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RESUMÉ

Les architectures de cloud computing sont composées d'un grand nombre de

serveurs puissants connectés les uns aux autres et au reste de l'Internet avec liens

réseau à grande vitesse. La latence entre un utilisateur �nal et le centre de données

cloud le plus proche se situe dans une plage de 20 à 40 ms sur les réseaux �laires,

et jusqu'à 150 ms sur les réseaux mobiles 4G. Bien que cette latence soit acceptable

pour de nombreuses applications, elle crée de nombreux dé�s pour certains types

d'applications comme par exemple les applications sensibles à la latence telles que

les applications de réalité augmentée. Ces applications exigent une latence de bout

en bout, y compris le délai de traitement et de réseau, de moins de 10-20 ms. Un

autre exemple de telles applications est l'analyse de données IoT. Le nombre crois-

sant de dispositifs IoT produit chaque jour de grandes quantités de données. Les don-

nées collectées sont généralement envoyées au cloud pour analyse ultérieure, ce qui

consomme une grande quantité de tra�c Internet mondial. Une solution possible pour

relever ces dé�s consiste à héberger les applications à proximité des utilisateurs �n-

aux. Les infrastructures de type Fog computing étendent donc les ressources du cloud

(calcul, stockage et réseau) en distribuant largement un grand nombre de nœuds à

proximité des utilisateurs �naux. Par conséquence, la capacité de calcul est toujours

disponible à proximité des utilisateurs.

Les architectures informatiques de Fog computing sont composées d'un grand

nombre de nœuds informatiques dispersés dans une zone géographique telle qu'une

ville, une région ou même un pays entier a�n de maintenir la proximité avec un grand

nombre d'utilisateurs. En conséquence, les ressources Fog sont souvent organisées

en un grand nombre de points de présence (PoP), où chaque PoP est composé d'un

petit nombre de machines faibles, telles que des nano-ordinateurs connectés les uns

aux autres et au reste de l'Internet avec des réseaux hétérogènes. Un utilisateur �-

nal accède toujours aux applications depuis le point de présence le plus proche pour

maintenir une latence minimale.

Nous prévoyons que les applications Fog seront déployées à plusieurs reprises

dans différents PoPs : pour maintenir une latence minimale entre les applications
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hébergées dans le Fog et leurs utilisateurs �naux, les applications peuvent avoir be-

soin de se déplacer fréquemment d'un PoP à un autre. La mobilité humaine est loin

d'être aléatoire, et il a été prouvé qu'elle est prévisible malgré des différences impor-

tantes entre les habitudes de déplacement individuelles. Les applications Fog telles

que l'assistance cognitive portable qui vise à servir un seul utilisateur avec une latence

ultra-faible peuvent donc être déployées de manière répétée dans le même PoP que

l'utilisateur visite souvent (à la maison, au travail, etc.). Dans un autre exemple, des

applications de calcul intensif telles que l'analyse de �ux vidéo en direct peuvent avoir

besoin de déployer plusieurs instances identiques dans le même PoP a�n de passer

horizontalement leur capacité de traitement à l'échelle. Dans ces scénarios, le proces-

sus de déploiement d'application ne peut pas être considéré comme une opération

unique qui n'affecte pas la qualité d'expérience de l'utilisateur �nal. Au contraire, il de-

vient une partie intégrante du chemin critique vers la fourniture du service attendu par

les utilisateurs.

Le déploiement lent d'applications est donc un problème dif�cile dans les infras-

tructures Fog. Tout retard dans le déploiement de l'application peut forcer l'utilisateur

à attendre que l'application ait été entièrement déployée et soit prête à servir ses util-

isateurs. Lorsque l'utilisateur passe d'un PoP à un autre, il peut être nécessaire de

redéployer l'application pour maintenir une faible latence d'accès et réduire le tra�c

réseau longue distance. Dans ces cas, tout retard dans le déploiement de l'application

peut interrompre le service en cours d'exécution, conduisant à une dégradation de

la qualité d'expérience (QoE) de l'utilisateur. Dans les deux scénarios, un temps de

déploiement d'applications minimal est essentiel pour fournir des services cloud trans-

parents aux utilisateurs �naux. Cette thèse vise donc à réduire autant que possible le

temps de déploiement des applications des applications Fog.

Nous avons étudié les raisons de la lenteur de déploiement des conteneurs Docker

dans des environnements Fog distribués, et identi�é trois opportunités susceptibles

de réduire le temps de déploiement des conteneurs: (1) améliorer le taux de réus-

site du cache Docker, ce qui réduit les chances d'avoir à instalelr une nouvelle image;

(2) accélérer l'opération d'installation d'une image; et (3) accélérer le processus de

démarrage après la création d'un conteneur. Nous avons donc proposé trois solutions

différentes pour optimiser le temps de déploiement global des applications. Chaque so-

lution vise à résoudre l'un des problèmes ci-dessus dans le processus de déploiement.
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Contribution 1: Améliorer le taux de réussite du cache Docker

La première contribution de la thèse est d'améliorer le temps de déploiement des

applications en réduisant la probabilité d'avoir à installer de nouvelles images lors d'une

demande de déploiement d'un conteneur. Les serveurs Docker téléchargent une im-

age depuis un registre distant chaque fois qu'ils constatent que le l'image requise n'est

pas disponible dans le cache local. Docker stocke toutes les images téléchargées dans

son cache local et ne les supprime jamais jusqu'à ce que soit explicitement demandé.

C'est une stratégie judicieuse pour les serveurs puissants car la même image de con-

teneur ne devra pas être téléchargée à nouveau lors d'un futur déploiement du même

conteneur. Cependant, ce scénario ne convient pas dans les environnements Fog, car

les serveurs Fog ont une capacité de stockage limitée. En conséquence, l'ensemble

de travail des images fréquemment utilisées peut dépasser la capacité de stockage to-

tale du serveur. Un autre problème est que les caches Docker des nœuds co-localisés

peuvent contenir des copies redondantes des mêmes images.

Nous proposons un nouveau système de partage d'images Docker qui regroupe

les caches des serveurs Fog co-localisés grâce à un système de �chiers partagé.

Le résultat �nal est un cache d'image Docker beaucoup plus volumineux qui peut donc

partager plus d'images, ce qui réduit la probabilité de déploiement d'un nouvelle image

lors du déploiement d'un conteneur. Notre évaluation de ce système basé sur des

traces réelles de registres Docker montre que le partage des images Docker peut

considérablement améliorer le taux de réussite du cache et, par conséquent, réduire

le temps de déploiement des conteneurs entre 37% et 78% selon le scénario.

Contribution 2: Amélioration du déploiement des images Docker

Le partage d'images Docker entre des serveurs co-localisés améliore le taux de

réussite du cache d'images Docker et réduit la probabilité que l'image doive être in-

stallée lors d'une demande de déploiement d'un conteneur. Cependant, Docker doit

encore déployer les images quand leur déploiement est demandé pour la première fois

dans un POP, ou lors d'un défaut du cache. Le déploiement d'images Docker peut être

très lent, dans l'ordre de plusieurs minutes dans des nœuds Fog aux ressources lim-

itées tels que les nano-ordinateurs Raspberry Pi. Nous avons étudié la raison de cette

lenteur de déploiement en analysant la consommation de ressources de Docker lors

d'un déploiement. Nous avons constaté que cette lenteur est en grande partie due au
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fait que Docker sous-utilise les ressources matérielles disponibles: Docker télécharge

d'abord les différentes couches d'image simultanément, ce qui est très gourmand

en ressources réseau. Docker lance ensuite un cycle de décompression de l'image,

qui est gourmande en ressources processeur. En�n l'extraction de l'image est gour-

mande en ressources d'entrées/sorties disque. En d'autres termes, il y a peu ou pas

de chevauchement entre l'utilisation des différences ressources matérielles durant le

déploiement de l'image.

Nous avons proposé trois optimisations pour améliorer l'utilisation de ressources

lors du déploiement d'images: (1) télécharger les couches d'images séquentiellement

pour optimiser le temps de téléchargement; (2) décompression multi-thread pour ré-

duire le temps de décompression des couches; et (3) organiser le processus en

pipeline d'entrées/sorties pour commencer à décompresser les couches immédiate-

ment après le téléchargement des premiers octets. Docker-pi combine toutes ces solu-

tions et par conséquent parallélise l'utilisation des trois ressources matérielles (réseau,

processeur et disque), ce qui permet de réduire le temps de déploiement des images

de 25% à 75% dans des Raspberry Pis en fonction de la capacité du réseau et de la

taille de l'image.

Contribution 3: éviter la phase de démarrage du conteneur

Après avoir créé un conteneur, Docker lance la phase de démarrage en lançant le

processus initial de l'application. Le démarrage se termine lorsque le conteneur est

prêt à accepter les requêtes de l'utilisateur �nal. Cette phase peut avoir un impact

signi�catif dans des environnements Fog lorsque la même image de conteneur est

lancée à plusieurs reprises sur plusieurs serveurs d'un point d'accès. La phase de

démarrage des conteneurs reste cependant identique à chaque démarrage. On peut

donc sauvegarder l'état d'un conteneur après qu'il ait terminé sa phase de démarrage,

et redémarrer le conteneur à partir de l'état sauvegardé lors des déploiements suivants.

Nous avons proposé un nouveau concept de déploiement de conteneurs utilisant

DMTCP qui permet de déployer un conteneur à partir d'une image sauvegardée d'un

conteneur démarré, ce qui permet d'éviter la phase de démarrage du conteneur.

Ce système utilise Ceph a�n the partager ef�cacement les images entre plusieurs

serveurs Fog d'un même PoP. Notre évaluation montre que cette technique améliore

8



la durée de la phase de démarrage d'un conteneur jusqu'à 60x selon le type de con-

teneur. Les surcoûts d'exécution de ce système restent raisonnables.

9





ABSTRACT

Cloud computing architectures consist of large number of powerful servers con-

nected to each other and to the rest of the Internet with high-speed network links. The

latency between a typical end user and the closest cloud data center comes in the

range of 20-40 ms over wired networks, and up to 150 ms over 4G mobile networks.

Although this latency is acceptable for many applications, it creates many challenges

for certain types of applications: for example, latency-sensitive applications like aug-

mented reality games require an end-to-end latency including network and processing

delay under 10-20 ms. Another example of such applications is IoT data analysis. The

growing number of IoT devices produces large amounts of data every day. The col-

lected data is typically sent to the core-cloud for further analysis. which consumes

large amount of global Internet traf�c. An obvious solution to address these challenges

is to host applications near the end users. Fog computing therefore extends the cloud

resources (compute, storage and network) by broadly distributing large numbers of

compute nodes near the end users. Therefore, computational capacity is always avail-

able in the vicinity of the users.

In contrast, Fog computing architectures consist of large number of computing

nodes dispersed across a geographical area such as a city, a region or even a country

to maintain proximity with a large number of users. As a consequence, fog resources

are often organized in a large number of Point-of-Presence (PoP), where each PoP is

composed of a small number of weak machines such as single-board computers con-

nected to each other and to the rest of the Internet using heterogeneous networks. An

end user always accesses the applications from the closest PoP to maintain minimal

latency.

We expect that fog applications will be repeatedly deployed in different PoPs: to

maintain minimum latency between the applications hosted in the fog and their end

users, applications may need to roam frequently from one PoP to another. Human

mobility remains far from being random, and it has been proven to be predictable de-

spite important differences between individual travel patterns. Fog applications such

as wearable cognitive assistance which aims at serving a single user with ultra-low
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latency may therefore be repeatedly deployed in the same PoP the user visits often

(home, work, etc.). In another example, compute-intensive applications such as live

video feed analysis may need to deploy multiple identical instances in the same PoP

in order to horizontally scale their processing capacity. In these scenarios, the appli-

cation deployment process cannot be considered as a one-time operation which does

not affect the end-user's quality of experience. Rather, it becomes an integral part of

the critical path towards providing the expected service to its end users.

Slow application deployment is therefore a challenging issue in fog infrastructures.

Any delay in the application deployment may force the user to wait until the application

has been fully deployed and is ready to serve users. When the user moves from one

PoP to another, the application may have to be re-deployed to maintain proximity, low

latency, and reduce long-distance traf�c. In such cases, any delay in the application

deployment may interrupt the already-running service, leading to a degradation of the

user's Quality-of-Experience (QoE). In both scenarios, a minimal application deploy-

ment time is essential to provide seamless cloud services to the end-users. This thesis

therefore aims to reduce the application deployment time of fog applications as much

as possible.

We studied the reasons behind the slow deployment time of Docker containers in

distributed fog infrastructures, and identi�ed three opportunities that are likely to speed

up the container deployment time: (1) Improving the hit ratio of the Docker cache,

which reduces the chances of having to pull a new image; (2) Speeding up the image

pull operation itself; and (3) Speeding up the boot process after a container has been

started. We therefore proposed three different solutions to optimize the overall appli-

cation deployment time. Each solution aims to address one of the above issues within

the deployment process.

Contribution 1: Improving the Docker cache hit ratio

The �rst contribution of the thesis is to improve the application deployment time by

reducing the probability of having to deploy new images upon container deployment

requests. Docker servers download an image from a registry whenever they �nd that

the required image is missing in the local cache. Docker stores all the downloaded

images in its local cache and never removes them until explicitly asked for. This is a

sensible strategy in powerful servers as the same container image will not need to be
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downloaded again in future deployment of the same container. However, this scenario

is not suitable in fog environments, as fog servers have limited storage capacity. As a

consequence, working set of images may grow larger than the total storage capacity of

the server. Another issue is that the image caches of the co-located nodes may contain

redundant copies of the same images.

We proposed a new Docker image sharing framework which aggregates the im-

age caches of co-located fog servers using a distributed �le system. The end result

is a much larger Docker image cache that can share more images, which reduces

the probability of deploying a new image upon a container deployment request. Our

performance evaluation of the proposed framework using a real-world Docker registry

workload shows that sharing the Docker images can signi�cantly improve the hit ratio

and, as a result, reduce container deployment time between 37% and 78% depending

on the scenario.

Contribution 2: Improving the Docker image deployment

Sharing Docker images among co-located servers enhances the Docker cache hit

ratio and reduces the probability of image pull upon a container deployment request.

However, Docker still needs to deploy an image when it is requested for the �rst time

in a PoP or upon a cache miss. Docker image deployment can be very slow, in the

order of a couple of minutes in resource-constrained fog nodes such as single-board

Raspberry Pi. We investigated the reason behind this slow deployment by analyzing

the resource consumption of Docker upon a image deployment. We found that this

slow deployment time is largely due to the fact that Docker under-utilizes the available

hardware resources during deployment: Docker �rst downloads the different image

layers simultaneously which is very network intensive, followed by a cycle of CPU-

intensive decompression and then disk-intensive extraction. In other words, there is

little or no overlapping among the usage of different hardware resources during the

image deployment.

We proposed three optimizations to improve the resource utilization of Docker dur-

ing image deployment: (1) Sequentially downloading the image layers to optimize layer

download time; (2) Multi-threaded decompression to reduce the decompression time

of layers; and (3) I/O pipelining to decompress the layers immediately after the �rst few

bytes have been downloaded. Docker-pi combines all these solutions and therefore
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parallelizes the usage of the three hardware resource (network, CPU and disk), result-

ing in reducing the image deployment time by 25% to 75% in Raspberry Pis depending

on the network capacity and the image size.

Contribution 3: Avoiding the container boot phase

After creating a container, Docker starts the boot phase by launching the starting

process of the application. Booting terminates when the container is ready to accept

end user requests. This phase may have a signi�cant impact in fog environments when

the same container image is being repeatedly launched, created, and booted in multi-

ple servers of a PoP. The boot phase of containers however remains the same every

time. We can therefore save the state of a container after completing its boot phase and

then later restart the container from the saved state in the subsequent deployments.

We proposed a new container deployment design which uses DMTCP to deploy

the container from a booted checkpoint image, therefore skipping the container boot

phase. The design uses Ceph distributed storage to store container environments and

checkpoint images to ef�ciently share them across fog servers. Our evaluation shows

that this technique improves the container boot phase time up to 60x depending on

the type of container. The checkpointing overhead of the proposed system remains

reasonable.
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CHAPTER 1

INTRODUCTION

Cloud computing relies on large numbers of powerful computing nodes connected

to each other and to the rest of the Internet with reliable high-capacity networks. The

combination of �exibility, scalability and manageable cost of cloud infrastructures dic-

tated the immense popularity of this new computing paradigm. However, cloud re-

sources are concentrated in a small number of data centers, usually far from the end-

users they are serving. The latency between an end user and the closest available

cloud data center is typically in the range of 20-40 ms over wired networks, and up

to 150 ms over 4G mobile networks [44]. Although this is perfectly acceptable for a

wide range of useful applications, a number of latency-sensitive applications such as

augmented reality games require end-to-end latency including network and process-

ing delay under 10-20 ms [1, 30]. These constraints make it impossible to host such

latency-critical application backends in the cloud. In another use case, the growing

number of Internet of Things (IoT) devices produces a large volume of sensor data ev-

ery day [42]. Sending all the collected data to the core cloud using long-distance Wide

Area Networks (WAN) for further processing would consume enormous amount of net-

work resources [15]. An obvious solution to address these problems is to place cloud

server nodes extremely close to the users, within a couple of network hops. In fog com-

puting, computational nodes are broadly distributed in a large number of geographical

locations so computation capacity is always available in immediate proximity of any end

user. Fog computing promises to deliver low latency between the end users and their

application and to reduce the usage of long-distance networks. Some other examples

of using fog computing for different purposes include: privacy and security [159], ser-

vice management [135], computational of�oading [139], service monitoring [126] and

content caching [133].

Fog computing architectures are fundamentally different from traditional cloud ar-

chitecture: to maintain proximity with a large number of users, fog resources must nec-

essarily be dispersed across a large geographical area such as a city, a region or even
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an entire country [32]. In contrast, clouds are typically organized with a handful of ex-

tremely powerful data centers connected to each other by dedicated ultra-high-speed

networks. As a consequence, fog resources are often organized in a large number of

Points-of-Presence (PoPs) dispersed across the covered area. Each PoP may be com-

posed not of datacenter-grade servers but rather of a small number of resource-limited

nodes such as single-board computers which are connected to each other and with the

rest of the Internet using heterogeneous commodity networks [75, 153]. Users usually

connect to the closest PoP in order to access the services offered by the fog platform.

Fog applications must often be repeatedly deployed in different fog servers: in par-

ticular, to maintain proximity between the applications deployed in the fog and their end

users, applications may need to roam frequently from one PoP to another, whereas

cloud applications are usually placed in one or more dedicated machines irrespective

of users' mobility [28]. The mobility of human beings is far from being random, and it has

been shown that despite signi�cant differences between individual travel patterns, user

mobility remains remarkably repetitive and predictable [25, 175]. A fog application such

as wearable cognitive assistance which aims at serving a single user with ultra-low la-

tency may therefore repeatedly deploy the application in the same server locations the

user visits often (home, work, etc.) [74] . In another case, compute-intensive applica-

tions such as live video feed analysis may need to deploy multiple identical instances

in the same PoP in order to horizontally scale its processing capacity [208]. In these

scenarios, the application deployment process cannot be considered as a one-time op-

eration which does not affect the end-user's quality of experience. Rather, it becomes

an integral part of the critical path towards providing the expected service to its end

users.

Slow application deployment is therefore a challenging issue in fog infrastructures.

Any delay in the application deployment may force the user to wait until the application

is being fully deployed and ready to serve users. When the user moves, the applica-

tion may have to be re-deployed in multiple fog PoPs to maintain proximity, low latency,

and reduce long-distance traf�c. In such cases, any delay in the application deploy-

ment may interrupt the already-running service, leading to a degradation of the user

Quality-of-Experience (QoE). In both scenarios, a minimal application deployment time

is essential to provide seamless cloud services to the end-users. This thesis there-

fore aims to reduce the application deployment time of fog applications as much as

possible. We de�ne application deployment time as:
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"The time elapsed after giving the application deployment instruction until the appli-

cation is ready to serve users."

Docker is by far the most popular application deployment tool in fog environment [7].

It is widely used to deploy containers, either directly or via the use of distributed con-

tainer orchestration frameworks such as Kubernetes [164]. Docker virtualizes hard-

ware resources such as compute, network, storage resources with the help of special

Linux kernel features [91]. The primary reasons for the increasing popularity of Docker

containers are their lightweight nature, and the ease of encapsulating, deploying, and

running applications. Instead of installing a full operating system inside a virtual ma-

chine, all Docker containers in a single host machine share the underlying Linux kernel

which makes container images much smaller and faster to deploy compared to virtual

machine images [170]. In fog, which is often made of weak machines such as Rasp-

berry Pis, resources have very limited processing, storage and I/O throughput [153]. In

such environment, containers are considered the best tool for cloud application deploy-

ment that give better performance over traditional virtual machines [123]. We therefore

choose to use Docker as our basis for studying the cloud application deployment in fog

computing environment.

Figure 1.1 shows a �owchart of the Docker application deployment process. Appli-

cation deployment starts by giving the container deployment instruction with the ap-

plication image name and tag and other container con�guration. Docker maintains an

image cache in the local disk of the server where images and other con�gurations are

stored. Upon receiving the deployment command, Docker �rst checks whether the im-

age of the application is already present in the local cache. If the image is not cached,

Docker triggers the image pull command with the name and tag of the image. The de-

ployment starts by downloading all the layers of the image from a registry server and

�nally building the image. Once the image is available in the local cache, Docker then

creates a container �le system on top of the image and creates the container with the

given con�guration. The application �nally needs to start before being able to serve

its users. Some applications such as mysql require signi�cant amount of time to boot

before being ready to server their end-users.

Within this application deployment process, we identify three opportunities that are

likely to speed up the application deployment: (a) Improving the hit ratio of the Docker

cache, which reduces the chances of having to pull a new image; (b) Speeding up

the image pull operation itself; (c) Speeding up the boot process of the container. We
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Figure 1.1 – Flowchart of Docker application deployment process.

therefore propose three different solutions to optimize the overall application deploy-

ment time. Each solution aims to address one the above issues within the deployment

process. We now discuss each proposed contribution of the thesis.

1.1 Contributions

The main contributions of this thesis are as follows:

— Contribution #1: Improving Docker's cache hit ratio.

Docker was designed with the assumption it would mostly run in large-scale

powerful machines. Docker stores all the running container images in the Docker

cache of the local disk to avoid downloading the same image again in case the

same container is deployed in the future. Because disk space is not expected

to be an issue, Docker never removes the images from the cache unless explic-

itly asked to do so. This design choice however creates an important storage
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issue in fog infrastructures where the servers have limited storage capacity and

containers are frequently started and stopped. If the size of the working set of

container images is greater than the server's storage capacity then the same im-

age may need to be repeatedly downloaded, utilized and deleted. Another effect

of keeping separate Docker cache in each node is that the caches of multiple

fog nodes in the same PoP may contain highly redundant content due to some

popular images being deployed multiple times in different machines.

We therefore propose a new Docker image sharing framework that allows multi-

ple fog nodes in the same PoP to share the content of their Docker images. In-

stead of keeping a separate local Docker cache in each node, we aggregate the

storage of co-located fog nodes in a PoP. The end result is a much larger cache

for each PoP that can store more images, signi�cantly reducing the chances of

downloading the images from the long-distance network upon container deploy-

ment. Our evaluation based on a real-world Docker registry deployment trace

workload shows that sharing the images delivers signi�cant cache hit ratio im-

provements, leading to a reduction of deployment time between 37% and 78%

depending on the scenario.

— Contribution #2: Speeding up the Docker image pull process.

Although sharing caches signi�cantly improves the cache hit ratio, Docker still

needs to download the images when applications are deployed for the �rst

time in a PoP or upon a cache miss. Docker takes several minutes to deploy

an image in a resource-constrained fog server such as single-board Rasp-

berry Pi. This slow deployment however is not only due to the fact that these

resource-constrained machines have limited processing, storage, I/O and net-

work throughput. We show that Docker implementation inef�ciencies creates

unnecessary delay. The standard image deployment process starts by down-

loading image layers from a registry server in parallel (with a default parallelism

degree of 3) and then goes through multiple decompression and disk write cy-

cles to extract the layers sequentially beginning from the �rst layer. The above

process leads to three important issues in the image deployment: (a) Down-

loading multiple layers in parallel delays the download process of the �rst layer

and therefore, postpones the moment its decompression and extraction phase

can start. Therefore, delaying the downloading of the �rst layer ultimately leads

to slowing down the extraction phase; (b) Docker image layers are shipped as
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compressed tar �les. Upon downloading an image �le, Docker decompresses it

using single-threaded decompression gzip which account only for � 37% CPU

utilization of all the machine's cores. A signi�cant amount of deployment time is

spent in decompressing the layers; (c) Each image layer is sequentially down-

loaded, decompressed and extracted to disk. In other words, there is very little

overlapping between the three activities of the different hardware resources (i.e.

network, CPU and disk) while deploying the image.

To address the above issues, we propose three optimization solutions which ad-

dress these issues in the standard Docker image deployment process. We then

present Docker-pi which combines these optimizations together. We show that

Docker-pi reduces the image deployment time by a factor of up to 4 depending

on the size of the image and the available network bandwidth. Docker-pi also

reduces the image deployment time by 23–36% in powerful data-center grade

servers.

— Contribution #3: Reducing the container boot time.

Once an image is available in the local cache, Docker creates a container �le

system on top of the image and then creates the container itself with the given

con�guration. The application then needs to boot inside the container before

being ready for usage. We found that creating a Docker container takes a neg-

ligible amount of time (less than 1 s). However, the application boot process

may take signi�cant time for some applications: for example, the popular mysql

database application takes about 10 s to boot the application before accepting

user's commands [142]. The signi�cant boot time leads to slow down the appli-

cation deployment.

To address the above issue, we propose a container deployment model that

uses process checkpoint/restart to launch the application inside the container.

The checkpoint/restart allows one to save the state of a running application by

storing the process information of the application such as memory pages, open

sockets and open �les in a �le or checkpoint image [129]. The application can

then be restarted from the checkpoint image �le and continue its execution from

there on. We propose to use DMTCP to start the application upon creating the

container and checkpoint it after completing the boot phase [10]. The resulting

checkpoint image contains a full snapshot of the application after the boot phase.

In later deployments DMTCP is instructed to launch the application from the
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checkpoint image, and therefore, skip the application boot phase. The evaluation

of this proposed container deployment model based on Edge-sharelatex [182]

has shown that it can reduce the boot time upon deployment which results in the

improvement of container boot time by up to 60x times over the standard Docker

with reasonable checkpoint overhead.

1.2 Published papers related to the thesis

The following manuscripts are currently published or under review:

Journal articles

1. Docker-pi : Docker container deployment in Fog Computing Infrastructures, Arif

Ahmed and Guillaume Pierre, Inderscience International Journal of Cloud Com-

puting, In press.

Conference papers

1. Docker Container Deployment in Distributed Fog Infrastructures with Check-

point/Restart, Arif Ahmed , Apoorve Mohan, Gene Cooperman and Guillaume

Pierre, The 8th IEEE International Conference on Mobile Cloud (IEEE Mobile

Cloud), Apr 2020, Oxford, UK.

2. Docker Image Sharing in Distributed Fog Infrastructures, Arif Ahmed and Guil-

laume Pierre, The 11th IEEE International Conference on Cloud Computing

Technology and Science (IEEE CloudCom), Dec 2019, Sydney, Australia.

3. Docker Container Deployment in Fog Computing Infrastructures, Arif Ahmed

and Guillaume Pierre, IEEE International Conference on Edge Computing (IEEE

EDGE), Jul 2018, San Francisco, CA, United States.

Posters

1. Ef�cient Container Deployment in Edge Computing Platforms , Arif Ahmed and

Guillaume Pierre, RESCOM 2017 summer school – Le Croisic, France. Jun

2017.

1.3 Organization of the thesis

This thesis is organized in 7 chapters:
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Chapter 2 presents the technical background of the thesis. First, we present an

overview of cloud computing and identify some of its limitations. We then de�ne fog

computing and explain how it addresses the limitations of cloud computing. Finally, we

present an overview of Docker, describe its important components, and how applica-

tions are deployed inside Docker containers.

Chapter 3 presents the state-of-the-art of the thesis. We �rst present the different

opportunities to improve deployment process within the Docker container deployment

processes. We then describe each of the proposed optimization solutions and also

shows how our contributions complement them. Finally, we conclude the chapter by

presenting a taxonomy of the state of the art of Docker container deployment optimiza-

tions.

Chapter 4 starts by demonstrating the potential bene�ts of sharing individual Docker

cache of fog servers in a PoP. We then identi�ed different issues to build a shareable

Docker image cache in fog computing environments. We then show how the proposed

Docker image sharing framework addresses each issue. The chapter is concluded with

the performance evaluation of the image cache sharing framework with two bench-

marks: micro-benchmarks and macro-benchmarks in a fog environment testbed.

Chapter 5 illustrates the experimental study of Docker image deployment and then

presents an analysis of resource utilization of Docker while an image is being deployed.

We then show the incumbencies in Docker image deployment process which lead to

slow image deployment. We then present the three optimization solutions and their

performance improvement over the standard Docker. The chapter is concluded with an

interesting discussion of Docker-pi in various aspects.

Chapter 6 presents the scope of checkpoint/restart tools in particular DMTCP to

improve Docker container deployment. We then identify the different challenges while

integrating DMTCP with Docker for container deployment. We present the proposed

container deployment design. Finally the chapter is concluded by showing the perfor-

mance evaluation of the our design with a use case.

Chapter 7 presents the conclusion of the thesis. We brie�y remind the importance of

application deployment time in distributed fog infrastructures. We then summarize the

different contributions of the thesis to improve the application deployment time. Finally,

we highlight the number of directions that we may study in the future to further reduce

the application deployment time in distributed fog infrastructures.
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BACKGROUND

This chapter presents the technical background of the thesis. First, we present an

overview of cloud computing and identify some of its limitations. We then de�ne fog

computing and explain how it addresses the limitations of cloud computing. Finally, we

present an overview of Docker, describe its important components, and how applica-

tions are deployed inside Docker containers.

2.1 Cloud computing

Cloud computing is an IT organization paradigm that aims to provide resources (in-

frastructure, platform, software) on-demand to customers [36, 72]. Traditionally, small

and medium-sized enterprises had to own IT infrastructures and hire software devel-

opers and system administrators to deploy services, which resulted in large costs of

ownership. Cloud computing offers to deliver virtual resources (both hardware and soft-

ware) that can be accessed from anywhere through Internet at a cost depending on the

usage of the resources. With the advent of cloud computing, enterprises no longer have

to own their IT infrastructures and other resources to deploy services, and may instead

exploit the resources provided by the cloud. Therefore, those enterprises may reduce

their infrastructure cost and instead invest solely on application-level innovation [62,

155]. The pro�t brought by the cloud computing attracts many companies to migrate

applications from on-premise to cloud infrastructures. As a result, it is estimated that in

2020, 83% of enterprise workloads will be running in the cloud [45].

2.1.1 Cloud computing architecture

Figure 2.1 presents a general architecture of cloud computing. Cloud computing

is based on a centralized architecture and is composed of many elements (servers,
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Figure 2.1 – Cloud computing architecture.

switches, �rewalls etc.). They are loosely coupled with each other and with the Internet.

The architecture has two main parts [178]:

— Front-end: The front-end refers to the client part of services or applications de-

ployed in the cloud platform. It consists of application interfaces such as com-

mand lines or Graphical User Interfaces (GUI) that are required to access the

cloud computing platforms. The front-end part connects to the cloud services

through the Internet.

— Back-end: The back-end parts are mainly composed of resources i.e. compute,

storage, network as well as software. They are deployed in a handful of data-

centers which are connected to each other and to the rest of the Internet with

ultra high-speed backbone networks [67]. Some of the popular cloud service

providers are Amazon Web Services [84], Google cloud engine [106], and Mi-

crosoft Azure [110].

2.1.2 Limitations of cloud computing

The combination of �exibility, scalibility and manageable cost of cloud infrastruc-

tures dictated the immense popularity of this new computing paradigm. However, cloud

platforms also exhibit limitations. Cloud computing platforms are consist of a handful

of powerful datacenters which are connected with high speed networks. However, the

small number of datacenters implies that they are deployed very far away from end-

users. Users therefore usually use Wide-Area Networks (WAN) to access the services
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deployed in a cloud platform. This architecture leads to important issues which limit the

performance of some applications:

a) Latency-sensitive applications such as augmented-reality games require a max-

imum end-to-end latency in the order of 20 ms (including network and processing de-

lays) [44]. However, the latencies between an end user and their closest data cen-

ter come in the range of 20-40 ms (in wired networks) and 40-150 ms (in 4G mobile

networks) [1, 30]. Such network delays make it impossible to run the server side of

latency-sensitive applications in cloud datacenters [38].

b) A growing number of IoT devices produce large volume of sensor data every

day [42]. The server side of IoT data analysis applications is usually deployed in a

cloud data center in order to process and analyze the collected data. However, sending

such enormous amounts of data to the cloud over long-distance WAN consumes large

amount of unnecessary resources and energy [15].

2.2 Approaches to address cloud computing limita-

tions

A number of computing paradigms have been proposed in recent years to address

the limitations of cloud computing [136]. For examples, Edge Computing enables com-

putational capacity at the edge of the network through small data centers that are

placed close to end-users (within 1 or 2 hops away from the users) [111]. However,

due to the low processing capacity of small datacenters deployed in Edge computing,

the total end-to-end latency (including network and processing delay) may end up being

actually greater than using simple cloud computing [171]. A closely related paradigm

is Mobile-Edge Computing which focuses on delivering cloud services with minimum

latency by deploying computing resources in mobile phone base stations [64]. How-

ever, mobile edge computing mainly serves applications which are accessible from

mobile clients using cellular network therefore, typical applications are limited to use

cases such as content delivery network [66, 172], computational of�oading [39], health

monitoring [37] etc.

Fog computing was then introduced with the aim of addressing the limitations of

both cloud and edge computing. It aims to extend cloud computing datacenters re-

sources by bringing additional compute, storage and networking resources in the close
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proximity of its end users [34, 53]. By deploying the server part of applications between

the cloud and its end user, fog computing promises to enhance performance of applica-

tions that need extremely low latency or that process data locally where it is produced,

while retaining large amounts of resources in the cloud for non-critical parts.

2.2.1 Fog computing de�nitions

De�ning fog computing precisely is still an ongoing discussion topic, and many

slightly different de�nitions have been proposed. They however all share a common

characteristic: resources are available between the cloud and its end users in order

to minimize the end-to-end latency of the applications. We present these proposed

de�nitions and highlight the particularity in each individual de�nition:

1. In 2012, CISCO proposed the �rst concept of fog computing [32, 85]. IoT deploy-

ment requires mobility support, location awareness, geo-distribution and low la-

tency. The authors argue that fog computing can provide all these requirements

by extending datacenters with additional resources located close to end users.

“Fog computing is a highly virtualized platform that provides compute, storage,

and networking services between IoT devices and traditional cloud computing

data centers, typically, but not exclusively located at the edge of network.”

2. In 2014, Vaquero et al de�ned Fog computing as a computing paradigm that

can provide network functionality, service management, with a particular focus

on privacy [188]:

“A large amount of heterogeneous, ubiquitous, and decentralized devices that

can cooperate to form a network for storage and processing without third-party

intervention.”

3. In 2017, the OpenFog Consortium was established to standardize Fog architec-

ture and protocols to support cloud computing services in IoT devices and edge

ecosystem [149]. OpenFog emphases the “horizontal” aspect which means fog

infrastructure consist of a large number of fog nodes that are distributed across a

large geographical location. The same standard was later adopted by IEEE [14].

“A horizontal, system-level architecture that distributes computing, storage, con-

trol and networking functions closer to the users along a cloud-to-thing contin-

uum.”
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Figure 2.2 – Distributed fog computing architecture.

Since the OpenFog Consortium was established to standardize fog protocols and

their de�nition was accepted by IEEE, we expect this de�nition will be used in future

fog computing research. Therefore, we adopt the same de�nition given by OpenFog

Consortium in this work.

2.2.2 Fog computing architecture

Figure 2.2 presents a distributed fog computing architecture. The architecture con-

sists of 3 layers.

1. Edge Layer: The bottom layer is the edge layer which is closest to the end users

and their physical environment. It mainly consists of IoT sensors, mobile phones,

smart vehicles, wearable devices, street cameras etc. The devices belonging

to this layer collect data from their surroundings and send them to the upper

layers for further processing and storage. Depending on the applications, they
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may also receive results back from the fog that allows them to actuate their

environments. The edge devices usually use available access network (such as

cellular network, WiFi and LoRa) to connect to the upper layers.

2. PoP Layer: The intermediate layer between end devices and the cloud is the

PoP layer. A fog infrastructure aims to bring compute, storage and networking

resources in the immediate proximity of its end users. It is therefore composed

of widely distributed small groups of servers also known as Points of Presence

(PoP) placed in strategic locations such as shopping malls, bus stations, streets,

stadiums etc. across a potentially large geographical area. Each PoP contains

a small number of devices such as single-board computers [200], drones [141],

vehicles [208] etc. with limited compute and storage capacity. These devices

can be either static or mobile [137, 185]. The servers which belong to the same

PoP are collocated with each other which implies that they may easily be con-

nected to each other using a fast local-area network. The devices in a PoP layer

are equipped with IP networking and thus able to communicate with rest of the

Internet and the cloud generally using commodity networks. Fog applications

that need compute, storage and network resources close to the end users are

deployed in this layer.

3. Cloud layer: The top most layer is the cloud layer. It mainly consists of powerful

datacenters connected to each other and to the rest of the Internet with high-

speed networks. It contains powerful computing and storage capacity to support

applications which need extensive computational analysis and back end stor-

age, can support being deployed far from the end users.

As the architecture of fog computing is different from cloud computing, we present

a comparison of important characteristics of the two computing paradigms in Table 2.1.

2.2.3 Application deployment frameworks in fog computing

Many research efforts have been made for building a highly scalable, �exible, ef-

�cient fog application deployment framework that can support cloud-like workloads.

Bonomi et al. suggested that fog devices should be con�gured either as virtualized re-

sources as in traditional cloud, or offered as bare metal servers [31]. GigaSight uses

virtual machine (VM)-based cloudlets to deploy privacy-aware video analytic applica-

tions in three-tier architecture [167]. VM-based virtualization is considered well suited
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Table 2.1 – Different characteristics of fog computing and cloud computing.

Characteristics Fog computing Cloud computing
Latency from end user

Low High
to the closest server
Distance from users Close Far

Architecture Distributed Centralized
Processing capacity Moderate High

Access networks LAN, WiFi, Cellular WAN
Storage capacity Moderate Large
Application types Latency sensitive, IoT analytic General applications

Table 2.2 – Fog application deployment frameworks

Reference Platform Application type Fog node Year
Mobile Fog [79] Not speci�ed IoT Not speci�ed 2013

Satyanarayanan et al [167] VM Analytic Clusters 2015
LEONORE [190] Docker IoT Clusters 2015
Claus [153, 154] Docker General RPI 2015

Foglets [169] Docker General Clusters 2016
Geelytics [40] Not speci�ed Analytic RPI 2016

MEC-conpaas [123] LXC General RPI 2017
Foggy [166, 205] Docker IoT RPI 2017

Bellavista et al [24] Docker IoT RPI 2017
Fogernetes [202] Docker General RPI 2018

in cloudlet environments [168] but it performs poorly in resource-constraint fog devices

such as routers, gateways and single-board machines that have signi�cantly low mem-

ory, bandwidth and processing capacity [78].

Another way to virtualize fog nodes is using containers [80]. Containers, and

particularly Docker containers have important advantages over VMs in fog environ-

ments: they are lightweight, portable and easy to deploy and orchestrate in resource-

constrained fog nodes. A number of IoT-based application deployment frameworks that

rely on Docker containers has been proposed for application deployment in resource-

constrained IoT gateways [27, 61, 166, 190, 202]. Kempen et al showed that single-

board machines have the potential to run real edge cloud applications [23, 123]. Even

extremely resource-constrained devices such as Raspberry PIs may be successfully

used to build IoT cloud gateways [24]. With proper con�guration, these devices can

make up scalable fog platforms with minimal overhead.
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Table 2.2 presents a comparison of the different proposed fog application deploy-

ment frameworks. We observe that the majority of the frameworks, and in particular the

most recent ones, are using Docker containers [91] or Kubernetes [19] for application

deployment in single-board machines such as Raspberry Pis. This shows the potential

of such devices as fog nodes in the near future.

2.3 Docker

Containers are self-contained software packages that encapsulate everything as

a software needs to run: executable binaries, libraries, dependencies, settings etc.

They are different from software programs mainly because containers are isolated from

other software running in the same host machine and underlying operating system [9,

41, 153]. There are different containerization tools available such as Docker [91],

LXC [108], OpenVZ [189], and rtk [119]. Among them Docker is certainly the most pop-

ular [140]. Docker is portable, operable, lightweight, and its container images are easily

shareable [11]. Popular container orchestration tools such as Docker swarm [102], Ku-

bernetes [19], Mesos [109] heavily rely on Docker to create, deploy, and manage the

container life cycle [65]. Docker is implemented in Go language [18] and its source

code of the project is freely available online [89, 99].

Figure 2.3 shows a host running a set of Docker containers on top of the host oper-

ating system. Docker uses special Linux kernel features such as namespace [187] and

cgroups [186] to virtualize hardware resources such as compute, network and storage.

In the earlier versions of Docker, this was done with the help of LXC containers [108].

Since Docker version 0.9, the libcontainer library [97] is used to integrate low-level

Kernel namespace [187] and cgroups [186] features directly [90, 180]. Applications

running inside Docker containers are packaged in the form of images which contain a

part of the container �le system with the required libraries, executables, con�guration

�les etc [87]. All the containers running in the same host share the underlying Linux

kernel of the host, which makes the size of the Docker images much smaller compared

to virtual machine images [170].
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Figure 2.3 – Multiple Docker containers running in a same host machine (adapted
from [91]).

Figure 2.4 – Docker architecture (adapted from [93]).

2.3.1 Docker architecture

Figure 2.4 depicts the Docker architecture. It is composed of three main compo-

nents: the Docker client, the Docker server and the Docker registry. The architecture

utilizes a client-server model and a remote API to create and manage Docker contain-

ers [93]. The Docker client and daemon may be deployed on the same host. Alterna-

tively the Docker client can connect to Docker daemon running in a remote machine.

The Docker client and the daemon communicate using a REST API, or over UNIX

sockets or a network interface [93].
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— Docker server: The Docker server (also called the Docker daemon) is in charge

of the main functionalities of Docker such as creating containers, images, net-

works, and volumes.

— Docker client: The Docker client allows one to interact with Docker servers. The

command line is the primary way to interact with Docker server. Upon receiving

an instruction, the client sends the request to the selected Docker server us-

ing the communication interface. For example, the following command instructs

Docker to download, setup and start a containerized web server.

docker run nginx:latest

A full list of Docker client commands is provided in [104].

— Docker registry: A Docker registry server is a repository which stores Docker

images [94]. Docker registries can be of two types: public or and private. A public

registry is deployed in a secure environment and publicly accessible to upload or

download images. For instance, Docker Hub is the most popular public registry.

It hosts nearly 2 millions images and is still growing [56]. On the other hand, a

private registry allows only authorized users to upload or download images.

2.3.2 Docker images

Docker images are consist of multiple layers stacked upon one another: every layer

may add, remove, or overwrite �les present in the layers below itself. This enables

developers to build new images very easily by specializing pre-existing images.

The same layering strategy is also used to store �le system updates performed

by the applications after a container has started: upon every container deployment,

Docker creates an additional writable top-level layer which stores all �le system up-

dates. The container's image layers themselves remain read-only.

A Docker image can be build from a Docker�le. A Docker�le is a human-readable

�le which contains list of instructions to build an image [88]. Docker provides a standard

docker build command which reads the supplied Docker�le and creates image layers

sequentially starting from the �rst instruction [81].

Figure 2.5 shows a typical example of a Docker�le for building a Python-based

Docker image. This Docker�le contains four instructions, and which creates a new layer

in the image. The �rst instruction is the FROM statement which indicates the image is

built from a pre-built ubuntu:15.04 image. The COPY command adds �les from the
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Figure 2.5 – Docker�le for creating “stream:1.0” Docker image.

Figure 2.6 – Structure of “stream:1.0” Docker image.

current working directory to the container �le system. The third RUN instruction builds

the application using the make command. Finally, the last instruction speci�es which

command to run when a container of the image is deployed. Figure 2.6 shows the

resulting image built from the above Docker�le. A full list of instructions to build a Docker

image is given here [96].

Docker encourages layer reusability so it is frequent that different images would

share the same bottom-level layers and differ only by their top-level ones [76]. To im-

plement layer reusability Docker applies Copy-On-Write(CoW) strategy while creating

the image layers [197]. If a �le or directory already exists in a lower layer of an image

and another layer needs to read the �le or the directory, then Docker simply reads from

the lower layer. However, when the �le or the directory is modi�ed for the �rst time,

Docker copies the modi�ed �le or directory in the top layer.

Docker storage drivers

Docker stores each image layer separately in the local �le system. It then exposes

a uni�ed view of a set of layers to the running containers, thanks to a storage driver

whose main purpose is to handle the different layers (i.e., mutable and immutable lay-
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ers) in the container image [181]. A storage driver also handles details about the way

different layers interact with each other. Multiple storage drivers are available, includ-

ing AUFS [193], Overlay and Overlay2 [199], Devicemapper [198], Slacker [76] and

btrfs [194].

— AUFS: AUFS is a union �lesystem [201]. The main principle of a union �le sys-

tem is that it layers multiple directories or branches on a single Linux host and

presents them as uni�ed single directory. The branches in AUFS drivers are

used to represent different Docker image layers. AUFS storage driver uni�es all

the layers of the image and exposes them as a single �le system. AUFS also

implements the Copy-on-Write (CoW) strategy in order to maximize storage ef-

�ciency (i.e., re-usability of image layers).

— OverlayFS: OverlayFS is a union �le system similar to AUFS, but faster and

based on a simpler implementation [101]. It layers multiple directories on a single

Linux host and presents them as a single directory. OverlayFS refers to the lower

read-only directories as lowerdir and the upper read-write directory as upperdir.

The uni�ed view is exposed through its own directory called merged which is

the containers' mount point.

— Devicemapper: Unlike the previous drivers, Devicemapper works at the block

level rather than the �le system level. It relies on Linux's device-mapper subsys-

tem to create a set of thin-provisioned block devices. Firstly, Docker creates a

pool, which typically sits on top of two physical devices— one for user data and

one for device-mapper metadata (e.g., block mappings). Secondly, when Docker

creates a container, the Devicemapper driver allocates an individual volume for

the container from the pool. Devicemapper implements CoW by creating new

volumes from writable snapshots of previously created volumes.

However, Docker containers operate on �le systems rather than a provided raw

block device. Therefore, a third step is to format the volumes with a con�gurable

�le system (either Ext4 or XFS). The big advantage of Devicemapper over the

union �le systems (AUFS or Overlay2) is that it can perform CoW at a block level

granularity (512kB by default) rather than a single �le as in union �le systems. On

the other hand, Devicemapper is completely �le system-oblivious and therefore

cannot bene�t from using any �le system information during snapshot creation.

— Btrfs: Btrfs [194] is a CoW �le system based on B-tree structure [165]. Com-

pared to unifon �le systems, Btrfs natively supports CoW and does not require
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an underlying �le system. Btrfs works with subvolumes which are directory trees,

represented in their own B-trees. Subvolumes can be snapshot by adding a new

root which points to the children of the existing root.

In terms of storage driver, Btrfs stores the base layer of an image as a separate

subvolume and consecutive images are snapshots of their parent layer. Similarly

to Devicemapper, Btrfs also performs CoW at the block-level granularity which

is more ef�cient in terms of performance and space utilization compared to �le-

based CoW. However, Btrfs can experience higher fragmentation due to the

�ner-grained CoW [181].

Docker originally used AUFS by default. However, in recent versions, the use of Over-

lay2 is encouraged for performance reasons [103, 193]. The performance of a storage

driver depends on the platform and type of application [60, 181]. A set of instructions for

selecting an appropriate storage driver is discussed in the Docker documentation [101].

Docker image metadata

Docker organizes the images as a set of layers that are stacked upon one another.

It also maintains metadata of the images and layers. The main purpose of the image

metadata is to simplify operations on the image layers. Docker image metadata con-

tains three stores:

— The reference store contains the manifests of all the images present in the

local image cache. Before creating a container, Docker inspects the contents of

the reference store to check if the image is already present in the local cache.

— The layer store contains all the locally-available layers, identi�ed by their

sha256 ID as well as metadata such as the layer's size, parent layer ID etc.

— The image store contains image con�guration information such as the CPU

architecture it relies on, the default exposed ports, attached volumes, etc. It also

stores the image history, with a list of layers identi�ed by their with sha256 ID.

Figure 2.7 shows how Docker stores the above information in persistent �les in-

side the Docker storage directory. As these metadata are frequently accessed, Docker

keeps a copy in memory to speed-up container operations. When the Docker server

is initialized, it copies the metadata to cache in memory and relies on the in-memory

version from there on.
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Figure 2.7 – Docker storage directory.

Docker image sharing

The standard mechanism by which Docker supports image sharing between mul-

tiple servers is based on a centralized registry where the full set of available images

and layers is stored [56]. A Docker registry may be either public (e.g., the public Docker

Hub currently contains more than two million images) or private. In essence, a registry

supports two main operations: docker push and docker pull.

— docker push uploads a new set of image layers and their manifest �le to the

registry server;

— docker pull downloads a container image from the registry to the docker server

where the pull command was issued. The Docker server �rst downloads the

manifest �le which contains the list of required layers, then it downloads the

missing layers from the same repository. These layers are then kept in the local

cache for potential future reuse.

Docker image cache

Docker uses a single directory in the local �le system (by default /var/lib/docker )

to store all cached data such as image layers, metadata and Docker server con�gura-

tions. Docker uses a "delete-nothing" policy, which means that the cached images are

never deleted from the storage directory unless explicitly asked for it [95]. This allows

one to avoid redeploying the same image if the application is deployed again in the

future. This may however create storage capacity issues in fog environment where the

servers have limited storage capacity. Also within a fog computing where each PoP

is composed of multiple servers, these cached images may be stored redundantly if
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Figure 2.8 – Multiple container images sharing the same underlying layers (adapted
from [87]).

the same image has been deployed in multiple servers. This shows that Docker's de-

sign for image management was developed for servers that have nearly in�nite storage

capacity, but it creates strong storage issues in resource-constrained servers.

2.4 Application deployment inside Docker containers

Application deployment in Docker containers starts when the container deployment

command docker run IMAGE:TAG [parameters]is issued with the name of the image,

its version tag, and container con�guration. Docker �rst checks whether the container

image is already available in the Docker image cache. This is done by reading the

Reference store where all the cached images are listed. If the image is not present in

the cache then Docker postpones the container deployment process and triggers on

image deployment command docker pull IMAGE:TAG [parameters] with the name of

the image and its version tag.

Figure 2.9 depicts the �owchart of Docker image deployment in the case of cache

miss. Docker needs to deploy the image from a registry server before the actual con-

tainer deployment operation. The image deployment command involves a series of

communications between the Docker server and the registry server. Firstly, Docker lo-
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Figure 2.9 – Flowchart of the Docker docker pull image deployment process.
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cally checks if the image is already present in its cache by reading the content of the

Reference store. If the image is not present then Docker connects to the registry and

downloads the manifest list of the image [98]. This �le contains a list of images ID with

the requested image name, and tags and platform architectures. The Docker server

selects the appropriate image ID and then requests its image manifest. This �le con-

tains the list of layers present in the image with their corresponding layer ID. The server

checks the contents of this �le against the Layer store of image metadata to identify

missing image layers in the local cache. It then creates multiple threads to download

the missing layers and image con�guration. The missing layers are downloaded start-

ing from the �rst layer with a default parallelism degree of 3. Image layers are shipped

in the form of a compressed tar �le. Every downloaded layer is then separately ex-

tracted in the local disk starting from the �rst layer to preserve the consistency of the

�le systems. Successfully extracted image layers are then checked for the integrity and

registered in the image metadata of the Layer store. Once all the image layers are ex-

tracted to disk, Docker writes the image con�guration in the Image store and updates

the Reference store accordingly.

Once the image is available in the local cache, Docker resumes the container de-

ployment process. It �rst creates a Read-write container layer on top of the image.

The writable top-level layer stores all �le system updates performed by the applications

after a container has started. The same layering strategy is used to write any �le up-

dates on the container layer following Copy-on-Write (CoW) policy. Once the container

is created, Docker boots the application by starting the init process of the application.

After the application has started, it becomes ready to ful�ll its intended usage, and the

deployment process terminates.
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CHAPTER 3

STATE OF THE ART

This chapter presents the state-of-the-art of this thesis. We present different pro-

posed design approaches to improve the application deployment time in container-

based distributed fog environments. The approaches are broadly classi�ed into: (1)

speeding up Docker image deployment upon a container creation request; (2) avoiding

Docker image deployment; (3) speeding up container creation time; and (4) speeding

up the container boot phase.

3.1 Introduction

Within the application deployment process, there are multiple opportunities to im-

prove the end-to-end container deployment time. Many optimizations have been pro-

posed to improve the container deployment time, addressing various limitations in the

deployment process. We broadly classify the proposed approaches in the following

categories:

1. Speeding up the image deployment: the �rst phase of application deployment

is to download the container image from a registry server. This process takes

a signi�cant faction of the application deployment time. Reducing the image

deployment time can therefore considerably speed up the end-to-end container

deployment.

2. Avoiding the deployment of Docker images: Docker keeps the downloaded im-

ages in its local cache for subsequent deployments of the same application.

However, in resource-constrained fog servers cache space is limited, and it is

fragmented between multiple servers in the same PoP. Improving the hit rate re-

duces the chances of image deployment upon container creation and therefore

reduces the overall average application deployment time.
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3. Speeding up the container creation: Docker container creation involves creating

a container �le system on top of the uni�ed image layers and then isolating the

container resources. This process may be slow in scenarios where containers

are frequently created, deployed and deleted. Speeding up the container cre-

ation reduces the overall application deployment time.

4. Speeding up the container boot phase: The �nal phase of the deployment is to

boot the container by starting the init process of the application. The boot phase

may take signi�cant amounts of time depending on the application's set of in-

structions before it is ready to serve user requests. Reducing the boot phase

time or totally eliminating it eventually reduces the overall application deploy-

ment time.

3.2 Speeding up the Docker image deployment

Docker container deployment time is largely dictated by the image deployment op-

eration, especially on single-board computers: on average it is estimated that Docker

spends nearly 76% of container deployment time in pulling the images from a registry

server [76]. Docker image deployment involves a series of communications between

the Docker engine in the host machines and the remote registry server. The image

deployment time is mainly due to the fact that Docker must download the image layers

from the registry server, decompress them and extract them to disk. The performance

of image deployment can be improved with ef�cient design either at the server side or

at the client side [12]. A server-side approach involves re-designing the Docker registry

server, while a client-side approach requires redesigning the Docker engine itself.

3.2.1 Server-side approaches

Distributed registries

A number of efforts have been made to improve Docker image deployment by

changing the design of Docker registry [12, 122, 144, 179]. The registry is a centralized,

data-intensive component. As the number of stored images in a registry grows and the

number of concurrent image deployment requests from multiple clients increases, the

Docker registry may become an important performance bottleneck which impacts the

50



3.2 Speeding up the Docker image deployment

performance of container deployment. To address this issue, CoMICon proposes using

a distributed Docker registry instead. It distributes the layers of an image among multi-

ple nodes to increase their availability and reduce the container provisioning time. The

distribution allows one to pull an image from multiple registries simultaneously, which

reduces the average layer's download times [144]. A similar concept has been used in

the “Faster Image Distribution System” for Docker Platform (FID) [122]. FID uses the

standard Bit-torrent protocol to distribute image layers in a single data-center setup.

Similar approaches that rely on other peer-to-peer protocols have been proposed [21,

134]. Distributed downloading relies on the assumption that multiple powerful servers

are interconnected with a high-speed local-area network, and therefore the main per-

formance bottleneck is the long-distance network to a remote centralized repository.

However, in the case of fog computing platforms, servers will be geographically dis-

tributed to maximize proximity to the end users, and they will rarely be connected to

one another using high-capacity networks. This limits the ef�ciency of distributed down-

loading in such environments.

In order to address the issue above, Darrous et al study the role of image placement

across edge servers in situations where the network bandwidths between edge servers

are not homogeneous [52]. The authors propose two heuristic algorithms based on the

K-center optimization problem that place the image layers on a set of nodes such that

the maximum container image deployment time to any server is reduced. The �rst

algorithm is more generic and aims to place the image layers and replicas across the

nodes so that the distance from any node to the servers is minimized. The second

algorithm avoids placing multiple layers of an image in the same node since this will

degrade the advantage of image distribution. Extensive simulations of the proposed

algorithms with real-world registry workload shows that the proposed solutions improve

the overall image deployment time by 13% to 18% compare to standard Best-�t and

random placement techniques. This solution is designed for fog environments where

the nodes are static and network bandwidth among the servers is relatively stable.

On the contrary, in some systems the fog nodes are considered to be mobile, and

therefore the constantly changing bandwidth among different nodes needs to be taken

into account while placing the image layers.
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Redesigning individual registries

Another way to improve image deployment time is by improving the performance

of individual Docker registry servers. Anwar et al studied the workload of Docker reg-

istry servers in real-world conditions at IBM where images are frequently deployed to

support cloud-like workloads [12]. The analysis revealed that access to the images in

the registry is highly skewed: 90% of the pull requests account for only 10% of the

images. The second conclusion is that there is a strong correlation between the upload

of an image (i.e., push operation) and subsequent download requests (i.e., pull oper-

ation) for the manifest �les and layers of the image. Based on the above conclusions,

the authors propose two registry design approaches. First, two-level caching focuses

on the most popular images, it stores the frequently-accessed image layers in fast ac-

cess storage such as main-memory and SSD. It therefore avoids fetching the image

layers from the back-end storage while deploying the images, and thereby signi�cantly

reduces deployment time. The second design exploits the relationship between push

and subsequent pull requests. When a new image is pushed to the repository, its layers

are immediately pre-loaded into main-memory.

3.2.2 Client-side approaches

Image size optimization

The deployment time of Docker images largely depends on the image size and

the available network bandwidth. Certainly, a small image can download faster and

requires less disk space than a large one. The author of [55] suggests good practices

to build small size Docker images. In particular, a small base layer signi�cantly reduces

the size of the image. The author also emphasizes the need for reducing the number

of image layers which mechanically reduces the overall size of the image as well. In

this proposal, the process however remains manual.

DockerSlim [158] is an open-source tool to reduce the size of Docker images. It

takes an input image and uses static and dynamic analysis to identify the �les in the

image layers that are not used by the application. These �les can thus be excluded

from the container image which signi�cantly reduces original size of the image. The

main drawback of Dockerslim is that it also potentially removes important tools such as

debugging and pro�ling tools from the container �le system.
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While creating a Docker image from a Docker�le, it is not uncommon that tempo-

rary �les such as application data are downloaded or generated, utilized and deleted.

However, due to the design of UnionFS, Docker creates a new layer for the Docker�le

instructions that delete temporary �les which increases the size of the image. Xu et al

study how to detect such temporary �les which are deleted during the image develop-

ment process but removed logically [131, 204]. The authors propose dynamic analysis

of I/O operations which injects code in the Overlay �le system kernel module to log

temporary �le creation and deletion during the image build process. The logs are ana-

lyzed and then identi�ed the temporary �les which are never removed physically from

the image layers. The authors conclude that prior knowledge of such temporary �les

may reduce the size of Docker images. However, injecting additional code in the kernel

to trace I/O operations impacts on performance of the whole system.

Docker engine redesign

Docker image deployment can be improved by optimizing the Docker image build

procedure. FastBuild speeds up the Docker image building phase upon a container

deployment request [81]. In DevOps environments, container images are frequently

changed, built and deployed during the application development and testing phase.

Therefore building new images is a frequent activity. FastBuild keeps a record of the

frequently accessed �les from the Internet during the image build process, and buffers

them in the local �le system. When building a new image, FastBuild intercepts the re-

quested �les to download and supplies them from the buffer. Caching the frequently

accessed �les avoids remote �le access and reduces the image build time. FastBuild

targets scenarios where images are frequently modi�ed, built and deployed. In con-

trast, our goal is to improve the deployment time of production images independently

from the way they were built.

Another way to reduce the deployment time is by improving the Docker image de-

ployment process itself. An interesting �nding is that Docker needs only about 6% of

an image to start a new container [76]. However, upon a container image deployment,

Docker has to wait until the whole image has been fully downloaded from the registry

before starting the container, which signi�cantly slows down the container deployment.

Slacker proposes to rely on an NFS �le system to share the images between all the

nodes within a datacenter [76]. The proposed storage driver allows lazy pulling of the

accessed parts of the container image, which signi�cantly reduces the overall container
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deployment time. However, the new storage driver expects that the container image is

already present in the local multi-server cluster environment. In contrast, a fog comput-

ing environment is made of large numbers of nodes located far from each other, and

the limited storage capacity of each node implies that few images can be stored locally

for future re-use. Besides, Slacker requires �attening the Docker images in a single

layer. This makes it easier to support snapshot and clone operations, but it deviates

from the standard Docker philosophy which promotes the layering system as a way to

simplify image creation and updates.

Civolani proposes to extends the lazy pulling and redesigns the Docker deployment

process so that it can start a container after downloading the image only partially [43].

To implement this, the new model restructures Docker images with a new layer added at

the bottom of the image which contains all the required �les to start the container. Upon

a container deployment request, Docker �rst downloads and extracts the �rst layer and

creates dummy empty layers for the remaining layers. The container is then started

while the remaining image layers are being downloaded and �lled asynchronously to

the dummy layers. This proposed deployment model however works only with the Over-

layFS storage driver. The lazy pulling of the image layers signi�cantly improves the

container deployment time, however, creating the dummy layers does not allow one to

check the layers' integrity which may leads to undetected image corruption.

In this thesis, we show that Docker does not utilize all the hardware resources of the

host machine while deploying the images. Fog nodes such as Raspberry Pis have very

limited resources such as processing, storage and network capacity. Any inef�cient

usage of the available hardware resources therefore has in important impact on perfor-

mance. We analyze the resource consumption of the host machine while deploying an

image and propose optimization solutions to speed up the Docker image deployment.

This contribution is presented in Chapter 5.

3.3 Avoiding image deployment

The deployment time of Docker containers can be improved by reducing the proba-

bility that an image deployment operation must be carried on upon a container creation.

Many solutions have been proposed to avoid redundant deployment of an image in a

cluster by sharing Docker images across different servers [35, 57, 76, 206]. For exam-

ple, the Slacker storage driver was introduced the �rst to use a shared (NFS) server for
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sharing Docker images across multiple servers (see Section 3.2.2). Another solution is

to use a distributed �le system to share Docker images.

Wharf proposes to share the caches of multiple Docker servers using a distributed

�le system to reduce storage utilization and the number of redundant image re-

trievals [206]. It is designed for powerful server clusters where network bandwidth and

data storage are cheap. In consequence the authors mostly discuss container startup

times and do not address the issues related to limited cache size in fog computing

servers. Wharf also relies on the ability of Docker servers to download multiple image

layers simultaneously, which was shown to perform poorly in the context of single-board

fog servers [4].

Contrary to high-performance datacenters environments, fog servers have very lim-

ited storage, compute and networking resources. In this thesis, we study how to in-

crease the Docker image cache hit in fog infrastructures that are made of large num-

bers of resource-constrained nodes. Our propose Docker image sharing framework

addresses the different challenges to share Docker images across multiple fog servers.

This contribution is presented in Chapter 4.

3.4 Speeding up container creation

The next way to improve container deployment time is to speed up the container cre-

ation time. Oakes et al studied the slow container creation time in the OpenLambda [68]

serverless framework where Docker containers are frequently created, stopped and

deleted [147]. The authors �nd that the main bottleneck of Docker's slow container cre-

ation time is that it uses expensive resource isolation techniques for creating separate

cgroups, unifying the image layers with a union �le system, and creating a namespace

for each container. In order to address these issues, the authors propose the SOCK

serverless framework which is based on three optimizations: (1) SOCK relies on a set

of lean containers that use lightweight isolation; (2) instead of importing new python

packages, SOCK uses Zygot-provisioning to import pre-imported packages at run-

time [33]; and (3) three-tier caching creates multiple containers which avoids python

packaging and importing costs. The SOCK framework shows how one may reduce the

container creation time in a serverless framework where containers are frequently cre-

ated, deployed and deleted. However, it sacri�ces many of Docker's features such as

strict container isolation and re-usability of image layers.
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Container creation time can be reduced by reducing the necessary I/O operations

while loading the container image's �le system. Docker reads the essential part of the

images from the local disk. However, generic disks are often relatively slow [4]. YOLO

(You Only Load Once) uses caching techniques by pre-loading the essential part of the

image in main memory or fast disk storage like SSD [145]. To implement this, YOLO

creates a subset of the Docker image that contains the essential parts for container

deployment. It transparently loads this subset to fast access storage upon the �rst con-

tainer request. In subsequent deployments, Docker can then read the image subset

from fast-access storage instead of local disk, and thereby, improve container deploy-

ment up to 2 times depending on system load conditions. However, this subset image

requires on average about 5MB of main memory per container image. The proposed

solution therefore is suitable for high performance servers where the main memory ca-

pacity is not an issue. However, fog servers are typically limited in memory space. For

example, a RPI has in total only 1 GB of main memory. Caching image subsets for all

the running containers in the already over-loaded main memory may result in additional

swapping which will impact the run-time performance of the running containers.

3.5 Speeding up the container boot phase

The last way to reduce the end-to-end container deployment time is by reducing

the time to boot the application. After a container has been created, some applications

takes signi�cant time to boot. For example, the popular Mysql require about 10 s on a

fast server being available to serve end-user commands [142]. In the world of virtual

machines, a popular solution to reduce boot time of VMs is by using snapshot and

clone [73, 160]. Similarly, with the same goal, process checkpoint and restart with

DMTCP has been used to reduce VM boot time [71].

There have not been many studies on the use of process checkpoint/restart in con-

tainer deployment optimization. Nadgowda et al proposed a container auto-scaling

method which is based on CRIU [151] to checkpoint a running container and ef�ciently

replicate them in other nodes [142]. However, the proposed solution only aims at hor-

izontal scalability scenarios and does not aim to minimize the container initialization

latency in the standalone application deployment.

In this thesis, we use process checkpoint and restart techniques to eliminate the

container initialization phase upon an application deployment request. We particularly
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rely on DMTCP [10] to checkpoint and restore applications inside Docker container and

distribute the checkpoint image with distributed storage. This contribution is presented

in Chapter 6.

3.6 Conclusion

Figure 3.1 summarizes the proposed approaches that aim to reduce end-to-end

container deployment time. Most of these approaches were proposed in the context

of high performance servers. In consequence, they do not consider the performance

implication that are speci�cally present in resource-constrained fog environments. Al-

though the deployment time can be improved either at the server or the registry side,

in this thesis, we solely focus on the client side optimizations and consider that the fog

resources are limited.
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Figure 3.1 – Docker container deployment optimizations.
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CHAPTER 4

IMPROVING THE DOCKER CACHE HIT

RATIO

This chapter presents the �rst contribution of the thesis. The �rst opportunity to

reduce container deployment time is by improving the hit ratio of the Docker image

cache. The hit ratio of a local image cache present in every fog node may be low due

to the fact that the nodes have very limited storage capacity. We propose to aggregate

the image caches of multiple co-located fog nodes, so the end result is a large image

cache where the images are shared with a distributed �le system.

4.1 Introduction

The users of fog applications are usually mobile, which implies that the applications

running in the fog may need to be frequently re-deployed in different PoPs to maintain

proximity, low latency, and reduce long-distance traf�c [29]. However, software deploy-

ment in fog infrastructures can be painfully slow when the fog node needs to download

a full container image of the deployed application before starting the container itself [4].

Having their fog-hosted application freeze frequently while new containers get started

would clearly be a source of frustration for most end users. Reducing the probability of

such image cache misses, and the performance impact of their occurrence when they

cannot be avoided, is therefore of crucial importance for providing the end users with a

satisfactory quality of experience.

Docker, which is by far the most popular container deployment engine [164], was

originally designed for powerful server machines. It therefore keeps a copy of every

container image in each server's local cache so it does not need to be downloaded

again in case the same image is deployed in the future. Docker also never removes

content from its caches unless explicitly requested by their user to do so [100]. Although

59



Chapter 4 – Improving the Docker Cache Hit Ratio

this strategy makes perfect sense in powerful server machines where disk space is

rarely an issue, it creates important storage capacity problems in an environment com-

posed of many weak machines with limited storage space and where containers are

frequently started and stopped. If the working set of frequently-deployed images is

larger than the storage capacity of a fog computing node, then the same image may

need to be repeatedly downloaded, utilized and deleted, creating unnecessary delays

and network transfers when re-deploying a container after its image had to be removed

from the local node. Another effect of keeping separate image caches in each node is

that these caches are likely to contain highly redundant content due to the fact that the

same popular images may have been deployed multiple times in different nodes.

We propose to transform these issues in opportunities by allowing multiple fog

nodes within a PoP to share the content of their Docker image caches. Instead of using

the fog nodes' storage capacity as a set of limited and isolated caches, we propose to

aggregate the storage capacity of clusters of co-located fog nodes using a distributed

�le system. The end result is a single sizable Docker image cache per PoP where

large numbers of images can be stored, thereby signi�cantly reducing the probabil-

ity that images need to be downloaded over a long-distance network upon container

deployment.

We analyze a large Docker registry workload and demonstrate the potential for

deployment time improvements of Docker image sharing. We survey distributed �le

systems (which were typically designed for HPC environments) and discuss their suit-

ability in fog computing environments. We present the design of our Docker image

sharing framework which supports image cache sharing between multiple co-located

fog nodes. Our trace-based evaluations show that sharing caches between multiple

fog nodes delivers signi�cant cache hit rate improvements, and leads to reductions

of the average container deployment times between 37% and 78% depending on the

scenario.

The chapter is organized as follow. Section 4.2 analyses the workload of large

docker registries and demonstrates the potential of image sharing in fog infrastruc-

tures. Then, Section 4.3 presents our cooperative Docker framework and Section 4.4

evaluates its performance. Finally Section 4.5 concludes.
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Table 4.1 – Registries used in the simulations.

Availability Zone # of pull Total image
(AZ) name requests (k) size (GB)
Frankfurt (fra) 149 86
Sydney (syd) 55 92
London (lon) 349 1719
Dallas (dal) 937 6789
Prestaging (prs) 43 213
Staging (stg) 301 1181
Development (dev) 22 283

4.2 Potential bene�t of cache sharing

To evaluate the potential bene�ts of sharing Docker caches among fog servers, we

analyze the workload of actual Docker registry servers. In the absence of publicly-

available fog computing workloads, we instead analyzed a production workload of

Docker container deployments in a cloud computing context. As previously discussed,

we expect fog computing platforms to experience more frequent re-deployments of the

same images than in a normal cloud platform. The results presented here therefore

represent a worst-case analysis in terms of cache hit rates.

4.2.1 Simulation setup

We simulate the behavior of Docker image caches under a real registry work-

load composed of a collection of HTTP-logs generated from 36 IBM Docker registry

servers [12]. Each entry in this trace contains the signature of an HTTP request made

by a Docker server to the registry for operations such as docker pull and docker push.

The signature provides information about the request such as name of the image, the

type of request, and timestamp.

Table 4.1 shows how these registries are classi�ed in 7 Availability Zones (AZ)

based on their geographical location and the type of workload they serve. Four AZs

(fra, syd, dal and lon) are dedicated to serve production workloads: fra and syd are

relatively new and have fairly small workloads whereas dal and lon serve a much larger

working set of images. Two AZs (prs and stg) are used for staging (pre-production)

purpose, and �nally dev is dedicated for development purpose.
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(a) Small cache sizes. (b) Large cache sizes.

Figure 4.1 – Cache hit ratios of different AZs vs. shared cache size.

Note that every request present in this trace corresponds to a cache miss that was

incurred at one of the Docker servers, and that consequently triggered a docker pull

operation. The trace does not contain suf�cient information to reliably detect container

deployments which resulted in a cache hit in the Docker servers. Due to the fact that

Docker never deletes cached image layers unless explicitly requested to do so, we can

see this trace as the residual cache miss traf�c from a large set of isolated, in�nite-

sized image caches. Any temporal locality found in this trace therefore highlights an

opportunity for cache sharing between multiple servers.

The trace also contains no indication about the containers' lifetime after they are

started. However, this lifetime has no in�uence over the Docker image cache hit rate.

In our simulations we therefore assume that containers are stopped immediately after

having been started.

To study the bene�t of Docker image sharing across fog computing servers, we

replay the container deployment logs in a simulator which reproduces the behavior

of a Docker image cache: when deploying a new container, the server �rst checks

if the image is available in the (shared or non-shared) cache storage and, if found,

immediately starts the container. Otherwise, if downloads the missing layer(s) in the

image cache before starting the container.
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4.2.2 Cache hit ratio analysis

Figure 4.1 depicts the cache hit ratio that a shared cache for each AZ would have

with different storage capacity. Unlike the standard Docker cache management policy,

in this study we assume that the shared cache can decide to delete unused cached

image layers to make space for new ones that are being requested. In our simulation

we use the well-known Least-Recently Used (LRU) policy to decide which layer should

be removed when the cache does not have suf�cient available capacity to store a

newly-requested image.

We can see in Figure 4.1(a) that, even with very small shared cache sizes, several

AZs exhibit signi�cant cache hit ratios. This is particularly true for the syd and fra AZs

which respectively exhibit 89% and 80% hit rates with a shared cache size of 32 GB.

This is hardly surprising: as shown in Table 4.1 these AZs handle a very small working

set of images which can �t even in a very small shared cache.

However, even AZs with a much larger image working set exhibit respectable per-

formance with a very small shared cache. For example stg has a hit rate in the order of

55%, and dal (the AZ with the largest working set in this trace) around 31%. This indi-

cates that a small number of highly popular container images is repeatedly deployed in

different servers from the same zone. For these scenarios, sharing even an extremely

small cache delivers signi�cant performance improvement compared with no sharing.

On the other hand, prs and dev observe almost no cache hits with a very small

cache size. This is probably due to the fact that, during development and pre-staging

phases, each container image is deployed only a small number of times before either

being replaced with an updated version (in case a bug was detected) or being moved

to staging or production.

When looking at slightly larger shared cache sizes, we observe that shared cache

sizes in the order of a few hundred GBs are usually suf�cient to exploit the temporal

locality and reach hit rates of 50-95%. Sharing image caches would clearly provide

important bene�ts for these AZs.

Figure 4.1(b) extends these curves until cache sizes of several TBs. We can ob-

serve that such cache sizes do not deliver additional bene�ts compared to much

smaller sizes. The only exception is dal here every cache size increase (up to the

size of its total working set) delivers performance improvement.

We conclude the cache sharing between multiple Docker servers would clearly de-

liver signi�cant bene�ts in almost all considered scenarios, even with limited size for
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Figure 4.2 – Docker shared image cache architecture.

the shared caches. This is a good news for us considering that in a fog computing

platform each PoP would probably have limited storage capacity. The only exceptions

where the bene�ts of sharing caches are limited derive from scenarios where each

image is deployed only a couple of times (e.g., during the development phase) or the

overall image working set is extremely large.

4.3 System design

The general framework for image cache sharing among a group of Docker servers

is depicted in Figure 4.2. In this design, multiple Docker servers use a shared �le

system to store the (immutable) image manifest and layer �les. On the other hand, each

Docker server keeps in their local storage the containers' read-write layers, plugins,

con�guration �les etc. However, realizing this design forces us to address a number of

dif�cult challenges.

1. Most distributed �le systems designed to aggregate the storage capacity of mul-

tiple servers were designed in the context of powerful clusters, and tailored to the

needs of high-performance computing applications. However, a fog computing

PoP is composed of a small number of relatively weak machines. We there-

fore need to select a distributed �le system which best �ts our particular set of

constraints. We discuss the choice of a distributed �le system in Section 4.3.1.

2. We need to reorganize the directories in which Docker stores its different �les

such that the immutable image manifests and layers can be mounted from the
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distributed �le system while the other �les remain in a non-shared local storage.

We discuss this topic in Section 4.3.2.

3. Docker servers are implemented with the assumption that the image cache is

entirely controlled by a single server. Consequently, it maintains parts of its

meta-data in memory. When one Docker server modi�es the content of the

shared image cache, it must therefore notify the other servers to maintain their

in-memory metadata consistent with the content of the shared store. We discuss

this topic in Section 4.3.3.

4. When multiple Docker servers are requested to deploy the same container im-

age concurrently, we must ensure that each container image is downloaded only

once by one of the servers while the others wait for the image to become glob-

ally available. We discuss the synchronization of multiple image downloads in

Section 4.3.4.

5. In a fog computing PoP we expect that the shared �le system will have a rela-

tively limited capacity. We must therefore implement a cache replacement policy

so unused image layers can be evicted from the cache when the available stor-

age is not suf�cient to hold new layers to be downloaded. We discuss the cache

replacement policy in Section 4.3.5.

4.3.1 Choice of distributed �le system
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4.3 System design

A distributed �le system (DFS) is de�ned as any �le system that allows access to

�les from multiple hosts sharing via a computer network [196]. We speci�cally focus

here on distributed �le systems which aggregate the storage capacity of multiple ma-

chines to provide a single uni�ed view of the shared �le system to every server within

a PoP.

Distributed �le systems were mostly designed for high-performance computing en-

vironments where the servers are computationally powerful and connected by a high-

speed network. In contrast, we aim to use them in severely resource-constrained fog

computing environments. Our choice of DFS is therefore largely guided by an analysis

of the resource requirements of different DFS.

Distributed �le systems typically store �le content in blocks that are located in one

or several object servers. They therefore need to separately maintain metadata such

as the location of these blocks within the distributed �le system. This is the task of

the Metadata Server (MDS). Upon any �le access within the DFS, client machines �rst

need to query metadata before accessing the �le content itself.

The design of the MDS is an important differentiating factor between the many

available distributed �le systems. Depending on the DFS implementations the DFS

may be centralized in a single machine or decentralized. In the centralized case, the

machine which holds the MDS may incur a signi�cant extra load and potentially become

a performance bottleneck. A distributed MDS would share this load among the available

servers and arguably exhibit better scalability and fault-tolerance properties.

Distributed �le systems also differ in the storage medium used to keep the metadata

during its operation. Some �le systems load the metadata in memory (which promises

fast metadata access) while others keep them on disk. In a resource-limited environ-

ment such as a fog computing PoP, memory must be considered as a scarce resource.

Although keeping metadata in memory may remain affordable if the number of shared

�les was small, any container image would contain a large number of (usually small)

�les, and therefore require signi�cant memory resources to maintain their metadata.

Table 4.2 presents a comparison of six popular �le systems: HDFS [13],

CephFS [162], MooseFS [49], GlusterFS [115], iRods [47] and Lustre [150] based on

information found on the respective �le systems' web sites as well as a survey on dis-

tributed �le systems [54]. Out of all studied �le systems, CephFS and GlusterFS stand

out because they rely on a distributed metadata server.
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CephFS is a fully scalable distributed �le system [191]. A CephFS cluster must

include one monitor (which maintains a master copy of the cluster map), one

manager daemon (in charge of monitoring the �le system cluster), at least three

Object Storage Devices (OSD) and at least one metadata server (MDS). The

monitor and manager are lightweight processes which can easily run in a spe-

ci�c node from a fog computing PoP. the OSDs are in charge of storing all objects

from the �le system. Finally, the metadata servers share the metadata workload

with one another. CephFS splits every �le into one or multiple blocks and store

them as objects in the OSDs. The client can de�ne so-called CRUSH rules to

determine the object placement across the different OSDs. By default ceph repli-

cates every object on two OSDs, which allows the system to survive the crash

of any single server within the cluster. Since CephFS stores metadata in disk

instead of main memory, it can easily be deployed in resource-constrained com-

pute nodes [113].

GlusterFS is a fully decentralized �le system. Unlike the others in this list, it does

make use of any metadata server. Instead, it uses an Elastic Hash Algorithm to

deterministically choose in which location each �le must be stored [105]. Glus-

terFS can also stripe �les in multiple chunks distributed across all the cluster

nodes. This allows one to parallelize most I/O operations, and therefore improve

the I/O performance when reading or writing large �les. Finally, GlusterFS sup-

ports RAID1 replication to tolerate node failures. Similar to CephFS, GlusterFS

is suf�ciently lightweight (expecially thanks to its absence of metadata servers)

to be deployed in a fog computing PoP.

We therefore consider CephFS and GlusterFS as the best two contenders for be-

ing used in a fog computing scenario. We evaluate and compare their performance

experimentally in more details in Section 4.4.1.

4.3.2 Sharing Docker images

Docker uses a single local directory (e.g., /var/lib/docker/aufs ) to keep all

cached data such as image manifests, layer metadata, and the layers themselves. To

implement image sharing between multiple docker servers it is important to distinguish

the cached content which should be shared from the one which should not.
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Shareable content: the shareable content consists of image layers data and the

metadata �les. To allow multiple Docker servers to access the same layers we

mount the distributed �le system over the directories which contain these �les.

Non-shareable content: some other content such as server-speci�c con�gura-

tions and plugins should not be shared. Also, the read-write layers which are

dynamically created when starting every new container are meant to be used

by a single container, and can therefore be considered as non-shareable con-

tent. Although Docker stores these read-write layers in the same directory as

the read-only layers, we con�gured Docker to create the read-write layers in a

separate directory out of the mounted distributed �le system.

Note that, although sharing the image and layer �les across multiple Docker servers

is necessary for our approach, it is by no means suf�cient. Docker keeps a copy of the

cache metadata in memory, and it does not systematically check the consistency of

the in-memory data with the persistent ones before using them. We therefore need to

design additional mechanisms to maintain these data consistent, as we discuss next.

4.3.3 Consistency maintenance of in-memory metadata

Sharing Docker images through a distributed �le system is not suf�cient to guaran-

tee the in-memory metadata of the image cache remains consistent with the shared

content over time. For instance, when a Docker server executes an image operation

such as adding an image in the shared image cache, the updates in the image cache

are re�ected in the shared �le system and the in-memory metadata present in the con-

cerned machine itself, but they are not propagated to the other Docker servers. As a

result, in case another Docker server wants to deploy the same image, it will not �nd it

and download it unnecessarily.

To maintain the consistency of the in-memory metadata across all servers within a

PoP, we use the popular Redis system and create a publish-subscribe channel to dis-

seminate any update to the in-memory metadata [127, 163]. Whenever one server in-

curs an update in its in-memory metadata after adding or removing an image, it sends

a message (in our case update in-memory metadata) in this dissemination channel.

When a server receives this message from the above channel, it discards its in-memory

metadata and re-reads the image metadata from the shared �le system. With this sim-
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ple mechanism, the in-memory metadata remain consistent across all the servers of

PoP.

4.3.4 Preventing concurrent deployments of the same image

In a Docker cluster it is not unusual to start multiple instances of the same image

simultaneously, for instance in order to aggregate the processing capacity of multiple

servers. In our case, if multiple servers from the same PoP attempted to concurrently

deploy the same image, they may all notice that the image is not present in cache

and redundantly download the same image. It is therefore necessary to allow multiple

servers to coordinate with each other and download each image layer only once.

We propose to let a single Docker server download all the required layers. Other

servers simply block when they discover the image they want to deploy is being down-

loaded, and resume the normal deployment process after the image download has

completed. To allow each Docker server to reliably detect if an image is already being

downloaded by another server we store locks in the Redis key-value store: each image

is controlled by a separate lock identi�ed by the sha256 ID of the image.

Figure 4.3 illustrates the updated work�ow of the docker pull operation. When

pulling an image, the Docker server �rst checks in the Redis database whether a lock

for the same image has been created by another server. If the image is not already

being downloaded, the server creates a lock in the Redis database under the ID of the

image, then pulls the image normally. When the download is completed, it removes the

lock and sends a noti�cation to a Redis channel with the same ID. The lock test and set

operations are executed within a transaction [128] to ensure atomicity and avoid race

conditions.

If a server discovers that the image it needs to pull is already being downloaded by

another server, it simply subscribes to the Redis channel (again within a transaction)

and waits until it receives a noti�cation that the image download has completed. It can

then update its in-memory metadata as discussed in the previous section and terminate

the deployment normally.
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Start

Image in cache Image is pulling

Set image pulling �ag

Pull the image

Remove image pulling �ag

Publish to redis channel

Subscribe to redis channel
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Serialized

Figure 4.3 – Flowchart of the proposed docker pull command.
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Algorithm 1: Image replacement algorithm.
Input:
S = size of the new image,
{I} = list of unused images,
i = image to be deleted

1 while (available_space < S) do {
2 i = least_recently_used(I)
3 docker rmi i
4 Redis_Publish(Update_Metadata)
5 {I} = {I} - i
6 }

4.3.5 Cache replacement

In a resource-limited environment such as a fog computing PoP, it is important to

carefully manage resource scarcity. In particular, in a fog computing platform where

we expect a large variety of applications to be deployed over time, it is important to

ensure that only the most relevant container images are kept in cache, and that the less

frequently-deployed ones get discarded to save space. This signi�cantly deviates from

the standard Docker policy of never removing any image automatically and of rather

relying on human administrators to remove unnecessary images manually [100].

To automatically handle the removal of unused container images, we implemented

a cache replacement mechanism within Docker [195]. This mechanism get triggered

when the available shared disk space is not suf�cient to store a new image which is

being downloaded. While deploying an image, if the storage capacity is insuf�cient then

Docker pauses the deployment process and calls the Image Replacement Interface to

remove one or more unused images.

It would obviously be incorrect to remove an image from the cache while it is being

used by any of the PoP's Docker servers. To inform other servers about the images

they are currently using, Docker servers register the image name and current number

of instances in the Redis database.

Algorithm 1 depicts the replacement mechanism. Whenever the available storage

capacity is insuf�cient to store a new image, the concerned Docker server �rst builds

a list of the currently unused images and the date they were last accessed. We use

the popular Least Recently Used policy which evicts the image that was unused for

the longest period of time. Once the image has been removed from the shared image
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cache, the in-memory metadata of all Docker servers is updated using the same mech-

anism as discussed in Section 4.3.3. This removal process is repeated until the system

has suf�cient storage to store the newly downloaded image.

4.4 Evaluation

We evaluate our shared image cache design using a combination of micro- and

macro-benchmarks. Micro-benchmarks highlight the performance of a single con-

tainer deployment using various shared �le system con�gurations, whereas macro-

benchmarks show the system's performance under an actual scenario with multiple

deployments.

We perform all evaluations on a set of 10 virtual machines representing the nodes

of a fog computing point-of-presence. These VMs are created using KVM on a Dell

PowerEdge R430 server equipped with two Intel Xeon E5-2620 v4 processors running

at 2.10GHz, with 8 hyperthreaded cores each, and 64 GB of RAM. Each VM is con-

�gured with 2 vCPUs, 1GB RAM and 32 GB disk and runs Ubuntu 18.04 server with

Linux kernel 4.15.0-47-generic. We based ourselves on Docker-pi 18.04, which already

contains a number of optimizations designed for Fog computing infrastructures [4]. To

avoid interferences from the long-distance network capacity or the Docker hub server,

we deployed a private Docker registry in a separate VM in the testbed.

4.4.1 Micro-benchmarks

We �rst evaluate the performance of our system with different distributed �le system

con�gurations. Table 4.3 depicts the three experimental scenarios used in this study.

Scenarios 1 and 2 rely on CephFS (Ceph version 13.2.4) with either its user-level FUSE

client [124] of the kernel-based one. Conversely, Scenario 3 relies on Gluster (Glusterfs

4.0.2) with its native FUSE client (GlusterFS does not provide a kernel-level client).

All con�gurations are using three nodes and a replication degree of 1, in order to

maximize �le system write performance while downloading a new image.
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Table 4.3 – Distributed �le system con�gurations.

File Number of Replication
Scenario system Client nodes degree

1 CephFS Kernel 3 1
2 CephFS FUSE 3 1
3 GlusterFS FUSE 3 1

Table 4.4 – Deployment times of an ubuntu:latest container.

File system con�guration
No cache Ceph Ceph Gluster
sharing kernel FUSE FUSE

Cache miss 5.2 s 7.01 s 27.01 s 32.1 s
Cache hit 0.99 s 1.23 s 2.43 s 2.54 s

Deployment time

In this experiment, we deploy the popular Ubuntu:latest image using either regular

Docker with no shared image cache, or one of the three shared cache scenarios listed

in Table 4.3. All machines are kept otherwise idle while deploying the image.

Table 4.4 compares the container's deployment time with shared and non-shared

storage, measured from the time the docker run command is issued to the moment the

container has started. In the case of a cache miss we observe that the con�guration

with no cache sharing requires 5.2 s to deploy the image, whereas in the distributed

�le system cases deployment times range from 7 s to 32 s. It is not surprising that

shared �le system scenarios are slower than regular Docker, as writing the image on

a distributed �le system creates additional tasks for the Docker server compared to

simply writing it on the local drive. We however notice large performance variations

depending on the client being used to access the distributed �le system: although

the kernel-based Ceph driver delivers similar performance to a native local drive, the

FUSE-based clients suffer from considerable overhead.

In the case of a cache hit, results are similar although the difference between kernel-

based and FUSE clients is less important. This is probably due to the fact that it is not

necessary to read the entire image content to start a container so the impact of �le
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system performance is lower compared to the other operations that must be conveyed

upon container creation.

Resource utilization

To better understand the relative performance of different distributed �le system

con�gurations we monitored the utilization of critical resources while containers are

being deployed. We instrumented the testbed machines to trace the overall deployment

time as well as the node's resource consumption:

1. Memory usage: the memory consumption of the client machine is monitored

using the standard free -m Linux command.

2. CPU usage: the CPU consumption (in %) is traced using the top Linux com-

mand.

3. Network throughput: we measure the upload and download network throughput

using the nethogs utility [63].

Figures 4.4(a) and 4.4(b) respectively depict the download and upload bandwidth of

the Docker server machine while the container image is being deployed upon a cache

miss. For obvious reasons the native Docker server does not upload any signi�cant

amount of data during the image pull operation, whereas the distributed �le systems

scenarios see both download (from the image registry to the Docker server) and up-

load (from the Docker server to the other nodes which participate in the distributed

�le system). We can also see that the Ceph+kernel con�guration can upload data to

the distributed �le server at a similar rate as the image is being fetched from the reg-

istry, whereas the FUSE-based Ceph and Gluster con�gurations achieve a much lower

transfer rate. This is probably due to the fact that FUSE works in user space, which

generate large numbers of context switches upon any I/O operation.

Figures 4.4(c) presents the CPU utilization and memory footprint of the Docker

server upon a cache miss. The CPU utilization is very comparable in all cases, ex-

cept that it logically returns sooner to very low values when the container deployment

operation is quick (native Docker and Ceph+kernel) compared to the FUSE-based con-

�gurations.

Finally, the memory consumption during a cache miss is shown in Figure 4.4(d).

We can see that the distributed �le systems impose an additional memory overhead

compared to the native Docker. Ceph requires more memory than Gluster, which can
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(a) Download speed (kB/s). (b) Upload speed (kB/s).

(c) CPU usage (%). (d) Memory usage (MB).

Figure 4.4 – Resource utilization upon a cache miss.

(a) Download speed (kB/s). (b) Upload speed (kB/s).

(c) CPU usage (%). (d) Memory usage (MB).

Figure 4.5 – Resource utilization upon a cache hit.
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possibly be explained by the fact that Gluster does not need any metadata servers.

Interestingly, Ceph's memory footprint decreases to very low values after the container

deployment is �nished whereas Gluster keeps the same memory footprint during and

after the deployment.

Figure 4.5 shows the resource utilization of the Docker server while a container is

being deployed from an already cached image. The upload speed is negligible because

no content needs to be written to disk. We however observe some download traf�c

which corresponds to the read operation from the distributed �le system. We observe

the same phenomenon as in the cache miss scenario, where Ceph+kernel is the only

con�guration capable of reaching signi�cant throughput in this operation. Here as well,

the memory footprint of Ceph is greater than that of Gluster, but it remains only during

the container deployment operation.

We conclude that the Ceph+kernel con�guration is the only one which can deliver

deployment performance similar to that of the native Docker, both in the cache hit and

cache miss scenarios. It requires slightly more memory than Gluster but only during

the deployment operation. Based on these �ndings, in the next sections we focus on

the CephFS+kernel con�guration only.

4.4.2 Simultaneous Application Deployment

In any cloud-like system, it is frequent that multiple identical VMs or containers get

deployed at the same time, for instance to execute a horizontally-scalable application

over a signi�cant number of resources. Without cache sharing, each physical server

involved in this operation simply deploys a subset of these containers independently

from the other servers. When sharing the Docker image cache, all servers read the

same image content in the shared �le system at the same time. To evaluate whether

this operation may constitute a performance bottleneck, we deployed multiple instances

of the same ubuntu:latest container image in a PoP composed of 10 machines. The

image was previously downloaded in the cache, so all deployments result in a cache

hit.

Figure 4.6 depicts the average deployment time when varying the number of con-

tainers being simultaneously deployed. When deploying a single container the deploy-

ment time is 1.2 s. This deployment time grows until 1.5 s when deploying 10 containers

simultaneously (one on each PoP node). The overhead of simultaneous container de-
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Figure 4.6 – Overhead of simultaneous container deployments.

ployments is therefore real, but suf�ciently limited to retain all the other bene�ts of

shared image caches.

4.4.3 Macro-benchmarks

The purpose of sharing Docker image caches is to allow multiple resource-limited

PoP servers to increase their cache hit rate by gaining access to a large image cache

with a good probability that an image is already present at the time it must be deployed.

We therefore evaluate the respective performance of non-shared and shared caches

under the same container deployment workload as discussed in Section 4.2.

We created a PoP composed of 5 machines with the same con�guration as in the

previous sections. When using the shared cache con�guration, every machine from

the PoP dedicates 10 GB of its disk space to the Ceph distributed �le system, and

keeps the rest for its local usage. Ceph reserves 1.5 GB space of each disk to store

the underlying �le system journal, so the total shared storage capacity is 43 GB.

We replayed two traces of container deployments:

— The fra availability zone has a total working set of 31 GB. This means it is too

large to �t in a single PoP node's local cache but it can entirely �t in the shared

cache whose aggregate capacity is 43 GB.

— The dal availability zone has a total working set of 54 GB. In this case, even the

shared image cache is too small to store all downloaded images. It therefore

applies the cache replacement mechanisms described in Section 4.3.5 to keep

only the most recently used images. As discussed in Section 4.2.2, this workload
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Figure 4.7 – Hit ratio of shared vs. non-shared image caches under a workload of 4000
container deployments.

has limited temporal locality properties and is expected to deliver modest cache

hit rates.

Image deployments are issued to the different nodes of the PoP following a round-

robin policy. Since we are only interested in the container deployment times, we stop

every container immediately after the end of its deployment.

Figure 4.7 depicts the evolution of the cache hit ratio during the execution of the

two traces, with and without shared cache, binned by groups of 50 consecutive deploy-

ments. For both workloads, the shared cache clearly delivers a much greater cache

hit rate than the non-shared caches. More precisely, during the �rst few hundred de-

ployments, the shared cache hit rate grows much faster that the non-shared caches.

This can be explained by the fact that the most popular images need to be downloaded

only once in the case of a shared cache whereas in the non-shared case the same

image must be downloaded separately by multiple fog nodes. In the end of the curve

we observe the effect of a increasing the cache size available to any of the Docker

servers: the cache hit rate of the fra zone stabilizes around 82% using the shared

cache whereas the non-shared caches deliver only 52% hit rate. In the case of the dal

zone the cache hit rates are more modest (as expected from the study in Section 4.2.2)

but there as well the shared cache delivers a signi�cant cache hit rate improvement

compared to non-shared caches.

Figure 4.8 compares the average and standard deviation of deployment times dur-

ing the same experiment. After deploying the �rst dozen deployments, in the fra trace
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the average shared-cache deployment time is approximately 4 s whereas the non-

shared cache observes deployment times close to 6 s. This difference persists through

the entire workload: the mean deployment time of shared caches stabilizes to a value

78% lower than non-shared caches. In the case of the dal trace we observe a simi-

lar behavior. The lower cache hit rates of this dif�cult workload imply that the average

deployment times remain above 2 s. However, here as well the shared cache delivers

signi�cantly lower deployment times than the non-shared scenario (37% reduction of

the stabilized mean response time). We also observe smaller standard deviations of

the deployment times in the shared-cache scenarios, which indicates that deployment

times are more predictable than in the case of non-shared caches.

These signi�cant differences in container deployment times may signi�cantly im-

pact the perception that fog applications' end users have about the performance of the

overall system.

4.5 Conclusion

Docker was implemented with the assumption that every server's local cache would

be large enough to store all the relevant container images after they are �rst down-

loaded. This assumption is however not true in fog computing environment where the

compute resources are split between a large number of relatively weak machines. In

such environments we extended Docker with a cache replacement policy which evicts

unused images and maintains an acceptable image cache size. Splitting the avail-

able cache size also negatively impacts the cache hit rates because the same pop-

ular images must be downloaded and stored separately in multiple disjoint caches.

We therefore proposed sharing caches between multiple co-located fog nodes. Our

trace-based evaluations show that the proposed design achieves signi�cant cache hit

improvements, leading to reductions of average container deployment times between

37% and 78% depending on the scenarios. In fog computing environments container

deployment must be assumed to be a frequent operation. Reducing container deploy-

ment times will therefore directly bene�t the end users and help provide them with agile

and responsive applications and services.
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(a) Fra availability zone.

(b) Dal availability zone.

Figure 4.8 – Deployment time of shared vs. non-shared image caches under a work-
load of 4000 container deployments.





CHAPTER 5

SPEEDING UP THE DOCKER IMAGE

DEPLOYMENT

This chapter presents the second contribution of the thesis. The second opportu-

nity to reduce container deployment time is by improving the Docker image deployment

process itself. Docker image deployment in resource-constrained fog nodes such as

Raspberry Pis can be painfully slow: deploying one image before starting the container

may take multiple minutes. We show that this slow deployment time is not only due

to the resource-constrained nodes but also to Docker's inef�cient usage of the hard-

ware resources while deploying an image. We therefore propose Docker-pi which is an

amalgamation of three optimization solutions which together reduce image deployment

times signi�cantly.

5.1 Introduction

Sharing Docker image cache improves cache hit ratio and reduce container de-

ployment time between 37% and 78% depending on the scenarios, however, Docker

still needs to download the container image while the container deployment request

is launched for the �rst time. Deploying container images can be painfully slow, in the

order of multiple minutes depending on the container's image size and network condi-

tion. However, such delays are unacceptable in scenarios such as a fog-assisted aug-

mented reality application where the end users are mobile and new containers must be

dynamically created when a user enters a new geographical area. Reducing deploy-

ment times as much as possible is therefore instrumental in providing a satisfactory

user experience.

We show that this poor performance is not only due to hardware limitations. In fact

it largely results from the way Docker implements the container's image download op-
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eration: Docker exploits different hardware subsystems (network bandwidth, CPU, disk

I/O) sequentially rather than simultaneously. We therefore propose three optimization

techniques which aim to improve the level of parallelism of the deployment process.

Each technique reduces deployment times by 10-50% depending on the content and

structure of the container's image and the available network bandwidth. When com-

bined together, the resulting “Docker-pi” implementation makes container deployment

up to 4 times faster than the vanilla Docker implementation, while remaining totally

compatible with unmodi�ed Docker images.

Interestingly, although we designed Docker-pi in the context of single-board com-

puters, it also provides 23–36% performance improvements on high-end servers as

well, depending on the image size and organization.

The chapter is organized as follows. Section 5.2 analyzes the deployment process

and points out its inef�ciencies. Section 5.3 proposes and evaluates three optimiza-

tions. Finally, Section 5.4 discusses practicalities, and Section 5.5 concludes.

5.2 Understanding the Docker container deployment

process

To understand the Docker container deployment process in full details we analyzed

the hardware resource usage during the download, installation and deployment of a

number of Docker images on a Raspberry PI-based infrastructure. The limited hard-

ware capabilities were instrumental in highlighting the inef�ciencies of this process,

which would be more dif�cult to pinpoint using faster server machines.

5.2.1 Experimental setup

We monitored the Docker deployment process on a testbed which consists of three

Raspberry Pi 3 machines connected to each other and to the rest of the Internet

with 10 Gbps Ethernet [183]. The testbed was installed with the latest Docker version

(17.06) This setup also allowed us to emulate slower network connections — which are

arguably representative of real fog computing scenarios — by throttling network traf�c

at the network interface level. We used the tc (Traf�c Control) command to run experi-

ments either with unlimited bandwidth, or with limits of 1 Mbps, 512 kbps or 256 kbps.
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Figure 5.1 – Structure of the “Mubuntu” container image.

Table 5.1 – Structure of the Docker images.

Ubuntu Mubuntu Biglayers
image image image

6th layer – 51 MB -
5th layer < 1 MB < 1 MB -
4th layer < 1 MB < 1 MB 62 MB
3rd layer < 1 MB < 1 MB 54 MB
2nd layer < 1 MB < 1 MB 64 MB
1st layer 46 MB 46 MB 52 MB
Total size 50 MB 101 MB 232 MB

Table 5.1 depicts the three Docker images we used for this study. The �rst im-

age simply conveys a standard Ubuntu operating system: it is composed of one layer

containing most of the content, and four small additional layers which contain various

updates of the base layer. The second is the Mubuntu image already presented in

Figure 5.1. Finally, as the name suggests, the BigLayers image is composed of four

big layers which allow us to highlight the effect of the layering system on container

deployment performance.

We instrumented the testbed nodes to monitor the overall deployment time as well

as the utilization of important resources during the container deployment process:
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— Deployment time: We measured the deployment time from the moment the

deployment command is issued, until the time when Docker reports that the

container is started.

— Network activities: Network activities include incoming data and outgoing data

during deployment. We used the nethogs tool to monitor the network activities

during the whole deployment processes at a 1-second granularity[63]. The script

traces the speci�c network activity of the Docker daemon, and therefore does

not take other sources of background traf�c into account.

— Disk throughput: We monitored the disk activity with the iostat Linux command

which monitors the number of bytes written to or read from disk at a 1-second

granularity.

— CPU usage: We monitored CPU utilization by watching the /proc/stat �le at a

1-second granularity.

Unless otherwise stated, every container deployment experiment was issued on an idle

node, and with an empty image cache.

5.2.2 Monitoring the Docker container deployment process

Figure 5.2 depicts the results when deploying the three images using regular

Docker. Figure 5.2(a) shows the deployment time of our three images in different net-

work conditions: deploying the Ubuntu, Mubuntu and Biglayers images with unlimited

network bandwidth respectively takes 240, 333 and 615 seconds. Clearly, the over-

all container deployment time is roughly proportional to the size of the image. When

throttling the network capacity, deployment times grow steadily as the network capac-

ity is reduced to 1 Mbps, 512 kbps, and 256 kbps. For instance, deploying the Ubuntu

container takes 6 minutes when the network capacity is reduced to 512 kbps. This

is considerable with regards to the deployment ef�ciency one would expect from a

container-based infrastructure. However, the interesting information for us is the rea-

son why deployment takes so long, as we discuss next.

Figure 5.2(b) depicts the utilization of different hardware resources from the host

machine during the deployment of the standard Ubuntu image. The red line shows in-

coming network bandwidth utilization, while the blue curve represents the number of

bytes written to the disk and the black line shows the CPU utilization. The �rst phase

after the container creation command is issued involves intensive network activities,
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(a) Deployment times. (b) Ubuntu image with a 1 Mbps network cap.

(c) Mubuntu image with a 1 Mbps network cap. (d) BigLayers image with a 1 Mbps network
cap.

Figure 5.2 – Deployment times and resource usage using standard Docker.
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which indicates that Docker is downloading the image layers from the remote image

registry. By default Docker downloads up to three image layers in parallel. The duration

of downloads clearly depend on the image size and the available network capacity:

between 55 s and 200 s for the Ubuntu and Mubuntu images. During this phase, we

observe no signi�cant disk activity in the host machine, which indicates that the down-

loaded �le is kept in main memory.

After the download phase, Docker extracts the downloaded image layers to the disk

before building the �nal image of the application. The extraction of a layer involves

two operations: decompression (which is CPU-intensive) and writing to the disk (which

is disk-intensive). We observe that the resource utilization alternates between periods

during which the CPU is busy (� 40% utilization) while few disk activities are performed,

and periods during which disk writes are the only notable activity of the system. We

conclude that, after the image layers have been downloaded, Docker sequentially de-

compresses the image and writes the decompressed data to disk. When the image

data is big, Docker alternates between partial decompressions and disk writes, while

maintaining the same sequential behavior.

We see a very similar phenomenon in Figures 5.2(c) and 5.2(d). However, in here

the downloading of the �rst layer terminates before the other layers have �nished down-

loading. The extraction of the �rst layer can therefore start before the end of the down-

load phase, creating a small overlap between the downloading and extraction phases.

5.2.3 Critical observations

From the previous experiments we derive a few important observations.

Overall deployment time

The overall deployment of a new container mainly involves three operations: search-

ing for the cached image, pulling the image from the registry and starting the container.

Our work assumes that the image is not cached on the machine, so every container de-

ployment involves pulling the image from the registry. As we have seen, Docker takes

a signi�cant amount of time for pulling the image from the registry while the other two

operations take a negligible amount of time. In this paper, we therefore mainly focus on

optimizing the Docker image pull operation.
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Pulling image layers in parallel

By default, Docker downloads image layers in parallel with a maximum parallelism

level of three. These layers are then decompressed and extracted to disk sequentially

starting from the �rst layer. However, when the available network bandwidth is limited,

downloading multiple layers in parallel will delay the download completion of the �rst

layer, and therefore will postpone the moment when the decompression and extraction

process can start. Therefore, delaying the downloading of the �rst layer ultimately leads

to slowing down the extraction phase.

Single-threaded decompression

Docker always ships the image layers in compressed form, usually implemented

as a gzipped tar �le. This reduces the transmission cost of the image layers but it

increases the CPU demand on the server node to decompress the images before ex-

tracting the image to disk. Docker decompresses the images via a call to the standard

gunzip.go function, which happens to be single-threaded. However, even very limited

machines usually have several CPU cores available (4 cores in the case of a Raspberry

Pi 3). The whole process is therefore bottlenecked by the single-threaded decompres-

sion. As a result the CPU utilization never grows beyond � 40% of the four cores of the

machine, wasting precious computation resources which may be exploited to speed up

image decompression.

Resource under-utilization

The standard Docker container deployment process under-utilizes the available

hardware resources. Essentially, deploying a container begins with a network-intensive

phase during which the CPU and disk are mostly idle. It then alternates between CPU-

intensive decompression operations (during which the network and disk are mostly

idle) and I/O-intensive image extraction operations (during which the network and CPU

are mostly idle). The only case where these operations slightly overlap are images

such as Mubuntu and BigLayers when the decompress and extraction process of the

�rst layer can start while the last images are still being downloaded.

This resource under-utilization is one of the main reason for the poor performance

of the overall container deployment process. The main contribution of this paper is to
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show how one may reorganize the Docker deployment process to maximize resource

utilization during deployment.

5.3 Optimizing the container deployment process

To address the inef�ciencies presented in the previous section we propose and eval-

uate three optimization techniques to speed up the container provisioning time. Each

optimization addresses a different issue in the standard Docker container deployment.

We can therefore combine them all together, which brings signi�cant performance im-

provement.

5.3.1 Sequential image layer downloading

As previously discussed, Docker parallelizes image downloads from the central

repository to the local node, with a default concurrency degree of 3. This is a classical

technique to maximize the overall network throughput. However, in the speci�c case of

Docker image downloads this strategy has a negative effect because the next phases

of the container deployment, namely the decompress and extraction phases, must take

place sequentially to preserve the Copy-on-Write policy of Docker storage drivers. The

decompress & extract phase can start only after the �rst layer has been downloaded.

Downloading multiple image layers in parallel will delay the download completion time

of the �rst layer because this download must share network resources with other less-

urgent image downloads, and will therefore also delay the moment when the �rst layer

can start its decompress & extract phase.

The only cases where the decompression and extraction of one layer overlaps with

the download of another image can be seen in Figure 5.2(c) and 5.2(d). They result

from the fact that the download concurrency degree delays the downloading of the last

images. We therefore propose to extend this phenomenon, and to reduce the download

concurrency degree to one, essentially reverting to a sequential download of the image

layers one after another.

Figure 5.3 illustrates the effect of downloading multiple layers sequentially rather

than in parallel, in an example with an image made of three layers. In both cases, three

threads are created to handle the three image layers. However, in the �rst option the

downloads take place in parallel whereas the only required inter-thread synchroniza-
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(a) Standard Docker pull with parallel layer download.

(b) Docker pull with sequential layer download.

Figure 5.3 – Standard and sequential layer pull operations.

tion requires that the decompression and extraction of layer n can start only after the

decompression and extraction of layer n � 1 has completed. In sequential download-

ing, the second layer starts downloading only when the �rst download has completed,

which means that it takes place while the �rst layer is being decompressed and ex-

tracted to disk. This allows the �rst-layer extraction to start sooner and it also increases

resource utilization because the download and the decompress & extract operations

make intensive use of different part of the machine's hardware.

Implementing sequential image downloading requires additional inter-thread syn-

chronization: in this new model the downloading of layer n can start only after the end

of the layer n � 1 download, whereas the decompress & extract of layer n can start only

after layer n has been downloaded and the layer n � 1 has �nished its extraction. A

simple way to implement this is to set the “max-concurrent-downloads” parameter to 1

in the /etc/docker/daemon.json con�guration �le.

Figure 5.4 depicts the host machine's resource usage when using sequential down-

loading of our reference images, and compares the overall deployment times with var-

ious network bandwidth limitations. Figure 5.4(a) shows the resource usage when de-

ploying the Ubuntu image with sequential downloading and a 1 Mbps network capacity.

The �gure is not much different from Figure 5.2(a) where the image downloads were
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(a) Ubuntu image with a 1 Mbps network cap. (b) Mubuntu image with a 1 Mbps network cap.

(c) BigLayers image with a 1 Mbps network cap. (d) Deployment times.

Figure 5.4 – Resource usage and deployment time with sequential layers downloading.
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done in parallel. The reason is that the Ubuntu image contains only one layer with a

signi�cant size, so the downloading and extraction of layers 2–5 is very short compared

to layer 1. However, in Figures 5.4(b) and 5.4(c), we observe that after the download-

ing of layer 1 has completed, the utilization of hardware resources is much greater,

with in particular a clear overlap between periods of intensive network, CPU and I/O

resources. Also we can observe that the decompression of the �rst layer (visible as the

�rst spike of CPU utilization) takes place sooner than in Figure 5.2.

Figure 5.4(d) compares the overall container deployment times with parallel and

sequential downloads in various network conditions. When the network capacity is un-

limited the performance gains in the deployment of the Ubuntu, Mubuntu and BigLayers

images are 3%, 4.2% and 6% respectively.

However, the performance gains grow steadily as the available network bandwidth

gets reduced. With a bandwidth cap of 256 kbps, sequential downloading brings im-

provements of 6% for the Ubuntu image, 10% for Mubuntu and 12% for BigLayers.

This is due to the fact that slower network capacities exacerbate the duration of the

download phases and increases the delaying effect of parallel layer downloading.

Sequential downloading therefore provides modest yet non-negligible performance

gains. This technique works best when the deployed image contains multiple large

layers, and when the network capacity is very limited. These conditions happen to

match the properties of a container deployment in fog computing environments where

non-trivial applications will be deployed in extremely distributed infrastructures which

necessarily rely on limited commodity networks.

5.3.2 Multi-threaded layer decompression

Docker image layers are stored and downloaded in the form of a gzipped tar �le.

After downloading the �les from the registry, the compute node therefore needs to

decompress every layer before building the image on disk. In our experiments based

on Raspberry PI and an unlimited network capacity, the duration of the decompres-

sion phase is greater than that of the image download. Increasing the speed of �le

decompression therefore has the potential to signi�cantly reduce the overall container

deployment time.

By default, Docker compresses image layers using gzip. Decompression is imple-

mented entirely in the Go language using the standard gunzip.go library [16]. However,
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Figure 5.5 – Impact of the number of pgzip threads on the deployment time.

this function is single-threaded which means that it is unable to exploit multiple cores to

speed up decompression. As a result, the CPU utilization during decompression never

exceeds 40% of the four available cores in the Raspberry Pi machine.

We therefore propose to replace the single-threaded gunzip.go library with a multi-

threaded implementation so that all the available CPU resources may be used to speed

up this part of the container deployment process. We use pgzip, which is a multi-

threaded implementation of the standard gzip/gunzip functions [157]. Its functionalities

are exactly the same as those of the standard gzip, however it splits the work between

multiple independent threads. When applied to large �les of at least 1 MB, this can

signi�cantly speed up decompression.

To determine the appropriate number of threads we should allow pgzip to use, we

deployed a custom container image while varying the available number of threads. We

used a very simple image which consists of a single layer of 20 MB in compressed form.

This allows us to better isolate the performance gains of the parallel decompression

from other effects such as the possible overlap of the decompression with the download

of other layers. The results are depicted in Figure 5.5.

When pgzip uses a single thread, the performance and CPU utilization during de-

compression are very similar to the standard gunzip implementation. However, when

we increase the number of threads from 1 to 12, the overall container deployment time

decreases from 154 s to 136 s. At the same time, the CPU utilization during decom-

pression steadily increases from 40% to 71% of the four available CPU cores. If we

push beyond 12 threads, no additional gains are observed. We clearly see that the

parallel decompression does not scale linearly, as it is not able to exploit the full ca-
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(a) Ubuntu image with multi-threaded decom-
pression.

(b) Mubuntu image with multi-threaded decom-
pression.

(c) BigLayers image with multi-threaded de-
compression.

(d) Deployment times.

Figure 5.6 – Resource usage and deployment time with multi-threaded image layer
decompression.
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pacity of the overall CPU: this is due to the fact that gzip decompression must process

data blocks of variable size so the decompression operation itself is inherently single-

threaded [173]. The bene�t of multi-threading decompression is that other necessary

operations during decompression (essentially data buffering and CRC veri�cation) can

be delegated to other threads and moved out of the critical path.

Figure 5.6 shows the effect of using parallel decompression when deploying our

three standard container images with 12 threads. We observe in Figures 5.6(a), 5.6(b)

and 5.6(c) that the CPU utilization is greater during the decompression phases than

with standard Docker, in the order of 70% utilization instead of 40%. Also, the decom-

pression phase is notably shorter. The same phenomenon is visible in all three images.

We also notice that the parallel image download phase is fairly CPU-intensive: in

the examples of the Mubuntu and the BigLayers images which both have several large

layers to decompress, the CPU utilization during downloading grows up to 70% for

Mubuntu and even 90% for BigLayers. This clearly indicates that it would be pointless to

attempt parallel image layer decompression while simultaneously downloading multiple

image layers.

Finally, Figure 5.6(d) compares the overall container deployment times with parallel

decompression against that of the standard Docker. The network performance does

not in�uence the decompression time so we conducted the evaluation only with an

unlimited network capacity. The performance gain from multi-threaded decompression

is similar for all three images, in the order of 17% of the overall deployment time.

The standard single-threaded gzip implementation creates an unnecessary perfor-

mance bottleneck because it under-utilizes the CPU resources during the decompres-

sion of the image layer. Although parallelizing data decompression is very hard and

it cannot offer linear speedup, parallel decompression allows one to move the tasks

not directly related to decompression to helper threads, which still provides interesting

performance bene�ts. Multi-threading decompression increases the CPU usage, and

reduces the overall Docker container deployment times.

5.3.3 I/O pipelining

Despite the sequential downloading and the multi-threaded decompression tech-

niques, the container deployment process still under-utilizes the hardware resources.

The reason is due to the sequential nature of the work�ow which is applied to each
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Figure 5.7 – Docker pull operation with I/O pipelining.

individual layer. Each layer is �rst downloaded in its entirety, then it is decompressed

entirely, then it is extracted to disk. This requires Docker to keep the entire decom-

pressed layer in memory, which can be signi�cant considering that a Raspberry Pi 3

has only 1 GB of main memory [50]. Also, it means that the �rst signi�cant disk activity

can start only after the �rst layer has been fully downloaded and decompressed. Sim-

ilarly, Docker necessarily decompresses and extracts the last layer to disk while the

networking device is mostly inactive.

However, there is no strict requirement for the download, decompress and extrac-

tion of a single layer to take place sequentially. For example, decompression may start

right after the �rst bytes of the compressed layer have been downloaded. Similarly,

extracting the layer may start immediately after the beginning of the layer image has

been decompressed.

We therefore reorganize the download, decompression and extraction of a sin-

gle layer in three separate threads where each thread pipelines data to the next as

soon as some data is available. In Unix shell syntax this essentially replaces the se-

quential “download; decompress; crc-check; extract ” command with the concur-

rent “download | decompress | crc-check | extract ” command. Figure 5.7 illus-

trates this technique with four threads responsible for downloading and decompression

a Docker image layer. The thread TD1 downloads the image layer while TR1 performs

the decompression, TC1 calculates the CRC, and �nally TW1 writes the decompressed

data to the disk. Since we stream the incoming downloaded data without buffering the

entire layer, the thread TW1 can start writing content to disk long before the download

process has completed.

We implemented pipelining using the io.pipe() GO API, which creates a synchro-

nized in-memory pipe between an Input(writer) and an Output(reader) [17]. However,

we must be careful about synchronizing this process between multiple image layers:

for example, if we created an independent pipeline for each layer separately, the result
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(a) Deployment time comparison. (b) Resource utilization with stan-
dard Docker.

(c) Resource utilization with I/O
pipelining.

Figure 5.8 – Deployment time and resource usage with I/O pipelining.

would violate the Docker policy that layers must be extracted to disk sequentially, as

one layer may overwrite a �le which is present in a lower layer. If we extracted mul-

tiple layers simultaneously we could end up with the wrong version of the �le being

given to the container. Rather than building complex synchronization mechanisms, we

instead decided to rely on Docker's sequential downloading feature already discussed

in Section 5.3.1. When a multi-layer image is deployed, this imposes that layers are

downloaded and extracted one after the other, while using the I/O pipelining technique

within each layer.

We now evaluate the I/O pipelining technique using a single-layer image only. In

the next section we combine all three optimization techniques and therefore show the

combined effect of the sequential download and the I/O pipelining. A single-layered

image can be created using a so-called “�atten” operation which creates a single tar

�le out of a deployed image. Since the �attened version contains a single copy of every

�le (even though it may have been overwritten multiple times by different layers), the

�attened image is usually slightly smaller than the sum of all the initial layers' sizes.

Figure 5.8 compares the deployment of a �attened image between standard Docker

and the I/O pipelining technique. We can see in Figure 5.8(a) that the pipelined ver-

sion is roughly 50% faster than its standard counterpart. The reason can be found in

Figures 5.8(b) and 5.8(c). In the standard deployment, resources are used one after

the other: �rst network-intensive download, then CPU-intensive decompression, then

�nally disk-intensive image creation. In the pipelined version all operations take place

simultaneously, which better utilizes the available hardware and signi�cantly reduces

the container deployment time.
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5.3.4 Docker-pi

The three techniques presented here address different issues. Sequential down-

loading of the image layers speeds up the downloading of the �rst layer in slow net-

work environments. Multi-threaded decompression speeds up the layer decompression

by utilizing multiple CPU cores. Finally, I/O pipelining speeds up the deployment of

each layer by conducting the download, decompress and extraction processes simul-

taneously, while avoiding having to keep large amounts of data in memory during the

deployment process. We therefore propose Docker-pi, an optimized version of Docker

which combines the three techniques to optimize container deployment on single-board

machines such as Raspberry PIs. The implementation of Docker-pi is available online

in the gitlab repository [3].

Deployment Time

Figure 5.9 depicts the resource usage and deployment time of our three standard

images using Docker-pi. We can clearly see in Figures 5.9(a), 5.9(b) and 5.9(c) that the

networking, CPU and disk resources are used simultaneously and have a much greater

utilization than with the standard Docker implementation. In particular, the CPU and

disk activities start very early after the �rst few bytes of data have been downloaded.

Finally, Figure 5.9(d) highlights signi�cant speedups compared to vanilla Docker:

with no network cap, Docker-pi is 73% faster than Docker for the Ubuntu image, 65%

faster for Mubuntu and 58% faster for BigLayer. When we impose bandwidth caps

the overall deployment time becomes constraint by the download times, while the de-

compression and extraction operations take place while the download is taking place.

In such bandwidth-limited environments the deployment time therefore cannot be re-

duced any further other than by pre-fetching images before the container deployment

command is issued.

The reason why the gains are lower for the Mubuntu and BigLayers images is that

the default download concurrency degree of 3 in vanilla Docker already makes them

bene�t from some of the improvements that we generalized in Docker-pi. If we increase

the concurrency degree of vanilla Docker to 4, the BigLayers image deploys in 644 s

whereas Docker-pi needs only 207 s, which represents 68% improvement.
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(a) Ubuntu image with a 1 Mbps network cap. (b) Mubuntu image with a 1 Mbps network cap.

(c) BigLayers image with a 1 Mbps network cap. (d) Deployment times.

Figure 5.9 – Resource usage and deployment time with Docker-pi.

Memory usage

We now evaluate the memory footprint of Docker and Docker-pi during the deploy-

ment process. For simplicity, we deployed a single layer image and extracted memory

usage of the node by watching /proc/meminfo �le at a 1-second granularity. Figure 5.10

clearly shows the effect of pipelining on the memory footprint. Docker-pi starts extract-

ing the layer to local disk immediately after the �rst few blocks of the layer are down-

loaded, therefore, memory footprint never exceeds 10 MB while deploying the image. In

contrast, standard docker's memory usage is nearly 70 MB. The reason is that it keeps

the complete compressed layer in memory, decompresses it entirely in memory again,

before writing to disk and releasing both �les from memory.

The memory footprint of standard Docker may vary depending on the image size

and concurrency degree of parallel download. In a memory-constrained device like
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Figure 5.10 – Memory footprint of Docker and Docker-pi during container deployment.

Raspberry PI which has only 1GB of RAM, this may create signi�cant bottlenecks. On

the other hand, Docker-pi uses less memory and has a fairly constant footprint during

the image pull operation irrespective of image structure, which makes it a better choice

in environments such as memory-constraint fog computing devices.

Performance interference with already-running containers

In all experiments presented so far, container deployment took place in an other-

wise idle machine. However, this scenario is unlikely in a busy fog computing environ-

ment where numerous independent applications share a limited number of physical

resources. We therefore now evaluate the impact that container deployment has on

already-running containers in the same machine.

We use an Apache Web server container [69] as the already-running container so

we can observe its performance while another container with the single-layer image is

being deployed. The Apache server serves a constant request workload produced by

the http_load HTTP benchmarking tool [125]. We con�gured it to generate a constant

load of 300 requests/second which fetch a single 5kB �le. We monitor the Web server's

network throughput using nethogs before, during and after the single-layer container is

being deployed.

Figure 5.11 compares the upload throughput of the Web server while standard

Docker or Docker-pi are deploying a new container image. We observe that in both

101



Chapter 5 – Speeding Up the Docker Image Deployment

Figure 5.11 – Upload throughput of the Apache web server.

cases the Web server performance is affected by the simultaneous container deploy-

ment taking place in the same machine. This is largely due to the fact that the web

server and the container deployment processes need to compete for limited resources

such as available network bandwidth. Interestingly, both versions of Docker impose

a similar performance reduction to the web server during the time of container de-

ployment. However, Docker-pi deploys the new container faster so the duration of the

interference it creates is shorter than using regular Docker. The fact that Docker-pi gen-

erates high resource utilization during container deployment does not seem to affect

other containers in greater proportions than regular Docker.

5.4 Discussion

5.4.1 Should we �atten all Docker images?

Flattening all Docker images may arguably provide performance improvement in the

deployment process. Indeed, multiple image layers may contain successive versions of

the same �le whereas a �attened image contains only the �nal version of every �le. A

�attened image is therefore always a little smaller than its multi-layered counterpart.

Systems like Slacker actually rely on the fact that images have been �attened [76]. On

the other hand, Docker-pi supports both �attened images and unmodi�ed multi-layer
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images. We however do not believe that �attening all images would bring signi�cant

bene�ts.

Docker does not provide any standard tool to �atten images. This operation must

be done manually by �rst exporting an image with all its layers, then re-importing the

result as a single layer while re-introducing the startup commands from all the initial

layers. The operation must be redone every time any update is made in any of the

layers. Although this process could be integrated in a standard image build work�ow, it

contradicts the Docker philosophy which promotes incremental development based on

image layer reusability.

In a system where many applications execute concurrently, one may reasonably ex-

pect many images to share at least the same base layers (e.g., Ubuntu) which produce

a standard execution environment. If all images were �attened this would create large

amounts of redundancy between different images, creating the need for sophisticated

de-duplication techniques [76]. On the other hand, we believe that the layering system

can be seen as a domain-speci�c form of de-duplication which naturally integrates in a

developer's devops work�ow. We therefore prefer keeping docker images unmodi�ed,

and demonstrated that container deployment can be made extremely ef�cient without

the need for �attening images.

5.4.2 Does Docker-pi work also for powerful server machines?

Although we designed Docker-pi for single-board machines, the inef�ciencies of

vanilla Docker also exist in powerful server environments. We therefore evaluate the

respective performance of Docker and Docker-pi in the Grid'5000 testbed which is

commonly used for research on parallel and distributed computing including Cloud,

HPC and Big Data [22]. We speci�cally use a Dell PowerEdge C6220 server equipped

with two 10-core Intel Xeon E5-2660v2 processors running at 2.2GHz, 128 GB of main

memory and two 10 Gbps network connections, and do not cap the network bandwidth.

Figure 5.12 compares the deployment times of Docker and Docker-pi with our three

standard images. Obviously container deployment is much faster in this environment

than in Raspberry PIs. However, here as well Docker-pi provides respectable perfor-

mance improvement in the order of 23% (Ubuntu), 29% (Mubuntu) and 36% (BigLay-

ers). In this powerful server the network and CPU resources cannot be considered

as bottlenecks so the sequential layer downloading and multi-threaded decompression
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Figure 5.12 – Deployment time of Docker and Docker-pi in Grid'5000.

techniques bring almost no improvement compared to the standard Docker. On the

other hand, the sequential nature of the download/decompress/extract process is still

present regardless of the hardware architecture, so the I/O pipelining technique brings

similar performance gains as with the Raspberry PI.

5.5 Conclusion

The transition from virtual machine-based infrastructures to container-based ones

brings the promise of swift and ef�cient software deployment in large-scale comput-

ing infrastructures. However, this promise is not being held in fog computing platforms

which are often made of very small computers such as Raspberry PIs. In such envi-

ronments, deploying even a very simple Docker container may take multiple minutes.

We studied the Docker container deployment process in details and identi�ed three

sources of inef�ciency: (1) Docker downloads multiple layers in parallel; (2) it uses

single-threaded decompression; and (3) it sequentially downloads, decompresses and

extracts any given image layer. We proposed three optimization techniques which, once

combined together, speed up container deployment roughly by a factor 4. Last but

not least, we demonstrated that these optimizations also bring signi�cant bene�ts in

regular server environments.

This work eliminates the unnecessary delays that take place during container de-

ployment. Depending on the hardware, deployment time is now basically dictated only
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by the slowest of the three main resources: network bandwidth, CPU, or disk I/O. As

hardware will evolve in the next years the bottleneck may shift from one to the other.

But, regardless of the speci�cities of any particular machine, Docker-pi will exploit the

available hardware to its fullest extent.
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CHAPTER 6

AVOIDING THE CONTAINER BOOT PHASE

This chapter presents the third contribution of the thesis. The �nal opportunity to

improve container deployment is to optimize the boot phase of a container. The boot

phase starts when creating the �rst process of the application and terminates when

the application is ready to serve user requests. Some applications take a signi�cant

amount of time to boot the container. We propose to refactor the container boot phase

using process checkpoint/restart, which allows one to deploy containers from a check-

point image of an already started-container. This skips the container boot phase and

signi�cantly reduces the overall deployment time.

6.1 Introduction

Upon a container deployment request, Docker �rst creates the container with the

given con�guration. It then starts the application inside the container, which is also

known as the container's boot phase. The boot phase starts by launching the main

process of the application and terminates when the application is ready to accept user

requests. This phase may take signi�cant amount of time depending on the set of of in-

structions that the application must execute before being ready to serve user requests.

For example, booting the popular mysql database requires reading con�guration data

as well as internal tables from disk, then warming up the data in memory, and �nally

carrying out initialization steps. Booting mysql requires about 10 s on a fast server be-

fore being available to serve end-user commands. This delay is signi�cant compared

to the container creation time which less than 1 s on the same machine [142].

As previously discussed, we expect that fog applications will need to be launched

frequently in the same Point-of-Presence of fog infrastructures. Every time the appli-

cation is launched in the fog servers, the same boot phase must be performed. In
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this work, we aim to avoid repeating this boot phase when a container is repeatedly

deployed in a PoP, which may in turn reduce the average container deployment time.

One way to avoid the container boot phase during the Docker container deployment

process is to save the state of the application at the end of its boot phase. Since many

applications always follow the same boot sequence during their deployment, we can

save the state of a booted application and later re-start the container from this state in

subsequent deployments. We propose to use checkpoint/restart techniques to create

a snapshot of an application during container deployment, such that it can be used to

restart the application in the later deployments.

Process checkpoint/restart is a technique where the state of a running application

is saved for later reuse. It mainly involves two operations: the �rst one is checkpoint,

where the state of a running process is captured, including the CPU registers, memory

pages, open sockets, open �les etc. The captured data are stored in a persistent �le

also known as checkpoint image [174]. The second operation is restart, where the

process is restarted from the checkpoint state by reading the contents of the checkpoint

image.

Process checkpoint/restart assumes that the application will be restarted in the

same environment where it was checkpointed, so it does not save the full environ-

ment of a running application during checkpoint. An application environment contains

the application's executable, shared libraries and data �les, which are stored on disk.

During restart of the application from the checkpoint image, the system expects exactly

the same environment to be present in the system to smoothly restart the application.

Hence, in order to enable checkpoint/restart in container systems, capturing the whole

container environment is necessary during the checkpoint operation. During restora-

tion, the container environment and checkpoint image must be present in the new

system.

We propose to incorporate process checkpoint/restart in Docker container deploy-

ment. During the �rst deployment of a container in the PoP, after completing the boot

phase and when the application is ready to accept user requests, we use the DMTCP

tool to checkpoint the application, and we save the checkpoint image and the container

environment [121]. In every subsequent deployment of the application, Docker creates

the container but instead of bootstrapping the application normally, it calls DMTCP to

restart application from the checkpoint image. Therefore, the container skips the boot

phase which may reduce the container deployment time.
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Integrating process checkpoint/restart in the Docker container deployment process

requires one to address a number of issues: (1) Docker does not provide any stan-

dard API to checkpoint/restart containers; (2) As we intend to checkpoint a container

in one system and restart in another to deploy new containers, the complete container

environment needs to be preserved during checkpoint; and (3) Docker containers are

expected to deploy frequently in different fog servers of a PoP, so an ef�cient mech-

anism is necessary to share the checkpoint images and the application environments

across the servers of a PoP.

In this chapter, we present a Docker container deployment design that integrates

process checkpoint/restart. The system design has two main components: (1) A thin

DMTCP container that enables Docker to checkpoint applications running inside the

containers and to capture their container environment. It can also restart an applica-

tion inside a container from its checkpoint image and container environment; and (2)

a mechanism which leverages Ceph RADOS block devices to share the container en-

vironments and checkpoint images across servers of a PoP [112]. The performance

evaluation of the proposed design shows that it can deploy containers and skip the

boot phase which results in 1.0x up to 60.0x times improvement in the container boot

phase time depending on the type of the container.

This chapter is structured as follows: Section 6.2 presents the state of the art of

checkpoint/restart. Section 6.3 discusses the different issues in developing container

deployment with DMTCP; Section 6.4 presents the proposed Docker container de-

ployment using DMTCP. Finally the performance evaluation of the proposed container

deployment is presented in Section 6.5 and Section 6.6 concludes the chapter.

6.2 State of the art

Checkpoint/restart is a technique to save the current state of a single process

for later restart [174]. It is primarily used to achieve fault-tolerance of an application

where the application can be restored to a previous stable state after a crash [83]. It

is also useful for many other purposes such as application debugging [82], process

migration [176], application scaling [77], and virtual machine deployment [71]. Check-

point/restart can be implemented at different levels of the software stack.
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Operating System level checkpointing: The operating system level implementa-

tion of checkpoint/restart saves the state of all the running processes of the

OS at periodic intervals and allows the operating system to restart from the

last checkpoint state [48]. A popular example is virtual machine snapshot and

clone [146]. However, in a large scale system that runs several applications in

parallel, this type of checkpoint/restart requires large space to store the check-

point images.

Application-level checkpointing: The implementation of checkpoint/restart is

done in the application code. It therefore only checkpoints a single target ap-

plication instead of saving the state of all the applications running in the system.

Developers may insert checkpoint/restart in the application source code to trig-

ger a snapshot of the application state periodically [177]. This process reduces

the size of the checkpoint image as it targets only one speci�c application and

not the whole OS. However, application-level checkpoint/restart creates addi-

tional complexity for the developers as the same checkpoint/restart code must

be updated in every new release of the application source code. It is also not

transparent to users and applications [130].

System-level checkpointing: system-level checkpointing addresses the trans-

parency issue from application-level checkpointing [10]. Similar to application-

level checkpointing, it only checkpoints a single target application, however

checkpoint/restart is implemented in a separate library. This makes checkpoint-

ing completely transparent to the application. It also allows one to trigger the

checkpoint process at any arbitrary time or upon any speci�c event. Another

advantage of using system-level checkpoint is that it does not need to modify

the application source code. For these reasons, in this work we will adopt the

system-level approach to checkpoint/restart containers.

System-level checkpointing can be implemented in many ways, and many tools are

available [20]. Some notable ones are BLCR (Berkley Lab's Checkpoint/Restart) [59],

CRIU (Checkpoint and Restart In User-space ) [151] and DMTCP (Distributed Multi-

Threaded CheckPointing) [10]. All these tools allow one to save and restore a running

application; however they differ in many ways: for example how the state of a process is

preserved, which information about a process state is preserved in the checkpoint im-

age, how the preserved process information is stored (compressed or uncompressed),

APIs, and command-line interfaces.
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BLCR is the most used library to checkpoint and restart a process [59]. TODAY,

CRIU is the most used for single-host checkpointing. BLCR is now very poorly

maintained, (and so not used very much at all any more). See, for example, the

frequency of maintenance release updates on its web site. It captures the state

of a process such as its context and allocated memory regions, and saves the

checkpoint data in a �le. To implement checkpoint/restart, BLCR modi�es the

Linux kernel (as a patch or a loadable module). As a result it needs to update its

kernel module frequently to support new kernel versions. Another shortcoming

of BLCR is that it does not checkpoint open �les and communication channels

(i.e., open sockets) which are an essential part of many fog applications. And in

addition, it doesn't handle SysV shared memory. SysV shared memory among

processes is become very common, for the sake of ef�ciency. The alternative,

BSD shared memory, relies purely on parent-child relationships.

CRIU employs a hybrid approach which combines kernel-space and user-space to

checkpoint and restart applications [151]. It is primarily used to support check-

point and restart of Linux containers. It started with checkpointing of servers out-

side any container. During the checkpoint operation, CRIU copies the contents

of memory pages, open sockets, open �les etc. of a process in a �le. Although

Docker in its experimental mode supports CRIU-based container checkpoint-

ing, it has a number of limitations. In particular, restoration of network connec-

tions (both TCP and UDP) is currently not functional [2]. Also, although Docker

supports many storage drivers for container �le system management, container

restoration with CRIU is only possible using AUFS or OverlayFS [152].

DMTCP is a user-level checkpointing tool which requires no system privileges and

does not require to modify the library or user source code or any kernel mod-

ule [10, 121]. When checkpointing an application, DMTCP relies on the /proc

Linux �le system to capture a map of memory pages, open �le descriptors, open

sockets etc. of each process of the application. While restoring the application,

DMTCP reads the checkpoint image and forks all the processes which are im-

mediately restored to their previous state.

Multiple checkpoint approaches rely on customizing kernel modules (BLCR) and ex-

porting kernel internals to the proc interface (CRIU). This type of implementation limits

the checkpointing features since the system may restore applications only in machines

with exactly the same kernel version (for BLCR) and with a compatible kernel version
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(for CRIU) [207]. Another disadvantage of such type of checkpointing techniques is that

any change in the kernel may require updating the checkpointing system as well. Be-

cause of these reasons most of the kernel-based checkpoint/restart approaches do not

work with recent kernel versions (for example BLCR was not updated since 2013) [58].

Moreover, CRIU and BLCR, cannot fully checkpoint network communications. Check-

pointing network communications is also vital in modern applications. Therefore, in our

work, we choose to adopt DMTCP which works entirely in user space and can check-

point and restart network sockets. In the next section, we discuss different challenges

which arise when integrating DMTCP with Docker containers.

6.3 Design issues

The goal in this chapter is to enable Docker: (1) to checkpoint a running container

after completing its boot phase; and (2) to deploy containers from an already check-

pointed image. This may remove the container boot phase while deploying the con-

tainer. However, to successfully implement above goals, we need to address three

challenges which are illustrated in the next section.

6.3.1 Integration of DMTCP with Docker

When deploying a container, Docker pulls the container image if necessary, then

creates the container with the given con�guration and immediately starts the boot

phase. This is done by launching the �rst process of the application. The boot phase

terminates when the application is ready to serve user requests. Our proposed design

rather intends to start application inside the container from a checkpoint image. First,

the system should enable Docker to use DMTCP to checkpoint an application inside

the container in the �rst deployment. Second, while deploying containers in subsequent

deployments, Docker should restart the application from the checkpoint image instead

of starting the boot phase normally. We discuss how Docker and DMTCP are integrated

to implement these two operations in Section 6.4.1.
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Figure 6.1 – Contents of a container environment and a DMTCP checkpoint image

6.3.2 Sharing container environments

The components of a container include all the binaries, packages, libraries and

essential data of the application running inside the container. Figure 6.1 depicts these

components. The read-only Docker image layers contain all the necessary �les to start

the application such as binaries, packages and shared libraries. All the modi�ed �les

from the image layers, including application data, are stored in the container read/write

layer. During checkpoint, DMTCP captures the memory pages, �le descriptors and

open sockets of the application, which are essential to save the state of the application.

During restart, DMTCP reads the checkpoint image and restarts the application

from the checkpoint state. It is usual that at run time an application may access the

application data, and shared libraries which are stored in the container environment.

Therefore, the container environment captured during the checkpoint must be recre-

ated before the application is restored. We discuss in Section 6.4.2 how container

environments (Docker image layers and container R/W layers) are captured during

checkpoint and shared among the servers of a PoP.

6.3.3 Sharing the checkpoint images

Fog applications are expected to deploy frequently across several servers of a PoP.

It is likely that a checkpoint image and its associated container environment will be

accessed in several servers when the same container is being deployed repeatedly.
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Figure 6.2 – Proposed container deployment with DMTCP

Therefore, an ef�cient mechanism is required to share the checkpoint images and con-

tainer environments across the servers of a PoP. We discuss how we address this issue

in Section 6.4.3.

6.4 Proposed container deployment design

Figure 6.2 illustrates the proposed Docker container deployment with DMTCP

checkpoint and restart. In this design, Docker can use DMTCP to checkpoint an ap-

plication after the container boot phase. Later it can deploy any number of containers

from the checkpoint image, which skips the boot phase. To implement this, the pro-

posed design has two main components:

— A DMTCP lightweight container which is deployed in all the servers of a PoP. It is

responsible for checkpointing and restarting applications inside the containers.

— Ceph Rados Block Devices (RBD) use the Ceph distributed storage to share

container environments and checkpoint images across the servers of a PoP.
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6.4.1 DMTCP lightweight containers

Docker implements many APIs which handle various functionalities of a container

life cycle. For example, docker ps shows all the containers currently running in the host

machine. However, Docker does not provide any API to integrate external tools such

as DMTCP which can checkpoint/restart applications running inside containers.

We therefore create a lightweight container image which contains the binaries of

DMTCP and all the required libraries to perform checkpoint and restart. This allows us

to avoid having to modify the Docker source code. Another advantage of the lightweight

container is that the same DMTCP container can be used multiple times to checkpoint

and restore different applications. Finally, the lightweight container is easy to maintain

and distribute across the servers of a PoP with the help of a registry server.

The two fundamental purposes of the DMTCP lightweight container are: (1) to

checkpoint application which is running inside a container and (2) to restore application

from a checkpoint image. Although this lightweight container can perform these oper-

ations, it does not contain the application environments in the container �le systems.

We discuss how application environments are stored, managed and made available to

the lightweight container's �le system in the next section.

6.4.2 Ceph block devices

Snapshotting container environments

When checkpointing a container with DMTCP, Docker needs to save the container's

read/write layer to capture its environment. This can be implemented using the stan-

dard docker commit command which creates a new image by adding the container's

read/write layer on the top of the image [92]. The resulting image thus contains the

container environment and can be shared across multiple servers through the registry.

Although this simple mechanism can preserve and share a container's environment,

it also presents number of challenges: Firstly, during docker commit, Docker momen-

tarily pauses the container which generates application down-time [26]; Secondly, this

operation is not transparent to the application, as the commit operation has to be per-

formed externally; Thirdly, in order to distribute the container's environment, the image

has to be pushed �rst to a registry server and then pulled multiple times in different

nodes. Both operations take signi�cant network resources and require one to store the
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container environment redundantly into multiple servers. Due to the drawbacks listed

above, we propose to store the container environment in the Ceph distributed storage

system [162]. We discuss how Docker image layers and container read/write layers are

organized, stored, snapshot and shared across the servers of a PoP in the following

sections.

Ceph distributed storage

Ceph is a highly scalable distributed storage system, and it is considered suitable for

distributed fog infrastructures (as discussed in Section 4.3.1). It can provision storage

using different models: object storage [46], block storage [112] and POSIX-compatible

Ceph �le systems [161]. Ceph RADOS Block Devices store �xed-size blocks of data

(for example 1 MB blocks). The block devices are thin-provisioned and resizable, and

the stored data can be striped over multiple object storage drives (OSD). Ceph pro-

vides a kernel module and the librbd library to create, manage and control the block

devices [107, 116].

Ceph provides many features to manipulate block devices such as snapshot and

clone [120], persistent cache (for caching) [118], and RBD Mirroring (for replica-

tion) [117]. The snapshot and clone feature allows users to create multiple children of

a block device using Copy-on-Write (CoW). Once a block device has been snapshot, it

becomes read-only. Multiple block devices can then be cloned from the snapshot. All

further updates are written in the cloned block devices following Copy-on-Write (CoW).

Ceph implements Copy-on-Write (CoW) at block-level granularity.

Ceph RBD to store container environment

We propose to store the full container environment in the Ceph distributed storage

system. A container environment contains the Docker image's read-only layers and

the container read/write layer. Instead of keeping the Docker images and the container

read/write layers in the local �le systems which is the standard option, we propose to

store the environment in the shared Ceph RADOS Block Devices (RBD). To implement

this, a pool of RBDs is created and a RBD is assigned to each container environment.

Storing container environments in Ceph distributed storage brings many advan-

tages: (1) multiple Docker servers running in different nodes can share the same envi-

ronment, which gives storage ef�ciency; (2) the container environment can be shared
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Figure 6.3 – Snapshot and clone feature of Ceph

without the use of a registry server; (3) the system can ef�ciently snapshot a container

environment and share across servers of a PoP; and (4) Ceph performs CoW at block-

level granularity which is more ef�cient in terms of performance and space utilization

compared to �le-based CoW [181].

This simple mechanism allows us to share container environments across many co-

located servers. However, we also need to make it available to the DMTCP lightweight

container. We therefore need to con�gure the system such that the Ceph block storage

is accessible to the DMTCP lightweight containers.

Container environment layering with snaphshot and cloning

Ceph supports a feature to save the state of a block device using snapshotting [120].

The outcome of a snapshot operation is that the block device becomes read-only. Ceph

can then create multiple cloned block devices from any snapshot. All further modi�ca-

tions over the snapshot are performed in the cloned devices following copy-on-write

(CoW). The obvious advantage of snaphshot and clone is that it can re-use the snap-

shot block devices for multiple purposes. Figure 6.3 illustrates the working principle of

snapshot and clone of a Ceph RBD. The left-side RBD becomes read-only once the

snapshot is done, and it is generally referred to as the parent. The right-side RBD is

created with a clone operation from the parent and it is referred to as the child. Now all

the modi�cations in the snapshot are done in the child RBD.

We use the Ceph snapshot and clone feature to implement container environment

layering. The container environment layers are read-only except the top layer which

is read/write layer. This is similar to Docker image layering which allows one to re-

use image layers, where all the layers remains remain read-only except the top layer

where the �le system updates are performed. To implement the layering, we assign a

snapshot ID to each new snapshot created from a RBD. This snapshot ID is used to

create multiple cloned RBDs where the modi�cation of the snapshot can be performed.
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Figure 6.4 – Container environment layering with snapshot and clone

Figure 6.4 shows how the container environment layering works in the proposed

system using Ceph RBDs with a Docker�le which contains three instructions. The �rst

instruction creates a Ceph RBD, copies the contents of Ubuntu:15.04 in the Ceph RBD,

and takes a snapshot. With the second instruction, �rst a clone RBD is created from

the parent snapshot, and then the current directory is copied to the clone block device.

The third instruction compiles the content of a speci�c directory. Finally, a snapshot ID

is generated for each container environment which can be used for further modi�cation

in the environment.

How is a container environment available to the DMTCP lightweight container?

Our design stores the container environments in Ceph RBDs which helps to share

the environments across co-located servers of a PoP. However, in order to enable

DMTCP to checkpoint/restart an application, the DMTCP lightweight container must

access the container environment. Figure 6.5 illustrates the set of instructions that the

system must perform on the block devices to make the container environment fully

available in the DMTCP lightweight container's �le system.

1. Creating a container read/write layer: we use the snapshot ID of the container

environment to create a clone RBD. The clone RBD is therefore a read/write

layer where any update in the container environment will be performed.

2. Mapping the RBD: This operation registers the clone RBD to the local kernel

block device. With this operation, the kernel assigns a block device identi�er

such as /dev/rbd* to the RBD. The map operation (e.g., rbd map) is implemented

in the librbd Ceph kernel module.

118



6.4 Proposed container deployment design

Figure 6.5 – How block device is mounted in container �le system

2. Mounting the RBD to the container �le system: When creating a container

with docker run , the system needs to assign two �ags in the container con-

�guration: the �device to enable the device inside the container and the

�privileged �ags to mount the block device inside the container �le system.

The container now can access the block device locally. It then mounts the block

device in the local directory of the �le system using the standard mount com-

mand.

6.4.3 Container deployment with checkpoint/restart

Figure 6.6 shows the container deployment design �owchart. Our system relies on

two Ceph RBDs to store the container environment and the checkpoint image respec-

tively. The system �rst creates the two RBDs by cloning from their respective snap-

shots: (1) the container RBD is created from the snapshot of the container environ-

ment. This RBD is used to store the changes in the container environment; and (2) the

checkpoint RBD is cloned from the snapshot of the checkpoint RBD.

Docker then uses the DMTCP lightweight image to deploy the container. When

creating the container, the system follows the procedure described in 6.4.2 to mount

the two cloned RBDs in the local container �le system. Once the container is created,

the system then launches the application based on the type of deployment:

— Creating a checkpoint image: This type of deployment is done to create snap-

shot of the checkpoint image and the container environment. The system uses

DMTCP to launch the application and boot the container. When the boot phase

is completed, DMTCP checkpoints the application and stops the container. The
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Figure 6.6 – Flowchart of the Docker container deployment with DMTCP.
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resulting DMTCP checkpoint image is saved in the checkpoint RBD. Finally, the

checkpoint RBD and container RBD are snapshot. The two snapshot RBDs can

be shared across co-located servers of a PoP. In the subsequent deployment,

those two RBDs are used to deploy the container.

— Deploying from a checkpoint image: in this case, the system deploys the ap-

plication from a checkpoint image. The cloned checkpoint RBD and container

RBD already have booted the checkpoint image and the container environment

respectively. Therefore, the system uses DMTCP to restart the application from

the checkpoint image.

6.5 Evaluation

We evaluate the performance of our container deployment design in a distributed

fog environment. The experimental testbed is composed of �ve virtual machines rep-

resenting the servers of a fog point-of-presence. These VMs are created using KVM

on a Dell PowerEdge R430 server with two Intel Xeon E5-2620 v4 processors running

at 2.10GHz, with 8 hyperthreaded cores each, and 64 GB of RAM. Each VM has 2 vC-

PUs, 1 GB RAM and 32 GB disk, and runs Ubuntu 18.04 server with 4.15.0-47-generic

Linux kernel.

Building a Ceph cluster requires at least three Object Storage Daemons (OSD)

where the objects are stored, plus one monitor and manager which are responsible

for controlling, monitoring and managing the cluster. We set up the Ceph cluster using

Ceph version 12.0.4 over the 5 servers of the testbed. The cluster has one monitor

running in one machine, and �ve OSDs running in separate fog node. We also deploy

the Ceph client in every machine.

We use Docker version 18.04 to deploy containers throughout the experiments. Fi-

nally, we build DMTCP Docker image based on DMTCP version 2.5.2 [121]. While de-

ploying the containers, we make sure all the systems are idle to avoid any interference

from other applications.

6.5.1 A use-case: Edge-sharelatex

We carried out the performance evaluation by deploying the Edge-sharelatex ap-

plication [182]. Edge-sharelatex is a web-based application that allows users to edit
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Table 6.1 – Name of the services and their purpose.

Service Purpose Service Purpose

web user-interface clsi latex compiler
�lestore store binary �les docstore store tex�le

tags manage tags noti�cations notify users
contacts manage contacts spelling check spelling

chat manage chats tracker manage changes
real-time state synchronization updater update document
Mongo mongo database redis redis database

latex projects collaboratively, compile them and generate output. It is composed of 14

micro-services dedicated to different tasks. Table 6.1 shows the list of micro-services

and their purposes. This gives us a set of 14 independent applications with different

characteristics to evaluate our system.

Before the experimentation, we con�gure the Ceph RBDs with the container en-

vironment and checkpoint the image of each micro-service. When running the exper-

iment, we deploy all the services in a single fog server to simplify the experiments.

Furthermore, we make sure that each micro-service is running in a separate container.

During the deployment, the system is kept idle to avoid any interference from other

applications.

6.5.2 Checkpointing overhead

Our system checkpoints containers the �rst time they are deployed in a PoP. When

checkpointing, the system momentarily stops the container and the resulting check-

point image is stored in the Ceph distributed storage. In this section, we analyze the

system overhead while checkpointing the Edge-sharelarex services. We particularly

trace the checkpointing time and the size of the checkpoint image for each service.

Figure 6.7(a) depicts the checkpoint image size of the Edge-sharelatex services.

The size of the checkpoint images varies from 5 MB to 42 MB depending on the service.

We can clearly differentiate the services based on their checkpoint image size: for

example, lightweight services such as redis, real-time, updater their have image size

in the range from 5 MB to 11 MB. The checkpoint image size of the Mongo container
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6.5 Evaluation

(a) Checkpoint image size (MB). (b) Checkpointing time (s).

Figure 6.7 – Checkpoint image size and checkpointing time of the services.

is 25 MB. For the other containers which run a script inside the container and Mongo

database, the checkpoint image size varies from 33 MB to 42 MB.

Figure 6.7(b) shows the checkpointing time of the services. The checkpointing time

varies from 0.3 s to 2.0 s depending on the service. We observe that the checkpointing

time is largely proportional to the size of the checkpoint image.

6.5.3 Boot phase time

Table 6.2 compares the boot phase time of the Edge-sharelatex services while de-

ploying with standard Docker and with container restart. We observe that the service

boot time with standard Docker varies from 0.1 s to 109.0 s, whereas with the proposed

model, this range is from 0.1 s to 1.8 s. The gains of eliminating the boot phase in the

proposed model however depend on the type of the containers and the complexity of

their boot phase. We also observe similarities among the services: for example, the

lightweight services such as redis, real-time, updater take negligible amount of time

(less than 1 s) to boot. Deploying such containers with DMTCP takes almost the same

amount of time. However, other services such as noti�cations, chats and �lestore takes

signi�cant time to boot, between 5 and 20 s. The signi�cant boot time delay of such

services is due to the fact that they deploy a Mongo database inside the container in

addition to their other software. Deploying such services with the proposed model takes

only about 1 s, which brings a speedup in the range of 5x to 8x. Finally, the web service

takes nearly 109 s to boot its container. This is mainly due to the fact that it compiles

some of its scripts before becoming ready to serve end users. In this case, our system
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Chapter 6 – Avoiding the Container Boot Phase

Table 6.2 – Boot phase time of the services with standard Docker and the proposed
model.

Service
Boot phase time Snapshot

Docker Proposed Gains size
redis 0.1 0.1 1x 5
real-time 0.4 0.4 1x 9
updater 0.6 0.5 1.05x 11
noti�cations 5.2 0.8 7x 35
chats 5.2 0.9 6x 37
�lestore 5.3 0.9 6x 33
spelling 5.7 1.0 6x 38
docstore 6.6 0.9 7x 33
tags 6.9 0.8 9x 34
contacts 7.3 1.0 7x 33
tracker 8.3 1.1 8x 39
Mongo 12.1 1.5 8x 25
clsi 20.2 1.5 13x 42
web 109.0 1.8 60x 35

delivers 60x improvement. We can conclude from this experiment that the gain brought

by the proposed model is largely proportional to the time the container takes to boot.

The deployment time from a container snapshot depends on the size of its data rather

than the procedure to boot it.

6.5.4 Communication within the Ceph cluster

Our system stores the container environments and checkpoint images in Ceph

block devices. The system's various Ceph components such as OSDs, monitor and

manager running on different nodes constantly communicate with each other to keep

the cluster working. To evaluate the impact of transferred data between the Ceph com-

ponents, we trace the download and upload network throughput of the cluster nodes.

We use nethogs utility to capture the network throughput for duration of 60 s in

1 s granularity [63]. We capture the network throughput of the machine hosting the

monitor+manager, and one which is running an OSD. We did the experiment in three

scenarios: �rst, when the system is in idle condition; and second, when DMTCP is

checkpointing the redis container; and third, when DMTCP is restarting a container.
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(a) System is idle. (b) System is checkpointing (with large scale Y-
axis).

(c) System is restarting (with large scale Y-axis).

Figure 6.8 – Network throughput of the nodes when the system is: (a) idle; (b) check-
pointing and (c) restarting.
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Figure 6.8(a) shows the network throughput of the target machines when the sys-

tem is in idle state. We observe that both machines (monitor+manager and OSD) ex-

hibit constant low-bandwidth network activities throughout the trace. This may be due

to the fact that the monitor+manager periodically communicates with its OSDs to con-

trol and monitor the cluster state. The upload throughput of the monitor+manager node

is negligible, whereas the download throughput reaches 24 kB/s. The OSD node ex-

hibits both download and upload activities, though the download throughput is always

lower than the upload throughput. The reason for this is that each OSD sends own

information and about the stored objects to other OSDs and to the monitor+manager.

Figure 6.8(b) represents the network throughput of the target machines when the

system is checkpointing a container. We observe the same phenomenon except at the

time when the system checkpoints the container. During the checkpoint (at t = 6 s), we

observe an intense network activity, in particular with the download throughput of the

OSD. The download throughput of the OSD goes nearly up to 2900 kB/s. This is due to

the fact during the checkpoint, the system writes large chunks of the checkpoint image

in that OSD.

Figure 6.8(c) represents the network throughput of the target machines when the

system is restarting a container from the checkpoint image. During the restart (at t =

15 s), we observe an intense upload throughout in the OSD node. This re�ects the

system reads the checkpoint image from the Ceph OSD while restarting the container.

Finally, we can conclude from this study that Ceph cluster components (i.e., moni-

tor+manager and OSDs) perform very little network activities to keep the cluster alive.

But we observe intense network activity in the OSD nodes when the system check-

points (to write the checkpoint image) and restarting a container(to read the checkpoint

image).

6.5.5 Interference with other applications

Sharing container environments in the Ceph distributed storage clearly has many

advantages. However, Docker needs to fetch the application �les remotely from the

distributed storage, which may in turn impact the performance of other running appli-

cations. We therefore study the runtime performance of the applications when they are

deployed with the standard Docker and the proposed system.
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Table 6.3 – Throughput of the HTTP service in the standard Docker and proposed
system.

Concurrency level 10 50 100 200 300 400 500 1000
Standard (req/s) 3668 3703 3834 3905 3973 4057 4117 4234
Proposed (req/s) 3537 3569 3685 3743 3791 3856 3891 3954

Overhead (%) 3.6 3.7 3.8 4.1 4.6 5.0 5.5 6.7

We deploy an Apache HTTP server in one cluster node [69]. The server hosts a

web page of 5 kB. We then generate an arti�cial HTTP load from one of the cluster

node using the standard ab benchmarking tool with varying concurrency requests [70].

The load generates intense I/O activities in the server (as no �le system cache was

employed). At the end of each experiment, we measure the throughput of the HTTP

server i.e., number of requests served per second. Table 6.3 compares the throughput

of the HTTP server in both scenarios with different concurrency levels. We observe a

small overhead of 3.6% with a concurrency level 10. This is expected due to the fact

the HTTP load generates intensive I/O operations and as a result the proposed sys-

tem may need to fetch the �les from the distributed storage. When we increase the

concurrency level, the overhead due to remote access grows gradually. Finally, at con-

currency level 1000, this overhead reaches 6.7%. This shows that the communication

between Docker and Ceph clusters creates small overhead in the application runtime.

We can conclude from this study that the proposed system may exhibit an improved

boot phase time with lower overhead. This is due to the distributed storage used to

store the container environments.

6.6 Conclusion

Booting a Docker container after it has been started requires signi�cant time during

the container deployment process. This delay may have important impact in fog com-

puting environments, since the same container may be repeatedly launched, created,

booted. The boot sequence of most containers however always remain the same. This

gives us an opportunity to eliminate the boot phase by saving the state of a fully-booted

container. In subsequent deployments, the container can be restarted from the saved

state, which wholly skips the boot phase in the deployment process.
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Chapter 6 – Avoiding the Container Boot Phase

We proposed a Docker container deployment system that uses DMTCP check-

point/restart to deploy containers from a checkpoint image. The design also stores

the container environments and checkpoint images in Ceph distributed storage to ef�-

ciently share them across the servers of a PoP. The performance evaluation shows it

can bring up to 60x speedup in the container boot phase time depending on the type of

the container. The overhead of creating checkpoints and storing them across the PoP

remain reasonable.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter presents the conclusion of the thesis. We brie�y remind the importance

of application deployment time in distributed fog infrastructures. We then summarize

the different contributions of the thesis to improve the application deployment time.

Finally, we highlight the number of directions that we may study in the future to further

reduce the application deployment time in distributed fog infrastructures.

7.1 Conclusion

Cloud computing architectures consist of large number of powerful servers con-

nected to each other and to the rest of the Internet with high-speed network links. The

latency between a typical end user and the closest cloud data center comes in the

range of 20-40 ms over wired networks, and up to 150 ms over 4G mobile networks.

Although this latency is acceptable for many applications, it creates many challenges

for certain types of applications: for example, latency-sensitive applications like aug-

mented reality games require an end-to-end latency including network and processing

delay under 10-20 ms. Another example of such applications is IoT data analysis. The

growing number of IoT devices produce large amounts of data every day. The col-

lected data is typically sent to the core cloud for further analysis, which consumes

large amount of global Internet traf�c. An obvious solution to address these challenges

is to host applications closer to the end users. Fog computing therefore extends the

cloud resources (compute, storage and network) by broadly distributing large numbers

of compute nodes near the end users. Therefore, computational capacity is always

available in the vicinity of the users.

Fog computing architectures consist of large number of computing nodes dispersed

across a geographical area such as a city, a region or even a country to maintain prox-

imity with a large number of users. As a consequence, fog resources are often orga-
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nized in a large number of Point-of-Presence (PoPs), where each PoP is composed of

a small number of weak machines such as single-board computers connected to each

other and to the rest of the Internet using heterogeneous networks. An end user always

accesses the applications from the closest PoP to maintain minimal latency.

We expect that fog applications will be repeatedly deployed in different PoPs: to

maintain minimum latency between the applications hosted in the fog and their end

users, applications may need to roam frequently from one PoP to another. Human mo-

bility remains far from being random, and it has been proven to be predictable despite

important differences between individual travel patterns. Fog applications that aims at

serving a single user with ultra-low latency, such as wearable cognitive assistance,

may therefore be repeatedly deployed in the same PoP the user visits often (home,

work, etc.). In another example, compute-intensive applications such as live video feed

analysis may need to deploy multiple identical instances in the same PoP in order to

horizontally scale their processing capacity. In these scenarios, the application deploy-

ment process cannot be considered as a one-time operation that does not affect the

end-user's quality of experience. Rather, it becomes an integral part of the critical path

towards providing the expected service to its end users.

Slow application deployment is therefore a challenging issue in fog infrastructures.

Any delay in the application deployment may force the user to wait until the application

has been fully deployed and is ready to serve users. When the user moves from one

PoP to another, the application may have to be re-deployed to maintain proximity, low

latency, and reduce long-distance traf�c. In such cases, any delay in the application

deployment may interrupt the already-running service, leading to a degradation of the

user's Quality-of-Experience (QoE). In both scenarios, a minimal application deploy-

ment time is essential to provide seamless cloud services to the end-users. This thesis

therefore aims to reduce the application deployment time of fog applications as much

as possible.

We studied the reasons behind the slow deployment time of Docker containers in

distributed fog infrastructures, and identi�ed three opportunities that are likely to speed

up the container deployment time: (1) improving the hit ratio of the Docker cache, which

reduces the chances of having to pull a new image; (2) speeding up the image pull op-

eration itself; and (3) speeding up the boot process after a container has been started.

We therefore proposed three different solutions to optimize the overall application de-
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ployment time. Each solution aims to address one of the above issues within the de-

ployment process.

7.1.1 Contribution 1: Improving the Docker cache hit ratio

The �rst contribution of the thesis is to improve the application deployment time by

reducing the probability of having to deploy new images upon container deployment

requests. Docker servers download an image from a registry whenever they �nd that

the required image is missing in the local cache. Docker stores all the downloaded im-

ages in its local cache and never removes them until explicitly asked to do so. This is a

sensible strategy in powerful servers as the same container image will not need to be

downloaded again in future deployment of the same container. However, this scenario

is not suitable in fog environments, as fog servers have limited storage capacity. As a

consequence, the working set of images may grow larger than the total storage capac-

ity of the server. Another issue is that the image caches of the co-located nodes may

contain redundant copies of the same image.

We proposed a new Docker image-sharing framework which aggregates the im-

age caches of co-located fog servers using a distributed �le system. The end result is

a much larger Docker image cache that can share more images, which reduces the

probability of deploying a new image upon a new container deployment request. Our

performance evaluation of the proposed framework using a real-world Docker registry

workload shows that sharing the Docker images can signi�cantly improve the hit ratio

and, as a result, reduce container deployment time between 37% and 78% depending

on the scenario.

7.1.2 Contribution 2: Improving the Docker image deployment

Sharing Docker images among co-located servers enhances the Docker cache hit

ratio and reduces the probability of pulling an image upon a container deployment re-

quest. However, Docker still needs to deploy an image when it is requested for the �rst

time in a PoP or upon a cache miss. Docker image deployment can be very slow, on the

order of a couple of minutes in resource-constrained fog nodes such as single-board

Raspberry Pi. We investigated the reason behind this slow deployment by analyzing

the resource consumption of Docker upon image deployment. We found that this slow

131



deployment time is largely due to the fact that Docker under-utilizes the available hard-

ware resources during deployment: Docker �rst downloads the different image layers

simultaneously which is very network-intensive, followed by a cycle of CPU-intensive

decompression and then disk-intensive extraction. In other words, there is little or no

overlapping among the usage of different hardware resources during the image de-

ployment.

We proposed three optimizations to improve the resource utilization of Docker dur-

ing image deployment: (1) sequentially downloading the image layers to optimize layer

download time; (2) multi-threaded decompression to reduce the decompression time

of layers; and (3) I/O pipelining to decompress the layers immediately after the �rst few

bytes have been downloaded. Docker-pi combines all these solutions and therefore

parallelizes the usage of the three hardware resource (network, CPU and disk), result-

ing in reducing the image deployment time by 25% to 75% in Raspberry Pis depending

on the network capacity and the image size.

7.1.3 Contribution 3: Avoiding the container boot phase

After creating a container, Docker starts the boot phase by launching the starting

process of the application. Booting terminates when the container is ready to accept

end user requests. This phase may have a signi�cant impact in fog environments when

the same container image is being repeatedly launched, created, and booted in multi-

ple servers of a PoP. The boot phase of containers however remains the same every

time. We can therefore save the state of a container after completing its boot phase and

then later restart the container from the saved state in the subsequent deployments.

We proposed a new container deployment design which uses DMTCP to deploy

the container from a booted checkpoint image, therefore skipping the container boot

phase. The design uses Ceph distributed storage to store container environments and

checkpoint images to ef�ciently share them across fog servers. Our evaluation shows

that this technique improves the container boot phase time up to 60x depending on

the type of container. The checkpointing overhead of the proposed system remains

reasonable.
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7.2 Future directions

We presented several optimization solutions to address optimization opportunities

in the Docker container deployment in distributed fog infrastructures. Our solutions

create further opportunities that can help to reduce the container deployment time.

In this section, we discuss several potential research directions brought forth by this

thesis.

7.2.1 Finding a better cache replacement algorithm

The proposed Docker image sharing framework incorporates an image replacement

algorithm to remove unused Docker images when the size of the working set images

is larger than the storage capacity. In our contribution, we used the well-known least

recently used (LRU) algorithm which replaces the least recently used image from the

working set of images [195]. However LRU relies on the assumption that all cached

objects have the same size (and therefore generates the same storage costs), and

that all objects incur the same download delay in case of a cache miss. These two hy-

potheses are clearly not necessarily correct in the context of Docker images. We may

therefore study how the choice of a better cache replacement algorithm may further re-

duce the average container deployment times. The �eld of Web caching has produced

numerous such algorithms which may be used as a starting point [156].

7.2.2 Image layer placement in the distributed �le system

The proposed Docker image sharing framework uses CephFS to store the image

layers and metadata. While deploying an image, CephFS stores the image layers and

metadata in the available OSDs. Like most other systems, Ceph distributes the ob-

jects and workload in its different OSDs to ef�ciently utilize all the available resources,

while facilitating the system scale and managing hardware failures. In particular, Ceph

uses a user-de�ned algorithm or CRUSH to distribute its objects and replication into

multiple OSDs [192]. The write throughput of Ceph is however determined by how

the CRUSH algorithm is con�gured. In fog environment, it is very likely that computa-

tion and communication capacity of the servers are heterogeneous. Therefore, a new

CRUSH algorithm may need to adapt the fog characteristics, i.e., incorporate the loca-

tion of the servers and their communication so that the write throughput of the objects
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is maximized [203]. This may eventually improve the overall disk write throughput of

the Ceph cluster, and as a consequence, speed up Docker image deployment.

7.2.3 Pre-fetching Docker images

Fog users are often mobile, and their mobility pattern are far from being random.

They are often repetitive and might be predictable as most people often visit the same

place every day [25, 175]. For example, researchers often take the same route while

coming to the of�ce every day. Similarly, users in fog environments are expected to

move from one fog PoP to another, while accessing their favorite fog application. There-

fore, the applications deployment would be repetitive and predictable.

Docker container deployment time could be improved if we can predict the user

mobility. We may use machine learning and stochastic process to predict a human

behavior and in particular the mobility pattern of the fog users [138, 184]. If we can

predict the probability of approaching a fog user in a PoP, then the container image can

be pre-fetched before the user even launches the application in the PoP. This will avoid

pulling the image from the registry after its container deployment request.
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Titre: Déploiement ef�cace d'applications cloud dans

les infrastructures fog distribuées

Mot clés : fog computing; containers; Docker

Resumé : Les architectures Fog comput-

ing sont composées d'un grand nombre

de machines dispersées dans une zone

géographique telle qu'une ville ou une ré-

gion. Dans ce contexte il est important de

permettre un démarrage rapide des appli-

cations déployées sous forme de contain-

ers Docker. Cette thèse étudie les raisons

de la lenteur de déploiement, et identi-

�e trois opportunités susceptibles de ré-

duire le temps de déploiement des con-

teneurs: (1) améliorer le taux de réussite

du cache Docker; (2) accélérer l'opération

d'installation d'une image; et (3) accélérer

le processus de démarrage après la créa-

tion d'un conteneur.

Title: Ef�cient Cloud Application Deployment in Dis-

tributed Fog Infrastructures

Keywords : fog computing; containers; Docker

Abstract : Fog computing architectures

are composed of a large number of ma-

chines distributed across a geographical

area such as a city or a region. In this

context it is important to support a quick

startup of applications deployed in the for

of docker containers. This thesis explores

the reasons for slow deployment and iden-

ti�es three improvement opportunities: (1)

improving the Docker cache hit rate; (2)

speed-up the image installation operation;

and (3) accelerate the application boot

phase after the creation of a container.
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