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Résumé

Les applications de calcul scientifique ont besoin de ressources de calcul de plus en
plus importantes et beaucoup de grands challenges scientifiques exigent des capacités
de calcul Exascale (10 puissance 18 calculs par seconde) pour être relevés. L’un des
principaux obstacles pour atteindre l’Exascale est la difficulté de programmer les ar-
chitectures parallèles actuelles. De nouvelles méthodes automatiques sont nécessaires
pour combler l’écart entre les développeurs d’applications scientifiques et les experts
en calcul haute performance. De plus, les applications scientifiques devenant de plus en
plus complexes et étant supposées s’exécuter à très large échelle, de nouveaux outils
sont nécessaires pour aider les développeurs lors de la phase de débogage des pro-
grammes. Cette thèse explore la combinaison de méthodes statiques et dynamiques
pour faciliter la programmation des applications de calcul haute performance. Deux
enjeux majeurs sont étudiés : faciliter la programmation des architectures hétérogènes
et prévenir les interblocages dans les programmes parallèles.

La première partie de cette thèse s’intéresse à l’adaptation automatique des tâches
de calcul aux architectures hétérogènes. Nous proposons une nouvelle méthode pour
faciliter la programmation des architectures hétérogènes composées de plusieurs unités
de calcul (CPUs et GPUs). Le programmeur exprime le parallélisme de son application
sous forme de tâches OpenCL sans se soucier des problèmatiques liées à l’architecture
sur laquelle son code sera exécuté. Ensuite notre méthode partitionne automatiquement
chaque tâche en sous-tâches et équilibre la charge de travail entre les unités de calcul
afin de tirer pleinement avantage de toutes les ressources de calcul de la machine.

La deuxième partie de cette thèse porte sur la détection automatique des interblocages
dans les programmes parallèles. Nous proposons une nouvelle analyse statique perme-
ttant de détecter précisement les chemins d’exécution menant à des interblocages dans
les programmes parallèles. Cette analyse statique est ensuite combinée à une instru-
mentation dynamique du code afin de prévenir les interblocages à l’exécution.

Les solutions proposées dans cette thèse ont été testée et validées sur des cas réels
d’applications parallèles.

Mots clés: calcul haute performance, architectures hétérogènes, débogage, analyse
statique, analyse dynamique, OpenCL, équilibrage de charge
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Abstract

Scientific applications have an increasing need of resources and many grand sci-
entific challenges require exascale compute capabilities to be addressed. One major
concern to achieve exascale is programmability. New automatic methods are required
to fill the gap between developers of scientific applications and HPC experts. In addi-
tion, as scientific applications are becoming more and more complex and are supposed
to run at extreme scale, new tools are required to assist developers in the debugging
phase of application development. This thesis explores the combination of static and
dynamic methods to improve programmability of HPC applications. Two major issues
are investigated: the complexity of programming heterogeneous architectures and the
prevention of deadlocks in parallel programs.

The first part of this thesis investigates the automatic task adaptation for heteroge-
neous architectures. More precisely, we propose a new method to improve programma-
bility of heterogeneous architectures. The programmer expresses the parallelism of his
application through a sequence of OpenCL tasks without considering issues related to
the underlying architecture where its code will be executed. Then our method auto-
matically partitions the tasks into sub-tasks executed by each device and handles load
balancing between the devices to take full advantage of the machine capabilities.

The second part of this thesis investigates the automatic detection and prevention
of deadlocks in parallel programs. We propose a novel static analysis to precisely
detect execution paths in parallel programs potentially leading to deadlocks. This static
analysis is then combined with a dynamic instrumentation of the code to automatically
prevent deadlocks at runtime.

The solutions proposed in this thesis have been tested and validated on real parallel
applications.

Key words: High Performance Computing, Heterogeneous Architectures, Debugging,
Static Analysis, Dynamic Analysis, OpenCL, Load Balancing
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Chapter 1

Introduction

The purpose of this chapter is to set the context of this thesis. Section 1.1 introduces the main
concepts of high performance computing. The section describes the evolution of parallel architec-
tures, explores the impact involved by exascale and ends with the challenges and issues targeted in
the scope of this thesis. Section 1.2 presents the different programming models and languages to
express parallelism. Section 1.3 introduces the key concept and techniques for parallel debugging
and presents state-of-the-art methods for bug detection in HPC applications. Finally, Section 1.4
introduces the contributions of this thesis.

1.1 Introduction to High Performance Computing
Scientific applications like meteorology, nuclear physics or computational chemistry have an in-
creasing need of resources to widen the domain of their simulations and increase the precision of
their results. For many scientific fields, progress is impossible without the use of high performance
computing [1]. To sustain this growing need, supercomputers have been developed. Nowadays,
massively parallel architectures are omnipresent in high performance computing.

1.1.1 Parallel Architectures Evolution

For many years, thanks to the increase of the clock speed and the Moore’s law which predicts that
the number of transistors in processors double every two years, programmers did not have to modify
their code to enhance the performances of their applications. However, due to heat dissipation and
energy consumption issues, this period has come to an end around 2003. Since then, the trend has
been towards the conception of microprocessors with multiple processing units known as cores.
This allows for a significant increase in computational performance with more work in return for
the programmer since the speedup on parallel architectures is limited by the sequential parts of the
application (cf Amdahl’s law).

Nowadays, there are two approaches. The first one, denoted as multi-core approach integrates
a few cores (from two to several dozen) into a single microprocessor. Current laptops and desktops
integrate this kind of processor. The second, many-core approach uses a large number of cores
(several hundred). An example of this approach corresponds to the Graphical Processing Units
(GPUs). The first attempts at using GPUs for non-graphics computation date back to 2005 and
used corner cases of the graphics APIs [2]. Since then, GPUs have become very popular in scien-
tific computing as accelerators thanks to a high memory bandwidth, a strong capacity to perform
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1.1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING

floating-point operations and a low cost. In 2012 Intel also proposed its own accelerator, the MIC
(Many Integrated Core) called Intel Xeon Phi.

Architectures composed of a multi-core processor and some many-core accelerators are called
heterogeneous architectures. These architectures are omnipresent in today’s supercomputers. Twice
a year, the most powerful supercomputers in the world are tested and ordered based on their Lin-
pack performance1 in floating-point operations per second (flops). In the Top500 list of November
2018 [3], six of the top ten supercomputers contains accelerators and in the Green500 list [4] which
order supercomputers based on their energy efficiency, all supercomputers from the top ten have
many-core accelerators. Supercomputers consist in a thousand of nodes interconnected and each
node usually contains multiple accelerators. For example, the top supercomputer in the Top500 list
of November 2018 has 4,608 nodes and each node owns two IBM POWER9 multi-core processors
and six NVIDIA Volta V100s GPUs.

Programming heterogeneous architectures is very hard as codes executed on accelerators (ker-
nel codes) are often intrinsically difficult to write because of the complexity of the accelerator
architecture. In addition, writing the code to manage the accelerators (host code executed by the
host multi-core) is very cumbersome. Host codes have to explicitly manage memory allocations on
each accelerator as well as transfers between host memory and accelerator memories. Moreover,
the load must be balanced between GPUs and CPUs in order to leverage the computing power of
heterogeneous architectures.

1.1.2 Towards Exascale

Over the last 30 years, the computing power of supercomputers has grown exponentially. Fig-
ure 1.1a shows the performance evolution of the first (rank 1) and last (rank 500) supercomputer
in the Top500 ranking over the years. In 1993, the best supercomputer in the world reached a peak
performance of 59.7 gigaflops (109 Flop/s) while today’s best supercomputer reaches a performance
of 143.5 petaflops (1015 Flop/s).

The petascale was reached for the first time in 2008 and since then, the race to exascale be-
gan. Nowadays, many significant scientific and engineering challenges in both simulation and data
analysis already exceed petaflops and are rapidly approaching exaflop-class computing needs.

As pointed out by the PRACE Scientific Case for HPC in Europe [1], solving many key science
and technology challenges (e.g. Climate science, Nuclear energy, Combustion science, Fusion en-
ergy, etc...) will require exascale compute capabilities. For example, in life sciences and medicine,
exaflop capabilities will allow the use of more accurate formalisms and enable molecular simula-
tion for high-throughput applications. Molecular simulation is a key tool for computer-aided drug
design and appropriate exascale resources could revolutionise this area [1]. In astrophysics, exas-
cale resources will allow simulation of the large-scale universe with sufficient particles to resolve
all dark matter halos that could host stars [1].

The projected performance evolution of supercomputers is presented in Figure 1.1b.As pointed
out on the figure, exascale systems (1018 Flop/s) are expected by 2020. However, many challenges
need to be addressed to achieve exascale.

1The Linpack Benchmark is a measure of a computer’s floating-point rate of execution
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Figure 1.1: Exponential growth of supercomputing power as recorded by the TOP500 list.

1.1.3 Challenges for Programmability

As emphasized by the International Exascale Software Project Roadmap (IESP) [5], one of the
major challenges to achieve exascale is programmability. Programmability is the cross-cutting
property that reflects the ease by which application programs may be constructed. It involves
several stages of application development: (1) program algorithm capture and representation; (2)
program correctness debugging; (3) program performance optimization.

Program algorithm capture and representation The rising complexity of parallel architectures
is a major concern for application developers and one of the main challenges to achieve exascale is
to improve the programmability of heterogeneous architectures in particular. Hence, new ways of
specifying computations are required. Sufficient parallelism must be exposed to maintain exascale
operation but with more abstraction of the underlying architecture. The way of specifying parallel
algorithm must be decoupled from the complexity of the architecture. For example, scientists must
be free from the details of managing data movement between multiple devices and the program
representation should be portable across different architectures.

Program correctness debugging An integral part of application development includes verifying
that code runs as expected. The large simulation codes today are more and more complex. They
incorporate multidiscipline, multi-physics, multiple time scale and multiple solution methods. Cer-
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tain codes have taken years to develop and can include millions of lines of code. With the scale
and complexity of the science problems enabled by exascale systems, searching manually for a
single anomaly among millions of running processes and millions of lines of code is not tenable.
Hence, new automatic techniques are required for making sure that the calculations are performed
correctly. Application teams specifically request lightweight tools to diagnose memory, threading,
and message passing errors that are easy to use and scale with huge code size and high level of
parallelism [5].

Program performance optimization Programmability and performance are tightly coupled. For
HPC, a major factor affecting programmability has been performance optimization. The gain in
performance comes with an increase of application development complexity. Optimizing for a
parallel architecture requires now to be an expert in HPC. This relates to the exposure of application
parallelism, locality management and load balancing, and memory hierarchy management. These
components are expected to be even more important for exascale systems. The complexity at
that extreme scale will require that the responsibility for all but parallelism be removed from the
programmer. Hence, new tools that can be used by non-expert users are required to automatically
handle performance optimization and load balancing issues.

To summarize, new methods are required to assist developers in all stages of application devel-
opment in order to improve programmability. Application developers should be able to express
the parallelism of their application in a portable manner across different devices and architectures
(e.g. GPUs, CPUs). The program representation should abstract the details of the underlying ar-
chitecture and the details of managing data movements between different devices. New methods
are required to automatically adapt codes to different architectures and provide some performance
portability without degrading the program representation. Moreover, load balancing between dif-
ferent devices must be handled automatically. Finally, new automatic techniques are required to
assist application developers during the correctness debugging stage.

The two next sections present the different programming models to express parallelism and
introduce the key concepts and state-of-the-art techniques for debugging HPC applications.

1.2 Expressing Parallelism
This section presents the main programming models and languages to express parallelism.

Parallel architectures fall into two broad categories: shared memory and distributed memory.
In shared memory architectures a single memory address space is accessible to all processors.
This architecture corresponds to common multi-core processors where all cores share the same
main memory. In distributed memory architectures each processor owns its own memory. This
architecture corresponds to distributed environment such as cluster of computers.

These two types of architectures have given rise to two different approaches to programming
parallel systems: shared memory approaches and distributed memory approaches. In shared mem-
ory approaches, data are shared among multiple processes executed in parallel and it is the pro-
grammer’s responsibility to ensure the coherency of concurrent accesses in global memory. On the
other hand, in distributed memory approaches, each process owns its own data. Data are moved
from the address space of a process to another process address space through cooperative operations
on each process. The programmer has to specify what data to send and where.
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The two predominant programming models for these approaches are OpenMP for shared mem-
ory and MPI for distributed memory. In addition to these programming models, approaches that
enable a tradeoff between distributed and shared memory approaches by simulating a global mem-
ory space in a distributed environment has led to PGAS programming models. Furthermore, the
emergence of heterogeneous architectures has led to parallel programming models devoted for ac-
celerators (OpenACC, CUDA, OpenCL). All these programming models are presented in the next
sections.

1.2.1 OpenMP
OpenMP [6] is a shared memory programming model for C, C++ and Fortran. It is based on the
fork-join model of parallel execution. An OpenMP program begins as a single thread of execution
which creates a team of threads when it encounters a parallel construct (fork). At the end of
the parallel region, all threads are asleep except the initial thread (join). Different work-sharing
constructs can be used to specify how to assign independent work to one or all threads in the team,
for example:

• omp for is used to split up loop iterations among the threads (loop parallelization).

• sections to assign consecutive but independent code blocks to different threads.

• single to specify a code block that is executed by only one thread.

In OpenMP, most variables are visible to all threads by default, opening the possibility of data
races on a shared variable. However, the programmer can apply data sharing clauses on variables
to specify whether they must be shared by all thread or whether each thread must have its own copy
of the variable.

Inside a parallel region, synchronization constructs (e.g., omp barrier) coordinate threads
in a team and data accesses. The specification requires all threads of a team executing a parallel
region to execute a barrier or none at all. An implicit barrier is called at the end of parallel,
sections, single, and omp for constructs unless a nowait clause is specified. Thus, the
OpenMP specification forces all threads of a team to encounter the same sequence of work-sharing
constructs.

1.2.2 MPI
The Message Passing Interface [7] (MPI) is a standardized interface that allows applications to
use message-passing communication. Basically, one process is executed on each node of the clus-
ter and a unique identifier (called rank) is given to each of them. Each MPI process executes a
parallel instance of the same program but the control flow of each process diverges according to
its rank. Each process owns its private address space and exchanges data across distributed mem-
ory systems via messages. MPI exposes multiple ways to exchange data and synchronize between
processes, including point-to-point (send / receive) and collective communications. While point-
to-point communications involve only two processes, collective communications involve a group
(called communicator) of processes. All communications can be blocking or non-blocking.

There are three main types of collective operations: Synchronization (barrier), Data Movement
(broadcast, scatter/gather, all to all) and Collective Computation (reductions). Figure 1.2 shows
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Figure 1.2: MPI Collective Operations.

the four basic collectives operations. MPI_Bcast broadcast a message from the process with rank
root to all processes of the group, itself included. With the MPI_Scatter function, the root pro-
cess scatters its send buffer to all other processes in the group. Conversely, with the MPI_Gather
function, each process, root process included, sends the contents of its send buffer to the root pro-
cess. The MPI_Reduce function performs a global reduction operation (e.g. sum, min, max,
etc.). One member of the group collects data from the other members and effectuates the reduction
operation on that data.

The MPI specification requires that all processes must call blocking and non-blocking collective
operations in the exact same order. If all processes in a communicator do not participate in the
collective, unexpected behavior, including program failure, can occur.

1.2.3 Partitioned Global Address Space
Partitioned Global Address Space [8] is a distributed shared memory model supporting the notion
of shared memory in distributed architectures. It allows a global view of data by an abstracted
shared address space and hides the distinction between shared and distributed memory. Each thread
owns a portion of a virtually shared memory in addition to its private memory and threads can
access the following memories sorted by affinity: local private memory, local shared memory and
remote shared memories.

Many languages implement this model. On the one hand, some of them extend existing lan-
guages such as Unified Parallel C (UPC) [9] which is based on C, Co-Array Fortran (CAF) [10]
which is based on Fortran and Titanium which is based on Java [11]. On the other hand, some of
them are new languages dedicated to the model such as Chapel [12].

1.2.4 Programming Many-Core
Existing frameworks for multi-core architectures cannot be used directly on many-core architec-
tures such as GPUs. The complex memory hierarchy dismisses most frameworks for shared-
memory architectures. In addition, constraints on IOs (memory allocation, etc.) and memory sizes
make models such as MPI unsuitable. Most known and used models devoted to work on many-core
architectures are presented below.

OpenACC

OpenACC [13] is a specification defining a set of compiler annotations (pragmas) for C and Fortran
programs similar to those of OpenMP. It enables offloading of compute-intensive loops and code
regions from a host CPU to an accelerator using simple compiler directives.
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OpenCL

OpenCL [14] is a specification that has been endorsed by a large panel of vendors. It provides a
common abstraction to program various architectures from different vendors. The OpenCL plat-
form consists in a host processor connected to one or more compute devices (e.g. CPUs, GPUs).
A compute device consists in one or more compute units (CUs) which in turns comprise multiple
processing elements (PEs). A PE is a virtual scalar processor.

The OpenCL programming model uses a single-instruction multiple-thread (SIMT) model that
enables implementation of general-purpose programs on heterogeneous CPU/GPU systems. An
OpenCL program consists of a host program and compute kernels. The host program executes on
the host processor and submits commands to perform computations on the devices or to manipulate
buffers.

When the host program submits a command to execute a kernel, it defines the parallel iteration
space of the kernel as an N-dimensional index space, where 1 ≤ N ≤ 3. Each point in the index
space is specified by an N-tuple of integers with each dimension starting at 0. Each point is asso-
ciated with an execution instance of the kernel, which is called work-item (or thread). The N-tuple
associated with each thread defines its global ID. These threads are grouped into work-groups.
Each work-group has a unique ID that is also an N-tuple and each thread inside a work-group has
a unique local ID. Hence, each thread has a local ID, a work-group ID and a global ID for each
dimension of the NDRange.

The programming language that is used to write compute kernels is called OpenCL C and is
based on C99 but adapted to fit the model in OpenCL. In the OpenCL C language, thread identifiers
are obtained with the three functions: get_global_id, get_group_id and get_local_id.

When executing a kernel, work-groups are mapped to CUs, and threads are assigned to PEs.
Each thread executes the same function, but with different thread identifiers. Threads within a
workgroup execute concurrently on the PEs of a single CU and can synchronize and share memory.

OpenCL allows developers to write computation kernels that can run on various device archi-
tectures thanks to built-in just-in-time compilation. At runtime the kernels source code is loaded
using the function clCreateProgramWithSources from the OpenCL API. Then kernels can
be compiled for one or more devices using the function clBuildProgram. After the program
has been compiled, a typical OpenCL application consists in the following steps:

1. First, buffers are allocated on the device, using the clCreateBuffer function which takes
as parameter the size of the buffer.

2. Then input data are transferred from the host memory to the device memory using the func-
tion clEnqueueWriteBuffer which takes as parameter a pointer to the host memory
region to transfer, the number of bytes to transfer and the buffer into which the data has to be
transferred.

3. After the input data have been transferred to the device memory, the sequence of kernels can
be executed on the device. Each kernel is launched using the clEnqueueNDRangeKernel
function which takes as parameter the kernel to execute and the NDRange defining its parallel
iteration space.

4. Finally, the output data are transferred from the device memory back to the host using the
clEnqueueReadBuffer function.
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CUDA

CUDA [15] is the programming model developed by NVIDIA on which OpenCL was based.
CUDA is similar to OpenCL but is limited to NVIDIA GPUs.

1.2.5 Summary

This section summarizes parallel programming models used in HPC. One major challenge for pro-
grammability is the complexity of programming heterogeneous multi-device architectures.

A solution to program these architectures is to combine different programming models (e.g.
OpenMP or MPI for CPUs and CUDA for GPUs). This approach is known as hybrid (parallel)
programming. However, this forces the developer to write multiple versions (e.g OpenMP and
CUDA) for each task/kernel of his program.

To help developer programming heterogeneous architectures, OpenCL provides a common ab-
straction for different architectures and directly supports multi-GPU and GPU+CPU programming.
However, the developer still has the responsibility to adapt the number of tasks to the number of
devices, handle the data transfers between the devices and manually balance the load between de-
vices.

Improving programmability of heterogeneous architectures is one of the challenges targeted in
the scope of this thesis.

1.3 Debugging HPC Applications

Correctness verification and debugging are important concerns for programmability. Bugs can
cost a lot of money. A striking example is the case of the Ariane 5 disaster [16] where a failed
numerical conversion resulting in an integer overflow caused the self-destruction mechanism to
trigger only 40 seconds after the rocket ignited its engines. The cost of the disastrous launch was
estimated to approximately 370 million dollars. Correctness debugging is an even more important
concern for HPC applications where it is inconceivable to spend hours of processing time on a
supercomputer to compute erroneous results. Over the last decades technologies for verification and
debugging have made significant strides is the context of general software development. However,
new techniques for verification and debugging of HPC applications are required to achieve exascale
as the complexity of algorithms, applications, and architectures are moving beyond the ability of
developers. New advances in this domain can lead to substantial improvements in the productivity
and sustainability of HPC software development.

This section introduces the key concepts of application correctness debugging in the context of
high performance computing.

1.3.1 Definitions

It is important to note that the terminology concerning software problems is not entirely consistent
in the literature. The terms “bug”, “error”, “mistake”, “fault”, and “failure” may be used inter-
changeably and can lead to confusion. More rigorous definitions of these terms from the IEEE
Standards [17] are given as follows:
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Definition 1. A mistake is defined as a human action that produces an incorrect result. For example,
an incorrect code written by a programmer.

Definition 2. A fault (or defect or bug) is an incorrect step, process or data definition in a computer
program.

Definition 3. An error is defined as a difference between a computed, observed, or measured value
or condition and the true, specified, or theoretically correct value or condition.

Definition 4. The term failure is used for an observable incorrect program behavior.

To summarize, a mistake may cause a defect (or bug), and a bug may cause a failure and errors.
This leads us to the definition of debugging:

Definition 5. Debugging is defined as the detection, location and correction of faults in a program.

1.3.2 Parallel Debugging
Due to concurrency, synchronizations and data exchanges between processes, parallel programs
introduce the possibility of new bugs that may not occur in sequential programs (e.g. deadlocks).
This section introduces the different types of software bugs that may arise in parallel applications
and presents the main challenges for high performance computing.

Parallel bugs classification

The different types of bugs that may arise in parallel applications can be classified into seven cate-
gories [18]: Data Race, Deadlock, Livelock Starvation, Suspension, Order Violation, and Atomicity
Violation.

A Data race occurs when at least two threads or processes access the same data concurrently and
at least one write the data. Here “concurrently” means that there wasn’t any mechanism that forced
one operation to happen before or after the other. This can lead to memory inconsistency if the
result of the write operation is not visible to a read operation by another thread (the read operation
happens too early). It can also result in a write-write race if a second write operation happens with-
out any read operation in-between.

A Deadlock is a program state where each member of a group of threads or processes is waiting
for a resource held by another member. The program stays blocked in an infinite waiting state
preventing the program to terminate.

A Livelock is similar to a deadlock, except that the states of the processes involved constantly
changed with regard to one another, none progressing.

Starvation happens when a process is perpetually denied the resources to process its work because
other processes are always given preference. It can be caused by scheduling errors or resource leaks
for example.
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A Suspension-based locking occurs when a thread or process waits for an unacceptably long time
to acquire a lock for accessing a shared resource.

Order Violation occurs when the desired order between two memory accesses is flipped during
execution.

Atomicity Violation happens when the execution on one portion of the code by one process is
overlapping with the execution of one portion of the code by another process in such a way that the
result is not consistent.

High Performance Computing Challenges

HPC applications have specific characteristics that make traditional testing and debugging tech-
niques much more difficult. We enumerate here three of the most important points.

Non-determinism: Due to high concurrency many HPC programs are non-deterministic. The
order of events occurring concurrently on different processors may not always be the same. For
example, even with the same input a parallel program does not always have the same behavior
from one run to another.

Large Scale: HPC applications are expected to run at massive scale, with very large input size,
number of processes and execution time. Some bugs are not observable at smaller scale. This
makes HPC programs much more difficult to debug. Testing an application at large scale can take
tremendous amount of time and be very expensive. The amount of debugging data to process and
the required storage can be huge. Parallel debugging tools are therefore required to scale to that
massive scale.

Performance: Expressing algorithms in a natural way and achieving performance are usually
two opposite goals. Often, optimization of codes makes them very complex to understand and to
debug. Moreover, optimizing a code by hand, which is the case for many programmers, is a very
error prone task.

These new challenges advocate for automatic tools and techniques to detect and prevent bugs in
HPC applications.

1.3.3 Bug Detection Techniques

Many tools and techniques exist to detect and prevent bugs in HPC applications. These frame-
works can be categorized in six groups [19]: static analysis, dynamic analysis, formal methods,
anomaly detection, non-determinism control, and parallel debugging. Note that these methods
are not mutually exclusive. For example, it is possible to combine the information gathered by a
static analysis at compile-time with information obtained at runtime by a dynamic analysis. In the
following we give a definition of each of these methods.
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Conventional Parallel Debugging

Conventional parallel debugging is the most common used tactic of debugging. Parallel debuggers
allow to control and examine the state of threads and processes in a parallel program. Programmers
generally start to debug their program from a faulty state and re-launch their program using a
debugger in order to explore its state. Among the existing parallel debuggers two of the most
popular are DDT [20] and LGDB [21].

Formal Methods

Formal methods allow specification and verification of software. Once a formal specification has
been developed, the specification may be used as the basis for proving properties of the specifi-
cation. For example, the SPIN model checker [22] can be used for verifying the correctness of
parallel programming models in a rigorous and mostly automated fashion.

Control of Non-determinism

Many bugs occurring in parallel applications are difficult to reproduce because of non-determinism.
To tackle this issue, some tools have been proposed to control the determinism of a parallel appli-
cation and reproduce bugs more easily. For example, SReplay [23] is a tool for deterministic record
and replay for one-sided communications. It allows the user to specify and record the execution
of a set of threads of interest (sub-group), and then deterministically replays the execution of the
sub-group on a local machine without starting the remaining threads.

Anomaly detection

Anomaly detection is a technique consisting in the identification of behaviors significantly different
from the normal behavior of a program in order to isolate potential bugs. For example, the DM-
Tracker tool [24] detects abnormal behaviors in data movements in parallel programs in order to
detect potential bugs such as data races and memory corruption.

Static Analysis

Static analysis examines the code without executing the program. The analysis is typically per-
formed at compile-time and warnings are issued for possible errors in a program. For example, the
Clang compiler [25] has more than 750 diagnostic flags. Static analyses performed by compilers
usually only check the presence of simple errors (e.g. division by zero, null pointer dereference,
...) while more advanced static analyses can reason about the semantic of the program (e.g. find
control-flow divergences in an MPI program that may lead to the non-execution of a barrier by all
processes). One of the advantages of static analysis is that the overhead of the analysis does not
depend on the number of processes as it does not require to execute the program. Moreover, a
property that is proven with a static analysis remains true regardless of the input of the program.
Nonetheless, the type of properties that can be proven with a static analysis is limited as much in-
formation necessary to reason about the correctness of the program is only known at runtime (e.g.
input data, execution flow, values of variables). Furthermore, a static analysis may report false
positive warnings as it does not take into account execution parameters (e.g. number of threads or
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processes) to detect potential bugs in a program. Hence, a warning emitted statically may not be
correlated with an actual error at runtime.

Dynamic Analysis

Dynamic analysis checks correctness of the program for a specific input (run). There exists two
broad categories of dynamic analyses: online and offline. For online dynamic analyses, checks are
performed during program execution while for offline dynamic analyses, checks are performed by
analysing traces gathered during application run. With a dynamic analysis, it is much easier to rea-
son about the correctness of a program as runtime information is accessible (e.g. number of barriers
encountered by each process of an MPI program). However, as dynamic analysis is specific to a
particular run of the application a property that is proven for a given run does not necessarily re-
main true when the program is executed with a different input set or different execution parameters.
Furthermore, a strong limitation of dynamic analysis is that the runtime overhead must remains low
and scale with the number of processes.

1.3.4 Summary

This section introduced the key concept of parallel debugging, the challenges due to high perfor-
mance computing and the main bug detection techniques. In order to achieve exascale, application
teams need new tools to help them to debug their codes. A major type of error arising in parallel
application are deadlocks and one of the challenges investigated in this thesis is the combination of
static and dynamic methods to detect and prevent the apparition of deadlocks in parallel programs.

1.4 Outline and Contributions

This chapter helps to understand the context of this thesis. Scientific applications have an increas-
ing need of resources and many grand scientific challenges require exascale compute capabilities
to be addressed. One major concern to achieve exascale is programmability. New automatic meth-
ods are required to fill the gap between developers of scientific applications and HPC experts. In
addition, as scientific applications are becoming more and more complex and are supposed to run
at extreme scale, new tools are required to assist developers in the debugging phase of applica-
tion development. This thesis explores the combination of static and dynamic methods to improve
programmability of HPC applications. Two major issues are investigated: the complexity of pro-
gramming heterogeneous architectures and the prevention of deadlocks in parallel programs.

The first part of this thesis investigates the automatic task adaptation for heterogeneous archi-
tectures. More precisely, we propose a new method to improve programmability of heterogeneous
architectures. The programmer expresses the parallelism of his application through a sequence of
tasks without considering issues related to the underlying architecture where its code will be exe-
cuted. Then our method automatically partitions the tasks into sub-tasks executed by each device
to take full advantage of the machine capabilities. Our method can adapt to any number of devices
and handles load balancing issues stemming from hardware heterogeneity, load imbalance within
tasks or between repeated execution of the sequence of tasks. The method is completely transparent
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to the user and does not require prior profiling or sampling of the application. The contributions
are:

1. The first contribution is the automatic partitioning of irregular tasks to heterogeneous multi-
device architectures. (Chapter 3);

2. The second contribution is the automatic load balancing of iterated sequences of irregular
kernels. (Chapter 4);

The second part of this thesis investigates the automatic detection and prevention of dead-
locks related to collective operations in parallel programs. Most parallel languages provide col-
lective operations allowing different threads or processes to synchronize or communicate (e.g.
MPI_Broadcast in MPI, OMP_Barrier in OpenMP, UPC_Barrier in UPC, barrier in
OpenCL). A misuse of these collectives can lead to either memory inconsistency or deadlocks. The
PARallel COntrol flow Anomaly Checker (PARCOACH) framework combines static code analysis
with dynamic instrumentation in order to detect collective misuses in parallel programs and pre-
vent the apparition of deadlocks. In this part of this thesis, we first present the limitations of the
PARCOACH debugging method. As PARCOACH analyses each function of a program separately
(intra-procedural analysis), we show that in certain situations the feedback reported is inaccurate.
We then propose an extension of PARCOACH to overcome these limitations. Finally, we propose
to combine the PARCOACH debugging method with a new data-flow analysis in order to compute
more precisely concurrent execution paths in parallel programs and reduce the number of false
positives returned by PARCOACH. The contributions are:

3. The third contribution of this thesis is the extension of PARCOACH for a fully inter-procedural
collective verification. (Chapter 5);

4. The last contribution is a new static analysis that detects multi-valued expression in parallel
programs (i.e. expressions whose value depends on the rank of processes). We use this anal-
ysis to filter out false positives in the PARCOACH tool. We show that our analysis leads to
significant improvement over existing debugging methods. (Chapter 6).

These contributions have been published and presented in the International European Confer-
ence on Parallel and Distributed Computing (Euro-Par) 2016 [26], the International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD) 2018 [27], ,the Interna-
tional Workshop on Software Correctness for HPC Applications 2018 [28] and in the International
European Conference on Parallel and Distributed Computing (Euro-Par) 2019 [29].
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Graphic Processor Units (GPU) are ubiquitous and nowadays most computing nodes of a paral-
lel machine consist in GPUs and multicore CPUs. The complexity of these architectures and their
programming model adds an additional burden on application developers and one of the major
challenges for the race to exascale is to ease the programmability of these architectures.

In terms of programming language, OpenCL has emerged as the programming language for
heterogeneous computing, able to define code for GPUs and CPUs alike. However, this introduces
new challenges: The application code has to be adapted to the number of devices, the codes of the
kernels have to be optimized for each different device, and the workload has to be balanced equally
between these devices. Load balancing is difficult to achieve in general, because the architecture is
heterogeneous, the parallel application may not have a constant load during its execution and both
computation and communication times have to be taken into account.

In recent years, many works have focused on how to improve portability and maximize perfor-
mance of applications on heterogeneous multicore and multi-GPU platforms for OpenCL, OpenMP
or CUDA (see [30–35] to name a few). These runtimes implement different scheduling strategies,
but there is no task partitioning involved. It is assumed the developer has created a task graph with
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enough parallelism to feed the different devices and ensure a possible load balancing among the
different units. Some works propose their own API [30, 36], a domain specific language [37], or
a set of compiler directives [OpenACC, OpenMP4.0] to advise the compiler and runtime to of-
fload a block of code to an accelerator. Other works automatically generate OpenCL code from a
data-parallel shared memory program written in OpenMP [38], or generate a CUDA code from an
OpenMP program extended with a new set of compiler directives and environment variables [39].

More recent works propose to adapt parallelism to the number of devices, by partitioning the
kernels. Few of them tried to leverage irregular applications (for instance [40–44]). This is par-
ticularly challenging for real applications, where multiple kernels are executed, with possible load
variations within one kernel and heterogeneous devices.

In this part of this thesis, we focus on applications with an iterated sequence of kernels. This
occurs in iterative computations, for instance until a fixed point is reached or for a simulation, where
each iteration corresponds to a time step. This chapter presents the context and parallelization
model we propose to leverage the compute capabilities of heterogeneous multi-device architectures,
the main challenges we need to address and the principle of our method to automatically adapt
single-device applications to heterogeneous multi-device architectures.

2.1 Context and Parallelization Model
This section presents the parallelism model studied in this thesis, the type of targeted applications
as well as the parallelization model proposed to take advantage of the computing power of multiple
heterogeneous devices.

2.1.1 Context
The parallelism we consider is expressed as a parallel loop over a range R. The pseudocode of
a parallel computation kernel taking as input an array A and as output an array B is shown in
Figure 2.1. Each thread t ∈ R executes the same function in parallel but with a different parameter
corresponding to its index in the range. Each thread t computes a partial region of the output buffer
B and requires a partial region of the input buffer A. The partial region of A required by a thread t
is denoted as f (t) and the partial region of B computed by t is denoted as g(t).

1 kernel(R,A)→ B
2 parallel for t ∈ R do
3 B[g(t)] = h(t,A[ f (t)])
4 end
5 end

Figure 2.1: Pseudocode of a parallel computation kernel.

The applications targeted in this part of the thesis consist in iterated sequences of kernels. The
pseudocode of an application with an iterated sequence of m kernels is shown in Figure 2.2. For
each iteration of the application, the same sequence of kernels is executed. Each kernel k from the
sequence is executed over a parallel iteration space defined by its range Rk and takes as input an
array Ak and as output an array Bk.
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The statement line 3 is a simplified notation of the pseudocode shown in Figure 2.1. For each
kernel k, each thread t in the range Rk is executed in parallel, the region of the input array Ak read
by kernel k is denoted as fk(Rk) and the region of the output array Bk written by kernel k is denoted
as gk(Rk).

There can be any data dependency between kernels. For example for two kernels k and k′, the
output buffer Bk of kernel k can denote the same buffer as the input buffer Ak′ of kernel k′.

1 for i = 0; i < iter; i = i + 1 do /* for each iteration */
2 for k = 0; k < m; k = k + 1 do /* for each kernel */
3 Bk[gk(Rk)] = kernelk(Rk,Ak[ fk(Rk)]) /* execution of kernel k */
4 end
5 end

Figure 2.2: Pseudocode of an application with an iterated sequence of m kernels.

The workload of the application can be irregular and dynamic. An irregular workload means
that for a kernel k at iteration i and two different threads t1 , t2 ∈ Rk, the execution time of t1 can
be different from the execution time of t2. A dynamic workload means that given a kernel k and a
thread t ∈ Rk, the execution time of t at iteration i is not necessarily the same as the execution time
of t at iteration i + 1.

This parallelism model corresponds to many programming languages and parallel libraries.
Figure 2.3 shows the code of an application with an iterated sequence of m kernels where one of
them is a stencil for two languages: OpenCL and CUDA; and for one library: the Intel Thread
Building Blocks (TBB) library.

The code of the application for OpenCL and CUDA is shown in Figures 2.3a and 2.3b. Note
that since OpenCL and CUDA may target devices that cannot directly access the physical memory
of the CPU (e.g. discrete GPUs), the first step consists in transferring the input data from the host to
the device (clEnqueueWriteBuffer in OpenCL and cudaMemcpy in CUDA). Then for each
iteration, each kernel from the sequence is executed on a device. The parallel iteration space of each
kernel corresponds to an index space in 1, 2 or 3 dimensions, called NDRange in OpenCL and Grid
in CUDA. Each dimension is split into work-groups (thread blocks in the CUDA terminology).
In OpenCL, the NDRange is defined by its global work size (global[k]) and its local work
size (local[k]). The global work size corresponds to the number of threads in each dimension
and the local work size corresponds to the work-group size in each dimension. In CUDA, the
Grid is defined by its number of thread blocks in each dimension (nBlocks[k]) and by the
size of a thread block in each dimension (blockSize[k]). The example of a stencil kernel
is shown for both languages. Each thread executes the same function but with different indices
corresponding to its position in the parallel iteration space. The indices of a thread are given by
get_global_id(0), get_global_id(1) and get_global_id(2) in OpenCL and by
threadIdx.x, threadIdx.y, and threadIdx.z in CUDA. Note that there is no need for
data transfers between kernels since they are all executed on the same device. However, after the
last iteration, the output data are transferred back to the host.

The code of the same application using the Intel TBB library is shown in Figure 2.3c. The
iteration space of each kernel is defined line 15 and goes from 0 to range[k]. The template function
tbb::parallel_for breaks this iteration space into chunks, and runs each chunk on a separate
thread. The code of a 1-dimensional stencil kernel is shown line 4 and is defined by the C++

27



2.1. CONTEXT AND PARALLELIZATION MODEL

1 / / host . c
2 clEnqueueWri teBuf fer ( . . . ) ;
3
4 f o r ( i n t i =0: i < i t e r ; i ++) {
5 f o r ( i n t k =0; k<nbKernels ; k++) {
6 clEnqueueNDRangeKernel ( ke rne l [ k ] ,
7 g loba l [ k ] , l o c a l [ k ] ) ;
8 }
9 }

10
11 clEnqueueReadBuffer ( . . . ) ;
12
13 / / device . c l
14 __kernel vo id
15 s t e n c i l ( __g lobal f l o a t ∗A,
16 __global f l o a t ∗B,
17 i n t n ) {
18 i n t i = ge t_g loba l_ id ( 0 ) ;
19 i f ( i < 1 | | i > n−1)
20 r e t u r n ;
21 B[ i ] = 0.3 ∗ (A [ i −1] + A[ i ] + A [ i +1 ] ) ;
22 }

(a) OpenCL.

1 / / host . c
2 cudaMemcpy ( . . . , cudaMemcpyHostToDevice ) ;
3
4 f o r ( i n t i =0: i < i t e r ; i ++) {
5 f o r ( i n t k =0; k<nbKernels ; k++) {
6 kerne l [ k ] <<< nBlocks [ k ] ,
7 blockSize [ k ] >>> ( . . . ) ;
8 }
9 }

10
11 cudaMemcpy ( . . . , cudaMemcpyDeviceToHost ) ;
12
13 / / device . cu
14 __global__ vo id
15 s t e n c i l ( f l o a t ∗A, f l o a t ∗B, i n t n )
16 {
17 i n t i = th read Idx . x ;
18 i f ( i < 1 | | i > n−1)
19 r e t u r n ;
20 B[ i ] = 0.3 ∗ (A [ i −1] + A[ i ] + A [ i +1 ] ) ;
21 }

(b) CUDA.

1 / / s t e n c i l . cpp
2 c lass S t e n c i l {
3 . . .
4 vo id opera tor ( ) ( const blocked_range <s ize_ t >& r ) const {
5 f o r ( s i z e _ t i = r . begin ( ) ; i != r . end ( ) ; ++ i ) {
6 i f ( i >= 1 && i <= n−1)
7 B[ i ] = 0.3 ∗ (A [ i −1] + A[ i ] + A [ i +1 ] ) ;
8 }
9 . . .

10 } ;
11
12 / / main . cpp
13 f o r ( i n t i =0; i < i t e r ; i ++) {
14 f o r ( i n t k =0; k<nbKernels ; k++) {
15 p a r a l l e l _ f o r ( blocked_range <s ize_ t >(0 , range [ k ] ) , ke rne l [ k ] ( . . . ) ) ;
16 }
17 }

(c) Intel TBB.

Figure 2.3: Single device iterative application with m kernels written in different lan-
guages.

operator operator(). Note that since the computation kernels are executed on the CPU, no data
transfer is required.

Transforming by hand a single-device application into a multi-device application that leverage
the computational power of multiple devices is very complex and error prone. The number of
kernels need to be adapted to the number of devices and the burden of managing the data transfers
and balancing the load between the devices is left to the programmer. In addition, each time the
code is executed on a new machine, it must be adapted again. The challenge we want to address
is: Given a single-device iterative application with m kernels and n heterogeneous devices (GPUs,
CPUs), how to automatically adapt the application in order to minimize the total execution time.
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2.1.2 Parallelization Model
Let us consider a real multi-kernel iterative application. SOTL is an N-Body simulation consist-
ing in an iterated sequence of six kernels where each iteration corresponds to a time step. Fig-
ure 2.4a presents the different kernels of SOTL with their names. The purpose of each kernel will
be presented in Section 3.2. The kernels are repeatedly executed in a loop and edges show the
dependences among these kernels, with their dependence distance. 1 means that the target kernel
depends on the result computed by the source kernel one iteration before. We can see that there is
not enough parallelism to schedule the kernels onto multiple devices.

The parallelization model we propose is to distribute the parallel iteration space of each kernel
onto the devices. The parallelization of SOTL onto n devices is shown in Figure 2.4b. Each kernel
is split into several sub-kernels, one per device. We define a sub-kernel of a kernel k as a kernel
only executing a slice of the original range of kernel k. The sub-kernel of a kernel k executed on
device d is denoted ad kd

k in Figure 2.4b. Splitting each kernel from the sequence into several
sub-kernels may imply data dependencies between sub-kernels executed on different devices. Such
dependencies are shown with dashed edges on the figure. When such dependencies occur, data
transfers may be required if the devices do not share the same physical memory.

k1

reset

k2

count

k3

scan

k4

copy

k5

sort

k6

force

1

1

(a) Dependence graph between kernels.

k11

kn1

k12

kn2

k13

kn3

k14

kn4

k15

kn5

k16

kn6

1

1

1

1

1

1

1

1

(b) Parallelization.

Figure 2.4: Parallelization of the SOTL application.

The pseudocode on Figure 2.5b shows in more details how an application with m kernels may
be adapted to leverage the computational power of n devices. First, a partitioning of each kernel
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has to be computed, this is the role of the statement line 3. The function split(Rk) splits the iteration
space of a kernel k defined by its range Rk into several sub-ranges Rd

k such that
⋃

1≤d≤n R
d
k = Rk

when n is the number of devices. Then the input and output arrays must be split, this the role of
the function dsplit in the statements lines 4 and 5. When the different devices do not share the
same physical memory (e.g. discrete GPUs), each device will need its own input buffer to read the
partial region of the input array required by its sub-kernel and its own output buffer to write the
partial region of the output array it computes. The way these arrays will be split may depend on
the sub-range of the kernel executed onto each device. For that reason, the function dsplit takes
as parameter the sub-ranges R1

k , . . . ,R
n
k of each device. After the data have been split, each device

will execute in parallel a sub-kernel, that is the same kernel but only for threads belonging to its
sub-range. This is the role of the statements line 6 and 7. The region of the input array read by
the sub-kernel of kernel k executed on device d is denoted as fk(Rd

k ) and the written region of the
output array is denoted as gk(Rd

k ). Finally, the partial results computed onto each device have to be
merged, this is the role the function dmerge in the statement line 9.

1 for i = 0; i < iter; i = i + 1 do /* for each iteration */
2 for k = 0; k < m; k = k + 1 do /* for each kernel */
3 Bk[gk(Rk)] = kernelk(Rk,Ak[ fk(Rk)]) /* execution of kernel k */
4 end
5 end

(a) Single-device iterative application with m kernels.

1 for i = 0; i < iter; i = i + 1 do /* for each iteration */
2 for k = 0; k < m; k = k + 1 do /* for each kernel */
3 R1

k . . .R
n
k ← split(Rk)

4 A1
k . . .A

n
k ← dsplit(Ak,R

1
k , . . . ,R

n
k)

5 B1
k . . .B

n
k ← dsplit(Bk,R

1
k , . . . ,R

n
k)

6 parallel for d = 1; d ≤ n; d = d + 1 do /* for all devices */
7 Bd

k[gk(Rd
k )] = kernelk(Rd

k ,A
d
k[ fk(Rd

k )])
8 end
9 Bk ← dmerge(B1

k . . .B
n
k)

10 end
11 end

(b) Parallelization onto n devices.

Figure 2.5: Transformation of a single-device iterative application into a multi-device ap-
plication.

Now that we have introduced the parallelization model to leverage the compute capabilities of
multiple devices, the problem is how to implement the functions split, dsplit and dmerge. In other
words, how to split the computation of each kernel in order to minimize the total execution time of
the application and how to merge the partial results computed by different devices.
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2.1.3 Partitioning Strategies
Several strategies are possible to split the data and merge the partial output from different devices
(dsplit and dmerge functions). In order to split input arrays, an easy solution is to broadcast the
whole array to every device. However, this solution implies unnecessary data transfers. Conversely,
a precise knowledge of the data required by each thread allows to only transfer the required data
to each device and results in shorter communication time. Figures 2.6a and 2.6b illustrate these
two strategies. The region of the input array required onto each device is highlighted in red. With a
precise knowledge of the required data, only 4 elements are transferred from the host to each device
instead of 12 when the whole array is broadcasted.

host

device 1

device 2

device 3

4

4

4

(a) Memory Region Analysis.

host

device 1

device 2

device 3

12

12

12

(b) Broadcast.

Figure 2.6: Partitioning Input Arrays. The real region required onto each device is high-
lighted in red. With a memory region analysis, only the required data is trans-
ferred from the host to each device.

host

device 1

device 2

device 3

4
4

4

(a) Memory Region Analysis.

host

device 1

device 2

device 3

? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ?

merge

12
12

12

(b) Merge.

Figure 2.7: Partitioning Output Arrays. The partial region written by each device is high-
lighted in red. With a memory analysis only the partial regions written by each
device are transferred to the host.

For output arrays, finding how to split the data is essential to merge the partial modification
computed by each device. When the written region of each device is precisely known, bringing
back the data to the host can be done in parallel. On the contrary, if the partial region of the output
buffer written by each device is unknown, a merging operation is necessary to build the output array.
This merging operation consists in comparing the output arrays from each device with the value of
the output array before sub-kernels execution in order to merge the modification from every device.
Figures 2.7a and 2.7b illustrate these two situations. The regions of the output array written by
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each device are highlighted in red. With a precise knowledge of the data written, only 4 elements
are transferred from each device back to the host in Figure 2.7a. Conversely, in Figure 2.7b, when
the regions written by each device are not known statically, the whole array from each device has
to be transferred back to the host, then a “merge” kernel has to be executed to properly merge the
modification of each device.

For many applications the overhead induced by these data transfers and by the merging oper-
ation may result in a slowdown compared to executing the application on a single device. This is
especially the case for multi-kernel applications when there are data dependencies between kernels.

Let’s consider the case where there is a data dependency between two kernels. The pseudocode
on Figure 2.8a shows an example where the output array B computed by a kernel k serves as input
array for a kernel k′ executed after k. When partitioning these kernels onto multiple devices, the
partial results of array B computed by each device must be merged after the execution of the sub-
kernels of kernel k. Then, the array B must be split again before the execution of the sub-kernels of
kernel k′. This is the role of the two statements lines 5 and 6 in Figure 2.8b.

However, when for each device, the region of array B required by kernel k′ has been computed
by the sub-kernel of kernel k executed on the same device, these merge and split operations can be
avoided. Indeed, the data required by each sub-kernel of kernel k′ is already present in the memory
of the device where it is executed. Hence, no data transfer is required.

In addition, in some cases a possible optimization opportunity would be to merge the two par-
allel for loops lines 2 and 7. Nevertheless, this opportunity of optimization is not always possible
as the partial region of B written by each sub-kernel of k and the partial region of B read by each
sub-kernel of k′ depend on their sub-ranges and their sub-ranges depends on the load balancing.

1 . . .
2 B[g(R)] = kernel(R,A[ f (R)])
3 C[g′(R′)] = kernel′(R′,B[ f ′(R′)])
4 . . .

(a) single device.

1 . . .
2 parallel for d = 0; d < n; d = d + 1 do
3 Bd[g(Rd)] = kernel(Rd,Ad[ f (Rd)])
4 end
5 B← dmerge(B1 . . .Bn)
6 B1 . . .Bn ← dsplit(B,R′1, . . . ,R′n))
7 parallel for d = 0; d < n; d = d + 1 do
8 Cd[g′(R′d)] =

kernel′(R′d,Bd[ f ′(R′d)])
9 end

10 . . .

(b) multi-device.

Figure 2.8: Splitting data when there is a data dependency between two kernels.

Determining the region of input and output arrays read and written by each sub-kernel is even
more important for iterative applications. For stencil applications for instance, transferring cells
from the whole domain from each device back to the host, executing a “merge” kernel and then
transferring the merged array again from the host to each device for the next iteration can ruin
performance. On the other hand, with a precise knowledge of the memory region accessed by
each device only cells from the border of the domain are exchanged after each iteration. Figure 2.9
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illustrates the communications generated with a precise knowledge of the memory regions accessed
by each device when a 1-dimensional stencil of size 12 is partitioned on two devices. At each
iteration, each thread computes a new value for the cell corresponding to its position in the parallel
iteration space from the value of the cell at the same position in the input array as well as the values
of the two neighboring cells and writes it into the output array. For the first iteration, array A is
used as input to compute the new stencil values into array B. Then the input and output arrays
are switched at each iteration. Before the first iteration, only the data required onto each device
is transferred from the host to each device. Then the sub-kernels are executed and each device
computes one half of the values of array B. For the next iteration, B is used as input array and A as
output array. Since all elements of B required by each sub-kernel except one have been computed
on the same device, only one element from each device is transferred between the two iterations.
Finally, after the last iteration only the data computed by each device is transferred back to the host.

host

A

device 1

A

device 2

A

subkernel 1 subkernel 2

6 6

device 1

B

device 2

B

device 1

B

device 2

B

1

1

subkernel 1 subkernel 2

device 1

A

device 2

A

host

A

6 6

Figure 2.9: Stencil Partitioning.

This section shows the importance of precisely determining the region of input and output arrays
read and written by each sub-kernel. A precise memory region analysis can significantly reduce the
volume of communications between devices.

2.2 Challenges

To automatically adapt a single-device application to multiple heterogeneous devices, the problem
is twofold.

First it is necessary to know for each kernel how to partition the data depending on the slice
of the original iteration space executed onto each device. That is the same as calculating for each
kernel k and for each array B the functions f Bk (R) and gBk (R) giving for any range R the partial
region required and written by all threads in R.
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Second, the load must be balanced dynamically between the devices. We need to determine for
each iteration of the computation, the decomposition of the iteration space Rk of each kernel k into
sub-ranges Rd

k minimizing the total execution time of the application.
The problem of data partitioning corresponds to the implementation of the dsplit and dmerge

functions presented in Figure 2.5b, page 30 while the problem of load balancing corresponds to
the implementation of the split function.

The main challenges for partitioning the data and balancing the load are presented in sections
Section 2.2.1 and Section 2.2.2 by studying OpenCL applications.

2.2.1 Data Partitioning
We illustrate the challenges of partitioning data on three OpenCL kernels: a 1-dimensional stencil,
a 2-dimensional stencil and a kernel with indirect memory access.

1D Stencil

Let’s consider the 1-dimensional stencil kernel shown in Figure 2.10. At each iteration the values
of the cells at the previous iteration are read from buffer A to compute the new value of each cell
into buffer B. The parallel iteration space of the kernel defined by its NDRange corresponds to
the number of cells in the stencil, and each thread computes in parallel a new value for the cell
corresponding to its index in the NDRange.

1 vo id s tenc i l 1D ( f l o a t ∗A, f l o a t ∗B, i n t n )
2 {
3 i n t i = ge t_g loba l_ id ( 0 ) ;
4
5 i f ( i >= 1 && i <= n−1) {
6 B[ i ] = 0.3 ∗ (A [ i −1] + A[ i ] + A [ i +1 ] ) ;
7 }
8 }

Figure 2.10: 1D Stencil kernel.

A static analysis of the code allows to detect each load/store operation from/into the buffers
given as parameters of the kernel. This kernel takes as parameters two buffers: A and B. There is
three load operations (A[i-1], A[i], A[i+1]) and one store operation (B[i]) correspond-
ing to the statement at line 6. Following the def/use chain [45] it is possible to recursively replace
each value with its definition to determine the indices of the elements read or written by each mem-
ory access. Here i is replaced with get_global_id(0). Each thread reads from buffer A the
elements at indices:

{get_global_id(0)-1,get_global_id(0),get_global_id(0)+1}

and writes one element into buffer B at index:

{get_global_id(0)}.
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Note that the statement line 6 is only executed if the condition line 5 is satisfied. After replacing
each value with its definition, this condition can be computed as:

get_global_id(0) >= 1 and get_global_id(0) < n

with n a scalar parameter of the kernel.
To compute the read and written regions of each buffer, one has to replace get_global_id(0)

and nwith their values taking into account the condition line 5. With an interval analysis, it is possi-
ble to compute these regions by replacing get_global_id(0) with the interval corresponding
to the slice of the NDRange executed onto each device. However, the NDRange of the kernel, the
slice executed onto each device and the value of the scalar parameter n are only known at runtime.

This example shows that a combination of static and dynamic analyses is necessary to partition
the data of a kernel automatically. A static analysis of the code can compute parametric regions of
the buffers accessed by the kernel but these regions may depend on parameters that are only known
at runtime such as the NDRange of the kernel or the values of scalar parameters.

2D Stencil

The code of a 2D stencil is shown in Figure 2.11. The NDRange defining the parallel iteration
space of the kernel is in 2 dimensions. The index of each thread in the first dimension is given
by get_global_id(0) and the index in the second dimension by get_global_id(1). At
each iteration, each thread computes a new value for the cell whose row number is its index in
the first dimension and column number is its index in the second dimension. Hence, each thread
writes into buffer B at index get_global_id(0) ∗ m + get_global_id(1) where m and n
correspond to the height and the width of the 2D domain.

1 vo id s tenc i l 2D ( f l o a t ∗ A, f l o a t ∗ B, i n t m, i n t n )
2 {
3 i n t i = ge t_g loba l_ id ( 0 ) ;
4 i n t j = ge t_g loba l_ id ( 1 ) ;
5
6 i f ( ( i >= 1) && ( i < (m−1) ) && ( j >= 1) && ( j < ( n−1) ) ) {
7 B[ i ∗n + j ] = 0.2 f ∗ (A [ i ∗ n + j ] +
8 A[ i ∗ n + ( j −1) ] +
9 A[ i ∗ n + ( j +1) ] +

10 A [ ( i +1) ∗ n + j ] +
11 A [ ( i −1) ∗ n + j ] ) ;
12 }
13 }

Figure 2.11: 2D Stencil kernel.

Assuming that the size of the domain is 20 × 10 (m=20, n=10), the NDRange defining the
thread indices in each dimension corresponds to the following intervals < [0, 19], [0, 9] >. When
partitioning this kernel into sub-kernels, the parallel iteration space can be distributed to different
devices by splitting one of the two dimensions of the NDRange.

Let’s consider the case where the kernel is partitioned on two devices and each device ex-
ecutes half of the parallel iteration space. If the second dimension is split, the NDRanges are
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< [0, 19], [0, 4] > and < [0, 19], [5, 9] > for the first and second device respectively. After eval-
uating the condition line 6 we can see that only threads whose indices are in < [1, 18], [1, 4] >
for the first device and in < [1, 18], [5, 8] > for the second write into buffer B. Hence, we can re-
place the calls to get_global_id(0) and get_global_id(1) with the intervals of thread
indices executing the statement line 7 and n with its value. Then using an interval analysis we
can compute an overapproximation of the region of buffer B written on each device. This gives
us [1, 18] ∗ 10 + [1, 4] = [11, 184] and [1, 18] ∗ 10 + [5, 8] = [15, 188] for the first and second
device respectively. We can see that the two regions obtained are not disjoint. In fact each thread
writes buffer B at different indices and the regions written onto each device are disjoint as shown
Figure 2.12. However, with an interval analysis the rectangular region of buffer B written onto
each device is overapproximated to a single interval, resulting in two overlapping regions. In this
case the device on which the elements of B in [15, 184] are written is unknown. Therefore, when
splitting the second dimension of the NDRange for this kernel, a merging operation is needed to
properly merge the modifications from both devices.

(a) sub-kernel 1
[11, 184].

(b) sub-kernel 2
[15, 188].

Figure 2.12: Memory regions of buffer B written by each sub-kernel when the stencil2D
kernel is partitioned on 2 devices by splitting the second dimension of the
NDRange. The gray area shows the overapproximation obtained by an inter-
val analysis but in fact only elements in darker gray are actually written by
each sub-kernel.

On the other hand, if the first dimension of the NDRange is split, the written regions of buffer
B computed with an interval analysis are disjoint as shown in Figure 2.13. The NDRanges are <
[0, 9], [0, 9] > and < [10, 19], [0, 9] > for the first and second device respectively. After evaluating
the condition line 6 we can see that only threads whose indices are in < [1, 9], [1, 8] > for the first
device and in < [10, 18], [1, 8] > for the second will write into buffer B. This gives us [1, 9] ∗ 10 +

[1, 8] = [11, 98] and [10, 18] ∗ 10 + [1, 8] = [100, 188] for the first and second device respectively.
In this case no merging operation is required.

This example shows that when partitioning a kernel whose parallel iteration space has more
than one dimension, the choice of the dimension to split can have a great impact on the amount of
data to transfer. In order to avoid a merging operation, the right dimension must be chosen.
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(a) sub-kernel 1
[11, 98].

(b) sub-kernel 2
[100, 188].

Figure 2.13: Memory regions of buffer B written by each sub-kernel when the stencil2D
kernel is partitioned on 2 devices by splitting the first dimension of the
NDRange. The gray area shows the overapproximation obtained by an in-
terval analysis but in fact only elements in darker gray are actually written by
each sub-kernel.

Indirect Memory Access

The code of a kernel with indirect memory access is shown in Figure 2.14. In this kernel, the input
buffer A is indirectly accessed through the indirection array IA. Each thread reads the region of the
input buffer A corresponding to the interval [start,end − 1] where start is the value of buffer
IA at the position corresponding to its index in NDRange (get_global_id(0)) and end is the
value of buffer IA at the next position.

1 vo id Spa t i a lB inn ing ( f l o a t ∗A, i n t ∗ IA , f l o a t ∗B) {
2 i n t i d = ge t_g loba l_ id ( 0 ) ;
3 f l o a t sum = 0;
4
5 i n t s t a r t = IA [ i d ] ;
6 i n t end = IA [ i d + 1 ] ;
7
8 f o r ( i n t i = s t a r t ; i < end ; i ++)
9 sum += A[ i ] ;

10
11 B[ i d ] = sum;
12 }

Figure 2.14: Spatial Binning kernel.

With a static analysis of the code one can determine that for a thread of index i the region read
from buffer A is defined by the interval [IA[i],IA[i + 1]− 1]. Hence, the region of buffer A read by
a sub-kernel with sub-range defined by the interval [L,U] is:

U⋃
i=L

[IA[i],IA[i + 1] − 1].
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Computing the intervals [IA[i],IA[i + 1] − 1] for each i ∈ [L,U] may not be acceptable to
determine the region of buffer A read by a sub-kernel since the interval [L,U] may be very large.
Moreover, computing this union would require to know the values of all elements of buffer IA
whose positions are within the interval [L,U + 1]. As buffers are allocated on the devices memory,
these elements are not directly accessible from the host. Transferring the region [L,U + 1] from
buffer IA back to the host may induce a significant overhead.

However, assuming that values inside buffer IA are increasing, this union of intervals can be
approximated to the single interval

[
IA[L],IA[U + 1] − 1

]
. In this case, determining the region of

buffer A read by the sub-kernel would only require to read the two elements of buffer IA at indices
L and U + 1. Nevertheless, this would require to ensure that values inside buffer IA are increasing
without having to read the whole buffer.

This type of indirect memory access where values inside the indirection array are increasing
occurs in many applications. For example, it corresponds to spatial data structures where data are
sorted into spatial bins. Spatial binning [46] is a key technique for applications such as collision
detection or particle simulation.

This example shows the difficulty of partitioning a kernel in the presence of indirect memory
accesses. When the values in the indirection array are monotonous, it may be possible to read only
two elements from the indirection array to compute the region accessed by a sub-kernel. However, it
would require a hint from the user to ensure that the values in the indirection array are monotonous.

2.2.2 Load Balancing

In this section we evaluate the factors that must be considered to balance the workload between the
devices and minimize the total execution time of an application consisting of an iterated sequence
of kernels.

As OpenCL kernel executions are characterized by the number of parallel work-groups, we
define the partitioning ratio of each sub-kernel as the ratio of work-groups it executes over the
total number of work-groups of the kernel, a partitioning ratio of 1 meaning the whole kernel is
executed.

Impact of architectural heterogeneity

We study the performance variation of a kernel on one device, decreasing manually its partition-
ing ratio. Figures 2.15a and 2.15b respectively show performance of AESEncrypt and EP from
SNU NPB Suite [47] for different partitioning ratios on a 16-core Intel Xeon E5-2650 2.00GHz
with 64GB (CPU) and on an NVIDIA Tesla M2075 (GPU). Performance is indicated as the mean
time to execute one work-group (lower is better). For AESEncrypt, the average time per work-
group is nearly constant for all partitioning ratios, and very different on CPU and on GPU. For
EP, we observe large performance drops (higher average time/work-group) at regular intervals of
partitioning ratios on both CPU and GPU. This may come from compiler optimizations (such as
unrolling), cache effects, and inefficient occupancy of the parallel resources due to a low number
of work-groups within sub-kernels.
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Figure 2.15: (a) and (b): Impact on performance of architectural heterogeneity on AES-
Encrypt and EP benchmarks. Performance is given as an average time per
work-group, partitioning ratio as a percentage of the total number of work-
groups. (c) Impact on performance of the offset (starting index) for SpMV
kernel, with a fixed partitioning ratio of 1/4. (d) Impact of iteration number
on performance for OTOO application. Partitioning ratios are set to 1/4 for
all GPUs, and offset is fixed on all devices.

Impact of the work-group offset

Work-items (or threads) are indexed in OpenCL by a vector of indices among a rectangular space
(from 1D to 3D) called the NDRange. Selecting a partitioning ratio boils down to define a subvol-
ume of indices. Here, the subvolumes we consider are obtained by selecting one smaller interval in
one dimension of the NDRange. The offset is the first index of this interval of indices, the partition-
ing ratio defining the size of this interval. Figure 2.15c shows for a Sparse Matrix Vector Multiply
(SpMV) the influence of the offset on performance when, for a sub-kernel with partitioning ratio
1/4, the offset is changed. The workload of this kernel is irregular. In the chosen sparse matrix,
rows with a high index have more non-zero elements than those with a low index. This accounts
for the execution time increase for large offsets, more than 7x the time of a 0-offset on CPU and 4x
on GPU. When splitting a kernel into sub-kernels, this is a possible source of load-imbalance.
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Impact of the iteration number

Many OpenCL kernels are executed in iterative computations. For instance, OTOO [48] is an
astrophysics particle N-Body simulation and the same kernel is called repeatedly to compute forces
and move the different particles. Figure 2.15d shows how the execution time changes for different
iteration numbers and for different offsets, for each iteration of the computation. The kernel is
split into 4 sub-kernels, each one is given a partitioning ratio of 1/4 and executed on one GPU.
The input set corresponds to a non-uniform distribution of the masses in space. As this space is
partitioned among the work-groups, this results in a non-homogeneous load distribution among the
work-groups, changing with iteration number (dynamic workload).

Impact of communications

When partitioning a sequence of kernels to multiple devices, the partitioning of one kernel may
have great impact on the amount of data to transfer between devices before executing another one
when there is a data dependence between these kernels. We use an illustrative example to present
some partitioning strategies and to show the impact of these strategies on data transfers.

Figure 2.16 illustrates two different strategies when partitioning a sequence of 2 kernels on 2
devices. The structure of the application is shown in Figure 2.16a. Threads from the iteration
spaces of kernels 1 and 2 are respectively represented with diamonds and circles. The shades of
gray represent the amount of work of each thread, dark threads have more work than light threads.
Both kernels have irregular workload: for kernel 1 (resp. kernel 2), threads from the beginning of
the iteration space have more work (resp. less work) than threads at the end of the iteration space.
kernel 2 exhibits the structure of a stencil: each thread from its iteration space depends on the data
produced by the thread from kernel 1 at the same position and also on the data produced by its
two neighbor threads. For kernel 1 however, each thread only depends on the data produced by the
thread at the same position in kernel 2.

kernel 1 kernel 2 kernel 1

Execution Flow

N
D

R
an

ge

(a) Application Structure.

kernel 1 kernel 2 kernel 1

Execution Flow

(b) Minimizing Transfers.

kernel 1 kernel 2 kernel 1

Execution Flow

GPU1

GPU2

Transfer

Dep.

(c) Minimizing Computation.

Figure 2.16: Impact on amount of data to transfer of different partitioning strategies.

Figure 2.16b illustrates a uniform partitioning strategy over 2 GPUs, where the two sub-kernels
of kernel 1 and kernel 2 have a partitioning ratio of 0.5. A partitioning ratio of 0.5 on a device means
that half of the iteration space of the kernel is executed on this device. For this specific application,
this partitioning minimizes the amount of data to transfer. However, the execution times of the
sub-kernels are imbalanced.

Figure 2.16c illustrates another partitioning that minimizes the computation time of each ker-
nel. kernels 1 and 2 must then have different partitioning ratios to balance the execution time of
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their sub-kernels. However, this partitioning implies much more data transfers, and may result in a
slowdown.

This illustrative example shows the impact of the partitioning of each kernel from the sequence
on the volume of data to transfer. Only considering the execution times of each kernel is not
sufficient in order to minimize the overall execution time of a kernel sequence.

We now study the performance variation of two real applications (Jacobi and 2SpMV) for vari-
ous kernel partitionings across two heterogeneous GPUs. Both applications consist in an iterated
sequence of two data-dependent kernels. For each application, we measure the total execution time
when the kernel sequence is iterated 100 times.

The Jacobi application consists in a first kernel corresponding to a 1D stencil kernel (here,
k1) followed by a memcpy from the output buffer to the input buffer (k2). When partitioning this
application on two devices, the volume of data to transfer between devices is minimized when both
kernels have the same partitioning.

The 2SpMV application consists in a Sparse Matrix-Vector Multiplication applied on two dif-
ferent matrices, the output vector of one kernel is the input vector of the following one. Both
kernels present irregular workload among threads, due to the sparsity structure of each matrix. In
the matrix for k1 (resp. k2), rows with a low index have less (resp. more) non-0 elements than those
with a high index. Each thread of a kernel only depends on data produced by the thread of the
other kernel at the same position in the iteration space. When partitioning this application on two
devices, the volume of data to transfer between devices is minimized when both kernels have the
same partitioning.

Figures 2.17a (Jacobi) and 2.17b (2SpMV) show the speedups according to the partitioning
of the two kernels across two heterogeneous GPUs. The speedup shown is the speedup against
the performance obtained by executing both kernels on the best device. The X-axis represents the
partitioning ratio for k1 on the first device, the Y-axis represents the partitioning ratio for k2 on
the first device. A partitioning ratio of 0.5 means that half of the iteration space of the kernel is
executed on each device and a partitioning ratio of 1 means that the whole kernel is executed on
the first device.

As we can see in Figure 2.17a if both kernels of the Jacobi application do not have the same
partitioning ratio, the transfers between the kernels result in a significant slowdown (from 0.50
when the two kernels do not have the exact same partitioning ratio and up to 0.02 when the first
kernel is entirely executed on the second device and the second kernel is entirely executed on
the first device). Since the first device has better compute capabilities, the best speedup (1.6) is
achieved by giving the partitioning ratio of 0.6 to both kernels.

For the 2SpMV application however, the best speedup (1.5) is achieved by giving a partitioning
ratio of 0.7 to k1 and a partitioning ratio of 0.4 to k2.

These examples demonstrate that only minimizing the volume of transfers or only minimzing
the sub-kernels execution time is not sufficient to minimize the overall execution time of a kernel
sequence. The partitioning that minimizes the overall execution time is a trade-off between the
balancing of the execution times of the sub-kernels of each kernel and the cost of the data transfers
induced.
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Figure 2.17: Partitioning a sequence of kernels.

2.2.3 Summary

This section presented the main challenges we need to address to automatically adapt a single-
device application consisting in an iterated sequence of kernels to multiple devices.

First, we must automatically compute for each kernel, the read and written regions of the buffers
passed as parameters depending on the slice of the NDRange executed onto each device. This
would require a combination of static and dynamic analyses since some values required to compute
these regions can be determined by a static analysis of the code whereas others are only available
at runtime. Moreover, the analysis should be able to cope with codes containing indirect memory
accesses. In addition, when partitioning a kernel whose NDRange has more than one dimension,
the dimension split to distribute the parallel iteration space must be the one that allows to minimize
the amount of data to transfer.

Second, the method should be able to cope with the heterogeneity of the hardware, but also
with irregular workloads and dynamic load variations between repeated executions of the kernel
sequence. In addition, the method has to take into account the communication times induced by
the partitioning of each kernel in order to minimize the overall execution time of the application.

2.3 Principle of Adaptive Partitioning
This section presents the principles of our method to automatically adapt single-device OpenCL
applications to heterogeneous multi-device architectures. The method we propose is threefold. First
each kernel is analysed and a new version, partition-ready, is generated for each kernel at compile
time. Then each time a kernel has to be executed, a partitioning is chosen based on previous
executions if any, and the partition-ready kernel is instantiated on each device with the chosen
partitioning. More precisely:

1. When a kernel code is first loaded, it is analysed and transformed into a partition-ready
kernel which can execute only a slice of the original NDRange space. The objective of the
analysis is to determine for each buffer accessed by the kernel the region it reads and writes
depending on its NDRange. The analysis is performed once on the OpenCL code (no host
code analysis) but the partition-ready kernel generated can be instantiated at runtime for any
slice of the NDRange.
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2. Each time a kernel is launched, a partitioning is determined. This partitioning determines
the fraction of the original NDRange to execute onto each device. Then buffers regions are
instantiated with the current partitioning and the actual parameters of the kernel. Depending
on the result, all buffers are communicated to the devices or only the region they require. The
same occurs for bringing back data from the devices.

3. The execution time of each kernel is collected for refining the partitioning in the possible
following iterations.

OpenCL Library

CPU Driver GPU Driver

CPUs GPUs GPUs GPUs

Kernel
Transformer

Kernel
Analyzer

Buffer
Manager

Dynamic
Partitioner

OpenCL API

Application Binary

Partition-Ready
Kernels

Memory Region
Analysis

Load
Kernel

Launch
Kernel

Launch

timers

Figure 2.18: Framework Overview. At load time when a kernel is loaded, it is analysed by
the Kernel Analyzer and a partition-ready kernel is generated by the Kernel
Transformer. At runtime before a kernel is executed, the Dynamic Partitioner
determine a partitioning for the kernel based on previous iteration if any and
the Buffer Manager handle the necessary data transfers before sub-kernels
execution.

The method we propose is completely transparent to the user and does not require any modifica-
tion or recompilation of the original program. To this end our framework works by interposing calls
to the OpenCL shared library from the application binary as shown in Figure 2.18. Our framework
is composed of four components:

• The Kernel Analyzer is in charge of the static analysis of kernels.

• The Kernel Transformer performs source-to-source transformations of kernels.

• The Dynamic Partitioner determine the partitioning of each kernel.

• The Buffer Manager manages the necessary data transfers between devices.

We briefly present the static analysis and transformation performed by our analysis as well as
the dynamic adaptation in Sections 2.3.1 and 2.3.2. Then, the management of buffers and data
transfers is presented in Section 2.3.3. Finally, the general algorithm of the automatic transforma-
tion we want to achieve is presented in Section 2.3.4.
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The memory region analysis to automatically partition kernels onto multiple devices is the
subject of the Chapter 3 and the dynamic load balancing is the subject of the Chapter 4.

2.3.1 Static Analysis and Transformation
At load time, when the sources of the program are loaded (clCreateProgramWithSources),
the sources are compiled to LLVM bytecode in order to be analyzed by the Kernel Analyzer. The
LLVM bytecode generated is only used by the Kernel Analyzer. Then the Kernel Transformer per-
forms source-to-source transformations of the program. At compile time (clBuildProgram),
these transformed sources will be compiled by each vendor instead of the original sources.

Memory Region Analysis

The Kernel Analyzer computes for each kernel parametric read and write regions for each buffer it
accesses. These parametric regions correspond to the functions fk and gk presented in Section 2.1.2.
These regions are obtained by an interval analysis and consist of a union of intervals defining the
values of indices in the buffers that may be read/written by the kernel. These intervals may depend
on thread ids, on the values of the scalar parameters of the kernels and on the values of other array
elements in the case of indirections.

Partition-Ready Kernel Generation

The parallel iteration space of an OpenCL kernel is defined by a NDRange in 1, 2 or 3 dimensions.
In order to distribute the computation of a kernel, its original NDRange is split along one of the
dimensions as shown in Figure 2.19. Each device then executes the same kernel but only on a slice
of the original NDRange.

Device 1

Device 2

Device 3

Device 4

workgroup partitioning ratios: <0.125, 0.125, 0.25, 0.5>

Figure 2.19: Splitting one dimension of a 3D NDRange to distribute the parallel iteration
space onto 4 devices.

The OpenCL function clEnqueueNDRangeKernel to execute a kernel takes the four fol-
lowing parameters to define its NDRange:

• work_dim: the number of dimensions

• global_work_offset: the offset used to calculate the global id in each dimension

• global_work_size: the number of threads (or work-items) in each dimension

• local_work_size: the number of threads (or work-items) that make up a work-group
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By reducing the global_work_size and setting the right global_work_offset, the
OpenCL API allows to execute a kernel only on a slice of its original NDRange. However, when ex-
ecuting a kernel with a fraction of the original NDRange, some syntactic modifications are needed
in order to keep the correct semantics. Indeed, the global size is different from the original kernel,
the number of work-groups has changed and their ids have changed too. To keep the correct se-
mantics, the Kernel Transformer performs a source-to-source transformation of each kernel. Two
additional parameters are added to the kernels: splitdim (1, 2 or 3) accounts for the dimension
of the NDRange that is split, and numgroups is the number of work-groups in this dimension.
The details of this transformation are presented in Section 4.4.

2.3.2 Dynamic Adaptation
At runtime, the Dynamic Partitioner computes a new partitioning of the parallel iteration space
defined by the NDRange of each kernel. Each device then executes the kernels on a fraction of
their respective NDRange. These sub-kernels correspond to the partition-ready kernels instantiated
with the sub-NDRange resulting from their partitioning. The goal of the Dynamic Partitioner is
to determine at each iteration the partitioning of the whole sequence of kernels that minimizes
the overall execution time of the sequence. The partitioning of the sequence at iteration t + 1 is
determined using measures of kernels execution times at iteration t.

Each time a new partitioning of the kernel sequence is computed, the parametric read and write
array regions associated to each sub-kernel are instantiated with the values of its scalar parameters,
its current sub-NDRange and possibly the value of some array elements in case of indirections.
The dimension of the NDRange that is split is selected at runtime depending on which one allows
to distribute written data among devices, with no need for a merging operation, if possible.

The Buffer Manager then uses these instantiated regions to only transfer the data missing on
each device.

2.3.3 Buffer Management
The Buffer Manager is responsible for the management of buffers at runtime. When the function
clCreateBuffer is called, the Buffer Manager allocates a buffer of the requested size onto each
device. These buffers are denoted as sub-buffers. The Buffer Manager then maintains a directory
for each buffer in order to keep track, for each element of a buffer, of the list of devices that own
this element in their own memory.

When the function clEnqueueWriteBuffer is called to transfer a memory region R from
the host memory to a buffer B, the data transfer is delayed until kernels execution. Then, when a
kernel reading buffer B is launched and the memory region analysis in instantiated for the chosen
partitioning, only the required data is transferred from the host to each sub-buffer.

The Buffer Manager manages the required data transfers before the execution of each sub-kernel
and only the data not already present on the devices are transferred.

After each kernel execution, the Buffer Manager updates the directory of each output buffer
using the instantiated written region of each sub-kernel.

When the function clEnqueueReadBuffer is called the required data is transferred from
one or several devices back to the host depending on which device owns the requested data.

Thus, the amount of data to transfer to each device is minimized. However, since we allocate
a sub-buffer of the same size as the original buffer on each device, the memory space allocated on
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each device is not reduced.

2.3.4 General Algorithm
The general algorithm of the dynamic adaptation of an iterative application with a sequence of m
kernels onto n heterogeneous devices is shown in Figure 2.20.

First, at the beginning of each iteration, a new partitioning of the kernel sequence minimizing
the total execution time of the iteration is computed based on the profiling of the previous iteration
if any. This is the role of the statements lines 3 to 5.

Then the kernel sequence is executed and each device only executes a fraction of the original
iteration space of each kernel.

Before executing the sub-kernels, only the minimum data transfers are performed. In order to
avoid unnecessary data transfers, it is crucial to know for each device, which data are present in its
own physical memory. To that end we define directoryB(x) as the function giving for each element
x of a buffer B, the list of devices owning x. This function corresponds to the directory of buffer B
maintained by the Buffer Manager.

The list of buffers read (resp. written) by a kernel k is denoted as IN(kernelk) (resp. OUT (kernelk))
and the region of a buffer B read (resp. written) by threads of a sub-kernel of kernel k on device d
is denoted as f Bk (Rd

k ) (resp. gBk (Rd
k )).

Before executing a sub-kernel of kernel k on device d, for each buffer B read by this sub-kernel,
the device d must have all elements of f Bk (Rd

k ) in its own memory. Hence, the parallel for
loop line 9 transfers in parallel for each device d, the missing data to execute its sub-kernel. The
call to the function trans f erBu f f erElement line 13 transfers the element at offset x in buffer B
from a device owning x (given by directoryB(x)[0]) to device d. Then the directory of B is updated
to reflect its value after the data transfer.

After the required data have been transferred to each device, the parallel for loop line 19 ex-
ecutes each sub-kernel in parallel on the different devices. Then, the for loop line 23 updates the
directory of all output buffers. After the execution of a sub-kernel of kernel k on device d, for each
element x of a buffer B written by this sub-kernel, only the device d owns a valid version of x.

Finally, at the end of each iteration the sub-kernels execution times are collected as shown line
32.
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1 for i = 0; i < iter; i = i + 1 do
2 /* compute a new partitioning of the kernel sequence based

on previous iteration profiling */
3 for k = 0; k < m; k = k + 1 do
4 R1

k . . .R
n
k ←− computePartition(Rk, timersi−1)

5 end
6 /* execute the kernel sequence */
7 for k = 0; k < m; k = k + 1 do
8 /* transfer the data missing on each device to execute

the sub-kernels */
9 parallel for d = 1; d ≤ n; d = d + 1 do

10 for B ∈ IN(kernelk) do
11 for x ∈ f B

k (Rd
k ) do

12 if d < directoryB(x) then
13 trans f erBu f f erElement(B, x, directoryB(x)[0], d)
14 directoryB(x)←− directoryB(x) ∪ {d}
15 end
16 end
17 end
18 /* execute the sub-kernels */
19 parallel for d = 0; d < n; d = d + 1 do
20 kernelk(Rd

k )
21 end
22 /* update directories */
23 for d = 1; d ≤ n; d = d + 1 do
24 for B ∈ OUT (kernelk) do
25 for x ∈ gB

k (Rd
k ) do

26 directoryB(x)←− d
27 end
28 end
29 end
30 end
31 /* collect iteration profiling information */
32 timersi = collectProfilingInfo()
33 end

Figure 2.20: General algorithm of the dynamic adaptation of a single-device iterative ap-
plication with m kernels to n heterogeneous devices.

2.4 Summary

This chapter presents the challenges we need to address and the basic concepts of our method
for automatic adaptation of single-device applications to heterogeneous architectures. The type of
parallelism we are targeting consists in an iterative sequence of parallel loops. This allows the
programmer to express the parallelism of his application with a sequence of parallel computation
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kernels without worrying about the underlying architecture. The parallelization model we propose
is to distribute the parallel iteration space over multiple devices. The two major challenges to
automatically adapt a single-device application to heterogeneous multi-device architectures are the
automatic data partitioning and the load balancing.

To address these challenges, the method we propose combines static and dynamic methods. At
load time when the source code of the application is loaded, we perform a static analysis of the
code to compute parametric regions of buffers accessed by kernels. Then the code of the applica-
tion is transformed so that each kernel can execute only on a slice of the parallel iteration space.
At runtime, a new partitioning of the kernel sequence is determined after each iteration, based on
previous execution times and data transfers observed. Once the partitioning of a kernel has been
determined, the parametric regions of the buffers accessed are instantiated with the current parti-
tioning and other values determined at runtime in order to transfer to each device only the data
required by the sub-kernel it executes and that are not already present in its own memory.

The next chapter presents our memory region analysis allowing to automatically partition the
data accessed by complex kernels containing indirect memory accesses and atomic operations.
Then the dynamic load balancing method we propose to minimize the overall execution time of an
iterative application is presented in Chapter 4.
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One of the main challenges when adapting a single-device application to multiple devices is to
automatically partition the data across the devices so as to minimize the amount of data to transfer.
The parallelization model we propose is to distribute the parallel iteration space of each kernel
across the devices. For each kernel, each device only executes a sub-kernel of the original kernel.
Hence, each device only requires the partial regions of input buffers read by its sub-kernel and only
modifies the partial regions of output buffers written by its sub-kernel.

As explained in Section 2.1.3, when distributing kernels computation onto multiple devices,
for input data it is possible to broadcast the whole buffers to every device. However, this solution
implies unnecessary data transfers. Conversely, a precise analysis of the data required by each
thread of the kernel allows to only transfer the required data to each device and results in shorter
communication times. For output data, determining the regions written onto each device is even
more important. Without a precise analysis of the region of buffers written by each device, we
need to find a way to properly merge the partial results from different devices back to the host.
One possible fallback solution is to transfer the whole output buffers from every device back to
the host and then to execute a “merge” kernel in order to properly merge the modifications from
each device. However, for many applications this solution may end up in a slowdown comparing to
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executing the application on a single device, especially in the case of iterative applications, targeted
in this part of this thesis.

This chapter presents our method to automatically partition the data of a single-device appli-
cation to multiple devices. This method corresponds to the implementation of the dsplit function
presented in Figure 2.5b, page 30. The method we propose is able to cope with complex kernels
containing indirect memory accesses and atomic operations. We then demonstrate the effectiveness
of our method on a molecular dynamics application called SOTL, containing complex kernels with
indirect memory accesses and atomic operations. Finally, we compare our method to related works.

3.1 Memory Region Analysis

This section presents our memory analysis combining static and dynamic methods to determine the
regions read/written by each sub-kernel when dealing with complex codes containing indirections
and atomic operations.

3.1.1 Objectives and Principles

When splitting an OpenCL kernel into sub-kernels, the NDRange defining the parallel iteration
space of the kernel is split into sub-NDRanges and each sub-kernel only executes thread belonging
to its sub-NDRange.

The objective of our analysis is to precisely determine the region of each buffer read and written
by each sub-kernel depending on the slice of the original parallel iteration space it executes.

Relying on the principles exposed in [49], our analysis consists in computing for each buffer
parametric expressions of the memory locations read and written by each thread. Then, at runtime
these parametric expressions are instantiated using an interval analysis to compute the memory
regions accessed by a whole sub-kernel.

In this work we extend these parametric expressions to kernels with indirect memory accesses.
When values inside an indirection array are increasing or decreasing, we propose the developer to
annotate the indirection array with one of the two following pragmas:

• #pragma opencl_increasing_buffer

• #pragma opencl_decreasing_buffer

Thus, when a buffer B is indirectly accessed through an indirection array I and I is annotated
with one of these pragmas, the region of buffer B accessed by a sub-kernel can be determined by
only reading two values from the indirection array.

For example in the kernel code shown in Figure 3.1, the buffer IA is annotated as increasing.
In this case the region of buffer A read by a sub-kernel whose sub-NDRange corresponds to the
interval [L,U] will be determined by our analysis by only reading the two values at indices L and
U + 1 from buffer IA. The region will be approximated as the interval

[
IA[L],IA[U + 1] − 1

]
.
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1 vo id Spa t i a lB inn ing ( f l o a t ∗A, i n t ∗ IA , f l o a t ∗B, i n t n ) {
2 i n t i d = ge t_g loba l_ id ( 0 ) ;
3
4 f l o a t sum = 0;
5 i n t s t a r t = IA [ i d ] ;
6 i n t end = IA [ i d + 1 ] ;
7
8 f o r ( i n t i = s t a r t ; i < end ; i ++)
9 sum += A[ i ] ;

10
11 B[ i d ] = sum;
12
13 #pragma opencl_increasing_buffer IA
14 }

Figure 3.1: Indirection array annotation. In this example, the input buffer A is indirectly
accessed through buffer IA and IA is annotated as increasing.

Our memory region analysis consists in two steps:

1. First, at load-time when kernel codes are compiled, a static analysis constructs parametric
read and write regions for each buffer of each kernel. These expressions are parameterized
by the ids of the NDRange, the scalar parameters of the kernel and by the values of input
array elements.

2. Then at runtime, before a sub-kernel is executed these parametric regions are instantiated
with the interval of thread ids it executes, the values of scalar parameters of the kernel and
possibly the values of input array elements. Using an interval analysis, each parametric
region is instantiated to a set of contiguous regions [Li,Ui].

The Buffer Manager uses these instantiated regions to only transfer the data required onto each
device before sub-kernels execution. For each region [Li,Ui] of a buffer B read by a sub-kernel
executed on device d, the Buffer Manager transfers this region to the sub-buffer of buffer B allocated
on device d. Only elements of the region [Li,Ui] not already present on the device are transferred.
Finally, for each buffer B, the Buffer Manager uses the instantiated write regions of each sub-kernel
to keep track of the regions of B owned by each device.

As kernel threads are executed concurrently, each thread must write output buffers at different
locations for the computation to be correct. Hence, when the regions of output buffers written by
each sub-kernel are precisely determined by our analysis, no merging operation is required.

However, for kernels containing atomic operations, different threads can atomically modify the
same location. This is problematic when two threads t1 and t2 belonging to different sub-kernels
modify the same location. Indeed, since the sub-kernels are executed onto different devices, the
atomic modifications carried out by thread t1 is not visible from the device where t2 is executed.
Our method to address this issue is presented in Section 3.1.4.

When the code of a kernel is too complex and the region of a buffer accessed by each sub-kernel
cannot be determined automatically by our analysis, the user can provide these regions through
code annotations. The limits of our analysis and these annotations are presented in Section 3.1.5.
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3.1.2 Parametric Region Construction and Instantiation
This section presents our method to build and instantiate the parametric regions of buffers accessed
by each sub-kernel.

Parametric Region Construction

The parametric region construction is twofold: i) An inter-procedural alias analysis identifies all
statements accessing buffers passed as parameter to the kernel. ii) For each load/store instruction
from/to a buffer B a Statement-Region is computed and added to the Parametric Read/Write Region
of B.

Definition 6. A Statement-Region is a guarded expression of the form g1(id), ..., gn(id) : expr(id, s)
with id a thread id, s the scalar parameters of the kernel, gi(id, s) a guard on a thread id (e.g.:
get_global_id(0) < expr), and expr(id, s) an Index-Expression on id and s.

Definition 7. An Index-Expression E is a typed expression with E either:

• a scalar parameter of the kernel,

• a thread id,

• a constant,

• an interval [L,U] with L and U two expressions,

• E1 op E2 with E1, E2 two expressions and op ∈ {+,−, ∗, /},

• ~B, E,T� the value of an element of type T from a buffer B at index E, with T a scalar type
and E an index-expression,

• cast(T,E) a cast operation of expression E to type T ,

• or undef.

Definition 8. A Parametric Region is a finite set of Statement-Regions.

Our analysis is based on the Static Single Assignment (SSA) form [45] where each variable is
defined by exactly one statement in the program. Variables that are initially assigned in multiples
statements are renamed into new instances, one per statement. When multiple control-flow paths
join in the control-flow graph (CFG), renamed variables are combined with a φ-function into a new
variable instance. This makes explicit use/def chains.

The Statement-Region of a statement S accessing a buffer is computed by following the use/def
chain from S until reaching a call to a function returning a thread id, a scalar parameter of the
kernel, a constant, an indirection or the result of an atomic operation.

When a φ-function is encountered in the use/def chain, if it is an induction variable and its in-
terval of values can be determined, then the variable is replaced with its interval [L,U]. Otherwise,
the variable is replaced with undef.

When the result of an atomic function is encountered in the use/def chain, the variable is re-
placed with undef.

52



CHAPTER 3. AUTOMATIC DATA PARTITIONING

When a load instruction is encountered in the use/def chain (indirection) and the buffer B read
by the load instruction has been annotated as increasing or decreasing, the variable is replaced with
~B, E,T� where E is the expression of the index where B is read and T is the type of the element
read. Otherwise, it is replaced with undef.

Indirections are not always integer values, hence to support all indirections we handle all basic
OpenCL types (int, float, double, etc) and all cast operations.

The guards gi of a Statement-Region correspond to the conditionals governing the execution of
the corresponding load/store statement. These conditionals are computed using the Iterated Post-
Dominance Frontier [45] of the load/store statement. Out of simplicity, only affine expressions on
ids are kept, i.e. inequalities of the form: a ∗ id + b ≤ c where a, b, c are expressions independent
of thread ids with no indirection. All other conditionals are assumed to be true.

1 vo id Spa t i a lB inn ing ( f l o a t ∗A, i n t ∗ IA , f l o a t ∗B, i n t n ) {
2 i n t i d = ge t_g loba l_ id ( 0 ) ;
3
4 i f ( i d < n ) {
5 f l o a t sum = 0;
6 i n t s t a r t = IA [ i d ] ;
7 i n t end = IA [ i d + 1 ] ;
8
9 f o r ( i n t i = s t a r t ; i < end ; i ++)

10 sum += A[ i ] ;
11
12 B[ i d ] = sum;
13 }
14
15 #pragma openc l_ inc reas ing_bu f fe r IA
16 }

(a) code.
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(b) Splitting buffer A.

Figure 3.2: SpatialBinning kernel Partitioning.

Example:
In order to construct the Parametric Read-Region of buffer A of the SpatialBinning ker-

nel shown in Figure 3.2a, the analysis detects that there is only one load instruction reading
buffer A corresponding to the statement line 10. Hence, the Parametric Read-Region of array
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A contains only one Statement-Region. To compute this Statement-Region, the analysis detects
that the load instruction read the element of array A at index i which is a φ-function func-
tion in the SSA form. This φ-function corresponds to an induction variable and is replaced
with the interval [start,end − 1] corresponding to the bounds of the for loop line 9. The
variable start is defined by a load instruction of an element of type int from buffer IA at
index id where id is defined by get_global_id(0). Hence, this variable is replaced with
~IA, global_id(0), int�. The same occurs with the variable end. Finally, the analysis computes
the Iterated Post-Dominance Frontier of the statement line 10 and detects that this statement is
only executed if the condition line 4 evaluates to true. The Statement-Region of buffer A built by
the analysis is therefore:

global_id(0) < n :
[
~IA, global_id(0), int�, ~IA, global_id(0) + 1, int� − 1

]
.

Parametric Region Instantiation

The objective of the instantiation is to compute for each buffer B and each sub-kernel k the region
of B accessed by all threads of k.

At runtime, the scalar parameters of the kernel and the sub-NDRanges of each sub-kernel are
known, hence the Parametric R/W Regions can be instantiated. For each Statement-Region:

1. We inject the values of scalar parameters of the kernel along with its sub-NDRange.

2. The guards are applied by restricting the sub-NDRange.

3. If the expression E from an indirection ~B, E,T� evaluates to an interval [L,U] (i.e. E is not
an indirection), ~B, E,T� is replaced with [val1, val2] with val1 (resp. val2) the value of the
element of type T read from buffer B at index L (resp. U).

This step is repeated until all indirections are replaced with their values.

4. A set of contiguous intervals [Li,Ui] is computed from the Statement-Region using interval
arithmetic.

If a Statement-Region contains an undef, the whole buffer is considered: the Statement-Region
is instantiated as [0,N − 1] where N is the size of the buffer.

Example:
Figure 3.2b illustrates the partitioning of buffer A when the SpatialBinning kernel with

original NDRange [0, 127] is partitioned onto two devices with respective sub-NDRanges [0, 63]
and [64, 127]. Here the value of parameter n is 100.

In the following, we detail each step of the instantiation of the parametric read region of
buffer A for sub-kernel 2:

1. At step 1, the value of n and the value of the sub-NDRange of the sub-kernel is injected
into the Statement-Region. The Statement-Region becomes:

global_id(0) < 100 :
[
~IA, [64, 127], int�, ~IA, [64, 127] + 1, int� − 1

]
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2. Then at step 2, the guard is evaluated:

[
~IA, [64, 99], int�, ~IA, [64, 99] + 1, int� − 1

]
and the expression is simplified:

[
~IA, [64, 99], int�, ~IA, [65, 100], int� − 1

]
As the values in buffer IA are increasing this expression evaluates as:

[
[v1, v2], [v3, v4] − 1]

]
with v1 = IA[64], v2 = IA[99], v3 = IA[65], v4 = IA[100] and is then simplified as:

[
v1, v4 − 1

]
3. At step 3 the values v1 = IA[64], v4 = IA[100] are read from buffer IA. As shown in

Figure 3.2b, the value of IA[64] is 504 and the value of IA[100] is 934.

4. In this example, the parametric read region of A only contains one Statement-Region, hence
the final region computed at step 4 consists in the following single interval: [504, 933].

3.1.3 Overlapping Write Regions

In certain case (e.g. complex guards not handled, over-approximation of the interval of an iteration
variable), the analysis approximates the write region of a data buffer. When partitioning a kernel
across multiple devices, this approximation may result in a region of the buffer potentially written
by more than one sub-kernel.

However, this situation is not possible. Since kernel threads are executed concurrently, each
thread must write buffers at different locations for the kernel to be correct. Hence, the buffers
regions actually written by each sub-kernel do not overlap.

When the write regions computed by our analysis for different sub-kernels are not disjoint,
overlapping parts of the write regions are considered as may-write region whereas non-overlapping
parts are considered as must-write region.

Figure 3.3a shows such an example. The sub-kernel on device 1 and the sub-kernel on device
2 (with respective sub-NDRanges [0, 9] and [10, 19]) have non-disjoint write regions (respectively,
[0, 11] and [8, 19]) and so discontiguous must-write regions. The must-write regions is highlighted
in blue in the figure whereas the may-write region is highlighted in red.

Our objective is to know which device owns the data in the may-write region in red ([8, 11])
after sub-kernels execution. In other words, we want to obtain must-write regions that cover the
must-write region of the original kernel.

To tackle this issue, we propose to automatically increase the sub-NDRange of each sub-kernel
and recompute its must-write region until contiguous must-write regions of the sub-kernels cover
the must-write regions of the original kernel.
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(a) Analysis Approximation Resulting in Non-Disjoint Write Regions.
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(b) Analysis Results with Replication.

Figure 3.3: Write Region Analysis with Replication.

In the example shown in Figure 3.3b, we first increase the sub-NDRange of sub-kernel 1 and
reduce the sub-NDRange of sub-kernel 2 and recompute their write-regions in order to increase
the must-write region of sub-kernel 1. As shown in the figure, the write-region computed for sub-
kernel 1 when its sub-NDRange corresponds to the interval [0, 11] is [0, 13], and the write-region
computed for sub-kernel 2 when its sub-NDRange is [12, 19] is [10, 19]. Hence, when the sub-
NDRange of sub-kernel 1 is [0, 11], we know that it writes at least the region [0, 9] (must-write
region) and may be also the region [10, 13] (may-write region).

Then, we do the same for sub-kernel 2: We increase the sub-NDRange of sub-kernel 2 and
reduce the sub-NDRange of sub-kernel 1 and recompute their write-regions in order to increase
the must-write region of sub-kernel 2. As shown in the figure, the write-region computed for sub-
kernel 2 when its sub-NDRange corresponds to the interval [8, 19] is [6, 19], and the write-region
computed for sub-kernel 1 when its sub-NDRange is [0, 7] is [0, 9]. Hence, when the sub-NDRange
of sub-kernel 2 is [10, 19], we know that it writes at least the region [10, 19] (must-write region)
and may be also the region [6, 9] (may-write region).
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When sub-kernel on device 1 and sub-kernel on device 2 have respective sub-NDRanges [0, 11]
and [8, 19], their respective must-write regions ([0, 9] and [10, 19]) cover the must-write regions of
the original kernel ([0, 19]).

Hence, we overcome the possible approximations in the analysis by computation and data repli-
cation. In Figure 3.3b, the sub-NDRange [8, 11] is executed by both devices. Threads from sub-
kernel 1 may potentially write the region [10, 13] and threads from sub-kernel 2 may potentially
write the region [6, 9]. However, the Buffer Manager considers that after sub-kernels execution
only device 1 owns elements from region [0, 9] and only device 2 owns elements from the region
[10, 19].

3.1.4 Atomics
To handle atomic operations when distributing a kernel over multiple devices, two cases must
be considered. When the result of an atomic operation is used inside the kernel, to ensure the
correctness of the computation it is necessary that all threads modifying the same region of the
buffer execute on the same device. To tackle this issue the atomic instruction is considered as a
store instruction. This results in regions written by possibly multiple devices (may-write regions)
as in Figure 3.3a and is solved by replication, as in Figure 3.3b.

When the result of the atomic operation is not used inside the kernel, the analysis checks
whether the atomic operation is commutative or not. When the atomic operation is not commu-
tative, it is considered as a store instruction as previously. Instead, when the atomic operation is
commutative, the kernel analysis is augmented with atomic-regions. The region of a buffer modi-
fied by the atomic operation is tagged as an atomic-region instead of being a write-region. If the
atomic-region of different sub-kernels overlap, the partial results from the overlapping regions on
all devices are read back to the host after sub-kernels execution. Then a reduction is performed to
merge the results properly.

3.1.5 Limits
In the following situations, our memory region analysis does not allow capturing precisely the read
and write regions of a kernel:

• Indirection: When a buffer is indirectly accessed through an indirection array I and values
in I are not increasing or decreasing, our analysis is not capable of determining the region
accessed by each sub-kernel.

• Complex control-flow: When the index where a load/store instruction accesses a buffer cor-
responds to a φ-instruction in the SSA-form and this φ-instruction does not correspond to
an induction variable, our analysis is not capable of building a parametric expression. In
addition, the bounds of iteration variable cannot always be computed.

• Multi-dimensional regions: As our memory region analysis resort to an interval analysis,
when the region of a buffer accessed by a kernel is indexed in more than one dimension, the
region is over-approximated.

• Complex guard: When the conditional governing the execution of a store/load instruction
into/from a buffer is too complex, it is ignored by our analysis.

57



3.2. CASE STUDY: SOTL

As a fallback solution, the user can provide the region of a buffer B read, written or atomically
modified through the following pragmas:

• pragma read B[expr1,expr2]

• pragma write B[expr1,expr2]

• pragma atomic B[expr1,expr2]

These annotations are contextual and the bounds of the regions provided through these annota-
tions (expr1 and expr2) can refer to other variables in the code. The user can also add additional
code in the kernel that will only be used for the annotations. This additional code will be removed
by dead code elimination when the kernel will be compiled and will therefore have no impact on
the code actually executed on each device.

3.2 Case Study: SOTL
In this section, we detail how our method is able to automatically partition a real application with
indirect memory accesses and atomic operations called SOTL.

SOTL is an OpenCL simulation of interactions between particles based on the Lennard-Jones
potential [50], widely used in the field of molecular physics. This potential energy is often used to
capture both attraction phenomena between atoms when they are distant, and repulsion phenom-
ena when they are too close. An overview of the rendering obtained with this application when
simulating the collision of two projectiles with a material is shown in Figure 3.4.

Figure 3.4: Overview of SOTL.

In this simulation, forces are only calculated between particles that are within a small region
corresponding to the cut-off radius (denoted rc). To calculate the result of the interactions between
atoms, the application memorizes for each atom its position (x, y, z) and its speed (dx, dy, dz). To
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simplify, the velocity of an atom is calibrated by a time step ∆t = 1. Hence, at each iteration of the
simulation, (dx, dy, dz) represents the vector that must be added to the position of an atom to obtain
its position at next iteration. The intensity Fi j of a force applied by an atom j to an atom i is given
by the following formula:

Fi j =

 24
ε

r

( (
σ

r

)6

−

(
σ

r

)12)
if r ≤ rc

0 otherwise.
(3.1)

where r is the distance between i and j. σ and ε are constants chosen to respect the physical
properties of the simulated material.

When the distance between a pair of atoms is greater than the cut-off radius rc, the forces are
neglected. Thus, at each iteration, it is necessary to know the particles that are within this cut-off

radius in order to avoid unnecessary calculations.
The technique used in SOTL to reduce the number of computation is based on a subdivision of

the 3D space into cubes of size d called cells, where d is equal to the cut-off radius rc as shown in
Figure 3.5. Thus, the neighbors of an atom are necessarily found in the 26 cells surrounding the
cell containing the atom (plus its cell itself). This gives a total of 27 cells to go through to compute
the forces applied to an atom.

Figure 3.5: Subdivision of the 3D space of the domain into cells.

3.2.1 Algorithm and Data Structures
During the simulation phase, particles interact and move through the domain. At each iteration, it
is assumed that an atom cannot move further than its neighboring cells. Thus, using an appropriate
data structure, the search for neighboring particles is limited to the 27 related cells. However, this
approach requires sorting all atoms at the beginning of each iteration before computing the forces.

This technique to accelerate the neighboring particle search is called spatial binning [46] and is
widely used in particle simulation applications.

The general algorithm of this simulation of interactions between atoms using the Lennard Jones’
potential consists in sorting the atoms and then computing the forces and moving the particles at
each iteration.
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Data Structures

Each cell from the domain has an identifier in each dimension (cell_idx, cell_idy, cell_idz), and a
global identifier cell_id computed as follows:

cell_id = cell_idx ∗ cellsx ∗ cellsy + cell_idy ∗ cellsx + cell_idy (3.2)

where cellsi is the total number of cells in dimension i.
The cell id of an atom in all axes is computed from its position as follows:

cell_idx = posx/rc

cell_idy = posy/rc

cell_idz = posz/rc

(3.3)

where posi is the coordinate of the atom in dimension i, and rc the cut-off radius.
To facilitate the search for the nearest neighbors, the positions of the atoms are sorted according

to the cell to which they belong and an indirection array cells allow accessing atoms from a given
cell.

When atoms are sorted, the index of the first atom of the cell with global identifier i in the buffer
containing the positions is given by cells[i]. Hence, the number of atoms contained in this cell
is given by cells[i+1]-cells[i] and all atoms belonging to this cell are stored contiguously
from the index cells[i] in the buffer of positions. The size of buffer cells is nc + 1 where nc
is the number of cells in the domain of the simulation.

Figure 3.6 illustrates this data structure. In this example the cell with global identifier 2 contains
3 atoms and the index of the first atom of this cell in the position array is cells[2] = 4.

cells array

2 4

positions

cells array

2 40 7 9

Figure 3.6: SOTL: Cells array.

The coordinates and speeds of the atoms are stored in two different buffers: pos and speed.
The coordinate of the i-th atom is given by pos[i] and its speed by speed[i]. Two other buffers,
sorted_pos and sorted_speed, are used to sort the atoms.

At the beginning of each iteration, positions and speeds of atoms computed at previous iteration
are stored into buffers pos and speed. As each atom may have moved to one of its neighboring
cells after each iteration, the cells array is rebuilt at the beginning of each iteration. Then, the
positions and speeds of atoms computed at previous iteration are sorted according to the cell to
which they belong into buffers sorted_speed and sorted_pos.

Algorithm

The algorithm of SOTL is based on the successive execution of the following OpenCL kernels:
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• reset: reset the cell array

• count: count the number of atoms per cell

• scan: compute the index of the first atom of each cell using a prefix sum

• copy: backup cell array

• sort: sort the atoms

• force: compute forces and update atoms positions

The data dependences between these kernels is shown in Figure 2.4, page 29.
At the beginning of iteration t, buffers pos and speed contain the positions and speeds of the

atoms computed at iteration t − 1. The atoms are not sorted since at each iteration, each atom can
move to another cell.

The first step of the algorithm consists in computing the number of atoms in each cell. This is
the role of the two first kernels reset and count. The reset kernel initializes array cells to zero.
Then the count kernel computes for each atom the global identifier cell_id of the cell to which it
belongs from its position and increment the element of array cells at index cell_id. At the end
of this step, the value of cells[i] is the number of atoms in the cell with global identifier i.

The second step of the algorithm consists in calculating the index where the first atom of each
cell must be stored in array sorted_pos by computing the prefix sum of array cells. This
the role of the scan. At the end of this step, the interval [cells[i],cells[i + 1] − 1] correspond
to the indices where atoms belonging to the cell with global identifier i must be stored in the
sorted_pos array.

The third step consists in sorting the atoms. This is the role of the two next kernels. The copy
kernel makes a backup of the cells array which will be modified by the sort kernel. Then the
sort kernel reads for each atom its position and speed from buffers pos and speed and copy them
at the index corresponding to the global identifier of the cell to which the atom belong in buffers
sorted_pos and sorted_speed as illustrated in Figure 3.7.

positions (unsorted)

positions (sorted)

Figure 3.7: SOTL: Sorting atoms.

The last step consists in computing the forces applied to each atom to update its speed and
position. This is the role of the force kernel. At each iteration, atoms cannot move further than their
neighboring cells. For each atom, this kernel only calculates interactions with atoms belonging to
its neighboring cells in order to avoid unnecessary computation.
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3.2.2 Kernels Analysis
We detail here how our memory region analysis automatically partition the data for the three most
complex kernels of SOTL: count, sort and force. The three other kernels do not contain indirect
memory access nor atomic operation and do not require the techniques presented in Sections 3.1.3,
3.1.4 and 3.1.5 to be partitioned. For sake of clarity, we present our memory region analysis on an
1D version of SOTL where the position and speed arrays only contains the position and speed of
atoms in the x-axis and the cut-off radius rc is 1. Hence, the position of an atom correspond to its
cell id. Nevertheless, our analysis also works with the 3D version of SOTL as shown in the next
section.

Partitioning the force kernel

The code of the force kernel from SOTL is shown in Figure 3.8. The size of the NDRange corre-
sponds to the number of particles in the domain and each thread computes in parallel a new position
and a new speed for the particle corresponding to its index in the NDRange.

1 # def ine CELL_SIZE 1
2
3 kerne l fo rce ( f l o a t ∗sorted_pos , f l o a t ∗pos ,
4 f l o a t ∗sorted_speed , f l o a t ∗speed , i n t ∗ c e l l s ) {
5 i n t g id = ge t_g loba l_ id ( 0 ) ;
6 f l o a t current_pos = sorted_pos [ g id ] ;
7
8 / / Get c e l l i d o f cu r ren t atom
9 i n t c e l l _ i d = current_pos / CELL_SIZE ;

10
11 f l o a t f o r c e _ t o t a l = 0 ;
12
13 / / I t e r a t e through neigbor c e l l s to compute the fo rces app l ied on the
14 / / cu r ren t atom
15 f o r ( i n t i = c e l l s [ c e l l _ i d −1 ] ; i < c e l l s [ c e l l _ i d + 2 ] ; i ++) {
16 f l o a t d i s t 2 = ( sorted_pos [ i ] − sorted_pos [ g id ] ) ∗
17 ( sorted_pos [ i ] − sorted_pos [ g id ] ) ;
18 i f ( d i s t 2 < LENNARD_SQUARED_CUTOFF)
19 f o r c e _ t o t a l += . . . ;
20 }
21
22 / / Update speed
23 speed [ g id ] = sorted_speed [ g id ] + f o r c e _ t o t a l ;
24
25 / / Update p o s i t i o n
26 pos [ g id ] = current_pos + speed [ g id ] ∗ DELTA_T ;
27
28 // Safe indirections
29 #pragma opencl_increasing_buffer sorted_pos, cells
30 }

Figure 3.8: force kernel from SOTL.

More precisely, each thread reads the position of the atom corresponding to its index in the
NDRange from buffer sorted_pos as shown in line 6 in the code. The cell id of the atom is
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calculated line 9 by dividing its position by the cell size. Then, the force applied to the atom is cal-
culated in the for loop line 15 by iterating over the positions of atoms contained in the neighboring
cells. Finally, the updated speed and position are stored into buffers speed and pos lines 23 and
36.

In this kernel, buffer cells is indirectly accessed through buffer sorted_pos line 15 and
buffer sorted_pos is indirectly accessed through buffer cells lines 16 and 17.

Nevertheless, at this step of the algorithm, the atom positions contained in buffer sorted_pos
have been sorted according to the cell to which they belong. Hence, values in buffers cells and
sorted_pos are increasing. The developer can therefore annotate these buffers as increasing as
shown in line 29.

For this kernel, splitting buffers pos, speed and sorted_speed is straightforward since
each thread only accesses these buffers at the location corresponding to its index in the NDRange
(get_global_id(0)). Splitting buffers cells and sorted_pos is more complicated as
they are accessed through indirection arrays. Figure 3.9 illustrates the partitioning of these buffers
computed by our analysis when this kernel is partitioned onto 3 devices whose sub-NDRanges
corresponds the intervals [0, S 1 − 1], [S 1, S 2 − 1] and [S 2, S 3 − 1] respectively.

In order to partition these arrays, our static analysis automatically determines that the region of
buffer sorted_pos read by each thread corresponds to the parametric region r1, and the region
of buffer cells read by each thread corresponds to the parametric region r2.

With:

• r3: the index where buffer sorted_pos is read at line 6

• r4: the interval of values taken by the induction variable i in the for loop line 15

• r5 and r6: the values returned by the two load statements reading buffer cells line 15.

• r7 and r8: the values of cell_id-1 and cell_id+2.

The regions r1 and r2 are defined as follows:

• r1 = r3 ∪ r4

• r2 = r7 ∪ r8

• r3 = get_global_id(0)

• r4 =
[
r5, r6 − 1

]
• r5 = cells[r7]

• r6 = cells[r8]

• r7 = (int) sorted_pos[get_global_id(0)]/1-1

• r8 = (int) sorted_pos[get_global_id(0)]/1+2

Let’s know explain how these regions are instantiated at runtime for sub-kernel 2. First the
interval defining its sub-NDRange is injected into these regions:

• r1 = r3 ∪ r4
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• r2 = r7 ∪ r8

• r3 = [S1,S2 − 1]

• r4 =
[
r5, r6 − 1

]
• r5 = cells[r7]

• r6 = cells[r8]

• r7 = (int) sorted_pos
[
[S1,S2 − 1]

]
/1 − 1

• r8 = (int) sorted_pos
[
[S1,S2 − 1]

]
/1 + 2.

Then, as buffer sorted_pos is annotated as increasing, regions r7 and r8 can be calculated by
only considering the values of buffer sorted_pos at indices S 1 and S 2 − 1:

• r7 =
[
sorted_pos[S 1],sorted_pos[S 2 − 1]

]
− 1

• r8 =
[
sorted_pos[S 1],sorted_pos[S 2 − 1]

]
+ 2

Hence, at runtime only the two elements at indices S 1 and S 2−1 are read from buffer sorted_pos
to instantiate these regions:

• r7 = [9, 20] − 1 = [8, 19]

• r8 = [9, 20] + 2 = [11, 22]

Then, instantiated regions r7 and r8 are injected into parametric regions r5 and r6:

• r5 = cells
[
[8, 19]

]
• r6 = cells

[
[11, 22]

]
As buffer cells is annotated as increasing, region r4 can be calculated by only considering the
values of buffer cells at indices 8 and 22:

• r4 =
[
cells[8, 19],cells[11, 22] − 1

]
=

[
cells[8],cells[22] − 1

]
.

Hence, at runtime only the two elements at indices 8 and 22 are read from buffer cells whose
values are S 1−3 and S 2 +2 respectively. Therefore, the region is instantiated as r4 = [S 1−3, S 2 +1].
Finally, we obtain the following regions for r1 and r2:

• r1 = [S 1, S 2 − 1] ∪ [S 1 − 3, S 2 + 1] = [S 1 − 3, S 2 + 1]

• r2 = [8, 19] ∪ [11, 22] = [8, 22]

As we can see in Figure 3.9, the regions of buffers cells and sorted_pos read by each
sub-kernel are not disjoint, hence elements highlighted in blue are replicated on multiple devices.
In contrast, the regions of buffer pos written by each sub-kernel are disjoint. Hence, the analysis
knows that after sub-kernels execution, the regions [0, S − 1], [S 1, S 2 − 1] and [S 2, S 3 − 1] of buffer
pos are only owned by devices 1, 2 and 3 respectively.

After sub-kernel executions, each atom may have moved to one of its two neighboring cells.
Hence, positions in buffer pos are not sorted. Figure 3.9 illustrates possible values in buffer pos
after sub-kernels execution. As the cell size is 1 in this example, values in buffer sorted_pos
and pos correspond to the cell id of the atoms.
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Figure 3.9: Partitioning arrays from the force kernel.

Partitioning the count kernel

The count kernel from SOTL is shown in Figure 3.10. The role of this kernel is to count the number
of atoms in each cell. This kernel takes as parameter two arrays: pos containing the position of
each atom and cells the output array initialized to zero in which the number of atoms per cell
will be calculated.

The NDRange of this kernel corresponds to the number of atoms in the domain. Each thread
reads the position of the atom whose index correspond to its index in the NDRange and computes
its cell id as shown line 5. Then the element of the cells array whose index is the cell id of the
atom is incremented atomically as shown line 8.

1 kerne l count ( f l o a t ∗pos , i n t ∗ c e l l s , i n t N) {
2 i n t g id = ge t_g loba l_ id ( 0 ) ;
3
4 / / Get c e l l index o f cu r ren t atom
5 i n t c e l l _ i d = pos [ g id ] / CELL_SIZE ;
6
7 / / Increment the number o f atom i n the c e l l
8 atomic_ inc (& c e l l s [ c e l l _ i d ] ) ;
9

10 // User Hint
11 #pragma atomic cells [cell_id-2:cell_id+2]
12 }

Figure 3.10: count kernel from SOTL.

For this kernel splitting the pos array is straightforward since each thread only reads this array
at the index corresponding to its index in the NDRange. However splitting cells array is more
complicated.
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At this step of the algorithm, values in buffer pos are not sorted since each atom may have
moved to one of its two neighboring cells at previous iteration. Hence, the region of buffer cells
touched by a sub-kernel of sub-NDRange [L,U] does not match the interval [cell_idL, cell_idU]
with cell_idL and cell_idU the cell ids of atoms stored at indices L and U in buffer pos. This is
illustrated in Figure 3.11 where cell_idS 1 = 10 and cell_idS 2−1 = 19, while the region of buffer
cells touched by sub-kernel 2 corresponds to the interval [8, 21].

However, given two threads i and j with i ≤ j, it is possible to compute a lower bound for
cell_id j based on cell_idi and similarly an upper bound for cell_idi based on cell_id j. Hence it is
possible to calculate an over-approximation of the region of buffer cells touched by a sub-kernel
of sub-NDRange [L,U] by only considering the values of buffer pos at indices L and U.

Demonstration: At iteration t − 1, before executing the force kernel, atoms are sorted according
to the cell to which they belong. Hence, when i ≤ j, then cell_idt−1

i ≤ cell_idt−1
j . With cell_idt−1

i

and cell_idt−1
j the cell ids of atoms stored at indices i and j in buffer sorted_pos at iteration t−1.

Then, after execution of the force kernel each atom may have moved to another cell. However, as
atoms cannot move further than their neighboring cells at each iteration, we obtain the following
inequalities: 

cell_idt−1
i ≤ cell_idt−1

j

cell_idt−1
i − 1 ≤ cell_idt

i ≤ cell_idt−1
i + 1

cell_idt−1
j − 1 ≤ cell_idt

j ≤ cell_idt−1
j + 1

=⇒

cell_idt
i − 2 ≤ cell_idt

j

cell_idt
i ≤ cell_idt

j + 2

with cell_idt
i and cell_idt

j the cell ids of atoms stored at indices i and j in buffer pos at iteration
t. Therefore, the region of buffer cells touched by a sub-kernel of sub-NDRange [L,U] can be
approximated with the interval [cell_idL − 2, cell_idU + 2].
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Figure 3.11: Partitioning arrays from the count kernel.

This physical property cannot be determined automatically by our analysis, but the developer of
this application can annotate the kernel as shown line 11 in the code. In this case, only the two
elements at indices L and U will be read from buffer pos at runtime in order to compute the region
of buffer cells touched by a sub-kernel of sub-NDRange [L,U].
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As highlighted in green in Figure 3.11, the analysis of this kernel may result in regions of buffer
cells touched by multiple devices. Indeed, threads in charge of atoms belonging to the same cell
can execute onto different devices. In that case the atomic operation is commutative and the result
of the atomic region is not used inside the kernel. Therefore, after sub-kernels execution only the
partial results from the overlapping region in green are read back from all devices to the host. Then
a reduction is performed to merge these partial results properly as explained in Section 3.1.4.

Partitioning the sort kernel

The sort kernel from SOTL is shown in Figure 3.12. The role of this kernel is to read the position
and speed of each atom from the unsorted buffers pos and speed and copy them at the right
location into sorted buffers sorted_pos and sorted_speed.

The NDRange of this kernel corresponds to the number of atoms in the domain. It takes five
buffers as parameters: pos, speed, sorted_pos, sorted_speed and cells.

At the end of this kernel, the positions and speeds of atoms belonging the cell of id i must be
stored contiguously from index cells[i] into buffers sorted_pos and sorted_speed.

To that end, each thread first reads the position of the atom corresponding to its index in the
NDRange and computes its cell id as shown line 6. Then, the location where the position and
speed of the atom must be stored in the sorted buffers is given by cells[cell_id]. To en-
sure that all atoms belonging to the same cell are not copied at the same location, the value of
cells[cell_id] is incremented atomically by each thread as shown in line 9.

The atomic instruction line 9 first reads the value of cells[cell_id] (referred to as old)
then stores value old + 1 in cells[cell_id] and returns old.

Finally, the position and speed of the atom are copied at the right location into buffers sorted_pos
and sorted_speed as shown lines 12 and 13.

1 kerne l s o r t ( f l o a t ∗pos , f l o a t ∗sorted_pos ,
2 f l o a t ∗speed , f l o a t ∗sorted_speed , i n t ∗ c e l l s ) {
3 i n t g id = ge t_g loba l_ id ( 0 ) ;
4
5 / / Get c e l l index o f cu r ren t atom
6 i n t c e l l _ i d = pos [ g id ] / CELL_SIZE ;
7
8 / / Get index o f the next f r ee case i n the c e l l
9 i n t s h i f t = atomic_ inc (& c e l l s [ c e l l _ i d ] ) ;

10
11 / / Copy atom p o s i t i o n and speed i n the r i g h t c e l l o f the

sor ted b u f f e r s
12 sorted_pos [ s h i f t ] = pos [ g id ] ;
13 sorted_speed [ s h i f t ] = speed [ g id ] ;
14
15 // User Hints
16 int start_id = cells[cell_id-2], end_id = cells[cell_id+3] -1;
17 #pragma write sorted_pos [start_id:end_id]
18 #pragma write sorted_speed [start_id:end_id]
19 #pragma atomic cells[cell_id-2:cell_id+2]
20 }

Figure 3.12: sort kernel from SOTL.
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For this kernel splitting the pos and speed arrays is straightforward since each thread only
reads these arrays at the location corresponding to its index in the NDRange. However, deter-
mining the regions of other buffers accessed by each sub-kernel is impossible without any hint
from the user. Indeed, the location where each thread writes into buffers sorted_pos and
sorted_speed, (shift line 9 in the code), is the result of an atomic operation on an unsorted
buffer. Hence, determining its value is impossible without executing the kernel.

Nevertheless, as explained previously, the developer of the application knows that given a region
[L,U] of buffer pos, the cell ids of atoms stored in this region can be over-approximated with the
interval [cell_idL − 2, cell_idU + 2]. Hence, the region where the positions and speeds of these
atoms will be stored in buffers sorted_pos and sorted_speed can be approximated with the
interval [cells[cell_idL − 2],cells[cell_idU + 3]− 1]. The region of buffers cells touched by
the atomic operation can also be approximated with the interval [cell_idL − 2, cell_idU + 2] as for
kernel count.
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Figure 3.13: Partitioning arrays from the sort kernel.

The developer of the application can annotate the kernel with these intervals as shown lines
15 to 19 in the code. Thus, to compute the region of buffer cells touched by a sub-kernel of
sub-NDRange [S 1, S 2−1], only the two elements at indices S 1 and S 2−1 are read from buffer pos
as shown in Figure 3.13. In this example the values of these two elements are 10 and 19, hence
the region of buffer cells touched by this sub-kernel is computed as the interval [8, 21]. Finally,
to compute the region of buffers sorted_pos and sorted_speed written by this sub-kernel,
only the two elements at indices 8 and 22 are read from buffer cells. This region is computed as
[a, b − 1] where a and b are the values of buffer cells at indices 8 and 22.

In this kernel, the result of the atomic increment into buffer cells performed by a thread t1

may be read by a thread t2 , t1. This is the case when t1 and t2 are in charge of atoms belonging the
same cell. When splitting this kernel into sub-kernels executed onto different devices, it is necessary
that given a thread t reading buffer cells at location l, all thread t′ modifying atomically the value
of buffer cells at this location are executed on the same device to ensure correctness. To tackle
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this issue, our analysis automatically detects that the result of the atomic operation line 9 in the
code is used inside the kernel. The region touched by this atomic operation is then considered as a
write-region as explained in Section 3.1.4.

For this kernel, the memory region analysis of buffers sorted_pos and cells results in
non-disjoint write-region as illustrated in Figure 3.13. In this case, the overlapping write-regions
are considered as may-write regions (highlighted in red in the figure) and non-overlapping write-
regions as must-write regions (highlighted in blue in the figure). The analysis is not capable of
determining on which device the may-write regions will be written but this issue is resolved by
computation replication. The sub-NDRange of each sub-kernel is increased until contiguous must-
regions cover the whole buffers as explained in Section 3.1.3.

3.2.3 Evaluation
We evaluate in this section the performance obtained when partitioning SOTL automatically with
our method compared to the performance obtained with an optimized version split by hand.

Methodology: Experiments are conducted on the Conan platform which has 3 NVIDIA Tesla
M2075 GPUs. We measure the total execution time of the application when computing 100 iter-
ations of the simulation varying the size of the input configuration from 100k to 20000k atoms.
In order to only evaluate the efficiency of our data partitioning method, the input configurations
correspond to a regular workload without any load variation. Load balancing issues arising when
executing this application onto heterogeneous devices with an irregular input configuration are
tackled in the next chapter.

We compare the performance obtained for 3 different versions:

• Original: corresponding to the execution of the original version of SOTL on a single GPU.

• Auto: corresponding to the execution of the version of SOTL partitioned automatically on
multiple GPUs using our method.

• Hand: corresponding to the execution of the version of SOTL split by hand on multiple
GPUs.

The Hand version of SOTL is an optimized version for multi-device execution overlapping
communication and computation. In this version, the domain of the simulation is split into several
sub-domains, one per device. At each iteration, each device only sorts atoms contained in its sub-
domains. Then, 3 kernels are executed to compute the forces: border_left, border_right and center.
The two first kernels compute the forces only for atoms belonging to the cells at the borders of the
device sub-domain. The last kernel computes the forces for all atoms of the device sub-domain
except those belonging to the border cells. While executing this kernel, borders are exchanged
between devices in order to overlap communication and computation.

Results: Figure 3.14 shows the speedups obtained by the Auto and Hand versions on 2 and 3
GPUs compared to the performance of the Original version on a single GPU.

We can see that the Auto version obtained poor performance with small input configurations.
Indeed, even with our memory region analysis reducing the amount of data to transfer between
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kernels, computation and communication are not overlapped. Hence, the cost of the data transfers
is too high to obtain speedups when there is not enough computation.

However, from an input size of 10000k, the Auto version obtained very good performance with
speedups of 1.73X on 2 GPUs and 2.39X on 3 GPUs. With an input size of 20000k the Auto
version obtained even better performance, with a speedup of 1.94X on 2 GPUs and a speedup of
2.73X on 3 GPUs.
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Figure 3.14: Performance obtained when partitioning SOTL on multiple GPUs.

The Hand version gives an upper limit of the maximum performance achievable when parti-
tioning this application on multiple GPUs. We can see that the Hand version obtained very good
speedups from an input size of 1000k. Nonetheless, from 20000k atoms the performance obtained
with our method are very close to the performance obtained with the Hand version.

Automatically partitioning this complex application onto multiple devices with our method only
requires to add a few pragmas to the original version of SOTL. On the other hand, starting from
the Original single-device version of SOTL, tremendous coding efforts are necessary to obtain the
optimized Hand version.

3.3 Related Work
Many works propose techniques to distribute the workload of OpenCL kernels to multiple devices
by splitting the NDRange at workgroup granularity as we do. However, few of them aim at auto-
matically partitioning the data of complex kernels containing indirect memory accesses and atomic
operations and minimizing the amount of data to transfer. Most of them require simple memory ac-
cess patterns in order to split the data and do not keep track of the memory regions of buffers owned
by each device in order to avoid redundant data transfers in the context of iterative applications with
multiple kernels.

The Maat library [43, 51, 52] provides an interface resembling the OpenCL API with new
abstractions such as super context, super buffer and super kernel to manage the co-execution of
OpenCL kernels onto multiple devices. A super context can contain all devices from the system
and is not limited to a single vendor (e.g. Intel or NVIDIA) as in OpenCL. Super kernels and super
buffers are kernels and buffers that are valid across all the devices that are contained in a super
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context. The creation of a super buffer results in the creation of a buffer of the same size for all the
devices as in our method. Two new commands are added to the OpenCL API in order to write data
to the devices. The clWriteSuperBuffer command broadcasts the data to all devices. On the con-
trary, with the clDelayedWriteSuperBuffer command, the data transfer is performed just before the
kernel execution and each device only receives the data it needs to execute its sub-kernel. However,
in order to split the data their method only support kernels with regular access patterns. Moreover,
they only handle kernels where each thread only produces the result for the index of the output
buffer corresponding to its index in the NDRange.

Kofler et al. [53] present a method for OpenCL task partitioning. Using a combination of
source-to-source transformation and static code analysis they automatically translate a single-device
OpenCL application into a multi-device application. Their analysis collect the access patterns of
each buffer and checks if the access expression is (a) a constant, (b) the result of a convex function
depending on the thread id, or (c) something else. If only accesses of type (b) occur, the buffer
is split among all devices. For input buffers, if accesses of type (a) or (b) occur the entire buffer
is broadcasted to every device. For output buffers, only accesses of type (b) are handled. For all
others access patterns their method is not capable of partitioning a kernel.

In [40], the way to partition the data relies on a sampling run of the kernel to determine the
buffer access ranges for each candidate partition. However, their method requires that array indices
are an affine function of thread ids (i.e. global ID, work-group ID and local ID), and does not handle
array reference in conditional statements. After a partitioning of the kernel has been determined,
the runtime allocates on each device a buffer whose size is exactly the same as that of the access
range of the sub-kernel it executes. Thus, their method makes it possible to execute kernels whose
memory consumption exceeds the memory capacity of a single device. In order to distribute the
workload, they propose six different ways of partitioning a NDRange with three dimensions. The
three first partitionings correspond to splitting only one of the three dimensions as we do. The three
others consist in splitting two dimensions of the NDRange in a way that all work-groups allocated
on the same device have contiguous work-group IDs in each dimension. The runtime then selects
the partitioning of the NDRange that minimizes the amount of data to transfer.

Sakai et al. [54] extend work in [40] with a data decomposition method for multi-dimensional
data that cannot be entirely stored in the GPU memory and aiming at accelerating a single-GPU
code on a multi-GPU system. This method uses a sample run and is limited to kernels whose
memory references are given as affine functions of the thread and thread block indices.

In [55], Kim et al. propose a method to partition OpenCL kernels across different devices in a
cluster. However, mapping tasks and data to these devices is left to the programmer.

Li et al. [37] present STEPOCL, a tool which takes as input kernels along with a configura-
tion file and generates automatically an OpenCL multi-devices application. The configuration file
describes how to split data, the control flow of the program, and allows to have specialized kernels
for different architectures. Their method makes it possible to execute OpenCL kernels with large
workloads that do not fit in the memory of a single device.

Pandit et al. present FluidiCL [56], a framework that allows the co-execution of an OpenCL
kernel on a CPU and a GPU. In order to split the data, input buffers are broadcasted to both devices.
Then the partial output computed by each device is merged using a “merge” kernel executed on the
GPU. This merging is carried out by maintaining a copy of the unmodified buffer (the original
buffer) and comparing it with the data computed on the CPU. If the data computed on the CPU
differs from the original buffer, it is copied to the GPU buffer. Nevertheless, the proposed approach
cannot be easily generalized for any number of devices and the code transformation is not fully
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automated.
The SKMD framework [41] uses a flattened view of N-dimensional work-groups in order to

distribute the workload of an OpenCL kernel to multiple devices. A static analysis of each kernel
is performed in order to compute the buffer memory access range of each work-group. They dif-
ferentiate between contiguous kernels, in which each of the threads writes the result in contiguous
locations and discontiguous kernels. If for each buffer, the function of index where the buffer is
accessed is an affine function of the work-item IDs, the kernel is considered as a contiguous kernel.
For contiguous kernels only the necessary data is transferred back and forth from each device once
the partitioning decision is made. On the other hand, for discontiguous kernels the entire input is
transferred to each device and the output must be merged. In order to merge the output from dif-
ferent devices, they generate a “merge” kernel which is executed on the CPU. The “merge” kernel
reuses the original kernel function after removing the computational part and replacing the values
stored to output buffers with the values computed on the GPU. This way the “merge” kernel is
executed with the NDRange of the sub-kernel executed on the GPU and only the locations touched
by the GPU kernel will be copied to the CPU buffer. However, as many merge kernels as there are
GPUs must be executed in order to merge the partial output computed by all devices. Moreover,
when the computational part of the kernel is used to compute the index where the output buffer
is written, it cannot be removed from the “merge” kernel. In this case, the execution time of the
“merge” kernel would be the same as the execution time of the original kernel.

None of these works is capable of partitioning complex applications with spatial binning such
as the SOTL application presented in the previous section. For input buffers containing indirect
memory accesses as in SOTL, the only solution they propose would be to broadcast the whole input
buffers to every device. This would result in a huge overhead for this application. Moreover, most
of them are not capable of merging the partial output from different devices when the locations
of the elements are given as indirect memory accesses as in the sort kernel from SOTL. Even
the merging techniques proposed in FluidiCL [56] and in SKMD [41] cannot cope with kernels
containing atomic operations as in the count kernel from SOTL.

Finally, in VAST [57], the authors propose a method partitioning the data parallel workload of
an OpenCL kernel. This method does not target the execution of the kernel on multiple devices
but aims at virtualizing memory space of the GPU. To overcome the limited size of the physical
memory of the GPU their method performs execution of subsets of work-groups consecutively.
VAST applies the inspector-executor model to generate a new type of page table accessible for the
OpenCL kernels. Their method extracts the precise working set required for the divided workload
and supports kernels with indirect memory access pattern. The solution they propose is not limited
to indirect memory accesses where the values of the indirection array are increasing as in our
method.

3.4 Summary

Heterogeneous multi-devices architectures are very complex to program. Many efforts remain to
be done to improve the programmability of these architectures in order to achieve exascale. To
express the parallelism of their applications, developers should be free from issues related to the
underlying architecture where their applications will be executed.

To that end, OpenCL propose an abstraction that allows to execute the same code on different
architectures (e.g. CPUs, GPUs). However, when targeting the execution of an OpenCL application
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onto multiple devices the developer still has to partition the workload and manage the data transfers
between devices by hand. Adapting a single-device application to multi-device architectures is a
tedious and error prone task.

In order to ease the development of applications for multi-device architecture, we proposed in
this chapter an automatic data partitioning method. Contrary to existing related works, the method
we propose allows to automatically partition applications with complex kernels that may contain
indirect memory accesses and atomic operations. By calculating precisely the region of buffers read
and written by each sub-kernel and keeping track of the region of buffers owned by each device,
our method limits the amount of data to transfer between devices.

However, once the application can be automatically partitioned onto to multiple devices, several
issues still need to be addressed. When partitioning an application onto heterogeneous devices, load
balancing issues may arise if the devices exhibit different compute capabilities, even if the workload
of the application is regular. In addition, the communication time between devices must be taken
into account to minimize the total execution time of the application. Moreover, some applications
may have irregular workloads and in the case of iterative applications there can be load variations
over iterations. Addressing these issues is the subject of the next chapter.
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One of the main challenges when adapting a single-device application to multiple heteroge-
neous devices is to automatically balance the load between devices so as to minimize the total
execution time of the application. The type of applications we consider in this chapter consists in
iterated sequences of irregular kernels. The adaptation of our method to non-iterative applications
is discussed in Section 7.1.2.

As explained in Section 2.2.2, many factors must be taken into account in order to minimize the
total execution of an iterative irregular application. The load balancing method must take into ac-
count the heterogeneity of the hardware, but also the possible irregularity of workload and the pos-
sible load variations between repeated executions of the kernel sequence. In addition, the method
has to take into account the communication times induced by the partitioning of each kernel in
order to minimize the overall execution time of the application.

This chapter presents our automatic method to dynamically balance the workload of an iterative
application on heterogeneous architectures. This method corresponds to the implementation of the
split function presented in Figure 2.5b, page 30. The method we propose is purely dynamic and
does not require offline profiling nor sampling of the application in order to balance the workload.
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4.1 Load Balancing Computation
This section presents our approach to automatically balance the load between the devices without
any prior knowledge of the workload of the application. In this section we only focus on minimizing
the execution time of each kernel. We do not consider the impact of the partitioning of each kernel
on the volume of data to transfer between kernels in the case of multi-kernel applications. The
principle of our method consists in partitioning each kernel with a uniform partitioning for the
first iteration (same fraction of the original iteration space on each device). Then, for each of the
following iterations the partitioning is refined based only on the sub-kernels execution times at the
previous iteration. The method we propose handles kernels with irregular workload and is able to
cope with load variations between repeated executions of the same kernel.

4.1.1 Formalization

Given a kernel and n devices, the problem consists in determining how to distribute the parallel
iteration space of the kernel among the devices so as to minimize its execution time. Each device
executes the same kernel, but possibly with a different number of work-groups and different data
(referred to as sub-kernel).

Work-groups are indexed in OpenCL by a vector of indices among a rectangular space (from
1D to 3D) called the NDRange. Selecting a partitioning for a kernel boils down to defining a
subvolume of indices for each device. The subvolumes we consider are obtained by selecting one
smaller interval in one dimension of the NDRange.

The offset on each device is the first index of this interval and the partitioning ratio defines the
size of this interval. We formally define the partitioning ratio as a value xi in [0, 1] corresponding
to the ratio between the number of work-groups allocated to the device i and the total number of
work-groups ng of the kernel. The number of work-groups ng is only known at runtime when the
kernel is launched with a given NDRange.

We define fi(xi, offseti, t) as the mean time to execute one work-group on device i, when a sub-
kernel of partitioning ratio xi is executed at time step t, with an offset offseti. The total execution
time of this sub-kernel is therefore fi(xi, offseti, t) ∗ xi ∗ ng.

The solution to the problem consists in finding the time T and the partitioning ratios xi and the
offsets offseti such that the system in Figure 4.1a is fulfilled.

min T
f1(x1, offset1, t) ∗ x1 ∗ ng ≤ T
. . .
fn(xn, offsetn, t) ∗ xn ∗ ng ≤ T∑

i xi = 1

(a) Initial formulation.

min T
f1(x1, t) ∗ y1 ∗ ng ≤ T
. . .
fn(x1 . . . , xn, t) ∗ yn ∗ ng ≤ T∑

i xi = 1,
∑

i yi = 1

(b) Generalized formulation.

Figure 4.1: Formulations of the partitioning problem.

The functions fi are not known precisely, but they can be determined at runtime for a given
xi, offseti and t by measuring the execution time of a sub-kernel of partitioning ratio xi and offset
offseti at iteration t.
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We arbitrarily order the offsets by increasing id of device. Thus, with offsets defined by values
in [0, 1], offset1 = 0, . . . , offsetn =

∑
k<n xk and fi no longer depends on offseti but on all x j such that

j ≤ i. We generalize this formulation by introducing a new set of variables, yi ∈ [0, 1], as shown in
Figure 4.1b.

The optimal load balancing occurs when all sub-kernels take the same time to execute. Hence,
it is obtained when fi(x1, . . . , xi, t) ∗ yi ∗ ng = T for all i.

Thus, yi =
T

fi(x1, . . . , xi, t) ∗ ng
with

∑
i yi = 1 and

∑
i

T
fi(x1, . . . , xi, t) ∗ ng

= 1 implies:

T =
ng∑

i 1/ fi(x1, . . . , xi, t)
.

Now it is possible to define a function F such that Ft(x) = (y), with x = (x1, . . . , xn) the vector
of all xi and y = (y1, . . . , yn) the vector of all yi, satisfying conditions from Figure 4.1b:

Ft(x) =

(
T

fi(x1, . . . , xi, t) ∗ ng

)
i
,

with:
T =

ng∑
i 1/ fi(x1, . . . , xi, t)

.

The evaluation of Ft(x) requires O(n) basic arithmetic operations with n the number of devices.
A solution to the problem of Figure 4.1b can be found by computing a fixed point of the function
F: Ft(x) = x or similarly, by finding the 0 of the function Gt: Gt(x) = x − Ft(x)

4.1.2 Resolution Method
First assume the function Ft does not depend on t, the iteration count. Several methods have been
proposed in the literature for solving such problem, when the function is not known analytically:

• The fixed point method consists in computing the suite of partitioning ratios vectors xk =

F(xk−1), k ≥ 1 from some initial value x0. The evaluation of F(xk−1) requires to execute
the kernel with the partitioning ratios xk−1. When the suite converges, it converges linearly
towards a vector of optimal partitioning ratios satisfying the initial problem and achieving
perfect load balance. The convergence depends on F and on the initial value x0 but is in
general linear.

• The secant method, or its generalization for n-D space the Broyden’s method [58], uses an
approximate gradient to converge to the 0 of a function with a near quadratic convergence
rate.

We implemented both methods to refine the partitioning ratio assigned to each device. F is evalu-
ated at each kernel instantiation and provides the input necessary to instantiate the partition-ready
kernel.

Finally, when the functions fi also depend on the iteration count t, the fixed point equation
becomes Ft−1(xk−1,t−1) = xk,t with F changing for each term of the suite. For real applications, a
good approximation of the solution at step t remains a good approximation at step t + 1. As the
fixed point method converges quickly when the approximation is close to the solution, we believe
this approach can be used for many real cases. We demonstrate for an N-Body application with
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irregular workload that the fixed point method is able to stay close to the optimal, even when the
optimal partitioning is varying with the iteration count (dynamic workload).

4.1.3 Evaluation
This section presents the evaluation methodology and result for our method.

Methodology: Experiments are conducted on two platforms:

• conan: 16-core Intel Xeon E5-2650 2.00GHz with 64GB, and 3 NVIDIA Tesla M2075 GPUs

• happyCL: 12-core Intel Xeon E5-2680 2.80GHz with 64GB, 1 NVIDIA Tesla K20c GPU
and 1 NVIDIA Quadro K5000 GPU

We evaluate our method on many benchmarks from various sources: AESEncrypt and Mon-
teCarlo from the AMD SDK [59], EP from the SNU NPB Suite [47], a sparse matrix vector
multiplication (SPMV), 9 benchmarks from the Polybench [60] ; and on an N-Body application:
OTOO [48].

app # kernels workload iterative data partitioning
input output

AESEncrypt 1 regular repeated split split
EP 1 regular iterative split split
MonteCarlo 1 regular repeated split split
SpMV 1 irregular iterative broadcast split
2DCONV 1 regular repeated split split
2MM 2 regular repeated split split
3MM 3 regular repeated split split
GEMM 1 regular repeated split split
GESUMMV 1 regular repeated split split
Jacobi1D 2 regular iterative split split
Jacobi2D 2 regular iterative split split
SYRK 1 regular repeated split split
SYR2K 1 regular repeated split split
OTOO 1 dynamic iterative broadcast split

Table 4.1: Applications and Benchmarks Description.

Benchmarks characteristics are presented in Table 4.1. The workload of the Sparse Matrix
Vector Multiply kernel (SpMV) is irregular: In the chosen sparse matrix, rows with a high index
have more non-zero elements than those with a low index. The workload of OTOO is dynamic:
The input set corresponds to a non-uniform distribution of the masses in space. As this space is
partitioned among the work-groups, this results in a non-homogeneous load distribution among the
work-groups, changing with iteration number. All other benchmarks have regular workloads.

All benchmarks were repeated 100 times, and we measured the total execution time of the
100 iterations including data transfer times. For iterative application, the input data is transferred
from the host to the devices only at the first iteration, then for the following iterations only the
minimum data transfers between devices are performed. Finally, the output data is transferred
from the devices back to the host only after the last iteration. On the other hand for non iterative
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benchmarks, the input data is transferred from the host to the devices before each iteration and the
output data is transferred from the devices back to the host after each iteration.

Table 4.1 shows whether the input data is split or broadcasted to the devices. For the SpMV
kernel, the same input matrix is used for the 100 iterations and at each iteration the kernel computes
the multiplication of the input matrix with a different vector. Hence, the input matrix is broadcasted
to all devices only at the first iteration. For the OTOO kernel, atoms are stored into an octree and
each device requires the whole octree to compute the forces applied to the subset of particles for
which it calculates the displacement. Hence, the whole input is broadcasted to all devices. For
all other benchmarks our method was able to split the input data and only the required data is
transferred to each device.

Overall Speedups: Figure 4.2 presents speed-ups compared to the best single-device perfor-
mance on the two target architectures, for a large number of benchmarks when they are repeated
100 times. Speedups are shown for 3 different strategies:

• Uniform: When the partitioning ratio of each sub-kernel is 1/n, with n the number of devices.

• Adaptive: When the load is automatically adapted with our method.

• Oracle: With this strategy, each kernel is directly partitioned with the partitioning ratios
found after convergence of the Adaptive method. For Jacobi1D and Jacobi2D, the Oracle is
obtained by giving the same partitionings for both kernels.
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Figure 4.2: Performance of AESEncrypt, EP, MonteCarlo, OTOO, SPMV and some Poly-
bench on conan and happyCL. Original codes run only on one device. Uniform
and Adaptive are using sub-kernels automatically obtained by our method.
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We observe the results of our method (Adaptive) are close to the optimal, obtained when launch-
ing the kernel directly with the partitioning ratios obtained after convergence (Oracle).

For Jacobi1D and Jacobi2D, the gap is more important because these benchmarks consist in
2 kernels, one stencil and one copy. Defining the same partitioning for both copy and stencil
minimizes communication time as shown in Figure 2.17a, page 42. This method handles only one
kernel at a time, and does not find the same partitioning for both kernels. These examples show the
limitation of this method that does not take into account the communication times induced by the
partitioning of each kernel in the case of multi-kernel applications.

Detailed Load Balancing: Figure 4.3 shows the speed-up obtained on conan with AESEncrypt
and EP compared to the best single-device performance, when these kernels are repeated 10 times.
The speed-up shown here are per iteration. For the first iteration, the partitioning ratio is the same
for the 4 devices (uniform hypothesis), explaining poor performance compared to the GPU perfor-
mance. For EP, Figure 4.3a, the fixed point method requires 6 iterations to reach a maximum speed
up of 2.8, whereas the Broyden’s method converges in only 4 iterations leading to a better global
speedup (shown in Figure 4.3a). For AESEncrypt, Figure 4.3b shows there is no such difference
and both methods are similar, reaching a peak speed-up of 2.15 in 3 iterations only.
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Figure 4.3: Speedup per iteration of EP and AESEncrypt.
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Figure 4.4: Performance of OTOO executed on conan (3GPUs+CPU) for 60 iterations.
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Figure 4.4 shows how our method behaves when the load changes over 60 iterations. Fig-
ure 4.4a illustrates the time taken by each sub-kernel for OTOO when the partitioning ratio is the
same for the 4 devices (Uniform strategy). From one device to the other, the execution time differs
by more than a factor 3 (iteration 15 for instance). Figure 4.4b shows how the same load is shared
among the four devices when it is continuously adapted by our technique (Adaptive strategy). As
the 4 plots are close to each other, this shows the execution time is nearly optimal. We observe that
convergence to the optimal only requires 2 iterations.

4.2 Communication-Aware Load Balancing
This section defines an improvement of the method to determine how to partition an iterated se-
quence of m kernels onto n devices. Unlike the method presented in the previous section, this new
method takes into account both communication and computation times to balance the load. The
partitioning of each kernel in the sequence is computed by solving a linear system at each iteration.
At the end of iteration t, the linear system computes the partitioning ratios of each kernel in the
sequence, in order to minimize the overall execution time of iteration t + 1. This linear system
takes into account both communication and computation times and is based on previous iteration
measures.

We first extend the previous formulation to an iterated sequence of multiple kernels by using
a linear system. Solving this system is referred to as the Adaptive w/o Comm strategy. Then we
present a new formulation of the problem that takes into account both computation and communi-
cation time to balance the load. Solving the linear system corresponding to this new formulation is
referred to as the Adaptive w/ Comm strategy.

4.2.1 Formalization
The Adaptive w/o Comm Strategy

The Adaptive w/o Comm strategy finds partitioning ratios for each kernel from the sequence indi-
vidually in order to minimize their execution times. This strategy does not take into account the
transfer times between kernels induced by their respective partitionings. In this case, the linear sys-
tem only relies on the execution times of the sub-kernels at iteration t to determine the partitioning
ratios for iteration t + 1.

Given a sequence of m kernels and n devices, this strategy consists in finding the execution
times T 1, . . . , T m of each kernel, and the new partitioning ratios yk

d of each kernel k on each device
d for iteration t+1 such that the following system is fulfilled:

min T 1 + . . . + T m

∀k = 1..m :
∀d = 1..n :

f k
d (xk

1, . . . , x
k
d, t) ∗ ngk ∗ yk

d ≤ T k,∑
d yk

d = 1

This linear system is a generalization of the formulation presented in the previous section to
a sequence of m kernels. The partitioning ratio for a kernel k and device d is a value xk

d in [0, 1]
(with

∑n
d=1 xk

d = 1) corresponding to the ratio between the number of work-groups allocated to the

81



4.2. COMMUNICATION-AWARE LOAD BALANCING

device d and the total number of work-groups (ngk). ngk is known when kernel k is called. We
define f k

d (xk
1, . . . , x

k
d, t) as the mean time to execute one work-group on device d at iteration t, when

sub-kernels on devices 1, . . . , d have respectively partitioning ratios xk
1, . . . , xk

d. The execution time
of the sub-kernel of k on device d is f k

d (xk
1, . . . , x

k
d, t) ∗ngk ∗ xk

d and the total execution time of kernel
k is maxd=1,n( f k

d (xk
1, . . . , x

k
d, t)∗ngk∗ xk

d). The functions f k
d are not known precisely, but we determine

the value of f k
d with the execution time of the sub-kernel of k on device d at iteration t.

The Adaptive w/ Comm Strategy

The Adaptive w/ Comm strategy takes into account the data transfer times induced by the partition-
ing of each kernel from the sequence in order to minimize the overall iteration time. We model the
volume of data to transfer between two data-dependent kernels as a function of their partitioning
ratios. At each iteration, the parametric read and write regions of all sub-kernels are instantiated
and we can determine the value of this function for the current partitioning ratios. At runtime,
using a linear regression, we compute for each pair of data-dependent kernels and for each device
a coefficient giving the volume of data to transfer depending on the partitioning ratios of these
kernels. Then, using these coefficients we add new constraints to the linear system presented in
Section 4.2.1 modeling the communication times between all data-dependent kernels.

The objective function to minimize becomes:

min T 1 + . . . + T m + T 1
H2D + T 1

D2H + . . . + T m
H2D + T m

D2H

where T k
D2H and T k

H2D are devices-to-host and host-to-devices transfer times before the execution of
kernel k. For each kernel k and device d we add the two following linear constraints:

T k
H2Dd

≤ T k
H2D (4.1)

m∑
h=1

ah,k
d ∗ S d(yh

1, . . . , y
h
d, y

k
1, . . . , y

k
d) ∗ΩH2D

d ≤ T k
H2Dd

(4.2)

where:

• the yk
d are the unknowns of the system;

• ah,k
d and ΩH2D

d are coefficients determined at runtime;

• S d depends on the partitioning ratios yk
d of kernel k at t + 1 and on the partitioning ratios yh

d
of kernel h on which k depends.

The linear constraint (4.1) means that the transfer time from the host to the n devices before
executing kernel k is equal to the longest host to device data transfer time (transfers to different
devices are performed in parallel). The linear constraint (4.2) means that the host to device d
transfer time before executing kernel k is the sum of the host to device d transfer times from each
kernel h on which k depends. The meaning of the relation S d and the coefficients ah,k

d and ΩH2D
d are

explained in the next paragraph.
Similar constraints are added for device to host transfers.
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Let us now explain our communication modelization. When a kernel h writes to a buffer B that is
read by a kernel k, data transfers may be required when those kernels are partitioned onto multiple
devices. It is the case if a sub-kernel of k executed on device d reads a region of B that is written
by a sub-kernel of h executed on another device. This data then comes from another device and a
communication is required.

Figure 4.5 illustrates the amount of data to transfer between two dependent kernels h and k
when they are partitioned onto 3 devices. The figure shows the amount of data to transfer to device
2 before executing kernel k for various partitionings of h and k. In this example, both kernel have
the same NDRange of size 9, and each thread of k only depends on the 1 byte of data produced
by the thread of h at the same position in the NDRange. Threads of kernel h are represented with
diamonds and threads of kernel k with circles. The amount of data to transfer to device 2 depends
on the partitioning of h and k. For example, in Figure 4.5a threads of k executed on device 2 only
depend on the data produced by threads of h executed on the same device. Hence, no data transfer
to device 2 is required before executing kernel k. On the contrary, in Figure 4.5b a thread of kernel
k executed on device 2 depends on the 1 byte of data produced a thread of h executed on device 1.
Hence, 1 byte must be transferred from device 1 to device 2 before executing kernel k.
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Figure 4.5: Amount of data to transfer to device 2 before executing kernel k depending on
the partitioning of h and k when these kernel are partitioned onto 3 devices.

Assuming that kernels h and k have the same NDRange of size N and that each thread from h
(resp. k) writes (resp. reads) one byte from (resp. into) buffer B at the index corresponding to its
id in the NDRange, the amount of data to transfer between h and k can be determined using their
partitioning ratios.

The region of B written by the sub-kernel of h on device d is:

Wd(yh
1, . . . , y

h
d) = N ∗ [yh

1 + . . . + yh
d−1, y

h
1 + . . . + yh

d −
1
N

]
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and the region of B read by the sub-kernel of k on device d is:

Rd(yk
1, . . . , y

k
d) = N ∗ [yk

1 + . . . + yk
d−1, y

k
1 + . . . + yk

d −
1
N

].

The data not present on device d before execution of the sub-kernel of k is defined by the region
Rd(yk

1, . . . , y
k
d) −Wd(yh

1, . . . , y
h
d). When the two regions overlap, the amount of data to transfer is:

S d(yh
1, . . . , y

h
d, y

k
1, . . . , y

k
d) = N ∗ max(

d−1∑
i=1

yh
i −

d−1∑
i=1

yk
i , 0)

+N ∗ max(
d∑

i=1

yk
i −

d∑
i=1

yh
i , 0),

otherwise the amount of data is simply N ∗ yk
d.

Example:
In Figure 4.5b kernels h and k have the same NDRange of size 9. For kernel h each device

execute 3 threads while for kernel k devices 1, 2 and 3 execute 2, 3 and 4 threads respectively.

Hence, yh
1 =

3
9

, yh
2 =

3
9

, yh
3 =

3
9

, yk
1 =

2
9

, yk
2 =

3
9

, yk
3 =

4
9

, and the region of B written by the
sub-kernel of h on device 2 is:

W2(
3
9
,

3
9
,

3
9

) = 9 ∗ [
3
9
,

6
9
−

1
9

] = [3, 5]

and the region of B read by the sub-kernel of k on device 2 is:

R2(
2
9
,

3
9
,

4
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In this case, R2 and W2 overlap, hence the amount of data to transfer to device 2 before executing
k is:
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In Figure 4.5e, the partitioning ratios are: yh
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.
Hence, the region of B written by the sub-kernel of h on device 2 is W2 = [1, 2] and the region of
B read by the sub-kernel of k on device 2 is R2 = [4, 6]. In this case, R2 and W2 do not overlap.
The amount of data to transfer to device 2 is therefore 3 bytes.

In real applications, two dependent kernels do not necessary have the same NDRange and threads
from both kernels can write buffers at any location. We model the communication volume on device
d from kernel h to kernel k as a function of their partitioning ratios gh,k

d = ah,k
d ∗ S d where ah,k

d is
a coefficient and S d is over-approximated by always considering that Wd overlaps Rd. At each
iteration the parametric regions of kernels h and k are instantiated and we know the value of gh,k

d
for their current partitioning ratios. Hence, the coefficients ah,k

d are computed at runtime using a
linear regression. Finally, the data transfer time from h to k is ah,k

d ∗ S d ∗Ωd where Ωd is the time to
transfer one byte from host to device d.
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The full system is shown in Figure 4.6 where: ah,k
d are coefficients computed for the host-to-

devices constraints, bh,k
d are coefficients computed for the devices-to-host constaints, ΩH2D

d is the
time to transfer one byte from host to device d and ΩD2H

d is the time to transfer one byte from
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Figure 4.6: Linear system solved at each iteration with the Adaptive w/ Comm strategy.

The total number of constraints of the system is 4(m ∗ n) + 2m with m the number of the kernels
and n the number of devices. We show in the next section that the overhead induced by resolving
the system at each iteration is negligible.

4.2.2 Evaluation
This section presents the evaluation methodology and result for our new method.

Methodology: Experiments are conducted on two platforms:

• conan: 16-core Intel Xeon E5-2650 2.00GHz with 64GB, and 3 NVIDIA Tesla M2075 GPUs

• happyCL: 12-core Intel Xeon E5-2680 2.80GHz with 64GB, 1 NVIDIA Tesla K20c GPU
and 1 NVIDIA Quadro K5000 GPU

We evaluate our method on 3 regular benchmarks: Jacobi1D, Jacobi2D and FDTD2D; 1 irregular
benchmark: 2SpMV; and 1 application with dynamic load variations: SOTL presented in Sec-
tion 3.2. The Jacobi1D benchmark (2 kernels) consists in stencil kernel followed by a memcpy
from the output buffer to the input. The Jacobi2D benchmark (2 kernels) is the 2-dimensional
version of the Jacobi1D benchmark. FDTD2D consists in a succession of 3 stencil kernels. The
2SpMV benchmark (2 kernels) consists in a Sparse Matrix-Vector Multiplication applied on two
different matrices, the output vector of one kernel is the input vector of the following one. Both
kernels present irregular workload among threads, due to the sparsity structure of each matrix. For
the SOTL application, we have tested our method on 2 configurations: SOTL St corresponds to a
static regular workload whereas SOTL Dyn corresponds to dynamic irregular workload.
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Benchmarks characteristics are summarized in Table 4.2. All benchmarks are iterative, hence
input data is transferred from the host to the devices only at the first iteration, for the following
iterations only the minimum data transfers between devices are performed and the output data is
transferred from the devices back to the host only after the last iteration. The input data is split
for all benchmarks except for 2SpMV were the 2 matrices are broadcasted to all devices at the first
iteration.

app # kernels workload iterative data partitioning
input output

Jacobi1D 2 regular iterative split split
Jacobi2D 2 regular iterative split split
FDTD2D 3 regular iterative split split
2SpMV 2 irregular iterative broadcast split
SOTL St 6 regular iterative split split
SOTL Dyn 6 dynamic iterative split split

Table 4.2: Applications and Benchmarks Description.

Overall Speedups: Figure 4.7 presents speed-ups compared to the best single-device perfor-
mance for 4 different strategies:

• Uniform: When the partitioning ratio of each sub-kernel is 1/n, with n the number of devices.

• Adaptive w/o Comm (cf. Section 4.1)

• Adaptive w/ Comm (cf. Section 4.2)

• Oracle: With this strategy, the kernels in the sequence are directly partitioned with the parti-
tioning ratios found after convergence.

For the two adaptive strategies the kernel sequence is partitioned with a uniform partitioning at the
first iteration, then the partitioning is continuously adapted by resolving a linear system after each
iteration. Contrary to the Adaptive w/ Comm strategy, for the Adaptive w/o Comm strategy the linear
system is resolved without the communication constraints. For SOTL Dyn, there is no Oracle since
the workload dynamically changes with iteration number and the solver never converges.

For the 4 benchmarks, we observe the results of the Adaptive w/ Comm strategy are close to the
optimal Oracle strategy. The small difference of performance obtained with these two strategies
shows that the overhead of resolving a linear system at each iteration is negligible. The Adaptive
w/o Comm strategy obtained poor performance for Jacobi1D, Jacobi2D and FDTD2D. Since this
strategy only minimizes computation time, a slow down due to data transfers is observed. For these
3 benchmarks all kernels must have the same partitioning to avoid penalizing transfer times. For
2SpMV the same speedup is obtained with both adaptive strategies since the transfer times induced
by the partitioning minimizing the computation time is negligible.

For SOTL St, the kernel used to compute the force were optimized for older GPUs, resulting in
better performance on the CPU than the GPU on Conan. We can see that the Adaptive w/ Comm
strategy obtains near optimal performance with SOTL St whereas the Adaptive w/o Comm results
in a slowdown on happyCL. For this application, the time taken to compute one iteration is mostly
taken by the force kernel. To avoid penalizing transfers, other kernels from the sequence must be
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Figure 4.7: Overall Results Obtained.

partitioned according to this kernel. This is achieved by the Adaptive w/ Comm strategy. Figure 4.8
demonstrates the effectiveness of the Adaptive w/ Comm strategy which decreases the transfer time
by a factor of 6. For SOTL Dyn, the workload varies at each iteration and the partitioning ratios
minimizing the overall iteration time are different for each iteration. Thus, even with the Adaptive
w/ Comm strategy important data transfers are required each time the partitioning of the kernel
sequence varies. Hence, the Adaptive w/ Comm strategy has lower impact on performance for this
version of SOTL.
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Figure 4.8: Time taken by computation and transfer when SOTL St is partitioned on conan
using Adaptive w/o Comm strategy versus Adaptive w/ Comm strategy.
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Figure 4.9: Total time per iteration when SOTL Dyn is partitioned on conan.

Detailed Load Balancing: Figure 4.9a shows total execution time of the task chain for the first
70 iterations when SOTL Dyn is partitioned uniformly onto 3 GPUs and 1 CPU. The input set
corresponds to a non-uniform distribution of particles in space. This results in a non-homogeneous
load distribution among work-groups, changing with iteration number as the particles move. We
can see on Figure 4.9b that the load balancing is nearly optimal with the Adaptive w/Comm strategy
since the 4 plots showing the time per iteration on each device are close to each other.

This application requires all the mechanisms presented in Chapter 3 to be partitioned onto
multiple devices and in particular computation replication (cf. Section 3.1.3). The gap observed
between iteration times of GPU2, GPU3 and GPU1,CPU is due to computation replication. In-
deed, first and last devices (GPU1 and CPU) replicate computation only on one side of their sub-
NDRange whereas GPU2 and GPU3 replicate computation on both sides.

4.3 Related Work

Many works propose techniques to partition the workload of data parallel kernels to heterogeneous
multi-device architectures. These works usually target OpenCL applications, as OpenCL kernels
can be executed onto different architectures. Most of them partition the workload at workgroup
granularity as we do and are often referred as coarse-grain partitioning methods. These approaches
can generally be classified with two types: static and dynamic. Static methods usually rely on static
code analysis, offline profiling or training to partition the workload whereas pure dynamic methods
partition the workload dynamically at runtime. A different approach is described by Magni et
al. [61], where work-groups are fused in order to coarsen the granularity. The coarsening factor
is determined by a machine learning technique, statically. Finally, other approaches specifically
target irregular applications and propose workload reshaping methods where the workload is first
reordered according to the amount of work per thread and then partitioned. These methods are
often referred as fine-grained partitioning methods.

4.3.1 Static Coarse-grained Partitioning

Grewe et al. [62] propose a pure static task partitioning method without profiling of the target
program on CPU-GPU systems. Their approach relies on machine-learning techniques to predict
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the best partitioning between CPU and GPU and is based on static code features.
In [36] the authors present the Qilin system that automatically partitions threads to one CPU

and one GPU by providing new APIs that abstract away two different programming models, Intel
Thread Building Blocks and CUDA. Qilin relies on extensive off-line profiling to create a per-
formance model for each task on each device. This information is then used to calculate a good
partitioning across the devices.

Kofler et al. [53] present a method for OpenCL task partitioning relying on offline generated
model. This model is based on artificial neural networks, relying on the features of the kernels,
including their input sizes.

Seo et al. [63] propose an automatic work-group size selection technique for OpenCL kernels
on multicore CPUs. Their method uses a profiling-based algorithm. Heterogeneity is not handled
however and kernels are assumed to be work-group size independent.

The SKMD framework [41] relies on a performance prediction model to predict the execution
time of an OpenCL kernel on each device and partition its workload. This performance predictor
utilizes a linear regression model on profile data collected before the real execution. Then the par-
titioning is determined using a decision tree heuristic in order to take transfer cost and performance
variances of devices into account. Nevertheless, SKMD does not handle kernels with irregular
behaviors whose control flows depend on the values of the array parameters.

In [64], the authors propose to model workload distribution problem as a mixed-integer non-
linear programming (MINLP) whose objective function minimizes the variance of execution times
among GPUs. A performance model, built from training runs, and a reference run are required, as
input to the MINLP solver. Their approach applies to only one task and does not take data transfer
into account.

The solution presented in [65] to the problem of optimal distribution of the workload of data-
parallel scientific applications on heterogeneous computing systems uses functional performance
models (FPMs) of processing elements and FPM-based data partitioning algorithms. It may be
difficult to balance the workload with this approach when there are multiple kernels.

All these works only focus on single kernel applications and are poorly suited for partitioning
a sequence of kernels as they do not take into consideration the dependences between multiple
kernels. Moreover, these works only target applications with regular workloads and cannot adapt
to irregular workload and dynamic load variations. do not consider the impact the partitioning of
one kernel

In MKMD [42], the authors extend SKMD [41] to applications to applications with multiple
communicating kernels. The MKMD framework relies, in the same way, on a profiling step for
building a regression model and for the prediction of the execution times of the kernels. MKMD
schedules the kernels considering predicted execution times, dependencies between kernels and
buffer transfer cost using a two phased approach : it first performs a coarse-grain scheduling of
indivisible kernels; it then performs kernel partitioning at work-group granularity to offload work-
groups of selected kernels to idle devices so as to improve previous coarse-grain scheduling results.
MKMD executes kernels and performs data transfer according to the scheduling decision made
prior actual execution. MKMD can therefore fail to take good scheduling decisions for irregular
applications where execution time may be difficult to model and predict. Moreover, this method
assume that there is enough parallelism in the task graph and is not suited for chains of kernels.

The benefit of static methods over dynamic methods to balance the workload of data parallel
kernels partitioned heterogeneous multi-device architectures is that they generally have less run-
time overhead as they rely on offline profiling or training. However, these methods are limited to

89



4.3. RELATED WORK

applications regular workloads.

4.3.2 Dynamic Coarse-grain Partitioning

In [66], the authors propose a dynamic load-balancing algorithm for a single OpenCL kernel.
Chunks of contiguous work-groups with increasing size are executed on different devices. When
all devices have completed a certain amount of chunks, the remaining work is partitioned across
the devices using the execution time of the initial work. Their approach does not require offline
training and can respond to performance variability among devices. It is limited, nevertheless,
to kernels whose relative performance for the small, initial chunks of work-groups may lead to a
good prediction of performance for larger chunks. Besides there is no automatic support for kernel
splitting.

In [56], the authors propose an OpenCL runtime that takes a single device kernel and executes
it on CPU and GPU. Load balancing is managed at runtime. While their approach dynamically
balance work between one CPU and one GPU, it cannot be easily generalized for any number of
devices. Besides, data is not split between sub-kernels, all arrays are transferred to all devices.
Finally, the kernel transformation is achieved by hand, and not with an automatic compiler opti-
mization.

Navarro et. al presents LogFit [67], an adaptive partitioning strategy in the context of parallel
loops in applications with irregular data accesses. The parallel loops is split into chunks and their
method dynamically finds the chunk size that gets near optimal performance for the GPU at any
point of the execution, while balancing the workload among the GPU and the CPU cores. This
method is limited to architectures with an integrated GPU.

Maat [43] provides a set of load-balancing methods (static, dynamic and HGuided methods).
All methods, except the static one, are based on a master thread on the host in charge of assigning
data-sets (packages) to the different devices. The HGuided algorithm [68] reduces the size of the
packages as the execution progresses and adapts this size to the computing powers of the devices,
given as parameters. While this load balancing method can handle kernels with irregular workload
and dynamic load variations, it only split the data for kernel with regular access patterns. Moreover
this method does not take into account the communications times induced by the dependences
between kernels when partitioning a kernel sequence.

The load balancing method proposed in STEPOCL [37] to partition OpenCL kernels on mul-
tiple heterogeneous devices is similar to our Adaptive w/o Comm method. They first execute the
kernel with a Uniform partitioning. Then, based on sub-kernels execution times, the partitioning
is refined and the kernel is executed with this new partitioning. This process is repeated until the
partitioning converges. However, contrary to our Adaptive w/o Comm method the profiling phase
is performed offline. Hence, this method can handle kernels with irregular workloads, however
it cannot adapt to dynamic load variations. Moreover they do not consider the data dependences
between kernels.

The load balancing method proposed in ADITHE [69] specifically targets iterative applications.
They first partition the workload uniformly for the first iterations of the applications. Then, the par-
titioning of remaining iterations is determined using the execution times of the first iterations. This
method is extended in [70] for improving not only the performance but also the energy efficiency
of iterative computations on integrated GPU-CPU systems. However, while this method can adapt
to performance variability among heterogeneous devices it cannot cope with irregular workload.
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4.3.3 Fine-grained Partitioning

Several works propose fine-grained partitioning methods reshaping the workload of irregular ker-
nels to balance the load among heterogeneous devices. The key idea behind fine-grained parti-
tioning is that threads on a GPU execute in a lockstep fashion: threads in the same SIMD (Single
Instruction Multiple Data) group always execute the same instruction. Hence, even if the load is
balanced between the devices, resources may still be underutilized if the load is imbalanced among
threads from the same SIMD group.

In [71–73], Shen et al. present a method targeting systems comprising CPU and GPU devices
with discrete memory. The input data of threads is sorted in order of their computational demand.
Threads with higher computational load are assigned to the CPU. The partitioning of the NDRange
is based on a performance model that considers the performance and the data copy overhead of the
CPU and the GPU memory. Based on this model and after profiling, a predictor determines the
optimal partitioning between CPUs and GPUs. The required prior offline analysis, however, limits
the practicality of this approach for iterative applications with dynamic load variations.

The compilation and runtime system FinePar [44] relies on fine-grain partitioning and uses a
sophisticated performance modeling approach using linear regression and taking both architectural
differences between the CPU and GPU and data irregularity (sparse matrix, graph processing appli-
cations) in consideration. Then before actual execution, an auto-tuner determines the partitioning
threshold according to the input features and selected performance model. If the computational
load of a thread is higher than the threshold value, the thread is assigned to the CPU and vice-versa.
A disadvantage of this method is that the model has to be trained offline for each application and
each target platform, hence it is limited to application without dynamic load variations.

Finally, Cho et. al [74] propose an on-the-fly workload partitioning method for integrated
CPU/GPU architectures. Their technique neither requires an offline analysis nor training with
workloads or input data. For an OpenCL kernel, a source-to-source compiler dynamically cre-
ates profiling code that allows the runtime system to collect information about the computational
load of the threads immediately before the kernel is launched. Based on this profile information,
the workload is reshaped such that all threads with a high loop iteration count above a dynamically
determined threshold are executed on the CPU while the GPU only executes threads below that
threshold. To hide the overhead of threads profiling and reshaping, a single workload is divided
into several jobs that are launched dynamically. While one job is being executed, threads reshap-
ing is performed for the next job. This approach is limited nevertheless to integrated CPU/GPU
architectures.

4.4 Implementation
This section provides some implementation elements of our framework. It consists in two C++

libraries: Libsplit and LibKernelExpr; and two LLVM tools: Kernel Analyzer and Kernel Trans-
former. The number of lines of code of each of these components is shown in Table 4.3.

Kernel Transformation When executing a kernel with a fraction of the original NDRange, some
syntactic modifications are needed in order to keep the correct semantics. Indeed, the global size
is different from the original kernel, the number of work-groups has changed and their ids have
changed too.
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Component LoC Lang
Libsplit 18700 C++

LibKernelExpr 6716 C++

Kernel Analyzer 2524 C++

Kernel Transformer 579 C++

Table 4.3: Framework Components.
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Figure 4.10: Splitting a NDRange into two sub-NDRanges.

Figure 4.10a shows a NDRange of 16 threads composed of 4 work-groups. The global size is
16, the threads ids range from 0 to 15 and the work-groups ids range from 0 to 3. Figure 4.10b
shows the two sub-NDRanges obtained after splitting this NDRange into two sub-NDRanges of
same size. We can see that the two work-groups of the second sub-NDRange, corresponding to the
third and fourth work-groups in the original NDRange, have group ids of 0 and 1. However, the
group ids should be 2 and 3 to keep the right semantics. Furthermore, each sub-NDRange has a
global size of 8 whereas it should be 16.

In order to keep the correct semantics, the Kernel Transformer perform a source-to-source
transformation of each kernel. Two additional parameters are added to the kernels: splitdim
(1, 2 or 3) accounts for the dimension of the NDRange that is split, and numgroups is the number
of work-groups in this dimension. Then the following function calls are changed:

Expression Rewritten into

get_global_size(expr)
(expr == splitdim ?
numgroups*get_local_size(expr):get_global_size(expr))

get_num_groups(expr)
(expr == splitdim ?
numgroups:get_num_groups(expr))

get_group_id(expr) (get_global_id(expr) / get_local_size(expr))

After this transformation, the two sub-NDRanges keep the same semantic as the original NDRange
as shown in Figure 4.10c. The global size remains 16 as in the original NDRange and the work-
group ids the two workgroups of the second sub-NDRange are 2 and 3.

The Kernel Transformer is implemented as an AST Visitor in Clang, the frontend of LLVM [25].
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LibKernelExpr The LibKernelExpr library implements the parametric regions presented in Sec-
tion 3.1.2.

Kernel Analyzer The Kernel Analyzer is implemented inside the LLVM compiler [25] as a func-
tion pass. It takes as input the LLVM intermediate representation (LLVM IR) of a kernel generated
with Clang and generates the parametric read and write regions of each buffer accessed by the
kernel as explained in Section 3.1.

The OpenCL C language used to write compute kernels is based on the C99 but comes with sev-
eral restrictions facilitating the analysis of these kernels: function pointers, bit fields and variable-
length arrays are omitted and recursion is forbidden. Hence, it is possible to inline all functions
called inside a kernel to avoid to resort to an inter-procedural analysis. Moreover, buffers passed as
arguments to a kernel belong to a different address space from local variables and there is no heap
allocation as in regular C codes. Hence, there is no need for a complex alias analysis in order to
analyze an OpenCL kernel.

Our LLVM pass iterates over the load and store instructions and for each load/store instruction
from/into a buffer passed as parameter of the kernel, a parametric region is build using the LibKer-
nelExpr library. The LLVM IR is based on the SSA form where each variable is exactly defined
one. Variables that are assigned initially in multiples statements are renamed into new instances,
one per statement. Hence, the parametric regions are built by following the use/def chain.

When multiple control-flow paths join in the CFG, renamed variables are combined with a
φ-function into a new variable instance. We only handle φ-function corresponding to induction
variables. In order to determine the possible range of values taken by an induction variable defined
by a φ-function we resort to the LoopInfo and ScalarEvolution passes of LLVM.

Finally, to determine the conditionals governing the execution of load and store statements, the
Iterated Post-Dominance Frontier [45] is computed using the PostDominatorTree pass of LLVM.

Libsplit The Libsplit library is responsible for interposing calls to all the functions from the
OpenCL API. In order to interpose these functions, our library is preloaded dynamically at runtime
using the LD_PRELOAD environment variable. Hence no modification or recompilation of the
original application is required in order to transform a single-device application into a multi-device
application using our framework.

This library implements the Buffer Manager responsible for keeping track of the regions of
buffers owned by each device and managing the data transfers between devices. The directories
used to keep track on the data owned by each buffer are implemented as sorted lists of disjoint
intervals.

The library also implements the Dynamic Partitioner responsible for balancing the workload
of the application. We used the GNU Linear Programming Kit [75] to build and solve the linear
system described in Section 4.2.1.

A typical OpenCL application requires calling at least the following functions from the OpenCL
API. We briefly describe here how these functions are interposed by our library:

1. clCreateContext: This function creates a clContext object containing one or multiple devices
from the same vendor. Hence, it is not possible to create a context containing an Intel CPU
and an NVIDIA GPU for example. When using our framework, the list of devices that must
be used to partition the workload are passed as command line arguments. Hence, when
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this function is called a fake clContext object is returned containing one clContext and one
command-queue per device selected.

2. clCreateCommandQueue: This function creates a command queue associated to a device and
a context. The command queue can execute the command in-order or out-of-order. When
this function is interposed by our library, a fake command queue is returned.

3. clCreateProgramWithSources: This function creates a clProgram object associated to a con-
text from the source code of OpenCL kernels. When this function is interposed by our library,
the source code is transformed using the Kernel Transformer tool. Then, one clProgram is
created from the transformed sources for each context. Finally, a fake clProgram object
containing the clProgram of each device is returned.

4. clBuildProgram: This function takes as parameter a device list and a clProgram and compiles
the program on each device from the list using the vendor compiler. When this function is
interposed by our library, the clProgram of each device is compiled.

5. clCreateKernel: This function takes as parameter a kernel name and a program and returns a
clKernel object. When this function is interposed by our library and the parametric read and
write regions of the kernel are built using the Kernel Analyzer. Then a fake clKernel object
is returned containing one clKernel per device.

6. clCreateBuffer: This function takes as parameters a size N and a context and creates a buffer
of size N associated to the context. When this function is interposed by our library, one buffer
of size N is created for each device, then a fake clBuffer object containing the buffer of each
device is returned.

7. clEnqueueWriteBuffer: This function allows to transfer a memory region from the host mem-
ory to a device buffer B. When this function is interposed by our library, the data transfer
is deferred until kernels execution. Our library registers the commands, write protects the
memory region to prevent any modification until kernels execution. Then when a kernel
reading buffer B is launched and the memory region analysis in instantiated for the chosen
partitioning, only the required data is transferred from the host to each device. If the host
memory region is modified before kernels execution, the modification access is trapped, and
the whole memory region is broadcasted to all devices before the modification occurs.

8. clEnqueueNDRangeKernel: This function takes as parameter a kernel, a NDRange and a
command queue and enqueues a command to execute the kernel with the given NDRange.

This function is interposed by our library and proceeds in four steps:

(a) First, a partitioning for the kernel is determined by the Dynamic Partitioner and the
original NDRange is split into sub-NDRanges according to this partitioning.

(b) Second, the Buffer Manager instantiates the parametric read and write regions of each
sub-kernel with its corresponding sub-NDRange.

(c) Third, the Buffer Manager transfers for each device and for each buffer the data of
the instantiated read region not already present on the device sub-buffer. Then, the
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directory of each buffer read by the kernel is updated to reflect its value after these
transfers.

(d) Then, a command is enqueued to the command-queue of each device to execute the
kernel with its corresponding sub-NDRange.

(e) Finally, the directory of each buffer written by the kernel is updated to reflect its value
after sub-kernels execution using the instantiated write-region of each sub-kernel.

9. clEnqueueReadBuffer: This function allows to read a region of a buffer from the device to the
host. When this function is interposed by our library, the region requested is read from one
or several devices depending on which devices own the elements belonging to this region.

Usage: When using our framework, the following command allows to list the available compute
devices on the platform:

$ libsplit --list-devices

2 OpenCL platforms detected
Platform 0: NVIDIA CUDA (NVIDIA Corporation)
--- Device 0 : GPU [Tesla M2075]
--- Device 1 : GPU [Tesla M2075]
--- Device 2 : GPU [Tesla M2075]
Platform 1: Intel(R) OpenCL (Intel(R) Corporation)
--- Device 3 : CPU [Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz]

Then, the following command lists the available partitioning strategies:

$ libsplit --list-strategies

uniform
adaptivewocomm
adaptivewcomm

Finally, the following command automatically partition the workload of the application onto
the four devices listed above using the Adaptive w/ Comm strategy:

$ libsplit --devices="0 1 2 3 4" --strategy=adaptivewcomm
./myopenclapp <arg1> ... <argn>

4.5 Summary and conclusion of the first part
Graphic Processor Units (GPU) are ubiquitous and nowadays most computing nodes of a paral-
lel machine consist in GPUs and multicore CPUs. To simplify the development of applications
on these architectures, we presented in the previous chapter a method to automatically partition
OpenCL kernels onto multiple devices. By calculating precisely the region of buffers read and
written by each sub-kernel and keeping track of the region of buffers owned by each device, the
method aims at minimizing the amount of data to transfer between devices.
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However, once the application can be automatically partitioned, it remains to balance the work-
load between the devices. Load balancing is difficult to achieve in general, because the architecture
is heterogeneous, the parallel application may not have a constant load and both computation and
communication times have to be taken into account. We showed in this chapter that only consid-
ering the execution time of kernels onto each device is not sufficient to balance the workload of a
multi-kernel application. Indeed, when partitioning two kernels and the second kernel takes as in-
put the data produced by the first kernel, the partitioning of the first kernel may have a huge impact
on the volume of data to transfer before executing the second kernel.

To tackle this issue we presented a novel automatic method to dynamically balance the workload
of irregular applications with an iterated sequence of kernels onto heterogeneous devices. We
showed that our partitioning method is able to handle sequences of kernels with irregular workload,
dynamic load variations and takes into account the communication times between kernels induced
by their respective partitioning.

To conclude, we presented in the first part of this thesis a novel method that significantly im-
prove the programmability of heterogeneous architectures. Our method automatically transforms a
single-device multi-kernel application into a portable, heterogeneous multi-device and multi-kernel
application.
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The advent to exascale requires more scalable and efficient techniques to help developers to
locate, analyse and correct errors in parallel applications. One major type of error that can arise
in parallel programs is deadlocks. When a deadlock occurs in a parallel program, it is usually
hard to identify what caused it. Some tools have been developed to help programmers in the
debugging process but they often come with restrictions. The second part of this thesis investigates
the automatic detection of deadlocks related to collective operations in parallel programs.

Collective operations and in particular synchronizations are widely used operations in parallel
programs. They are part of languages for distributed parallelism such as MPI or PGAS (collective
communications), shared-memory models like OpenMP (barriers) and languages for accelerators
such as CUDA (synchronization within thread blocks, cooperative groups and at warp-level). A
valid use of collective operations requires at least that their sequence is the same for all thread-
s/processes during a parallel execution. An invalid use (collective error) leads to deadlocks or
undefined memory state that may be difficult to reproduce and debug. Indeed, these languages do
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not require that all processes reach the same textual collective statement (textual alignment prop-
erty [76]). Hence, as soon as the control flow involving these collective operations becomes more
complex, ensuring the correction of such code is error-prone.

5.1 Objectives and Principles
In the second part of this thesis we propose a new method to detect collective error origins in parallel
programs. The objective of our method is to find control-flow divergences in parallel programs that
may lead to the execution of different sequences of collectives by different threads or processes.

Two examples of MPI programs with potential collective errors are presented in Figure 5.1. In
the first example shown in Figure 5.1a, depending on the conditional line 2, different processes may
not execute the same sequence of collectives. All processes will first execute a barrier, correspond-
ing either to the MPI_Barrier line 4 or to the MPI_Barrier line 11. But, after the execution
of the first barrier some processes may call the MPI_Broadcast collective line 6 while others
may call the MPI_Barrier collective line 13. This situation may lead to a deadlock at runtime.
The objective of our method is to statically determine that the conditional line 2 may be responsible
for a deadlock.

In the second example shown in Figure 5.1b, the objective of our method is to statically de-
termine that both conditionals line 2 in g and line 13 in f may be responsible for a deadlock at
runtime. Indeed, the conditional line 2 in g may lead to the concurrent execution of the sequence
{MPI_Barrier,MPI_Broadcast} by some processes and of the function f by others. Then,
for processes executing f the conditional line 13 may lead to the concurrent execution of the se-
quence {MPI_Barrier,MPI_Broadcast,MPI_Barrier} by some processes and of the se-
quence {MPI_Barrier,MPI_Barrier,MPI_Barrier} by others.

An analysis to detect conditionals leading to different sequence of collectives in parallel pro-
grams has already been proposed and implemented in the PARCOACH framework [77–80]. How-
ever, this analysis only finds control-flow divergence leading to the execution of different sequences
of collectives within the same function (intraprocedural analysis).

In this chapter, we present the PARCOACH analysis and we propose to extend it to a full inter-
procedural analysis. A more sophisticated analysis allowing to only detect conditionals that can be
evaluated differently by different processes is presented in the next chapter.

The remaining of this section describes the PARCOACH debugging method and its limitations
and present the objectives of our full inter-procedural analysis.

5.1.1 PARCOACH
The PARallel COntrol flow Anomaly CHecker (PARCOACH) is a framework that detects the origin
of collective errors in applications using MPI and/or OpenMP. A collective is defined as:

• Any blocking or non-blocking communication involving all MPI processes of a same com-
municator in MPI: MPI_Barrier, MPI_Ibarrier, MPI_Bcast, MPI_Ibcast,
MPI_Allreduce, ...
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1 vo id f ( ) {
2 i f ( . . ) {
3 . . .
4 MPI_Barrier(com) ;
5 . . .
6 MPI_Broadcast(com, ..) ;
7 . . .
8 MPI_Barrier(com) ;
9 } e lse {

10 . . .
11 MPI_Barrier(com) ;
12 . . .
13 MPI_Barrier(com) ;
14 . . .
15 MPI_Barrier(com) ;
16 }
17 }

(a) Intraprocedural example.

1 vo id g ( ) {
2 i f ( . . ) {
3 f ( ) ;
4 } e lse {
5 . . .
6 MPI_Barrier(com) ;
7 . . .
8 MPI_Broadcast(com, ..) ;
9 }

10 }
11
12 vo id f ( ) {
13 i f ( . . ) {
14 . . .
15 MPI_Barrier(com) ;
16 . . .
17 MPI_Broadcast(com, ..) ;
18 . . .
19 MPI_Barrier(com) ;
20 } e lse {
21 . . .
22 MPI_Barrier(com) ;
23 . . .
24 MPI_Barrier(com) ;
25 . . .
26 MPI_Barrier(com) ;
27 }
28 }

(b) Interprocedural example.

Figure 5.1: MPI examples of control-flow divergences that may lead to the execution of
different sequences of collectives by different processes.

• A barrier and any worksharing construct in OpenMP:
#pragma omp {barrier/single/for/sections/

workshare}.
Note that even a worksharing construct with a nowait clause is considered as a collective.

We show in this section that in certain situations PARCOACH fails to give a correct feedback
to the user.

PARCOACH Analysis Principle

PARCOACH static analysis takes place in the middle of the compilation chain, where each function
of a program is represented by a Control Flow Graph (CFG). In a CFG, a node can be either a
straight-line code sequence called a basic block or the entry/exit point of a function and edges
represent possible flow of control between nodes. For the needs of PARCOACH analysis, all CFGs
are augmented with collective information: all nodes containing collectives (collective nodes) are
tagged. For OpenMP programs, PARCOACH uses the OMPCFG representation described in [81].
The OMPCFG modifies the CFG by creating new nodes to isolate OpenMP directives and adding
edges between previous nodes and the new ones according to the OpenMP semantics. Hence, nodes
containing master, for and single directives are considered as conditionals; sections and
workshare are considered as switch. An example of MPI code and its corresponding control
flow graph augmented with collectives is shown in Figure 5.2.

PARCOACH analysis relies on the notions of iterated postdominance frontier [45] and exe-
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1 vo id f ( . . )
2 {
3 / / Node 1
4 i f ( . . . ) {
5 / / Node 2
6 i f ( . . . ) {
7 / / Node 3
8 MPI_Barr ier (com) ;
9 } e lse {

10 / / Node 4
11 MPI_Barr ier (Com) ;
12 }
13 }
14
15 / / Node 5
16 MPI_Barr ier (com) ;
17 }

(a) MPI code.

entry

1

2

5 - Barrier

3 - Barrier 4 - Barrier

exit

(b) CFG.

Figure 5.2: Example of Control Flow Graph.

cution order to detect conditionals potentially leading to the execution of different sequences of
collectives. The execution order r of a collective corresponds to its possible calling order in the
program (starting with zero). When a collective has multiple possible execution orders in the pro-
gram, only the maximum is kept. For example, the execution order of the barriers lines 8 and 11
in Figure 5.2a is 0 (first collectives encountered) and the execution order of the barrier line 16 is
1 (first or second collective encountered). The iterated postdominance frontier (PDF+) of a node
n corresponds to the control-flow divergences that may result in the execution or non-execution of
n. For example in Figure 5.2b, PDF+(2) = {1}. Indeed, only node 1 governs the execution or
non-execution of node 2. In PARCOACH, this notion is extended to a set of nodes to detect the
conditionals potentially leading to different sequences of collectives [77].

Detecting conditionals potentially leading to different sequences of collectives boils down to
compute for each collective c and each execution order r the PDF+ of the set of nodes Cr,c con-
taining a call to collective c with execution with r. For example in Figure 5.2b: PDF+(C0,Barrier =

PDF+(3, 4) = {1}. Indeed, depending on the conditional line 4 corresponding to node 1, the barrier
with execution order 0 corresponding to the MPI barriers line 8 and 9 may not be executed by all
processes.

PARCOACH intraprocedural

PARCOACH detects misuse of collectives in two steps. First, an intraprocedural static analysis
studies the control flow of each function of a program to find statically incorrect functions: func-
tions containing potential deadlocks [77]. During this step, warnings are issued with all condi-
tionals potentially responsible for a deadlock. Because potential errors found at compilation-time
may not be correlated with actual control-flow (false positive), the second step instruments all col-
lectives inside statically incorrect functions in order to verify the potential deadlocks at execution
time. Check functions are inserted before all collectives and return statements of the function. In
case of an actual deadlock situation at runtime, the execution is stopped, displaying an error mes-
sage with compilation information. PARCOACH aims at pinpointing the cause of collective errors
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and giving the most precise feedback to developers. We use the term intraprocedural to refer to
this analysis.

Example:
The simple MPI example shown in Figure 5.3a illustrates a potential issue with collective com-
munication. Assume here that function g is called by all processes. Depending on the value of
the input parameter r, a process will execute or not the barrier in the if statement in f. If r
is not uniformly true or false among MPI processes, some tasks will be blocked in f while the
remaining processes will reach the barrier in g. These processes will then terminate, while the
first ones will be in a deadlock situation at the barrier in g.

For this example, PARCOACH intraprocedural emits a warning for the MPI_Barrier in
f and pinpoints the conditional line 2 as a potential source of deadlock. Then the function f
is instrumented as shown in Figure 5.3b. Notice that the function g is not instrumented by
PARCOACH intraprocedural as this function is considered as statically correct. In order to
partition processes according to their behavior regarding the conditional in f, two calls to the
collective MPI_Reduce with the equalsop operation (bit equality checking) are inserted in
the code: One before the barrier operation with the input value 1 (1st parameter of the call), and
one before the return statement with the input value 0. All processes call the MPI_Reduce
collective, whatever their execution path. However, input values should be the same, otherwise
the function is incorrect and MPI_Abort is issued in order to prevent from deadlocking.

1 vo id f ( i n t r ) {
2 i f ( r == 0)
3 MPI_Barrier(MPI_COMM_WORLD);
4 r e t u r n ;
5 }
6
7 vo id g ( i n t r ) {
8 f ( r ) ;
9 MPI_Barrier(MPI_COMM_WORLD);

10 e x i t ( 0 ) ;
11 }

(a) A simple example.

1 vo id f ( i n t r ) {
2 i n t res ;
3 i f ( r == 0) {
4 MPI_Reduce(1 ,& res ,1 , MPI_INT , equalsop ,
5 0 ,MPI_COMM_WORLD) ;
6 i f ( rank == 0 && res == −1 )
7 MPI_Abort (MPI_COMM_WORLD, 0 ) ;
8 MPI_Barrier(MPI_COMM_WORLD);
9 }

10 MPI_Reduce(0 ,& res ,1 , MPI_INT , equalsop ,
11 0 ,MPI_COMM_WORLD) ;
12 i f ( rank==0 && res == −1)
13 MPI_Abort (MPI_COMM_WORLD, 0 ) ;
14 r e t u r n ;
15 }

(b) The instrumented simple example.

Figure 5.3: A simple example and its instrumentation.

Limitations of the intraprocedural analysis

By analysing each function separately, the execution order computed by PARCOACH intraproce-
dural for each collective may be incorrect when the function analysed contains calls to functions
calling collectives. Moreover, the set of nodes Cr,c used to compute conditionals potentially lead-
ing to the execution of different sequences of collectives may be incomplete as a call to collective c
with execution order r may appear in another function. Hence, PARCOACH intraprocedural may
return false positive and false negative results.

103



5.1. OBJECTIVES AND PRINCIPLES

Definition 9. A false positive result means that PARCOACH emits a warning for a collective c with
execution order r while there is no execution path in the program where the r-th collective called is
not c.

Definition 10. A false negative result means that PARCOACH does not emit a warning for a col-
lective c with execution order r while there exists one execution path in the program where the r-th
collective called is c and another execution path where the r-th collective called is not c.

Example:
We illustrate the limitations of the intraprocedural version of PARCOACH on several MPI

and OpenMP examples shown in Figure 5.4.
For the MPI code 1, PARCOACH intraprocedural finds a potential deadlock in function f

because of the conditional line 7 and issues a warning indicating the barrier line 8 may not be
called by all processes. However, no warning is issued for the MPI_Ibarrier in g. Indeed,
the intraprocedural analysis checks each function separately.

In MPI code 2, the intraprocedural analysis detects a potential deadlock in function f (collec-
tive sequences are MPI_Barrier MPI_Barrier in then and MPI_Barrier MPI_Bcast
MPI_Barrier in else). Indeed, the intraprocedural analysis checks each function separately
and does not take into account the call to MPI_Bcast in function g. This results in a false
positive warning.

In MPI code 3, PARCOACH intraprocedural will report an error for the MPI_Reduce line 4
in g and the MPI_Barrier line 9 in f. However, the warning emitted for the MPI_Barrier
line 9 is a false positive.

In MPI code 4. PARCOACH intraprocedural identifies the conditional line 2 in g as poten-
tially leading to a deadlock, but not the conditional line 7 in f. And yet, the conditional line 7 is
also responsible for a potential deadlock. The same analysis can be applied to the OpenMP code
1 (same code written in OpenMP).

By analysing each function separately, the intraprocedural analysis doesn’t detect the poten-
tial deadlock due to the MPI_Reduce line 2 in the MPI code 5. Both functions are considered
as statically correct and none of them is instrumented. Hence, at runtime if the conditional line
7 is evaluated differently by different processes, PARCOACH will fail to prevent the deadlock.
This false negative result is fixed by the summary-based analysis.

In the OpenMP code 2, the single line 2 may not be called by all OpenMP threads because
of the conditional line 11. By analysing g and f separately, PARCOACH intraprocedural doesn’t
detect any collective error.

In the OpenMP code 3, the two section regions contain a call to g which contains a
barrier. By default, these two regions will be executed once by two different threads. As there is
an implicit barrier at the end of the sections construct, all threads will synchronize through
distinct barriers. This is not detected by the intraprocedural analysis and may lead to a deadlock
situation.

PARCOACH summary-based interprocedural

In [79], Saillard et. al propose a light improvement of PARCOACH static analysis to handle in-
terprocedural information. The method keeps and reuses summaries of functions. When analysing
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1 vo id g ( ) {
2 MPI_Ibarrier(com,..) ;
3 . . .
4 }
5
6 vo id f ( ) {
7 i f ( . . )
8 MPI_Barrier(com) ;
9 else

10 g ( ) ;
11 }

(a) MPI Code 1

1 vo id g ( ) {
2 MPI_Bcast(..) ;
3 }
4
5 vo id f ( ) {
6 i f ( . . ) {
7 MPI_Barrier(com) ;
8 g ( ) ;
9 MPI_Barrier(com) ;

10 } e lse {
11 MPI_Barrier(com) ;
12 MPI_Bcast(..) ;
13 MPI_Barrier(com) ;
14 }
15 }

(b) MPI Code 2

1 vo id g ( ) {
2 MPI_Barrier(com) ;
3 i f ( . . )
4 MPI_Reduce(com) ;
5 }
6
7 vo id f ( ) {
8 i f ( . . )
9 MPI_Barrier(com) ;

10 else
11 g ( ) ;
12 }

(c) MPI Code 3

1 vo id g ( ) {
2 i f ( . . )
3 MPI_Barrier(com) ;
4 }
5
6 vo id f ( ) {
7 i f ( . . )
8 g ( ) ;
9 }

(d) MPI Code 4

1 vo id g ( ) {
2 MPI_Reduce(..) ;
3 . . .
4 }
5
6 vo id f ( ) {
7 i f ( . . )
8 MPI_Barrier(com) ;
9 g ( ) ;

10 else
11 MPI_Barrier(com) ;
12 . . .
13 }

(e) MPI Code 5

1 vo id g ( ) {
2 MPI_Reduce(..) ;
3 }
4
5 vo id f ( ) {
6 i f ( . . )
7 MPI_Barrier(com1) ;
8 else
9 MPI_Barrier(com2) ;

10 . . .
11 g ( ) ;
12 }

(f) MPI Code 6

1 vo id g ( ) {
2 i f ( . . )
3 #pragma omp barrier
4 }
5
6 vo id f ( ) {
7 #pragma omp p a r a l l e l
8 {
9 i f ( . . )

10 g ( ) ;
11 }
12 }

(g) OpenMP Code 1

1 vo id g ( ) {
2 #pragma omp single
3 {
4 /∗ . . . ∗ /
5 }
6 }
7
8 vo id f ( ) {
9 #pragma omp p a r a l l e l

10 {
11 i f ( . . )
12 g ( ) ;
13 }
14 }

(h) OpenMP Code 2

1 vo id g ( ) {
2 /∗ . . . ∗ /
3 #pragma omp barrier ;
4 }
5
6 vo id f ( ) {
7 #pragma omp p a r a l l e l
8 {
9 #pragma omp sections

10 {
11 #pragma omp sec t ion
12 {
13 g ( ) ;
14 }
15 #pragma omp sec t ion
16 {
17 g ( ) ;
18 }
19 }
20 }
21 }

(i) OpenMP Code 3

Figure 5.4: Examples of MPI and OpenMP codes.

a function, all functions called inside this function are replaced by the valid sequence of MPI col-
lectives they contain (collective calls not depending on the control flow). Similarly, in [78] they
expose the same idea for OpenMP programs. For purpose of clarity, we use the term summary-
based interprocedural analysis when referring to this method.
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Example:
The false positive warning returned by PARCOACH intraprocedural for MPI code 2 is

removed with the summary-based interprocedural analysis as g is replaced by its summary
({MPI_Bcast}) corresponding to the valid sequence of collectives in function g.

Similarly, for MPI code 3 the call to function g is replaced by its summary ({MPI_Barrier})
and the false positive warning returned by PARCOACH intraprocedural is removed.

In the OpenMP code 2, the call to function g in f is replaced by its summary ({single}),
and the analysis identifies the conditional line 11 as the cause of a possible deadlock.

Limitations of the summary-based interprocedural analysis

The summary-based interprocedural analysis is limited when there is an invalid sequence of collec-
tives in a function. In this case, the summary of the function is empty. This prevents PARCOACH
from reporting correct and precise feedback as the analysis can miss the real cause of a deadlock.
Moreover, the analysis does not consider the MPI communicators and can miss potential deadlocks
when different processes call the same collective

Example:
In MPI code 3, the summary-based interprocedural analysis only emits a warning for the call

to MPI_Reduce in g. However, as the MPI_Reduce does not belong to the valid sequence of
collective in g, it does not appear during the analysis of function f. Hence, PARCOACH only
pinpoints the conditional line 3 in g as a possible source of deadlock. This report is inaccurate
as both conditionals in g and f (lines 3 and 8) are potentially leading to a collective error.

The same scenario is presented in MPI code 4. The summary-based interprocedural analysis
identifies the conditional line 2 in g as potentially leading to a deadlock, but not the conditional
line 7 in f. Indeed, there is no valid sequence of collectives. Hence, the summary of g is
empty. And yet, the conditional line 7 is also responsible for a potential deadlock. Besides, if all
processes eventually call the barrier in g and don’t have the same value for the conditional in f,
the feedback reported by the summary-based interprocedural analysis will be wrong. The same
analysis can be applied to the OpenMP code 1 (same code written in OpenMP).

In MPI code 6, a warning should be emitted for both barriers lines 7 and 9 as com1 and com2
may refer to different MPI communicators. However, the PARCOACH analysis does not take the
MPI communicator into account to compute the valid sequence of collective. Hence, neither the
intraprocedural analysis nor the summary-based interprocedural analysis detect a potential error.

Summary

By analysing each function separately, PARCOACH intraprocedural analysis may return false pos-
itive (e.g. MPI code 2) or false negative (e.g. MPI Code 5) results. The summary-based analysis
fix these incorrect results, however the feedback given to the user is inaccurate. When a function is
statically incorrect, the summary of the function kept by the summary-based interprocedural anal-
ysis is incomplete (e.g. MPI Code 4). This prevents from reporting correct and precise feedback
as the analysis can miss the real cause of a deadlock. Moreover, the analysis does not consider
the MPI communicators and can miss potential deadlocks when different processes call the same
collective
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5.1.2 Objective of our Full-Interprocedural Analysis
The objective of our full-interprocedural analysis is to statically detect all conditionals in a parallel
program potentially leading to the execution of different sequences of collectives, taking interpro-
cedural control-flow and MPI communicators into account.

This new analysis is presented in Section 5.2, then a new code instrumentation is presented in
Section 5.3.

5.2 Full-Interprocedural Analysis
This section describes our new interprocedural analysis, referred as full-interprocedural analysis.
Our method consists in building a parallel program control-flow graph capturing the control-flow
of the whole program, then we rely on the principles of the PARCOACH analysis to compute
conditionals potentially leading to the execution of different sequences of collectives.

5.2.1 PPCFG Construction
The full-interprocedural analysis builds a parallel program control flow graph (PPCFG) in order to
get interprocedural information. We extend the intermediate representation used by PARCOACH
by replacing each callsite by its CFG. In order to reduce the cost of the interprocedural analysis,
each function CFG is first reduced. Only nodes with collectives, those inside the PDF+ of these
nodes, function entry and exit nodes are kept. All other nodes are removed. The edges among the
nodes keep the relation of successor and predecessor existing in the initial CFG.

Figure 5.5b illustrates the PPCFG of the MPI code 4 example presented in Figure 5.4, page 105.
The PPCFG is built based on the initial functions CFG presented in Figure 5.5a. Thick nodes are
collective nodes, boxes represent functions.

 f g

entry

2

exit

3-g

4

entry

2

exit

3-Barrier

4

(a) Functions CFG.

 f 

g

entry

2

exit

entry

2

3-MPI_Barrier

exit

(b) PPCFG.

Figure 5.5: MPI Code 4 functions CFG (left) and the corresponding PPCFG (right).
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5.2.2 Collective Error Detection

Our analysis studies the PPCFG to find nodes conducting to paths with different sequences of col-
lectives (i.e. not the same number or not the same collectives). With a graph traversal of the PPCFG,
we compute the possible execution order (i.e. calling order) of each collective and the PDF+ for
collectives of the same type and order. Nodes in the PDF+ represent all conditionals possibly
responsible for a deadlock. In the MPI code 4, the barrier has an execution order 0 (first collec-
tive encountered). Conditionals lines 2 and 7 are in the PDF+ of the instruction corresponding to
MPI_Barrier.

Algorithm 1 describes the collective errors detection for MPI and OpenMP programs. The
algorithm takes as input the PPCFG of a program and returns the set O containing the information
needed to give a precise feedback to users (collective name, line of collectives and conditionals in
the source code) and the set of all conditionals potentially responsible for a deadlock.

The algorithm first computes the execution order of each collective by computing for each node
of the PPCFG the number of collectives on the execution paths from the program entry to the node.
This number is 0 for nodes before the first collective (including the node with the first collective),
1 for nodes reached after one collective and so on.

When multiple paths exist, nodes can have multiple numbers. Hence, loop backedges are re-
moved to have a finite numbering and when a collective has multiple execution orders, only the
highest one is considered.

After calculating the execution order of each collective, the algorithm computes conditionals
in the program leading to different sequences of collectives. These conditionals are obtained by
computing for each collective c and each execution order r the PDF+ of the set of nodes Cr,c

containing a call to collective c with execution order with r.
Whenever a function contains a collective call in a loop, it is considered as statically incorrect.

The analysis does not take into account the number of iteration in the loop as this information
is unknown at compile time. For MPI applications, we analyse the program separately for each
communicator.

Example:
The PPCFGs of the MPI Code 1 and OpenMP Code 3 examples are shown in Figure 5.6. The

algorithm first computes execution order of collectives. In Figure 5.6a, barriers in nodes 3 and
4 can be the first collectives encountered (paths entry f → 2 → entryg → 3 or 4). The barrier
node 5 can be the first collective (paths entry f → 2 → 5) or the second collective encountered.
The algorithm then considers C0,barrier = {3, 4} and C1,barrier = {5} with PDF+(C0,barrier) = {2} and
PDF+(C1,barrier) = ∅. Because PDF+(C0,barrier) , ∅, a warning will be issued for the conditional
node 2.

The PPCFG Figure 5.6b has two collectives: MPI_Barrier in node 3 and MPI_Ibarrier
in node 4. The static analysis detects a potential collective error for the barrier in 3 and the non-
blocking barrier in 4 and reports a warning for the conditional located in node 2 (PDF+(C0,Barrier) =

{2} and PDF+(C0,Ibarrier) = {2}).

The new instrumentation step is presented in the next section.
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Data: PPCFG
1 O← ∅ . Output set
2 Remove loop backedges in PPCFG = (V, E) to compute execution orders for each

collective
3 for r in node orders do
4 for c in collective names of execution order r do
5 Cr,c ← {u ∈ V |r is the max. execution order of u, u executes a collective with name

c}
6 if PDF+(Cr,c) , ∅ then
7 O← O ∪ (c, PDF+(Cr,c))
8 end
9 for each collective c in a loop do

10 O← O ∪ (c, { loop exit nodes })
11 end
12 end
13 Output nodes in O as warnings
14 return O

Algorithm 1: Full-interprocedural Control-flow Analysis.
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Figure 5.6: MPI Code 1 and OpenMP Code 3 PPCFG.

5.3 Code Instrumentation
With the help of the static analysis, we perform a selective instrumentation of programs. Only
statically incorrect programs are instrumented (no warning is issued during compilation time for
statically correct programs so no instrumentation is done).

For statically incorrect programs, all collectives and exit statements are instrumented with
Check Collective (CC) functions. The instrumentation starts from the first collectives that may
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deadlock in the program. Relying on the work in [77], we define the CC function as follows. CC
functions take as input an integer imodel identifying the parallel programming model used (MPI or
OpenMP), the communicator related to the collective (0 in case of OpenMP), an integer ic identi-
fying the collective and the set O generated at compile-time. Through CC calls, processes/threads
can verify which collectives will be called at different steps of execution. For MPI programs, CC
calls a MPI_Reduce with a new MPI operator returning −1 if there is at least two different inte-
gers ic among processes. For OpenMP programs, each thread updates a shared variable related to
ic. When a deadlock is about to occur, an error message is returned with compilation information
(related warnings).

Example:
An example of MPI code instrumentation is shown in Figure 5.7 (inspired from MPI Code 4
in Figure 5.4d, page 105). A CC function is inserted before the collective MPI_Barrier in
g and MPI_Finalize in main. The MPI_Barrier line 8 is called by all processes and is
therefore not instrumented.

1 vo id f ( ) {
2 i f ( . . )
3 MPI_Barr ier (com) ;
4 }
5
6 i n t main ( ) {
7 /∗ . . ∗ /
8 MPI_Barr ier (com) ;
9

10 i f ( . . )
11 f ( ) ;
12
13 MPI_Final ize ( ) ;
14 }

(a) MPI Code.

1 vo id g ( ) {
2 i f ( . . ) {
3 CC(MPI, com,ibarrier,O);
4 MPI_Barr ier (com) ;
5 }
6 }
7
8 i n t main ( ) {
9 /∗ . . ∗ /

10 MPI_Barr ier (com) ;
11
12 i f ( . . )
13 g ( ) ;
14
15 CC(MPI, com,0,∅∅∅);
16 MPI_Final ize ( ) ;
17 }

(b) MPI Code instrumented.

Figure 5.7: MPI example and its instrumentation.

Lemma 1. All deadlock situations are captured by the instrumentation and the new collectives
inserted do not generate a deadlock themselves.

Proof. We denote the sequence of collective calls executed by a process/thread in a program ex-
ecution as c1c2...cn with ci the i-th collective called. Our instrumentation rewrites each collective
c j into s jc j corresponding to the CC function with integer j and the collective c j, starting with
collectives that may deadlock. A CC function s0 is added after all collectives (CC before ex-
it/abort/MPI_Finalize). Assuming the first collective that may deadlock is the k-th collective,
a sequence c1c2...ck...cn then becomes c1c2...skck...sncns0. If all collectives sequences are the same
for all processes/threads, no instrumentation is done and the collectives sequences are still identi-
cal. The instrumentation does not introduce deadlocks. If a program deadlocks due to collective
operations, we have the two following scenarios:

• A process/thread calls a collective ci while another process/thread calls a collective c j with
i , j. The collectives sequences of both processes/threads only differ with their last col-
lective and are prefixed by c1...ci−1. The instrumentation changes both collectives sequences
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into c1...ci−1si and c1...ci−1s j. The sequences stop with si and s j since CC(−,−, i,−) and
CC(−,−, j,−) lead to an error detection and abort. The modified program no longer dead-
locks.

• A process/thread calls a collective while another one exits the program. The collectives se-
quence of the process/thread exiting the program is c1...ci−1 and the process/thread calling
the collective executes the same prefix sequence with one more collective ci. The instrumen-
tation changes both collectives sequences into c1...ci−1s0 and c1...ci−1si. The sequences stop
with s0 and si since CC(−,−, 0,−) and CC(−,−, i,−) lead to an error detection and abort.
Again, the modified program does not deadlock.

5.4 Experimental Results

This section presents the evaluation methodology and the results obtained with our full-interprocedural
analysis.

Implementation: PARCOACH was previously implemented as a GCC plugin, working with
GCC version 4.7.0. The summary-based interprocedural analysis was implemented as a python
script working on GCC dumped traces. We integrated both the intraprocedural and full-interprocedural
analyses of PARCOACH into the LLVM [25] compiler framework, version 3.9. Our new static
analysis is done at the LLVM IR level and applies Algorithm 1 and the code instrumentation. For
runtime checking, the application needs to be linked to our dynamic library (which contains CC
function implementation).

Methodology: There exists no benchmark or application with deadlock. To evaluate the effi-
ciency of our tool, we manually introduced errors in small codes. PARCOACH was always able to
detect them. In this section, we present results we obtained on the MILC [82], Gadget-2 [83] and
MPI-PHYLIP [84] applications, AMG [85] from the CORAL benchmarks, the High-Performance
Linpack benchmark [86] (HPL), miniAMR and CoMD from the Mantevo project [87], IOR [88]
from the NERSC benchmarks (IOR-POSIX and IOR-MPIIO), Hydro [89], and IS from the NAS
benchmarks [90]. Table 5.1 shows benchmarks and applications statistics. The second column
depicts the parallel programming model used. The third and fourth columns respectively give the
number of functions and collectives found in programs. The last column gives the number of com-
municators for MPI applications. MILC and MPI-PHYLIP are represented by the cumulative sum
of all mini applications they contain. AMG is parallelized with MPI and OpenMP.

5.4.1 Static Analysis Results

The number of warnings and conditionals returned by both intraprocedural and full-interprocedural
analyses is depicted in Table 5.2 for all benchmarks and applications. We can notice that NAS-
OMP IS is collective error free as no warning is emitted at compile time for this benchmark.
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Application Parallelism # func. # coll. # com.
MILC* MPI 24,242 635 253
Gadget-2 MPI 193 70 1
MPI-PHYLIP* MPI 4,000 128 12
Bench. / mini app. Parallelism # func. # coll. # com.

Coral AMG MPI 1,207 79 19
OpenMP 1,207 11 -

HPL MPI 193 3 1
miniAMR MPI 103 43 2
IOR-POSIX MPI 175 82 5
IOR-MPIIO MPI 197 88 5
Hydro MPI 99 13 1
CoMD MPI 124 8 1
NAS-MPI IS MPI 36 9 1
NAS-OMP IS OpenMP 51 3 -

Table 5.1: Applications and Benchmarks Statistics.

Application Intraprocedural full-interprocedural
#warn. #cond. #warn. #cond.

MILC* 114 114 498 2195
Gadget-2 21 22 68 30
MPI-PHYLIP* 65 44 65 44

Bench. / mini app. Intraprocedural full-interprocedural
#warn. #cond. #warn. #cond.

Coral AMG 45 34 76 169
6 2 11 48

HPL 2 1 2 1
miniAMR 20 15 32 36
IOR-POSIX 67 64 82 79
IOR-MPIIO 73 68 88 83
Hydro 11 11 13 12
CoMD 0 0 8 3
NAS-MPI IS 3 1 3 1
NAS-OMP IS 0 0 0 0

Table 5.2: Number of warnings reported and conditionals responsible for a collective error
for both intraprocedural and full-interprocedural analyses.

A more detailed ratio is presented Figures 5.8 and 5.9. The number of conditionals added and
removed with PARCOACH using the full-interprocedural method compared to the intraprocedural
analysis is shown in Figure 5.9 while the number of warnings added and removed is shown in
Figure 5.8.

Warnings reported by the full-interprocedural analysis are mostly new warnings and few warn-
ings were removed. The number of conditionals added and removed is also unbalanced. Adding
(resp. removing) a conditional does not necessary imply adding (resp. removing) a warning since
two conditionals can be responsible for the same warning.
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Figure 5.8: Number of warnings added and removed with PARCOACH using the full-
interprocedural method compared to PARCOACH using the intraprocedural
analysis.
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Figure 5.9: Number of conditionals added and removed with PARCOACH using the full-
interprocedural method compared to PARCOACH using the intraprocedural
analysis.
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Figure 5.10: Compile-time overhead using the full-interprocedural analysis (ratio between
the PARCOACH analysis time and the total compilation time).
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The compile-time overhead induced when using the full-interprocedural analysis in PARCOACH
is shown in Figure 5.10. The compilation time can be around third time the initial time (Coral
AMG OMP). However, as the corresponding total compilation time with our analysis is 1 minute,
we think it is acceptable.

When reporting a potential collective error, PARCOACH pinpoints the source of the error. As
an example, it reports the following warning for the MPI code in Figure 5.4a, page 105:

PARCOACH: warning: MPI_Ibarrier line 2 possibly not called by all processes
because of conditional(s) line(s) 7
PARCOACH: warning: MPI_Barrier line 8 possibly not called by all processes
because of conditional(s) line(s) 7

This warning helps the user to prevent possible deadlocks. By looking at the conditional line
7 in the code, the developer of the application can check if this conditional is uniformly true or
false for all processes. If it is the case, the warning returned is a false positive. Otherwise, this
conditional may lead to a deadlock situation.

5.4.2 Execution Results
In order to realize the usability of our tool, we tested our code instrumentation on the Hydro bench-
mark. Hydro solves compressible Euler equations of hydrodynamics. We use the fine grain MPI
version using C of the benchmark. Results were obtained on the Cori (Cray-XC40) supercom-
puter, deployed at NERSC [91] and averaged (over 50 runs for Hydro). Cori is composed of two
partitions. One has 2, 388 Intel Xeon “Haswell” nodes with 32 cores each and the other contains
9, 688 Intel Xeon Phi (KNL) nodes. In this section, Reference denotes the original version of a
benchmark.

Figure 5.11 shows the execution-time of Hydro for a range of MPI processes from 32 to 320.
As can be seen in the figure, the overhead induced by PARCOACH runtime verification is under
6%.
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Figure 5.11: Execution-Time of Hydro with and without runtime verification (domain size
= 500x500, nstepmax=200).

When a deadlock is about to occur, PARCOACH stops the execution and reports an error mes-
sage with compilation information. For the code presented Figure 5.4a, PARCOACH reports the
following error message:
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PARCOACH: Error detected on rank 0
Abort is invoking line 8 before calling MPI_Barrier in MPIcode1.c
See warning(s):
MPI_Barrier line 8 possibly not called by all processes because of
conditional(s) line(s) 7,
MPI_Ibarrier line 2 possibly not called by all processes because of
conditional(s) line(s) 7

This feedback helps to fix the deadlock. The non-blocking barrier can be replaced by a blocking
one.

5.5 Summary
Modern supercomputers are more and more complex to program. Consequently, optimizing par-
allel codes to leverage the performance of parallel architectures and at the same time keeping the
readability of the code in order to prevent bugs is generally not possible. Hence, one major chal-
lenge to achieve exascale is to help developers to locate, analyse and prevent errors in parallel
applications.

The second part of this thesis aims at automatically detecting collective errors origin in parallel
applications. This chapter introduces the PARCOACH framework on which our contribution is
based and its limitations. PARCOACH detects misuses of collectives by combining static and
dynamic analyses. The static analysis detects collectives that may not be called by all processes
and issues a warning for all conditionals potentially responsible for a deadlock. Then collectives
are instrumented in order to verify potential deadlocks at runtime.

We have shown that in certain situations the feedback reported by PARCOACH is inaccurate
and it can miss the real cause of a deadlock. To overcome these limitations we propose an extension
of the PARCOACH framework. Our extension uses a parallel program control-flow graph for
a more precise and accurate interprocedural analysis. This analysis brings an acceptable overhead
that is not far from the overhead induced by the initial PARCOACH analysis. Furthermore, we have
shown that our runtime verification has a low overhead (less than 6%) on the Hydro benchmark.

The next chapter proposes to combine the PARCOACH debugging method with a data-flow
analysis in order to compute more precisely concurrent execution paths in parallel programs and
reduce the number of false positive warnings.
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In the previous chapter, we have presented a method to statically detect conditionals that may
lead to the execution of different sequences of collectives in parallel programs. The warnings issued
by PARCOACH help developers to prevent possible deadlocks in their application.

However, different sequences of collectives must be executed concurrently for a deadlock to
actually happen. If a conditional returned by PARCOACH as potentially leading to different se-
quences of collectives is evaluated to the same value by all processes, then all processes will execute
the same branch of the conditional and therefore the same sequence of collectives. The warning
issued for this conditional is therefore a false positive. Finding which collective matches a given
collective therefore requires to analyze the different concurrent execution paths of a parallel execu-
tion.

Aiken and Gay first introduced the concept of structural correctness for synchronizations in
SPMD programs, based on the notion of multi-valued and single-valued variables [92]. A variable
is multi-valued if its value is dependent on the process identifier (single-valued otherwise). In
structurally correct programs, processes have the same sequence of synchronization operations. If
a synchronization is executed conditionally, the condition expression is single-valued. In a parallel
program, determining the divergence points leading to concurrent execution of different sequences
of collectives and deadlock situations corresponds to find multi-valued expression.

6.1 Principle and Objective
In this chapter, we propose to combine the inter-procedural analysis presented in the previous
chapter to perform collective matching with a data-flow analysis to detect multi-valued variables.
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The objective is to improve the preciseness of the PARCOACH debugging method and to reduce
the number of false positives.

6.1.1 Challenges

We illustrate the challenges of detecting collective errors in parallel programs with four codes
containing collectives operations in MPI, OpenMP, CUDA, and UPC.

The code of Figure 6.1a is written in OpenMP. According to the OpenMP specification, the
same explicit and implicit1 barriers (syntactically) should be executed by all threads. In practice,
the OpenMP runtimes allow the execution of syntactically different barriers, provided all threads
execute the same number of barriers. The #pragma omp parallel directive in function f
defines r, containing the thread ID (line 10) and s, as a private variable. The barrier line 3 is either
executed by all threads of the program or by none of them as s is single-valued when entering
function g line 12. The barrier line 15 is then conditionally executed, depending on s. Variable s
becomes multi-valued line 13 and leads to a deadlock situation, when the thread count is greater
than 1. The objective of the analysis is to only detect the barrier line 15 as potentially dangerous.
It implies being able to differentiate the two instances of variables s lines 11 and 13 and only
detect the instance line 13 as multi-valued. Moreover, the analysis must detect interprocedural
dependences between variables to check whether s is multi-valued in function g.

The MPI code in Figure 6.1b contains two collectives (MPI_Barrier and MPI_Reduce)
and two functions: g and f. The call to MPI_Barrier line 17 is performed by all processes,
whereas the call MPI_Reduce in g line 3 causes a deadlock. The deadlock is due to the fact
that there is a multi-valued control-flow divergence line 14: Odd-ranked processes evaluate the
condition to true, potentially executing the collective, while even-ranked ones evaluate it to false,
hanging in the MPI_Barrier line 17. On the contrary, the flow-divergence line 2 does not depend
on the rank, since for the unique execution path leading to line 2, s is single-valued. The objective
of the analysis is to statically report this situation to the user, identifying the conditional line 14,
and only this one, as a potential cause for mismatched calls. The analysis must not only take into
account data-flow dependences but also control-flow dependences in order to detect that variable n
is multi-valued line 14.

The CUDA code in Figure 6.1c manipulates multidimensional thread IDs, through predefined
variables such as threadIdx. Synchronizations are valid if executed by all threads within the
same block. Before the first synchronization in the code, the array tile depends on thread ID.
As it is shared among threads, they all share the same version after the synchronization line 7. The
synchronization line 9 is conditionally executed depending on tile[0]. As this value does not
depend on thread ID, there is no deadlock. The third synchronization, line 11, corresponds to an
invalid situation. Depending on the driver, it may lead to either a deadlock or an undefined memory
configuration. This bug can be difficult to detect for a programmer in a real code, as this is a silent
synchronization error. The goal of the analysis is to detect that only the synchronization line 11
may cause an error, due to the conditional line 10.

The code Figure 6.1d is written in Unified Parallel C (UPC) where the predefined variable
MYTHREAD specifies thread index. In this code, because of the multi-valued expression line 3,
threads with odd ID will call 9 barriers (line 5) while the others will call 10 barriers (line 9). This
code is not verifiable at compile-time, hence a dynamic analysis should be proposed to prevent a

1There is an implicit barrier at the end of all worksharing constructs, unless a nowait clause is specified.

118



CHAPTER 6. MULTI-VALUED EXPRESSION ANALYSIS FOR COLLECTIVE CHECKING

1 vo id g ( i n t s ) {
2 i f ( s==10)
3 #pragma omp barrier
4 }
5
6 vo id f ( ) {
7 i n t r ; i n t s ;
8 #pragma omp p a r a l l e l p r i v a t e ( r , s )
9 {

10 r =omp_get_thread_num ( ) ;
11 s=omp_get_num_threads ( ) ;
12 g ( s ) ;
13 s= r %2;
14 i f ( s==10)
15 #pragma omp barrier
16 }
17 }

(a) OpenMP example.

1 vo id g ( i n t s ) {
2 i f ( s > 256)
3 MPI_Reduce(com, ...);
4 }
5
6 vo id f ( ) {
7 i n t s , r , n ;
8 MPI_Comm_size (com,&s ) ;
9 MPI_Comm_rank (com,& r ) ;

10 i f ( r % 2)
11 n = 1;
12 else
13 n = 2;
14 i f ( n == 1)
15 g ( s ) ;
16
17 MPI_Barrier(com);
18 }

(b) MPI example.
1 vo id f ( i n t ∗data ) {
2 __shared__ i n t t i l e [ ] ;
3 i n t t i d = th read Idx . x ;
4 i n t g id = b lock Idx . x∗blockDim . x+ t i d ;
5
6 t i l e [ t i d ] = data [ g id ] ;
7 __syncthreads();
8 i f ( t i l e [ 0 ] )
9 __syncthreads();

10 i f ( t i d )
11 __syncthreads();
12 }

(c) CUDA example.

1 vo id f ( ) {
2 i n t i =1; j =10;
3 i f (MYTHREAD%2) {
4 whi le ( i <10) {
5 upc_barrier; i ++;
6 }
7 } e lse {
8 whi le ( j <20) {
9 upc_barrier; j ++;

10 }
11 }
12 }

(d) UPC example.

Figure 6.1: Examples of collective issues.

possible deadlock at runtime.

6.1.2 Principle
The principle of our analysis consists in three steps. We first computes a graph capturing data-flow
and control-flow dependences between variables of the program. Then, we flood the graph from
functions or variables returning thread ID/process rank in order to detect multi-valued variables
in the program. Finally, we combine the PARCOACH full-interprocedural analysis with the rank-
dependence information in order to only issue a warning for collective whose execution depends
on multi-valued conditionals.

The static analysis we propose only detects situations and causes of possible deadlocks. Nonethe-
less, if the codes are executed with only one process/thread, there is no deadlock. Also, the follow-
ing code:

if(A){ barrier }
if(not A){ barrier }

with A multi-valued is considered as potentially dangerous by our analysis whereas it is correct
(correct but structurally incorrect). In many cases, the static analysis is able to prove that there
is no deadlock situation. But when it is not the case, we can also resort to the dynamic analysis
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presented in the previous chapter (cf Section 5.3). The dynamic analysis checks before executing
collectives that indeed all processes are about to execute the same collective. The static analysis
we propose helps to reduce the cost of these checks, by proving that some collectives are “safe”.

6.2 Multi-Valued Expression Detection
This section presents a static analysis to find all conditionals in a program that depend on multi-
valued expressions and that lead to different sequences of collectives. Two kinds of dependences
can occur: data-flow and control-flow dependences. Both must be captured. In order to find multi-
valued expressions, we build a program data- and control-flow dependence graph that highlights
the rank dependence contamination in a program.

6.2.1 Enhanced SSA
Our analysis is based on the Static Single Assignment (SSA) form of the program. In SSA vari-
ables are defined by exactly one statement in the program text. Variables that are assigned initially
in multiple statements are renamed into new instances, one per statement. Hence, the data-flow
dependences inside a function can be captured by following def/use chains. When multiple control-
flow paths join in the CFG, renamed variables are combined with a φ-function into a new variable
instance. To capture control-flow dependences we compute an enhanced SSA where φ-functions
are augmented with their predicates: φ(y1, ..., yk) is transformed into φ(y1, ..., yk, p1, ..., pk) with pi

the conditionals responsible for the choice of the yi. These conditionals are determined by comput-
ing the PDF+ of each argument yi of the φ-function as in [93].

For C-like programs, variables that can be referenced with their address (address-taken vari-
ables), are only manipulated through pointers with load and store instructions in the SSA form.
To compute def/use chains for address-taken variables, we rely on the principles exposed in flow-
sensitive pointer analyses such as [94,95]: First a points-to analysis is computed to handle potential
aliases among arrays and pointers. Then, each load q = ∗p is annotated with a function µ(o) for
each variable o that may be pointed-to by p to represent a potential use of o at the load instruction.
Likewise, each store ∗p = q is annotated with o = χ(o) for each variable o that may be pointed-to
by p to represent a potential def of o at the store instruction.

There is a special case to consider for shared variables. After a synchronization (#pragma
omp barrier in OpenMP, syncthreads in CUDA), shared variables have the same value for
all threads. To create a new SSA instance that no longer depends on the value preceding the barrier,
synchronizations are annotated with o = χ() for all shared variables o.

Then a context-sensitive Mod-Ref Analysis is performed to capture inter-procedural uses and
def as described in [96]. The objective of this analysis is to capture the variables referenced and/or
modified in functions through pointers. Each callsite cs is annotated with µ(o) for each variable o
indirectly referenced in the called function. Similarly, each callsite is annotated with o = χ(o) to
generate a new instance of o for each variable indirectly modified in the called function. For each
address-taken variable referenced or modified in a function, a χ function is inserted at the beginning
of the entry node of the CFG and a µ function is inserted at the end of the exit node of the CFG to
represent their initial and final values.

Finally, all address-taken variables are converted to SSA form. This results into an augmented
SSA, with value and control dependences and with additional statements in SSA describing the
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effects of pointer manipulations. All possible def-use chains are then built inside SSA notation.
This simplifies the construction of the following dependence graph.

6.2.2 PDCG: Program Data- and Control-flow Dependence Graph

A program data- and control-flow dependence graph (PDCG) is built from the enhanced SSA by
connecting the definition of each variable with its uses, following the rules in Table 6.1. The role of
this graph is to find all variables/expressions that are multi-valued. The principle is to identify the
source statements that generate different values for different thread IDs/ranks, and then to propagate
this property following the edges of the PDCG. The first four rules are based on [94] using similar
notations. Our differences are highlighted in red.

Rule Statement (SSA) Edges
Value Flow Dependence

OP ` : z = x@`′ op y@`′′ z@` ←↩ x@`′ z@` ←↩ y@`′′

PHI ` : v3 = φ(v1@`1, v2@`2, ...,p@`3, ...)
v3@` ←↩ v1@`1 v3@` ←↩ v2@`2
v3@` ←↩ p@`3

LOAD ` : q = ∗p@`′ [µ(o@`′′)] q@` ←↩ o@`′′ q@` ←↩ p@`′

STORE ` : ∗p@`1 = q@`2 [o2 = χ(o1@`3)] o2@` ←↩ q@`2
o2@` ←↩ o1@`3 o2@` ←↩ p@`1

CALL

`cs : r = f (..., p@`1, ...) [µ(o1@`2)]
q@`3 ←↩ p@`1 r@`cs ←↩ x@`6[o2 = χ(o1)]

f (..., q@`3, ...) { o3@`4 ←↩ o1@`2
[o3@`4 = χ()] ... [µ(o4@`5)] return x@`6
} o2@`cs ←↩ o4@`5

Optimization

PHI ` : ∗p@`1 = q@`2 [o2 = χ(o1@`3)] o4@`′′ = fuse(o2@`, o3@`′, o4@`′′)
`′ : ∗p@`1 = q@`2 [o3 = χ(o1@`3)] remove(o4@`′′ ←↩ pred@`4)

ELIM `′′ : o4 = φ(o2@`, o3@`′, pred@`4)

RESET

`cs : reset(buf@`1, ...) [µ(o1@`2)]

remove(o2@`cs ←↩ o4@`5)
[o2 = χ(o1)]
reset(buf@`3, ...) {
[o3@`4 = χ()] ... [µ(o4@`5)]
}

Collective Checking

COND

` : coll(...)

coll@` ←↩ cond@`′
with coll a collective of execution order r
For all BB ∈ PDF+(Cr,coll) matching:
...
br cond@`′, label1, label2

Table 6.1: Building Rules for Instructions in the PDCG. Value Flow Dependence rules
are based on SVF [94] with our differences highlighted in red. Optimization
rules eliminate spurious dependences and Collective Checking rule connects
collectives to the conditionals governing their execution.

The OP and PHI rules correspond to straightforward data- and control-flow dependences: For
an operation ` : z = x op y, the definitions of x and y at `′ and `′′ are connected to the definition of
z at `. For a φ statement ` : v3 = φ(v1, v2, ..., pi, ..) at a control-flow join point, the definitions of the
old SSA instances v1 and v2 at `1 and `2 are connected to the definition of the new SSA instance
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v3 at `. For each predicate pi, the definition of pi at `3 is connected to the definition of v3 at ` to
handle the control-flow dependence.

The LOAD and STORE rules take into account alias information for load and store statements.
For a load statement ` : q = ∗p, the definition of each object o at `′′ pointed to by p is connected
to the definition of q at `. We also add a link from the definition of p at `′ to the definition of q at
` to denote the dependence of q with the array index. Indeed, this correspond to the case where ∗p
is A[e] with e an expression. If e depends on the rank/thread ID, then q is multi-valued. Similarly,
for each store instruction ` : ∗p = q annotated with [o2 = χ(o1)], the definitions of q and p are
connected to o2. However, we do not connect o1 to o2 since we assume that the old value o1 is
overwritten with o2 (strong update).

The CALL rule handles inter-procedural dependences: For each callsite `cs : r = f (..., p, ...),
the definition of the effective parameter p inside the calling function is connected to the formal
parameter q in f . And the definition of the return value x in f is connected to the definition of r
at `cs. To handle indirect value-flows for address-taken variables, given a callsite annotated with
[µ(o1)] [o2 = χ(o1)], the definition of o1 in the calling function is connected to the first definition of
o in f (o3). Similarly, the last definition of o in f (o4), is connected to the definition of o2 at `cs.

The rules proposed in the Optimization section of the table correspond to two edge removal op-
timizations. After augmenting φ-nodes with their predicates, false control dependences can appear
if every operand of a φ-node denotes the same value. This occurs in particular when considering
two identical function calls in two branches of an if..then..else construct. Even if these two
calls use the same single-valued parameters, the returned value will still depend on the predicate
of the conditional (augmented SSA). To tackle this issue, the PHIELIM rule fuses such φ-nodes
with their operands and disconnects the predicates. In distributed memory, after a value-sharing
collective such as an all-to-all collective, the communicated buffer has the same value for all pro-
cesses. This implies that this buffer does not depend on the rank after such collective, whatever its
rank-dependence before the collective. To handle this situation, the RESET rule disconnects the
path from the old SSA instance of the buffer to its new SSA instance after a value-sharing collective
(o1@`2 ↪→ o3@`4 ↪→ o4@`5 ↪→ o2@`cs). The same rule applies to any value-sharing collective
where all processes receive the same result such as MPI_Allreduce or MPI_Broadcast.

Finally, to detect collectives that may not be executed by all processes, we rely on the PAR-
COACH full-interprocedural analysis presented in the previous chapter (cf Section 5.2.2). The
COND rule connects each collective coll with execution order r to the conditionals contained in
PDF+(Cr,coll).

6.2.3 Finding Collective Errors
The initial method presented in Chapter 5 finds all conditionals that may lead to the execution of
different sequence of collectives. In this approach, all conditionals are assumed to be multi-valued.
This is a safe over-approximation, generating many false positive results.

With our new analysis, we can now use the PDCG to identify multi-valued conditionals: We
track values and nodes in the PDCG that depend on ranks, flooding the graph from source func-
tions returning IDs or variables allowing tasks to identify themselves. The source functions are
MPI_Comm_rank and MPI_Group_rank in MPI, omp_get_thread_num for OpenMP. In
UPC and CUDA, the source is a variable: MYTHREAD and threadIdx.*.

We then use the dependence information from the PDCG to filter out false single-valued con-
ditionals from the PDF+ of collectives and reduce the number of false positives in PARCOACH.
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After the graph flooding, only collectives whose execution depends on multi-valued conditionals
are highlighted. Hence, a warning is issued only for highlighted collectives in the PDCG.

The resulting analysis still builds an over-approximation of the set of multi-valued conditionals,
but a more accurate one. The augmented SSA takes into account value and control dependences, the
points-to analysis provides the dependences through aliases and the inter-procedural part connect
call sites and callees. Note that thanks to the PDCG, the multi-valued analysis can be path sensitive:
An expression may be multi-valued or not, depending on the preceding calling context.

6.2.4 Example
Figures 6.2a and 6.2c show the enhanced SSA for the MPI code in Figure 6.1b, page 119. The
call to MPI_Comm_rank is annotated with a χ function to denote the indirect definition of object
o’1 pointed-to by r. This generates a new SSA instance, o’2. Then the object o’2 pointed-to by
r is loaded in reg0. Depending on whether its value is odd or even, the execution flows to label
if.then or if.else. These two control-flow paths join at label if.end and a φ-function is
inserted to combine the values of reg1 and reg2 into variable n. Note that the predicate cmp1
is added to the φ-function to indicate its value depends on cmp1. Finally, depending on whether n
value is equal to 1 (cmp2) there is a conditional branching to label if.then2 and function g is
called. Otherwise, the function returns.

1 def ine vo id f ( ) {
2 s = a l loca_o ; // object o1
3 r = a l loca_o ’ ; // object o’1
4 MPI_Comm_size (com, s ) ; [µ(o1)]
5 [o2 = χ(o1)]
6 MPI_Comm_rank (com, r ) ; [µ(o’1)]
7 [o’2 = χ(o’1)]
8 reg0 = load r [µ(o’2)]
9 rem = reg0 % 2;

10 cmp1 = rem != 0;
11 br cmp1 , i f . then , i f . e lse
12 i f . then :
13 reg1 = 1;
14 br l a b e l i f . end
15 i f . e lse :
16 reg2 = 2;
17 br l a b e l i f . end
18 i f . end :
19 n = φ ( reg1 , reg2 , cmp1)
20 cmp2 = n == 1;
21 br cmp2 , i f . then2 , i f . end2
22 i f . then2 :
23 reg3 = load s ; [µ(o2)]
24 g ( reg3 ) ;
25 br l a b e l i f . end2
26 i f . end2 :
27 MPI_Barr ier (com) ;
28 r e t vo id ;
29 }

(a) Function f SSA.

 f 

 g 

s

reg3

r reg0

rem

reg1
n

reg2

s

cmp1

cmp2

MPI_Reduce@L5

o1 o2

o'1 o'2
MPI_Barrier@L8

cmp

(b) PDCG.

1 def ine vo id g ( i32 s ) {
2 cmp = s > 256
3 br cmp, i f . then , i f . end
4 i f . then :
5 MPI_Reduce (com, . . . ) ;
6 br i f . end
7 i f . end :
8 r e t vo id
9 }

(c) Function g SSA.

Figure 6.2: Enhanced SSA form of the MPI code Figure 6.1b and its corresponding
PDCG.

Figure 6.2b shows the corresponding PDCG. Rectangle nodes represent collectives. Diamond
and circle nodes respectively represent definitions of address-taken and top-level variables (vari-
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ables never referenced by their address). In this example the source MPI_Comm_rank is in line
6 and the first rank-dependent object is o’2. All library functions have mocked-up CFGs, tagging
output values as rank-dependent when necessary. Out of clarity, the CFG of the MPI functions are
not represented in the figure. The graph highlights the rank-dependent path from o’2 to the call to
MPI_Reduce in g passing through the conditional cmp2 in f.

In this example, the execution order computed by PARCOACH for the MPI_Reduce line 5 is
0 (first collective encountered) while the execution order of the MPI_Barrier line 8 is 1. The
execution of MPI_Reduce depends on PDF+(C0,MPI_Reduce) = {(cmp,cmp2}. Indeed, the call to
MPI_Reduce depends on the value of cmp in g and the call to g depends on the value of cmp2
in f. Hence, MPI_Reduce@`5 is connected to cmp and cmp2. However, there is no path from
o’2 to cmp, as it does not depend on the rank.

Finally, the execution of MPI_Barrier is not governed by any conditional as PDF+(C1,MPI_Barrier) =

{∅}. Hence, MPI_Barrier@`8 is not connected to any node in the graph and it cannot be reached
from a source statement (statement `7),

Since the only collective highlighted in the graph corresponds to the MPI_Reduce in g and
only one of the two conditionals governing its execution is highlighted, our new analysis only issues
a warning for the multi-valued conditional line 21 in f and the call to MPI_Reduce in g.

6.3 Related Works

This section summarizes works on dependence analyses and gives an overview of existing tools for
collective error detection in parallel programs.

6.3.1 Dependence Analyses Techniques

Dependence analyses are the cornerstones of many optimizations/analyses in compilers. For in-
stance, dependences are used for Taint Analysis [97–99] to determine how program inputs may
affect the program execution and exploit security vulnerabilities, Information Flow Tracking [100–
103] to prevent confidential information from leaking, static Bug Detection [104, 105] or code op-
timization and parallelization (e.g. the polyhedral model [106]). One of the difficult issues when
computing data dependences is to deal with pointers/memory aliases and non scalar variables (e.g.
arrays, structures). In SVF [94] the authors annotate load and store instructions with µ and χ
functions to transform address-taken variables into an SSA form. However, they do not take into
account the possible dependence of the pointer itself (through an array index for instance) when
they build the data dependence graph.

Many of the aforementioned analyses only consider data dependences although Slowinska et
al. [107] showed that omitting control dependences can be a huge source of false negative results.
In [108], the authors introduced the concept of Strict Control Dependences to reduce the number
of false positives in Taint Analyses and Lineage Tracing. In Parfait [109] the authors propose to
extend φ-functions with predicates in order to handle control dependences. However address-taken
variables are not transformed into SSA form.
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6.3.2 Collective Error Detection Techniques

MPI Static analyses operate on the source code of an application and have the advantage of
not requiring execution. They are usually based on model checking and symbolic program exe-
cution, limiting their applicability (the number of reachable states to consider is combinatorial).
TASS [110] uses this approach. It builds a model by associating symbolic expressions to all input
values and then checks reachable states of this model. The method presented by Zhang and Duester-
wald in [76] is the closest to our work. It detects synchronization errors with an inter-procedural
barrier matching technique for SPMD programs with textually unaligned barriers. Compared to
our analysis, the method has no pointer analysis and all references to an array are assumed to be
multi-valued. In the following section, we compare the results obtained when using the analyses
proposed in [109] and [94] instead of our multi-value analysis, described in Section 6.2. This
shows that a dedicated dependence analysis is required to preserve the correctness of the results,
and the analysis we propose is more accurate than the others.

Although dynamic tools are input data set dependent and can only detect an error when it is
about to occur, they better manage huge number of processes compared to static analyses. Some
dynamic tools detect deadlocks with a time-out approach, which may cause false positive. It is the
case of the Intel Trace Analyzer and Collector [111] (ITAC) and DAMPI [112]. Although PAR-
COACH static analysis may cause false positives, the program instrumentation assures only real
deadlocks are catched at runtime. MUST [113,114] is able to check MPI collective operations with
an offloading approach using wait-for graphs. Compared to MUST, PARCOACH stops the execu-
tion before a deadlock occurs and gives a more precise feedback about what caused it. STAT [115]
uses a post-mortem analysis. It studies the stack trace of execution to detect deadlock situations.
This method does not allow finding deadlock root causes. An extension of MPICH directly verifies
collective operations inside the MPI implementation [116]. This method is therefore limited to the
information available in the MPI routines. PARCOACH was designed to take the best of static and
dynamic methods. It combines a scalable static analysis based on the study of programs control
flow with an instrumentation of the code that verifies potential deadlocks at execution-time.

OpenMP The OpenMP Analysis Toolkit (OAT) [117] relies on symbolic analysis to detect con-
currency errors, including deadlocks. It encodes OpenMP regions into SMT formulas and uses the
SMT-solver Yices to detect errors. Zhang et al. [118] detect textually unaligned barriers with an
interprocedural concurrency analysis. This one uses the control flow of a program and a barrier
tree. Our method is simpler: we build a parallel program control-flow graph to get interprocedural
information. Compilers like GCC [119], ICC [120] or LLVM [25] issue either a warning or an
error message for invalid nesting of regions. For example, GCC issues a warning for a single
directive in another single directive whereas ICC and LLVM return an error message. However,
if the nested region is encapsulated into a function, they don’t detect anything. PARCOACH [78]
uses the same static/dynamic method as for MPI programs to detect misuse of barriers and work-
sharing constructs in OpenMP programs. Intel Thread checker [121,122] (now superseded by Intel
Inspector XE [123]) and Sun thread analyzer [122, 124] both use code instrumentation to collect
operations on memory, thread management and synchronization at runtime. These operations are
recorded in a trace file which is then analyzed in order to find deadlocks. This post-mortem method
has the same drawback as the dynamic methods, it only finds errors related to the parts of the
program that have been executed and is dependent to the input data set.
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OpenCL and CUDA For CUDA, Memcheck [125] performs checks for data races and barrier
divergence. OCL grind [126] simulates OpenCL codes for debugging race conditions, runtime
errors or invalid memory accesses. Both are dynamic approaches. For static verification, GPUVer-
ify [127] checks for barrier divergence. Compared to our work, GPUVerify checks that all threads
execute the same barriers syntactically without finding the conditions responsible for divergence.
KLEE-CL [128] statically performs race detection, finds mismatches between C and OpenCL codes
but does not focus on collective checks.

UPC UPC-SPIN [129] generates finite models of UPC programs in the modeling language of
the SPIN model checker. It analyzes all possible control paths but faces a combinatorial time
and memory explosion, limiting its application to small and moderate sized applications. UPC-
CHECK [130] is a dynamic tool that inserts calls before and after each UPC operation and before
return and exit statements in order to detect deadlocks.

6.4 Experimental Results

This section presents the evaluation methodology and the results obtained with our new analysis to
detect collective errors in parallel programs.

Methodology: The analysis we propose is implemented as a link time optimization pass in the
LLVM framework 3.9 integrated into PARCOACH. This section shows the results obtained on
3 HPC applications (MILC [82], Gadget [83] and MPI-PHYLIP [84]), 4 mini HPC applications
(CoMD and miniAMR from the Mantevo project [87], Hydro [89] and miniGMG [131]) and 5
widely used benchmarks (HPL [86], IOR [88], AMG [85], NAS IS [90,132], and the CUDA bench-
marks from Rodinia [133]). Table 6.2 gives a short description of the applications and benchmarks
we tested. The second column gives the programming language, the third column the number of
lines, the fourth and fifth column respectively provide the total number of functions and collectives.

Parcoach Improvement Figure 6.3 shows the impact of combining our multi-valued expression
analysis with PARCOACH compared to the initial PARCOACH analysis. Warnings are collectives
that may lead to deadlocks, and the conditionals correspond to multi-valued conditionals governing
the execution of unsafe collectives. The figure displays the percentage of warnings and conditionals
filtered out with our analysis compared to the initial PARCOACH analysis. The total number of
filtered warnings and conditionals is given at the top of each bar. 100% for a warning bar means
that the application is collective error-free (all warnings are removed, the code is safe), 0% means
that our multi-valued analysis has no impact. OMP IS and miniGMG are not represented on the
figure since no warning was issued for them. About half conditions are filtered out by our analysis
for most applications. All warnings and conditionals are removed for Coral AMG OMP, MPI IS,
UPC IS, and Rodinia.

Comparison with Related Works We compare the performance of our value-flow analysis ap-
plied to rank-dependence, w.r.t. the value-flow analyses proposed by SVF and Parfait. All three
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Application Lang LoC #func. #col. #?c
MILC* MPI 172,290 22,242 635 (253) 566
MPI-PHYLIP* MPI 129,821 4,000 128 (12) 65
Gadget MPI 17,804 193 70 (1) 69
Bench./mini app. Lang LoC #func. #col. #?c

Coral AMG
MPI 109,607 1,207 79 (19) 79

OMP 109,607 1,207 11 11
HPL MPI 34,375 193 3 (1) 3
Rodinia* CUDA 15,956 512 219 219
CoMD CUDA 12,920 102 39 39
miniAMR MPI 9,364 103 43 (2) 43
IOR-MPIIO MPI 6,501 197 88 (5) 88
Hydro MPI 5,848 99 13 (1) 13
CoMD MPI 5,644 124 8 (1) 8
miniGMG UPC 2,113 184 5 5
(AGG BAR version)
NAS-UPC IS UPC 1,343 48 8 8
NAS-MPI IS MPI 1,371 36 9 (1) 9
NAS-OMP IS OMP 1,273 51 3 0

Table 6.2: Applications and Benchmarks Characteristics. OMP=OpenMP.
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Figure 6.3: Percentage of warnings and conditionals filtered by our analysis. 100% means
that the analysis has shown the program is free of collective error. The total
number of filtered warnings and conditionals is given at the top of each bar.

analyses are then combined with the same inter-procedural path analysis. For the comparison, we
use the 4 MPI codes presented in Figure 6.4, all inspired from existing benchmarks.

The first code (Figure 6.4a), from Hydro benchmark, defines a structure _hydroparam with
the field mype that is multi-valued. For this code, all three analyses consider the entire structure as
multi-valued and emit a false positive warning for the conditional line 11. Contrary to Parfait, SVF
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1 s t r u c t _hydroparam {
2 i n t mype ;
3 i n t nproc ;
4 } hydroparam_t ;
5
6 vo id f ( hydroparam_t ∗ H) {
7
8 MPI_Comm_rank (com,&H−>mype) ;
9 MPI_Comm_size (com,&H−>nproc ) ;

10
11 i f (H−>nproc > 1)
12 MPI_Barrier(com) ;
13 }

(a) field-sensitive.c

1 vo id f ( ) {
2 i n t r ;
3 i n t v =0;
4 MPI_Comm_rank (com,& r ) ;
5
6 i f ( ! r )
7 v = 1;
8 else
9 v = 2;

10
11 i f ( v == 2)
12 MPI_Barrier(com) ;
13 }

(b) phi-cond.c

1 vo id f ( i n t a ) {
2 i f ( a > 0)
3 MPI_Barrier(com) ;
4
5 MPI_Comm_rank (com,&a ) ;
6
7 i f ( a > 0)
8 MPI_Barrier(com) ;
9 }

(c) pointer-instance.c

1 vo id f ( ) {
2 i n t r , s ;
3 MPI_Comm_rank (com,& r ) ;
4 MPI_Comm_size (com,&s ) ;
5
6 i n t ∗A = mal loc ( s ) ;
7 f o r ( i n t i =0; i <s ; i ++)
8 A[ i ] = i ;
9

10 i f (A [ r ] > 10)
11 MPI_Barrier(com) ;
12 }

(d) index-dep.c

Figure 6.4: Examples of MPI codes.

and PARCOACH can handle this case by changing the pointer analysis used for a field-sensitive
one.

In the code index-dep.c, array A is single-valued, however the position of the element read
in the conditional line 10 depends on the rank. Hence, A[r] is multi-valued. For this code only
PARCOACH and Parfait issue a warning for the MPI_Barrier line 11.

In the code phi-cond.c, variable v is assigned in both branches of an if..then..else
construct. Then, depending on the value of v after the if..then..else, the MPI_Barrier
line 12 is executed. In LLVM IR, values of v from both branches of the conditional are combined
into a φ-function. Detecting that v is multi-valued then requires to handle control-flow dependences
for φ-functions. We added the lines involving variable v in miniAMR. For this example, SVF does
not detect the conditional line 12 as potentially dangerous.

In pointer-instance.c, the parameter a passed to function f does not depend on the
rank of the process. Hence, the barrier line 3 is executed by all MPI processes and the value of a
only becomes multi-valued after the call to MPI_Comm_rank. In LLVM since the address of a is
taken, it is only manipulated through a pointer with load and store operations. Making distinctions
between different values of a then requires to compute the SSA form for address-taken variables.
For this example Parfait emits a false positive warning for the MPI_Barrier line 3.

SVF misses dependences since it does not take into account control dependences for φ-instructions
and index dependences for load and store instructions. Parfait does not manage SSA for pointers,
φ-functions and control dependences for loads and stores. Besides, it can over-approximate the
graph since there are backedges added to connect each instruction to its pointer operands and for-
mal pointer arguments of callsites to their actual arguments. Table 6.3 gives a summary of the
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results. It shows that our method improves correctness w.r.t. SVF and accuracy w.r.t. Parfait. For
the remaining false-positive results, a more precise dependence analysis is required. This is left for
future work.

Program PARCOACH SVF Parfait
field-sensitive FP FP FP
index-dep X FN X
phi-cond X FN X
pointer-instance X X FP

Table 6.3: Multi-valued detection comparison between PARCOACH, SVF and Parfait,
both combined with collective deadlock detection. FP = false positives, FN
= false negative.

The method presented can be applied incrementally: When developing a code, only the most
recent code is analyzed, the rest of the code is assumed to be correct. The warnings issued then can
tell the user where to check to preserve correctness in the new code.

6.5 Summary and conclusion of the second part
Collective operations and in particular synchronizations are widely used operations in parallel pro-
grams. A valid use of collective operations requires at least that their sequence is the same for all
threads/processes during a parallel execution. However, all threads don’t have to reach the same
textual collective statement for the program to be correct. Hence, as soon as the control flow in-
volving these collective operations becomes more complex, ensuring the correction of such code is
complex. The previous chapter presented a method to automatically determine conditionals leading
to different sequences of collectives in parallel programs. However, for a deadlock to happen, these
conditionals must be evaluated differently by different threads. Consequently, determining the di-
vergence points leading to concurrent execution of different sequences of collectives and possible
deadlock situations corresponds to find multi-valued expression.

We presented in this chapter a new method to detect multi-valued variables in parallel programs.
By combining the deadlock detection method presented in the previous chapter with a multi-valued
variable detection, our new analysis was able to dramatically reduce the number of false positive
results returned by PARCOACH. The analysis resorts to an inter-procedural static analysis that can
prove in some cases that a program is free of collective error. The method has been applied suc-
cessfully on different languages (MPI, CUDA, OpenMP, UPC) and is implemented in LLVM in the
PARCOACH tool. Experiments have shown that our analysis leads to significant improvement over
existing debugging method. Furthermore, through a more precise use of alias and control depen-
dences, our static analysis outperforms existing data-flow analyses bringing additional preciseness
(removing spurious dependences) and correctness (adding missing dependences).

To conclude, we presented in the second part of this thesis a novel method that significantly
ease the debugging and correctness verification of complex applications with extreme scale.
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Chapter 7

Conclusion and perspectives

One major concern to achieve exascale is the programmability of heterogeneous architectures. New
automatic methods are required to relieve the programmer from the burden of managing the details
related to the underlying architecture where its code is executed. In addition, as scientific applica-
tions are becoming more and more complex and are supposed to run at extreme scale, new tools
are required to assist developers in the debugging phase of application development.

This thesis explores the combination of static and dynamic methods to improve programma-
bility of HPC applications and is organized around two different challenges: the automatic task
adaptation for heterogeneous architectures and the automatic detection or collective errors origin in
parallel programs. This chapter details the contributions made and the perspectives envisaged for
each of the two challenges targeted in this thesis.

7.1 Automatic Tasks Adaptation for Heterogeneous Architec-
tures

Programming heterogeneous architectures is very difficult and error-prone. For each parallel task
the programmer usually has to write as many versions as there are different architectures. Moreover,
the responsibility of mapping tasks to devices, managing data transfers and balancing the load
between the devices is left to the programmer. The first part of this thesis aimed at simplifying the
development of applications onto heterogeneous architectures.

We rely on a programming model were the programmer expresses the parallelism of his ap-
plication through a sequence of parallel loops without considering issues related to the underlying
architecture where its code is executed. Then, our method automatically partitions the tasks into
sub-tasks executed by each device to take full advantage of the machine capabilities. The method
proposed is completely transparent to the user and automatically transforms a single device multi-
kernel application into a portable, heterogeneous multi-device and multi-kernel application.

7.1.1 Contributions Summary

These contributions have been published and presented in the International European Conference
on Parallel and Distributed Computing (Euro-Par) 2016 [26] and in the International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD) 2018 [27].
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• The first contribution is the automatic partitioning of irregular tasks to heterogeneous archi-
tectures. Contrary to related work, the method we propose allows to automatically partition
applications with complex kernels that may contain indirect memory accesses and atomic op-
erations. By calculating precisely the region of buffers read and written by each sub-kernel
and keeping track of the region of buffers owned by each device, our method minimizes the
amount of data to transfer between devices.

• The second contribution is a novel automatic method to balance the workload of irregular
applications with an iterated sequence of kernels onto heterogeneous devices. Our method
is purely dynamic and does not require prior profiling nor sampling of the application. We
showed that our load balancing method is able to handle sequences of kernels with irregular
workload, dynamic load variations and takes into account the communication times between
kernels induced by their respective partitioning.

7.1.2 Perspectives
While the contributions presented significantly improve the programmability of heterogeneous sys-
tems, further improvement is required. This section presents some opportunities of improvement.

(a) Load Balancing method for Non-iterative Applications

Although the partitioning method we propose can cope with any type of application, our load bal-
ancing method is limited to iterative applications. Indeed, the partitioning determined for iteration
t is based on the execution time of iteration t − 1.

Assuming the workload of each kernel of the application is large enough, a possible solution
would be to split each kernel into m sub-kernels k1, . . . , km, thereby transforming each kernel into
an iterated kernel, repeated m times. The first iteration corresponding to the execution of the first
sub-kernel, the second iteration corresponding to the execution of the second sub-kernel and so on.
Then each sub-kernel could be partitioned onto the different devices and the partitioning of each
sub-kernel ki could be automatically determined with our method based on the execution time of
sub-kernel ki−1.

However, this solution may not work for irregular kernels. Indeed, the partitioning decision for
sub-kernel ki−1 may not be a good decision for partitioning sub-kernel ki.

(b) Buffers Allocation and Memory Footprint

An important limitation of our method for partitioning kernels onto multiple devices is that we
do not reduce the memory footprint onto each device. Hence, using our method it is not possible
to take advantage of multiple devices in order to execute OpenCL kernels with large workloads
that do not fit in the memory of a single device. Indeed, when a buffer is created in the original
application (clCreateBuffer), we create a sub-buffer of the same size onto each device, even
if each device will only use part of the allocated memory for its sub-buffer.

In order to reduce the memory footprint on each device, it would be necessary to know for each
buffer the region accessed by each device at the time of its creation. To do so, the two following
issues must be addressed:
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• First, when a buffer is allocated, it is not associated with a kernel. Hence, when the user
requires the creation of a buffer, it is not possible to determine which kernel requires the data
allocated on this buffer.

To overcome this limitation, a possible solution would be to combine our static analysis of
computation kernels code with a static analysis of the host code in order to match each buffer
with the kernels that use them as input or output.

• Second, even if for each buffer the kernels associated with it were known at the time of
its creation, reducing the memory allocated onto each device would require determining for
each kernel the region of the buffer accessed by each device. However, these regions can
only be determined once a partitioning for these kernels has been selected. Moreover, even if
the partitioning of each kernel were known in advance, for some kernels, the memory region
accessed by each device does not only depend on the selected partitioning but also on values
that are only known just before executing the kernel (e.g. indirection or scalar values that
depend on the result of another kernel).

(c) Extension to clusters

Our method significantly improves the programmability of a single node equipped with multi-
ple heterogeneous devices. However, as supercomputers consist in many interconnected nodes, a
natural perspective of improvement would be to extend our partitioning method to a cluster.

To do so, the first requirement would be to address the memory footprint issue presented in
the previous paragraph. Then our method should be adapted to manage data transfers between
different nodes and our load balancing strategy should be adapted to take into account these new
communication times.

(d) Integration inside a Task-Based Runtime

The parallelism model we propose to exploit the compute capabilities of multiple devices is
poorly suited when there is sufficient parallelism in the task graph of the application to schedule
the kernels on different devices and the workload of each kernel is not large enough to partition
each kernel onto different devices. This type of application would better benefits from a task-based
runtime such as StarPU [30].

With StarPU, the programmer expresses the parallelism of its application by defining tasks
and dependencies between them. Then, these tasks are automatically scheduled at runtime on the
available devices. However, this approach is limited when there is not enough parallelism in the
task graph of the application to schedule the kernels onto different devices and keep all devices
occupied. This is the case of iterated sequences of kernels like the SOTL application presented in
Section 3.2 for instance.

An interesting future work would be to integrate our partitioning method into a task-based run-
time in order to combine the benefits of both scheduling and partitioning approaches. By combining
both approaches, tasks granularity could be automatically adapted at runtime.

To do so, we could rely on the method proposed by Lee et. al [42]. In their approach, they first
perform a coarse-grain scheduling of indivisible kernels, and then perform kernel partitioning at
work-group granularity to offload work-groups of selected kernels to idle devices
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7.2 Detection of Collective Errors Origins in Parallel Programs
With extreme scale and complexity of applications enabled by exascale systems, conventional de-
bugging techniques are no longer appropriate and new automatic methods are required to assist
developers during the debugging stage of application development.

The second part of this thesis aimed at improving the programmability of complex application
for the exascale era by easing the debugging stage of their development. We proposed a novel
method that automatically detects and prevents deadlocks related to collective operations in parallel
applications.

7.2.1 Contributions Summary
These contributions have been presented in the International Workshop on Software Correctness
for HPC Applications 2018 [28] and in the International European Conference on Parallel and
Distributed Computing (Euro-Par) 2019 [29].

• The first contribution is the implementation of a full inter-procedural analysis automatically
detecting conditional potentially responsible for deadlocks in parallel programs. This analy-
sis has been implemented into the PARCOACH framework [77–80].

• The second contribution is a new static analysis that detects multi-valued expression in par-
allel programs. We used this analysis to filter out false positives in PARCOACH and showed
that our analysis leads to significant improvement over existing debugging methods.

7.2.2 Perspectives
Naturally, further improvement is required to help application developers debugging their applica-
tions. This section presents some opportunities for improvement.

(a) User Hint

Some warnings returned by PARCOACH at compile-time are false positives as in certain situa-
tions our analysis fails to prove that a variable is single-valued.

The main reason we have identified for these false positives is that the pointer analysis that
we use as input for our analysis is too conservative. For example, the alias analysis we used
is field-insensitive. Hence, when a field of a structure contains a multi-valued variable, all the
structure is considered as multi-valued. To overcome this limitation, the developer could annotate
the conditionals of which he is certain that they are single-valued. Figure 7.1 illustrates such an
example where the structure H has two fields: mype and nprocs and only mype is multi-valued.
With our analysis all the structure is considered as multi-valued, consequently the conditional line
12 depending on nproc is considered as multi-valued and a false positive warning is returned for
the MPI_Barrier line 13. To overcome this limitation the user could annotate the conditional as
single-valued using a pragma as shown line 11.

(b) Instrumentation Minimization
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1 s t r u c t _hydroparam {
2 i n t mype ;
3 i n t nproc ;
4 } hydroparam_t ;
5
6 vo id f ( hydroparam_t ∗ H) {
7
8 MPI_Comm_rank (com,&H−>mype) ;
9 MPI_Comm_size (com,&H−>nproc ) ;

10
11 #pragma singlevalued
12 i f (H−>nproc > 1)
13 MPI_Barrier(com) ;
14 }

Figure 7.1: Annotation Example.

The instrumentation proposed in PARCOACH to prevent deadlocks at runtime consists in in-
strumenting all collectives starting from the first collectives that may deadlock in the program (cf
Section 5.3). This instrumentation is conservative and prevents all possible deadlocks. However,
the number of collectives instrumented can be very important in certain programs. An important
perspective of improvement of PARCOACH is to minimize the number of collectives instrumented.

We illustrate the current instrumentation performed by PARCOACH and the perspective of im-
provement on the two examples of CFGs shown in Figure 7.2. In the figure, letters A, B,C,D, E
represent collectives and collectives instrumented by PARCOACH are highlighted in bold.

For the first CFG shown in Figure 7.2a, all processes will begin by executing the sequence of
collectives {A,C,D, E}. Then depending on the conditional in node 13 some processes will execute
the collective A whereas others will execute collective B. As the first collectives encountered during
the CFG are called by all processes, PARCOACH will only instrument the collectives A and B in
nodes 14 and 16. In this case the number of collectives instrumented is minimal as only collectives
that may not be called by all processes are instrumented.

However, when the first collective encountered in the CFG may potentially not be called by all
processes, PARCOACH instrument all collectives in the program. This situation is illustrated in
Figure 7.2b where the first collective encountered by each process may be A or B depending on its
execution path (1 − 2, 1 − 16 or 1 − 3).

In this example all collectives are instrumented. However, the number of collective instru-
mented is far from being minimal: Assuming that all processes begin by following the path 1−2−4,
then none of the collectives encountered during the path from node 4 to node 13 needs to be instru-
mented. Indeed, no matter the path taken by each process to go from node 4 to node 13, they will
all execute the same collective sequence {C,D, E}.

In order to minimize the number of collectives instrumented, a solution would be to maintain the
common language of remaining collectives to encounter by all processes and to only communicate
when the next collective to execute is not a prefix of the common language.

The common language at the beginning of the program can be determined statically as a regular
language over an alphabet representing all possible collectives. Thus, it is possible to only commu-
nicate when the common language L cannot be written as L = u.L′ with u a collective. In this case,
before executing the next collective each process must share the language of collectives it still as to
execute with all other processes. Two situations can arise:
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1

2 - A 3 - A

4

5 - C 6 - C

7

8 - D 9 - D

10

11 - E 12 - E

13

14 - A 15 - B 

16

(a) Only two collective instrumented.

1

2 - A 3 - B 

16 - A 4

5 - C 6 - C 

7

8 - D 9 - D 

10

11 - E 12 - E 

13

14 - A 15 - B 

17

(b) All collectives instrumented.

Figure 7.2: Two example of CFGs with instrumented collective highlighted in bold.

• In the first case the intersection of the languages of all processes is null. It means that it is not
possible that all processes execute the same sequence of collectives and the program must be
stopped.

• In the second case the intersection is not null and the common language is updated.

In the CFG presented in Figure 7.2b, the common language is: ((A + B)CDE(A + B)) + A. As
this language does not have any prefix, all processes will communicate before executing the first
collective. Assuming a process p1 is in node 2, a process p2 is in node 3 and a process p3 is in
node 16. Then the intersection of the languages of each process is null: L = Lp1 ∩ Lp2 ∩ Lp3 =

ACDE(A + B) ∩ BCDE(A + B) ∩ A = ∅. Hence the program is stopped to prevent a deadlock.
On the other hand if all processes execute the path from node 1 to node 2 then the intersection is
determined as ACDE(A+B). After executing the collective A each process can update the language
of remaining collectives without communicating with others processes: L = CDE(A + B).

Then, as CDE is a prefix of the common language L, no matter the path taken by each process
to go from node 2 to node 13 they will all update locally the language of collectives they still have
to execute but without communicating with other processes.

Finally, after executing the collectives C,D, E the language of remaining collectives is L = A+B
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for each process. As this language does not contain a prefix, all processes will have to share their
language with other processes before executing the next collective. If a process p1 is in node 14
and a process p2 is in node 15. Then the intersection of the languages is null and the program must
be stopped: L = Lp1 ∩ Lp2 = A ∩ B = ∅. On the other hand if all processes are in node 14 then the
intersection is not null and the program terminates normally after all processes execute collective
A.

Going further, it would be possible to only communicate when the conditional leading to disjoint
languages is multi-valued. For example, if the conditional in node 13 is single-valued then the
processes do not need to share their language before executing the last collective (A or B). Indeed,
if a process is in node 14, then all other processes are in the same node and will execute the same
collective (A) since the conditional in node 13 is single-valued.

Nonetheless, to implement this solution it would be necessary to be able to calculate the inter-
section of the languages of a large number of processes at a low cost. Indeed, this solution is of
no interest if the overhead of computing the intersection of the languages of all processes is higher
than the overhead of instrumenting all collectives.
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