G. Berg and J. M. Raaijmakers, Saving seed microbiomes, Int Soc Microbial Ecol J, vol.12, pp.1167-1170, 2018.

H. F. Bienfait, . Briel-w-van-den, and N. T. Mesland-mul, Free space iron pools in roots: Generation and Mobilization, Plant Physiol, vol.78, pp.596-600, 1985.

J. Briat, C. Dubos, and F. Gaymard, Iron nutrition, biomass production, and plant product quality, Trends Plant Sci, vol.20, pp.33-40, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137867

A. J. Cross, J. M. Harnly, and L. M. Ferrucci, Developing a heme iron database for meats according to meat type, cooking method and doneness level, Food Nutr Sci, vol.3, pp.905-913, 2012.

D. E. Crowley, Iron nutrition in plants and rhizospheric microorganisms, pp.169-198, 2006.

D. E. Crowley, C. P. Reid, and P. J. Szaniszlo, Utilization of microbial siderophores in iron acquisition by oat, Plant Physiol, vol.87, pp.680-685, 1988.

C. Curie, J. M. Alonso, and M. L. Jean, Involvement of NRAMP1 from Arabidopsis thaliana in iron transport, Biochem J, vol.347, pp.749-755, 2000.

C. Curie and J. Briat, Iron transport and signaling in plants, Annu Rev Plant Biol, vol.54, pp.183-206, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02672950

C. Curie, G. Cassin, and D. Couch, Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters, Ann Bot, vol.103, pp.1-11, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00367118

C. Curie and S. Mari, New routes for plant iron mining, New Phytol, vol.214, pp.521-525, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01416822

J. Dai, W. Qiu, and N. Wang, From Leguminosae/Gramineae intercropping systems to see benefits of intercropping on iron nutrition, Front Plant Sci, vol.10, p.605, 2019.

A. De-santiago, A. M. García-lópez, and J. M. Quintero, Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils, Soil Biol Biochem, vol.57, pp.598-605, 2013.

A. De-santiago, F. Perea-torres, and M. Avilés, Shifts in microbial community structure influence the availability of Fe and other micronutrients to lupin (Lupinus albus L.), Applied Soil Ecology, vol.144, pp.42-50, 2019.

A. De-santiago, J. M. Quintero, M. Avilés, and A. Delgado, Effect of Trichoderma asperellum strain T34 on iron nutrition in white lupin, Soil Biol Biochem, vol.41, pp.2453-2459, 2009.

A. W. De-valença, A. Bake, I. D. Brouwer, and K. E. Giller, Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa, Glob Food Secur, vol.12, pp.8-14, 2017.

D. Vleesschauwer, D. Cornelis, P. Höfte, and M. , Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice, Mol Plant Microbe In, vol.19, pp.1406-1419, 2006.

C. A. Dehner, J. D. Awaya, P. A. Maurice, and J. L. Dubois, Roles of siderophores, oxalate, and ascorbate in mobilization of iron from hematite by the aerobic bacterium Pseudomonas mendocina, Appl Environ Microbiol, vol.76, pp.2041-2048, 2010.

N. M. Delimont, M. D. Haub, and B. L. Lindshield, The impact of tannin consumption on iron bioavailability and status: a narrative review, Curr Dev Nutr, vol.1, pp.1-12, 2017.

S. Dequiedt, J. Thioulouse, and C. Jolivet, Biogeographical patterns of soil bacterial communities, Environ Microbiol Rep, vol.1, pp.251-255, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02668713

Y. Dessaux, C. Grandclément, and D. Faure, Engineering the rhizosphere, Trends Plant Sci, vol.21, pp.266-278, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01443849

O. Duchene, J. Vian, and F. Celette, Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems & Environment, vol.240, pp.148-161, 2017.

B. J. Duijff, D. Kogel, W. J. Bakker, P. Schippers, and B. , Influence of pseudobactin 358 on the iron nutrition of barley, Soil Biol Biochem, vol.26, pp.1681-1688, 1994.

D. Egamberdieva, S. J. Wirth, and A. A. Alqarawi, Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness, Front Microbiol, vol.8, p.2104, 2017.

Z. Wei and A. Jousset, Plant breeding goes microbial, Trends Plant Sci, vol.22, pp.555-558, 2017.

R. M. Welch, W. A. House, S. Beebe, and Z. Cheng, Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) seeds, Journal of Agricultural and Food Chemistry, vol.48, pp.3576-3580, 2000.

. Werra-p-de, M. Péchy-tarr, C. Keel, and M. Maurhofer, Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0, Appl Environ Microbiol, vol.75, pp.4162-4174, 2009.

P. White and M. Broadley, Biofortifying crops with essential mineral elements, Trends Plant Sci, vol.10, pp.586-593, 2005.

P. J. White and M. R. Broadley, Biofortification of crops with seven mineral elements often lacking in human diets -iron, zinc, copper, calcium, magnesium, selenium and iodine: Research review, New Phytol, vol.182, pp.49-84, 2009.

L. Wille, M. M. Messmer, B. Studer, and P. Hohmann, Insights to plant-microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes, Plant Cell Environ, vol.42, pp.20-40, 2019.

C. C. Winterbourn, Toxicity of iron and hydrogen peroxide: the Fenton reaction, Toxicology Letters, vol.82, pp.969-974, 1995.

I. I. Chapitre, Impact du génotype de pois sur les communautés bactériennes, les Pseudomonas spp. fluorescents et les pyoverdines associées

J. I. Baldani, L. Rouws, L. M. Cruz, F. L. Olivares, M. Schmid et al., The Family Oxalobacteraceae, pp.919-974, 2014.

J. Balk and T. A. Schaedler, Iron cofactor assembly in plants, Annu Rev Plant Biol, vol.65, pp.125-153, 2014.

K. Bansal, S. Midha, S. Kumar, A. Kaur, R. V. Sonti et al., Ecological and evolutionary insights into pathogenic and non-pathogenic rice associated Xanthomonas. bioRxiv, p.453373, 2019.

R. L. Berendsen, M. C. Van-verk, I. A. Stringlis, C. Zamioudis, J. Tommassen et al., Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417, BMC Genomics, vol.16, 2015.

E. M. Brear, D. A. Day, and P. M. Smith, Iron: an essential micronutrient for the legume-rhizobium symbiosis, Front. Plant Sci, vol.4, p.359, 2013.

J. Briat, C. Dubos, and F. Gaymard, Iron nutrition, biomass production, and plant product quality, Trends Plant Sci, vol.20, pp.33-40, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137867

H. Budzikiewicz, Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp, Fortschr Chem Org Naturst, vol.87, pp.81-237, 2004.

H. Budzikiewicz, S. Kilz, K. Taraz, and J. Meyer, Identical pyoverdines from Pseudomonas fluorescens 9AW and from Pseudomonas putida 9BW, Zeitschrift für Naturforschung C, vol.52, pp.721-728, 1997.

D. Bulgarelli, K. Schlaeppi, S. Spaepen, E. V. Van-themaat, and P. Schulze-lefert, Structure and functions of the bacterial microbiota of plants, Annu Rev Plant Biol, vol.64, pp.807-838, 2013.

A. Bultreys, I. Gheysen, B. Wathelet, H. Maraite, and E. De-hoffmann, High-performance liquid chromatography analyses of pyoverdin siderophores differentiate among phytopathogenic fluorescent Pseudomonas species, Appl. Environ. Microbiol, vol.69, pp.1143-1153, 2003.

J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman et al., QIIME allows analysis of high-throughput community sequencing data, Nat Methods, vol.7, pp.335-336, 2010.

F. L. Carruthers, A. J. Conner, and H. K. Mahanty, Identification of a genetic locus in Pseudomonas aureofaciens involved in fungal inhibition, Appl. Environ. Microbiol, vol.60, pp.71-77, 1994.

P. Chandrangsu, C. Rensing, and J. D. Helmann, Metal homeostasis and resistance in bacteria, Nat Rev Microbiol, vol.15, pp.338-350, 2017.

K. D. Clevenger, R. Mascarenhas, D. Catlin, R. Wu, N. L. Kelleher et al., Substrate trapping in the siderophore tailoring enzyme PvdQ, ACS Chem. Biol, vol.12, pp.643-647, 2017.

S. Compant, A. Samad, H. Faist, and A. Sessitsch, A review on the plant microbiome: ecology, functions, and emerging trends in microbial application, J. Adv. Res, vol.19, pp.29-37, 2019.

I. I. Chapitre, Impact du génotype de pois sur les communautés bactériennes, les Pseudomonas spp. fluorescents et les pyoverdines associées 128

P. Cornelis, Iron uptake and metabolism in pseudomonads, Applied Microbiology and Biotechnology, vol.86, pp.1637-1645, 2010.

R. Costa, N. C. Gomes, E. Krögerrecklenfort, K. Opelt, G. Berg et al., Pseudomonas community structure and antagonistic potential in the rhizosphere: insights gained by combining phylogenetic and functional gene-based analyses, Environ. Microbiol, vol.9, pp.2260-2273, 2007.

R. Costa, J. F. Salles, G. Berg, and K. Smalla, Cultivation-independent analysis of Pseudomonas species in soil and in the rhizosphere of field-grown Verticillium dahliae host plants, Environ. Microbiol, vol.8, pp.2136-2149, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02569785

C. Curie and J. Briat, Iron transport and signaling in plants, Annu Rev Plant Biol, vol.54, pp.183-206, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02672950

C. Curie, M. , and S. , New routes for plant iron mining, New Phytol, vol.214, pp.521-525, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01416822

D. Souza, J. T. Mazzola, M. Raaijmakers, and J. M. , Conservation of the response regulator gene gacA in Pseudomonas species: conservation of gacA in Pseudomonas, Environ Microbiol, vol.5, pp.1328-1340, 2003.

S. Delorme, T. Corberand, J. Meyer, L. Gardan, P. Lemanceau et al., Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils, Int J Syst Evol Microbiol, vol.52, pp.513-523, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02678516

B. J. Duijff, G. Recorbet, P. A. Bakker, J. E. Loper, and P. Lemanceau, Microbial antagonism at the root level is involved in the suppression of fusarium wilt by the combination of non pathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358, Phytopathology, vol.89, pp.1073-1079, 1999.

R. C. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, vol.26, pp.2460-2461, 2010.

P. Fourcroy, P. Sisó-terraza, D. Sudre, M. Savirón, G. Reyt et al., Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency, New Phytol, vol.201, pp.155-167, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00921475

P. Frey, P. Frey-klett, J. Garbaye, O. Berge, and T. Heulin, Metabolic and genotypic fingerprinting of fluorescent Pseudomonads associated with the Douglas Fir-Laccaria bicolor mycorrhizosphere, Appl. Environ. Microbiol, vol.63, pp.1852-1860, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02695301

N. Fromin, W. Achouak, J. M. Thiéry, and T. Heulin, The genotypic diversity of Pseudomonas brassicacearum populations isolated from roots of Arabidopsis thaliana: influence of plant genotype, FEMS Microbiol Ecol, vol.37, pp.21-29, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02126957

R. Fuchs, M. Schafer, V. Geoffroy, and J. Meyer, Siderotyping a powerful tool for the characterization of pyoverdines, Curr Top Med Chem, vol.1, pp.31-57, 2001.

D. Garrido-sanz, J. P. Meier-kolthoff, M. Göker, M. Martín, R. Rivilla et al., Genomic and genetic diversity within the Pseudomonas fluorescens complex, PLoS ONE, vol.11, 2016.

L. Ge and S. Y. Seah, Heterologous expression, purification, and characterization of an l-ornithine N5-hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa, J Bacteriol, vol.188, pp.7205-7210, 2006.

I. I. Chapitre, Impact du génotype de pois sur les communautés bactériennes, les Pseudomonas spp. fluorescents et les pyoverdines associées 129

F. P. Geels and B. Schippers, Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes, J Phytopathol, vol.108, pp.193-206, 1983.

S. Ghirardi, F. Dessaint, S. Mazurier, T. Corberand, J. M. Raaijmakers et al., Identification of traits shared by rhizosphere-competent strains of fluorescent pseudomonads, Microbial Ecology, vol.64, pp.725-737, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02652286

R. R. Gildersleeve and W. R. Ocumpaugh, Greenhouse evaluation of subterranean clover species for susceptibility to iron-deficiency chlorosis, Crop science, vol.29, pp.949-951, 1989.

M. Gomila, A. Pena, M. Mulet, J. Lalucat, and E. Garci-a-valdés, Phylogenomics and systematics in Pseudomonas, Front. Microbiol, vol.6, p.214, 2015.

D. Haas and G. Défago, Biological control of soil-borne pathogens by fluorescent pseudomonads, Nat Rev Microbiol, vol.3, pp.307-319, 2005.

S. L. Hartney, S. Mazurier, M. K. Girard, S. Mehnaz, E. W. Davis et al., Ferric-pyoverdine recognition by Fpv outer membrane proteins of Pseudomonas protegens Pf-5, J. Bacteriol, vol.195, pp.765-776, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02643721

T. C. Helms, R. A. Scott, W. T. Schapaugh, R. J. Goos, D. W. Franzen et al., Soybean irondeficiency chlorosis tolerance and yield decrease on calcareous soils, Agron J, vol.102, p.492, 2010.

M. Höfte and P. A. Bakker, Competition for iron and induced systemic resistance by siderophores of plant growth promoting rhizobacteria, Microbial Siderophores Soil Biology, pp.121-133, 2007.

C. W. Jin, G. X. Li, X. H. Yu, and S. J. Zheng, Plant Fe status affects the composition of siderophoresecreting microbes in the rhizosphere, Ann Bot, vol.105, pp.835-841, 2010.

P. Jones, B. J. Garcia, A. Furches, G. A. Tuskan, and D. Jacobson, Plant host-associated mechanisms for microbial selection, Front. Plant Sci, vol.10, p.862, 2019.

M. Jülich, K. Taraz, H. Budzikiewicz, V. Geoffroy, J. Meyer et al., The structure of the pyoverdin isolated from various Pseudomonas syringae pathovars, Zeitschrift für Naturforschung C, vol.56, pp.687-694, 2001.

K. Kersters, W. Ludwig, M. Vancanneyt, P. De-vos, M. Gillis et al., Recent changes in the classification of the pseudomonads, Systematic and Applied Microbiology, vol.19, pp.465-477, 1996.

M. Kimura, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J Mol Evol, vol.16, pp.111-120, 1980.

J. W. Kloepper, J. Leong, M. Teintze, and M. N. Schroth, Pseudomonas siderophores: A mechanism explaining disease-suppressive soils, Curr. Microbiol, vol.4, pp.317-320, 1980.

T. Kluyver, R. Benjamin, P. Fernando, G. Brian, B. Matthias et al., Jupyter Notebooks: a publishing format for reproducible computational workflows. Stand Alone, pp.87-90, 2016.

T. Kobayashi and N. K. Nishizawa, Iron uptake, translocation, and regulation in higher plants, Annual Review of Plant Biology, vol.63, pp.131-152, 2012.

I. Chapitre, M. Rabhi, and M. Gharsalli, Effect of two nitrogen forms on the growth and iron nutrition of pea cultivated in presence of bicarbonate, Impact du génotype de pois sur les communautés bactériennes, les Pseudomonas spp. fluorescents et les pyoverdines associées References Barhoumi, vol.30, pp.1953-1965, 2007.

E. Bar-ness, Y. Hadar, Y. Chen, V. Römheld, and H. Marschner, Short-term effects of rhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat, Plant Physiol, vol.100, pp.451-456, 1992.

I. Baxter, J. N. Brazelton, D. Yu, Y. S. Huang, B. Lahner et al., A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1, PLoS Genet, vol.6, p.1001193, 2010.

I. R. Baxter, O. Vitek, B. Lahner, B. Muthukumar, M. Borghi et al., The leaf ionome as a multivariable system to detect a plant's physiological status, Proc. Natl. Acad. Sci. USA. 105, pp.12081-12086, 2008.

P. R. Bloom, G. W. Rehm, J. A. Lamb, and A. J. Scobbie, Soil nitrate is a causative factor in iron deficiency chlorosis in soybeans, Soil Sci. Soc. Am. J, vol.75, pp.2233-2241, 2011.

J. Briat, C. Dubos, and F. Gaymard, Iron nutrition, biomass production, and plant product quality, Trends Plant Sci, vol.20, pp.33-40, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137867

D. Bulgarelli, R. Garrido-oter, P. C. Münch, A. Weiman, J. Dröge et al., Structure and function of the bacterial root microbiota in wild and domesticated barley, Cell Host Microbe, vol.17, pp.392-403, 2015.

C. Cézard, N. Farvacques, and P. Sonnet, Chemistry and biology of pyoverdines, Pseudomonas primary siderophores, Curr. Med. Chem, vol.22, pp.165-186, 2015.

Y. Chen and P. Barak, Iron nutrition of plants in calcareous soils, Adv. Agron, vol.35, pp.217-240, 1982.

C. K. Cohen, T. C. Fox, D. F. Garvin, and L. V. Kochian, The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants, Plant Physiol, vol.116, pp.1063-1072, 1998.

P. Cornelis, Iron uptake and metabolism in pseudomonads, Appl. Microbiol. Biotechnol, vol.86, pp.1637-1645, 2010.

D. E. Crowley, C. P. Reid, and P. J. Szaniszlo, Utilization of microbial siderophores in iron acquisition by oat, Plant Physiol, vol.87, pp.680-685, 1988.

D. E. Crowley and Y. C. Wang, Mechanisms of iron acquisition from siderophores by microorganisms and plants, Plant Soil, vol.130, pp.179-198, 1991.

A. Eparvier, P. Lemanceau, A. , and C. , Population dynamics of non-pathogenic Fusarium and fluorescent Pseudomonas strains in rockwool, a substratum for soilless culture, FEMS Microbiol. Ecol, vol.9, pp.177-184, 1991.
URL : https://hal.archives-ouvertes.fr/hal-02701353

P. Fourcroy, P. Sisó-terraza, D. Sudre, M. Savirón, G. Reyt et al., Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency, New Phytol, vol.201, pp.155-167, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00921475

I. Chapitre, Impact de sidérophores bactériens sur le statut en fer et le ionome du pois, p.169

C. H. Foyer, H. Lam, H. T. Nguyen, K. H. Siddique, R. K. Varshney et al., Neglecting legumes has compromised human health and sustainable food production, Nature Plants, vol.2, p.16112, 2016.

K. Gallardo, C. Firnhaber, H. Zuber, D. Héricher, M. Belghazi et al., A combined proteome and transcriptome analysis of developing Medicago truncatula seeds: evidence for metabolic specialization of maternal and filial tissues, Mol. Cell Proteomics, vol.6, pp.2165-2179, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02660247

R. R. Gildersleeve and W. R. Ocumpaugh, Greenhouse evaluation of subterranean clover species for susceptibility to iron-deficiency chlorosis, Crop Science, vol.29, pp.949-951, 1989.

D. Haas and G. Défago, Biological control of soil-borne pathogens by fluorescent pseudomonads, Nat. Rev. Microbiol, vol.3, pp.307-319, 2005.

N. C. Hansen, B. G. Hopkins, J. W. Ellsworth, and V. D. Jolley, Iron nutrition in field crops, Iron nutrition in plants and rhizospheric microorganisms, pp.23-59, 2006.

S. L. Hartney, S. Mazurier, M. K. Girard, S. Mehnaz, E. W. Davis et al., Ferric-pyoverdine recognition by Fpv outer membrane proteins of Pseudomonas protegens Pf-5, J. Bacteriol, vol.195, pp.765-776, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02643721

T. C. Helms, R. A. Scott, W. T. Schapaugh, R. J. Goos, D. W. Franzen et al., Soybean irondeficiency chlorosis tolerance and yield decrease on calcareous soils, Agron. J, vol.102, p.492, 2010.

C. Henriet, D. Aimé, M. Térézol, A. Kilandamoko, N. Rossin et al., Water stress combined with sulfur deficiency in pea affects yield components but mitigates the effect of deficiency on seed globulin composition, J. Exp. Bot. erz114, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02627230

R. C. Hider and X. Kong, Chemistry and biology of siderophores, Nat. Prod. Rep, vol.27, p.637, 2010.

Y. Ishimaru, M. Suzuki, T. Tsukamoto, K. Suzuki, M. Nakazono et al., Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+, Plant J, vol.45, pp.335-346, 2006.

N. Jelali, M. Wissal, M. Dell'orto, C. Abdelly, M. Gharsalli et al., Changes of metabolic responses to direct and induced Fe deficiency of two Pisum sativum cultivars, Environ. Exp. Bot, vol.68, pp.238-246, 2010.

C. W. Jin, G. X. Li, X. H. Yu, and S. J. Zheng, Plant Fe status affects the composition of siderophoresecreting microbes in the rhizosphere, Ann. Bot, vol.105, pp.835-841, 2010.

E. O. King, M. K. Ward, and D. E. Raney, Two simple media for the demonstration of pyocyanin and fluorescin, J. Lab. Clin. Med, vol.44, pp.301-307, 1954.

T. Kobayashi and N. K. Nishizawa, Iron uptake, translocation, and regulation in higher plants, Annu. Rev. Plant Biol, vol.63, pp.131-152, 2012.

B. B. Landa, J. M. Cachinero-díaz, P. Lemanceau, R. M. Jiménez-díaz, A. et al., Effect of fusaric acid and phytoanticipins on growth of rhizobacteria and Fusarium oxysporum, Can. J. Microbiol, vol.48, pp.971-985, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02673250

P. Lemanceau, A. , and C. , Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium, Crop Protection, vol.10, p.90006, 1991.
URL : https://hal.archives-ouvertes.fr/hal-02700200

P. Lemanceau, P. Bauer, S. Kraemer, and J. Briat, Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes, Plant Soil, vol.321, pp.513-535, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00409018

Q. Li, A. Yang, and W. Zhang, Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.), J. Exp. Bot, vol.67, pp.6431-6444, 2016.

Y. Ma, C. J. Coyne, M. A. Grusak, M. Mazourek, P. Cheng et al., , 2017.

, Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.), BMC Plant Biol, vol.17, p.43

H. Mahmoudi, H. Koyro, A. Debez, A. , and C. , Comparison of two chickpea varieties regarding their responses to direct and induced Fe deficiency, Environ. Exp. Bot, vol.66, pp.349-356, 2009.

A. Maillard, P. Etienne, S. Diquélou, J. Trouverie, V. Billard et al., Nutrient deficiencies modify the ionomic composition of plant tissues: a focus on cross-talk between molybdenum and other nutrients in Brassica napus, J. Exp. Bot, vol.67, pp.5631-5641, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01493884

S. Mamidi, S. Chikara, R. J. Goos, D. L. Hyten, D. Annam et al., Genome-wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean, Plant Genome, vol.4, pp.154-164, 2011.

S. Mamidi, R. K. Lee, J. R. Goos, and P. E. Mcclean, Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max), PLoS ONE, vol.9, p.107469, 2014.

J. M. Meyer and M. A. Abdallah, The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties, Microbiology, vol.107, pp.319-328, 1978.

J. Meyer, C. Gruffaz, V. Raharinosy, I. Bezverbnaya, M. Schäfer et al., Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method, Biometals, vol.21, pp.259-271, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00185875

P. Mirleau, L. Philippot, T. Corberand, and P. Lemanceau, Involvement of nitrate reductase and pyoverdine in competitiveness of Pseudomonas fluorescens strain C7R12 in soil, Appl. Environ. Microbiol, vol.67, pp.2627-2635, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02672966

H. M. Rehman, J. W. Cooper, H. Lam, Y. , and S. H. , Legume biofortification is an underexploited strategy for combatting hidden hunger: Biofortification of legumes, Plant Cell Environ, vol.42, pp.52-70, 2019.

A. Robin, S. Mazurier, C. Mougel, G. Vansuyt, T. Corberand et al., Diversity of rootassociated fluorescent pseudomonads as affected by ferritin overexpression in tobacco: Diversity of fluorescent pseudomonads in rhizosphere, Environ. Microbiol, vol.9, pp.1724-1737, 2007.

A. Robin, C. Mougel, S. Siblot, G. Vansuyt, S. Mazurier et al., Effect of ferritin overexpression in tobacco on the structure of bacterial and pseudomonad communities associated with the roots: Structure of rhizosphere bacterial and pseudomonad communities, FEMS Microbiol. Ecol, vol.58, pp.492-502, 2006.

A. Rus, I. Baxter, B. Muthukumar, J. Gustin, B. Lahner et al., Natural variants of AtHKT1 enhance Naþ accumulation in two wild populations of Arabidopsis, PLoS Genet, vol.2, p.10, 2006.

S. Alves-carvalho, G. Aubert, S. Carrère, C. Cruaud, A. Brochot et al., Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species, Plant J, vol.84, pp.1-19, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02631162

S. Banerjee, F. Walder, L. Büchi, M. Meyer, A. Y. Held et al., Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots, Int Soc Microbial Ecol J, vol.13, pp.1722-1736, 2019.

T. Brumbarova, P. Bauer, and R. Ivanov, Molecular mechanisms governing Arabidopsis iron uptake, Trends Plant Sci, vol.20, pp.124-133, 2015.

H. Budzikiewicz, Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp, Fortschr Chem Org Naturst, vol.87, pp.81-237, 2004.

C. Cézard, N. Farvacques, and P. Sonnet, Chemistry and biology of pyoverdines, Pseudomonas primary siderophores, Current medicinal chemistry, vol.22, pp.165-186, 2015.

C. K. Cohen, D. F. Garvin, and L. V. Kochian, Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil, Planta, vol.218, pp.784-792, 2004.

S. Compant, A. Samad, H. Faist, and A. Sessitsch, A review on the plant microbiome: ecology, functions, and emerging trends in microbial application, J. Adv. Res, vol.19, pp.29-37, 2019.

C. Curie and J. Briat, Iron transport and signaling in plants, Annu Rev Plant Biol, vol.54, pp.183-206, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02672950

C. Curie, G. Cassin, D. Couch, F. Divol, K. Higuchi et al., Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters, Ann Bot, vol.103, pp.1-11, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00367118

C. Curie, M. , and S. , New routes for plant iron mining, New Phytol, vol.214, pp.521-525, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01416822

M. Fan, M. Bai, J. Kim, T. Wang, E. Oh et al., The bHLH transcription factor HBI1 mediates the trade-off between growth and pathogen-associated molecular pattern-triggered immunity in Arabidopsis, Plant Cell, vol.26, pp.828-841, 2014.

P. Fourcroy, P. Sisó-terraza, D. Sudre, M. Savirón, G. Reyt et al., Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency, New Phytol, vol.201, pp.155-167, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00921475

P. Fourcroy, N. Tissot, F. Gaymard, J. Briat, and C. Dubos, Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 highaffinity root Fe2+ transport system, Molecular Plant, vol.9, pp.485-488, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01354677

R. Golonka, B. S. Yeoh, and M. Vijay-kumar, The iron tug-of-war between bacterial siderophores and innate immunity, J Innate Immun, vol.11, pp.249-262, 2019.

L. Grillet, P. Lan, W. Li, G. Mokkapati, and W. Schmidt, IRON MAN is a ubiquitous family of peptides that control iron transport in plants, Nature Plants, vol.4, p.953, 2018.

V. Chapitre, Impact de différentes pyoverdines de Pseudomonas spp. fluorescents sur l'expression de gènes impliqués dans la nutrition en fer et l'immunité du pois, p.271

L. Grillet and W. Schmidt, Iron acquisition strategies in land plants: not so different after all, New Phytol, p.16005, 2019.

S. Hacquard, R. Garrido-oter, A. González, S. Spaepen, G. Ackermann et al., Microbiota and host nutrition across plant and animal kingdoms, Cell Host Microbe, vol.17, pp.603-616, 2015.

S. L. Hartney, S. Mazurier, M. K. Girard, S. Mehnaz, E. W. Davis et al., Ferric-pyoverdine recognition by Fpv outer membrane proteins of Pseudomonas protegens Pf-5, J. Bacteriol, vol.195, pp.765-776, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02643721

R. C. Hider and X. Kong, Chemistry and biology of siderophores, Nat. Prod. Rep, vol.27, p.637, 2010.

T. Hirayama, G. J. Lei, N. Yamaji, N. Nakagawa, and J. F. Ma, The putative peptide gene FEP1 regulates iron deficiency response in Arabidopsis, Plant Cell Physiol, vol.59, pp.1739-1752, 2018.

Y. Ishimaru, M. Suzuki, T. Tsukamoto, K. Suzuki, M. Nakazono et al., Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+, Plant J, vol.45, pp.335-346, 2006.

C. W. Jin, G. X. Li, X. H. Yu, and S. J. Zheng, Plant Fe status affects the composition of siderophoresecreting microbes in the rhizosphere, Ann Bot, vol.105, pp.835-841, 2010.

A. H. Kabir, N. G. Paltridge, A. J. Able, J. G. Paull, and J. C. Stangoulis, Natural variation for Feefficiency is associated with upregulation of Strategy I mechanisms and enhanced citrate and ethylene synthesis in Pisum sativum L, Planta, vol.235, pp.1409-1419, 2012.

T. Kobayashi and N. K. Nishizawa, Iron uptake, translocation, and regulation in higher plants, Annu Rev Plant Biol, vol.63, pp.131-152, 2012.

J. Kreplak, M. Madoui, P. Cápal, P. Novák, K. Labadie et al., A reference genome for pea provides insight into legume genome evolution, Nat Genet, vol.51, pp.1411-1422, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02278272

V. Lanquar, F. Lelièvre, S. Bolte, C. Hamès, C. Alcon et al., Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron, The EMBO Journal, vol.24, pp.4041-4051, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00119928

P. Lemanceau, D. Expert, F. Gaymard, P. A. Bakker, and J. Briat, Role of iron in plantmicrobe interactions, Advances in Botanical Research Advances in Botanical Research, pp.491-549, 2009.

P. Lemanceau, P. Bauer, S. Kraemer, and J. Briat, Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes, Plant Soil, vol.321, pp.513-535, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00409018

A. Levy, I. Salas-gonzalez, M. Mittelviefhaus, S. Clingenpeel, S. Herrera-paredes et al., Genomic features of bacterial adaptation to plants, Nat Genet, vol.50, pp.138-150, 2018.

F. G. Malinovsky, M. Batoux, B. Schwessinger, J. H. Youn, L. Stransfeld et al., Antagonistic regulation of growth and immunity by the Arabidopsis basic helix-loop-helix transcription factor, Plant Physiol, vol.164, pp.1443-1455, 2014.

V. Chapitre, Impact de différentes pyoverdines de Pseudomonas spp. fluorescents sur l'expression de gènes impliqués dans la nutrition en fer et l'immunité du pois, p.272

J. M. Meyer and M. A. Abdallah, The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties, Microbiology, vol.107, pp.319-328, 1978.

J. Meyer, C. Gruffaz, V. Raharinosy, I. Bezverbnaya, M. Schäfer et al., Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method, Biometals, vol.21, pp.259-271, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00185875

M. A. Naranjo-arcos, F. Maurer, J. Meiser, S. Pateyron, C. Fink-straube et al., Dissection of iron signalling and iron accumulation by overexpression of subgroup Ib bHLH039 protein, Sci Rep, vol.7, p.10911, 2017.

J. Neuser, C. C. Metzen, B. H. Dreyer, C. Feulner, J. T. Van-dongen et al., HBI1 mediates the trade-off between growth and Immunity through Its impact on apoplastic ROS homeostasis, Cell Reports, vol.28, pp.1670-1678, 2019.

C. M. Palmer, M. N. Hindt, H. Schmidt, S. Clemens, and M. L. Guerinot, MYB10 and MYB72 are required for growth under iron-limiting conditions, PLoS Genet, vol.9, p.1003953, 2013.

K. Ravet, B. Touraine, J. Boucherez, J. Briat, F. Gaymard et al., Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis, Plant J, vol.57, pp.400-412, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00409336

A. Robin, S. Mazurier, C. Mougel, G. Vansuyt, T. Corberand et al., Diversity of rootassociated fluorescent pseudomonads as affected by ferritin overexpression in tobacco: diversity of fluorescent pseudomonads in rhizosphere, Environ. Microbiol, vol.9, pp.1724-1737, 2007.

A. Robin, C. Mougel, S. Siblot, G. Vansuyt, S. Mazurier et al., Effect of ferritin overexpression in tobacco on the structure of bacterial and pseudomonad communities associated with the roots: Structure of rhizosphere bacterial and pseudomonad communities, FEMS Microbiol Ecol, vol.58, pp.492-502, 2006.

A. Robin, G. Vansuyt, P. Hinsinger, J. M. Meyer, J. F. Briat et al., Chapter 4 Iron dynamics in the rhizosphere, Advances in Agronomy, pp.183-225, 2008.

F. J. Romera, M. J. García, C. Lucena, A. Martínez-medina, M. A. Aparicio et al., Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants, Front Plant Sci, vol.10, p.287, 2019.

N. B. Schmid, R. F. Giehl, S. Döll, H. Mock, N. Strehmel et al., Feruloyl-CoA 6'-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis, Plant Physiol, vol.164, pp.160-172, 2014.

H. Schmidt, C. Günther, M. Weber, C. Spörlein, S. Loscher et al., Metabolome analysis of Arabidopsis thaliana roots identifies a key ketabolic pathway for iron acquisition, PLoS ONE, vol.9, 2014.

W. Schmidt, Mechanisms and regulation of reduction-based iron uptake in plants, The New Phytologist, vol.141, pp.1-26, 1999.

S. Selim, J. Sanssené, S. Rossard, and J. Courtois, Systemic induction of the defensin and phytoalexin pisatin pathways in pea (Pisum sativum) against Aphanomyces euteiches by acetylated and nonacetylated oligogalacturonides, Molecules, vol.22, p.1017, 2017.

V. Chapitre, Impact de différentes pyoverdines de Pseudomonas spp. fluorescents sur l'expression de gènes impliqués dans la nutrition en fer et l'immunité du pois, p.273

M. Shirley, L. Avoscan, E. Bernaud, G. Vansuyt, and P. Lemanceau, Comparison of iron acquisition from Fe-pyoverdine by strategy I and strategy II plants, Botany, vol.89, pp.731-735, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02644698

P. Trapet, Incidence physiologique et étude du mode d'action de la pyoverdine de Pseudomonas fluorescens chez Arabidopsis thaliana : liens avec l'homéostasie du fer, 2015.

P. Trapet, L. Avoscan, A. Klinguer, S. Pateyron, S. Citerne et al., The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in irondeficient conditions, Plant Physiol, vol.171, pp.675-693, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01636086

D. K. Tripathi, S. Singh, S. Gaur, S. Singh, V. Yadav et al., Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance, Front. Environ. Sci, vol.5, p.86, 2018.

H. H. Tsai and W. Schmidt, Mobilization of iron by plant-borne coumarins, Trends Plant Sci, vol.22, pp.538-548, 2017.

H. Tsai and W. Schmidt, One way. Or another? Iron uptake in plants, New Phytol, vol.214, pp.500-505, 2017.

L. C. Van-loon, P. A. Bakker, W. H. Van-der-heijdt, D. Wendehenne, and A. Pugin, Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance, MPMI, vol.21, pp.1609-1621, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02663014

L. C. Van-loon, M. Rep, and C. M. Pieterse, Significance of inducible defense-related proteins in infected plants, Annu Rev Phytopathol, vol.44, pp.135-162, 2006.

A. Vannozzi, S. Donnini, G. Vigani, M. Corso, G. Valle et al., Transcriptional characterization of a widely-used grapevine rootstock genotype under different iron-limited conditions, Front. Plant Sci, vol.7, 1994.
URL : https://hal.archives-ouvertes.fr/hal-02861101

G. Vansuyt, A. Robin, J. Briat, C. Curie, and P. Lemanceau, Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana, MPMI, vol.20, pp.441-447, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00142196

E. H. Verbon, P. L. Trapet, I. A. Stringlis, and S. Kruijs, Iron and immunity, Annu Rev Phytopathol, pp.355-75, 2017.

H. Wang, M. Klatte, M. Jakoby, H. Bäumlein, B. Weisshaar et al., Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana, Planta, vol.226, pp.897-908, 2007.

B. M. Waters, Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition, Plant Physiol, vol.129, pp.85-94, 2002.

H. Xiong, Y. Kakei, T. Kobayashi, X. Guo, M. Nakazono et al., Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil, Plant Cell Environ, vol.36, pp.1888-1902, 2013.

Y. Yuan, H. Wu, N. Wang, J. Li, W. Zhao et al., FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis, Cell Res, vol.18, pp.385-397, 2008.

C. Zamioudis, J. Hanson, and C. M. Pieterse, ?-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots, New Phytol, vol.204, pp.368-379, 2014.

V. Chapitre, Impact de différentes pyoverdines de Pseudomonas spp. fluorescents sur l'expression de gènes impliqués dans la nutrition en fer et l

O. Agafonov, C. H. Selstø, K. Thorsen, X. M. Xu, T. Drengstig et al., The Organization of controller motifs leading to robust plant iron homeostasis, PLoS ONE, vol.11, 2016.

I. Ahmed, A. H. Kabir, M. F. Rahman, A. , and F. , In vitro screening of pea genotypes tolerant to iron deficiency based on physiological traits, Int. J. Biosci, vol.6, pp.460-467, 2015.

A. Albrecht-gary, S. Blanc, N. Rochel, A. Z. Ocaktan, and M. A. Abdallah, Bacterial iron transport: coordination properties of pyoverdin PaA, a peptidic siderophore of Pseudomonas aeruginosa, Inorg. Chem, vol.33, pp.6391-6402, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01458140

A. Aznar and A. Dellagi, New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals?, J. Exp. Bot, vol.66, pp.3001-3010, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204186

P. A. Bakker, C. M. Pieterse, and L. C. Van-loon, Induced systemic resistance by fluorescent Pseudomonas spp, Phytopathology, vol.97, pp.239-243, 2007.

E. Bar-ness, Y. Hadar, Y. Chen, A. Shanzer, and J. Libman, Iron uptake by plants from microbial siderophores: a study with 7-nitrobenz-2 oxa-1,3-diazole-desferrioxamine as fluorescent ferrioxamine B analog, Plant Physiol, vol.99, pp.1329-1335, 1992.

J. O. Becker, R. W. Hedges, and E. Messens, Inhibitory effect of pseudobactin on the uptake of iron by higher plants, Appl. Environ. Microbiol, vol.49, pp.1090-1093, 1985.

J. O. Becker, E. Messens, and R. W. Hedges, The influence of agrobactin on the uptake of ferric iron by plants, FEMS Microbiol. Ecol, vol.31, pp.171-175, 1985.

H. F. Bienfait, W. Briel, M. Van-den, and N. T. , Free space iron pools in roots: generation and mobilization, Plant Physiol, vol.78, pp.596-600, 1985.

E. M. Brear, D. A. Day, and P. M. Smith, Iron: an essential micronutrient for the legume-rhizobium symbiosis, Front. Plant Sci, vol.4, p.359, 2013.

J. Briat, C. Dubos, and F. Gaymard, Iron nutrition, biomass production, and plant product quality, Trends Plant Sci, vol.20, pp.33-40, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137867

J. Briat, K. Ravet, N. Arnaud, C. Duc, J. Boucherez et al., New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants, Ann. Bot, vol.105, pp.811-822, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00507304

G. Briskot, K. Taraz, and H. Budzikiewicz, Bacterial constituents, XXXVII. Pyoverdin-Type Siderophores from Pseudomonas aeruginosa, Liebigs Ann. Chem, pp.375-384, 1989.

H. Budzikiewicz, Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp, Fortschritte Chem. Org. Naturstoffe Prog. Chem. Org. Nat. Prod. Progres Dans Chim. Subst. Org. Nat, vol.87, pp.81-237, 2004.

J. Burstin, K. Gallardo, R. R. Mir, R. K. Varshney, and G. Duc, Improving protein content and nutrition quality, Biology and Breeding of Food Legumes, pp.314-328, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02811154

W. B. Cannon, Organization for physiological homeostasis, Physiol. Rev, vol.9, pp.399-431, 1929.

G. Carrillo-castañeda, J. J. Muñoz, J. R. Peralta-videa, E. Gomez, and J. L. Gardea-torresdey, Modulation of uptake and translocation of iron and copper from root to shoot in common bean by siderophoreproducing microorganisms, J. Plant Nutr, vol.28, pp.1853-1865, 2005.

C. Cézard, N. Farvacques, and P. Sonnet, Chemistry and biology of pyoverdines, Pseudomonas primary siderophores, Curr. Med. Chem, vol.22, pp.165-186, 2015.

L. Chen, W. A. Dick, and J. G. Streeter, Production of aerobactin by microorganisms from a compost enrichment culture and soybean utilization, J. Plant Nutr, vol.23, pp.2047-2060, 2000.

Y. Chen and P. Barak, Iron nutrition of plants in calcareous soils, Advances in Agronomy, pp.217-240, 1982.

S. Clemens, Metal ligands in micronutrient acquisition and homeostasis, Plant Cell Environ, 2019.

K. D. Clevenger, R. Mascarenhas, D. Catlin, R. Wu, N. L. Kelleher et al., Substrate trapping in the siderophore tailoring enzyme PvdQ, ACS Chem. Biol, vol.12, pp.643-647, 2017.

J. M. Connorton, J. Balk, and J. Rodríguez-celma, Iron homeostasis in plants -a brief overview, Metallomics, vol.9, pp.813-823, 2017.

P. Cornelis, Iron uptake and metabolism in pseudomonads, Appl. Microbiol. Biotechnol, vol.86, pp.1637-1645, 2010.

R. M. Cornell and U. Schwertmann, The iron ixides: structure, properties, reactions, occurences and uses, 2003.

D. E. Crowley, C. P. Reid, and P. J. Szaniszlo, Utilization of microbial siderophores in iron acquisition by oat, Plant Physiol, vol.87, pp.680-685, 1988.

C. Curie and J. Briat, Iron transport and signaling in plants, Annu. Rev. Plant Biol, vol.54, pp.183-206, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02672950

C. Curie, G. Cassin, D. Couch, F. Divol, K. Higuchi et al., Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters, Ann. Bot, vol.103, pp.1-11, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00367118

W. J. Dahl, L. M. Foster, and R. T. Tyler, Review of the health benefits of peas (Pisum sativum L.), Br. J. Nutr, vol.108, 2012.

B. Darbani, J. Briat, P. B. Holm, S. Husted, S. Noeparvar et al., Dissecting plant iron homeostasis under short and long-term iron fluctuations, Biotechnol. Adv, vol.31, pp.1292-1307, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00919760

A. De-santiago, A. M. García-lópez, J. M. Quintero, M. Avilés, and A. Delgado, Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils, Soil Biol. Biochem, vol.57, pp.598-605, 2013.

A. De-santiago, J. M. Quintero, M. Avilés, and A. Delgado, Effect of Trichoderma asperellum strain T34 on iron nutrition in white lupin, Soil Biol. Biochem, vol.41, pp.2453-2459, 2009.

L. E. Drinkwater, P. Wagoner, and M. Sarrantonio, Legume-based cropping systems have reduced carbon and nitrogen losses, Nature, vol.396, pp.262-265, 1998.

O. Duchene, J. Vian, C. , and F. , Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms. A review, Agric. Ecosyst. Environ, vol.240, pp.148-161, 2017.

B. J. Duijff, W. J. De-kogel, P. A. Bakker, and B. Schippers, Influence of pseudobactin 358 on the iron nutrition of barley, Soil Biol. Biochem, vol.26, pp.90321-90323, 1994.

S. L. Dwivedi, E. T. Lammerts-van-bueren, S. Ceccarelli, S. Grando, H. D. Upadhyaya et al., Diversifying food systems in the pursuit of sustainable food production and healthy diets, Trends Plant Sci, vol.22, pp.842-856, 2017.

D. Expert, C. Enard, and C. Masclaux, The role of iron in plant host-pathogen interactions, Trends Microbiol, vol.4, pp.232-237, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02685374

M. Fan, F. Zhao, S. J. Fairweather-tait, P. R. Poulton, S. J. Dunham et al., Evidence of decreasing mineral density in wheat grain over the last 160 years, Conclusions générales, vol.22, p.289, 2008.

. Fao, Food and griculture Organization of the United states, 2018.

C. M. Ferreira, C. A. Sousa, I. Sanchis-pérez, S. López-rayo, M. T. Barros et al., Calcareous soil interactions of the iron(III) chelates of DPH and Azotochelin and its application on amending iron chlorosis in soybean (Glycine max), Sci. Total Environ, vol.647, pp.1586-1593, 2019.

N. Folschweiller, J. Gallay, M. Vincent, M. A. Abdallah, F. Pattus et al., The interaction between pyoverdin and its outer membrane receptor in Pseudomonas aeruginosa leads to different conformers: a time-resolved fluorescence study, Biochemistry, vol.41, pp.14591-14601, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00174676

P. Fourcroy, P. Sisó-terraza, D. Sudre, M. Savirón, G. Reyt et al., Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency, New Phytol, vol.201, pp.155-167, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00921475

P. Fourcroy, N. Tissot, F. Gaymard, J. Briat, and C. Dubos, Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe2+ transport system, Mol. Plant, vol.9, pp.485-488, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01354677

M. A. Freitas, F. H. Medeiros, S. P. Carvalho, L. R. Guilherme, W. D. Teixeira et al., Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3). Front, Plant Sci, vol.6, p.596, 2015.

D. Garrido-sanz, J. P. Meier-kolthoff, M. Göker, M. Martín, R. Rivilla et al., Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex, PLoS ONE, vol.11, 2016.

E. Gaulin, C. Jacquet, A. Bottin, and B. Dumas, Root rot disease of legumes caused by Aphanomyces euteiches, Mol. Plant Pathol, vol.8, pp.539-548, 2007.

L. Ge and S. Y. Seah, Heterologous expression, purification, and characterization of an l-Ornithine N5-Hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa, J. Bacteriol, vol.188, pp.7205-7210, 2006.

M. C. Gessard, Sur la fonction fluorescigène des microbes, pp.801-823, 1892.

U. D. Ghosh, C. Saha, M. Maiti, S. Lahiri, S. Ghosh et al., Root associated iron oxidizing bacteria increase phosphate nutrition and influence root to shoot partitioning of iron in tolerant plant Typha angustifolia, Plant Soil, vol.381, pp.279-295, 2014.

R. R. Gildersleeve and W. R. Ocumpaugh, Greenhouse evaluation of subterranean clover species for susceptibility to iron-deficiency chlorosis, Crop Sci, vol.29, pp.949-951, 1989.

M. Gomila, A. Pena, M. Mulet, J. Lalucat, and E. Garci-a-valdés, Phylogenomics and systematics in Pseudomonas, Front. Microbiol, vol.6, p.214, 2015.

L. Grillet, P. Lan, W. Li, G. Mokkapati, and W. Schmidt, IRON MAN is a ubiquitous family of peptides that control iron transport in plants, Nat. Plants, vol.4, p.953, 2018.

L. Grillet and W. Schmidt, Iron acquisition strategies in land plants: not so different after all, New Phytol, p.16005, 2019.

M. L. Guerinot, Y. , and Y. , Iron: nutritious, noxious, and not readily available, Plant Physiol, vol.104, pp.815-820, 1994.

J. G. Harmsen, W. H. Rulkens, and H. Eijsackers, Bioavailability: concept for understanding or tool for predicting? Land Contam, 2005.

W. R. Harris, R. D. Sammons, and R. C. Grabiak, A speciation model of essential trace metal ions in phloem, Conclusions générales, vol.116, p.290, 2012.

S. L. Hartney, S. Mazurier, M. K. Girard, S. Mehnaz, E. W. Davis et al., Ferric-pyoverdine recognition by Fpv outer membrane proteins of Pseudomonas protegens Pf-5, J. Bacteriol, vol.195, pp.765-776, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02643721

B. P. Hay, D. A. Dixon, R. Vargas, J. Garza, R. et al., Structural criteria for the rational design of selective ligands. 3. quantitative structure?stability relationship for iron(III) complexation by triscatecholamide siderophores, Inorg. Chem, vol.40, pp.3922-3935, 2001.

T. C. Helms, R. A. Scott, W. T. Schapaugh, R. J. Goos, D. W. Franzen et al., Soybean irondeficiency chlorosis tolerance and yield decrease on calcareous soils, Agron. J, vol.102, p.492, 2010.

R. C. Hider and X. Kong, Chemistry and biology of siderophores, Nat. Prod. Rep, vol.27, p.637, 2010.

T. Hirayama, G. J. Lei, N. Yamaji, N. Nakagawa, and J. F. Ma, The putative peptide gene FEP1 regulates iron deficiency response in Arabidopsis, Plant Cell Physiol, vol.59, pp.1739-1752, 2018.

W. Hördt, V. Römheld, and G. Winkelmann, Fusarinines and dimerum acid, mono-and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants, BioMetals, vol.13, p.10, 2000.

Y. Ichinose, F. Taguchi, and T. Mukaihara, Pathogenicity and virulence factors of Pseudomonas syringae, J. Gen. Plant Pathol, vol.79, pp.285-296, 2013.

Y. Ishimaru, M. Suzuki, T. Tsukamoto, K. Suzuki, M. Nakazono et al., Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+, Plant J, vol.45, pp.335-346, 2006.

A. Jain, A. Singh, A. Chaudhary, S. Singh, and H. B. Singh, Modulation of nutritional and antioxidant potential of seeds and pericarp of pea pods treated with microbial consortium, Food Res. Int, vol.64, pp.275-282, 2014.

C. W. Jin, G. X. Li, X. H. Yu, and S. J. Zheng, Plant Fe status affects the composition of siderophoresecreting microbes in the rhizosphere, Ann. Bot, vol.105, pp.835-841, 2010.

C. W. Jin, Y. Q. Ye, and S. J. Zheng, An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes, Ann. Bot, vol.113, pp.7-18, 2014.

C. W. Jin, G. Y. You, Y. F. He, C. Tang, P. Wu et al., Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover, Plant Physiol, vol.144, pp.278-285, 2007.

P. Jones, B. J. Garcia, A. Furches, G. A. Tuskan, and D. Jacobson, Plant host-associated mechanisms for microbial selection, Front. Plant Sci, vol.10, p.862, 2019.

S. A. Kim and M. L. Guerinot, Mining iron: iron uptake and transport in plants, FEBS Lett, vol.581, pp.2273-2280, 2007.

E. O. King, M. K. Ward, and D. E. Raney, Two simple media for the demonstration of pyocyanin and fluorescin, J. Lab. Clin. Med, vol.44, pp.301-307, 1954.

J. W. Kloepper, J. Leong, M. Teintze, and M. N. Schroth, Pseudomonas siderophores: A mechanism explaining disease-suppressive soils, Curr. Microbiol, vol.4, pp.317-320, 1980.

Y. Kobae, R. Tomioka, K. Tanoi, N. I. Kobayashi, Y. Ohmori et al., Selective induction of putative iron transporters, OPT8a and OPT8b, in maize by mycorrhizal colonization, Soil Sci. Plant Nutr, vol.60, pp.843-847, 2014.

T. Kobayashi and N. K. Nishizawa, Iron uptake, translocation, and regulation in higher plants, Annu. Rev. Plant Biol, vol.63, pp.131-152, 2012.

E. Koen, A. Besson-bard, C. Duc, J. Astier, A. Gravot et al., Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure, Conclusions générales, vol.209, p.291, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00967003

S. Labidi, F. Ben-jeddi, B. Tisserant, D. Debiane, S. Rezgui et al., Role of arbuscular mycorrhizal symbiosis in root mineral uptake under CaCO3 stress, Mycorrhiza, vol.22, pp.337-345, 2012.

V. Lanquar, F. Lelièvre, S. Bolte, C. Hamès, C. Alcon et al., Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron, EMBO J, vol.24, pp.4041-4051, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00119928

M. Leeman, U. Utrecht, F. M. Ouden, . Den, J. A. Pelt et al., Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens, Phytopathology. Available at, 1996.

P. Lemanceau, A. , and C. , Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium, Crop Prot, vol.10, p.90006, 1991.
URL : https://hal.archives-ouvertes.fr/hal-02700200

P. Lemanceau, P. A. Bakker, W. J. De-kogel, C. Alabouvette, and B. Schippers, Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47, Appl. Environ. Microbiol, vol.58, pp.2978-2982, 1992.

P. Lemanceau, P. A. Bakker, W. J. De-kogel, C. Alabouvette, and B. Schippers, Antagonistic effect of nonpathogenic Fusarium oxysporum Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum, sp. dianthi. Appl. Environ. Microbiol, vol.59, pp.74-82, 1993.
URL : https://hal.archives-ouvertes.fr/hal-02701186

P. Lemanceau, M. Barret, S. Mazurier, S. Mondy, B. Pivato et al., Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere, Advances in Botanical Research, pp.101-133, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608302

P. Lemanceau, P. Bauer, S. Kraemer, and J. Briat, Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes, Plant Soil, vol.321, pp.513-535, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00409018

P. Lemanceau, M. Blouin, D. Muller, and Y. Moënne-loccoz, Let the core microbiota be functional, Trends Plant Sci, vol.22, pp.583-595, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608595

C. Leyval and C. P. Reid, Utilization of microbial siderophores by mycorrhizal and non-mycorrhizal pine roots, New Phytol, vol.119, pp.93-98, 1991.

S. Lobreaux, O. Massenet, and J. F. Briat, Iron induces ferritin synthesis in maize plantlets, Plant Mol. Biol, vol.19, pp.563-575, 1992.

N. Longnecker and R. M. Welch, Accumulation of apoplastic iron in plant roots: a factor in the resistance of soybeans to iron-deficiency induced chlorosis?, Plant Physiol, vol.92, pp.17-22, 1990.

H. Mahmoudi, H. Koyro, A. Debez, A. , and C. , Comparison of two chickpea varieties regarding their responses to direct and induced Fe deficiency, Environ. Exp. Bot, vol.66, pp.349-356, 2009.

J. A. Manthey, B. Tisserat, and D. E. Crowley, Root responses of sterile-grown onion plants to iron deficiency, J. Plant Nutr, vol.19, pp.145-161, 1996.

M. Maurhofer, C. Reimmann, P. Schmidli-sacherer, S. Heeb, D. Haas et al., Salicylic acid ciosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus, Phytopathology, vol.88, pp.678-684, 1998.

J. M. Meyer and M. A. Abdallah, The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties, Microbiology, vol.107, pp.319-328, 1978.

J. Meyer, C. Gruffaz, T. Tulkki, and D. Izard, Taxonomic heterogeneity, as shown by siderotyping, of strains primarily identified as Pseudomonas putida, Int. J. Syst. Evol. Microbiol, vol.57, pp.2543-2556, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00185870

, Conclusions générales, p.292

P. K. Mishra, S. C. Bisht, P. Ruwari, G. K. Joshi, G. Singh et al., Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.), Eur. J. Soil Biol, vol.47, pp.35-43, 2011.

T. Nagata, Effect of Pseudomonas fluorescens inoculation on the improvement of iron deficiency in tomato, vol.11, pp.1-9, 2017.

T. Nagata, T. Oobo, A. , and O. , Efficacy of a bacterial siderophore, pyoverdine, to supply iron to Solanum lycopersicum plants, J. Biosci. Bioeng, vol.115, pp.686-690, 2013.

M. A. Naranjo-arcos, F. Maurer, J. Meiser, S. Pateyron, C. Fink-straube et al., Dissection of iron signalling and iron accumulation by overexpression of subgroup Ib bHLH039 protein, Sci. Rep, vol.7, p.10911, 2017.

C. Nouet, P. Motte, and M. Hanikenne, Chloroplastic and mitochondrial metal homeostasis, Trends Plant Sci, vol.16, pp.395-404, 2011.

P. Offre, B. Pivato, S. Mazurier, S. Siblot, G. Berta et al., Microdiversity of Burkholderiales associated with mycorrhizal and nonmycorrhizal roots of Medicago truncatula, FEMS Microbiol. Ecol, vol.65, pp.180-192, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02661182

, La population, Organ. N. U. Available, 2019.

C. M. Palmer, M. N. Hindt, H. Schmidt, S. Clemens, and M. L. Guerinot, MYB10 and MYB72 are required for growth under iron-limiting conditions, PLoS Genet, vol.9, p.1003953, 2013.

C. M. Pieterse, C. Zamioudis, R. L. Berendsen, D. M. Weller, S. C. Van-wees et al., Induced systemic resistance by beneficial microbes, Annu. Rev. Phytopathol, vol.52, pp.347-375, 2014.

A. A. Pourbabaee, F. Shoaibi, S. Emami, A. , and H. A. , The potential contribution of siderophore producing bacteria on growth and Fe ion concentration of sunflower (Helianthus annuus L.) under water stress, J. Plant Nutr, vol.41, pp.619-626, 2018.

W. Radzki, F. J. Gutierrez-mañero, E. Algar, J. A. Lucas-garcía, A. García-villaraco et al., Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture, Antonie Van Leeuwenhoek, vol.104, pp.321-330, 2013.

L. X. Ran, Z. N. Li, G. J. Wu, L. C. Loon, and P. A. Bakker, Induction of systemic resistance against bacterial wilt in eucalyptus urophylla by fluorescent Pseudomonas spp, Eur. J. Plant Pathol, vol.113, pp.59-70, 2005.

J. Ravel and P. Cornelis, Genomics of pyoverdine-mediated iron uptake in pseudomonads, Trends Microbiol, vol.11, pp.195-200, 2003.

K. Ravet, B. Touraine, J. Boucherez, J. Briat, F. Gaymard et al., Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis, Plant J, vol.57, pp.400-412, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00409336

R. Rellán-alvarez, J. Abadía, and A. Alvarez-fernández, Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom. RCM, vol.22, pp.1553-1562, 2008.

M. Reza, Assessing the effect of siderophore producing bacteria for the iron nutrition in lentil and pea, 2017.

M. T. Ringel and T. Brüser, The biosynthesis of pyoverdines, Microb. Cell, vol.5, pp.424-437, 2018.

M. T. Ringel, G. Dräger, and T. Brüser, The periplasmic transaminase PtaA of Pseudomonas fluorescens converts the glutamic acid residue at the pyoverdine fluorophore to ?-ketoglutaric acid, Conclusions générales, vol.292, p.293, 2017.

A. Robin, S. Mazurier, C. Mougel, G. Vansuyt, T. Corberand et al., Diversity of rootassociated fluorescent pseudomonads as affected by ferritin overexpression in tobacco: diversity of fluorescent pseudomonads in rhizosphere, Environ. Microbiol, vol.9, pp.1724-1737, 2007.

A. Robin, G. Vansuyt, P. Hinsinger, J. M. Meyer, J. F. Briat et al., Chapter 4 Iron dynamics in the rhizosphere, Advances in Agronomy, pp.183-225, 2008.

M. Sandy and A. Butler, Microbial iron acquisition: marine and terrestrial siderophores, Chem. Rev, vol.109, pp.4580-4595, 2009.

F. M. Scher and R. Baker, Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens, Phytopathology, vol.72, pp.1567-1573, 1982.

N. B. Schmid, R. F. Giehl, S. Döll, H. Mock, N. Strehmel et al., Feruloyl-CoA 6'-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis, Plant Physiol, vol.164, pp.160-172, 2014.

H. Schmidt, C. Günther, M. Weber, C. Spörlein, S. Loscher et al., Metabolome analysis of Arabidopsis thaliana roots identifies a key ketabolic pathway for iron acquisition, PLoS ONE, vol.9, 2014.

D. Segond, A. Dellagi, V. Lanquar, M. Rigault, O. Patrit et al., NRAMP genes function in Arabidopsis thaliana resistance to Erwinia chrysanthemi infection, Plant J, vol.58, pp.195-207, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00855505

A. Sharma, D. Shankhdhar, and S. C. Shankhdhar, Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria, Plant Soil Environ, vol.59, pp.89-94, 2013.

M. Shenker, Y. Chen, R. Ghirlando, I. Oliver, M. Helmann et al., Chemical structure and biological activity of a siderophore produced by Rhizopus arrhizus, Soil Sci. Soc. Am. J, vol.59, p.837, 1995.

P. J. Shipton, Monoculture and soilborne plant pathogens, Annu. Rev. Phytopathol, vol.15, pp.387-407, 1977.

M. Shirley, L. Avoscan, E. Bernaud, G. Vansuyt, and P. Lemanceau, Comparison of iron acquisition from Fe-pyoverdine by strategy I and strategy II plants, Botany, vol.89, pp.731-735, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02644698

D. Singh, N. Geat, M. V. Rajawat, M. M. Mahajan, R. Prasanna et al., Deciphering the mechanisms of endophyte-mediated biofortification of Fe and Zn in wheat, J. Plant Growth Regul, vol.37, pp.174-182, 2017.

D. Singh, N. Geat, M. V. Rajawat, R. Prasanna, A. Kar et al., Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield, and micronutrient content, Ann. Microbiol, vol.68, pp.815-833, 2018.

I. A. Stringlis, K. Yu, K. Feussner, R. De-jonge, S. Van-bentum et al., MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health, Proc. Natl. Acad. Sci, vol.115, pp.5213-5222, 2018.

P. Trapet, L. Avoscan, A. Klinguer, S. Pateyron, S. Citerne et al., The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in irondeficient conditions, Plant Physiol, vol.171, pp.675-693, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01636086

H. H. Tsai and W. Schmidt, Mobilization of iron by plant-borne coumarins, Trends Plant Sci, vol.22, pp.538-548, 2017.

L. C. Van-loon, P. A. Bakker, W. H. Van-der-heijdt, D. Wendehenne, and A. Pugin, Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance, Mol. Plant. Microbe Interact, vol.21, pp.1609-1621, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02663014

P. Van-rhijn and J. Vanderleyden, The Rhizobium-plant symbiosis, Conclusions générales, vol.59, p.294, 1995.

G. Vansuyt, A. Robin, J. Briat, C. Curie, and P. Lemanceau, Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana, Mol. Plant. Microbe Interact, vol.20, pp.441-447, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00142196

P. Visca, A. Ciervo, and N. Orsi, Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme L-ornithine N5-oxygenase in Pseudomonas aeruginosa, J. Bacteriol, vol.176, pp.1128-1140, 1994.

P. Visca, F. Imperi, and I. L. Lamont, Pyoverdine siderophores: from biogenesis to biosignificance, Trends Microbiol, vol.15, 2007.

A. Wakeel, M. Farooq, K. Bashir, and L. Ozturk, Micronutrient malnutrition and biofortification: recent advances and future perspectives, pp.225-243, 2018.

J. Wang, C. Zhou, X. Xiao, Y. Xie, L. Zhu et al., Enhanced iron and selenium uptake in plants by volatile emissions of Bacillus amyloliquefaciens (BF06), Appl. Sci, vol.7, p.85, 2017.

Y. Wang, H. N. Brown, D. E. Crowley, and P. J. Szaniszlo, Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber, Plant Cell Environ, vol.16, pp.579-585, 1993.

B. M. Waters, S. A. Mcinturf, and R. J. Stein, Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana, J. Exp. Bot, vol.63, pp.5903-5918, 2012.

C. C. Winterbourn, Toxicity of iron and hydrogen peroxide: the Fenton reaction, Toxicol. Lett, pp.82-83, 1995.

, WHO. Anémie Ferriprive. Available at, 2019.

, Global nutrition policy review 2016-2017: country progress in creating enabling policy environments for promoting healthy diets and nutrition, 2018.

H. Xiong, Y. Kakei, T. Kobayashi, X. Guo, M. Nakazono et al., Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil, Plant Cell Environ, vol.36, pp.1888-1902, 2013.

U. M. Yakop, Physiological and genetic investigations of iron deficiency in field peas, Pisum sativum L.). Available at, 2012.

Z. Yehuda, M. Shenker, Y. Hadar, C. , and Y. , Remedy of chlorosis induced by iron deficiency in plants with the fungal siderophore rhizoferrin, J. Plant Nutr, vol.23, 1991.

M. Zieli?ska-dawidziak, Plant ferritin--a source of iron to prevent its deficiency, Nutrients, vol.7, pp.1184-1201, 2015.

H. Zhang, Y. Sun, X. Xie, M. Kim, S. E. Dowd et al., A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms, Plant J, vol.58, pp.568-577, 2009.

C. Zhou, J. Guo, L. Zhu, X. Xiao, Y. Xie et al., Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms, Plant Physiol. Biochem, vol.105, pp.162-173, 2016.

C. Zhou, L. Zhu, Z. Ma, W. , and J. , Improved iron acquisition of Astragalus sinicus under low ironavailability conditions by soil-borne bacteria Burkholderia cepacia, J. Plant Interact, vol.13, pp.9-20, 2018.

K. Zribi and M. Gharsalli, Effect of bicarbonate on growth and iron nutrition of pea, J. Plant Nutr, vol.25, pp.2143-2149, 2002.