

6 ,
√

2
6(2+

√
2)

)
and the inradius is r(σ) =

√
2

6(2+
√

2)
, which is easily verifiable.

5. The longest edge is given by ~u4 − ~u0 and is equal to L(σ) = 1.

6. The aspect ratio, the thickness and the radius ratio are:

α(σ) =
h(σ)

R(σ)
=

√
2

6
and θ(σ) =

h(σ)

L(σ)
=

√
2

6
and ρ(σ) =

r(σ)

R(σ)
=

√
2

3(2 +
√

2)

7. The volume of σ is: vol(σ) = 1
576 = 0.00174.

Therefore the fatness is:
Θ(σ) =

vol(σ)

L(σ)4
=

1

576
∼ 0.00174

8. Observe that all inner products of the normals si to hyperplanes that contain τi and the
corresponding opposite vertices ui are positive. Observe as well that the inner products
with the circumcentre 〈si, c〉 are either positive or zero. It implies that the circumcentre
lies on the boundary of the simplex, therefore by Theorem 2.3.8 the triangulation is non-
protected Delaunay.

9.

Proposition 2.4.11. The vertex set of a F̃4 triangulation does not form a lattice.

Proof. A point v ∈ R4 is a vertex of the triangulation if and only if it lies in the intersection
of at least 4 hyperplanes in H (as defined in Section 1.2.4) that are linearly independent.
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Equivalently, the inner products of at least 4 linearly independent positive roots should be
integers.

Let E = {e1, ..., e4} be the canonical basis of R4. Bourbaki [Bou02, Planche VIII] gives
the explicit expressions of positive roots:

R+ = E ∪ {ei ± ej | i, j ∈ {1, . . . , 4} and i < j} ∪
{

1

2
(e1 ± e2 ± e3 ± e4)

}
.

Let V be the vertex set of the corresponding triangulation. We will now prove that v =
u1 +u2 =

(
7
6 ,

5
6 ,

1
3 , 0
)
is not in the vertex set, which implies that V does not form a lattice.

One can easily check that the positive roots that have integer inner product with v are
exactly {

e4, e1 + e2,
1

2
(e1 − e2 − e3 ± e4)

}
.

Note that 1
2(e1 − e2 − e3 + e4) = 1

2(e1 − e2 − e3 − e4) + e4, so these roots are not linearly
independent. Thus, there does not exist (r1, ..., r4) ⊆ R+ that are linearly independent
and have integer inner products with v. We therefore conclude that v does not belong to
V .

2.4.9 G̃2
6

Simplex of G̃2 triangulation (also called Kisrhombille tiling) is the right triangle with π/6 angle.
By an easy computation, the aspect ratio, thickness and radius ratio are as follows:

α(σ) = θ(σ) =

√
3

4
and ρ(σ) =

1

1 +
√

3

The fatness is Θ(σ) =
√

3
8 .

The circumcentre of any triangle lies on its hypotenuse, therefore by Theorem 2.3.8 the
triangulation is non-protected Delaunay.

It is obvious from Figure 1.10 that the vertex set of the triangulation does not form a lattice.

2.5 Protection value of a triangulation of type Ãd

In this section we will prove the bound on the protection stated in Theorem 2.2.1.

Lemma 2.5.1. A Coxeter triangulation of type Ãd has a relative protection equal to

δ̂ =

√
d2 + 2d+ 24−

√
d2 + 2d√

d2 + 2d
∼ 12

d2
.

Proof. Let V be the vertex set of the triangulation containing the simplex in the Ãd row of
Table 2.3. By Proposition 2.4.2 in Section 2.4, V coincides with the coweight lattice, which
corresponds to a root system R of type Ad.

Take the following basis vectors of the coweight lattice V :

~uk =
1

d+ 1

(
(k − (d+ 1)){k}, k{d+1−k}

)
, for 0 ≤ k ≤ d.
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2.5. Protection value of a triangulation of type Ãd

This means that any point of V can be expressed as
∑d

k=1 αk~uk, with αk ∈ Z for all k ∈
{1, . . . , d}. Each coordinate of (d+ 1)~uk is an integer congruent to k modulo (d+ 1). Following
the definition of [ABD10], we call a point a remainder-k point if its coordinates are congruent to
k modulo (d+ 1). Since any lattice point z in V can be written as z =

∑
αk~uk, it follows that

z is a k̃-remainder point, where k̃ is congruent to (
∑
αk · k) modulo (d+ 1).

We will now look at the circumcentre c = 1
d+1

(
−d

2 ,−
d−2

2 ,−d−4
2 , . . . , d2

)
of σ and find its

nearest neighbours in the lattice. Take

z =
1

d+ 1

(
n1(d+ 1) + k̃, · · · , nd+1(d+ 1) + k̃

)
,

a remainder-k̃ lattice point, for some k̃ ∈ {0, . . . , d}. Note that because the lattice V resides in
the hyperplane

∑d+1
i=1 xi = 0, we have

〈
z, (1{d+1})

〉
= 0, and therefore

∑
ni = −k̃. We need to

find the value of n = (n1, · · · , nd+1) ∈ N =
{
x ∈ Zd+1

∣∣∑xi = −k̃
}

which minimizes d(z, c) for

a given k̃. We now state the following claim, which will be proved below.

Claim 1. For each k ∈ Z/(d+1)Z, the closest remainder-k point in V to c is uk. A remainder-k
point that is the second closest corresponds to the vector n equal to{

(−1{k−1}, 0,−1, 0{d−k}), for k ∈ {1, ..., d}
(−1, 0{d−1}, 1), if k = 0

and has the coordinates{
((k − (d+ 1)){k−1}, k, k − (d+ 1), k{d−k}), for k ∈ {1, ..., d}
(−(d+ 1), 0{d−1}, d+ 1), if k = 0

.

Each of these points are at a distance

R′ =

√
d(d+ 2)

12(d+ 1)
+

2

d+ 1

from c.

This claim implies that the protection radius of σ is

R′ −R =

√
d(d+ 2)

12(d+ 1)
+

2

d+ 1
−

√
d(d+ 2)

12(d+ 1)
.

Thus, the relative protection is

δ̂ =

√
d2 + 2d+ 24−

√
d2 + 2d√

d2 + 2d
=

√
1 +

24

d2 + 2d
− 1 ∼

(
1 +

12

d2 + 2d

)
− 1 ∼ 12

d2
.

This completes the proof of Lemma 2.5.1 apart from the claim, which we will focus on now.

The main ingredient for the proof of the Claim is the following lemma.

Lemma 2.5.2. The difference between the two squared distances d(z, c)2 and d(z′, c)2 for two
points z and z′ of the lattice V is of the form 2q

d+1 where q is an integer.
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Proof. It is enough to compare the distances for z and z′ of the same congruence class. Indeed,
each congruence class k already contains the point uk, which is of squared distance R2 from c.
The difference between any two squared distances d(z, c)2 and d(z′, c)2, for z and z′ a remainder-k
and a remainder-k′ point respectively, can be expressed as

d(z, c)2 − d(z′, c)2 = (d(z, c)2 − d(z, uk)
2)− (d(z′, c)2 − d(z′, uk′)

′2).

If both differences are in 2
d+1Z, the overall difference is in 2

d+1Z as well.
So let:

z =
1

d+ 1

(
n0(d+ 1) + k, · · · , nd(d+ 1) + k

)
and

z′ =
1

d+ 1

(
n′0(d+ 1) + k, · · · , n′d(d+ 1) + k

)
be two remainder-k points of V , with ni and n′i integers for all i ∈ {1, . . . , d+ 1}. The difference
between d(z, c)2 and d(z′, c)2 can be expressed as:

d(z, c)2 − d(z′, c)2 = (‖z‖2 − 2 〈z, c〉+ ‖c‖2)− (‖z′‖2 − 2
〈
z′, c

〉
+ ‖c‖2)

= ‖z‖2 − ‖z′‖2 − 2
〈
z − z′, c

〉
=

d∑
i=0

(
ni +

k

d+ 1

)2

−
d∑
i=0

(
n′i +

k

d+ 1

)2

−2
d∑
i=0

(
ni +

k

d+ 1
− n′i −

k

d+ 1

)(
− d

2(d+ 1)
+

i

d+ 1

)

=
d∑
i=0

(ni − n′i)
(
ni + n′i +

2k

d+ 1

)
+ 2

d∑
i=0

(ni − n′i)
(
d/2− i
d+ 1

)

=

d∑
i=0

(ni − n′i)
(
ni + n′i +

2k + d− 2i

d+ 1

)
Because

∑d
i=0 ni = −k, we can express n0 = −k −

∑d
i=1 ni. Therefore:

d(z, c)2 − d(z′, c)2 =

d∑
i=1

(ni − n′i)
(
ni + n′i +

2k + d− 2i

d+ 1

)
+(n0 − n′0)

(
n0 + n′0 +

2k + d

d+ 1

)
=

d∑
i=1

(ni − n′i)
(
ni + n′i +

2k + d− 2i

d+ 1

)

−

(
d∑
i=1

(ni − n′i)

)(
−2k −

d∑
i=1

(ni + n′i) +
2k + d

d+ 1

)

The last expression is further simplified to

d∑
i=1

(ni − n′i)

ni + n′i + 2k +
d∑
j=1

(nj + n′j)−
2i

d+ 1

 .
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We will split this expression into two parts:

d∑
i=1

(ni − n′i)

ni + n′i +
d∑
j=1

(nj + n′j)

+
2

d+ 1

d∑
i=1

(ni − n′i)((d+ 1)k − i). (2.7)

The second part of the expression (2.7) is already of the form 2q′

d+1 with q′ an integer, so we
will be interested in the first part.

Let ai ∈ Z/2Z be the congruence class of (ni − n′i) modulo 2. At the same time, ai is the
congruence class of (ni + n′i) modulo 2. So the first part of the expression has the congruence
class modulo 2 as follows:

d∑
i=1

ai

ai +

d∑
j=1

aj

 =

d∑
i=1

a2
i +

(
d∑
i=1

ai

)2

= 2

d∑
i=1

d∑
j=0
j 6=i

aiaj = 0.

It implies that the first part of (2.7) is an even integer and it can be represented as 2q′′

d+1 for
some integer q′′. Thus, the difference d(z, c)2−d(z′, c)2 can be expressed as 2q

d+1 for some integer
q.

Proof (of Claim). A consequence of Lemma 2.5.2 is that the minimal positive difference between
two squared distances is 2

d+1 . By Theorem 2.3.8 we know that the triangulation has a non-zero
protection, so out of all points in V only the vertices of σ are distant from c by the circumradius
R, and they are unique to be so in their respective congruence class. The squared distance R′2

between the points in the statement of the Claim and the circumcentre c is exactly different from
R2 by 2

d+1 , so these points are indeed second closest points to c after the vertices of σ, which
concludes the proofs of the Claim and Lemma 2.5.1.

Remark 2.5.3. One can verify that the points in the statement of the Claim are the only second
closest points to c in V , but it goes beyond the scope of this thesis.

2.6 Numerical values of quality measures of simplices in Coxeter
triangulations

In Tables 2.4, 2.5, 2.6 and 2.7 we present the numerical values of the normalized aspect ratio,
radius ratio, fatness and thickness respectively.
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d = 2 3 4 5 6 7 8
Ãd 1.000 0.949 0.894 0.845 0.802 0.764 0.730
B̃d - 0.474 0.462 0.445 0.429 0.412 0.398
C̃d 0.666 0.612 0.566 0.527 0.495 0.468 0.444
D̃d - - 0.400 0.393 0.383 0.371 0.363
Ẽd - - - - 0.286 0.243 0.204
F̃d - - 0.377 - - - -
G̃d 0.577 - - - - - -

Table 2.4: A comparative table showing the normalized aspect ratio α̂ value for Coxeter trian-
gulations.

d = 2 3 4 5 6 7 8
Ãd 1.000 0.949 0.894 0.845 0.802 0.764 0.730
B̃d - 0.701 0.623 0.568 0.526 0.492 0.464
C̃d 0.828 0.717 0.641 0.584 0.540 0.505 0.475
D̃d - - 0.667 0.589 0.537 0.497 0.467
Ẽd - - - - 0.500 0.431 0.367
F̃d - - 0.553 - - - -
G̃d 0.732 - - - - - -

Table 2.5: A comparative table showing the normalized radius ratio ρ̂ value for Coxeter triangu-
lations.

d = 2 3 4 5 6 7 8
Ãd 1.000 0.891 0.864 0.807 0.781 0.743 0.721
B̃d - 0.816 0.688 0.607 0.551 0.509 0.475
C̃d 0.760 0.648 0.579 0.529 0.491 0.461 0.436
D̃d - - 0.818 0.697 0.619 0.562 0.518
Ẽd - - - - 0.528 0.422 0.363
F̃d - - 0.472 - - - -
G̃d 0.707 - - - - - -

Table 2.6: A comparative table showing the normalized fatness Θ̂1/d value for Coxeter triangu-
lations.

d = 2 3 4 5 6 7 8
Ãd 1.000 0.866 0.816 0.745 0.707 0.661 0.632
B̃d - 0.500 0.447 0.408 0.378 0.354 0.333
C̃d 0.577 0.500 0.447 0.408 0.378 0.354 0.333
D̃d - - 0.447 0.408 0.378 0.354 0.333
Ẽd - - - - 0.268 0.191 0.153
F̃d - - 0.298 - - - -
G̃d 0.500 - - - - - -

Table 2.7: A comparative table showing the normalized thickness θ̂ value for Coxeter triangula-
tions.
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Chapter 3

Freudenthal-Kuhn triangulation of Rd

In this chapter, we will define the Freudenthal-Kuhn triangulation of the Euclidean space Rd.
Freudenthal-Kuhn triangulations were invented independently by Freudenthal [Fre42] and Kuhn
[Kuh60]. These triangulations are also known as K1 triangulations [Tod76], Freudenthal’s tri-
angulations [Eav84, Dan95, EK12], Kuhn’s triangulations [Moo92]. These are not independent
from Coxeter triangulations of type Ã that we discussed in the previous chapters. In fact, the
Freudenthal-Kuhn triangulation of Rd is identical to Coxeter triangulations of type Ãd up to a
linear transformation (see Theorem 3.1.7 and Figure 3.1 below). For this reason, Freudenthal-
Kuhn triangulations are also called Coxeter-Freudenthal-Kuhn’s triangulations [Hen07].

Our main motivation for the study of Freudenthal-Kuhn triangulations is that the following
queries can be answered in a time- and space-efficient manner:

Point location: Compute the simplex in the triangulation that contains a given point.

Face generation: Generate the faces of a specific dimension of a given simplex in the triangu-
lation.

Coface generation: Generate the cofaces of a specific dimension of a given simplex in the
triangulation.

We introduce the algorithms that answer these three queries in Sections 3.4 and 3.5. These

Figure 3.1: Coxeter triangulation of type Ã2 (left) and the Freudenthal-Kuhn triangulation of
R2 (right).
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algorithms are an essential part of the data structure in Chapter 4 that we use for the manifold
tracing algorithm.

Freudenthal-Kuhn triangulations were studied extensively in the past. In addition to de-
scribing the known results on Freudenthal-Kuhn triangulations, we introduce in this chapter
new definitions and algorithms. Here is our two main contributions in the chapter:

• Freudenthal [Fre42] defined a representation for every d-dimensional simplex that lies in
the Freudenthal-Kuhn triangulation of Rd. Inspired by the work of Eaves [Eav84] and by
the description of the facial structure of a permutahedron in Section 1.3, we generalize the
representation of d-dimensional simplices in the Freudenthal-Kuhn triangulation of Rd to
simplices of arbitrary dimension. We call the new representation of simplices of arbitrary
dimension the permutahedral representation.

• Kuhn [Kuh68] provided two algorithms that use the Freudenthal representations of d-
dimensional simplices in the Freudenthal-Kuhn triangulation of Rd: point location and
adjacent d-dimensional simplex computation. We introduce the face generation algorithm
and the coface generation algorithm that use the permutahedral representation of simplices
of arbitrary dimension. We use these two algorithms in Chapter 4 for our manifold tracing
algorithm.

The chapter is organized as follows. In Section 3.1, we define the Freudenthal-Kuhn triangu-
lation of Rd and the Freudenthal representation of its d-dimensional simplices. In Section 3.1.1,
we describe the two algorithms by Kuhn [Kuh68]: point location and adjacent d-dimensional
simplex computation. In Section 3.2, we define Eaves notation. Eaves notation is an important
intermediate step for generalizing the Freudenthal representation for d-dimensional simplices to
the permutahedral representation for simplices of arbitrary dimension. We define the permuta-
hedral representation in Section 3.3. In Section 3.4, we generalize the point location operation in
Section 3.1.1 to take into account lower-dimensional simplices using the introduced permutahe-
dral representation. Lastly, we introduce the face and coface generation algorithms for simplices
in Freudenthal-Kuhn triangulations in Section 3.5.

3.1 Definition of Freudenthal-Kuhn triangulation of Rd

Although Coxeter triangulations of type Ãd and Freudenthal-Kuhn triangulations are identi-
cal up to a linear transformation, they are defined in very different ways. Recall that Cox-
eter triangulations are defined as hyperplane arrangements (see Corollary 1.2.32). In contrast,
Freudenthal-Kuhn triangulations are defined using two things:

• The unit cubical partition of the Euclidean space Rd (defined in Definition 3.1.1 below).

• A specific triangulation, in which each cube in the unit cubical partition is subdivided.

The Freudenthal-Kuhn triangulation of Rd is the union of the triangulations of all cubes in the
unit cubical partition. We will now define the unit cubical partition and the triangulation of the
cubes.

Unit cubical partitions We start with the definition of the unit cube and the unit cubical
partition of the Euclidean space Rd.
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π = (1, 2) :

v0 = y v1 = v0 + eπ(1)

v2 = v1 + eπ(2)

π = (2, 1) :

v0 = y

v1 = v0 + eπ(1) v2 = v1 + eπ(2)

eπ(1)

eπ(2)

eπ(1)

eπ(2)

Figure 3.2: Two 2-dimensional simplices σ̂(y, π) (in green) for a fixed y and two possible values
of π. The unit cube to which σ̂(y, π) belongs is shown in dashed lines. On the right: the
corresponding paths (in red) along the edges of the unit cube (see Remark 3.1.6).

Definition 3.1.1 (Unit cubical partition). The d-dimensional unit cube is the polytope defined
as the Cartesian product of d unit intervals: [0, 1]d.

The unit cubical partition of the Euclidean space Rd is a cell complex that consists of copies
of the unit cube and its faces translated along the integer lattice Zd.

Remark 3.1.2. Note that all vertices in a unit cubical partition have integer Cartesian coordi-
nates.

We will refer to a d-dimensional cube in the unit cubical partition of the Euclidean space
Rd by its vertex that has the smallest coordinates with respect to each canonical basis vector.
For example, the three-dimensional cube defined as the Cartesian product of three intervals
[4, 5]× [2, 3]× [−1, 0] will be referred by three coordinates (4, 2,−1).

Freudenthal representation. We will now define the triangulations of the cubes in the unit
cubical partition. For this, we will define each of the d-dimensional simplices in the triangulation
by parametrizing them with a permutation [Fre42].

Definition 3.1.3 (Freudenthal representation). Let y ∈ Zd. Let π be a permutation of {1, . . . , d}.
The d-dimensional simplex σ̂(y, π) is the convex hull of d+1 vertices v0, . . . , vd defined as follows:

v0 = y

vi = vi−1 + eπ(i), for i ∈ {1, . . . , d}.

Here eπ(i) stands for the π(i)-th vector in the canonical basis of Rd. We will refer to the notation
σ̂(y, π) as the Freudenthal representation.
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Remark 3.1.4. Note that the size complexity of storing the Freudenthal representation of a
simplex is 2d. This complexity is smaller than the size complexity O(d2) of storing the Cartesian
coordinates of the d+ 1 vertices.

Remark 3.1.5. In the following, we adopt the following convention. We put a hat on the nota-
tions of simplices that are exclusive for d-dimensional simplices (the Freudenthal representation
σ̂(y, π) above and Eaves notations ϕ̂(y, π) in Section 3.2). The corresponding notations with-
out a hat (generalized Eaves notation ϕ(y, ω) and the permutahedral representation σ(y, ω) in
Section 3.3.6) indicate the respective generalizations to simplices of arbitrary dimension.

Two two-dimensional simplices given by their Freudenthal representations are illustrated in
Figure 3.2. The vertex y in a Freudenthal representation σ(y, π) indicates the cube in the unit
cubical partition of Rd, in which the d-dimensional simplex lies. The permutation π identifies
the specific d-dimensional simplex in the triangulation of the cube. In the following, we will use
the tuple (π(1), . . . , π(d)) to represent a permutation π.

Remark 3.1.6 (Freudenthal representation and paths on a cube). The permutation π can be
visualized as a path in the unit cube along the vectors eπ(1), . . . , eπ(d) (see Figure 3.2 right).

Freudenthal-Kuhn triangulation of Rd. A classical result is that the simplices σ̂(y, π) define
a triangulation of Rd.

Theorem 3.1.7. Let F be the set of d-dimensional simplices σ̂(y, π) for all points y ∈ Zd
and permutations π : {1, . . . , d} → {1, . . . , d}. The simplices in F and their faces define a
triangulation of Rd.

A proof of Theorem 3.1.7 can be found, for example, in Todd [Tod76, Chapter III, Lemma
3.2].

Definition 3.1.8. The triangulation in Theorem 3.1.7 is called the Freudenthal-Kuhn triangu-
lation of Rd.

Remark 3.1.9. Note that different d-dimensional simplices in the Freudenthal-Kuhn trian-
gulation of Rd have different Freudenthal representations. Combined with Theorem 3.1.7, it
follows that the Freudenthal representations σ̂(y, π) for all points y ∈ Zd and permutations
π : {1, . . . , d} → {1, . . . , d} are in one-to-one correspondence with the d-dimensional simplices in
the Freudenthal-Kuhn triangulation of Rd.

3.1.1 Operations using the Freudenthal representation

In this section, we will give an overview of the operations in the Freudenthal-Kuhn triangulation
of Rd that were introduced by Kuhn [Kuh68]. These operations are point location and adjacent
simplex computation.

Point location. The first operation introduced by Kuhn [Kuh68] is point location. This
operation takes as input an array containing the Cartesian coordinates of a point

x = (x1, . . . , xd) ∈ Rd.

It then outputs the Freudenthal representation σ̂(y, π) of a d-dimensional simplex lying in the
Freudenthal-Kuhn triangulation of Rd that contains the point x. The point location consists of
two steps.
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1. The integer part bxic and the fractional part {xi} are computed for each of the coordinates
x1, . . . , xd. The integer-valued vector y in the output Freudenthal representation is assigned
to be:

y = (bx1c, . . . , bxdc).

2. The fractional parts {x1}, . . . , {xd} are sorted in decreasing order. The permutation π in
the output Freudenthal representation is assigned to be such that the following inequalities
hold:

1 ≥ {xπ(1)} ≥ . . . ≥ {xπ(d)} ≥ 0.

Proposition 3.1.10. The point location outputs the Freudenthal representation σ(y, π) of a d-
dimensional simplex that contains the input point x. If all inequalities between the fractional
parts {x1}, . . . , {xd} are strict, then such a simplex is unique.

The reader can find the proof of Proposition 3.1.10 in Todd [Tod76, Chapter III, Lemma 3.2].
The time complexity of the point location operation is dominated by the complexity of sorting

the fractional parts {x1}, . . . , {xd}. Therefore:

Proposition 3.1.11. The time complexity of one call of the point location is O(d log d).

In Section 3.4, we will generalize the point location by Kuhn to an algorithm that outputs a
simplex of arbitrary dimension (using the permutahedral representation from Section 3.3). The
output simplex in the generalized point location is the smallest simplex that contains the input
point x. Hence, in contrast to Kuhn’s point location described above, the output simplex is
uniquely defined.

Computing the adjacent simplices. The second operation introduced by Kuhn [Kuh68] is
the adjacent d-dimensional simplex computation (see Figure 3.3). The problem is the following.
We are given:

• a d-dimensional simplex in the Freudenthal-Kuhn triangulation of Rd given by its Freuden-
thal representation σ(y, π),

• an integer k ∈ {0, . . . , d}.

Let vk be the vertex of the d-dimensional simplex σ(y, π) as in Definition 3.1.3. The goal is to
find the Freudenthal representation σ(y′, π′) of the d-dimensional simplex that is adjacent by the
facet of σ(y, π) that is opposite to the vertex vk.

For this, we treat three cases depending on the value of k. In each case, we explicitly give y′

and π′.

• If k = 1, then y′ and π′ are as follows:

y′ = v1 = y + eπ(1)

π′ = (π(2), . . . , π(d), π(1))

Note that y′, y′ + eπ(2), . . . , y
′ + eπ(2) + . . .+ eπ(d) are the vertices v1, . . . , vd of the simplex

σ̂(y, π). These vertices define the common facet of the simplices σ̂(y, π) and σ̂(y′, π′). In a
similar way, we can identify the vertices of the common facet in all other cases.
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σ̂((0, 0), (1, 2))

σ̂((0, 0), (2, 1)) σ̂((1, 0), (2, 1))

σ̂((0,−1), (2, 1))

v0

v1

v2

k = 2

k = 0

k = 1

Figure 3.3: Freudenthal representations of the simplices in the Freudenthal-Kuhn triangulation of
R2 (in grey dashed) that are adjacent to the simplex σ̂(y = (0, 0), π = (1, 2)) (highlighted in red)
by a facet. The vertices v0, v1, v2 of the simplex σ̂(y = (0, 0), π = (1, 2)) are as in Definition 3.1.3.
The values of k are shown on the arrows between two adjacent simplices.

• If 1 < k < d, then y′ and π′ are as follows:

y′ = y

π′ = (π(1), . . . , π(k − 2), π(k), π(k − 1), π(k + 1), . . . , π(d))

• If k = d, then y′ and π′ are as follows:

y′ = y − eπ(d)

π′ = (π(d), π(1), . . . , π(d− 1))

All cases are illustrated in Figure 3.3. Note that if 1 < k < d, then y′ is the same as y. In
this case, it means that the output simplex lies in the same cube of the unit cubical partition of
Rd as the input simplex.

3.1.2 Link with Coxeter triangulations of type Ãd

The Freudenthal-Kuhn triangulation of Rd from Definition 3.1.8 is closely related to Coxeter
triangulations of type Ãd, see Section 1.2.4. These two triangulations can be obtained from one
another via a linear transformation.

Theorem 3.1.12 ([DWLT90, p.405]). The Freudenthal-Kuhn triangulation of Rd is identical to
a Coxeter triangulation of type Ãd up to a linear transformation.
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A proof of Theorem 3.1.12 can be found in [DWLT90, p.405]. Here we give an alternative
and completely explicit proof, which is based on Proposition 3.1.17 in Section 3.1.3 and Theo-
rem 3.1.13 below. The latter explicitly gives the normal vectors of the hyperplanes that induce
the Freudenthal-Kuhn triangulation of Rd as a hyperplane arrangement. Proposition 3.1.17
shows that the set of these normal vectors is identical to a set of positive roots in a root system
of type Ad up to an explicitly given linear transformation.

Theorem 3.1.13. Denote by e1, . . . , ed ∈ Rd the vectors in the canonical basis of Rd. The
Freudenthal-Kuhn triangulation of Rd is an arrangement of a family of hyperplanes:

H = {Hu,k | u ∈ E, k ∈ Z},

where the hyperplanes Hu,k are defined as in Definition 1.2.23:

Hu,k = {x ∈ R | 〈x, u〉 = k},

and E is the following set of vectors:

E = {e1, . . . , ed} ∪ {ui,j = ej − ei | 1 ≤ i < j ≤ d}.

The proof of Theorem 3.1.13 is based on Lemmas 3.1.14 and 3.1.15, which will be treated
first. We show Theorem 3.1.13 after the proof of Lemma 3.1.15.

Lemma 3.1.14 below gives explicit supporting hyperplanes for d-dimensional simplices in the
Freudenthal-Kuhn triangulation of Rd.

Lemma 3.1.14. For any d-dimensional simplex in the Freudenthal-Kuhn triangulation of Rd,
its supporting hyperplanes belong to the family H.

More precisely, let σ̂(y, π) be the Freudenthal representation of a d-dimensional simplex for
some y = (y1, . . . , yd) ∈ Zd and a permutation π : {1, . . . , d} → {1, . . . , d}. Define the vertices
v0 . . . , vd of τ as in Definition 3.1.3. For each i ∈ {0, . . . , d}, we can express each vertex vi as:

vi = y +
i∑

j=1

eπ(j).

1. The facet of τ that contains the vertices v1, . . . , vd lies on the hyperplane:

Heπ(1),yπ(1)+1 = {x ∈ R |
〈
x, eπ(1)

〉
= yπ(1) + 1}.

2. The facet of τ that contains the vertices v0, . . . , vd−1 lies on the hyperplane:

Heπ(d),yπ(d) = {x ∈ R |
〈
x, eπ(d)

〉
= yπ(d)}.

3. For any i ∈ {1, . . . , d− 1}, the facet of τ that contains the vertices v0, . . . , vi−1, vi+1, . . . , vd
lies on the hyperplane:

Heπ(i+1)−eπ(i),yπ(i+1)−yπ(i) = {x ∈ R |
〈
x, eπ(i+1) − eπ(i)

〉
= yπ(i+1) − yπ(i)}.

Proof. Follows from a simple calculation.

Now, we will show that for any hyperplane Hu,k ∈ H, there exists a (d−1)-dimensional facet
in the Freudenthal-Kuhn triangulation of Rd that lies on this hyperplane.
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Lemma 3.1.15. Let u ∈ E and k ∈ Z. For any point x on the hyperplane Hu,k, there exists a
(d− 1)-dimensional simplex in the Freudenthal-Kuhn triangulation of Rd that contains x.

Proof. Let u ∈ E and k ∈ Z. Let x = (x1, . . . , xd) be a point on the hyperplane Hu,k. Define
y = (y1, . . . , yd), where yi = bxic, for all i ∈ {1, . . . , d}. We order the fractional parts of the
coordinates of the point x in the descending order:

1 ≥ {xi1} ≥ . . . ≥ {xid} ≥ 0.

We will separate the proof into the study of two types of vectors u ∈ E.

• Assume that u is of the form ej . Note that because x lies on Hej ,k, we have xj = k ∈
Z. Therefore, we have {xj} = 0. Without loss of generality, we assume id = j. The
point x lies on two d-dimensional simplices in the Freudenthal-Kuhn triangulation of Rd
(see Proposition 3.1.10). One of them is the simplex σ̂(y, π) with π = (i1, . . . , id). The
other simplex is σ̂(y′, π′) with y′ = y − ej = (y1, . . . , yj−1, yj − 1, yj+1, . . . , yd) and π =
(id, i1, . . . , id−1). The point x lies in the intersection of the two simplices σ̂(y, π) and
σ̂(y′, π′), which is a (d− 1)-dimensional simplex in the Freudenthal-Kuhn triangulation of
Rd, as desired.

• Now assume that u is of the form ej − ei. Note that because x lies on Hej−ei,k, we
have xj − xi = k ∈ Z. Therefore, we have {xj} = {xi}. Without loss of generality,
we assume il = j and il+1 = j for some l ∈ {1, . . . , d− 1}. The point x lies on two d-
dimensional simplices in the Freudenthal-Kuhn triangulation of Rd (see Proposition 3.1.10).
One of them is the simplex σ̂(y, π) with π = (i1, . . . , id). The other simplex is σ̂(y, π′)
with π = (i1, . . . , il−1, il+1, il, il+1, . . . , id). The point x lies in the intersection of the two
simplices σ̂(y, π) and σ̂(y, π′), which is a (d − 1)-dimensional simplex in the Freudenthal-
Kuhn triangulation of Rd, as desired.

We are now ready to prove Theorem 3.1.13.

Proof (of Theorem 3.1.13). The result follows from three facts:

1. The Freudenthal-Kuhn triangulation of Rd is a triangulation of Rd (Theorem 3.1.7).

2. The (d − 1)-dimensional simplices in the Freudenthal-Kuhn triangulation of Rd lie on
hyperplanes of type Hu,k where u ∈ E and k ∈ Z (Lemma 3.1.14).

3. For any u ∈ E, k ∈ Z and any x ∈ Hu,k, there exists a (d− 1)-dimensional simplex in the
Freudenthal-Kuhn triangulation of Rd that contains x (Lemma 3.1.15).

From these three statements it follows that the Freudenthal-Kuhn triangulation of Rd is an
arrangement of hyperplanes in the set H.

3.1.3 Linear transformation from the Freudenthal-Kuhn triangulation to a
Coxeter triangulation of type Ãd

We will now construct the linear transformation µ that maps the Freudenthal-Kuhn triangulation
of Rd to a Coxeter triangulation of type Ãd, therefore proving Theorem 3.1.12. The construction
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of the linear transformation µ in this section will be important in Chapter 4, as it allows us to
encode a Coxeter triangulation of type Ãd using the data structure from Section 4.1.

Both the Freudenthal-Kuhn triangulation of Rd and Coxeter triangulations of type Ãd are
hyperplane arrangments. We will first focus on the Freudenthal-Kuhn triangulation of Rd. From
Theorem 3.1.13, the Freudenthal-Kuhn triangulation of Rd is a hyperplane arrangement of the
d(d+ 1)/2 families of hyperplanes that are orthogonal to the following vectors:

ei, for all i ∈ {1, . . . , d},
ui,j = ej − ei, for all i, j ∈ {1, . . . , d} such that i < j,

where e1, . . . , ed are the vectors of the canonical basis of Rd.

Definition 3.1.16. As in Theorem 3.1.13, we will denote by E the set of all vectors ei and ui,j:

E = {ei | 1 ≤ i ≤ d} ∪ {ui,j | 1 ≤ i ≤ j ≤ d}.

Let S = {s1, . . . , sd} be a set of simple roots (Definition 1.2.8) in a root system R of type
Ad. A matrix of such simple roots (that we will also call S by abuse of notation) can be
obtained by diagonalizing the d× d Cartan matrix of a root system of type Ãd (see the proof of
Proposition 1.2.5):

C =



2 −1 0 . . . 0

−1 2 −1
. . .

...

0 −1
. . . . . . 0

...
. . . . . . . . . −1

0 . . . 0 −1 2


.

Write C = OtDO, where O is an orthogonal matrix and D is a diagonal matrix with diagonal
entries dii. Since C is positive definite, for all i ∈ {1, . . . , d}, we have dii > 0. Write:

S = Ot
√
D,

where
√
D is a diagonal matrix with diagonal entries

√
dii. For all i ∈ {1, . . . , d}, the row i in

the matrix S is the simple root si.
Recall that the corresponding Coxeter triangulation of type Ãd is the arrangement of fam-

ilies of hyperplanes that are orthogonal to positive roots induced by the simple roots in S (see
Corollary 1.2.32). According to Bourbaki [Bou02, Planche II], the set of d(d+1)/2 positive roots
R+ is expressed in the following manner:

R+ =

{
j∑
l=i

sl

∣∣∣∣∣ 1 ≤ i ≤ j ≤ d

}
.

We introduce the notation for positive roots, for all 1 ≤ i ≤ j ≤ d:

ri,j =

j∑
l=i

sl ∈ R+.

Let µ : Rd → Rd be the linear transformation such that for all i ∈ {1, . . . , d}:

µ(ei) = r1,i =

j∑
i=1

si.
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Since the vectors e1, . . . , ed form a basis of Rd, the linear transformation µ is well-defined. More-
over, because the vectors r1,1, . . . , r1,d also form a basis of Rd, the linear transformation µ is
bijective.

We will now show that µ transforms the Freudenthal-Kuhn triangulation of Rd to the Coxeter
triangulation of type Ãd that corresponds to S. For this, we need to show that µ transforms
bijectively the hyperplanes that define the Freudenthal-Kuhn triangulation of Rd into the hy-
perplanes that define the Coxeter triangulation of type Ãd. This is equivalent to showing that µ
maps the set E of normal vectors in the Freudenthal-Kuhn triangulation of Rd to the set R+ of
normal vectors in the triangulation T .

Proposition 3.1.17. The linear transformation µ maps any vector E to a vector in R+.

Proof. We treat the vectors ei and ui,j separately.

• Let ei ∈ E for some i ∈ {1, . . . , d}. By definition of µ, the vector µ(ei) = r1,i indeed lies in
R+.

• Now let ui,j ∈ E for some i, j ∈ {1, . . . , d} such that i < j. We have:

µ(ui,j) = µ(ej − ei) = µ(ej)− µ(ei) = r1,j − r1,i =

j∑
l=1

sl −
i∑
l=1

sl =

j∑
l=i+1

sl = ri+1,j .

Hence µ(ui,j) lies in R+.

Proof of Theorem 3.1.12. We will now show that the linear transformation µ maps the
Freudenthal-Kuhn triangulation T0 of Rd to the Coxeter triangulation of type Ãd defined by the
simple roots in S.

Proof (of Theorem 3.1.12). According to Theorem 3.1.13, the Freudenthal-Kuhn triangulation
of Rd is an arrangement of a family of hyperplanes:

H = {Hu,k | u ∈ E, k ∈ Z},

where the hyperplanes Hu,k are defined as in Definition 1.2.23:

Hu,k = {x ∈ R | 〈x, u〉 = k}.

By applying the linear transformation µ on the Freudenthal-Kuhn triangulation of Rd, we obtain
the arrangement of another family of hyperplanes:

H′ = {Hµ(u),k | u ∈ E, k ∈ Z}.

From Proposition 3.1.17, we know that this set is equal to {Hr,k | r ∈ R+, k ∈ Z}. Thus, the
arrangement of hyperplanes in H′ is the Coxeter triangulation of type Ãd defined by the simple
roots in S. The result follows.
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Matrix ΛC . Now, we are interested in finding the matrix ΛC such that µ(x) = ΛCx. This
construction will be used in Section 4.1. Instead of describing the matrix ΛC itself, it is easier
to describe the inverse matrix Λ−1

C that maps the vectors of the canonical basis ei to the vectors
r1,i =

∑i
l=1 sl. Each row i of the matrix Λ−1

C represents the vector r1,i. The matrix Λ−1
C is thus

the product of a lower-triangular d × d matrix and the matrix S (found by diagonalizing the
matrix C above):

Λ−1
C =


s1

s1 + s2
...

s1 + . . .+ sd

 =


1 0 . . . 0
...

. . . . . .
...

...
. . . 0

1 . . . . . . 1




s1

s2
...
sd

 =


1 0 . . . 0
...

. . . . . .
...

...
. . . 0

1 . . . . . . 1

S.

By inverting this matrix, we get the matrix ΛC as desired.

3.1.4 Simplex quality of Freudenthal-Kuhn triangulations

In this section, we will give an overview of some geometric properties of the d-dimensional
simplices in the Freudenthal-Kuhn triangulation of Rd. In general, these simplices are not similar
(in the sense of Definition 1.1.47), as was pointed out by Moore [Moo92, Section 2.3.1]. However,
there are measures that are common to all d-dimensional simplices τ in the Freudenthal-Kuhn
triangulation of Rd:

• The diameter L(τ) =
√
d is the length of the diagonal of the unit cube that contains the

simplex τ .

• The circumradius R(τ) =
√
d/2 is half of the diameter, since the circumcentre of τ lies in

the center of the unit cube that contains τ and cuts the diagonal in two.

• The inradius r(τ) = 1√
2(d−1+

√
2)
, as reported by Moore [Moo92, Theorem 6].

• The volume vol(τ) = 1
d! , as reported by Dahmen and Miccheli [DM82, Lemma 2.1].

• The minimal height h(τ) = 1/
√

2, unless when d = 1, in which case h(τ) = 1 (Proposi-
tion 3.1.18 below).

Because the measures above are common to all d-dimensional simplices τ in the Freudenthal-
Kuhn triangulation of Rd, so are the quality measures from Definition 2.1.1 as well:

Proposition 3.1.18. Let τ be any d-dimensional simplex in the Freudenthal-Kuhn triangulation
of Rd. Then:

• The fatness of τ is:

Θ(τ) =
vol(τ)

L(τ)d
=

1

dd/2 d!
.

• The radius ratio of τ is:

ρ(τ) =
r(τ)

R(τ)
=

√
2√

d(d− 1 +
√

2)
.
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• The thickness of τ is:

θ(τ) =
h(τ)

L(τ)
=

1√
2d
.

• The aspect ratio of τ is:

α(τ) =
h(τ)

2R(τ)
=

1√
2d
.

The only thing left to show is the value of the minimal height.

Lemma 3.1.19. The minimal height of any d-dimensional simplex in the Freudenthal-Kuhn
triangulation of Rd is:

• 1/
√

2, if d ≥ 2,

• 1, if d = 1.

Proof. If d = 1, the one-dimensional simplex has length 1, which is also its (minimal) height.
We will assume d ≥ 2 for the rest of the proof.

Let τ be a d-dimensional simplex in the Freudenthal-Kuhn triangulation of Rd. Write τ
using its Freudenthal representation σ̂(y, π) for some y = (y1, . . . , yd) ∈ Zd and permutation
π : {1, . . . , d} → {1, . . . , d}. Define the vertices v0, . . . , vd of τ as in Definition 3.1.3. For each vi,
the corresponding height of τ is the distance from vi to the hyperplane specified in Lemma 3.1.14.
For each i ∈ {0, . . . , d}, we can express each vertex vi as:

vi = y +
i∑

j=1

eπ(j).

We will now compute this distance for each case from Lemma 3.1.14.

1. The distance from v0 = y to the hyperplane Heπ(1),yπ(1)+1 is:

‖
〈
v0, eπ(1)

〉
− yπ(1) − 1‖

‖eπ(1)‖
= 1.

2. The distance from vd = y +
∑d

j=1 eπ(j) to the hyperplane Heπ(d),yπ(d) is:

‖
〈
vd, eπ(d)

〉
− yπ(d)‖

‖eπ(d)‖
= 1.

3. For each i ∈ {1, . . . , d− 1}, the distance from vi = y +
∑i

j=1 eπ(j) to the hyperplane
Heπ(i+1)−eπ(i),yπ(i+1)−yπ(i) is:

‖
〈
vi, eπ(i+1) − eπ(i)

〉
− (yπ(i+1) − yπ(i))‖

‖eπ(i+1) − eπ(i)‖
=

1√
2
.

We conclude that if d ≥ 2, then the minimal height of τ is 1/
√

2.
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3.1.5 Goal for the following two sections

The Freudenthal representation is limited to d-dimensional simplices. In the following Sec-
tions 3.2 and 3.3, we want to generalize the Freudenthal representation to simplices of arbitrary
dimension. The key to this generalization lies in the following two observations:

• A Coxeter triangulation of type Ãd and the Freudenthal-Kuhn triangulation of Rd share
the same combinatorial structure (Theorem 3.1.12).

• The dual of the star of a vertex in a Coxeter triangulation of type Ãd is a permutahedron
(see Section 1.3).

From these two observations, it follows that the dual of the star of a vertex in the Freudenthal-
Kuhn triangulation of Rd is isomorphic to a d-dimensional permutahedron. We can therefore
label the simplices in the star of a vertex in the Freudenthal-Kuhn triangulation of Rd using
ordered partitions, similarly to how we labelled faces of a permutahedron in Theorem 1.3.11. For
this reason, we call the new representation of simplices of arbitrary dimension in the Freudenthal-
Kuhn triangulation of Rd the permutahedral representation, which we ultimately define in Defi-
nition 3.3.15.

Before we can define the permutahedral representation of simplices of arbitrary dimension,
we first need a few intermediate notations for simplices in the Freudenthal-Kuhn triangulation
of Rd. These notations, called Eaves notation for d-dimensional simplices and generalized Eaves
notation for simplices of arbitrary dimension, are the subject of Sections 3.2 and 3.3.6.

3.2 Eaves notation for d-dimensional simplices

In this section, we describe a notation that encodes the d-dimensional simplices in the Freudenthal-
Kuhn triangulation of Rd suggested by Eaves [Eav84]. We call this notation Eaves notation. This
notation is the first step in generalizing the Freudenthal representation to simplices of arbitrary
dimension.

When describing a d-dimensional simplex using Eaves notation ϕ̂(y,Π), we indicate:

• a vertex y that represents a star in the triangulation, rather than a cube as in the case of
the Freudenthal representation,

• a permutation Π : {1, . . . , d + 1} → {1, . . . , d + 1} that encodes the position of the d-
dimensional simplex in the star of y.

Recall that the Freudenthal-Kuhn triangulation of Rd and a Coxeter triangulation of type Ãd
share the same combinatorial structure. The dual of the star of a vertex in the Freudenthal-Kuhn
triangulation of Rd is hence isomorphic to the Voronoi cell in a Coxeter triangulation of type Ãd,
which is a d-dimensional permutahedron (see Section 1.3).

The dual structure of the Freudenthal-Kuhn triangulation of Rd gives us an important in-
terpretation of the role of the permutation π in Eaves notation ϕ̂(y,Π) (something that Eaves
was unaware of [Eav84]). In fact, the permutations Π used in Eaves notations ϕ̂(y,Π) are the
same permutations that encode vertices in a d-dimensional permutahedron dual to the star of
the vertex y. Later in Section 3.3, we will replace these permutations by ordered partitions (as
we did for a permutahedron in Section 1.3) to generalize Eaves notation to simplices of arbitrary
dimension.
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e1

e2

e3

Figure 3.4: Three vectors e1, e2 and e3 defined for the Freudenthal-Kuhn triangulation of R2.

This section is organized as follows. First, we formally define Eaves notation in Section 3.2.1.
In Section 3.2.2, we prove that the simplices given by Eaves notation are the d-dimensional
simplices in the Freudenthal-Kuhn triangulation of Rd. In Section 3.2.3, we show that any d-
dimensional simplex in the Freudenthal-Kuhn triangulation of Rd can be written using Eaves
notation with respect to each of its d + 1 vertices. Lastly, we show in Section 3.2.4 that the
permutations involved in Eaves notation are in bijection with the d-dimensional simplices in the
star of a vertex.

3.2.1 Definition of Eaves notation for d-dimensional simplices

We will now formally define Eaves notation that labels d-dimensional simplices in the Freudenthal-
Kuhn triangulations of Rd. The exposition in this section follows Eaves [Eav84] who introduced
a similar notation.

Define in addition to the canonical basis a new vector:

ed+1 = −
d∑
j=1

ej . (3.1)

In terms of cubes in the unit cubical partition, the vector ed+1 corresponds to the major diagonal
of a cube in the opposite direction. The three two-dimensional vectors e1, e2 and e3 are illustrated
in Figure 3.4.

Definition 3.2.1 (Eaves notation for d-dimensional simplices). Let y ∈ Zd. Let Π be a permu-
tation {1, . . . , d + 1} → {1, . . . , d + 1}. The d-dimensional simplex ϕ̂(y,Π) ⊆ Rd is the convex
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3.2. Eaves notation for d-dimensional simplices

hull of d+ 1 vertices v0, . . . , vd defined as follows:

v0 = y

vi = vi−1 + eΠ(i), for i ∈ {1, . . . , d}.

We will refer to the notation ϕ̂(y,Π) as Eaves notation.

Remark 3.2.2. Note that the vector eΠ(d+1) does not participate in the definitions of the vertices
v0, . . . , vd in Definition 3.2.1. It follows that if Π(d+ 1) = d+ 1, then the restriction π of Π to
{1, . . . , d} is a permutation {1, . . . , d} → {1, . . . , d}; the Freudenthal representation σ̂(y, π) and
the Eaves notation ϕ̂(y,Π) then coincide.

Remark 3.2.3. In the following, we follow a convention to denote the permutation {1, . . . , d+
1} → {1, . . . , d + 1} in Eaves notation by a capital letter Π. This is done to prevent confusion
with the permutation π : {1, . . . , d} → {1, . . . , d} used in the Freudenthal representation.

We will show in Section 3.2.2 that the simplices ϕ̂(y,Π) are simplices in Freudenthal-Kuhn
triangulation of Rd.

Remark 3.2.4 (Eaves notation and cycles on a cube). In Remark 3.1.6, we described a link
between the permutation π : {1, . . . , d} → {1, . . . , d} in a Freudenthal representation σ̂(y, π) and
a path on the cube, which follows the vectors eπ(1), . . . , eπ(d). In Eaves notation ϕ̂(y,Π), an addi-
tional (d+1)-st vector is added to this list to complete the path into a cycle along eΠ(1), . . . , eΠ(d+1)

(see Figure 3.5).
Following the vectors eΠ(1), . . . , eΠ(d+1) always ends up to be a cycle thanks to the choice of

the vector ed+1. Indeed, because (Π(1), . . . ,Π(d+ 1)) is a permutation of {1, . . . , d+ 1}, the sum
of all vectors eΠ(1), . . . , eΠ(d+1) is the same as the sum of the vectors e1, . . . , ed+1. This sum is
equal to:

d+1∑
j=1

eΠ(j) =
d+1∑
j=1

ej =
d∑
j=1

ej + ed+1 =
d∑
j=1

ej −
d∑
j=1

ej = 0.

3.2.2 Link between Eaves notation and the Freudenthal-Kuhn triangulation

The simplices defined in Definition 3.2.1 are d-dimensional simplices in the Freudenthal-Kuhn
triangulation of Rd.

Theorem 3.2.5 ([Eav84, Lemma 6.8]). Let y ∈ Zd. Let Π : {1, . . . , d+ 1} → {1, . . . , d+ 1} be a
permutation. The simplex given by the Eaves notation ϕ̂(y,Π) belongs to the Freudenthal-Kuhn
triangulation of Rd.

Conversely, any d-dimensional simplex in the Freudenthal-Kuhn triangulation of Rd admits
an Eaves notation.

Theorem 3.2.6 ([Eav84, Lemma 6.5]). For any simplex τ in the Freudenthal-Kuhn triangulation
of Rd, there exists a vertex y ∈ Zd and a permutation Π : {1, . . . , d + 1} → {1, . . . , d + 1} such
that τ = ϕ̂(y,Π).

Both Theorems 3.2.5 and 3.2.6 were shown in Eaves [Eav84]. We will show analogous The-
orems 3.3.4 and 3.3.5 in Section 3.3 for the generalization of Eaves notation for simplices of
arbitrary dimension.

Remark 3.2.7. We can prove Theorem 3.2.6 using Remark 3.2.4.
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Π = (1, 2, 3)

Π = (2, 1, 3)

Π = (2, 3, 1)

Π = (3, 2, 1)

Π = (3, 1, 2)

Π = (1, 3, 2)

Figure 3.5: Triangles in the star of a vertex y in the two-dimensional Freudenthal-Kuhn trian-
gulation. For each triangle, the permutations Π such that ϕ̂(y,Π) is the corresponding Eaves
notation for the fixed y is indicated. The permutations Π are visualized as cycles along the
vectors eΠ(1), eΠ(2), eΠ(3).
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v0 = (0, 0)

Π0 = (1, 2, 3)

v1 = (1, 0)

Π1 = (2, 3, 1)

v2 = (1, 1)

Π2 = (3, 1, 2)

Figure 3.6: A triangle in the two-dimensional Freudenthal-Kuhn triangulation and the three
stars of its vertices v0, v1, v2 to which it belongs. For each vertex vk, the permutation Πk is
indicated such that ϕ̂(vk,Πk) is an Eaves notation of the triangle (see Proposition 3.2.9).

3.2.3 Eaves notation with respect to each vertex

As was noted in Eaves [Eav84], the same d-dimensional simplex in the Freudenthal-Kuhn tri-
angulation of Rd can be encoded using d + 1 different Eaves notations: one per vertex of the
simplex. This is coherent with the observation that the vertex y in Eaves notation ϕ̂(y, π) repre-
sents the star of y in the Freudenthal-Kuhn triangulation of Rd. Since a d-dimensional simplex
lies in d + 1 different stars of vertices, there are d + 1 different Eaves notations for the simplex
(see Figure 3.6).

We will introduce the following (non-standard) notation.

Definition 3.2.8. Let Π be a permutation {1, . . . , d+ 1} → {1, . . . , d+ 1}. Let k ∈ Z be an
integer. We denote by Π⊕ k the permutation defined as k elementary cyclic shifts in the positive
direction applied on Π. Formally, if we denote k′ = k mod (d + 1), then Π′ = Π ⊕ k is defined
as:

• Π′(i) = Π(i+ k′), if i ∈ {1, . . . , d+ 1− k′},

• Π′(i) = Π(i+ k′ − d− 1), if i ∈ {d+ 2− k′, . . . , d+ 1}.

Proposition 3.2.9 (Equivalent Eaves notations [Eav84, Lemma 10.2]). Let y ∈ Zd. Let Π be
a permutation {1, . . . , d+ 1} → {1, . . . , d+ 1}. Let v0, . . . , vd be the vertices of ϕ̂(y,Π) as in
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Definition 3.1.3:

v0 = y

vi = vi−1 + eΠ(i), for i ∈ {1, . . . , d}.

For all k ∈ {0, . . . , d}, define Πk = Π ⊕ k. Then, the Eaves notations ϕ̂(vk,Πk) for all k ∈
{0, . . . , d} encode the same simplex.

The reader can find the proof of Proposition 3.2.9 in Eaves [Eav84, Lemma 10.2]. Alter-
natively, the proof of Proposition 3.2.9 follows from Proposition 3.3.8, which is a more general
result for generalized Eaves notation.

3.2.4 Bijection between permutations Π and d-dimensional simplices in a star

Thanks to Proposition 3.2.9, we get that the d-dimensional simplices in the star of a vertex in
the Freudenthal-Kuhn triangulation of Rd are in bijection with permutations {1, . . . , d+ 1} →
{1, . . . , d+ 1}. This can be seen, for example, in Figure 3.5.

Theorem 3.2.10. Let y ∈ Zd be a vertex in the Freudenthal-Kuhn triangulation of Rd. Denote
by star(y) the star of y in the Freudenthal-Kuhn triangulation of Rd. The map Π 7→ ϕ̂(y,Π) is a
bijection from the set of permutations {1, . . . , d+ 1} → {1, . . . , d+ 1} to the set of d-dimensional
simplices in star(y).

Proof. Fix y. According to Proposition 3.2.9, for each d-dimensional simplex τ in the star of
y, there exists a permutation Π : {1, . . . , d+ 1} → {1, . . . , d+ 1}, such that τ = ϕ̂(y,Π). The
surjectivity of the map Π 7→ ϕ̂(y,Π) follows.

By Definition 3.2.1, if Π 6= Π′, then ϕ̂(y,Π) 6= ϕ̂(y,Π′). The injectivity of the map Π 7→
ϕ̂(y,Π) follows. Since this map is both surjective and injective, we conclude that it is bijective.

3.3 Permutahedral representation of simplices of arbitrary di-
mension

In this section, we present a bijective representation of simplices of arbitrary dimension in the
Freudenthal-Kuhn triangulation of Rd, which is our first contribution in the chapter. The new
representation is called the permutahedral representation.

The permutahedral representation of simplices is used in algorithms in Section 3.4 and 3.5.
These algorithms are the reason why the time complexity of the manifold tracing algorithm in
Chapter 4 depends polynomially on ambient dimension.

As an intermediate step towards defining the permutahedral representation, we generalize
Eaves notation to simplices of arbitrary dimension. Namely, we replace the permutation Π :
{1, . . . , d + 1} → {1, . . . , d + 1} in the definition of Eaves notation for d-dimensional simplices
by an ordered partition ω of {1, . . . , d+ 1}. We refer to the new construction as generalized
Eaves notation. The permutahedral representation, which is the goal of the section, is one
particular way to write a simplex in generalized Eaves notation. By choice, the permutahedral
representations are in bijection with the simplices of all dimension in the Freudenthal-Kuhn
triangulation of Rd.

This section is organized as follows. First, we define generalized Eaves notation in Sec-
tion 3.3.1. In Section 3.3.2, we prove that all simplices given by generalized Eaves notation
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belong to the Freudenthal-Kuhn triangulation of Rd. In Section 3.3.3, we prove the converse:
any simplex in the Freudenthal-Kuhn triangulation of Rd can be written using generalized Eaves
notation. In Section 3.3.4, we provide the generalized Eaves notations with respect to each vertex
in the simplex (generalization of Proposition 3.2.9 to simplices of arbitrary dimension). Lastly,
we show in Section 3.3.6 that the ordered partitions involved in generalized Eaves notation form
a poset that is isomorphic to the face poset of the star of a vertex (in the same way as in
Theorem 1.3.11).

3.3.1 Generalization of Eaves notation to simplices of arbitrary dimension

In this section, we generalize Eaves notation (Definition 3.1.3) to simplices of arbitrary dimension
in the Freudenthal-Kuhn triangulation of Rd. This generalization is inspired by the way the faces
of a d-dimensional permutahedron are encoded using the ordered partitions of {1, . . . , d+ 1} in
Theorem 1.3.11. With this in mind, we replace the permutation Π in the definition of Eaves
notation for d-dimensional simplices by an ordered partition ω.

Definition 3.3.1 (Eaves notation for simplices of arbitrary dimension). Let y ∈ Zd be a vertex
in the Freudenthal-Kuhn triangulation of Rd. Let ω be an ordered partition of {1, . . . , d + 1} in
l + 1 parts, for some l ∈ {0, . . . , d}. For i ∈ {1, . . . , d}, let ei be the i-th vector in the canonical
basis of Rd. By convention, we define ed+1 as in (3.1). For all i ∈ {1, . . . , l + 1}, denote by wi
the sum of the vectors ej with the indices j ∈ ω(i):

wi =
∑
j∈ω(i)

ej .

The l-dimensional simplex ϕ(y, ω) ⊆ Rd is the convex hull of l + 1 vertices v0, . . . , vl defined as
follows:

v0 = y

vi = vi−1 + wi, for all i ∈ {1, . . . , l}.

Abusively, we will refer to the notation ϕ(y, ω) as Eaves notation, the same as to the notation
ϕ̂(y,Π) for the d-dimensional simplices. To differentiate the two notations, we will sometimes
call ϕ(y, ω) generalized Eaves notation.

As in Section 1.3, we will write the sequence of subsets ω(1), . . . , ω(l + 1) to represent an
ordered partition ω.

Remark 3.3.2. Recall that the vectors eω(i) form a cycle in a simplex defined by Eaves notation
ϕ̂(y, ω). In the same way, the vectors wi =

∑
j∈ω(i) ej in Definition 3.3.1 form a cycle in a

simplex defined by generalized Eaves notation ϕ(y, ω) (see Figure 3.7).

As the following lemma shows, the definition of ϕ(y, ω) in Definition 3.3.1 indeed generalizes
Eaves notation for d-dimensional simplices that we defined in Section 3.2.

Lemma 3.3.3. Let y ∈ Zd. Let Π be a permutation {1, . . . , d+ 1} → {1, . . . , d+ 1}. Define an
ordered partition ω of {1, . . . , d+ 1} into d+ 1 singletons as follows:

ω = {Π(1)}, . . . , {Π(d+ 1)}.

Then, we have the equality of the two d-dimensional simplices:

ϕ̂(y,Π) = ϕ(y, ω).

Proof. The d + 1 vertices v0, . . . , vd of the two simplices ϕ̂(y,Π) and ϕ(y, ω) defined in Defini-
tions 3.2.1 and 3.3.1 respectively coincide. The result follows.
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Figure 3.7: Illustration of the vertices v0, v1, v2, v3 and the vectors w1, w2, w3, w4 defined for a
simplex given by a generalized Eaves notation in Definition 3.3.1. The vectors wi form a cycle
(see Remark 3.3.2).

3.3.2 Proof that Eaves notation encodes simplices in the Freudenthal-Kuhn
triangulation of Rd

The goal of this section is to prove that a simplex ϕ(y, ω) from Definition 3.3.1 belongs to
the Freudenthal-Kuhn triangulation of Rd for any point y ∈ Zd and any ordered partition ω
of {1, . . . , d+ 1}. This result (Theorem 3.3.4 below) is a generalization of the result by Eaves
([Eav84, Lemma 6.8] cited as Theorem 3.2.5) to simplices of arbitrary dimension. Later in
Section 3.3.3, we will also show the converse of Theorem 3.3.4: any simplex in the Freudenthal-
Kuhn triangulation of Rd can be expressed using Eaves notation (Theorem 3.3.5).

Theorem 3.3.4. Let y ∈ Zd. Let ω be an ordered partition of {1, . . . , d+ 1}. The simplex
ϕ(y, ω) belongs to the Freudenthal-Kuhn triangulation of Rd.

To prove Theorem 3.3.4, we show that for any y and ω, the simplex ϕ(y, ω) is a face of a
d-dimensional simplex in the Freudenthal-Kuhn triangulation of Rd. More precisely, we show
that ϕ(y, ω) is a face of a d-dimensional simplex ϕ̂(y,Π) (as in Definition 3.2.1), where Π is
a permutation {1, . . . , d+ 1} → {1, . . . , d+ 1} expressed in terms of the elements in the parts
ω(i). In the proof, we rely on the result by Eaves (Theorem 3.2.5, see also [Eav84, Lemma
6.5]) which states that the d-dimensional simplex ϕ̂(y,Π) (as in Definition 3.2.1) belongs to the
Freudenthal-Kuhn triangulation of Rd.

Proof (of Theorem 3.3.4). We will show that the simplex ϕ(y, ω) is a face of a d-dimensional
simplex in the Freudenthal-Kuhn triangulation of Rd. Define:

m0 = 0, m1 = |ω(1)|, m2 = |ω(1)|+ |ω(2)| . . . ml+1 =

l+1∑
j=1

|ω(j)|.
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Note that because ω is an ordered partition of {1, . . . , d+ 1}, we have ml+1 = d+ 1. Write the
elements in the sets ω(1), . . . , ω(l + 1) as:

ω(1) = {i1, . . . , im1} , ω(2) = {im1+1, . . . , im2} . . . ω(l + 1) =
{
iml+1, . . . , iml+1

}
.

Define vertices v0, . . . , vd as:

v0 = y,

vj = vj−1 + eij , ∀j ∈ {1, . . . , d} .

Define a permutation Π : {1, . . . , d+ 1} → {1, . . . , d+ 1} as follows:

Π = (i1, . . . , id+1).

The d-dimensional simplex defined by the vertices {v0, . . . , vd} can be written as ϕ̂(y,Π) by
Definition 3.2.1. According to Theorem 3.2.5, the simplex ϕ̂(y,Π) belongs to the Freudenthal-
Kuhn triangulation of Rd.

Observe that the vertices {vm0 , . . . , vml} are the vertices of the simplex ϕ(y, ω). Since these
vertices form a subset of {v0, . . . , vd}, it follows that ϕ(y, ω) is a face of the d-dimensional simplex
ϕ̂(y,Π). Because ϕ̂(y,Π) belongs to the Freudenthal-Kuhn triangulation of Rd, it follows that
ϕ(y, ω) also belongs to the Freudenthal-Kuhn triangulation of Rd.

3.3.3 Proof that any simplex in the Freudenthal-Kuhn’s triangulation can be
written using Eaves notation

In Theorem 3.3.4, we showed that a simplex given by Eaves notation belongs to the Freudenthal-
Kuhn triangulation of Rd. We will now show the converse: each simplex in the Freudenthal-Kuhn
triangulation of Rd can be written using Eaves notation. This result (Theorem 3.3.5 below) is
a generalization of the result by Eaves (Theorem 3.2.6, see also [Eav84, Lemma 6.5]) for d-
dimensional simplices.

Theorem 3.3.5. Let τ be a simplex in the Freudenthal-Kuhn triangulation of Rd. There exists
y ∈ Zd and an ordered partition ω of {1, . . . , d+ 1} such that τ = ϕ(y, ω).

The proof of Theorem 3.3.5 consists of two steps.

1. We first prove the theorem for the d-dimensional simplices τ in Lemma 3.3.6. For a d-
dimensional simplex, Theorem 3.2.6 yields Eaves notation ϕ̂(y,Π) for d-dimensional sim-
plices (Definition 3.2.1). With the help of Lemma 3.3.3, we find generalized Eaves notation
ϕ(y, ω) of the same d-dimensional simplex.

2. Next, we express the simplex τ as a face of a d-dimensional simplex σ in the Freudenthal-
Kuhn triangulation of Rd. From Lemma 3.3.6, we can express σ using generalized Eaves
notation. We denote the vertices {v0, . . . , vd} of σ as in Definition 3.2.1. Let k be the
dimension of τ . We express the vertices of τ (as a face of σ) as {vm0 , . . . , vmk}, for some
m0, . . . ,mk ∈ {0, . . . , d} such that m0 < . . . < mk. We then construct the vertex y and the
ordered partition ω from Eaves notation of the d-dimensional simplex σ and the indices
m0, . . . ,mk in such a way that τ = ϕ(y, ω).

We show a more general version of the last step separately in Lemma 3.3.7 below. Other than
being used for the proof of Theorem 3.3.5, this lemma also guarantees the correctness of the face
generation algorithm in Section 3.5.1. We give the proof of Theorem 3.3.5 after Lemma 3.3.7.
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Step 1. The proof for the case of d-dimensional simplices. To prove Theorem 3.3.5, we
first need to show the case of d-dimensional simplices. The existence of generalized Eaves notation
for d-dimensional simplices will allow us to use Lemma 3.3.7 later in the proof of Theorem 3.3.5.

Lemma 3.3.6. Let σ be a d-dimensional simplex in the Freudenthal-Kuhn triangulation of Rd.
There exists y ∈ Zd and an ordered partition ω of {1, . . . , d+ 1} such that σ = ϕ(y, ω).

Proof. According to Theorem 3.2.6, there exists a vertex y ∈ Zd and a permutation Π such
that σ = ϕ̂(y,Π). Lemma 3.3.3 then yields an ordered partition ω such that σ = ϕ̂(y,Π) =
ϕ(y, ω).

Step 2. Eaves notation of a face given by vertices. Let τ be a simplex of arbitrary
dimension in the Freudenthal-Kuhn triangulation of Rd. To prove Theorem 3.3.5 for simplices of
arbitrary dimension, we will first write τ as a face of a d-dimensional simplex σ in the Freudenthal-
Kuhn triangulation of Rd. According to Lemma 3.3.6, there exist a vertex y ∈ Zd and an ordered
partition ω of {1, . . . , d+ 1}, such that σ = ϕ(y, ω). As the construction below shows, from y
and ω, we can construct a vertex y′ ∈ Zd and an ordered partition ω′ such that τ = ϕ(y′, ω′).
This construction proves Theorem 3.3.5.

The construction of y′ and ω′ that we provide below follows a more general setting, in which
σ is not necessarily d-dimensional but is of some dimension l ∈ {0, . . . , d}. This generalization
is vital for the proof of correctness of the face generation algorithm in Section 3.5.1.

Construction of y′ and ω′. Let us now describe the construction of the new vertex y′ and
the new ordered partition ω′. Assume that τ and σ are two simplices of the Freudenthal-Kuhn
triangulation of Rd of dimensions k and l respectively for some 0 ≤ k ≤ l ≤ d, such that τ is a
face of σ. Define the vectors w1, . . . , wl+1 and the vertices v0, . . . , vl of σ as in Definition 3.3.1:

wi =
∑
j∈ω(i)

ej , for all i ∈ {1, . . . , l + 1},

and:

v0 = y

vi = vi−1 + wi, for i ∈ {1, . . . , l}.

Since τ is a face of σ, its vertices form a subset of {v0, . . . , vl} (see Figure 3.8). Denote the
vertices of τ by vm0 , . . . , vmk with 0 ≤ m0 < . . . < mk ≤ d. The vertex y′ in the constructed
Eaves notation ϕ(y′, ω′) of τ can be any element in the set {vm0 , . . . , vmk}. Here, we fix y′ = vm0

for reasons that will be clear in Section 3.5.1. Denote the vertices vm0 , . . . , vmk of τ as v′0, . . . , v′k
respectively. Thanks to the choice y′ = vm0 , the labelling of vertices v′0, . . . , v′k is coherent with
Definition 3.3.1 (for any other choice of y′, the indices in the v′i are cyclically shifted).

For i ∈ {1, . . . , l}, the vector wi defined for σ can be expressed as the differences:

wi = vi − vi−1,

and wl+1 can be expressed as wl+1 = v0 − vl. We express the vectors w′i for the face τ as
differences of consecutive v′j in the same way. Recall that by definition we have v′i = vmi . We
write the vectors w′i as telescoping sums of consecutive vectors wj in the following way (see also
Figure 3.8). For all i ∈ {1, . . . , k}, we have:

w′i = v′i+1 − v′i = vmi+1 − vmi = (vmi+1 − vmi+1−1) + . . .+ (vmi+1 − vmi) = wmi+1 + . . .+wmi+1.
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ω′(1) = ω(2) ∪ ω(3) ∪ ω(4)
ω′(2) = ω(5) ∪ ω(6)
ω′(3) = ω(7) ∪ ω(8) ∪ ω(1)

{m0,m1,m2} = {1, 4, 6}

Figure 3.8: A seven-dimensional simplex σ = ϕ(v0, ω) and a two-dimensional face τ = ϕ(v′0, ω
′)

of σ. The vertices v0, . . . , v7 of σ and the vectors w1, . . . , w8 are indexed according to Defini-
tion 3.3.1. The three vertices of τ are v′0 = vm0 , v′1 = vm1 and v′2 = vm2 , with m0 = 1, m1 = 4
and m2 = 6. The composition of parts ω′(i) as union of the ω(j) illustrated on the right matches
the compositions of vectors w′i as sums of the vectors wj on the left.

We express the vector w′k+1 in a similar way:

w′k+1 = vm0−vmk = (vm0−v0)+(v0−vl)+(vl−vmk) = (wm0+. . .+w0)+wl+1+(wl+. . .+wmk+1).

In order to match the parts ω′(i) in the new ordered partition ω′ to the vectors w′i as in Defini-
tion 3.3.1, we set:

ω′(i) = ω(mi−1 + 1) ∪ ω(mi−1 + 2) ∪ . . . ∪ ω(mi), for i ∈ {1, . . . , k},
ω′(k + 1) = (ω(1) ∪ . . . ∪ ω(m0)) ∪ (ω(mk + 1) ∪ . . . ∪ ω(l + 1)).

The composition of the newly constructed parts in ω′(i) in terms of ω(j) is illustrated in
Figure 3.9 below.

ω :

1 7 82 3 4 5 6

ω′(3) ω′(1) ω′(2) ω′(3)

m0

=

m1

=

m2

=

Figure 3.9: An example of sets in ω′(i) from Figure 3.8 represented as unions of sets ω(i) shown
as boxes.

We summarize the construction of y′ and ω′ in Lemma 3.3.7.
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Chapter 3. Freudenthal-Kuhn triangulation of Rd

Lemma 3.3.7 (Eaves notation of a face given by vertices). Let l ∈ {0, . . . , d}. Let σ be an
l-dimensional simplex in the Freudenthal-Kuhn triangulation of Rd such that σ = ϕ(y, ω) for
some vertex y ∈ Zd and some ordered partition ω of {1, . . . , d+ 1} in l + 1 parts. Define the
vectors w1, . . . , wl+1 and the vertices v0, . . . , vl of σ as in Definition 3.3.1:

wi =
∑
j∈ω(i)

ej ,

and:

v0 = y

vi = vi−1 + wi, for i ∈ {1, . . . , l}.

Let τ be a k-dimensional face of σ for some k ∈ {0, . . . , l}. Assume that the vertices of τ form
a subset {vm0 , . . . , vmk} of the vertices of σ indexed by some 0 ≤ m0 < . . . < mk ≤ l. Define the
ordered partition ω′ as:

ω′(i) = ω(mi−1 + 1) ∪ ω(mi−1 + 2) ∪ . . . ∪ ω(mi), for i ∈ {1, . . . , k},
ω′(k + 1) = (ω(1) ∪ . . . ∪ ω(m0)) ∪ (ω(mk + 1) ∪ . . . ∪ ω(l + 1)).

Then, we have:
τ = ϕ(vm0 , ω

′).

Proof. Follows by construction.

We illustrate the constructed Eaves notations for all faces of a triangle in Figure 3.10.

Proof of Theorem 3.3.5. We will now prove Theorem 3.3.5. As we will see, this proof follows
from Lemmas 3.3.6 and 3.3.7.

Proof (of Theorem 3.3.5). Let σ be a d-dimensional coface of τ in the Freudenthal-Kuhn trian-
gulation of Rd. According to Lemma 3.3.6, there exists a vertex y ∈ Zd and an ordered partition
ω of {1, . . . , d+ 1} such that σ = ϕ(y, ω). Since τ is a face of σ and σ admits a generalized
Eaves notation, we can apply Lemma 3.3.7. Hence, there exists a vertex y′ ∈ Zd and an ordered
partition ω′ of {1, . . . , d+ 1}, such that τ = ϕ(y′, ω′). The proof of the theorem follows.

σ

τ0

τ1
τ2

v0

v1

v2

vertices constructed Eaves’ notation ϕ(y′, ω′)

σ {v0, v1, v2} y′ = v0 ω′ = {1}, {2}, {3}
τ0 {v0, v1} y′ = v0 ω′ = {1}, {2, 3}
τ1 {v1, v2} y′ = v1 ω′ = {2}, {1, 3}
τ2 {v0, v2} y′ = v0 ω′ = {1, 2}, {3}
v0 {v0} y′ = v0 ω′ = {1, 2, 3}
v1 {v1} y′ = v1 ω′ = {1, 2, 3}
v2 {v2} y′ = v2 ω′ = {1, 2, 3}

Figure 3.10: The constructed Eaves notations ϕ(y′, ω′) of all faces of a triangle in the two-
dimensional Freudenthal-Kuhn triangulation: the triangle σ itself, the three edges τ0, τ1, τ2 and
the three vertices v0, v1, v2. Each line in the table on the right has pair of values of y′ and ω′

such that the Eaves notation ϕ(y′, ω′) encodes the corresponding simplex.
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3.3. Permutahedral representation of simplices of arbitrary dimension

v0 = (0, 0)

ω0 = {1}, {2, 3}

v1 = (1, 0)

ω1 = {2, 3}, {1}

Figure 3.11: An edge in the Freudenthal-Kuhn triangulation of R2 and the two stars of its vertices
v0 and v1 to which it belongs. For each vertex vk, the ordered partition ωk is indicated such that
ϕ(vk, ωk) is a generalized Eaves notation of the edge (see Proposition 3.3.8).

Note that thanks to Lemma 3.3.6, the d-dimensional simplices in the Freudenthal-Kuhn
triangulation of Rd admit generalized Eaves notation. This is the key reason why we can apply
Lemma 3.3.7 in the proof of Theorem 3.3.5.

3.3.4 Generalized Eaves notation with respect to each vertex

In this section, we generalize Proposition 3.2.9 to simplices of arbitrary dimension. Proposi-
tion 3.3.8 below shows that the same l-dimensional simplex in the Freudenthal-Kuhn triangula-
tion of Rd can be encoded using l + 1 different Eaves notations: one per vertex of the simplex.
This is coherent with the observation that the vertex y in Eaves notation ϕ(y, π) represents the
star of the vertex y in the Freudenthal-Kuhn triangulation of Rd. Since an l-dimensional simplex
lies in l + 1 different stars of vertices, there are l + 1 different Eaves notations for the simplex
(see Figure 3.11).

As for the permutations in Definition 3.2.8, we denote by ω ⊕ k the result of k elementary
cyclic shifts in the positive direction applied on the ordered partition ω.

Proposition 3.3.8 (Generalized Eaves notations with respect to each vertex). Let σ be a simplex
of some dimension l ∈ {0, . . . , d} in the Freudenthal-Kuhn triangulation of Rd. Let y ∈ Zd and
ω be an ordered partition of {1, . . . , d+ 1} in l + 1 parts such that σ = ϕ(y, ω). Let v0, . . . , vl be
the vertices of σ as in Definition 3.1.3. For all k ∈ {0, . . . , l}, define ωk = ω ⊕ k. Then for all
k ∈ {0, . . . , l}, we have:

ϕ(vk, ωk) = σ.

Remark 3.3.9. In the proof of Proposition 3.3.8, we follow the following convention. We see
the indices i of the vertices vi, the vectors wi and the parts ω(i) as elements of the cyclic group
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Chapter 3. Freudenthal-Kuhn triangulation of Rd

Z/(l + 1)Z, where l is the dimension of the simplex σ. Whenever there is a + symbol involved
with such an index, we see it as the addition in the cyclic group Z/(l + 1)Z.

To denote the elements and the subsets of Z/(l+ 1)Z, we will use integers in {0, . . . , l} or in
{1, . . . , l + 1} whenever appropriate.

Proof (of Proposition 3.3.8). Fix k ∈ Z/(l+1)Z. Write the vectors w′1, . . . , w′l+1 and the vertices
v′0, . . . , v

′
l of ϕ(vk, ωk) as in Definition 3.3.1:

w′i =
∑
j∈ω(i)

ej , for all i ∈ {1, . . . , l + 1},

and

v′0 = vk,

v′i = v′i−1 + w′i, for i ∈ {1, . . . , l}.

We will now show that the two sets of vertices {v0, . . . , vl} and {v′0, . . . , v′l} are equal. This
is sufficient to conclude that ϕ(vk, ωk) = σ. To prove the equality {v0, . . . , vl} = {v′0, . . . , v′l}, we
will show by induction on i for all i ∈ Z/(l + 1)Z that we have v′i = vi+k.

Base case. The base case i = 0 of the induction follows from the definition of v′0, which is
equal to vk.

Induction step. For the proof of the induction step, let i ∈ {1, . . . , l} be such that v′i−1 =
vi−1+k. We will now show that we also have v′i = vi+k.

By definition of ωk, we have ωk(i) = ω(i+k) for all i ∈ {1, . . . , l + 1}. This implies w′i = wi+k.
By combining this and the induction hypothesis v′i−1 = vi−1+k, we get:

v′i = v′i−1 + w′i

= vi−1+k + wi+k.

By definition of the vectors w1, . . . , wl+1 and the vertices v0, . . . , vl, the last expression is equal
to vi+k. We conclude that v′i = vi+k. The proof of the induction step is complete.

With the base case and the induction step shown, we conclude that for all i ∈ Z/(l+ 1)Z, we
have v′i = vi+k. We conclude that the vertices of the two simplices σ and ϕ(vk, ωk) are identical.
Thus, these two simplices are equal.

3.3.5 Isomorphism between the refinement poset of ordered partitions and
the face poset of simplices in a star

In this section, we will show the following result. If we fix a vertex y in the Freudenthal-Kuhn
triangulation of Rd, then the refinement poset of the ordered partitions ω ∈ OP ({1, . . . , d+ 1})
is isomorphic to the face poset of star(y). This can be seen in Figure 3.12. Note that the
ordered partitions associated to the simplices in the star in Figure 3.12 are identical to the
ordered partitions associated to the faces of the hexagon (two-dimensional permutahedron) in
Figure 1.15.

100



3.3. Permutahedral representation of simplices of arbitrary dimension

{1, 2, 3}
y

{1}, {2}, {3}

{2}, {1}, {3}

{2}, {3}, {1}

{3}, {2}, {1}

{3}, {1}, {2}

{1}, {3}, {2}

{1
, 2
}, {

3}

{2
},
{1
,3
}

{2, 3}, {1}

{3
}, {

1,
2}

{1
,3
},
{2
}

{1}, {2, 3}

e 1
+
e 2

e 3
e 2

e
1

+
e

3

e2 + e3

e1

e 3

e 1
+
e 2

e
1

+
e

3

e 2

e1

e2 + e3

Figure 3.12: Simplices in the star of a vertex y (in the centre) in the Freudenthal-Kuhn tri-
angulation of R2. For each simplex in the star, the indicated ordered partition ω is such that
ϕ(y, ω) is an Eaves notation of the simplex. For edges, the cycles along the sums of vectors
w1 =

∑
j∈ω(1) ej and w2 =

∑
j∈ω(2) ej are indicated.
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Theorem 3.3.10. Let y ∈ Zd be a vertex in the Freudenthal-Kuhn triangulation of Rd. Denote
by star(y) the star of y in the Freudenthal-Kuhn triangulation of Rd. The map ω 7→ ϕ(y, ω) is an
isomorphism between the refinement poset of ordered partitions of (OP ({1, . . . , d+ 1}),v) and
the face poset of star(y).

To prove that the map ω 7→ ϕ(y, ω) is an isomorphism of posets, we need to show that it
is an order embedding and it is surjective (see Definition 1.1.28). The surjectivity of this map
follows from Proposition 3.3.8. The following corollary of Lemma 3.3.7 also shows that it is an
order embedding.

Corollary 3.3.11 (Order embedding). Let y ∈ Zd be a vertex in the Freudenthal-Kuhn triangu-
lation of Rd. Let k, l ∈ {0, . . . , d} be such that k ≤ l. Let σ and τ be two simplices in star(y) of
dimensions l and k respectively. Let ωσ and ωτ be the two ordered partition of {1, . . . , d+ 1} in
l + 1 and k + 1 parts respectively such that σ = ϕ(y, ωσ) and τ = ϕ(y, ωτ ). Then, we have the
following equivalence: σ is a coface of τ if and only if ωσ is a refinement of ωτ .

Proof (of Corollary 3.3.11). Let us first show the (⇒) direction. Assume that the simplex σ is
a coface of the simplex τ . This implies that τ is a face of σ. We can apply Lemma 3.3.7. By the
way the ordered partition ωτ is defined in terms of the parts ωσ(i) in Lemma 3.3.7, the ordered
partition ωτ is a refinement of ωσ. The result follows.

Let us now show the (⇐) direction. From Definition 3.3.1 it follows that the vertices in the
simplex ϕ(y, ω) form a subset of the vertices in the simplex ϕ(y, ω′). Therefore ϕ(y, ω′) is a
coface of ϕ(y, ω), as desired.

Remark 3.3.12. Other than being used in the proof of Theorem 3.3.10, Corollary 3.3.11 also
guarantees the correctness of the coface generation algorithm in Section 3.5.2.

Now, we are ready to prove Theorem 3.3.10.

Proof (of Theorem 3.3.10). Let τ be a simplex in star(y). It follows from Proposition 3.3.8 that
there exists an ordered partition of {1, . . . , d + 1} such that τ = ϕ(y, ω). Thus, the map ω 7→
ϕ(y, ω) is surjective. Furthermore, according Corollary 3.3.11, this map is an order embedding.
We conclude that the map ω 7→ ϕ(y, ω) is an isomorphism of posets.

3.3.6 Definition of the permutahedral representation

In this section we will define the permutahedral representation. As we will see, the permutahedral
representations are in bijection with the simplices of arbitrary dimension in the Freudenthal-Kuhn
triangulation of Rd.

Remark 3.3.13. Recall that the Freudenthal representations from Section 3.1 are in bijection
with the d-dimensional simplices in the Freudenthal-Kuhn triangulation of Rd. We can therefore
see the permutahedral representation as a generalization of the Freudenthal representation to
simplices of arbitrary dimension in Freudenthal-Kuhn triangulation of Rd.

Definition of the permutahedral representation. To define the permutahedral represen-
tation, we will need Corollary 3.3.14 below, which is based on Proposition 3.3.8. It states that
each simplex of arbitrary dimension in the Freudenthal-Kuhn triangulation of Rd admits a unique
Eaves notation with the property that d+ 1 lies in the last part of the ordered partition.
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3.3. Permutahedral representation of simplices of arbitrary dimension

Corollary 3.3.14. Let σ be a simplex of some dimension l ∈ {0, . . . , d} in the Freudenthal-Kuhn
triangulation of Rd. There exists a unique vertex y ∈ Zd and a unique ordered partition ω of
{1, . . . , d+ 1} with d+ 1 ∈ ω(l + 1) such that σ = ϕ(y, ω).

Proof. According to Theorem 3.3.5, there exists a vertex v0 ∈ Zd and an ordered partition ω0

of {1, . . . , d+ 1} in l + 1 parts such that σ = ϕ(v0, ω0). Write the vertices v0, . . . , vl of σ as in
Definition 3.3.1. Let t be the index in {1, . . . , l + 1} such that d+ 1 ∈ ω0(t). Define the ordered
partition ωt = ω0 ⊕ t. By definition of ωt, we have:

ωt(l + 1) = ω0(l + 1 + t− l − 1) = ω0(t).

Therefore, we have d + 1 ∈ ωt(l + 1). Moreover, from Proposition 3.3.8, we get σ = ϕ(vt, ωt).
This means that the vertex vt and the ordered partition ωt satisfy the statement of the corollary.
Since the index t is uniquely defined, we conclude that such vt and ωt are unique as well.

We define the permutahedral representation from the unique Eaves notation in Corollary 3.3.14.

Definition 3.3.15 (Permutahedral representation). Let y ∈ Zd be a vertex in the Freudenthal-
Kuhn triangulation of Rd. Let l ∈ {0, . . . , d} and let ω be an ordered partition of {1, . . . , d+ 1}
in l + 1 parts such that:

d+ 1 ∈ ω(l + 1),

the l-dimensional simplex σ(y, ω) is defined to be the simplex ϕ(y, ω). We will refer to the notation
σ(y, ω) as the permutahedral representation.

An effect of imposing the condition d+1 ∈ ω(l+1) on the ordered partition ω in the definition
of the simplex σ(y, ω) is that the vertex y is the minimal vertex of σ(y, ω) in the lexicographical
order.

Lemma 3.3.16 (Minimal vertex in lexicographical order). Let y ∈ Zd. Let l ∈ {0, . . . , d}. Let
ω be an ordered partition of {1, . . . , d+ 1} in l + 1 parts such that d+ 1 ∈ ω(l + 1). The vertex
y is the minimal vertex of the simplex σ(y, ω) in the lexicographical order on the coordinates.

Proof. Define the vectors w1, . . . , wl+1 and the vertices v0, . . . , vl of the simplex σ(y, ω) as in
Definition 3.3.1:

wi =
∑
j∈ω(i)

ej , for all i ∈ {1, . . . , l + 1},

and:

v0 = y

vi = vi−1 + wi, for i ∈ {1, . . . , l}.

In particular, for all i ∈ {1, . . . , l}, we can express the vertex vi as:

vi = v0 +
i∑

j=1

wj .

Because d + 1 ∈ ω(l + 1), the only vector ed+1 out of e1, . . . , ed+1 that is not a vector in the
canonical basis of Rd is a term in wl+1. It follows that the vectors w1, . . . , wl are sums of vectors
in the canonical basis of Rd. Thus, for all i ∈ {1, . . . , d}, the vertex v0 is smaller than the vertex
vi in the lexicographic order. We conclude that v0 is the smallest vertex of the simplex σ(y, ω)
in the lexicographical order.
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π = {1, 2, 3}

π = {1}, {2}, {3}

π = {2}, {1}, {3}

π
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, 2
}, {
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{2
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}

π = {1}, {2, 3}

Figure 3.13: Simplices in the Freudenthal-Kuhn triangulation of R2 that admit the permutahedral
representation σ(y, ω) with a fixed vertex y (circled) and some ordered partition ω of {1, 2, 3}.
For each such simplex, the ordered partition ω is indicated.

Using Lemma 3.3.16, we can determine the set of simplices that admit the permutahedral
representations σ(y, ω) with a fixed vertex y ∈ Zd. Since these simplices admit generalized Eaves
notations ϕ(y, ω), they lie in the star of the vertex y in the Freudenthal-Kuhn triangulation
of Rd. On the other hand, according to Lemma 3.3.16, the vertex y is the minimal vertex in
the lexicographical order in these simplices. It follows that the simplices σ(y, ω) lie in the cube
associated to the vertex y in the unit cubical partition of Rd. Thus, the simplices σ(y, ω) lie
in the intersection of the star of y and the cube associated to the vertex y in the unit cubical
partition of Rd (illustrated in Figure 3.13).

Bijection between the permutahedral representations and the simplices. As the fol-
lowing theorem shows, the permutahedral representations are in bijection with the simplices of
the arbitrary dimension in the Freudenthal-Kuhn triangulation of Rd.

Theorem 3.3.17. The set of simplices of arbitrary dimension in the Freudenthal-Kuhn triangu-
lation of Rd is in bijection with the set of the pairs (y, ω) consisting of a vertex y ∈ Zd and of an
ordered partition ω of {1, . . . , d+ 1} in l+ 1 parts with l ∈ {0, . . . , d} such that d+ 1 ∈ ω(l+ 1).

Proof. Define two maps that are inverses of one another.

• The map µ that associates to a simplex of arbitrary dimension in the Freudenthal-Kuhn
triangulation of Rd the pair (y, ω) of a vertex y ∈ Zd and an ordered partition ω of
{1, . . . , d+ 1} in l + 1 parts with l ∈ {0, . . . , d} such that d + 1 ∈ ω(l + 1). This map is
given by Corollary 3.3.14.
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• The map µ−1 that associates to a vertex y ∈ Zd and an ordered partition ω of {1, . . . , d+ 1}
in l+1 parts with l ∈ {0, . . . , d} such that d+1 ∈ ω(l+1) the corresponding simplex σ(y, ω)
in the Freudenthal-Kuhn triangulation of Rd. This map is given by Definition 3.3.15.

Because µ and µ−1 are inverses of one another, we conclude that these two maps are bijections.
The result follows.

3.3.7 Characterization of the points in a simplex using a chain of inequalities

In this section, we will characterize the points in a simplex in the Freudenthal-Kuhn triangulation
of Rd using its permutahedral representation. This characterization (Proposition 3.3.19) will play
a key role in the correctness proof of the point location algorithm in Section 3.4.

The points in a simplex are characterized by a chain of inequalities that we will now define.

Remark 3.3.18. In this section and in Section 3.4, all simplices are open in their affine hull.

Fix an l-dimensional simplex τ in the Freudenthal-Kuhn triangulation of Rd, for some l ∈
{0, . . . , d}. Write τ = σ(y, ω), where y ∈ Zd is a vertex and ω is an ordered partition of
{1, . . . , d+ 1} in l+ 1 parts such that d+ 1 ∈ ω(l+ 1). Denote by m1, . . . ,ml+1 ∈ {1, . . . , d+ 1}
the following sums of the cardinalities |ω(j)|:

m1 = |ω(1)|, m2 = |ω(1)|+ |ω(2)| . . . ml+1 =
l+1∑
j=1

|ω(j)|.

Note that because ω is an ordered partition of {1, . . . , d+ 1}, we have ml+1 = d+ 1. Write the
elements in the sets ω(j) as:

ω(1) = {q1, . . . , qm1} , ω(2) = {qm1+1, . . . , qm2} . . . ω(l + 1) = {qml+1, . . . , qd+1} .

Note that q1, . . . , qd+1 form a permutation of 1, . . . , d+ 1.
We will now show that the points x in the simplex τ are characterized by the following chain

of inequalities:

1 > zq1 = . . . = zqm1
> zqm1+1 = . . . = zqm2

> . . . . . . > zqml+1 = . . . = zqd+1
= 0, (3.2)

where the zk are defined as:

• for all k ∈ {1, . . . , d}, zk is the kth coordinate of the vector z = (z1, . . . , zd) = x− y,

• by convention zd+1 = 0.

Proposition 3.3.19 (Characterization of the points in a simplex). The simplex τ = σ(y, ω) and
the subset of Rd that satisfies the chain of inequalities (3.2) are equal.

We prove Proposition 3.3.19 by double inclusion. The proof is inspired by the proof of
Proposition 3.3.19 in the particular case of d-dimensional simplices in Todd [Tod76, Section
III.3.4].

In the following, we define the vectors w1, . . . , wl+1 and the vertices v0, . . . , vl of τ as in
Definition 3.3.1:

wi =
∑
j∈ω(i)

ej , for all i ∈ {1, . . . , l + 1},
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and:

v0 = y

vi = vi−1 + wi, for i ∈ {1, . . . , l}.

We will use the following expression of the vertex vi, for all i ∈ {0, . . . , l}:

vi = v0 +
i∑

j=1

wj . (3.3)

The proof that the points in the simplex τ satisfy the chain of inequalities (3.2) relies on
Lemma 3.3.20 below. It expresses the coordinates zk of the vector z = x − y in terms of the
barycentric coordinates of the point x in the simplex τ . We will prove Proposition 3.3.19 after
Lemma 3.3.20.

Lemma 3.3.20 (Expression of the zk). Let x be a point in the simplex τ and let λ0, . . . , λl ∈ (0, 1]
be its barycentric coordinates, i.e.

∑l
i=0 λi = 1 and:

x =
l∑

i=0

λivi.

Let k ∈ {1, . . . , d} and t ∈ {1, . . . , l + 1} be such that k ∈ ω(t). Then, we have:

zk =
l∑
i=t

λi.

Proof. Substitute the vi in the expression of x using (3.3):

x =

l∑
i=0

λivi = λ0v0 +

l∑
i=1

λi

v0 +

i∑
j=1

λiwj

 =

l∑
i=0

λiv0 +

l∑
i=1

i∑
j=1

λiwj . (3.4)

Observe that
∑l

i=0 λiv0 =
(∑l

i=0 λi

)
v0 = v0 and that v0 = y. Using these observations, we get

from (3.4) an expression of z in terms of the wj and the λi:

z = x− y =
l∑

i=1

i∑
j=1

λiwj =
l∑

j=1

 l∑
i=j

λi

wj . (3.5)

Fix k ∈ {1, . . . , d}. We get from (3.5):

zk = 〈z, ek〉 =

〈
l∑

i=1

 i∑
j=1

λi

wj , ek

〉
=

l∑
j=1

 l∑
i=j

λi

 〈wj , ek〉 . (3.6)

Recall that because d + 1 lies in ω(l + 1), the vectors w1, . . . , wl are sums of vectors in the
canonical basis of Rd. Because k is assumed to lie in the part ω(t), it follows that:

〈wj , ek〉 =

{
1 if j = t,
0 otherwise.
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Thus, all terms
(∑l

i=j λi

)
〈wj , ek〉 in the sum in (3.6) are 0 except for j = t. We finally get:

zk =

l∑
i=t

λi 〈wt, ek〉 =

l∑
i=t

λi.

We are now ready to prove Proposition 3.3.19. As we mentioned before, we prove Propo-
sition 3.3.19 by double inclusion. To prove the first inclusion, we show that the points in the
simplex τ satisfy the chain of inequalities (3.2). For this, we use Lemma 3.3.20. To prove the
other inclusion we show that the points x that satisfy the chain of inequalities (3.2) lie in the sim-
plex τ . For this, we will construct λ0, . . . , λl and show that these are the barycentric coordinates
of x in τ .

Proof (of Proposition 3.3.19). We will show by double inclusion that the points in the simplex
τ and the subset of Rd that satisfies the chain of inequalities (3.2) are equal.

Proof of (⊆). Take a point x ∈ σ(y, ω). We will now show that z = x − y = (z1, . . . , zd)
satisfies the chain of inequalities (3.2). For this, we need to show the following three claims:

1. If k, k′ ∈ {1, . . . , d} both lie in the same ω(t) for some t ∈ {1, . . . , l + 1}, then zk = zk′ .

2. If k, k′ ∈ {1, . . . , d} lie in some ω(t) and ω(t′) for some t, t′ ∈ {1, . . . , l + 1} such that t < t′,
then zk ≥ zk′ .

3. If k ∈ {1, . . . , d} lies in ω(l + 1), then zk = 0.

Since x lies in the simplex τ , we can express x using the barycentric coordinates λ0, . . . , λl ∈ [0, 1]
such that

∑l
i=0 λi = 1 and:

x =

l∑
i=0

λivi.

We will now use Lemma 3.3.20 to prove the three claims in the beginning of the proof.

1. Let k, k′ ∈ {1, . . . , d} be such that both k and k′ lie in the same ω(t) for some t ∈
{1, . . . , l + 1}. From Lemma 3.3.20 we get:

zk =
l∑
i=t

λi = zk′ ,

as desired.

2. Let k, k′ ∈ {1, . . . , d} be such that k lies in ω(t) and k′ lies in ω(t′) for some t, t′ ∈
{1, . . . , l + 1} such that t < t′. From Lemma 3.3.20 and the positivity of λ0, . . . , λl we get:

zk =

l∑
i=t

λi >

l∑
i=t′

λi = zk′ ,

as desired.

3. Let k ∈ {1, . . . , d} be such that k lies in ω(l + 1). The sum in the expression of zk in
Lemma 3.3.20 is empty. Hence this sum is 0. Therefore we get zk = 0, as desired.

With these three claims shown, we conclude that the points in the simplex τ satisfy the chain
of inequalities (3.2).
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Proof of (⊇). Let x be such that z = x − y satisfies the chain of inequalities (3.2). Define
λ0, . . . , λl ∈ R as follows:

λ0 = 1− zqm1

λi = zqmi − zqmi+1
for all i ∈ {1, . . . , l}.

Since z satisfies the chain of inequalities (3.2), it follows that λ0, . . . , λl all lie in (0, 1]. Moreover,
we have:

l∑
i=0

λi = (1− zqm1
) + (zqm1

− zqm2
) + . . .+ (zqml − zqml+1

) = 1− zqml+1
= 1,

since zqml+1
= zqd+1

= 0.

We will now show that
∑l

i=0 λivi = x. Let k ∈ {1, . . . , d+ 1} and t ∈ {1, . . . , l + 1} be such
that k ∈ ω(t). By definition of ω and the chain of inequalities (3.2), from k ∈ ω(t) it follows
zk = zqmt . From the definition of λ0, . . . , λl, it follows that:

zk = zqmt = zqmt − zqml+1
= (zqmt − zqmt+1

) + . . .+ (zqml − zqml+1
) =

l∑
i=t

λi. (3.7)

From the chain of inequalities (3.2) and the definition of ω, we also get that for all k ∈ ω(l + 1)
we have zk = 0. With the help of (3.7), we can therefore write z as:

z =
l∑

t=1

∑
k∈ω(t)

zkek =
l∑

t=1

∑
k∈ω(t)

(
l∑
i=t

λi

)
ek =

l∑
t=1

(
l∑
i=t

λi

) ∑
k∈ω(t)

ek =
l∑

t=1

(
l∑
i=t

λi

)
wt.

We change the order of summation:

z =
l∑

t=1

l∑
i=t

λiwt =
l∑

i=1

λi

(
i∑
t=1

wt

)
.

We now add v0 to both sides of the equation. Observe that x = v0 + z and
∑l

i=0 λi = 1. We get:

x =
l∑

i=0

λiv0 +
l∑

i=1

λi

(
i∑
t=1

wt

)
= λ0v0 +

l∑
i=1

λi

(
v0 +

i∑
t=1

wt

)
= λ0v0 +

l∑
i=1

λivi =

l∑
i=0

λivi.

Since all λ0, . . . , λl belong to (0, 1] and their sum is 1, we conclude that x lies in the simplex τ .
With both inclusions proven, we conclude that the simplex τ and the subset of Rd defined

by the chain of inequalities (3.2) are equal.

3.4 Point location in the Freudenthal-Kuhn triangulation

In this section, we will generalize the point location algorithm from Section 3.1.1 with the help
of the permutahedral representation from Definition 3.3.15.
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x = ( 0.48, −1, −0.52)

y = ( 0, −1, −1 )

z = ( 0.48, 0, 0.48 )

0.48 = 0.48 > 0 = 0 (= z4)

ω = {1, 3 }, {2, 4 }y
x

Figure 3.14: Scheme of the execution of the point location algorithm called on a point x ∈ R3.
The output of the algorithm consists of the edge σ(y, ω) (coloured red in the cube on the left) with
y and ω as shown on the right. The edge σ(y, ω) is the smallest simplex in the Freudenthal-Kuhn
triangulation of R3 that contains the point x.

Description of the algorithm.

Remark 3.4.1. Similarly to Section 3.3.7, the simplices in this section are open in their affine
hull.

The point location algorithm takes as input a point x ∈ Rd given as a vector of Cartesian
coordinates (x1, . . . , xd). The output consists of the permutahedral representation σ(y, ω) of the
unique simplex τ of some arbitrary dimension in the Freudenthal-Kuhn triangulation of Rd that
contains the input point x (illustrated in Figure 3.14).

Remark 3.4.2. Note that the simplices that are open in their affine hull form a partition of Rd.
So, unlike the algorithm in Section 3.1.1, the point location algorithm that we present here has a
uniquely defined output.

The point location algorithm first computes the following two vectors:

y = (y1, . . . , yd) = (bx1c, . . . , bxdc) ∈ Zd

z = (z1, . . . , zd) = x− y = ({x1}, . . . , {xd}) ∈ [0, 1)d,

where each {xi} denotes the fractional part of xi. The coordinates z1, . . . , zd of the vector z are
then sorted as follows:

1 > zq1 ≥ . . . ≥ zqd ≥ 0, (3.8)

where q1, . . . , qd are such that (q1, . . . , qd) is a permutation of {1, . . . , d}. By convention we pose:

qd+1 = d+ 1 and zqd+1
= 0.

Let m1, . . . ,ml+1 ∈ {1, . . . , d+ 1} be such that the chain of inequalities (3.8) is rewritten as:

1 > zq1 = . . . = zqm1
> zqm1+1 = . . . = zqm2

> . . . . . . > zqml+1 = . . . = zqd+1
= 0, (3.9)

and ml+1 = d+ 1.
The point location algorithm outputs the permutahedral representation σ(y, ω), where y ∈ Zd

is the vector computed earlier and ω is the following ordered partition of {1, . . . , d+ 1} in l + 1
parts:

ω = {q1, . . . , qm1}, {qm1+1, . . . , qm2}, . . . , {qml−1+1, . . . , qml}, {qml+1, . . . , qd+1}.
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Correctness of the algorithm. We will now show that the point location algorithm outputs
the permutahedral representation of the simplex in the Freudenthal-Kuhn triangulation of Rd
that contains the input point x ∈ Rd.

Theorem 3.4.3 (Correctness of the point location algorithm). The simplex σ(y, ω) given in the
output by the point location algorithm called on a point x ∈ Rd is the smallest simplex in the
Freudenthal-Kuhn triangulation of Rd that contains the input point x.

The proof of Theorem 3.4.3 relies on Proposition 3.3.19 that we showed in Section 3.3.7.

Proof (of Theorem 3.4.3). From Proposition 3.3.19, it follows that the points in the simplex τ
satisfy the following chain of inequalities:

1 > zq1 = . . . = zqm1
> zqm1+1 = . . . = zqm2

> . . . . . . > zqml+1 = . . . = zqd+1
= 0, (3.10)

where q1, . . . , qd+1 are such that ω is written as:

ω = {q1, . . . , qm1}, {qm1+1, . . . , qm2}, . . . , {qml−1+1, . . . , qml}, {qml+1, . . . , qd+1}.

Since x satisfies the chain of inequalities (3.10), x lies in the simplex τ . Because the simplices
that we consider here form a partition of Rd, the simplex that contains x is unique.

Time and space complexity of the algorithm. The time complexity of the point location
operation is dominated by the complexity of sorting the coordinates z1, . . . , zd. Therefore:

Proposition 3.4.4. The time complexity of one call of the point location is O(d log d).

The only storage that the point location algorithm uses is O(d) to store the vector z and the
output. We conclude that:

Proposition 3.4.5. The space complexity of one call of the point location is O(d).

3.5 Generation of faces and cofaces in a Freudenthal-Kuhn tri-
angulation

In this section, we will define two algorithms that generate faces and cofaces of a given simplex
in the Freudenthal-Kuhn triangulation of Rd. Let us first formally define what “generating faces
and cofaces” means.

Definition 3.5.1 (Generating simplices). Let F = {τ1, . . . , τn} be a finite ordered set of simplices
in the Freudenthal-Kuhn triangulation of Rd. Generating simplices of F means computing every
simplex (in some arbitrary representation) in the set F one after another, each simplex being
computed once.

Remark 3.5.2. Whenever we say first simplex or last simplex, we tacitly assume that there
exists a deterministic order on the generated simplices.

We are interested in two examples of sets of simplices to generate: sets fac(τ, k) and cof(τ, l)
from Definitions 3.5.3 and 3.5.4 below.
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Definition 3.5.3 (Set of faces). Let τ be an l-dimensional simplex in the Freudenthal-Kuhn
triangulation of Rd for some l ∈ {0, . . . , d}. Let k ∈ {0, . . . , d} be such that k ≤ l. We denote by
fac(τ, k) the set of k-dimensional faces of the simplex τ .

Definition 3.5.4 (Set of cofaces). Let τ be a k-dimensional simplex in the Freudenthal-Kuhn
triangulation of Rd for some k ∈ {0, . . . , d}. Let l ∈ {0, . . . , d} be such that k ≤ l. We denote by
cof(τ, l) the set of l-dimensional cofaces of the simplex τ in the Freudenthal-Kuhn triangulation
of Rd.

Remark 3.5.5. In the following, we will follow a convention regarding the notations of the
dimensions of simplices. Whenever we need to distinguish two dimensions, we denote by k
the smallest and by l the greatest of them. Hence, we always assume the following chain of
inequalities: 0 ≤ k ≤ l ≤ d.

In Sections 3.5.1 and 3.5.2, we will introduce two algorithms that generate the sets fac(τ, k)
and cof(τ, l) for a given simplex τ and a given integer k or l. These two algorithms are called
the face generation algorithm and the coface generation algorithm respectively. Both face and
coface generation algorithms are used in the manifold tracing algorithm in Chapter 4 as subrou-
tines. The time and space complexities of face and coface computation algorithms are given by
Theorems 3.5.6 and 3.5.7 below.

Theorem 3.5.6 (Complexity of the face generation algorithm). Let σ be an l-dimensional sim-
plex in the Freudenthal-Kuhn triangulation of Rd for some l. Let k ≤ l. The time complexity to
generate the k-dimensional faces of σ is as follows:

1. The complexity of computing the permutahedral representation of the first k-dimensional
face of σ is O(k).

2. The decision of whether a computed k-dimensional face of σ is the final12 one is obtained
in O(1) operations.

3. Computing the permutahedral representation of a k-dimensional face of σ from the previous
one takes O(d) operations.

The internal storage needed for the face generation is O(l).

Note that the storage needed for the face generation is O(k), which is less than the O(d)
storage of the permutahedral representation. This is because the faces of σ are not stored
using permutahedral representation, but using a more compact internal representation (see Sec-
tion 3.5.1).

Theorem 3.5.7 (Complexity of the coface generation algorithm). Let τ be a k-dimensional
simplex in the Freudenthal-Kuhn triangulation of Rd for some k. Let l ≥ k. The time complexity
to generate the l-dimensional cofaces of τ is as follows:

1. The complexity of computing the permutahedral representation of the first l-dimensional
coface of τ is O(d).

2. The decision of whether a computed l-dimensional coface of τ is the final one is obtained
in O(1) operations.

12Here, final means that all k-dimensional faces of σ have been generated. We will use the word final in the
same sense when talking about the generation of pemutations, ordered partitions, etc.
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3. Computing the permutahedral representation of an l-dimensional coface from the previous
one takes O(d) operations.

The internal storage needed for the coface generation is O(d).

Similarly to the face generation algorithm, the cofaces of τ are not stored using permutahedral
representation, but using another internal representation (see Section 3.5.2).

Remark 3.5.8. Note that the complexity to compute the permutahedral representation is at least
the storage O(d) of the permutahedral representation. In this sense, the face and coface generation
algorithms are in fact optimal for the purpose of the manifold tracing algorithm.

3.5.1 Face generation algorithm

In this section we will describe the face generation algorithm.

Description of the algorithm. The face generation algorithm takes as input:

• a record consisting of a vertex y ∈ Zd and of an ordered partition ω of {1, . . . , d+ 1},
such that σ(y, ω) is the permutahedral representation of an l-dimensional simplex τ in the
Freudenthal-Kuhn triangulation of Rd, for some l ∈ {0, . . . , d};

• an integer k ∈ {0, . . . , d} such that k ≤ l.

Define the l+1 vertices v0, . . . , vl of the input simplex τ as in Definition 3.3.1. A k-dimensional
face τ ′ of τ can be uniquely identified by k + 1 indices {m0, . . . ,mk} ⊆ {0, . . . , l} of the k + 1
vertices vm0 , . . . , vmk of the face τ ′. We use the subset of k+ 1 indices {m0, . . . ,mk} ⊆ {0, . . . , l}
as the internal data structure that stores the currently generated k-dimensional face in the face
generation algorithm (see Figure 3.15).

Definition 3.5.9. We will refer to this subset of {0, . . . , l} of size k+ 1 as an internal represen-
tation of the k-dimensional face of τ .

To fully describe the face generation algorithm, we need to discuss two of its aspects:

• The transition from a k-dimensional face of τ to the next one (red arrows in Figure 3.15).
By transition, we mean computing the internal representation of a k-dimensional face of τ
from the internal representation of the previously computed one.

• The transformation of the internal representation of the k-dimensional face of τ to its
permutahedral representation (green arrows in Figure 3.15).

We will now describe these two aspects of the face generation algorithm in detail.

Transition. Let us start with the transition from a k-dimensional face of the input simplex τ
to the next one. As we stated above, the k-dimensional faces of τ are stored internally as subsets
of k + 1 indices in {0, . . . , l}. Generating subsets of a set with a fixed number of elements is a
classical problem in combinatorial generation and there exists an algorithm for subset generation
of Ehrlich [Ehr73] that has the following complexities:

1. The complexity of computing the first subset of size k + 1 of {0, . . . , l} is O(k).
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2. The decision of whether a computed subset of size k + 1 of {0, . . . , l} is the final one is
obtained in O(1) operations.

3. Computing a subset of size k+ 1 of {0, . . . , l} from the previous one takes O(1) operations.

Remark 3.5.10. A generation algorithm that has a constant worst-case transition time com-
plexity is called loopless [Ehr73].

Every time we need to compute a new k-dimensional face, we use the algorithm of Ehrlich
[Ehr73] as a black box that generates the new subset of k + 1 indices (illustrated by red arrows
in Figure 3.15).

Lemma 3.5.11 below shows that with this transition procedure, the face generation algorithm
satisfies the complexities of 1 and 2 in Theorem 3.5.6. It will also help to show later that the
complexity of 3 in Theorem 3.5.6 is also satisfied.

Lemma 3.5.11. The time complexity of computing the first k-dimensional face is O(k). The
time complexities of:

1. the decision of whether a computed k-dimensional face is the final one,

2. computing the internal representation of a k-dimensional face of the input simplex τ from
the internal representation of the previous one

are both O(1).

Proof. The proof follows from the time complexities of the algorithm for the subset generation
by Ehrlich [Ehr73].

Transformation of the internal representation into the permutahedral representa-
tion. Now we will describe how the subset of k + 1 indices {m0, . . . ,mk} ⊆ {0, . . . , l} can
be transformed into the permutahedral representation of the corresponding face τ ′ of the input
simplex τ .

There are two steps in the transformation procedure.

1. Ehrlich’s subset generation algorithm does not necessarily store the indices m0, . . . ,mk

in ascending order. Therefore we first need to sort the indices m0, . . . ,mk. For this we
perform the counting sort algorithm, introduced by Seward [Sew54]. Its time and space
complexities are both O(l). We will assume in the following that the order of the indices
is the following:

m0 < . . . < mk.

2. After sorting the indicesm0, . . . ,mk, we use the construction from Section 3.3.3. We assign:

y′ = v0 +
∑
j∈ω(1)

ej + . . .+
∑

j∈ω(m0)

ej

and:

ω′(i) = ω(mi−1 + 1) ∪ . . . ∪ ω(mi), if i ∈ {1, . . . , k},
ω′(k + 1) = (ω(1) ∪ . . . ∪ ω(m0)) ∪ (ω(mk + 1) ∪ . . . ∪ ω(l + 1)).

The output consists of the permutahedral representation σ(y′, ω′).
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{0, 1}

{1, 3}{0, 3}

{2, 3}

{0, 2} {1, 2}

{m0,m1} =
y′ = (0, 0, 0)
ω′ = {1}, {2, 3, 4}

y′ = (1, 0, 0)
ω′ = {2, 3}, {1, 4}

y′ = (0, 0, 0)
ω′ = {1, 2, 3}, {4}

y′ = (1, 0, 1)
ω′ = {2}, {1, 3, 4}

y′ = (0, 0, 0)
ω′ = {1, 3}, {2, 4}

y′ = (1, 0, 0)
ω′ = {3}, {1, 2, 4}

Figure 3.15: Scheme of the execution of the face generation algorithm called on a 3-dimensional
simplex τ = σ(y, ω) in the Freudenthal-Kuhn triangulation of R3 with y = (0, 0, 0) and ω =
{1}, {3}, {2}, {4}, and k = 1. The inner red circle contains the subsets of 2 elements of {0, 1, 2, 3}.
The sequence of the subsets is given by the algorithm of Ehrlich [Ehr73]. The outer green circle
contains y′ and ω′ in the permutahedral representation of the corresponding edge σ(y′, ω′) of τ .
The green arrows indicate the transformation of the internal representations of a k-dimensional
faces of τ into their permutahedral transformations.
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Note that the permutahedral representation σ(y′, ω′) is well-defined. Indeed, because σ(y, ω)
is the permutahedral representation of τ ′, we have d + 1 ∈ ω(l + 1). By construction of ω′, we
have ω(l + 1) ⊆ ω′(k + 1). It follows that d + 1 ∈ ω′(k + 1). Hence σ(y′, ω′) is well-defined
permutahedral representation.

From Lemma 3.3.7 and the remark above, it follows that the algorithm above is correct. By
this, we mean that the simplex σ(y′, ω′) is the k-dimensional face of the input simplex τ defined
by the vertices vm0 , . . . , vmk .

Lemma 3.5.11 below shows that the time complexity of the transformation procedure is O(d).
This lemma shows that the face generation algorithm satisfies the complexity 3 of Theorem 3.5.6.

Lemma 3.5.12 (Time complexity of the transformation procedure). The time complexity of
transforming the subset of k+ 1 indices {m0, . . . ,mk} ⊆ {0, . . . , l} into the permutahedral repre-
sentation of the corresponding face τ ′ of the input simplex τ is O(d).

Proof. We will decompose the overall time complexity into three parts:

1. the complexity of applying the counting sort algorithm on the indices m0, . . . ,mk,

2. the complexity of assigning y′ to its value and

3. the complexity of assigning ω′ to its value.

The complexity of the counting sort algorithm is the sum of (see [Sew54]):

• the difference between the largest mk and the smallest element m0 in the set {m0, . . . ,mk},

• the number k + 1 of elements to sort.

Since all indices are bounded between 0 and l, the differencemk−m0 is at most l. By assumption,
we have k ≤ l. We conclude that the time complexity of applying the counting sort algorithm
on the indices m0, . . . ,mk is O(l).

Now, we will analyse the complexity of assigning y′ to its value. The new value of y′ is
obtained by adding at most O(d) canonical basis vectors and eventually the vector ed+1 to v0.
Adding a canonical basis vector amounts to adding 1 to the corresponding coordinate. This
counts as an elementary operation. Adding the vector ed+1 amounts to subtracting 1 from all d
coordinates, which has complexity O(d). We conclude that computing the new value of y′ has
overall time complexity O(d).

Finally, we will analyse the complexity of assigning ω′ to its value. Computing the new value
of ω′ amounts to reading the indices in ω(1), . . . , ω(k + 1) and inserting these indices in the
appropriate sets ω′(i). There are d+ 1 indices overall, therefore, the complexity is O(d).

When we sum the three complexities, we get that the overall time complexity of the algorithm
is:

O(l) +O(d) +O(d) = O(d).

Time and space complexity. Thanks to Lemmas 3.5.11 and 3.5.12, we can conclude that
the face generation algorithm satisfies the time complexities in Theorem 3.5.6.

The additional storage in the face generation algorithm come from:

• the space complexity of the subset generation algorithm by Ehrlich, which is O(k),
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• the space complexity of the counting sort, which is O(l).

The total space complexity is O(l) [Ehr73]. Therefore, the face generation algorithm satisfies the
space complexity in Theorem 3.5.6.

To compute the permutahedral representations of all k-dimensional faces of the input simplex,
the total complexity is the following.

Theorem 3.5.13. Let τ be an l-dimensional simplex in the Freudenthal-Kuhn triangulation of
Rd, for some l ∈ {0, . . . , d}. Let k ∈ {0, . . . , d} be such that k ≤ l. Let:

F (τ, k) =

(
l + 1

k + 1

)
be the number of k-dimensional faces of the simplex τ . The time complexity of computing the
permutahedral representations of all k-dimensional faces of τ is O(dF (τ, k)).

Proof. The time complexity to compute one face by the face generation algorithm is O(1) (see
Lemma 3.5.11). The time complexity of computing the permutahedral representation of a gener-
ated face is O(d) (see Lemma 3.5.12). Therefore, the total time complexity spent per computed
face is O(d). By multiplying this time complexity by the number F (τ, k) of k-dimensional faces
of τ , we get the result.

Remark 3.5.14. Since the space complexity to store a permutahedral representation is Θ(d), the
bound on the time complexity in Theorem 3.5.13 is optimal.

3.5.2 Coface generation algorithm

In this section, we will describe the coface generation algorithm.

Description of the coface generation algorithm. The coface generation algorithm takes
as input:

• a record consisting of a vertex y ∈ Zd and an ordered partition ω of {1, . . . , d+ 1} in k+ 1
parts, such that σ(y, ω) is the permutahedral representation of a k-dimensional simplex τ
in the Freudenthal-Kuhn triangulation of Rd, for some k ∈ {0, . . . , d};

• an integer l ∈ {0, . . . , d} such that l ≥ k.

The coface generation algorithm then generates the set cof(τ, l) of the l-dimensional cofaces
of τ in the Freudenthal-Kuhn triangulation of Rd (see Definition 3.5.4).

Remark 3.5.15. In the following, when we mention cofaces of τ , we will tacitly assume that
these cofaces lie in the Freudenthal-Kuhn triangulation of Rd.

Remark 3.5.16. Note that the dimension of the simplex τ in the description of the coface
generation algorithm is denoted by k, while the dimension of its cofaces is l. This changes with
respect to the description of the face generation algorithm (Section 3.5.1), where the dimension
of the input simplex was denoted by l, while the dimension of its faces was k. This choice of
notations is consistent with the convention in Remark 3.5.5 that k denotes the smallest dimension,
while l denotes the greatest dimension.
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{4, 6, 8}, {2, 5, 7}, {1, 3, 9}ω :

ρi : ρ1 = {6}, {4, 8} ρ2 = {2, 5, 7} ρ3 = {9}, {3}, {1}

a1 = 2 a2 = 1 a3 = 3ai :

ρ : {6}, {4, 8}, {2, 5, 7}, {9}, {3}, {1}

Figure 3.16: A refinement ρ of an ordered partition ω and the tuple (a, ρ1, ρ2, ρ3) that is in
bijection. Here k + 1 = 3 is the number of parts in ω, and l+ 1 = 6 is the number of parts in ρ.

The generated l-dimensional cofaces are represented in the following way. Recall that by
definition of the permutahedral representation, y is a vertex of the input simplex τ . All cofaces of
τ (including the l-dimensional cofaces that interest us) share the vertex y. Therefore all simplices
in cof(τ, l) that the coface generation algorithm generates lie in star(y). From Theorem 3.3.10
it follows that each simplex τ ′ in cof(τ, l) is in one-to-one correspondence with a refinement ρ of
the input ordered partition ω into l+ 1 parts. We encode each such refinement ρ using a record
(a, ρ1, . . . , ρk+1) that consists of (see Figure 3.16):

• An integer composition a = a1, . . . , ak+1 of l+1 in k+1 terms (see Definition 3.5.17 below).
Each ai is at most the cardinality |ω(i)| and represents the number of subparts in which
we need to subdivide ω(i) to obtain the corresponding parts in the refinement ρ.

• Refinements ρ1, . . . , ρk+1 of ω(1), . . . , ω(k + 1) into a1, . . . , ak+1 parts respectively. Each
refinement ρi represents the specific way to subdivide ω(i) to obtain the corresponding
parts in the refinement ρ.

We will now formally define integer compositions.

Definition 3.5.17 (Integer composition). Let n and k be two positive integers.
A composition of a given positive integer n in k terms is a sequence of positive integers

a1, . . . , ak, such that n = a1 + . . .+ ak.
Given positive integers b1, . . . , bk, a bounded composition of n in k terms is a composition

of n in k terms a1, . . . ak that are upper bounded by b1, . . . , bk respectively:

∀i ∈ {1, . . . , k} , ai ≤ bk.

To generate the entries of the record (a, ρ1, . . . , ρd), the coface generation algorithm uses the
following classical algorithms as black boxes.

• The integer compositions a of l + 1 in k + 1 terms bounded by |ω(1)|, . . . , |ω(k + 1)| are
generated by the algorithm of Walsh [Wal00]. This algorithm is loopless (in the sense
of Remark 3.5.10), which is important for the coface generation algorithm to satisfy the
complexities of Theorem 3.5.7.
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• We also want to generate the ordered partitions ρ1, . . . , ρk+1. It seems that there are
no ordered set partition generation algorithms in the literature. However, it is not hard
to make an ordered set partition generation algorithm from an unordered set partition
generation algorithm (such as the algorithm of Ruskey and Savage [RS94]). This is done
in the following way.

In practice, when an algorithm generates an unordered set partition, it stores the parts
in memory in some specific order: ρ̂i(1), . . . , ρ̂i(ai). Such ρ̂i can be seen as ordered set
partitions with some specific order on the parts. We want all possible orders on these
parts. For this, we generate separately from the unordered set partitions the permutations
σi : {1, . . . , ai} → {1, . . . , ai} using the algorithm of Ehrlich [Ehr73]. The ordered partition
ρi can be seen as a combination of ρ̂i given by the unordered set partition generation
algorithm on the parts and a permutation σi in the following way:

ρi = ρ̂i(σi(1)), . . . , ρ̂i(σi(ai)).

Both generation algorithms of Ruskey and Savage [RS94] and of Ehrlich [Ehr73] are loop-
less, which will be important in the complexity analysis of the coface generation algorithm
later on.

We will now describe the following aspects of the coface computation algorithm:

• initialization,

• transition from one computed l-dimensional coface of τ to the next one,

• decision of whether a computed coface is the final one or not,

• transformation of the record (a, ρ1, . . . , ρk+1) to the permutahedral representation σ(y′, ρ′)
of the corresponding l-dimensional coface of τ .

Initialization. Recall that the elements of the stored record are:

a, ρ1, ρ2, . . . , ρk+1.

It is important that the entry a is initialized first, since the sizes of ρ1, ρ2, . . . , ρk+1 depend on
a. The order of initialization of the entries other than a can be arbitrary.

Lemma 3.5.18. The time complexity of the initialization of the record (a, ρ1, ρ2, . . . , ρk+1)
is O(d).

Proof. By the choice of the algorithms to generate a, ρ1, ρ2, . . . , ρk+1, their initialization time
complexities are equal to the respective storage sizes. These sizes are the following. The storage
of a consists of k + 1 integers a1, . . . , ak + 1. Hence the storage size of a is O(k).

For all i ∈ {1, . . . , k + 1}, the storage size of ρi is the sum of the storage sizes of ρ̂i and
σi. The storage size of ρ̂i is O(|ω(i)|) and the storage size of σi is O(ai). Because the sum
|ω(1)| + . . . + |ω(k + 1)| is d + 1, the total storage size of all ordered partitions ρ̂i is therefore
O(d). Because the sum a1 + . . . + ak+1 is l + 1, the total storage size of all permutations σi is
therefore O(l). Thus, the total time complexity of the initialization phase is:

O(k + d+ l) = O(d).
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Transition. Now, we will describe how the coface generation algorithm computes the next
l-dimensional coface of τ from the previous one. As we stated above, an l-dimensional coface of
τ is stored as a record (a, ρ1, ρ2, . . . , ρk+1). To make a transition from one l-dimensional coface
to another, the algorithm updates the entries of the stored record in the reverse order from the
initialization:

ρk+1, . . . , ρ2, ρ1, a.

The updates are done in the following way. If all entries in the record have the final values
in the respective generating algorithms ([Ehr73, RS94] for ρi and [Wal00] for a), then the cor-
responding l-dimensional coface is the final one. This can be decided in O(k) operations (see
Lemma 3.5.20 below). In this case, the coface generation algorithm terminates.

Otherwise, take the leftmost entry o in the list above such that it does not have its final value
in the corresponding generating algorithm.

• If the entry o is not a, then update o to its next value. This means that o = ρi for some
i ∈ {1, . . . , k + 1}. Because the algorithms of Ruskey and Savage [RS94] and of Ehrlich
[Ehr73] are loopless, this update takes O(1) operations in the worst case. Then, reinitialize
all entries that are to the left from ρi in the list above (which are ρk+1, . . . , ρi+1) to the
first values in their respective generation algorithms. The total time complexity of the
reinitialization is bounded by the time complexity O(d) from Lemma 3.5.18.

• If the entry o is a, then the algorithm updates a to the next value given by the algorithm
by Walsh [Wal00]. Since this algorithm is loopless, O(1) changes in a are made in the
worst case. The entries ρ1, ρ2, . . . , ρk+1 are then reinitialized to the first values in their
respective generation algorithms. Again, the total time complexity of the reinitialization
is bounded by the time complexity O(d) from Lemma 3.5.18.

From the description above we conclude the time complexity of computing an l-dimensional
coface of τ from the previous one.

Lemma 3.5.19. Let τ be a k-dimensional simplex in the Freudenthal-Kuhn triangulation of Rd.
The time complexity of computing an l-dimensional coface of τ from the previous one by the
coface generation algorithm is O(d).

Deciding if the current coface is the last. We will now describe how the coface generation
algorithm decides whether the currently computed coface is last or not. During a transition from
one coface to another, the algorithm checks whether the entries:

ρk+1, . . . , ρ2, ρ1, a

in the stored record have the final value in their respective generating algorithms. If all k + 2
entries have the final values, then the algorithm signals that the currently stored record represents
the last coface, and terminates. The complexity of deciding if the current coface is the final one
is hence the following:

Lemma 3.5.20. The time complexity of deciding whether the last computed coface by the coface
generation algorithm is the final one is O(k).
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Transformation into the permutahedral representation. Now, we will describe an algo-
rithm that computes the permutahedral representation of the l-dimensional coface τ ′ of τ from
the stored record:

a, ρ1, ρ2, . . . , ρk+1.

This Eaves notation of τ ′ will be transformed into the permutahedral representation of τ ′ in the
next step. This algorithm consists of two major steps.

1. First, we transform the record above to the specific generalized Eaves notation ϕ(y, ρ) of
τ ′ such that:

• the vertex y is the same as in the input,

• ρ is some refinement of ω in l + 1 parts.

The vertex y is available in the input, so there is nothing to be done to find it. The ordered
partition ρ is the concatenation (Definition 1.3.5) of the ordered partitions ρ1, . . . , ρk+1.
Therefore, computing ρ has the time complexity of appending d+1 elements to an ordered
partition, which is O(d).

2. Then, from y and ρ we find a vertex y′ and another ordered partition ρ′ such that σ(y′, ρ′)
is the permutahedral representation of τ ′. Finding the permutahedral representation from
an Eaves notation is done in the same way as in the proof of Corollary 3.3.14. See also
Figure 3.17 for an illustration of Eaves notations of cofaces and the permutahedral repre-
sentations side by side.

Let v0, . . . , vl be the vertices of the l-dimensional coface τ ′ of τ that are defined as in
Definition 3.3.1 from the Eaves notation σ(y, ρ):

v0 = y

vi = vi−1 +
∑
j∈ρ(i)

ej , for i ∈ {1, . . . , l}.

Let t ∈ {1, . . . , l + 1} be an index such that d + 1 ∈ ρ(t). The index t can be found by a
scan of the elements in the parts of the ordered partition ρ. The time complexity of one
such scan is O(d). By Definition 3.3.15, the permutahedral representation of τ is σ(v′, ρ′)
with v′ = vt and ρ′ = ρ ⊕ t. Now, we will describe the describe the time complexities of
computing v′ and ρ′.

• To find the vertex v′, the algorithm adds to y the O(d) vectors ei for all i ∈ ρ(1) ∪
. . . ∪ ρ(t). Each such addition takes one addition of integers, unless i = d+ 1. In the
latter case, the addition has complexity O(d). Overall, to compute the vertex v′, the
algorithm takes O(d) operations.

• To find the ordered partition ρ′, the algorithm copies the contents of the parts in the
ordered partition ρ in the order ρ(t + 1), . . . , ρ(l + 1), ρ(1), . . . , ρ(t). This is done in
O(d) operations.

From the description above, we find the time complexity of computing the permutahedral
representation from the corresponding record stored by the coface generation algorithm.
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ω = {1, 2, 3}
y = (0, 0)

gen. Eaves permutahedral
y = (0, 0) y = (0, 0)

ω = {1}, {2, 3} ω = {1}, {2, 3}

gen. Eaves permutahedral
y = (0, 0) y = (0,−1)

ω = {1, 3}, {2} ω = {2}, {1, 3}

gen. Eaves permutahedral
y = (0, 0) y = (−1,−1)

ω = {3}, {1, 2} ω = {1, 2}, {3}

gen. Eaves permutahedral
y = (0, 0) y = (−1, 0)

ω = {2, 3}, {1} ω = {1}, {2, 3}

gen. Eaves permutahedral
y = (0, 0) y = (0, 0)

ω = {2}, {1, 3} ω = {2}, {1, 3}

gen. Eaves permutahedral
y = (0, 0) y = (0, 0)

ω = {1, 2}, {3} ω = {1, 2}, {3}

Figure 3.17: Generalized Eaves notations and the permutahedral representations of the one-
dimensional cofaces of the vertex at the origin in the Freudenthal-Kuhn triangulation of R2. The
ordered partitions in Eaves notations are the refinements of {1, 2, 3} into 2 parts.
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Lemma 3.5.21. Let τ be a simplex in the Freudenthal-Kuhn triangulation of Rd. Transforming
the record with entries:

a, ρ1, ρ2, . . . , ρk+1

stored by the coface generation algorithm into the permutahedral representation of the correspond-
ing l-dimensional coface of τ takes time O(d).

Correctness of the algorithm. Now, we will show that the coface generation algorithm is
correct. From Proposition 3.5.22 below, it follows that each l-dimensional coface of τ is generated
by the coface generation algorithm exactly once.

From Theorem 3.3.10 it follows that each simplex τ ′ in cof(τ, l) is in one-to-one correspon-
dence with a refinement ρ of the input ordered partition ω into l + 1 parts. By construction
these refinements are in one-to-one correspondence with the records (a, ρ1, . . . , ρk+1). From this,
it follows that:

Proposition 3.5.22. Let τ be a k-dimensional simplex in the Freudenthal-Kuhn triangulation of
Rd for some k ∈ {0, . . . , d}. Let y ∈ Zd be a vertex and ω be an ordered partition of {1, . . . , d+ 1}
into k + 1 parts such that σ(y, ω) is the permutahedral representation of τ . Let l ∈ {0, . . . , d} be
such that k ≤ l. There exists a bijection from the set cof(τ, l) of l-dimensional cofaces of τ to
the set of the vectors (a, ρ1, . . . , ρd), each of which consists of:

• an integer composition a of l+1 in k+1 parts a1, . . . , ak+1 bounded by |ω(1)|, . . . , |ω(k+1)|
respectively, and

• ordered partitions ρ1, . . . , ρk+1 of ω(1), . . . , ω(k + 1) in a1, . . . , ak+1 parts respectively.

Time and space complexity. We are now ready to show that the time and space complexity
of the coface generation algorithm satisfy Theorem 3.5.7.

Proof (of Theorem 3.5.7). The space complexity of the coface generation algorithm is the storage
size of the record (a, ρ1, . . . , ρk+1) that represents the current coface. Its size was discussed in
the proof of Lemma 3.5.18 and is equal to O(d).

The time complexity of 1 is given by Lemma 3.5.18. The time complexity of 2 is given
by Lemma 3.5.20. The time complexity of 3 is given by Lemmas 3.5.19 and 3.5.21. With all
complexities found, we conclude the proof.

From Theorem 3.5.7 we can find the total complexity of computing the permutahedral rep-
resentation of all cofaces of a given dimension.

Theorem 3.5.23 (Total complexity of computing the permutahedral representations of cofaces).
Let τ be a k-dimensional simplex in the Freudenthal-Kuhn triangulation of Rd, for some k ∈
{0, . . . , d}. Let l ∈ {0, . . . , d} be such that k ≤ l. Let N(τ, l) be the number of l-dimensional
cofaces of τ in the Freudenthal-Kuhn’s triangulation of Rd. The time complexity of computing
the permutahedral representations of all l-dimensional cofaces of τ is O(dN(τ, l)).

Remark 3.5.24. The space complexity to store the permutahedral representation of a simplex in
the Freudenthal-Kuhn triangulation of Rd is Θ(d). Therefore the bound on the time complexities
in Theorem 3.5.23 and Propositions 3.5.25 and 3.5.26 below are optimal.

The number N(τ, l) is given by Corollary 1.3.20. In particular:

• If l = d, then we have N(τ, d) = O((d− k + 1)!).
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Face dimension k 22 23 24 25 26 27 28 29
Si
m
pl
ex

di
m
en

si
on

l

22 0.006
23 0.042 0.006
24 0.503 0.05 0.008
25 4.88 0.645 0.058 0.008
26 33.76 5.697 0.697 0.062 0.008
27 162.114 35.108 6.824 0.758 0.064 0.008
28 885.293 190.441 40.856 6.906 0.739 0.058 0.006
29 3420.99 973.455 246.88 49.896 6.657 0.735 0.058 0.006
30 11904.7 4175.92 1247.97 275.776 50.932 7.348 0.778 0.058

Table 3.1: The table of average running times in milliseconds of the face generation algorithm
to compute all k-dimensional faces of the simplices of various dimensions l in the Freudenthal-
Kuhn triangulation of R30. The tests were performed on the permutahedral coordinates of all
faces of 500 random full-dimensional simplices that are obtained by applying the point location
algorithm on random points on a sphere centered in the origin.

• If l = k + 1, then we have N(τ, k + 1) = O(2d−k).

The following (optimal) complexities follow from the observation above and Theorem 3.5.23.

Proposition 3.5.25 (Total complexity of computing the permutahedral representations of max-
imal cofaces). Let τ be a k-dimensional simplex in the Freudenthal-Kuhn triangulation of Rd, for
some k ∈ {0, . . . , d}. The time complexity of computing the permutahedral representations of all
d-dimensional cofaces of τ is O(d(d− k + 1)!).

Proposition 3.5.26 (Total complexity of computing the permutahedral representations of co-
facets). Let τ be a k-dimensional simplex in the Freudenthal-Kuhn triangulation of Rd, for some
k ∈ {0, . . . , d− 1}. The time complexity of computing the permutahedral representations of all
cofacets of τ is O(d2d−k).

3.5.3 Experimental analysis

In this section, we present the execution time of the face and coface generation algorithms
implemented in C++.

In Table 3.1, we show how the execution time of the face generation algorithm depends on
the dimension of the input simplex and the dimension of the computed faces in a fixed ambient
dimension 30. Each entry in Table 3.1 corresponds to the average total time in milliseconds
of computing all k-dimensional faces of 1000 simplices of some dimension l in R30. Note that
the time 11904.7ms is the time of computing all 5852925 22-dimensional faces of a simplex of
dimension 30.

We present in Table 3.2 the running time in milliseconds of the face computation algorithm
per computed face. As we can see, except for the case l = k, the running time per computed face
is around 2µs. This is coherent with Theorem 3.5.13, in which we established that this running
time is O(d), which is constant in our case.

In Tables 3.3 and 3.4, we present analogous tables for the coface computation algorithm.
Similarly, the running time per computed coface in Table 3.4 is around 2µs with the exception
of when k is close to l.

In Tables 3.5 and 3.6, we present the execution time of the coface generation algorithm
applied on simplices of low codimension in various ambient Euclidean spaces of high dimensions
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Face dimension k 22 23 24 25 26 27 28 29

Si
m
pl
ex

di
m
en

si
on

l

22 0.006
23 0.0018 0.006
24 0.0017 0.002 0.008
25 0.0019 0.002 0.0022 0.008
26 0.0019 0.0019 0.002 0.0023 0.008
27 0.0016 0.0017 0.0021 0.002 0.0023 0.006
28 0.0019 0.0016 0.0017 0.0019 0.0018 0.002 0.006
29 0.0017 0.0016 0.0017 0.0018 0.0016 0.0017 0.0019 0.006
30 0.0015 0.0016 0.0017 0.0016 0.0016 0.0016 0.0017 0.0019

Table 3.2: The table of average running times in milliseconds per computed face of the face
generation algorithm to compute the k-dimensional faces of the simplices of various dimensions
l in the Freudenthal-Kuhn triangulation of R30.

Coface dimension l 23 24 25 26 27 28 29 30

Si
m
pl
ex

di
m
en

si
on

k

22 0.11 1.274 9.577 43.848 86.699 96.407 59.935 15.487
23 0.043 0.114 0.729 3.499 9.337 13.523 10.058 3.049
24 0.047 0.1 0.381 1.183 2.132 1.871 0.653
25 0.046 0.097 0.23 0.423 0.426 0.193
26 0.047 0.076 0.128 0.15 0.093
27 0.049 0.069 0.081 0.063
28 0.047 0.061 0.054
29 0.05 0.053
30 0.05

Table 3.3: The table of average running times in milliseconds of the coface generation algorithm to
compute all cofaces of the simplices of various dimensions in the Freudenthal-Kuhn triangulation
of R30. The tests were performed on the permutahedral coordinates of all faces of 1000 random
full-dimensional simplices that are obtained by applying the point location algorithm on random
points on a sphere centered in the origin.

to generate the permutahedral coordinates of the cofacets and of the full-dimensional cofaces
respectively. Note that the execution times in Table 3.5 are lower than in Table 3.6. This
supports our choice of the adjacency graph for the manifold computation algorithm in Chapter 4
(see Remark 4.2.3).

In the same way, we present in Tables 3.7 and 3.8 the execution time of the face generation
algorithm in various ambient Euclidean spaces of high dimensions. In Table 3.7, we compute the
facets of (d−m+ 1)-dimensional simplices (that we encounter in the manifold tracing algorithm
later in Chapter 4), and in Table 3.8, we compute the (d − m)-dimensional faces of the full-
dimensional simplices. Once again, the execution times in Table 3.7 are lower than in Table 3.8,
in an even more striking way than for the coface generation algorithm. This gives us another
reason for the choice of the adjacency graph for the manifold computation algorithm later in
Chapter 4 (see Remark 4.2.3).
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Coface dimension l 23 24 25 26 27 28 29 30

Si
m
pl
ex

di
m
en

si
on

k

22 0.002 0.0013 0.0013 0.0015 0.0016 0.0016 0.0016 0.0017
23 0.042 0.003 0.0017 0.0016 0.0016 0.0016 0.0016 0.0017
24 0.045 0.004 0.0019 0.0017 0.0017 0.0017 0.0018
25 0.045 0.0053 0.0025 0.002 0.0019 0.0022
26 0.047 0.0073 0.0035 0.0028 0.0036
27 0.048 0.0103 0.0058 0.0068
28 0.048 0.0145 0.0133
29 0.05 0.026
30 0.05

Table 3.4: The table of average running times in milliseconds per computed coface of the co-
face generation algorithm to compute the cofaces of the simplices of various dimensions in the
Freudenthal-Kuhn triangulation of R30.

Ambient dimension d 50 100 150 200 250 300 350 400

Si
m
pl
ex

co
di
m
en

si
on

m

1 0.068 0.134 0.228 0.281 0.423 0.605 0.611 0.848
2 0.082 0.17 0.267 0.341 0.483 0.723 0.731 0.966
3 0.098 0.194 0.303 0.401 0.525 0.733 0.866 1.124
4 0.112 0.226 0.351 0.467 0.665 0.806 0.974 1.295
5 0.132 0.265 0.423 0.545 0.966 0.928 1.128 1.477
6 0.162 0.329 0.515 0.713 0.948 1.124 1.361 1.76
7 0.2 0.415 0.651 0.878 1.166 1.421 1.784 2.283

Table 3.5: The table of average running times in milliseconds of the coface generation algorithm to
compute all cofacets of the (d−m)-dimensional simplices in the Freudenthal-Kuhn triangulation
of various ambient dimensions. Here m is the codimension of a simplex, which in terms of
the manifold tracing algorithm (Chapter 4) corresponds to the dimension of the reconstructed
manifold.

Ambient dimension d 50 100 150 200 250 300 350 400

Si
m
pl
ex

co
di
m
en
si
on

m

1 0.068 0.134 0.234 0.375 0.471 0.617 0.683 0.82
2 0.074 0.15 0.236 0.411 0.517 0.673 0.754 0.998
3 0.096 0.186 0.309 0.499 0.635 0.842 0.936 1.122
4 0.156 0.307 0.505 0.786 1.006 1.206 1.381 1.681
5 0.379 0.776 1.267 1.946 2.485 3.062 3.491 4.164
6 1.433 2.966 4.76 7.236 9.507 11.411 13.449 15.525
7 6.709 14.331 25.076 34.297 44.405 52.796 63.926 73.752

Table 3.6: The table of average running times in milliseconds of the coface generation algorithm
to compute all d-dimensional cofaces of the (d −m)-dimensional simplices in the Freudenthal-
Kuhn triangulation of various ambient dimensions. Here m is the codimension of a simplex,
which in terms of the manifold tracing algorithm (Chapter 4) corresponds to the dimension of
the reconstructed manifold.
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Ambient dimension d 50 100 150 200 250 300 350 400

Fa
ce

co
di
m
en

si
on

m

1 0.166 0.612 1.438 2.862 5.376 8.69 12.184 15.924
2 0.166 0.643 1.417 2.858 5.607 8.375 11.806 16.261
3 0.168 0.607 1.395 2.888 5.866 8.232 12.008 16.527
4 0.162 0.589 1.373 2.864 5.491 8.447 11.936 16.08
5 0.154 0.587 1.349 2.76 5.77 8.371 11.814 15.88
6 0.148 0.579 1.321 2.737 5.735 8.351 12.038 15.798
7 0.136 0.575 1.313 2.553 5.701 8.313 12.11 15.754

Table 3.7: The table of average running times in milliseconds of the face generation algorithm to
compute all (d−m)-dimensional facets of the (d−m+1)-dimensional simplices in the Freudenthal-
Kuhn triangulation of various ambient dimensions. Here m is the codimension of a simplex,
which in terms of the manifold tracing algorithm (Chapter 4) corresponds to the dimension of
the reconstructed manifold.

Ambient dimension d 50 100 150 200 250 300 350 400

m

1 0.3 0.7 1.6 2.6 4.1 6.2 8.8 12.9
2 6.2 35.4 112.9 275.5 518.7 957.2 1700.2 2667.9

Table 3.8: The table of average running times in milliseconds of the face generation algorithm to
compute all (d−m)-dimensional facets of the (d−m+1)-dimensional simplices in the Freudenthal-
Kuhn triangulation of various ambient dimensions. Here m is the codimension of a simplex,
which in terms of the manifold tracing algorithm (Chapter 4) corresponds to the dimension of
the reconstructed manifold.

126



Chapter 4

Manifold tracing algorithm

In this chapter, we present an algorithm, called the manifold tracing algorithm, that constructs
a piecewise-linear approximation of a given submanifoldM in Euclidean space Rd, of arbitrary
dimension and codimension. We assume that the input manifold is compact and smooth. For
simplicity, we also assume that the manifold is boundaryless throughout the first part of this
chapter. The case of a manifold with boundary will be briefly discussed in Section 4.3.5. The
manifold tracing algorithm can be applied in such contexts as piecewise-linear approximation
of the invariant manifold for dynamical systems (see for example [SP93, HP16]), the study of
energy landscapes in physical chemistry [MTCW10], etc.

The manifold tracing algorithm operates based on an ambient triangulation T . The tri-
angulation T is assumed to be the result of a bijective affine transformation applied on the
Freudenthal-Kuhn triangulation of Rd. In this chapter, we fix m to be the dimension of the
manifoldM and:

k = d−m.

The construction of the piecewise-linear approximation of the manifoldM is done in two stages:

1. In the first stage, the algorithm constructs a set S of k-dimensional simplices of T that
intersect the manifoldM.

2. In the second stage, the algorithm constructs a cell complex H from the set S that approx-
imates the manifoldM.

Under a specific condition (transversality hypothesis below), there is always a way to con-
struct the cell complex H from the set of k-dimensional simplices S using the face structure of
the ambient triangulation T . We can therefore see the set S as a compact way of storing the cell
complex H. Thus, the set S will serve us as the output of the manifold tracing algorithm in the
following.

For the output set S to be well-defined, we assume that the manifoldM and the triangulation
T satisfy the following genericity hypothesis:

Hypothesis 4.0.1 (Genericity). The manifold has an empty intersection with all simplices of
dimensions strictly lower than k in the triangulation T .

For the cell complex H to be well-defined, in addition to Hypothesis 4.0.1, we also need the
following hypothesis:

Hypothesis 4.0.2 (Transversality). The intersection of the manifoldM and any k-dimensional
simplex in the triangulation T is a single point.
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Chapter 4. Manifold tracing algorithm

Contribution

This chapter has two objectives. Let T be a triangulation obtained from the Freudenthal-Kuhn
triangulation of Rd by a bijective affine transformation.

Data structure. Our first contribution in this chapter is a data structure that allows us to
answer the following queries on the triangulation T in a time- and space-efficient manner:

Point location: Compute the simplex in the triangulation T that contains a given point.

Face generation: Generate the faces of a specific dimension of a given simplex in the triangu-
lation T .

Coface generation: Generate the cofaces of a specific dimension of a given simplex in the
triangulation T .

Cartesian coordinates: Compute the Cartesian coordinates of a vertex from its internal rep-
resentation (see below).

All simplices in T are represented using the permutahedral representation (introduced in
Chapter 3) of the corresponding simplices in the Freudenthal-Kuhn triangulation of Rd before
applying the affine transformation. The algorithm for the point location and the face and coface
queries are implemented using the time- and space-efficient algorithms from Sections 3.4, 3.5.1
and 3.5.2. Notably, to answer the face and coface queries, the data structure generates the
permutahedral coordinates of faces and cofaces one by one. The complexity to generate one face
or coface is the storage complexity O(d) of a permutahedral representation. Moreover, at any
point in time the storage needed for the generation of faces and cofaces does not exceed O(d).

Important examples of the triangulations T supported by this data structure are Coxeter
triangulations of type Ãd (see Section 1.2.4). Coxeter triangulations of type Ãd have good simplex
quality (see Section 2.2). This is a crucial condition for some methods, such as the homeomorphic
manifold reconstruction technique via perturbations by Boissonnat et al. [BKW18].

Manifold tracing algorithm. Our second contribution in this chapter is the manifold tracing
algorithm that can serve two purposes:

1. It can be used to compute a piecewise-linear approximation of the input manifoldM using
an ambient triangulation T .

2. It can also be used to compute an ε-sampling of the input manifold M for an arbitrary
positive ε.

The ambient triangulation T is stored using the data structure above. The manifold tracing
algorithm that we present here is similar in vein to the pattern algorithm by Allgower and
Schmidt [AS85] and to the contour tracing by Dobkin et al. [DWLT90].

The input of the manifold tracing algorithm consists of:

• an affinely transformed Freudenthal-Kuhn triangulation T of Rd stored in the data struc-
ture above,

• a submanifold M of Rd of some known dimension m, such that it satisfies the genericity
hypothesis (Hypothesis 4.0.1) with the triangulation T ,
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• a seed point x0 on the manifoldM.

The output of the manifold tracing algorithm is the set S of k-dimensional simplices in the
triangulation T that intersect the manifold M. As we said before, under the transversality
hypothesis (Hypothesis 4.0.2), this set S can be naturally transformed into a cell complex H
that serves as a piecewise-linear approximation ofM.

The manifoldM is given via a so-called intersection oracle. The intersection oracle takes as
input a simplex τ ∈ T of dimension k and decides whether τ intersects the manifoldM or not.
If the transversality hypothesis (Hypothesis 4.0.2) holds, we further require that the intersection
oracle provides an approximate intersection point of the simplex τ and the manifoldM. In this
case, these intersection points serve as the vertices in the embedding of the cell complex H.

By design, the user is free to choose the intersection oracle, and hence the representation of
the manifold. This makes our algorithm general, as it can be applied independently of the way
the input manifold is given.

We are particularly interested in two special cases of manifolds: the implicit manifolds and
the manifolds given by point clouds. By implicit manifold, we mean the m-dimensional zero-set
of a smooth function F : Rd → Rk, under a condition that the zero is a regular value of F . Using
a result by Cheng and Chiu [CC14], we can build a function from a point cloud, such that its
zero-set is homeomorphic to the manifold under some specific conditions that we will mention in
Section 4.3.4. Using this result, we can reduce the case of the manifolds given by point clouds
to the implicit manifold case. For this reason, we give more attention to the implicit manifold
case in this chapter.

It is worth mentioning that there exist other methods in the literature that allow to fit a
manifold to a given point cloud, notably the one proposed by Fefferman et al. [FIK+18]. However,
instead of defining the manifold as a zero-set of an implicit function the authors construct a
projection function on the manifold. This makes this method less directly applicable in our case
than the one suggested by Cheng and Chiu [CC14].

In Section 4.3, we define an intersection oracle for the implicit manifold case based on the
linear interpolation of the values of the input function F on the vertices. Using this oracle, the
constructed cell complex H has the following guarantees:

• The cell complex H is a piecewise-linear manifold.

• The points on the cell complex H are close to the manifold M (by one-sided Hausdorff
distance).

We provide the space and time complexity analysis of the manifold tracing algorithm, some-
thing that has been neglected in the related algorithms in [AS85] and [DWLT90]. In particular,
we show in Proposition 4.2.6 that the manifold tracing algorithm is output sensitive, meaning
that its time complexity is linear in the output size |S|. In the particular case of the implicit
manifold, this complexity is:

O(m2m(kE + kω))|S|,

where O(E) is the complexity of evaluating the function F and O(kω) is the time complexity of
computing the product of two k × k matrices. The time complexity per element in the output
is intrinsic dimension sensitive. This means that the time complexity depends exponentially on
the intrinsic dimension m but only mildly on the ambient dimension d.

While the manifold tracing algorithm is output sensitive, the size |S| of the output can be
large depending on the scale of the ambient triangulation T . We show in Section 4.2.2 that
if δ is the diameter of the simplices in the ambient triangulation T , Θ is their fatness (see
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Chapter 4. Manifold tracing algorithm

Definition 2.1.1), and Vk is the volume of the k-dimensional unit ball, then the size of the output
is |S| = O

(
Vk

1
Θvolm(M)m−1/2(2/δ)m

)
, where Vk = O

((
2πe
k

)k/2) (Proposition 1.1.36).

Additional assumptions on the input

Note that we assume that the dimension m of the manifold is given in the input. We also assume
that a point x0 on the manifoldM is known. Finding the point x0 on a manifold given as a zero-
set of a function might be challenging. There exist some methods to estimate a seed point set of
the given function, such as the contour tree extraction proposed by Carr et al. [CSA03, CS09].
These methods are limited to the codimension one case (also known as hypersurfaces), but can be
extended easily to general codimension. More precisely, we can apply the same method k times
to find the seed point of the manifold of codimension k seen as an intersection of k hypersurfaces.

The outline of the chapter

This chapter is organized as follows. In Section 4.1, we introduce the data structure that is used to
store the ambient triangulation T . In Section 4.2, we present the manifold tracing algorithm and
show its complexity. There we also give a bound on the size |S| of the output. In Section 4.3, we
describe an example of the intersection oracle for the particular case of implicit manifolds. There
we discuss about the complexity of the intersection query and also the theoretical guarantees on
the resulting cell complex H. We also discuss how the implicit manifold case can be applied to
reconstruct manifolds from point clouds using a result by Cheng and Chiu [CC14]. Lastly, in
Section 4.4, we report on the experimental results.

4.1 The data structure to represent an ambient triangulation

Let T be a triangulation of Rd obtained from the Freudenthal-Kuhn triangulation T0 of Rd by a
bijective affine transformation x 7→ Λx + b, where Λ ∈ Rd×d is an invertible matrix and b ∈ Rd
is the translation vector.

In this section, we introduce a data structure that represents such a triangulation T and that
allows the user to answer the following queries on it:

• point location of a given point p ∈ Rd in the triangulation T ,

• the k-dimensional13 faces of a given l-dimensional simplex τ ∈ T for any k ≤ l,

• the l-dimensional cofaces of a given k-dimensional simplex τ ∈ T for any k ≤ l,

• computing the Cartesian coordinates of a given vertex v ∈ T .

This data structure is used later in Section 4.2 for the manifold tracing algorithm.
In the following, points in Rd are stored as arrays of Cartesian coordinates, as described

in Section 1.1.6. Any simplex in the triangulation T is addressed using the permutahedral
representation (see Definition 3.3.15) of the corresponding simplex in T0.

13As in Section 3.5, we follow the convention of denoting by k and l the smallest and the greatest dimension
respectively. The k in this section is unrelated to the dimension k = d −m in the description of the manifold
tracing algorithm.
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4.1. The data structure to represent an ambient triangulation

Members of the data structure. The data structure stores three members:

• the matrix Λ,

• the inverse matrix Λ−1,

• the translation vector b.

The matrix Λ and the vector b are used to compute the Cartesian coordinates of a vertex in
the triangulation T . The inverse matrix Λ−1 and the vector b are instrumental in answering the
point location query.

The storage size of the data structure is the sum of the storage sizes of the two matrices Λ
and Λ−1 and of the vector b.

Proposition 4.1.1. The total storage size of the data structure is O(d2).
If the triangulation T is the Freudenthal-Kuhn triangulation T0 of Rd, then the matrix Λ is

the identity matrix Id and the vector b is 0. In this case we can avoid storing the matrices Λ and
Λ−1 and the vector b, leaving us with the O(1) storage complexity.

Matrix Λ for the case of Coxeter triangulation of type Ãd. Coxeter triangulations of
type Ãd have many properties that are interesting in practice.

• We showed in Chapter 2 that Coxeter triangulations of type Ãd have a good simplicial
quality and are Delaunay triangulations with positive protection. These two properties
are crucial for some manifold reconstruction methods, such as the manifold reconstruction
algorithm by perturbations by Boissonnat et al. [BKW18].

• We will show later in Section 4.4 that in practice, the size of the output of the manifold
tracing algorithm called on a Coxeter triangulation of type Ãd is smaller compared to the
Freudenthal-Kuhn triangulation T0 of Rd.

Using the construction from Section 3.1.3, we get the matrix Λ = ΛC that corresponds to a
Coxeter triangulation of type Ãd. We can thus represent a Coxeter triangulation of type Ãd with
the help of the current data structure.

4.1.1 Queries on the data structure

We will now give an overview of the queries that are supported by the data structure. For each
type of the queries, we provide the time and space complexities to answer them.

The time complexities in this section are parameterized by:

• the ambient dimension d,

• the intrinsic dimension m of the manifoldM,

• the time complexity M(Λ) of the multiplication of a vector in Rd by the matrix Λ,

• the time complexity M(Λ−1) of the multiplication of a vector in Rd by the matrix Λ−1.

The time complexities M(Λ) and M(Λ−1) can largely vary depending on the matrices Λ and
Λ−1. In general, the time complexity of the multiplication of a d × d matrix by a vector in Rd
is O(d2). For some special cases of the matrices Λ and Λ−1, the time complexities M(Λ) and
M(Λ−1) can be much lower. For example, if both Λ and Λ−1 are identity matrices (which is the
case of T = T0), the complexities M(Λ) and M(Λ−1) are the storage complexity O(d) of the
output.
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Point location. The point location query takes as input a point p ∈ Rd. The output consists
of the permutahedral representation of the simplex τ ∈ T of smallest dimension that contains
the point p.

The algorithm to answer the point location query is based on the point location algorithm in
the Freudenthal-Kuhn triangulation of Rd that we described in Section 3.4. This algorithm has
two steps:

• First, we compute the reverse image x of p under the bijective affine transformation:

x = Λ−1(p− b).

• After this, we apply the point location algorithm on the point x in the Freudenthal-Kuhn
triangulation of Rd from Section 3.4. The permutahedral representation in the output of
the point location algorithm is the output of the query.

The time and space complexities to answer the point location query are expressed as follows.

Proposition 4.1.2. The time complexity to answer the point location query on a given point
p ∈ Rd is O(M(Λ−1)+d log(d)). The additional storage used by the point location query is O(d).

Proof. The time complexity of computing x = Λ−1(p− b) is the sum of:

• the time complexity O(d) of an addition of two d-dimensional vectors, and

• the time complexity O(M(Λ−1)) of one multiplication of a d-dimensional vector by the
matrix Λ−1.

The time complexity of applying on the point x the point location algorithm in the Freudenthal-
Kuhn triangulation of Rd is O(d log(d)) (Proposition 3.4.4). We conclude that the total time
complexity of one call of the point location query is:

O(M(Λ−1) + d log(d)).

The additional storage used to answer the point location query comes from:

• the storage of the vector x, which is O(d),

• the storage used for the point location algorithm in the Freudenthal-Kuhn triangulation of
Rd, which is O(d) (Proposition 3.4.5).

We conclude that the additional storage used to answer the point location query is O(d).

Cartesian coordinates of a vertex. Let v ∈ Rd be a vertex in the triangulation T . Let
y ∈ Zd be the corresponding vertex in T0 that appears in the permutahedral representation of v.
By definition of T , we have:

v = Λy + b.

The time complexity of computing the Cartesian coordinates of the vertex v is hence the sum
of the time complexity of multiplication of Λ by y and of the time complexity of the addition of
two d-dimensional vectors Λy and b. Thus:

Proposition 4.1.3. The time complexity of computing the Cartesian coordinates of a vertex in
the triangulation T given by its permutahedral representation is O(M(Λ) + d).

Note that the space complexity of answering this query only consists of the storage of the
output.
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4.1. The data structure to represent an ambient triangulation

Barycentre of a simplex. Using the algorithm that computes the Cartesian coordinates
of a vertex, we can compute the barycentre of a simplex in the triangulation T . Let τ be a
simplex of some dimension l. Computing the barycentre consists of generating the vertices of
τ , computing their Cartesian coordinates and computing their mean value. The complexities of
these operations are as follows:

1. The complexity of generating the vertices of τ is O(dl) (see Theorem 3.5.13).

2. According to Proposition 4.1.4, computing the Cartesian coordinates of one vertex takes
O(M(Λ) + d) operations. Therefore, computing the Cartesian coordinates of the l + 1
vertices of τ takes O(l(M(Λ) + d)) operations.

3. Computing the mean value of the Cartesian coordinates of the l + 1 vertices takes O(dl)
operations.

The total complexity of computing the barycentre of τ is thus the following.

Proposition 4.1.4. Let l ∈ {0, . . . , d}. The time complexity of computing the barycentre of
an l-dimensional simplex in the triangulation T given by its permutahedral representation is
O(l(M(Λ) + d)).

Note that the vertex generation only needs O(d) space complexity at any point of its execution
(follows from Theorem 3.5.6). The only other storage needed to compute the barycentre of a
simplex is used to store the output and the Cartesian coordinates of the currently generated
vertex. Both take O(d) space. Thus, the total space complexity is O(d).

Remark 4.1.5. The barycentres of some l-dimensional simplices can be computed in O(ld)
operations. Here is an example of such a simplex. Let τ0 be the l-dimensional simplex given
by the permutahedral coordinates σ(y, ω) (see Definition 3.3.1) with:

y = (0, . . . , 0) and ω = {1}, . . . , {l}, {l + 1, . . . , d} .

We will now show that its barycentre c can be computed efficiently using the columns col1, . . . , cold
of the matrix Λ.

Define v0, . . . , vl be the vertices of τ0 as in Definition 3.3.1, however notice that we now use
the column vectors col1, . . . , cold of Λ instead of the canonical basis vectors e1, . . . , ed:

v0 = y

vi = vi−1 + coli, for i ∈ {1, . . . , l}.

The barycentre can be written in the following way:

c =
1

l + 1
(v0 + v1 + v2 + . . .+ vl)

=
1

l + 1
(0 + col1 + (col1 + col2) + . . .+ (col1 + . . .+ coll))

=
1

l + 1
(l · col1 + (l − 1) · col2 + . . .+ 1 · coll) .

As we can see, we can compute c by O(l) additions of d-dimensional vectors. This takes O(ld)
operations.

133



Chapter 4. Manifold tracing algorithm

Face query. Let k, l ∈ {0, . . . , d} be such that k ≤ l. The k-dimensional face query takes as
input a permutahedral representation of an l-dimensional simplex τ in T . It then outputs the
permutahedral representations of all k-dimensional faces of τ .

Because the triangulation T is an affine transformation of the Freudenthal-Kuhn triangulation
T0 of Rd, the combinatorial structure of the two triangulations T and T0 coincide. For this
reason, we can use the face generation algorithm for the Freudenthal-Kuhn triangulation of Rd
from Section 3.5.1 for the face query. The time and space complexities to answer the face query
hence follow from Theorem 3.5.13.

Proposition 4.1.6. Let k, l ∈ {0, . . . , d} be such that k ≤ l. Let τ be an l-dimensional simplex
in T . Let:

F (τ, k) =

(
l + 1

k + 1

)
be the number of k-dimensional faces of the simplex τ . The complexity to answer the k-dimensional
face query called on τ is O (dF (τ, k)). Its space complexity is O(d).

Coface query. Let k, l ∈ {0, . . . , d} be such that k ≤ l. The coface query is defined in a similar
way to the face query. The l-dimensional coface query takes as input a permutahedral represen-
tation of a k-dimensional simplex τ in T . It then outputs the permutahedral representations of
all l-dimensional cofaces of τ in T . Similarly to the face query, to answer the coface query we
use the coface generation algorithm from Section 3.5.2. Its time and space complexities follow
from Theorem 3.5.23.

Proposition 4.1.7. Let k, l ∈ {0, . . . , d} be such that k ≤ l. Let τ be a k-dimensional simplex
in T . Let N(τ, l) be the number of l-dimensional cofaces of τ in the triangulation T . The
time complexity to answer the l-dimensional coface query called on τ is O (dN(τ, l)). Its space
complexity is O(d).

For the manifold tracing algorithm in Section 4.2, we will be interested in the particular case
of cofacets (l = k + 1). We will call the coface query in this particular case the cofacet query.
The time complexity of the cofacet query is given by Proposition 3.5.25.

Proposition 4.1.8. Let k ∈ {0, . . . , d− 1} and τ be an k-dimensional simplex in T . The time
complexity to answer the cofacet query called on τ is O

(
d2d−k

)
. Its space complexity is O(d).

4.2 Manifold tracing algorithm

The manifold tracing algorithm (see Algorithm 1) that we propose here is inspired by the sim-
plicial continuation methods such as [AS85] and [DWLT90].

Input. The manifold tracing algorithm is given as input:

• A triangulation T of Rd, which is identical to the Freudenthal-Kuhn triangulation T0 of
Rd up to an affine transformation. The triangulation T is stored using the data structure
from Section 4.1.

• Anm-dimensional compact submanifoldM of the Euclidean space Rd. We assume that the
manifoldM and the triangulation T satisfy the genericity hypothesis (Hypothesis 4.0.1).
The manifoldM is accessed through an oracle that allows to answer whether a k-simplex
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Algorithm 1: Manifold tracing algorithm
input : Triangulation T of Rd, manifoldM of dimension m, seed point x0 ∈M
output: Set S of the simplices in T of dimension k = d−m that intersectM

1 Translate T so that x0 coincides with the barycentre of a k-dimensional face τ0 in T
2 Initialize the queue Q with τ0

3 Initialize S with τ0

4 while the queue Q is not empty do
5 Pop a k-dimensional simplex τ from Q
6 foreach cofacet ϕ of τ do
7 foreach facet ρ of ϕ do
8 if ρ does not lie in S and intersectsM then
9 Insert ρ to the queue Q

10 Insert ρ together with the intersection point to the output set S

in the triangulation T intersects the manifoldM. Here, k = d−m is the codimension of
M. In the following, we will refer to this oracle as the intersection oracle. In Section 4.3,
we will describe an intersection oracle for the case of a manifold given implicitly as the
zero-set of a smooth function.

• A seed point on the manifold x0 ∈M, from which the continuation starts.

Remark 4.2.1. Note that ifM consists of multiple connected components, then a seed point per
each connected component must be provided. We will tacitly assume in the following that there
is only one connected component inM, in other words,M is connected.

Output. The output of the manifold tracing algorithm consists of the set S of all k-dimensional
simplices in the triangulation T that intersect the manifoldM.

Definition 4.2.2 (Piercing simplex). A simplex in the set S is called piercing.

The simplices in the set S are stored using the permutahedral representation (see Defini-
tion 3.3.15). We will also assume that the set S is stored as a hash table to guarantee the time
complexity in Proposition 4.2.6.

If the manifold M and the triangulation T satisfy the transversality hypothesis (Hypoth-
esis 4.0.2), then we can define from the set S a cell complex H (or equivalently its dual H∗)
which are piecewise-linear approximations of the input manifoldM. The cell complexes H and
H∗ are described in detail in Section 4.2.3. If the transversality hypothesis holds, we also store
the unique intersection points alongside the simplices in S. These intersection points serve as
vertices when we embed the cell complex H in Rd.

Adjacency graph. The manifold tracing algorithm relies on the traversal of a certain graph
G (see Figure 4.1), which under the transversality hypothesis (Hypothesis 4.0.2) is isomorphic
to the 1-skeleton of the output cell complex H. This graph is defined in the following way:

• The nodes in G correspond to the piercing k-dimensional simplices.

• Two nodes are connected by an edge if and only if the two corresponding k-dimensional
simplices share a common cofacet (which is a (k + 1)-dimensional face).
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Figure 4.1: A (two-dimensional) cell complex H∗ (defined in Section 4.2.3) and the corresponding
adjacency graph. The cells in the illustration are projections of dual cells in the three-dimensional
space on the two-dimensional plane.

We refer to the graph G as the adjacency graph. Abusively, we refer to the nodes in G by
the corresponding k-dimensional simplices.

Remark 4.2.3. Two nodes in the graph G share an edge if the two corresponding k-simplices
have a common (k + 1)-dimensional coface. One may wonder about a different definition for G.
For example, it would be possible to define the graph G with the same nodes but with edges that
correspond to common d-dimensional cofaces. This results in a worse time complexity to traverse
the graph. There are two reasons for this.

1. First, recall from Proposition 3.5.25 that generating the d-dimensional cofaces has the time
complexity O(d(m+ 1)!). This time complexity is worse than the time complexity O(d2m)
from Proposition 3.5.26 for the cofacet computation (compare Tables 3.5 and 3.6).

2. The second reason is that the number of k-dimensional faces of a d-dimensional simplex is(
d+1
k+1

)
. This is significantly larger than the number k + 2 of the facets of a (k + 1)-simplex

(compare Tables 3.7 and 3.8).

Note that the adjacency graph G is never stored explicitly in the manifold tracing algorithm.
This in particular means that the adjacent nodes of a given node n in G are not a priori accessible,
but instead have to be computed. We will now specify how this is done.

Computing the adjacent nodes in G. Let τ be the piercing k-dimensional simplex in the
triangulation T that corresponds to a node n in the adjacency graph G. Assume that n′ is a
node in G that is adjacent to n. The node n′ corresponds to a piercing k-dimensional simplex
τ ′ in the triangulation T that shares a cofacet with τ .

As such, to find all adjacent nodes of a given node n, the manifold tracing algorithm does
the following:
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• It first computes the set cof(τ, k+ 1) (see Definition 3.5.4) of cofacets of the k-dimensional
simplex τ using the cofacet query from Section 4.1.1. Each cofacet in the set cof(τ, k + 1)
corresponds to an edge in G that is incident to the node n.

• Then it computes the set fac(ρ, k) (see Definition 3.5.3) of facets for each (k+1)-dimensional
simplex ρ in the set cof(τ, k + 1) using the face query from Section 4.1.1. The nodes n′ in
G that are adjacent to the node n are in one-to-one correspondence with the k-dimensional
simplices in: ⋃

ρ∈cof(τ,k+1)

fac(ρ, k)

that intersect the manifoldM.

Initialization of the traversal. As we will now see, the manifold tracing algorithm can
initialize the traversal with a node that corresponds to any k-dimensional simplex in T . For
this, we will translate the ambient triangulation T in such a way that the seed point x0 from the
input coincides with the barycentre of the chosen simplex.

Fix an arbitrary k-dimensional simplex τ0 in the triangulation T and let c be the barycentre
of τ0. The translation of the triangulation T consists of assigning the offset vector b in the data
structure that represents T in the following way:

b := b+ (x0 − c).

Note that the set S and the adjacency graph G change after the translation of the triangulation
T . The simplex τ0 in the translated triangulation T intersects the manifoldM at the seed point
x0, which makes τ0 a member of S. We can therefore use τ0 as the first k-dimensional simplex
from which the propagation begins.

Note that because the choice of τ0 is arbitrary, we can choose the simplex from Remark 4.1.5
for which there is an efficient way to compute the barycentre. The time complexity of the
initialization with this choice of τ0 is the following.

Lemma 4.2.4. The time complexity of the initialization of the manifold tracing algorithm is
O(kd).

Proof. The time complexity of finding the barycentre c of τ0 is O(kd) (see Remark 4.1.5). Trans-
lating the triangulation T by the vector x0 − c takes O(d) operations. Therefore, the total time
complexity of the initialization of the manifold tracing algorithm is O(kd).

Choice of the order of the traversal. The nodes in the adjacency graph G that are to be
visited in the future by the manifold tracing algorithm are stored in a variable Q. The traversal
order of G is determined by the order of the nodes stored in the variable Q. During the iteration
of the while loop in the manifold tracing algorithm, the variable Q is updated in the following
way.

1. The top node n in Q is removed from Q.

2. All nodes that are adjacent to n in G and that have not been visited before are inserted in
Q.

Remark 4.2.5. Note that each node in the adjacency graph (which corresponds to a k-dimensional
simplex) is inserted in Q at most once.
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Figure 4.2: A heat map that illustrates the order of construction of the cells in the cell complex
H∗ (see Section 4.2.3) on an example of a two-dimensional surface in R3. The cells with a colour
that is closer to blue are constructed before the triangles with a colour that is closer to red.
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In practice, the best option for the choice of the data structure of the variable Q is the
queue (also known as “first-in-first-out” or FIFO). Choosing Q to be a queue corresponds to the
breadth-first search traversal of the graph G. With the breadth-first search traversal of G, the
boundary grows most of the time in a roughly uniform way in all directions (see Figure 4.2).
This way, the size of the variable Q remains small during most of the execution of the manifold
tracing algorithm.

4.2.1 Complexity of the manifold tracing algorithm

We will now express the time complexity of the manifold tracing algorithm. This complexity
depends on the time complexity O(I) of the computation of one call of the intersection oracle,
as well as the size |S| of the output.

Proposition 4.2.6. The time complexity of the manifold tracing algorithm is:

O (kd+m2mI|S|) ,

where O(I) is the time complexity of one call of the intersection oracle.

Note that the manifold tracing algorithm is output-sensitive, as it depends linearly on the
size |S| of the output. After the proof of Proposition 4.2.6, we will further express the size |S|
of the output in terms of the quantities that depend on the manifold and the resolution of the
triangulation.

Proof (of Proposition 4.2.6). The time complexity of the initialization of the manifold tracing
algorithm is given by Lemma 4.2.4. This complexity is O(kd).

Each iteration of the while loop in Algorithm 1 computes one element in the set S. During
the execution of one iteration of the while loop, the manifold tracing algorithm calls the cofacet
query on a k-dimensional simplex. Recall from Corollary 1.3.18 that the number of cofacets of an
m-dimensional cell is O(2m). The time complexity of computing all cofacets of a k-dimensional
simplex is (see Proposition 4.1.8):

O (d2m) .

For each of the computed O(2m) cofacets, the manifold tracing algorithm computes all its
m + 2 facets in time O(dm) (see Proposition 4.1.6). The total time complexity of the facet
computation is hence:

O (dm2m) .

The number of m-dimensional simplices that are computed per one iteration of the while loop
is O(m2m). For each computed m-dimensional simplex, the manifold tracing algorithm checks
whether this simplex exists in S or not. Thanks to the choice of storing S as a hash table, the
average time complexity of this check is the size of the permutahedral representation, which is
O(d). If this check is successful, the intersection query is called. The time complexity of one
call is O(I). Therefore the total time complexity of all existence checks in S and all calls of the
intersection queries is:

O(m2m(d+ I)).

Because the complexity I takes at least Ω(d) time needed to store the Cartesian coordinates of
the intersection point, we can further simplify this complexity:

O(m2mI).
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In conclusion, the total complexity per iteration of the while loop is:

O (d2m) +O (dm2m) +O (m2mI) = O (m2mI) .

The number of iterations of the while loop is |S|. The result follows.

In the particular case of an implicit manifold and an ambient Coxeter triangulation of type
Ãd, the manifold tracing algorithm has the following complexity.

Corollary 4.2.7. LetM be an m-dimensional manifold that is given as a zero-set of a function.
Let the ambient triangulation T be a Coxeter triangulation of type Ãd. Denote by δ the diameter
of the d-dimensional simplices in T . The complexity of the manifold tracing algorithm is the
following:

O

(
(k + Ekω)

(
2πe

k

)k/2 d(d+1)/2 d!

2d
volm(M)

√
m(4/δ)m

)
,

where O(kω) is the complexity of multiplication of two k×k matrices and O(E) is the complexity
of evaluating on a point in Rd the function that defines the implicit manifold.

Proof. From Proposition 4.2.6, the time complexity of the manifold tracing algorithm is:

O (kd+m2mI|S|) .

We will see in Proposition 4.2.10 that for a Coxeter triangulation of type Ãd, the value |S| is:

|S| = O

((
2πe

k

)k/2 d(d+1)/2 d!

2d
volm(M)m−1/2(2/δ)m

)
.

We will also see that the complexity of one call of the intersection oracle I in the case of an
implicit manifold is: I = O(kE + kω). The corollary follows.

4.2.2 Size of the output

We will now express the size of the output in terms of the quantities that depend on the manifold
and the resolution of the triangulation.

Proposition 4.2.8 (Size of the output). The size of the output S of the manifold tracing al-
gorithm called on the m-dimensional manifold M and the d-dimensional triangulation T is ex-
pressed as follows:

|S| ≤ Ĉ
(

2πe

k

)k/2 1

Θ
volm(M)m−1/2(2/δ)m,

where:

• volm(M) is the m-dimensional volume of the manifoldM,

• δ is the diameter of the d-dimensional simplices in the triangulation T ,

• Θ is the fatness (see Definition 2.1.1) of the d-dimensional simplices in the triangulation
T ,

• Ĉ is a constant that does not depend on d, m or δ.

Proof. Let N be the set of the d-dimensional cofaces of the simplices in S, and let N be the
cardinality of N . The proof of the proposition is subdivided in two steps:

• First, we find an upper bound on N in terms of d, m and δ.

• After that, we bound the cardinality |S| in terms of N , d and m.
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Upper bound on N . Let us first find an upper bound on N . We are interested in the
tubular neighbourhood Mδ of M of radius δ. Observe that any d-dimensional simplex in N
lies inside Mδ. Denote by V σ the volume of a d-dimensional simplex in the triangulation T .
The d-dimensional simplices in N have pairwise disjoint interiors, so their total volume is upper
bounded by the d-dimensional volume vold(Mδ) of the tubular neighbourhoodMδ:

N V σ ≤ vold(Mδ). (4.1)

The so-called tube formula of Weyl (shown in [Wey39], see also [Gra82]) gives the upper
bound on the volume vold(Mδ):

vold(Mδ) ≤ C Vk volm(M) δk,

where C is a constant that does not depend on d, m or δ. We develop Vk using the asymptotic
expression in Proposition 1.1.36:

vold(Mδ) ≤ C ′
(

2πe

k

)k/2
volm(M) δk, (4.2)

where C ′ is a constant that does not depend on d, m or δ. By combining the two inequalities (4.1)
and (4.2), we get:

N V σ ≤ vold(Mδ) ≤ C ′
(

2πe

k

)k/2
volm(M) δk.

It follows that:

N ≤ C ′
(

2πe

k

)k/2 δk

V σ
volm(M).

By definition of fatness (Definition 2.1.1), we get:

N ≤ C ′
(

2πe

k

)k/2 1

Θ
volm(M)(1/δ)m. (4.3)

where Θ is the fatness of the simplices in the triangulation T . Note that the dependency of N
on 1/δ is exponential in m and not in d.

Upper bound on |S|. Now, we want to express |S| in terms of N , d and m. For this, we
count the number INC of incidences of the k-dimensional simplices in S and the d-dimensional
simplices in N . By incidence in this context, we mean an ordered pair (face, coface), hence each
pair of a k-dimensional simplex in S and an incident d-dimensional simplex in N is counted once.
We count the number INC in two ways:∑

τ∈S
|cof(τ, d)| = INC =

∑
σ∈N
|fac(σ, k) ∩ S|. (4.4)

According to Corollary 1.3.20, there exists a constant C ′′ that does not depend on d, m or δ
such that for any k-dimensional simplex τ ∈ S, we have:

|cof(τ, d)| ≥ C ′′
(

d

m+ 1

)m+1

.
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By applying this lower bound on each simplex τ ∈ S, we get:∑
τ∈S
|cof(τ, d)| ≥ C ′′

(
d

m+ 1

)m+1

|S|. (4.5)

On the other hand, for each d-dimensional simplex σ ∈ N , we have the following upper
bound:

|fac(σ, k) ∩ S| ≤ |fac(σ, k)| =
(
d+ 1

m+ 1

)
.

By applying this upper bound on each simplex σ ∈ N , we get:∑
σ∈N
|fac(σ, d) ∩ S| ≤

(
d+ 1

m+ 1

)
N. (4.6)

By combining (4.4) with the inequalities (4.5) and (4.6), we get:

C ′′
(

d

m+ 1

)m+1

|S| ≤
∑
τ∈S
|cof(τ, d)| =

∑
σ∈N
|fac(σ, d) ∩ S| ≤

(
d+ 1

m+ 1

)
N.

It follows that:

|S| ≤ C ′′−1

(
d+1
m+1

)(
d

m+1

)m+1 N. (4.7)

The ratio
(
d+1
m+1

)
/
(

d
m+1

)m+1
has an asymptotic bound O(2mm−1/2) (see Remark 4.2.9 after

the proof). With this, we can rewrite (4.7):

|S| ≤ C ′′′2mm−1/2 N, (4.8)

where C ′′′ is some constant that does not depend on d, m or δ. By combining (4.3) and (4.8),
we finally get:

|S| ≤ C ′′′2mm−1/2 · C ′
(

2πe

k

)k/2 1

Θ
volm(M)(1/δ)m = Ĉ

(
2πe

k

)k/2 1

Θ
volm(M)m−1/2(2/δ)m,

where Ĉ = C ′ · C ′′′ is a constant that is independent of m, d and δ.

Remark 4.2.9. The ratio
(
d+1
m+1

)
/
(

d
m+1

)m+1
from (4.7) has a simple asymptotic upper bound.

Write: (
d+ 1

m+ 1

)
=

(d+ 1) · d · . . . · (d−m+ 1)

(m+ 1)!
≤ (d+ 1)m+1

(m+ 1)!
.

This yields:(
d+ 1

m+ 1

)
/

(
d

m+ 1

)m+1

≤ (d+ 1)m+1

(m+ 1)!
/

(
d

m+ 1

)m+1

= O

(
(m+ 1)m+1

(m+ 1)!

)
. (4.9)

By applying Stirling formula (m+ 1)! ∼
(
m+1
e

)m+1√
2π(m+ 1) on the right hand side of (4.9),

we finally get:(
d+ 1

m+ 1

)/(
d

m+ 1

)m+1

= O

(
(m+ 1)m+1(

m+1
e

)m+1√
2π(m+ 1)

)
= O(2mm−1/2).
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Comparison of Coxeter triangulations and the Freudenthal-Kuhn triangulation. The
fatness term Θ in the expression in Proposition 4.2.8 depends on the choice of the triangulation T .
Here, we will discuss two possible choices of T namely: a Coxeter triangulation of type Ãd and
the Freudenthal-Kuhn triangulation of Rd.

The fatness ΘCT of d-dimensional simplices in a Coxeter triangulation of type Ãd was com-
puted in Section 2.4.1:

ΘCT =


2d

(
√
d+1)

d+1
d!

if d is odd,

2d(
√
d+1)d−1(√

d(d+2)
)d
d!

if d is even.

From this, we get:
1

ΘCT
= O

(
d(d+1)/2 d!

2d

)
. (4.10)

We also know the fatness ΘFKT of d-dimensional simplices in the Freudenthal-Kuhn trian-
gulation of Rd from Proposition 3.1.18:

ΘFKT =
1

dd/2 d!
.

From this, we get:
1

ΘFKT
= O

(
dd/2 d!

)
. (4.11)

Substituting the expressions of 1
ΘCT

and 1
ΘFKT

in Proposition 4.2.8 yields:

Proposition 4.2.10. We use the same notations as in Proposition 4.2.8. In the case of T being
a Coxeter triangulation of type Ãd, we have:

|S| = O

((
2πe

k

)k/2 d(d+1)/2 d!

2d
volm(M)m−1/2(2/δ)m

)
.

In the case of T being the Freudenthal-Kuhn triangulation of Rd, we have:

|S| = O

((
2πe

k

)k/2
dd/2 d! volm(M)m−1/2(2/δ)m

)
.

By comparing these two expressions, it follows that by using a Coxeter triangulation of type
Ãd as the ambient triangulation we expect a smaller output set S than by using the Freudenthal-
Kuhn triangulation of Rd by a factor 2d/

√
d. This can also be seen in the experimental results

in Section 4.4 (see Table 4.1).

4.2.3 Two cell complexes H and H∗ associated to the set S

Assume that the transversality hypothesis (Hypothesis 4.0.2) holds. In this case, we can define
a cell complex H∗ from the set S in the output of the manifold tracing algorithm. This cell
complex is illustrated in Figure 4.3.

We define the cell complex H∗ in Rd using the following observation. The dual T ∗ of the
triangulation T can be embedded in Rd as an affine transformation of the Voronoi diagram of
a Coxeter triangulation of type Ãd (see Section 1.3). We define the cell complex H∗ to be the
collection of the m-dimensional dual cells in T ∗ that correspond to the k-dimensional simplices
in S and of all faces of these dual cells. Note that the cell complex H∗ is embedded as a pure
m-dimensional subcomplex of T ∗.
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Remark 4.2.11. The affine transformations preserve barycentres. In the case of Coxeter tri-
angulation of type Ãd, the circumcentres of simplices coincide with the barycentres. It follows
that with the embedding as above, the vertices of the cell complex H∗ lie at the barycentres of the
corresponding d-dimensional simplices in T .

If H∗ is a piecewise-linear m-dimensional manifold, then we define another cell complex H
(illustrated in Figure 4.3) as the dual of H∗ in the sense of Poincaré duality. This means that
a cell in H of some dimension l is in one-to-one correspondence to an (m − l)-dimensional cell
in H∗.

Note that with this definition, the k-dimensional simplices in the set S correspond to vertices
in the cell complex H. In general, for any l ∈ {k, . . . , d}, an l-dimensional coface of any k-
dimensional simplex in the set S corresponds to a cell in H of dimension l−k. In particular, the
d-dimensional cofaces correspond to m-dimensional (i.e. maximal) cells in H.

If the cell complex H is well-defined, it is always possible to embed H using the barycentres
of the k-dimensional simplices in the set S as the vertices of H. With this definition, all vertices
in each cell of H of any dimension j ∈ {0, . . . ,m} lie on a j-dimensional affine plane. Therefore,
the j-dimensional cells of H can be realized as the j-dimensional convex hulls of their vertices.

Remark 4.2.12. Note that the stored intersection points of the simplices in S with the manifold
are not used in the constructions of the cell complexes H and H∗ above. In the case of implicit
manifolds, we can define H directly from the set S (see Section 4.3.2), and this time the stored
intersection points serve as vertices in H.

4.3 Special case of the implicit manifold intersection oracle

The manifold tracing algorithm in Section 4.2 depends on the intersection oracle that was left
unspecified. In this section, we will describe how the intersection oracle can be efficiently im-
plemented for the particular case of the implicitly given manifoldM of some dimension m. By
implicit, we mean that M is given as the zero-set F−1(0) of a smooth function F : Rd → Rk.
As before, k is the codimension ofM, meaning that d = m+ k.

We further assume that 0 is a regular value of the function F . With this assumption, the
implicit function theorem (see any standard textbook, e.g. [MW97], for a reference) implies
that the zero-set F−1(0) is indeed a manifold. Thanks to the celebrated Sard’s theorem [Sar42],
almost all points in the image of F are regular, therefore the assumption that zero is a regular
value is not restrictive in practice.

Motivation. It has been reported by Liang and Zhao [LZ13] that reconstructions of local
neighbourhoods on the manifold as the zero sets of locally-defined functions are preferred when
solving partial differential equations. It makes solving partial differential equations one of the
major applications of the manifold tracing algorithm for implicit manifold reconstruction.

As we will see in Section 4.3.4, solving the implicit manifold case also allows us to reconstruct
manifolds from the point clouds.

4.3.1 Approximated intersection query

Detecting the exact intersection point p is not easy in general. Instead, as it is customary in other
simplicial continuation methods, we approximate the function F by a piecewise-linear continuous
function F̃ (see [Hen07] or [VGdF07]).
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The function F̃ takes the values of F on vertices and its restriction to any simplex σ is defined
to be linear. The value of the restriction of F̃ to σ is defined using the barycentric coordinates
in σ. Let us now define F̃ formally. Fix a k-dimensional simplex σ in the ambient triangulation
T . Let v0, . . ., vk be the vertices of σ. Express a point p =

∑k
i=0 λivi in the simplex σ using

barycentric coordinates λ0, . . ., λk. Then, the value of F̃ at p is defined as:

F̃ (p) = F̃

(
k∑
i=0

λivi

)
=

k∑
i=0

λiF (vi). (4.12)

Remark 4.3.1. The function F̃ is linear inside each d-dimensional simplex in T . Therefore,
if the zero-set F̃−1(0) intersects a k-dimensional face, then it intersects it in one point. We get
that the zero-set F̃−1(0) and the triangulation T satisfy the transversality hypothesis (Hypothe-
sis 4.0.2).

Using the piecewise-linear approximation function F̃ defined as in (4.12), we introduce
the approximated intersection oracle, which decides whether its zero-set F̃−1(0) intersects a
k-dimensional simplex τ given by its vertices v0, . . ., vk. For this, the oracle expresses the in-
tersection point using the affine coordinates λ0, . . ., λk, treated as unknown variables such that∑k

i=0 λi = 1. Note that if p =
∑k

i=0 λivi lies in the zero-set F̃−1(0), then it satisfies, by definition
of F̃ :

F̃ (p) =

k∑
i=0

λiF (vi) = 0 ∈ Rk. (4.13)

To find the values of the variables λ0, . . ., λk, the oracle solves the linear equation:

(
1 1 . . . 1

F (v0) F (v1) . . . F (vk)

)
λ0

λ1
...
λk

 =


1
0
...
0

 . (4.14)

All entries F (vi) in the matrix on the left in the linear equation (4.14) are seen as column
vectors with k entries. Therefore, the matrix on the left has dimensions (k + 1)× (k + 1). The
column vector on the right has k zero entries, and hence has k + 1 entries in total. The reader
may recognize the k zero entries in this vector as the k-dimensional zero vector from (4.13).

If the values λ0, . . ., λk are non-negative (meaning that they are in fact barycentric coordinates
and p lies in the simplex τ), then the k-dimensional simplex defined by the vertices v0, . . ., vk
intersects the zero-set F̃−1(0) at the point p. In this case, the approximate intersection oracle
returns the value true. Otherwise, it returns the value false.

From the description of the approximate intersection oracle, the complexity follows:

Lemma 4.3.2. The complexity of one call of the approximate intersection oracle is O(kE+kω),
where O(E) is the complexity of evaluating the function F on a point in Rd, and O(kω) is the
complexity of the computation of the product of two k × k matrices.

Proof. The complexity consists of:

1. evaluating the function F on each of the k + 1 vertices of the simplex τ ,

2. solving the (k + 1)× (k + 1) linear system.

The first complexity is O(kE). The second complexity is known to be the same as the complexity
O(kω) for the matrix multiplication [Str69]. By summing these two complexities, we get the
result.
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4.3.2 Direct construction of the cell complex H from the set S

Lemma 4.3.3 allows us to construct the cell complex H directly from the piecewise-linear ap-
proximation F̃ .

Lemma 4.3.3. Let F̃ be the piecewise-linear approximation of the input function F defined as
in (4.12). We assume that the zero-set F̃−1(0) and the triangulation T satisfy the genericity
hypothesis (Hypothesis 4.0.1). Then, the collection of all non-empty intersections F̃−1(0) ∩ τ
with τ ∈ T is a cell complex. Moreover, this cell complex is isomorphic to the cell complex H
(defined in Section 4.2.3).

Proof. Let τ be a simplex of arbitrary dimension at least k in the triangulation T , such that τ
has a non-empty intersection with the zero-set F̃−1(0). From Remark 4.3.1, it follows that the
restriction of F̃ on τ is linear. It follows that the intersection F̃−1(0) ∩ τ is a polytope.

Note that for each face ϕ of τ , such that ϕ has a non-empty intersection with F̃−1(0), we
have that F̃−1(0)∩ϕ is a face of F̃−1(0)∩ τ . Thus, the collection of the intersections F̃−1(0)∩ τ
for all simplices τ ∈ T such that this intersection is not empty is a cell complex. Denote this cell
complex as H?. We will now show that the cell complex H? is isomorphic to the cell complex H
defined in Section 4.2.3.

First note that the cells in H? and H are in one-to-one correspondence. Indeed, the cells
in both cell complexes H? and H correspond to the simplices in S and their cofaces in the
triangulation T . Moreover, the face structures of both H? and H are inherited from the face
structure in the triangulation T in the same way. Thus, the two cell complexes H? and H are
indeed isomorphic.

4.3.3 Guarantees on the cell complexes H and H∗

We will now show that the cell complexes H and H∗ associated to the output set S (see Sec-
tion 4.2.3) approximate the manifoldM. This approximation comes with the following guaran-
tees: the small distance from the manifold and the topological consistency. We will now show
these two guarantees one by one.

Small distance from the manifold. The first guarantee is that for any positive ε, the
triangulation T can be scaled in such a way that the points on the cell complexes H and H∗ are
ε-close to the manifoldM. This result is shown by Allgower and Georg [AG89, Proposition 2.8]
based on the following assumptions:

• Denote by F ′ : Rd → Rk×d the Jacobian of the function F . There exists a constant κ ∈ R
such that:

‖F ′(x)+‖∞ ≤ κ, for all x ∈ Rd, (4.15)

where A+ denotes the Moore-Penrose inverse: A+ = At(AAt)−1.

• Write F = (F1, . . . , Fk), where for each i ∈ {1, . . . , k}, Fi is a real-valued function. Denote
by F ′′i : Rd → Rd×d the Hessian of the function Fi. There exists a constant α ∈ R, such
that:

‖F ′′i (x)‖∞ ≤ α, for all i ∈ {1, . . . , k} and x ∈ Rd. (4.16)
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Remark 4.3.4. In Plantinga and Vegter [PV04], the authors used similar assumptions in their
marching-cube-like reconstruction of a surface in R3. With these assumptions, they showed that
their construction is homeomorphic to the surface.

Proposition 4.3.5 shows that the points on the constructed cell complexes H and H∗ are at
bounded distance to the manifoldM.

Proposition 4.3.5 ([AG89, Proposition 2.8]). Let F : Rd → Rk be a smooth function that
satisfies both conditions (4.15) and (4.16). Let κ and α be as defined in (4.15) and (4.16)
respectively. Assume that 0 is a regular value of F . Let M be the m-dimensional manifold
defined as the zero-set F−1(0), where m = d − k. Let T be the triangulation of Rd obtained
from the Freudenthal-Kuhn triangulation of Rd by a bijective affine transformation. Denote by δ
the maximum diameter of simplices in the triangulation T . Let H and H∗ be the cell complexes
defined fromM and T as in Section 4.2.3.

1. For each point y on the cell complex H, there exists a point x on the manifold M, such
that:

d(x, y) ≤ καδ2.

2. For each point y on the cell complex H∗, there exists a point x on the manifold M, such
that:

d(x, y) ≤ καδ2 + δ.

Proof. The result for the cell complex H is shown in [AG89, Proposition 2.8]. The result for the
cell complex H∗ follows from the fact that the Hausdorff distance between the cell complexes H
and H∗ is at most the maximal diameter δ of a simplex in T .

Remark 4.3.6. Note that this is not equivalent to a bounded Hausdorff distance from H and H∗
toM.

The following lemma allows us to express the upper bound δ on the diameter of a simplex in
the triangulation T .

Lemma 4.3.7. Let T be the triangulation obtained from the Freudenthal-Kuhn triangulation T0

of Rd by a bijective affine transformation x 7→ Λx+b. Let ΛC be defined as a matrix such that the
corresponding linear transformation maps T0 to a Coxeter triangulation TC of type Ãd (defined
in Section 3.1.3). Let LC denote the following upper bound on the edge length of a simplex in
the Coxeter triangulation TC of type Ãd associated to the matrix ΛC (see Section 2.4.1):

LC =
√
d+ 1/2.

Write amax = ‖ΛΛ−1
C ‖2. The diameter δ of any simplex in T is upper bounded by:

amaxLC .

Proof. The triangulation T is obtained from the Coxeter triangulation TC of type Ãd by a
bijective affine transformation:

λ : x 7→ ΛΛ−1
C x+ b.

Let τ ∈ T be a d-dimensional simplex and let x, y ∈ τ be two arbitrary points in τ . The simplex
τC = λ−1(τ) is a simplex in TC , and xC = λ−1(x) and yC = λ−1(y) are two points in τC . We
have:

‖x− y‖ ≤ ‖ΛΛ−1
C (xC − yC)‖ ≤ amax‖xC − yC‖ ≤ amaxLc.

The result follows.
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Figure 4.3: Two dual complexes: H∗ on the left and H on the right. The barycentric subdivisions
of cells in H∗ correspond to stars of vertices in the barycentric subdivision of H.

Topological consistency. The second guarantee is that both cell complexes H and H∗ are
piecewise-linear m-dimensional manifolds. Note however that we do not prove here that the cell
complexes H and H∗ have the same topology as the manifoldM.

Proposition 4.3.8 (Topological consistency). Let F̃ be the piecewise-linear approximation of
the input function F defined by the approximate intersection oracle. We assume that the zero-set
F̃−1(0) and the triangulation T satisfy the genericity hypothesis (Hypothesis 4.0.1). Then, both
cell complexes H and H∗ are piecewise-linear m-dimensional manifolds.

The result for the cell complex H is shown by Allgower and Georg [AG90, Theorem 15.4.1].
It can also be derived from the following observation. The star of a vertex v in the cell complex
H corresponds to a (closed) m-dimensional cell in the dual cell complex H∗. This cell is an
m-dimensional polytope, therefore homeomorphic to an m-dimensional ball. By duality, this
implies that the star of a vertex v in H is homeomorphic to an m-dimensional ball. Therefore,
H is indeed a piecewise-linear manifold.

To show that the cell complex H∗ is also a piecewise-linear m-dimensional manifold, we will
prove that the cell complexes H∗ and H are homeomorphic.

Proposition 4.3.9. The two cell complexes H and H∗ are combinatorially equivalent one to
another (defined as in [BG05, Definition 44]).

Proof. We apply the barycentric subdivision on the two cell complexes H and H∗. As illustrated
in Figure 4.3, the simplices in the two barycentric subdivisions are in fact same. It follows that
H and H∗ are combinatorially equivalent.

4.3.4 Manifold reconstruction from a point cloud

In this section, we will briefly mention a result by Cheng and Chiu [CC14] that allows us to
apply the manifold tracing algorithm to reconstruct a manifold from a point cloud.
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4.3. Special case of the implicit manifold intersection oracle

Result by Cheng and Chiu. LetM be a compact, smooth and boundaryless submanifold of
Rd of some dimension m. For simplicity, assume thatM has a unit reach (introduced by Federer
[Fed59]). Let P be a uniform (ε, κ)-sample ofM, which means the following:

• Every point on the manifoldM is at distance at most ε from a point in P .

• The number of sample points inside any d-dimensional ball of radius ε is upper bounded
by κ.

The paper by Cheng and Chiu [CC14] provides a construction of a function ϕ from the point
sample P that offers several guarantees. There exists a constant ε0 ∈ (0, 1) that decreases as d
increases, such that the intersection ϕ−1(0) ∩Mε0 of the zero-set ϕ−1(0) of the function ϕ and
of the tubular neighbourhoodMε0 nearM of radius ε0 has the following properties:

1. The set ϕ−1(0) ∩Mε0 is homeomorphic to the manifoldM.

2. The Hausdorff distance from the set ϕ−1(0) ∩Mε0 to the manifoldM is O(m5/2ε).

The value ϕ(x) at a point x ∈ Rd is constructed in the following way. LetNx ⊆ P be the set of
points in P that lie at distance at most γ from x, where γ = 4ε is a constant called neighbourhood
radius known in the input (see below). The authors define a weight function w : Rd → R as
follows:

wx(p) =
h(‖p− x‖)∑
q∈P h(‖p− x‖)

,

where h : R→ R is a function such that:

• h is differentiable in (0,+∞),

• h(s) and h′(s) are zero for s ≥ mγ.

Note that with this definition, the value of wx on any point p ∈ P farther than mγ is zero.
It is assumed that approximate tangent spaces ofM at the sample points in P are specified

in the input (see below). Therefore, we can assume that a d × m matrix Tp is given for each
sample point p ∈ P such that the columns of Tp form an orthonormal basis of the approximate
tangent space ofM at p. Define the following matrix:

Cx =
∑
p∈P

wx(p)
(
TpT

t
p

)
.

The normalized eigenvectors that correspond to the k least dominant eigenvalues of TpT tp form
an orthonormal basis of the approximated normal space ofM at p. The purpose of the matrix
Cx is that its normalized eigenvectors that correspond to the k least dominant eigenvalues form
an orthonormal basis of the “weighted average” of the approximate normal spaces of M at the
sample points near x. Let Bx be the d× k matrix, the columns of which are these k normalized
eigenvectors of Cx. The value of ϕ at the point x is defined using this matrix Bx:

ϕ(x) = Bt
x

x−∑
p∈P

wx(p) p

 .

We will now summarize the knowledge required to be provided at the input for the construc-
tion of the function ϕ.
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(a). As for the manifold tracing algorithm, it is assumed that the dimension m of the manifold
M is known. In the case of manifolds given by point clouds, there are many algorithms
that estimate the manifold dimension m, such as [TDSL00, HA05, LB05, CWW08, CC09].

(b). The neighbourhood radius γ = 4ε is required. As Cheng and Chiu mentioned in the
introduction of [CC14], the neighbourhood radius γ can be set by measuring the maximum
distance from a sample point to its nth nearest neighbour for some appropriate n.

(c). It is assumed that we are given approximate tangent spaces at points in P such that the
true tangent space inM makes an angle at most mγ with the given approximate tangent
space at that point. As the authors reported, there exist many methods for estimating
tangent spaces (e.g. [SSM98, GW03, CDR05, BSW09, LMR17, BLW18]), which give an
O(ε) angular error.

Manifold tracing algorithm for manifold reconstruction from a point cloud. We can
use the construction of the function ϕ by Cheng and Chiu [CC14] as a preprocessing step to later
apply the manifold tracing algorithm endowed with the implicit manifold intersection oracle as
in Section 4.3.1 to reconstruct the set ϕ−1(0) ∩Mε0 .

For this, we need to ensure that the scale of the triangulation T is sufficiently small. To
be precise, we impose the diameter of the simplices in the triangulation T to be smaller than
ε0. This way, any simplex (of any dimension) in the triangulation T that intersects the set
ϕ−1(0) ∩ Mε0 lies entirely in the tubular neighbourhood Mε0 . Therefore, we can apply the
manifold tracing algorithm on the restriction of the function ϕ to theMε0 . The zero-set of this
function gives us the desired result.

4.3.5 The case of manifolds with boundary

In this section, we will discuss the manifold tracing algorithm in the case of smooth implicit
manifolds with boundary. Let m be the dimension of the input manifold. Here, we assume that
its boundary is a boundaryless (m− 1)-dimensional manifold.

An implicit manifold with boundary can be represented as an intersectionM∩D− of:

• a (possibly non-compact) manifoldM without boundary given as the zero-set of a function
F : Rd → Rk, and

• a d-dimensional shape D− = D−1(−∞, 0], called domain, which is the preimage of the
interval (−∞, 0] of non-positive reals by a continuous function D : Rd → R.

Here, we impose that the domain function D is piecewise-linear with the linear pieces defined
inside each d-dimensional simplex of the ambient triangulation T . Otherwise, we can always
make any function piecewise-linear of this form by applying the definition in equation (4.12).

The main differences of the implicit manifold with boundary in contrast with the boundaryless
case are the following (red in Algorithm 2):

1. We impose that the given seed point is in the relative interior M∩D−, in contrast with
any point x ∈M in the boundaryless case.

2. There is one additional set B in the output consisting of the (k+ 1)-dimensional simplices
in the ambient triangulation T that intersect the boundaryM∩D−1(0) of the manifold.

150



4.3. Special case of the implicit manifold intersection oracle

Algorithm 2: Manifold tracing algorithm for implicit manifolds with boundary.
input : Triangulation T of Rd, manifoldM∩D− of dimension m with boundary, seed

point x0 ∈M∩D−
output: Set S of the simplices in T of dimension k = d−m that intersectM∩D−,

set B of (k + 1)-dimensional simplices in T that intersectM∩D−1(0)
1 Translate T so that x0 coincides with the barycentre of a k-dimensional face τ0 in T
2 Initialize the queue Q with τ0

3 Initialize S with τ0

4 while the queue Q is not empty do
5 Pop a k-dimensional simplex τ from Q
6 foreach cofacet ϕ of τ do
7 foreach facet ρ of ϕ do
8 if ρ does not lie in S and intersectsM then
9 x := intersection point of ρ andM

10 if x does not lie in D− then
11 y := intersection point of ϕ andM∩D−1(0)
12 Insert ϕ together with the intersection point y to the output set B
13 else
14 Insert ρ to the queue Q
15 Insert ρ together with the intersection point x to the output set S

3. There is one additional check in the body of the while loop. If the intersection point lies
outside of the (piecewise-linear) domain D, then the algorithm inserts the coface ϕ in the
set B.

Remark 4.3.10. Note that the inserted (k + 1)-dimensional coface ϕ does indeed intersect the
boundary M ∩ D−1(0), as the specification of the set B requires. To see this, recall that the
intersection point y of the k-dimensional simplex τ (which we popped from the queue Q) with
M by definition lies inside the domain D−. On the other hand, the intersection point x of
the k-dimensional simplex ρ with M lies outside D−. By the intermediate value theorem, the
segment [xy], which belongs to the (k + 1)-dimensional coface ϕ, intersects the zero-set D−1(0).

Construction of the cell complex. Similarly to Section 4.3.3, from the sets S and B, we
can define a cell complex H that approximates the manifold M∩D− with boundary. We will
now describe the construction of the Hasse diagram of the cell complex H.

The vertices of H consist of the points in S and B. As was the case in Section 4.3.3, to each
cell in H there is a simplex in the ambient triangulation T in correspondence. We will denote
the cells in H by the corresponding simplices.

Remark 4.3.11. As we will see, in contrast to the boundaryless construction in Section 4.3.3,
the cell-simplex correspondence is not one-to-one this time. A cell on the boundary of H can
have the same corresponding simplex as a cell in the interior of H (illustrated in Figure 4.4).

The construction procedure consists of two phases (blue and red in Figure 4.4).

1. In the first phase, the algorithm constructs the part of the Hasse diagram of H that
correspond to simplices in S and their cofaces (blue part in Figure 4.4).
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Figure 4.4: The boundary reconstruction inside an ambient tetrahedron T . The boundary cells
are in red and the interior cells are in blue. The cells in the reconstruction are labelled by the
face of the tetrahedron T they lie on. The vertices of the reconstruction lie on two edges ϕ1 and
ϕ2 and on two triangular facets τ2 and τ3 of the tetrahedron T . The edges of the reconstruction
lie on three triangular facets τ1, τ2 and τ3 and inside the tetrahedron T . The two-dimensional
cell lies inside the tetrahedron T . The Hasse diagram of the reconstruction is shown on the right.

2. In the second phase, the algorithm completes the Hasse diagram with cells that correspond
to simplices in B and their cofaces (red part in Figure 4.4). If there are two cells in H —
one in the interior and one on the boundary — that correspond to the same simplex τ ∈ T ,
the boundary cell is assigned to be a face of the cell in the interior.

4.4 Experimental results

The data structure from Section 4.1 and the manifold tracing algorithm have been implemented in
C++ and are under review to be included as part of Gudhi library [GUD]. In this section, we will
report on the experimental results using this implementation. We will focus here on the piecewise-
linear approximation of compact smooth boundaryless implicit submanifold in Euclidean space
Rd. We will investigate the effects on the performance of the following parameters:

• the choice of the ambient triangulation,

• the scale of the ambient triangulation,

• the ambient dimension d,

• the intrinsic dimension m of the manifold.

In Figures 4.6, 4.8, 4.9 and 4.10, we display examples of reconstructed surfaces.

Choice of the triangulation. In Table 4.1, we compare the performance of the manifold
tracing algorithm using two ambient triangulations: the Freudenthal-Kuhn triangulation of Rd
and a Coxeter triangulation of type Ãd. The input manifold used in the tests is the “Chair”
surface given as the zero-set of the function (visualized in Figure 4.6):

f(x, y, z) = (x2 + y2 + z2 − 0.8)2 − 0.4
(
(z − 1)2 − 2x2

) (
(z + 1)2 − 2y2

)
.
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Ambient dimension 3 4 5 6 7 8 9 10

C
T time, s 0.138 0.374 1.127 3.122 6.973 11.545 22.554 39.514

size |S| 3990 8422 17086 29014 45162 64460 93798 124908
av. time, ms 0.035 0.044 0.066 0.11 0.15 0.18 0.24 0.32

F
K
T time, s 0.247 0.891 3.304 11.064 16.317 38.072 78.827 122.794

size |S| 8354 20042 48024 98816 108634 211136 273910 435810
av. time, ms 0.03 0.044 0.069 0.11 0.15 0.18 0.29 0.28

Table 4.1: The comparison of the performance of the manifold tracing algorithm using two types
of the ambient triangulation: a Coxeter triangulation of type Ãd (CT) and the Freudenthal-
Kuhn triangulation of Rd (FKT) with the same diameter 0.07

√
d of d-dimensional simplices.

The reconstructed manifold is the two-dimensional implicit surface “Chair” embedded in Rd
given by the equation: (x2

1 + x2
2 + x2

3 − 0.8)2 − 0.4
(
(x3 − 1)2 − 2x2

1

) (
(x3 + 1)2 − 2x2

2

)
= 0.
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Figure 4.5: The comparison of the size of the output of the manifold tracing algorithm using
two types of the ambient triangulation: a Coxeter triangulation of type Ãd (in blue) and the
Freudenthal-Kuhn triangulation of Rd (in red) with the same diameter 0.07

√
d of d-dimensional

simplices. The reconstructed manifold is the two-dimensional implicit surface “Chair” embedded
in Rd given by the equation: (x2

1 + x2
2 + x2

3− 0.8)2− 0.4
(
(x3 − 1)2 − 2x2

1

) (
(x3 + 1)2 − 2x2

2

)
= 0.
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In the tests, we embedded the implicit manifold in a higher dimensional space Rd for d ranging
from 3 to 10.

As we can see in Table 4.1 and in Figure 4.5, the computation time and the size of the output
when using a Coxeter triangulation of type Ãd are smaller than the computation time when using
the Freudenthal-Kuhn triangulation of Rd. However, the average computation time per element
in the output (shown in Table 4.1) is roughly the same for the two triangulations. From this,
we conclude that the choice of the ambient triangulation does not affect the average time per
element in the output, however it does affect significantly the size of the output.

Note that the smaller size of the output in the case of a Coxeter triangulation of type Ãd com-
pared to the Freudenthal-Kuhn triangulation of Rd agrees with the estimate in Proposition 4.2.8
and the fact that Coxeter triangulations of type Ãd have greater fatness (Proposition 4.2.10).

Choice of the scale. We will now investigate the effect of the scale of the triangulation on
the performance of the manifold tracing algorithm. In Table 4.2, we give the execution time
and the sizes of the sets S and Smax that consist of the k-dimensional simplices and the d-
dimensional simplices respectively that intersect the surface. The ambient triangulation used
in the experiment is a 9-dimensional Coxeter triangulation of type Ã9 and the reconstructed
manifold is the “Chair” surface in Figure 4.6.

In Figure 4.7, we plot in log-log scale the dependency of the output size |S| in this experiment
on the inverse diameter of the simplices in the ambient triangulation. The graph when put in
log-log scale is linear, which is coherent with Proposition 4.2.8, which predicts the dependency
log(|S|) ∼ 2 log(1/δ).

The dependency on the ambient and intrinsic dimension. In Tables 4.3 and 4.4, we
show the dependency of the execution time of the manifold tracing algorithm and the size of the
output set S on the ambient dimension d and on the intrinsic dimension m of the manifold. The
reconstructed manifolds are m-dimensional spheres embedded in Rd.

Manifolds with boundary. In Figures 4.9, 4.10 and 4.11, we showcase the result of applying
the manifold tracing algorithm on implicit manifolds with boundary.

4.5 Implementation details

In this section, we will describe the structure of the module Coxeter triangulation in Gudhi
C++ library [GUD]. The overall architecture of the module can be summarized in five parts:

1. Class Permutahedral_representation represents a simplex in an ambient triangulation
T as described in Section 4.1 using the permutahedral representation (Definition 3.3.15).

2. Triangulation classes Freudenthal_triangulation and Coxeter_triangulation repre-
sent the ambient triangulation T using data structure in Section 4.1.

3. There are two intersection oracle classes: Implicit_manifold_intersection_oracle and
Point_cloud_intersection_oracle that represent the intersection oracles described in
Sections 4.3.1 and 4.3.4 respectively. Additionally some function classes are provided as
examples of classes that Implicit_manifold_intersection_oracle can take as a template
parameter.
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Figure 4.6: The “Chair” surface given by equation: (x2 + y2 + z2 − 0.8)2 −
0.4
(
(z − 1)2 − 2x2

) (
(z + 1)2 − 2y2

)
= 0 embedded in R9 and projected to R3 reconstructed

by the manifold tracing algorithm using Coxeter triangulation of type Ã9 as the ambient trian-
gulation with the diameter 0.022 of the d-dimensional simplices.
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1/δ = 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
time, s 7.02 9.54 13.2 16.2 20.7 24.9 29.5 35.0 42.1
size |S| 27268 38411 51273 65947 82480 99567 117507 140158 162004
size |Smax| 31154 43869 58582 75310 94357 113783 134113 159956 184821

Table 4.2: The effect of the scale parameter on the computation time and the output size. Here
δ corresponds to the diameter of the 9-dimensional simplices in the ambient triangulation. The
reconstructed manifold in the tests is the two-dimensional implicit surface “Chair” embedded
in R9 (see Figure 4.6). The sets S and Smax consist of the 7-dimensional simplices and 9-
dimensional simplices respectively that intersect the surface. The ambient triangulation is a
Coxeter triangulation of type Ã9.
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Figure 4.7: The dependency of the output size of the piecewise-linear approximation of the
“Chair” surface embedded in R9 by the manifold tracing algorithm on the inverse of the diameter
δ of the 9-dimensional simplices in the ambient triangulation. We take here a log-log scale.
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Figure 4.8: The piecewise-linear approximation of a flat torus embedded in R10 defined by
equations x2

1 + x2
2 = 1 and x2

3 + x2
4 = 1. It is randomly rotated and translated in R10 and

then projected to R3. The ambient triangulation used is a Coxeter triangulation of type Ã10

with the diameter 0.23 of the full-dimensional simplices. The size |S| of the piecewise-linear
approximation is 509952. The execution time of the algorithm is 231s.
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m
d 2 4 6 8 10 12 14

1 time, s 0.001 0.008 0.012 0.088 0.447 0.135 0.2
|S| 52 116 184 280 376 494 600

2 time, s 0.095 0.63 2.492 8.842 21.045 52.642
|S| 1708 5621 14118 27628 46438 76366

3 time, s 0.433 9.863 90.54 448.044 1932.88 6293.73
|S| 7518 73794 329751 993210 2.47 · 106 5.3 · 106

Table 4.3: The effect of the ambient dimension d on the execution time and the output size of
the manifold tracing algorithm for various dimensions m of the submanifold. The reconstructed
manifold in the tests is the m-dimensional sphere embedded in Rd. The ambient triangulation
used is a Coxeter triangulation of type Ãd. The time shown in the table is the computation time
of the set S.

d
m 1 2 3 4 5 6

5 time, s 0.01 0.245 2.417 6.556
|S| 142 3324 25808 59332

6 time, s 0.012 0.63 9.863 71.123 101.701
|S| 184 5621 73794 320310 432922

7 time, s 0.032 1.238 34.264 371.976 1495.65 1211.3
|S| 224 8876 157170 1.23 · 106 3.61 · 106 2.84 · 106

Table 4.4: The effect of the intrinsic dimension m on the execution time and the output size of
the manifold tracing algorithm for various ambient dimensions d. The reconstructed manifold
in the tests is the m-dimensional sphere embedded in Rd. The ambient triangulation used is a
Coxeter triangulation of type Ãd. The time shown in the table is the computation time of the
set S.

4. Class Manifold_tracing is a function object class for the manifold tracing algorithm from
Section 4.2.

5. Class Cell_complex computes and stores the Hasse diagram of the cell complex H from
the output by an object of the class Manifold_tracing.

The plan of the current section follows these five parts, with an additional Section 4.5.4 for
the function classes.

4.5.1 Class Permutahedral_representation

Every simplex manipulated in the module Coxeter triangulation has to be an object of the
class Permutahedral_representation. As the name suggests, an object of this class stores the
permutahedral representation σ(y, ω) (defined in Definition 3.3.15) with a vertex y ∈ Zd and an
ordered partition ω of the interval {1, . . . , d+ 1} for some specific positive integer d.

Remark 4.5.1. It is important to note that the indexation of coordinates in a vertex and elements
in a partition in the class Permutahedral_representation are different from the indexation
before. Namely, as it is customary in programming, the indexation starts with 0. For instance
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Figure 4.9: The piecewise-linear approximation of a revolution surface obtained from the lemnis-
cate of Bernoulli embedded in R3 defined by equation (x2 + y2 + z2)2− 2(x2− y2− z2) = 0. The
surface is cut with a sphere defined by equation x2 + y2 = 1.22. The ambient triangulation used
is a Coxeter triangulation of type Ã3 with the diameter 0.07 of the full-dimensional simplices.
The size |S| of the reconstruction is 7499. The execution time of the algorithm is 0.52s.

this means that first coordinate in the vertex v has the index 0. Also, the domain of the partition
ω is {0, . . . , d} instead of {1, . . . , d+ 1}.

Template parameters. The class Permutahedral_representation takes two template pa-
rameters Vertex_ and Ordered_set_partition_. These two template parameters specify the
data structures for the two constituent parts of a permutahedral representation σ(y, ω): the
vertex y and the ordered partition ω respectively. Multiple constraints need to be met by the
two template parameters:

• Vertex_ needs to be a random-access range14 of integer-type objects.

• Ordered_set_partition_ needs to be a random-access range of random-access ranges, the
latter consisting of integer-typed objects.

Valid permutahedral representations and constructors. There are two constructors for
the class Permutahedral_representation.

• Permutahedral_representation() creates an empty permutahedral representation.

• Permutahedral_representation(v, omega) takes two argument: the vertex v of type
Vertex_ and the ordered set partition omega of type Ordered_set_partition_.

14Here and in the following, a range refers to the standard C++ concept Range (documentation). A random-
access range refers to a range whose iterator type satisfies the concept RandomAccessIterator (documentation).
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Figure 4.10: Two views of the piecewise-linear approximation of a surface in R3 given by an
equation: −x

6−y6−z6
300 + xy2z

2.1 + y2 + (z − 2)2 = 1 cut by the hyperplane x = 0 in half. The
ambient triangulation used is a Coxeter triangulation of type Ã3 with the diameter 0.23 of the
full-dimensional simplices. The size |S| of the piecewise-linear approximation is 622822. The
execution time of the algorithm is 152s.
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Figure 4.11: Four views of the flat torus in R4 given by two equations x2
1 +x2

2 = 1 and x2
3 +x2

4 = 1
cut by the hypersphere (x1 − 1)2 + x2

2 + (x3 − 1)2 + x2
4 = 4, randomly rotated and translated

in R4 and then projected to R3. The ambient triangulation used is a Coxeter triangulation of
type Ã4 with the diameter 0.15 of the full-dimensional simplices. The reconstructed boundary is
highlighted in yellow. The size |S| of the piecewise-linear approximation is 14779. The execution
time of the algorithm is 1.84s.
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It is left to the user to control whether the specified vertex v and ordered set partition omega
form a valid permutahedral representation, meaning that v and ω satisfy the following condition:

Condition 4.5.2 (The validity condition). The elements in the parts in the partition ω form
the set {0, . . . , d} without repetitions, where d is the size of the vertex v.

In addition, if the simplex lies in a specific ambient triangulation, d needs to match the
dimension of the triangulation.

Element access. Both the vertex v and the ordered partition ω are accessible using the mem-
ber functions vertex() and partition() respectively.

Member functions. Multiple other queries are implemented. We tacitly assume here that
the stored vertex v and the ordered partition ω satisfy the validity condition (Condition 4.5.2).

• dimension() returns the dimension of the simplex. The returned value corresponds to the
number of parts in the partition ω minus one.

• vertex_range(), face_range(k) and coface_range(l) return the ranges of vertices, of k-
dimensional faces and of l-dimensional cofaces respectively of the simplex corresponding to
the permutahedral representation, for some specified arguments k and l of a positive integer
type. All output ranges are derived from the boost::iterator_range class from Boost
C++ library15. The underlying iterators are derived from the boost::iterator_facade
class from Boost C++ library16. The iterators are implemented using the time- and space-
efficient algorithms from Section 3.5. In particular, during the entire iteration over a
range, only the current element is explicitly stored. Dereferencing an iterator returns an
object of type Vertex_ for vertex_range, and of type Permutahedral_representation
for face_range and coface_range.

• facet_range() and cofacet_range() return facet and cofacet ranges respectively. These
two methods are wrappers for face_range(m-1) and for coface_range(m+1), where m is
the dimension of the simplex, and are added for convenience.

• is_face_of(other) takes a parameter other of type Permutahedral_representation and
returns true if and only if the simplex represented by the permutahedral representation is
a face of the simplex represented by other. This function compares the sets of vertices of
the two simplices and deciding whether one is a subset of another. This is done by iterating
over the vertices for both simplices.

4.5.2 Classes Freudenthal_triangulation and Coxeter_triangulation

The ambient triangulation T is represented by the class Freudenthal_triangulation or a
derived class Coxeter_triangulation. Both classes can store any affine transformation of
the Freudenthal-Kuhn triangulation of Rd for any positive integer d. The difference is that
the constructors Freudenthal_triangulation(d) and Coxeter_triangulation(d) build the
Freudenthal-Kuhn triangulation of Rd and a Coxeter triangulation of type Ãd for the specified
d.

15The documentation for boost::iterator_range.
16The documentation for boost::iterator_facade.
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The underlying data structure is the data structure described in Section 4.1. Internally,
the classes Freudenthal_triangulation and Coxeter_triangulation store a matrix Λ and a
vector b (as in Section 4.1.1). Additionally, the dimension d of the triangulation is stored.

Template parameters. Both triangulation classes Freudenthal_triangulation and
Coxeter_triangulation take one template argument Permutahedral_representation_, which
is initialized by default with type:

Permutahedral_representation<std::vector<int>,
std::vector<std::vector<std::size_t>>>>.

The type Permutahedral_representation_ is required to have the same interface as the class
Permutahedral_representation as described in Section 4.5.1.

Constructors. There are four available constructors for both triangulation classes:

• The constructors Freudenthal_triangulation(d) and Coxeter_triangulation(d) take
one positive integer argument d, which is the dimension of the triangulation. These con-
structors initialize the offset vector b to 0 and the linear transformation matrix Λ to the
identity matrix Id and to the matrix ΛC (as in Section 3.1.3) respectively.

• The constructor Freudenthal_triangulation(d, matrix) takes two arguments d and
matrix, which are the dimension of the triangulation and the linear transformation matrix
respectively. The argument d is of a positive integer type. The argument matrix is of type
Eigen::MatrixXd provided by the Eigen C++ library [GJ+10]. This constructor initializes
the offset vector b to 0 and the linear transformation matrix Λ to the matrix matrix. The
derived constructor Coxeter_triangulation(d, matrix) is the same.

• The constructor Freudenthal_triangulation(d, matrix, offset) takes three arguments
d, matrix and offset, which are the dimension of the triangulation, the linear transforma-
tion matrix and the offset vector respectively. The argument d is of a positive integer type.
The arguments matrix and offset are of type Eigen::MatrixXd and Eigen::VectorXd
respectively provided by the Eigen C++ library [GJ+10]. This constructor initializes the
offset vector b to offset and the linear transformation matrix Λ to the matrix matrix.
The derived constructor Coxeter_triangulation(d, matrix, offset) is the same.

Access. The dimension d, the matrix Λ and the ordered partition b are accessible using the
member functions dimension(), matrix() and offset() respectively.

Member functions. Multiple other queries are implemented.

• change_matrix(matrix) changes the matrix Λ to the specified matrix matrix of type
Eigen::MatrixXd provided by the Eigen C++ library [GJ+10].

• change_offset(offset) changes the vector b to the specified vector offset. The type of
offset is Eigen::VectorXd provided by the Eigen C++ library [GJ+10].

• locate_point(p) returns the permutahedral representation of the simplex in the ambient
triangulation that contains the specified point p. The type of the point p is required
to be Eigen::VectorXd provided by the Eigen C++ library [GJ+10]. The output is of
type Permutahedral_representation_ and always corresponds to the smallest simplex by
inclusion that contains p.
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• cartesian_coordinates(v) returns the Cartesian coordinates of the specified vertex v.
The vertex v is required to be of type of type Permutahedral_representation_::Vertex.
The return value is of type Eigen::VectorXd provided by the Eigen C++ library [GJ+10].

• barycenter(simplex) returns the barycentre of the specified simplex simplex of type
Permutahedral_representation_. The return value is of type Eigen::VectorXd provided
by the Eigen C++ library [GJ+10].

4.5.3 Intersection oracle classes

Intersection oracles are represented by two classes:

• Implicit_manifold_intersection_oracle for an implicit manifold which is the zero-set
of a given function F . Optionally, the manifold can have a boundary, defined by a domain
function D (as in Section 4.3.5).

• Point_cloud_intersection_oracle for a manifold given by a point cloud P .

The two classes follow the same interface with the exception of the template parameters and
the constructors.

Template parameters for Implicit_manifold_intersection_oracle. The class takes two
parameter arguments Function_ and Domain_function_, which represent the functions F andD.
The two types Function_ and Domain_function_ are required to have the same interface as
the classes in Section 4.5.4. The template argument Domain_function_ has a default value
Constant_function (see Section 4.5.4) reserved for the boundaryless implicit manifolds.

Template parameters for Point_cloud_intersection_oracle. The class takes one tem-
plate argument Point_range_, which represents the point cloud P . The type Point_range_ is
required to be a random-access range of objects of type Eigen::VectorXd provided by the Eigen
C++ library [GJ+10].

Constructors for Implicit_manifold_intersection_oracle. Two constructors are avail-
able:

• Implicit_manifold_intersection_oracle(F, D) takes two arguments F and D of types
Function_ and Domain_function_ respectively. This constructor is intended for creating
an implicit manifold intersection oracle in the case of a manifold with boundary F−1(0)∩D−
(see Section 4.3.5).

• Implicit_manifold_intersection_oracle(F) takes an argument F of type Function_.
This constructor is intended for creating a boundaryless implicit manifold intersection
oracle F−1(0). Using this constructor requires the template argument Domain_function_
to be set to Constant_function.

Defining the type with all template arguments can be cumbersome in some cases. For con-
venience, two static constructor wrappers are available:

• make_implicit_manifold_intersection_oracle(F, D) is a wrapper for the constructor
Implicit_manifold_intersection_oracle(F, D).

• make_implicit_manifold_intersection_oracle(F) is a wrapper for the constructor
Implicit_manifold_intersection_oracle(F).
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Constructor for Point_cloud_intersection_oracle. The constructor is:

• Point_cloud_intersection_oracle(P, m, gamma), where:

– P is a point range of type Point_range_,

– m is the intrinsic dimension of the manifold of a positive integer type,

– gamma is the parameter γ from Section 4.3.4 of a floating type (double by default).

Member functions. Both intersection oracles have the same member functions.

• amb_d returns the ambient dimension of the manifold.

• cod_d returns the codimension of the manifold.

• intersects(simplex, triangulation) returns true if and only if the simplex represented
by the object simplex that lies in the triangulation triangulation intersects the manifold.
The type of the argument simplex is required to have the same interface as the class
Permutahedral_representation in Section 4.5.1. The dimension of simplex has to be
the codimension of the manifold. The type of the argument triangulation is required to
have the same interface as the class Freudenthal_triangulation in Section 4.5.2. The
dimension of triangulation has to be the same as the codimension of the manifold.

• intersects_boundary(simplex, triangulation) returns true if and only if the sim-
plex simplex that lies in the triangulation triangulation intersects the boundary of the
manifold. If the manifold does not have boundary, the return value is always false.
The type of the argument simplex is required to have the same interface as the class
Permutahedral_representation in Section 4.5.1. The dimension of simplex has to be
one more than the codimension of the manifold. The type of the argument triangulation
is required to have the same interface as the class Freudenthal_triangulation in Sec-
tion 4.5.2. The dimension of triangulation has to be the same as the codimension of the
manifold.

• lies_in_domain(p, triangulation) returns true if and only if the point p lies inside the
domain D− (defined in Section 4.3.5). If the manifold does not have boundary, the return
value is always false. The argument triangulation is needed to make a piecewise-linear
approximation of the function D and its type is required to have the same interface as the
class Freudenthal_triangulation (see Section 4.5.2).

4.5.4 Function classes

Any function passed as an argument in Implicit_manifold_intersection_oracle is imple-
mented as a class. Here are the implemented functions along with the constructors:

• Constant_function(d, k, v) defines a constant function F such that for all x ∈ Rd, we
have F (x) = v ∈ Rk. The arguments d and k are of a positive integer type. The value
v should be a k-dimensional vector of type Eigen::VectorXd provided by the Eigen C++

library [GJ+10]. The class Constant_function does not define an implicit manifold, but
is useful as the domain function when defining boundaryless implicit manifolds in the class
Implicit_manifold_intersection_oracle (see Section 4.5.3).
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• Function_affine_plane_in_Rd(N, b) defines an m-dimensional implicit affine plane in
the d-dimensional Euclidean space given by a normal matrix N and an offset vector b. The
dimensions m and d are deduced from the dimensions of the matrix N, which is d× (d−m).
The dimension of the vector b should be the ambient dimension of the manifold. The types
of the arguments matrix and b are Eigen::MatrixXd and Eigen::VectorXd respectively
provided by the Eigen C++ library [GJ+10]. The default value of the argument b is the
zero-vector.

• Function_Sm_in_Rd(r, m, d, center) defines an m-dimensional implicit sphere embed-
ded in the d-dimensional Euclidean space of radius r centered at the point center. The
dimension of the point center should be the ambient dimension of the manifold. The
argument r is of a floating type (double by default). The arguments m and d are of a
positive integer type. The type of the argument center is Eigen::VectorXd provided by
the Eigen C++ library [GJ+10].

• Function_moment_curve(r, d) defines the moment curve in the d-dimensional Euclidean
space of radius r given as the parameterized curve (but implemented as an implicit surface):

(r, rt, . . . , rtd−1) ∈ Rd, for t ∈ R.

The argument r is of a floating type (double by default). The argument d are of a positive
integer type.

• Function_torus_in_R3(R, r) defines a torus in R3 with the outer radius R and the inner
radius, given by the equation:

z2 + (
√
x2 + y2 − r)2 −R2 = 0.

The arguments R and r are of a floating type (double by default).

• Function_chair_in_R3(a, b, k) defines the “Chair” surface in R3 (illustrated in Fig-
ure 4.6) defined by the equation:

(x2 + y2 + z2 − ak2)2 − b((z − k)2 − 2x2)((z + k)2 − 2y2) = 0.

The arguments a, b and k are of a floating type (double by default).

• Function_iron_in_R3() defines the “Iron” surface in R3 (illustrated in Figure 4.10) defined
by the equation:

−x6 − y6 − z6

300
+
xy2z

2.1
+ y2 + (z − 2)2 = 1.

• Function_lemniscate_revolution_in_R3(a) defines a revolution surface in R3 obtained
from the lemniscate of Bernoulli (illustrated in Figure 4.9) defined by the equation:

(x2 + y2 + z2)2 − 2a2(x2 − y2 − z2) = 0.

The argument a is of a floating type (double by default).

• Function_whitney_umbrella_in_R3() defines the Whitney umbrella surface in R3 defined
by the equation:

x2 − y2z = 0.
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The base function classes above can be composed or modified into new functions using the
following classes and methods:

• The class Cartesian_product expresses the Cartesian product F−1
1 (0) × . . . × F−1

k (0) of
multiple implicit manifolds as an implicit manifold. For convenience, a static function
make_product_function(functions...) is provided that takes a pack of function-typed
objects as the argument.

• The class Embed_in_Rd expresses an implicit manifolds embedded in a higher-dimensional
Euclidean space. For convenience, a static function make_embedding(F, d) is provided
that takes two arguments: a function-type object F and a positive integer d which represents
the dimension of the embedding space.

• The class Linear_transformation applies a linear transformation on an implicit manifold.
For convenience, a static function linear_transformation(F, M) is provided that takes
two arguments: a function-type object F and a linear-transformation matrix M of type
Eigen::MatrixXd provided by the Eigen C++ library [GJ+10].

• The class Translate translates an implicit manifold by a vector. For convenience, a static
function translate(F, v) is provided that takes two arguments: a function-type object
F and a translation vector v of type Eigen::VectorXd provided by the Eigen C++ library
[GJ+10].

• The class Negation defines the negative of a given function. This class is useful to define
the complementary of a given domain, when defining a manifold with boundary. For
convenience, a static function negation(F) is provided that a function-type object F as
argument.

• The class PL_approximation defines a piecewise-linear approximation of a given function
induced by an ambient triangulation. The purpose of this class is to define a piecewise-
linear function that is compatible with the description of the function D in Section 4.3.5.
For convenience, a static function make_pl_approximation(F, T) is provided that takes
two arguments: a function-type object F and a triangulation T. The type of T is required
to have the same interface as the class Freudenthal_triangulation (see Section 4.5.2).

Member functions. All function classes above have the following member functions:

• amb_d() outputs the domain dimension of the function, which corresponds to the ambient
dimension of the implicit manifold.

• cod_d() outputs the codomain dimension of the function, which corresponds to the codi-
mension of the implicit manifold.

• evaluate(p, result) that takes as arguments two references p and result to variables of
type Eigen::VectorXd provided by the Eigen C++ library [GJ+10]. The method evaluates
the function on the point p and stores the result in the point result.

• seed(result) takes as argument a reference to a variable of type Eigen::VectorXd pro-
vided by the Eigen C++ library [GJ+10]. The method writes in result a point in the
zero-set of the function. This point can be used as a seed point in the manifold tracing
algorithm.
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4.5.5 Class Manifold_tracing

The class Manifold_tracing is a wrapper for the manifold tracing algorithm.

Template parameters. The class takes one template parameter Triangulation_ which de-
fines the type of the ambient triangulation. The type Triangulation_ is required to have the
same interface as the class Freudenthal_triangulation (see Section 4.5.2).

Constructor. The only available constructor is the default constructor Manifold_tracing().

Member functions. The class Manifold_tracing has two member functions with similar
functionality.

• manifold_tracing_algorithm(seeds, T, O, S) performs the manifold tracing algorithm
without taking into account the domain, hence reconstructing a boundaryless manifold. It
takes three input arguments and one output argument. The input arguments are:

– A range seeds of seed points of type Eigen::VectorXd provided by the Eigen C++

library [GJ+10].

– An ambient triangulation T. The type of T is required to have the same interface as
the class Freudenthal_triangulation (see Section 4.5.2).

– An intersection oracle O of type that has the same interface as the classes in Sec-
tion 4.5.3.

The output argument is a map S that associates to a simplex the corresponding intersection
point. The stored simplices in the map are of type Permutahedral_representation (see
Section 4.5.1). The mapped points are of type Eigen::VectorXd provided by the Eigen
C++ library [GJ+10]. The set of simplices in the map is the output set S from Section 4.2.

• manifold_tracing_algorithm(seeds, T, O, S, B) performs the manifold tracing algo-
rithm on a manifold with boundary. This function takes one additional output argument B
of the same type as S. The set of simplices in the set B is the output set B from Section 4.3.5.

4.5.6 Class Cell_complex

The class Cell_complex serves to build a cell complex H from the maps S and B in the output of
the function manifold_tracing_algorithm called on an object of class Manifold_tracing (see
Section 4.5.5).

Constructor. The only available constructor is Cell_complex(m) where the argument m stands
for the intrinsic dimension of the manifold and the cell complex. The argument m is of a positive
integer type.

During the construction of the cell complex, the intrinsic dimension m of the manifold is
supposed to be known. We will denote by k the codimension of the manifold.

Cell complex. The cell complex is stored internally as a Hasse diagram in an object of the
class Cell_complex. The type of the cells is Hasse_cell<int, double, bool> provided by the
class Hasse_diagram in the upcoming module Hasse diagram of Gudhi C++library [GUD]. The
cells are stored in a vector hasse_cells_.
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Accessing the cells. The cells in the cell complex are accessed through several maps.

• Two vectors of maps interior_simplex_cell_maps_ and boundary_simplex_cell_maps_
serve to access the cells that are in one-to-one correspondence with simplices in the sets S
and B respectively (see Sections 4.2 and 4.3.5). The i-th entry in these two vectors is a map
from the simplices of dimension k + i in the set S or B (see Section 4.5.1) to the pointers
to the associated i-dimensional cells in the vector hasse_cells_. The type of the sim-
plices is Permutahedral_representation. The map interior_simplex_cell_maps_[i]
is accessed through the member function interior_simplex_cell_map(i). Similarly,
the map boundary_simplex_cell_maps_[i] is accessed through the member function
boundary_simplex_cell_map(i).

• The map cell_simplex_map_ serves as the reverse map from pointers to the cells in the
vector hasse_cells_ to simplices in the sets S and B. This map is accessed through the
member function cell_simplex_map().

• The map cell_point_map_ associates to the 0-dimensional cells in the vector hasse_cells_
the corresponding Cartesian coordinates of type Eigen::VectorXd provided by the Eigen
C++ library [GJ+10]. This map is accessed through the member function cell_point_map().

Member functions. The class Cell_complex supports four different varieties of the same
method construct_complex that constructs the cell complex H from the sets S and B.

• construct_complex(S, B, l) takes as input two maps S and B in the output of the
function manifold_tracing_algorithm called on an object of class Manifold_tracing
(see Section 4.5.5) and a positive integer argument l. It then constructs the l-skeleton of
the cell complex H using the algorithm from Section 4.3.5.

• construct_complex(S, B) is identical to the function construct_complex(S, B, l) but
it constructs the whole cell complex H instead of the l-skeleton.

• construct_complex(S, l) is identical to the function construct_complex(S, B, l) but
it constructs the l-skeleton of the cell complex H without boundary.

• construct_complex(S) is identical to the function construct_complex(S, l) but it con-
structs the whole cell complex H instead of the l-skeleton.

4.6 Discussion

A possible direction for further research on the manifold tracing algorithm is a more detailed
analysis of the guarantees on the constructed cell complexes H and H∗. In particular, two
properties are desirable to prove:

• The Hausdorff distance between the cell complexes H and H∗ and the manifold M is
bounded.

• Both cell complexes H and H∗ are homeomorphic to the manifoldM.
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