K. Aamodt, A. A. Quintana, R. Achenbach, S. Acounis, D. Adamová et al., The ALICE experiment at the CERN LHC, Journal of Instrumentation, vol.3, issue.08, pp.8002-08002, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00311441

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. CoRR, 2016.

N. Abe, B. Zadrozny, and J. Langford, Outlier Detection by Active Learning, Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '06, pp.504-509, 2006.

C. Adam-bourdarios, G. Cowan, C. Germain, I. Guyon, B. Kégl et al., The Higgs Boson Machine Learning Challenge, Proceedings of the 2014 International Conference on High-Energy Physics and Machine Learning, vol.42, pp.19-55, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01208587

C. C. Aggarwal, Data Classification: Algorithms and Applications, 2014.

C. C. Aggarwal, Outlier Analysis, 2016.

C. C. Aggarwal, A. Hinneburg, and D. A. Keim, On the Surprising Behavior of Distance Metrics in High Dimensional Spaces, Proceedings of the 8th International Conference on Database Theory, ICDT '01, pp.420-434, 2001.

I. N. Aizenberg, N. N. Aizenberg, and J. P. Vandewalle, Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications, 2000.

G. Alain and Y. Bengio, What Regularized Auto-Encoders Learn from the Data-Generating Distribution, J. Mach. Learn. Res, vol.15, issue.1, pp.3563-3593, 2014.

J. An and S. Cho, Variational Autoencoder based Anomaly Detection using Reconstruction Probability, 2015.

J. Andrews, E. Morton, G. , and L. , Detecting anomalous data using auto-encoders, International Journal of Machine Learning and Computing, vol.6, p.21, 2016.

F. J. Anscombe, Rejection of Outliers, Technometrics, vol.2, issue.2, pp.123-146, 1960.

D. J. Atha and M. R. Jahanshahi, Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection, Structural Health Monitoring, vol.17, issue.5, pp.1110-1128, 2018.

L. E. Atlas, D. A. Cohn, and R. E. Ladner, Training Connectionist Networks with Queries and Selective Sampling, Advances in Neural Information Processing Systems, vol.2, pp.566-573, 1990.

, The ATLAS Experiment at the CERN Large Hadron Collider, JINST, vol.3, p.8003, 2008.

V. Azzolini, M. Borisyak, G. Cerminara, D. Derkach, G. Franzoni et al., Deep learning for inferring cause of data anomalies, Journal of Physics: Conference Series, vol.1085, p.42015, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01909223

V. Barnett and T. Lewis, Outliers in statistical data, 1978.

S. D. Bay and M. Schwabacher, Mining Distance-Based Outliers in near Linear Time with Randomization and a Simple Pruning Rule, Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '03, pp.29-38, 2003.

R. Bellman, Adaptive Control Processes: A Guided Tour. Princeton Legacy Library, 1961.

Y. Bengio, A. Courville, and P. Vincent, Representation Learning: A Review and New Perspectives, IEEE Trans. Pattern Anal. Mach. Intell, vol.35, issue.8, pp.1798-1828, 2013.

Y. Bengio, Y. Lecun, L. Bottou, O. Chapelle, D. Decoste et al., Scaling Learning Algorithms Towards AI, Large Scale Kernel Machines, 2007.

W. Bernreuther, CP Violation and Baryogenesis, pp.237-293, 2002.

G. Bertone, D. Hooper, and J. Silk, Particle Dark Matter: Evidence, Candidates and Constraints, Physics Reports, p.405, 2004.

C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), 2006.

. Springer-verlag,

G. Blanchard, G. Lee, and C. Scott, Semi-supervised novelty detection, J. Mach. Learn. Res, vol.11, pp.2973-3009, 2010.

D. M. Blei, A. Kucukelbir, and J. D. Mcauliffe, Variational Inference: A Review for Statisticians, Journal of the American Statistical Association, vol.112, issue.518, pp.859-877, 2017.

M. Bojarski, A. Choromanska, K. Choromanski, B. Firner, L. Jackel et al., VisualBackProp: efficient visualization of CNNs, 2016.

M. Borisyak, F. Ratnikov, D. Derkach, and A. Ustyuzhanin, Towards automation of data quality system for CERN CMS experiment, IOP Conf. Ser J Phys Confer Ser, vol.898, issue.9, p.92041, 2017.

S. Borowiec, Alphago seals 4-1 victory over go grandmaster lee sedol. The Guardian, p.15, 2016.

L. Bottou and Y. Lecun, Large scale online learning, Advances in Neural Information Processing Systems 16 NIPS, pp.217-224, 2003.

S. R. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz et al., Generating sentences from a continuous space, Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, pp.10-21, 2016.

M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander, LOF: Identifying Density-based Local Outliers, SIGMOD Rec, vol.29, issue.2, pp.93-104, 2000.

Y. Burda, R. B. Grosse, and R. Salakhutdinov, Importance weighted autoencoders, 4th International Conference on Learning Representations, 2016.

C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters et al., Understanding disentangling in ?-vae, 2018.

J. Butepage, J. He, C. Zhang, L. Sigal, and S. Mandt, Informed priors for deep representation learning, Symposium on Advances in Approximate Bayesian Inference, 2018.

, CERN's Accelerator Complex, 2016.

R. Chalapathy and S. Chawla, Deep learning for anomaly detection: A survey, 2019.

R. Chalapathy, A. K. Menon, and S. Chawla, Anomaly detection using one-class neural networks, 2018.

V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection: A survey, ACM computing surveys (CSUR), vol.41, issue.3, p.15, 2009.

S. Chatrchyan, The CMS experiment at the CERN LHC, JINST, vol.3, p.8004, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00311605

S. Chatrchyan, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Physics Letters B, vol.716, issue.1, pp.30-61, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00722244

T. Chen and C. Guestrin, Xgboost: A scalable tree boosting system, Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp.785-794, 2016.

T. Q. Chen, X. Li, R. B. Grosse, D. K. Duvenaud, S. Bengio et al., Isolating sources of disentanglement in variational autoencoders, Advances in Neural Information Processing Systems, vol.31, pp.2610-2620, 2018.

X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal et al., Variational lossy autoencoder, International Conference on Learning Representations, 2017.

B. Cherief-abdellatif, F. Ruiz, C. Zhang, D. Liang, and T. Bui, Consistency of ELBO maximization for model selection, Proceedings of The 1st Symposium on Advances in Approximate Bayesian Inference, vol.96, pp.11-31, 2019.

H. Choi, E. Jang, A. , and A. A. , WAIC, but Why? Generative Ensembles for Robust Anomaly Detection, 2018.

F. Chollet, , 2015.

J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville et al., A recurrent latent variable model for sequential data, Advances in Neural Information Processing Systems, vol.28, pp.2980-2988, 2015.

, The CMS electromagnetic calorimeter project, pp.97-130, 1997.

, The CMS hadron calorimeter project, 1997.

, The CMS magnet project, 1997.

, Addendum to the CMS Tracker TDR, vol.16, 2000.

, The TriDAS project, The Trigger Systems, vol.1, 2000.

, The TriDAS project, Data Acquisition and High-Level Trigger. CERN/LHCC, vol.2, 2002.

, Calibration of the CMS drift tube chambers and measurement of the drift velocity with cosmic rays, Journal of Instrumentation, vol.5, issue.03, p.3016, 2010.

C. Council, The European Strategy for Particle Physics Update, 2013.

G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, The European Physical Journal C, vol.71, issue.2, p.1554, 2011.

N. Craig, The State of Supersymmetry after Run I of the LHC, 2013.

C. Cremer, X. Li, and D. Duvenaud, Inference Suboptimality in Variational Autoencoders, International Conference on Machine Learning, 2018.

C. Cremer, Q. Morris, and D. Duvenaud, Reinterpreting Importance-Weighted Autoencoders, Workshop at the International Conference on Learning Representations, 2017.

G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of control, signals and systems, vol.2, issue.4, pp.303-314, 1989.

S. R. Davis, Interactive Slice of the CMS detector, 2016.

F. De-guio, The CMS data quality monitoring software: experience and future prospects, Journal of Physics: Conference Series, vol.513, issue.3, p.32024, 2014.

F. Dellaert, The expectation maximization algorithm, 2002.

C. Elkan, The foundations of cost-sensitive learning, International joint conference on artificial intelligence, vol.17, pp.973-978, 2001.

F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Physical Review Letters, vol.13, issue.9, p.321, 1964.

E. Eskin, Anomaly detection over noisy data using learned probability distributions, Proceedings of the Seventeenth International Conference on Machine Learning, ICML '00, pp.255-262, 2000.

S. A. Eslami, D. J. Rezende, F. Besse, F. Viola, A. S. Morcos et al., Neural scene representation and rendering, Science, vol.360, issue.6394, pp.1204-1210, 2018.

O. Fabius, J. R. Van-amersfoort, and D. P. Kingma, Variational recurrent auto-encoders, 3rd International Conference on Learning Representations, 2015.

M. C. Fu, Chapter 19 gradient estimation, Handbooks in Operations Research and Management Science, vol.13, pp.575-616, 2006.

A. Gammerman, V. Vovk, and V. Vapnik, Learning by transduction, Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, UAI'98, pp.148-155, 1998.

M. Gemici, C. Hung, A. Santoro, G. Wayne, S. Mohamed et al., Generative temporal models with memory, 2017.

Z. Ghahramani and M. J. Beal, Propagation algorithms for variational bayesian learning, Advances in Neural Information Processing Systems 13, pp.507-513, 2001.

W. Gibson, Nonlinear factors in two dimensions, Psychometrika, vol.25, pp.381-392, 1960.

K. Gill and . Ep-cmx, CMS pixel upgrade: a truly global endeavor, 2017.

M. Goldstein and S. Uchida, A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data, PloS one, vol.11, issue.4, p.152173, 2016.

M. Gonzalez-garcia, M. Maltoni, and T. Schwetz, Global analyses of neutrino oscillation experiments, Nuclear Physics B, vol.908, pp.199-217, 2016.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, pp.499-523, 2016.

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, Advances in Neural Information Processing Systems, vol.27, pp.2672-2680, 2014.

K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra, DRAW: A Recurrent Neural Network For Image Generation, Proceedings of the 32nd International Conference on Machine Learning, vol.37, pp.1462-1471, 2015.

K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and D. Wierstra, Deep autoregressive networks, Proceedings of the 31st International Conference on Machine Learning, vol.32, pp.1242-1250, 2014.

F. E. Grubbs, Procedures for detecting outlying observations in samples, Technometrics, vol.11, issue.1, pp.1-21, 1969.

I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin et al., , 2017.

, PixelVAE: A Latent Variable Model for Natural Images, 5th International Conference on Learning Representations

D. A. Hanser, Architecture of France, 2006.

D. M. Hawkins, Identification of outliers, vol.11, 1980.

S. Hawkins, H. He, G. Williams, and R. Baxter, Outlier detection using replicator neural networks, International Conference on Data Warehousing and Knowledge Discovery, pp.170-180, 2002.

K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, Proceedings to ICCV, pp.1026-1034, 2015.

D. Hendrycks, M. Mazeika, and T. G. Dietterich, Deep anomaly detection with outlier exposure, 2018.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot et al., beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, 5th International Conference on Learning Representations, 2017.

P. W. Higgs, Broken symmetries and the masses of gauge bosons, Physical Review Letters, vol.13, issue.16, p.508, 1964.

A. Hinneburg, C. C. Aggarwal, and D. A. Keim, What is the nearest neighbor in high dimensional spaces?, 26th Internat. Conference on Very Large Databases, pp.506-515, 2000.

G. E. Hinton, Connectionist learning procedures, Machine learning, pp.555-610, 1990.

Q. Ho-kim and X. Pham, Elementary particles and their interactions: concepts and phenomena, 2013.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, Stochastic variational inference, J. Mach. Learn. Res, vol.14, issue.1, pp.1303-1347, 2013.

M. D. Hoffman and M. J. Johnson, Elbo surgery: yet another way to carve up the variational evidence lower bound, Workshop in Advances in Approximate Bayesian Inference, NIPS, vol.1, 2016.

X. Hou, L. Shen, K. Sun, and G. Qiu, Deep feature consistent variational autoencoder, 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp.1133-1141, 2017.

A. Hyvärinen and P. Pajunen, Nonlinear independent component analysis: Existence and uniqueness results, Neural Networks, vol.12, issue.3, pp.429-439, 1999.

A. Hyvärinen, H. Sasaki, and R. E. Turner, Nonlinear ICA using auxiliary variables and generalized contrastive learning, The 22nd International Conference on Artificial Intelligence and Statistics, vol.2019, pp.859-868, 2019.

A. K. Jain and R. C. Dubes, Algorithms for clustering data, 1988.

N. Japkowicz, C. Myers, and M. Gluck, A novelty detection approach to classification, IJCAI, vol.1, pp.518-523, 1995.

M. J. Johnson, D. K. Duvenaud, A. Wiltschko, R. P. Adams, S. R. Datta et al., Composing graphical models with neural networks for structured representations and fast inference, Advances in Neural Information Processing Systems, vol.29, pp.2946-2954, 2016.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, An introduction to variational methods for graphical models, Machine learning, vol.37, issue.2, pp.183-233, 1999.

D. Kang and J. Lee, GEM DQM with Machine Learning, 2018.

V. Karimäki, M. Mannelli, P. Siegrist, H. Breuker, A. Caner et al., The CMS tracker system project, 1997.

Y. Kawachi, Y. Koizumi, and N. Harada, Complementary set variational autoencoder for supervised anomaly detection, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.2366-2370, 2018.

M. J. Kearns, The computational complexity of machine learning, 1990.

V. Khachatryan, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, The European Physical Journal C, vol.75, issue.5, p.212, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01101757

V. Khachatryan, The CMS trigger system, JINST, vol.12, issue.01, p.1020, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01362517

S. S. Khan and M. G. Madden, One-class classification: taxonomy of study and review of techniques, The Knowledge Engineering Review, vol.29, issue.3, pp.345-374, 2014.

I. Khemakhem, D. P. Kingma, and A. Hyvärinen, Variational autoencoders and nonlinear ica: A unifying framework, 2019.

H. Kim and A. Mnih, Disentangling by factorising, Proceedings of the 35th International Conference on Machine Learning, vol.80, pp.2649-2658, 2018.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.

D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, Semi-supervised learning with deep generative models, Advances in neural information processing systems, pp.3581-3589, 2014.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever et al., Improved variational inference with inverse autoregressive flow, Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS'16, pp.4743-4751, 2016.

D. P. Kingma and M. Welling, Auto-encoding variational bayes, 2013.

M. Kliger and S. Fleishman, Novelty detection with gan, 2018.

R. Krishnan, D. Liang, and M. Hoffman, On the challenges of learning with inference networks on sparse, high-dimensional data, Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, vol.84, pp.143-151, 2018.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, pp.1097-1105, 2012.

A. Kumar, P. Sattigeri, and A. Balakrishnan, Variational inference of disentangled latent concepts from unlabeled observations, 6th International Conference on Learning Representations, 2018.

D. Kwon, K. Natarajan, S. C. Suh, H. Kim, and J. Kim, An empirical study on network anomaly detection using convolutional neural networks, IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp.1595-1598, 2018.

J. Laurikkala, M. Juhola, E. Kentala, N. Lavrac, S. Miksch et al., Informal identification of outliers in medical data, Fifth international workshop on intelligent data analysis in medicine and pharmacology, vol.1, pp.20-24, 2000.

Y. Lecun and Y. Bengio, Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, vol.3361, 1995.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, p.436, 2015.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.

D. D. Lewis and J. Catlett, Heterogeneous uncertainty sampling for supervised learning, Machine Learning Proceedings, pp.148-156, 1994.

D. D. Lewis and W. A. Gale, A sequential algorithm for training text classifiers, Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval, pp.3-12, 1994.

, The LHCb Detector at the LHC, JINST, vol.3, 2008.

H. Li, Research and implementation of an anomaly detection model based on clustering analysis, 2010 International Symposium on Intelligence Information Processing and Trusted Computing, pp.458-462, 2010.

F. T. Liu, K. M. Ting, and Z. Zhou, Isolation forest, Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on, pp.413-422, 2008.

F. T. Liu, K. M. Ting, and Z. Zhou, Isolation-based anomaly detection, ACM Transactions on Knowledge Discovery from Data (TKDD), vol.6, issue.1, p.3, 2012.

F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly et al., Challenging common assumptions in the unsupervised learning of disentangled representations, Proceedings of the 36th International Conference on Machine Learning, vol.97, pp.4114-4124, 2019.

M. Lopez-martin, B. Carro, A. Sanchez-esguevillas, and J. Lloret, Conditional variational autoencoder for prediction and feature recovery applied to intrusion detection in iot, Sensors, vol.17, issue.9, 1967.

C. Louizos and M. Welling, Structured and efficient variational deep learning with matrix gaussian posteriors, Proceedings of the 33rd International Conference on Machine Learning, vol.48, pp.1708-1716, 2016.

J. Lucas, G. Tucker, R. Grosse, and M. Norouzi, Understanding posterior collapse in generative latent variable models, 7th International Conference on Learning Representations, 2019.

C. J. Maddison, A. Mnih, and Y. W. Teh, The concrete distribution: A continuous relaxation of discrete random variables, 5th International Conference on Learning Representations, 2017.

A. Magnan, Hgcal: a high-granularity calorimeter for the endcaps of cms at hl-lhc, Journal of Instrumentation, vol.12, issue.01, p.1042, 2017.

A. Mansbridge, R. Fierimonte, I. Feige, and D. Barber, Improving latent variable descriptiveness by modelling rather than ad-hoc factors, Machine Learning, vol.108, pp.1601-1611, 2019.

F. C. Marcastel, , 2013.

M. F. Mathieu, J. J. Zhao, J. Zhao, A. Ramesh, P. Sprechmann et al., Disentangling factors of variation in deep representation using adversarial training, Advances in Neural Information Processing Systems, pp.5040-5048, 2016.

W. S. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The bulletin of mathematical biophysics, vol.5, issue.4, pp.115-133, 1943.

L. Mescheder, S. Nowozin, and A. Geiger, Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks, Proceedings of the 34th International Conference on Machine Learning, vol.70, pp.2391-2400, 2017.

M. L. Minsky, Computation: Finite and infinite machines, 1967.

. Missmj, Standard model of elementary particles, 2006.

G. Montavon, W. Samek, and K. Müller, Methods for interpreting and understanding deep neural networks, Digital Signal Processing, vol.73, pp.1-15, 2018.

V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, Proceedings of the 27th International Conference on Machine Learning, ICML'10, pp.807-814, 2010.

E. Nalisnick, A. Matsukawa, Y. W. Teh, D. Gorur, and B. Lakshminarayanan, Do deep generative models know what they don, 2018.

E. Nalisnick, A. Matsukawa, Y. W. Teh, and B. Lakshminarayanan, Detecting outof-distribution inputs to deep generative models using a test for typicality, 2019.

S. A. Nene, S. K. Nayar, and H. Murase, Columbia Object Image Library (COIL-100), 1996.

P. Scherrer-institute, Silicon pixel barrel detector successfully installed in the CMS experiment, 2017.

K. Pearson, On lines and planes of closest fit to systems of points in space, Philosophical Magazine, vol.2, pp.559-572, 1901.

S. Ramaswamy, R. Rastogi, and K. Shim, Efficient algorithms for mining outliers from large data sets, SIGMOD Rec, vol.29, issue.2, pp.427-438, 2000.

D. Ramotsoela, A. Abu-mahfouz, and G. Hancke, A survey of anomaly detection in industrial wireless sensor networks with critical water system infrastructure as a case study, Sensors, vol.18, issue.8, p.2491, 2018.

R. Ranganath, S. Gerrish, and D. Blei, Black Box Variational Inference, Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, vol.33, pp.814-822, 2014.

M. Ranzato, C. Poultney, S. Chopra, and Y. Lecun, Efficient learning of sparse representations with an energy-based model, Proceedings of the 19th International Conference on Neural Information Processing Systems, pp.1137-1144, 2006.

V. Rapsevicius, CMS Run Registry: Data certification bookkeeping and publication system, Journal of Physics: Conference Series, vol.331, issue.4, p.42038, 2011.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.779-788, 2016.

D. Rezende and S. Mohamed, Variational inference with normalizing flows, Proceedings of the 32nd International Conference on Machine Learning, vol.37, pp.1530-1538, 2015.

D. J. Rezende, Stochastic Backpropagation and Approximate Inference in Deep Generative Models, Proceedings of the 31st International Conference on Machine Learning, vol.32, pp.1278-1286, 2014.

D. J. Rezende and F. Viola, , 2018.

S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, Contractive auto-encoders: Explicit invariance during feature extraction, Proceedings of the 28th international conference on machine learning (ICML-11), pp.833-840, 2011.

H. Robbins and S. Monro, A stochastic approximation method, Annals of Mathematical Statistics, vol.22, pp.400-407, 1951.

A. Roberts, J. Engel, and D. Eck, Hierarchical variational autoencoders for music, NIPS Workshop on Machine Learning for Creativity and Design, 2017.

F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychological review, vol.65, issue.6, p.386, 1958.

C. Rovelli, Zakopane lectures on loop gravity, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00593877

M. Rovere, The Data Quality Monitoring Software for the CMS experiment at the LHC, Journal of Physics: Conference Series, vol.664, issue.7, p.72039, 2015.

N. Roy and A. Mccallum, Toward optimal active learning through monte carlo estimation of error reduction, ICML, pp.441-448, 2001.

P. K. Rubenstein, B. Schölkopf, and I. O. Tolstikhin, Learning disentangled representations with wasserstein auto-encoders, 6th International Conference on Learning Representations, ICLR 2018, Workshop Track Proceedings, 2018.

L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui et al., Deep one-class classification, International Conference on Machine Learning, pp.4393-4402, 2018.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by backpropagating errors, Cognitive modeling, vol.5, issue.3, p.1, 1988.

A. L. Samuel, Some studies in machine learning using the game of checkers. ii-recent progress, IBM Journal of research and development, vol.11, issue.6, pp.601-617, 1967.

A. I. Schein and L. H. Ungar, Active learning for logistic regression: an evaluation, Machine Learning, vol.68, pp.235-265, 2007.

J. Schmidhuber, Deep learning in neural networks: An overview, Neural networks, vol.61, pp.85-117, 2015.

M. Schneider, The Data Quality Monitoring software for the CMS experiment at the LHC: past, present and future, Proceedings to, 2018.

B. Schölkopf, J. C. Platt, J. Shawe-taylor, A. J. Smola, and R. C. Williamson, Estimating the support of a high-dimensional distribution, Neural computation, vol.13, issue.7, pp.1443-1471, 2001.

R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh et al., Grad-cam: Why did you say that? visual explanations from deep networks via gradient-based localization, p.7, 2016.

B. Settles, Active learning literature survey, 2009.

B. Settles, M. Craven, and S. Ray, Multiple-instance active learning, Advances in neural information processing systems, pp.1289-1296, 2008.

H. S. Seung, M. Opper, and H. Sompolinsky, Query by committee, Proceedings of the fifth annual workshop on Computational learning theory, pp.287-294, 1992.

A. Shafaei, M. Schmidt, J. , and J. , Little. does your model know the digit 6 is not a cat? a less biased evaluation of outlier detectors, 2018.

R. Shwartz-ziv and N. Tishby, Opening the black box of deep neural networks via information, 2017.

N. Siddharth, B. Paige, J. Van-de-meent, A. Desmaison, N. D. Goodman et al., Learning disentangled representations with semi-supervised deep generative models, Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS'17, pp.5927-5937, 2017.

P. Y. Simard, Y. A. Lecun, J. S. Denker, and B. Victorri, Transformation invariance in pattern recognition-tangent distance and tangent propagation, Neural networks: tricks of the trade, pp.239-274, 1998.
URL : https://hal.archives-ouvertes.fr/halshs-00009505

K. Simonyan, A. Vedaldi, and A. Zisserman, Deep inside convolutional networks: Visualising image classification models and saliency maps, 2013.

A. M. Sirunyan, Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at ? s = 13 TeV, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01782018

J. Snoek, Y. Ovadia, E. Fertig, B. Lakshminarayanan, S. Nowozin et al., Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift, Advances in Neural Information Processing Systems, pp.13969-13980, 2019.

I. Sobel, An isotropic 3×3 image gradient operator. Machine vision for three-dimensional scenes, pp.376-379, 1990.

A. Soha, Web Based Monitoring in the CMS Experiment at CERN, 2011.

K. Sohn, H. Lee, Y. , and X. , Learning structured output representation using deep conditional generative models, Advances in neural information processing systems, pp.3483-3491, 2015.

C. Sønderby, T. Raiko, L. Maaløe, S. Sønderby, and O. Winther, How to train deep variational autoencoders and probabilistic ladder networks, Proceedings of the 33rd International Conference on Machine Learning, 2016.

X. Song, M. Wu, C. Jermaine, and S. Ranka, Conditional anomaly detection, IEEE Transactions on Knowledge and Data Engineering, issue.5, p.19, 2007.

M. Stankevicius, V. Marcinkevicius, and V. Rapsevicius, Comparison of supervised machine learning techniques for cern cms offline data certification, Doctoral Consortium/Forum@ DB&IS, pp.170-176, 2018.

S. Suh, D. H. Chae, H. Kang, and S. Choi, Echo-state conditional variational autoencoder for anomaly detection, 2016 International Joint Conference on Neural Networks (IJCNN), pp.1015-1022, 2016.

J. Sun, Feedforward neural networks, 2019.

M. Sundararajan, A. Taly, Y. , and Q. , Axiomatic attribution for deep networks, 2017.

M. Sölch, J. Bayer, M. Ludersdorfer, . Van-der, and P. Smagt, Variational Inference for On-line Anomaly Detection in High-Dimensional Time Series, 2016.

D. M. Tax and R. P. Duin, Data domain description using support vectors, In ESANN, vol.99, pp.251-256, 1999.

D. M. Tax and R. P. Duin, Support vector domain description, Pattern recognition letters, vol.20, pp.1191-1199, 1999.

D. M. Tax, One-class classification: Concept learning in the absence of counter-examples, 2001.

L. The and . Group, The Large Hadron Collider, Conceptual Design, 1995.

J. P. Theiler and D. M. Cai, Resampling approach for anomaly detection in multispectral images, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX, vol.5093, pp.230-240, 2003.

N. Tishby and N. Zaslavsky, Deep learning and the information bottleneck principle, IEEE Information Theory Workshop, pp.1-5, 2015.

M. K. Titsias and M. Lázaro-gredilla, Doubly stochastic variational bayes for non-conjugate inference, Proceedings of the 31st International Conference on Machine Learning, vol.32, 2014.

K. Tomanek and F. Olsson, A web survey on the use of active learning to support annotation of text data, Proceedings of the NAACL HLT 2009 workshop on active learning for natural language processing, pp.45-48, 2009.

A. Tricomi, Upgrade of the cms tracker, Journal of Instrumentation, vol.9, issue.03, p.3041, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02557789

M. Tschannen, O. Bachem, and M. Lucic, Recent advances in autoencoder-based representation learning, NeurIPS, 2018.

R. E. Turner and M. Sahani, Two problems with variational expectation maximisation for time-series models, Bayesian Time series models, pp.109-130, 2011.

L. Tuura, G. Eulisse, and A. Meyer, CMS data quality monitoring web service, Journal of Physics: Conference Series, vol.219, p.72055, 2010.

F. Van-veen and S. Leijnen, The neural network zoo, 2019.

V. N. Vapnik, The Nature of Statistical Learning Theory, 1995.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, J. Mach. Learn. Res, vol.11, pp.3371-3408, 2010.

M. J. Wainwright and M. I. Jordan, Graphical models, exponential families, and variational inference, Foundations and Trends R in Machine Learning, vol.1, issue.1-2, pp.1-305, 2008.

X. Wang, Y. Du, S. Lin, P. Cui, Y. et al., Self-adversarial variational autoencoder with gaussian anomaly prior distribution for anomaly detection, 2019.

Y. Wang and D. M. Blei, Frequentist consistency of variational bayes, Journal of the American Statistical Association, vol.114, issue.527, pp.1147-1161, 2019.

S. Watanabe, Information theoretical analysis of multivariate correlation, IBM J. Res. Dev, vol.4, issue.1, pp.66-82, 1960.

H. White, A reality check for data snooping, Econometrica, vol.68, issue.5, pp.1097-1126, 2000.

B. Widrow and M. E. Hoff, Associative storage and retrieval of digital information in networks of adaptive "neurons, Biological Prototypes and Synthetic Systems, pp.160-160, 1962.

A. Wightman, Tools for Trigger Rate Monitoring at CMS, 2018.

M. Wu and C. Jermaine, Outlier detection by sampling with accuracy guarantees, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.767-772, 2006.

R. Wu, B. Wang, W. Wang, Y. , and Y. , Harvesting discriminative meta objects with deep cnn features for scene classification, Proceedings of the IEEE International Conference on Computer Vision, pp.1287-1295, 2015.

H. Xiao, K. Rasul, and R. Vollgraf, Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017.

W. Xu and Y. Tan, Semisupervised text classification by variational autoencoder, IEEE Transactions on Neural Networks and Learning Systems, pp.1-14, 2019.

C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt, Advances in variational inference, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.41, pp.2008-2026, 2017.

G. Zhang, S. Sun, D. Duvenaud, and R. B. Grosse, Noisy natural gradient as variational inference, Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, pp.5847-5856, 2018.

S. Zhao, J. Song, and S. Ermon, Infovae: Information maximizing variational autoencoders, 2017.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, Learning deep features for discriminative localization, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2921-2929, 2016.

A. Zimek, E. Schubert, and H. Kriegel, A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining, The ASA Data Science Journal, vol.5, issue.5, pp.363-387, 2012.