N
N

N

HAL

open science

On the expressive power of invariant logics over sparse

classes of structures

Julien Grange

» To cite this version:

Julien Grange. On the expressive power of invariant logics over sparse classes of structures. Logic in
Computer Science [cs.LO]. Université Paris sciences et lettres, 2020. English. NNT: 2020UPSLE042 .

tel-03557305v2

HAL Id: tel-03557305
https://theses.hal.science/tel-03557305v2
Submitted on 4 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-03557305v2
https://hal.archives-ouvertes.fr

PSL

UNIVERSITE PARIS

THESE DE DOCTORAT

DE L'UNIVERSITE PSL

Préparée a I'Ecole Normale Supérieure

On the Expressive Power of Invariant Logics over
Sparse Classes of Structures

Soutenue par Composition du jury :

Julien GRANGE

o Cristina SIRANGELO
Le 29 juin 2020

Professeur,
Université Paris Diderot Présidente
Anuj DAWAR
° Professeur,
Ecole doctorale n® 386 University of Cambridge Rapporteur

Sciences Mathématiques de _
Etienne GRANDJEAN

Paris-Centre Professeur émérite,
Université de Caen Rapporteur

Mamadou KANTE
Maitre de conférences,

Specialite Université Clermont Auvergne Examinateur
Informatique Leonid LIBKIN

Professeur,

Ecole Normale Supérieure Examinateur

Luc SEGOUFIN
Directeur de recherches,
Ecole Normale Supérieure Directeur de these

ECOLE NORMALE
SUPERIEURE

Je voudrais remercier sincérement mon directeur de these, Luc Segoufin,
pour son encadrement particulierement formateur et sa disponibilité sans faille
au cours de ces trois années.

J’adresse un grand merci, sans me lancer dans un inventaire qui risquerait a
tort d’étre pergu comme non order-invariant, a tous mes proches.

Cette these est dédiée a la mémoire de Jacquot 1’Anglais.

Contents

B Preliminarics

2.1 Structures and logics|o

1.2

First-order logic] L.

[2.1.3 Monadic second-order logic|
2.2 Invariant logics| oo
[2.2.1 General setting| oL
222 Order-invariancel
22,3 DSuccessor-lnvariancel o0
2.3 'Tools for proving expressivity results|
[2.3.1 Similarity and Ehrenteucht-Fraissé games|
[2.3.2 FO-interpretations and bi-F'O-interpretations|
2.4 First expressivity results| o L.
[2.4.1 Separating examples| o000
2.4.2 ocality|
[2.4.3 Upper bounds and collapses of invariant logics|]
2.5 Treewidth and pathwidthl
[2.5.1 Treewidth and pathwidth of a graph|
[2.5.2 Logical perspective on decompositions|
[2.5.3 Domino decompositions|
[2.5.4 Decompositions of bounded diameter|.
[2.5.5 Interpretation of path-decompositions|
[2.5.6 Interpretation of tree-decompositions|.
2.6 Methodology for proving a collapse]

[2.6.1 Lifting a pre-established collapse]

2.6.2 The direct methodl

P63

The chaining method|

2.7 Model checking for successor-invariance]

2.8 Review of expressivity results|

Successor-Invariant FO on Classes of Bounded Degree)

3.2 Fractal types and layering| 0.,

3.3 Proof of the collapse],

8.3.1 General methodl,

10
12
13
15
15
16
20
22
24
26
28
29
31
33
34
35
36
38
40
41
45
93
53
93
54
95
56

[3.3.3 Around rare types|

3.3.4 round junctions|.
3.3.5 Carrying S; over to Gof
13.3.6 Completion of 57 and So|
13.3.7 Examples of construction|
[3.3.8 Properties of S; and Sof
[3:3:9 Conclusion of the proof]
I;i.é c:s)ll!:lll,si()lll

4.3 Swaps and pumping| L
4.3.1 Crossing-S-swaps|

4.0. -Swaps|

K4.3.3 Pumping 0L
4.4 Inclusion and pseudo-inclusion|

.5 Tools for reorganizing S-edges
[£51 S-siblings re-association]
4.5.2 S-stabilizationl

4.6 Removing unnecessary materialf

4.6.1 Loop minimization|

1.6.2 Loop elimination]

4.6.3 S-parents re-association|

Contents

Chapter 1

Introduction

Finite model theory offers to develop formalisms for expressing properties of
finite structures, and focuses on proving relations between, and bounds on,
these languages.

The most basic of these formalisms is probably first-order logic, FO, in which
one can quantify over elements of the structures. Its expressive power has been
studied extensively and is known to be very restrained, as it can only express
properties that are local, which roughly means that it can only talk about the
immediate surroundings of a small number of elements, and it is unable to count.

There are several ways to define logics extending FO in order to enhance
its expressive power. For instance, monadic second-order logic MSO takes FO
as a building block, and allows quantification not only over elements, but also
over sets of elements. Alternatively, one could add a fixpoint operator to FO
and get least fizpoint first-order logic LFP. Both these additions break the local
character of the logic.

Another way to define logics from FO is through the addition, in an invariant
way, of arithmetic predicates on the structure that are exterior to the vocabulary.
This amounts to arbitrarily identifying the domain of the structure with an
initial segment of the integers, and allowing some arithmetic on them. However,
we want these extensions to define properties of the structures, and not to
depend on a particular ordering on their elements: thus we focus on invariant
extensions of FO.

If the only predicate allowed is the order, we get order-invariant first-order
logic, < -inv FO. Restricting a bit the additional relation, we get successor-
invariant first-order, Succ-inv FO. In this formalism, we only grant an access
to the successor relation derived from the order, provided that the evaluation of a
sentence using this successor relation is independent of the choice of a particular
successor. The focus of this thesis will be on those two logics. Note that we use
here the term “logic” somewhat liberally, since <-inv FO and Succ-inv FO do
not have a recursive syntax, which is a usual requirement for a logic.

A strong motivation for the study of these two formalisms comes from
database theory. On top of that, some profound relations between complex-
ity theory and invariant logics exist, reinforcing the interest in these notions.

Chapter 1. Introduction

As databases are commonly stored on disks that implicitly order their mem-
ory segments, when one wishes to express a query in FO, one has access to
an additional order on the elements of the database. However, making use of
this order without care could result in queries that evaluate differently on two
implementations of the same database, which is clearly an undesirable behavior
breaking the physical data independence principle from [I0]. We want to use
this order only in an invariant manner; that way, the result of a query depends
only on the database it is run on, and not on the way the data is stored on
disk. This amounts exactly to the definition of <-inv FO, or Succ-inv FO if we
restrict the way this order can be accessed.

It is straightforward that <-inv FO is at least as expressive as Succ-inv FO,
which in turn can express any FO-definable property. Gurevich constructed a
class of finite structures that can be defined by an <-inv FO sentence, but which
is not FO-definable. Though this construction wasn’t published by Gurevich,
it can be found e.g. in Section 5.2 of [27]. Rossman extended this result, and
proved in [33] that on finite structures, Succ-inv FO is strictly more expressive
than FO.

Grohe and Schwentick [24] proved that these logics are Gaifman-local, giving
an upper bound to their power of expression. Other upper bounds were given by
Benedikt and Segoufin [5], who proved that <-inv FO, and hence Succ-inv FO,
are included in MSO on classes of bounded treewidth and on classes of bounded
degree. Elberfeld, Frickenschmidt and Grohe [I6] extended the first inclusion
to a broader setting, that of decomposable structures. Whether these logics are
included in MSO in general is still an open question.

The classes of structures involved in the separating examples by Gurevich
and Rossman are dense, and no other example is known on classes that are
sparse. Far from it, <-inv FO and a fortiori Succ-inv FO are known to collapse
to FO on several sparse classes, meaning that <-inv FO and FO can define the
same properties on those classes of structures. Benedikt and Segoufin [5] proved
the collapse on trees, while Eickmeyer, Elberfeld and Harwarth [I4] obtained an
analogous result on graphs of bounded tree-depth.

As for model-checking considerations, the result from Grohe, Kreutzer and
Siebertz [23] stating that the model checking problem for FO is fixed-parameter
tractable on nowhere dense classes of graphs has been extended to Succ-inv FO
by Van den Heuvel, Kreutzer, Pilipczuk, Quiroz, Rabinovich and Siebertz [3§],
as long as we restrict ourselves to classes of bounded expansion.

Contribution: In this thesis, we improve the understanding of the expressive
power of Succ-inv FO and <-inv FO by broadening the setting in which they
are known to collapse to FO.

In Chapter we prove that Succ-inv FO collapses to FO on classes of
structures of bounded degree.

To do this, we show how to construct successors on two FO-similar structures
(that is, structures that satisfy the same FO-sentences which quantification
nesting is below some threshold) of small degree, such that the two structures
remain FO-similar when considering the additional successor relation.

6

A sparsity notion orthogonal to degree boundedness is that of treewidth,
which measures in some sense the distance from a structure to a tree. It is an
open question whether <-inv FO or Succ-inv FO collapse to FO on classes of
graphs of bounded treewidth, or even bounded pathwidth.

In Chapter [4] which is based on a joint work with Luc Segoufin [22], we take
a step in that direction, by showing that < -inv FO collapses to FO over the
class of hollow trees.

Hollow trees are a generalization of binary trees, and are closely related to
structures of pathwidth 2.

More precisely, the vocabulary of hollow trees contains two binary relations.
They are interpreted so that the resulting structure is a tree with the following
features: each element has at most four neighbors - its first child, its last child
and up to two siblings. One of the binary relation is symmetrical and defines the
sibling relation while the other one is oriented and defines the partial parent-
child relation. A parent may have an arbitrary number of children, but it is
directly only related to two of them. Note that while this can be done in MSO,
FO cannot reconstruct the complete parent-child relation of every node within
a hollow tree.

The proof that < -inv FO is no more expressive that FO on hollow trees
follows a strategy similar to the that used for binary trees in [5]: we first exhibit a
set of operations over hollow trees (or, more precisely, over structures FO-similar
to hollow trees) that preserve order-invariance similarity. We then show that if
two hollow trees are FO similar then one of them can be transformed using our
set of operations into the other, lifting FO similarity to <-inv FO similarity.
The first part is standard, though it adds a new kind of operation to previously
used set of operations, and makes use of the locality of < -inv FO [24]. The
second part is more combinatorial and forms the main technical contribution of
this Chapter.

Chapter 1. Introduction

Chapter 2

Preliminaries

In this chapter, we recall some of the basic definitions, examples and properties
from finite model theory, as well as some notions relating to tree-decompositions.
We also review the state of the art with respect to order-invariant and successor-
invariant logics.

For a complete course in finite model theory, we refer the reader to [27].

We start by setting in Section the general framework of finite model
theory, by introducing relational structures and defining first-order and second-
order logics on such structures. We then define in Section [2.2] several extensions
of these logics by means of invariant relations. Classical methods for establishing
expressivity results for those logics are described in Section [2.3] and used in
Section [2.4) where we recall the main results known about the expressive power
of invariant logics.

In Section [2.5] we turn to structures of bounded treewidth and pathwidth.
After recalling the classical definitions for graphs, we extend these notions to
all structures and establish a logical framework for them.

Section describes the strategies that will later be used in Chapter [3| and
for proving a collapse between two logics. We then give an overview of the
complexity of the model checking problem in the case of successor-invariant first-
order logic in Section before concluding the chapter by listing in Section [2.8
all the expressivity results spread throughout the previous sections.

2.1 Structures and logics

We define the basic notions of finite model theory in three steps.

First, we explain in Section how mathematical objects can be seen as
relational structures. Sections[2.1.2]and [2.1.3|then provide two usual formalisms
to express properties about these objects. Those languages, or logics, are re-
spectively first-order logic, FO, and monadic second-order logic, MSO. While
FO only allows quantification over elements of the structures (e.g. edges of a
graph), MSO broadens the quantification to sets of elements, thus allowing to
express more properties such as connectivity.

Chapter 2. Preliminaries

2.1.1 Relational structures

By relational vocabulary, we mean a set ¥ := {Ry,--- ,R,,c1,- -+ ,¢m} of

symbols together with an arity function Ar: {Ry,---,R,} — N. The R; are

called Ar(R;)-ary relation symbols, and the ¢; are called the constant symbols.
For a finite alphabet o of symbols, we define the relational vocabulary

P, :={P;:s€o},
where every P; is a unary relation symbol, i.e. such that Ar(P;) = 1.

For the remainder of this chapter, we consider a relational vocabulary
Z = {Rla“' 7Rn7cl7“' ,Cm}.

A Y-structure A is a tuple (4, R{,--- ,RA ¢, -+,) where:

s Cm
e A is a nonempty set
e for every i € {1,--- ,n}, R;“ C AAT(R:)
e for every j € {1,--- ,m}, 63_4 cA

A is called the domain of A. We say that each relation symbol R; is
interpreted as the Ar(R;)-ary relation Rs%, and that each constant symbol cj
is interpreted as the element c;-“

We say that A is a finite Y-structure if its domain is finite.

Two structures A and B are isomorphic if there exists a bijection f between
their domains such that f and f~! preserve relations and constants. This is
denoted A ~ B. Every class of structures under consideration will be closed

under isomorphism.

Let’s illustrate the definition of structure with several examples:

Example 2.1.1. Let o be a finite alphabet. There are several ways to represent
a word w € ¢* as a relational structure.

First, let’s consider an additional relation symbol < of arity 2. Fvery word
w € o* can be seen as a P, U{<}-structure A,,, where:

o A, is the set {0,--- ,|w| — 1} (where |w| denotes the length of w)
e < is interpreted as the natural order on Ay

o for every letter s € o, Ps is interpreted as the set of positions at which the
letter s occurs in w.

By extension, we will call such a structure A, a word over o, as it is
the most common way in the literature to represent a word of o* as a logical
structure.

Now, let’s consider the relational vocabulary P, U {S} instead of P, U {<},

where S is also a binary relation symbol. We can define By, as for A,, but
where S is interpreted as the successor relation on {0, ,|w| — 1}.

10

2.1. Structures and logics

Such a structure will be referred to as a dipath over o.
If we now symmetrize the interpretation of S in B,,, we get a path over o.

Depending on whether we choose to represent w € ¢* as a word, a dipath or
a path, the properties that we are able to express may vary.

For instance on the alphabet o := {a,b,c}, using first-order logic as defined
in Section[2.1.9, one is able to state that there exists an occurrence of the letter
a that comes before every occurrence of the letter b in A,,; however this cannot
be expressed in B,,. In other words, whether the language

c*ac”
1s definable in first-order logic depends on the representation we chose.

Likewise, the language

c*abc*abc*

1s definable in first-order on words and dipaths, but not on paths.

As we will see in Section the more expressive logic MSO is able to
define transitive closure. In that case, every property definable on words is also
definable on dipaths.

Example 2.1.2. Similarly, one can easily consider any tree t over an alphabet o
as a relational structure over P,U{S}, where S is a binary symbol. Depending on
the setting, we can interpret S as the ancestor-descendant relation, the parent-
child relation, or their symmetric closure.

As for words, the choice of the model has an impact on the properties that
are expressible in weak logics, such as first-order logic. When considering words
or trees as relational structures, we will always make clear which representation
we choose.

Example 2.1.3. More generally, any colored finite graph with a set o of colors
can be seen as a P, U {E}-structure, whose domain is the set of nodes of the
graph, and which interprets the binary relation symbol E as the edge relation of
the graph.

It will be convenient to identify the graph and the corresponding structure
(or better still, to define a graph as such a structure).

Proviso. Unless stated otherwise, we will only consider finite structures.

For clarity purposes, structures will always be denoted through calligraphic
upper-case letters and their domain through the corresponding standard upper-
case letter.

Given a X-structure A, we will often identify the symbols R;,c; € 3 with
their interpretations in A.

The Gaifman graph G, of a ¥-structure A is defined as (A4,V) where
(z,y) € V iff z and y appear in the same tuple of a relation of A. In particular,
if a graph is seen as a relational structure on the vocabulary {E}, its Gaifman
graph is the unoriented version of itself.

The degree of A is the degree of its Gaifman graph, and a class C of X-
structures is said to be of bounded degree if there exists some d € N such
that the degree of every A € C is at most d.

11

Chapter 2. Preliminaries

Note 2.1.4. There exist other definitions for the degree of a structure. For
instance, one could consider the degree of an element x € A to be the total
number of tuples in which it appears, i.e. the cardinal of the set

{jeR " zcy,Rex}.

This definition is equivalent to the one we have adopted, in the sense that
classes of bounded degree are the same for both notions, as long as the vocabulary
is finite.

By dist4(z,y), we denote the distance between = and y in G4. Given two
sets S and T of elements of A and m € N, we say that S and T are m-distant
in A, if dist4(z,y) >mforallz € Sandally € T.

We now give the definition of the neighborhood type of an element.

Let ¢ be a constant symbol that doesn’t appear in X.

For k € N and x € A, the k-neighborhood N%(z) of = is the (X U {c})-
structure whose X-restriction is the substructure of A induced by {y € A :
dist 4(x,y) < k}, and where c is interpreted as z.

The k-neighborhood type 7 = tp% () is the isomorphism class of its k-
neighborhood. We say that 7 is a neighborhood type over X, and that x is an
occurrence of 7 in A. |A|; denotes the number of occurrences of 7 in A, and
for t € NU {0}, we write [A]x ="' [B]x to mean that for every k-neighborhood
type 7, |A|- and |B|, are either equal, or both larger than ¢. If ¢ = oo, it means
that |A|, and |B|, are equal for every k-neighborhood type .

We extend those definitions to tuples of elements by considering several new
constant symbols, fixing the tuples pointwise.

This notion of neighborhood type is not to be confused with the other use
of the word “type” in logic, which refers to the set of formulas with one free
variable satsfied by an element. When speaking of types, we always refer to the
former meaning.

2.1.2 First-order logic

Let Var be a countably infinite set of fresh symbols, called the variable sym-
bols. We will usually denote the variable symbols through the letters z,y, z, - - -

A ¥-atom is a token of the form R;(ty,--- ,tax(r,)) for i € {1,---,n} or
t, = to, where the t; are either one of the constant symbols ¢1, -+, ¢, or a
variable symbol of Var.

The set of first-order formulas over ¥ is defined as the closure of the set
of atoms under the unary symbols {=} U {3z : € Var} and the binary symbols
{V}.

The set FO(X) of first-order sentences over X contains every first-order
formula ¢ over ¥ having no free variable, i.e. such that for every z € Var
occurring in an atom a of ¢, there exists an ancestor of a labelled 3z or Vx in
the syntactic tree of ¢.

Formulas and sentences will be denoted through the letters ¢, ¢, 1, - - -

3 will be omitted when it is clear from the context.

The quantifier rank of an FO-formula is the maximal number of nodes
labelled Jx, € Var on a branch of the syntactic tree of .

12

2.1. Structures and logics

We now give a semantics a la Tarksi to FO(X).

Let A be a X-structure A together with a partial function v : Var — A
covering all the free variables of a FO-formula ¢. It will be convenient to
extend v with v : ¢; — c;‘ for j e {1,---,m}.

We define inductively the relation A, v | ¢ as follows:

e ¢ is the atom R;(ty,--- ,t,) and (v(t1),--- ,v(t,)) € RA

e o is the atom t; = to, and v(t1) = v(t2) (the first ’=" is just a symbol,
while the second one refers to the equality of elements of A)

e ¢ is of the form Jx.1), and there exists an element a € A such that, defining
v’ as v together with x — a (where this mapping takes precedence over
x> v(z) if v(z) was defined), A,v" = 9

e is of the form — (resp. ¥V ¢), and A,v = ¢ (resp. A, v E ¢ or
A= 9)

If ¢ is a FO-sentence, then we say that A satisfies ¢ if A, v = ¢ where v
is the empty valuation. We then write A | ¢.

Similarly, if 1, --- ,x, € Var are the free variables of ¢, and ay,--- ,a, are
elements of A, then for any partial function v : Var — A,

Avw{zi—ay, -, xn—a} E@

will be abbreviated as

A':@(ala"' 7an)-

We have only defined the logical connectors 3z, = and V, but we will freely
use the shortcuts Va, A, — and <>, which can be derived from the first one
accordingly to the well-known De Morgan laws.

Each sentence ¢ of FO(X) (and actually, of any logic £) defines a property of
Y-structures; namely, the set {4 : A = ¢}. When we mention the expressivity
of a logic, we refer to the range of properties that can be defined with sentences
of that logic.

We will define precisely what it means for a logic to be more expressive than
another one on a class of structures in Section 2.3

2.1.3 Monadic second-order logic

The expressive power of FO is very limited. We will see in Section that it
is local, namely that FO can only define properties that concern a small radius
around a limited number of elements.

Even simple properties such as the connectivity of a graph cannot be defined
in FO. We now turn to a fundamental extension of FO: monadic second-order
logic, MSO. Not only the transitive closure of a relation is definable in MSO
(and thus the connectivity property), but it has the very nice property of cap-
turing exactly the regular languages on words and trees.

In FO, one can only quantify over elements of the structure, whereas in
MSO, we allow quantification on sets of elements. For that, we need a new set

13

Chapter 2. Preliminaries

of variables: let VAR be a countably infinite set of fresh symbols, called the
set-variable symbols. We will usually refer to those variables as X,Y, 7, ---

We define the set of MSO-formulas over X as we did the set of FO-
formulas over X, with the following additions:

o for every X € VAR and t € VarU {c1,- -+, ¢}, X(t) is an atom

e we consider the new unary operations {3X : X € VAR} for the closure

As for FO, an MSO-sentence is an MSO-formula which has no free variable
and no free set-variable.

The quantifier rank of an MSO-formula is the maximal number of nodes
labelled 3z or 3X, x € Var, X € VAR on a branch of the syntactic tree of ¢.

To define the semantics of an MSO-formula ¢ on a ¥-structure A, in addition
to the partial function v : Var — A (extended to {c1, -+ ,¢m}), we consider a
partial function V' : VAR — P(A) (P(A) being the power set of A) covering the
set of free variables of (.

In addition to the semantics rules for FO, we need the following rules:

e A vV EX(¢)ifv(g) e V(X)

e A v,V = 3X .49 if there exists E C A such that A,v,V’ = ¢, where V'
is defined as V' together with X +— FE (this mapping taking once again
precedence over X — V(X)) if it was defined)

If ¢ is an MSO-sentence, v and V' can be omitted, and we write A = ¢.
Once again, we will use the shortcut VX.¢ for =3X.—.

Example 2.1.5. Let’s prove that the reflexive transitive closure of a binary re-
lation is MSO-definable. Given a binary relation R € X, consider the following
MSO-formula with two free variables:

or(z,y) :=VX. [X(z) A VuVv.X(u) A R(u,v) = X(v))] = X(y).

For any X-structure A and elements a,b € A, A, {x +— a,y — b} = dr-(z,y)
if and only if (a,b) belongs to the reflexive transitive closure of RA.

Indeed, if A,{x — a,y — b} = ¢r~(z,y), then mapping X to the set {e €
A : (a,e) € R*} of all the elements reachable by R from a, we get that b is
reachable from a.

Conversely, suppose that (a,b) € R*, and that we map X to a set E. If E
satisfies the premise, then a € E and E is stable by R, which entails that E
contains all the elements reachable by R from a. In particular, b € E. Thus,
A? {l‘ =a,y — b} ': qu*(Z‘,y).

We say that ¢r+(x,y) defines the reflexive transitive closure of R.

Once again, to each MSO-sentence corresponds the class of structures that
satisfy this sentence. Remember that we showed in Example how a word
on o could be thought of as a P, U{<}-structure. We now state a fundamental
result due to Biichi [9]:

Proposition 2.1.6. The MSO-definable classes of words are exactly the regular
languages.

14

2.2. Invariant logics

This means that for every regular language L, there exists an MSO-sentence
1, which is satisfied by a word w (or more precisely, by its associated structure
Ay) iff w e L. Conversely, the language of words satisfying any MSO-sentence
is regular.

Note that when considering MSO, it doesn’t matter whether we choose to
include the full order < or just the successor relation S in the translation from
words to structures. Indeed, given a successor relation S, the MSO-formula
¢s+ from Example defines exactly <. Conversely, it is not hard to write
a formula defining S from < (to define that restriction, FO is even expressive
enough). We will encounter again such a notion of two-way definability, albeit
only for FO, when we formally define bi-FO-interpretations in Section [2:3.2}
This is a convenient tool to state that two models are equivalent.

A similar result for ranked trees was proven by Thatcher and Wright [36]:

Proposition 2.1.7. The MSO-definable classes of trees are exactly the reqular
languages of trees.

The previous proposition also holds on unranked trees.

Let’s now add modulo quantification 3™z for m € N, to MSO. The seman-
tics of these new quantifiers is

Ao, VEI™ze if {acA: Avy{z—a},V =@} =0modm.

In other words, we are now allowed to count, modulo some integer, the
number of witnesses to a formula.
The logic thus defined is monadic second-order logic with counting,

CMSO.

2.2 Invariant logics

In Section [2.1] were introduced two logical framework to express properties on
relational structures. Let’s now extend these logics by introducing some ad-
ditional information on the structures at hand, which can only be used in an
invariant way. For instance, a structure stored on a disk is enriched with an
order on its elements: what happens if we let FO and MSO access this order,
but require that the evaluation of a sentence on an ordered structure does not
depend on the choice of the order?

We start by defining the general notion of invariance in Section before
specifying it to the case where the additional information is an order relation in
Section or a successor relation in Section [2.2.3).

2.2.1 General setting

Let ¥ and ¥’ be two disjoint relational vocabularies, and consider a class C’ of
Y/-structures. Let £ € {FO,MSO} be a logic.

The notion of C’-invariance allows us to express that an £-formula possibly
uses the structure of ¢’ without depending on it.

Let A be a X-structure and let A’ be a ¥/-structure with the same domain
A. We define (A, A’) as the (X U X')-structure with domain A, where every
symbol of ¥ (resp. X') is interpreted as in A (resp. A’).

15

Chapter 2. Preliminaries

We say that a sentence ¢ of L(X UY') is C’-invariant over A if, for every
Y/-structures A’, A” € C' with domain A,

AA)Ee & AA)Ee.

In that case, the choice of the overlaying Y'-structure of C’ doesn’t matter,
and we write A | ¢ if (A, A") = ¢ for any (or equivalently, for every) A" € C'.
We say that ¢ is C’-invariant if it is C’-invariant over every finite Y-
structure. The set of C’-invariant £(¥ U X’)-sentences is denoted C’-inv L(X).

Note 2.2.1. The reason for requiring the invariance only over finite structures
will be apparent in Note . Indeed, if an FO(XUY)-sentence is C'-invariant
over all finite and infinite structures, Beth Definability Theorem [6] ensures that
it is equivalent to an FO(X)-sentence as long as C' is FO(X')-definable.

We now define C’-inv /¢ L(X), where C is a class of X-structures, as the set
of L(3 UY')-sentences that are C’-invariant over every structure of C.

When we prove that some invariant logic collapses to FO, we will mention
whether the result still holds when we restrict the class of structures over which
our sentences are required to be invariant.

Note that £(X) C C’-inv/¢ L(X) for every C,(’: a sentence of £L(X) makes
no use of symbols of ¥, and is thus necessarily C’-invariant over C.

In particular, £(3) C C'-inv L(X).

Furthermore, if C; C Co, then

C'-inv/c, L(X) CC-inv/c, L(D).

The converse is not true. We will see later on, e.g. with C’' being the class of
linear orderings, C, being the class of all finite and infinite structures and C;
being the class of all finite structures, that

C'-inv/e, L(X) € C'-inv/c, L(X).

Let’s now focus on two such classes C’, which will be at the center of this
thesis: the class of ordered structures, and the class of structures with a succes-
Sor.

2.2.2 Order-invariance

Consider the vocabulary ¥’ consisting of a single binary relation symbol <, and
the class C’ of linear orders, i.e. the class of X-structures A’ such that <A isa
total order on the domain A.

For the sake of simplicity, C’-inv £(X) will be abbreviated as <-inv £(X), or
even <-inv £ when X is clear from the context.

If £ = FO, we get <-inv FO, order-invariant FO. If £L = MSO, we get
<-inv MSO, order-invariant MSO.

To reformulate, an FO(X U {<})-sentence ¢ is in <-inv FO iff for any %-
structure A and any linear orders <; and <5 on A,

(A< e it (A <) e

Let’s look at a non-trivial property definable in <-inv FO, based on a ex-
ample from Potthoff [3T].

16

2.2. Invariant logics

Example 2.2.2. An unordered binary tree with descendant is a {S, D}-structure
whose restriction to {S} is a binary tree (where S(x,y) holds iff x is the parent
of y, and a node has either 0 or 2 children), and whose interpretation of D is
the transitive closure of S. Note that no distinction is made between the two
children of an internal node.

It is not hard to see that the class of unordered binary trees with descendant
is definable in FO({S, D}), through an FO-sentence ®.

Let C be the class of unordered binary trees with descendant whose branches
all agree on the parity of their length, i.e. such that all the paths from the root
to the leaves have an odd length, or all of them have an even length. Let’s show
that C is definable in <-inv FO({S, D}).

Suppose that we are given an order < on an unordered binary tree with
descendant. Such an order induces an order among the children of any internal
node, which can be used to state that the zig-zag branch going out of a node x,
i.e. the path from x to a leaf alternating between first and second children, has
even length. Indeed, consider the FO({S, D, <}) formula ¢cyen_sigzaq(x) stating
that either x is a leaf, or

e there exists a leaf | that is a descendant of x

o for every successive nodes ui,us and ug belonging to the branch between
x and l, us is the first child of uy iff us is the second child of us

e the first node of the branch is the first child of x

e [is the second child of its parent.

Let’s emphasize that such a property is FO-definable only because we consid-
ered the descendant relation; if a tree only has access to the parent-child relation,
one wouldn’t be able to define branches in FO.

Now, note that if some unordered binary tree with descendant T doesn’t
belong to C, it must contain an internal node t whose two children u and v are
such that all the branches from u are of even length, and all the branches from
v are of odd length. An illustration is given in Figure 2.1

Figure 2.1: A node t witnessing that 7 ¢ C. Red arrows denote the relation
parent/first (wrt. <) child, and the blue ones the relation parent/second child.
The zigzag branches of different parity are the drawn in plain arrows

17

Chapter 2. Preliminaries

Then a {S, D, <}-structure, which interprets < as a linear order, satisfies
pe = b A —Ehf, U, V. S(t, u) AN S(t, U) A Sﬁeven,zigzag(u) A _‘C,Oeuen,zigzag(v)

iff it belongs to C. Since belonging to C has nothing to do with the interpretation
of <, it becomes apparent that pc is <-invariant, and thus C is definable in
<-inv FO({S, D}).

It is important to note that two different orders on the same tree may give
rise to different witnessing branches in Yeven_zigzag; however, the formula will
evaluate similarly on both ordered structures.

As will be developed in Section[2.].1) this example illustrates that <-inv FO
is strictly more expressive than FO, as it turns out that C is not definable in
FO({S, D}) (this can easily be proven with the tools developed in Section[2.5.1)).

The problem of determining whether an FO-sentence using an order or a
successor relation is invariant wrt. this relation is undecidable, by reduction
from Trakhtenbrot’s theorem. Hence we use here the term logic somewhat
liberally, since having a recursive syntax is a usual requirement for a logic.

Proposition 2.2.3. If 3 contains a relation symbol R with Ar(R) > 2, then
<-inv FO(X) doesn’t have a recursive syntax.

Proof. Let R be a relation symbol of ¥ of arity 2. It is straightforward to adapt
this proof to any relation symbol of arity at least 3.
Let INV be the problem at hand:

input: ¢ € FO(X U {<})
question: is ¢ order-invariant?
Let’s consider the modified finite satisfiability problem MSAT for FO(X):
input: ¢ € FO(Y)
question: does there exist a finite X-structure A such that:

A E Jz3y.R(r,y) AN 3z.3y.-R(x,y)
A E o

The well-known Trakhtenbrot’s theorem [37] states that MSAT in undecid-
able.

We reduce MSAT to the complement of INV: from a sentence ¢ € FO(X), we
compute the FO(X U {<})-sentence

@:=¢ A ¥Ymin.Vmax.(Vz.~(z < min) A 7(max < z)) — R(min, max) .

If ¢ is a positive instance of MSAT, with a witnessing structure A, then ¢ is
not order-invariant over A. Indeed, depending on the order, the second part of
@ will or won’t be satisfied.

Conversely, if @ is a negative instance of INv, then there is a struture A on
which @ holds or not depending on the order. Such an A4 must satisfy ¢, and
R4 can be neither the complete nor the empty relation.

O

18

2.2. Invariant logics

Note that determining whether a sentence is order-invariant is already un-
decidable on the class of dipaths [5].

If however each relation symbol of ¥ is at most unary, then INV becomes
decidable. Indeed, order-invariance then amounts to the commutativity of a
language definable in FO (thus a regular language), which can be decided by
checking whether its syntactic monoid is commutative.

Order-invariance is also decidable on the fragment of FO that uses only two
variables, as shown by Harwath and Zeume [40].

Note 2.2.4. In the definition, we required for any sentence ¢ of < -inv FO
to be order-invariant over all finite structures, and not all finite and infinite
structures. With the latter definition, < -inv FO would immediately collapse
to FO. This can be proved either with Beth Definability Theorem [6]], or with
Craig’s Interpolation Theorem [12)] from classical model theory; we do the latter.
Let’s first state Craig’s Interpolation Theorem:

Proposition 2.2.5. Let X1, X9 be two relational vocabularies and 3 := 31 NXs.
Let @1 and @4 be respectively an FO(X1)-sentence and an FO(X3)-sentence.
If
(I)l — @2

holds in every (finite or infinite) (X1 U 3g)-structure, there there exists an
FO(X)-sentence ® such that both

@1—>(I’ and (I)—>(I)2

hold in every (finite or infinite) (X1 U Xa)-structure.

Suppose that an FO(X U {<})-sentence ¢ is order-invariant over all finite
and infinite structures. Using Proposition[2.2.58, let’s prove that ¢ is equivalent
to some FO(X)-sentence 1.

Let <1 and <3 be two distinct order symbols, X1 := TU{<1}, T2 := BU{<x},
and o1 (resp. ps2) be the result of the replacement in ¢ of all the occurrences of
the symbol < by the symbol <1 (resp. <3).

Now, let Uy (resp. Ws) be an FO(X1)-sentence (resp. FO(Xs3)-sentence)
stating that <y (resp. <2) is a linear order.

The formula

UiApr = (Pa — p2)

holds in every finite or infinite (X1 U Xo)-structure, by order-invariance of ¢.
Proposition [2.2.5 guarantees the existence of some X-sentence v such that
both

UiApr — @ (2.1)

and
v = (V2=) (2.2)

hold in every finite or infinite XU {<1, <o }-structure.
Let’s now prove that v is equivalent to ¢ on every X-structure A:

19

Chapter 2. Preliminaries

o Suppose that A |= . Then for any linear order <{* on A,
(A, <) E U A g,
which together with entails (A, <{') | ¢, hence A = 1).

o Suppose now that A |= 1. For any linear order <3 on A, gives
(A, <3Y) = @2, ie. A= .

This reasoning explains why order-invariance is only interesting on finite
structures.
Furthermore, combined with the fact that FO C <-inv FO (we’ve begun to

see this with Example and this will be developed in Section , it
shows that there is no equivalent to Craig’s Interpolation Theorem in the finite.

Let’s now give an example of a property definable in <-inv MSO over the
empty vocabulary:

Example 2.2.6. One can write an MSO({<})-formula ® . with one free set
variable X, stating that X contains every second element wrt. <:

(X)) = VaVy. (z<yAn-TFz.z<zAz<y) = (X(z) < -X({)).

Using @ ,1(X), it is now easy to express that the domain of a structure has
even size, with

Yeven = Jmin.dmax.3X. Vz. (2 < min) A ~(max < x)

A X(min) A @4(X) A =X (max) .

Indeed, an ordered structure satisfies peyer iff the set containing the minimal
element and every second element doesn’t contain the last element. Note that
this property depends only on the domain of the structure, and not on the order:
thus Yepen € <-inv MSO(0).

2.2.3 Successor-invariance

A order-invariant sentence can make use of an order as long as the result of its
evaluation doesn’t depend on the choice of this order. Let’s now weaken the
additional structure our sentences can access, by restricting the order to the
successor relation.

We say that a binary relation on a finite set A is a successor relation on
A if it is the graph of a circular permutation of A, i.e. a bijective function from
A to A with a single orbit. This differs from the standard notion of successor in
that there is neither minimal nor maximal element. However, this doesn’t have
any impact on our results, as we will prove in Proposition [2.2.7]

Let X/ be the relational vocabulary containing a single binary relation symbol
S, and let C’ be the class of ¥'-structures A’ such that SA" is a successor relation
on the domain A.

Then C’-inv FO is abbreviated as Succ-inv FO, successor-invariant FO.

20

2.2. Invariant logics

To reformulate, an FO(X U {S})-sentence ¢ is in Succ-inv FO iff for any
Y-structure A and any successors S; and S; on A,

Let’s now prove that our decision to consider circular successors instead
of the more traditional linear ones (with a minimal and a maximal element)
bears no consequence on the expressivity of the logic defined. If we define
LinSucc-inv FO in the same way that Succ-inv FO, but where the invariant
relation is a linear successor S, we get:

Proposition 2.2.7. For every vocabulary X,
Succ-inv FO(X) = LinSucc-inv FO(X),

i.e. Succ-inv FO(X) and LinSucc-inv FO(X) define the same properties of X-
structures.

Proof. Given ¢ € Succ-inv FO, let’s prove that there exists a formula
1 € LinSucc-inv FO

such that v is equivalent to ¢, i.e. for every X-structure A, A |= ¢ iff A = 9.
Let ¢ be defined as ¢ in which every atom S(z,y) has been replaced with
S(2,5) v ~32.(5(z, 2) V S(2,1)).
Let A be a Y-structure and S# be a linear successor on A. Then

(A S Ey iff (A45YEe,

where S is the circular successor obtained from S by adding an edge from
the maximal element to the minimal one.
This guarantees that ¢ € LinSucc-inv FO, and that 1 and ¢ are equivalent.

Conversely, let ¢ € LinSucc-inv FO and let ¢ be the formula 3 min .Cut(v)),
where Cut (1)) is obtained by replacing in ¢ every S(z,y) with S(z, y)A—y = min.
Let A be a S-structure, let S be a circular successor on A, and let min € A.
Then
(A, 4, min) = Cut(e) iff (A, 54) = o,

where S4 is the linear successor obtained from S by removing the edge pointing
to min. Hence (A, S*) = ¢ iff there exists a linear successor S obtained from
SA by an edge removal such that (A, S4) |= 1, that is iff A = 4.

This ensures that ¢ € Succ-inv FO and that ¢ and 1 are equivalent. O

Note that although LinSucc-inv FO and Succ-inv FO have the same expres-
sive power, one may be more concise than the other. However, the succinctness
(both in terms of quantifier rank and size of the formulas) of one with respect
to the other cannot be more than linear.

Note 2.2.8. There is no need to define Succ-inv MSO. Indeed, recall from
Ezample [2.1.5 that the transitive closure is definable in MSO.

Mimicking the proof techniques from Proposition|2.2.7, one can easily show
that <-inv MSO and Succ-inv MSO define the same properties.

21

Chapter 2. Preliminaries

Let’s give an example of Succ-inv FO sentence. For this first example, it
will be more convenient to use the LinSucc-inv FO framework.

Example 2.2.9. Let’s consider the empty vocabulary. Note that ()-structures
are bare sets.

We define FO({S})-formulas (¥ (x,y))ken such that, if S is a linear suc-
cessor on A and if a,b € A, then A |= ¥p(a,b) iff a and b are at distance 2F
according to S (not taking the orientation of S into consideration,).

The (Yr.(x,y))r are defined by induction on k as follows:

d ¢O(xvy) = S(xvy) v S(:’J?x)
o Ypi(x,y)i=x#yAImNVNz.(z=2Vz=y) = vp(z,m).

The slight complexification in the definition of Vi1 from vy allows the
(Vi (x,y))k to be linear in k, both in terms of quantifier rank and of size.
For n € N, we define ¢,, as

Jmin.Imax. (Vz.-5(z, min) A =S(max, 2)) A t,(min, max).

Provided that S is indeed a linear successor relation on A, we get that
AE o iff |[Al =2"+ 1.

Furthermore, it is clear that ¢, € LinSucc-inv FO((), as the this property
depends only on the size of A, and not on the particular interpretation of S.

It is well known, and can easily be shown using Ehrenfeucht-Fraissé games,
that any sentence of FO(D) defining this property must have quantifier rank (and
thus, size) at least 2™ + 2.

This example proves the following proposition.

Proposition 2.2.10. Succ-inv FO(0) is at least exponentially more succinct
than FO(D), both in terms of quantifier rank and size.

For the same reasons as < -inv FO, Succ-inv FO doesn’t have a recursive
syntax in general:

Proposition 2.2.11. If ¥ contains a relation symbol R with Ar(R) > 2, then
Succ-inv FO(X) doesn’t have a recursive syntaz.

2.3 Tools for proving expressivity results

We have defined a number of different logics in Sections and and seen
that some are more expressive than others when it comes to the range of prop-
erties they can define. In this section, we develop the framework as well as
some useful tools to prove such results about the expressivity of the previously
defined logics. The first results that follow from these techniques are presented
in Section 2.4l

The notion of similarity between two structures, and thus their indistin-
guishability by a given logic, is defined in Section [2.3.1} Ehrenfeucht-Fraissé
games, in which quantification is seen as the choice of a move in a two-player
game, and their link to FO-similirity, are also developed in that section.

We then introduce in Section [2:3:2] the notion of FO-interpretation as a way
to define structures from other structures, and show how they can be used to
lift expressivity results from one class of structures to another.

22

2.3. Tools for proving expressivity results

Let’s first establish some vocabulary to express relations between the ex-
pressive power of two logics.

Given two classes of Y-structures P C C and a logic £, we say that P is
L-definable on C if there exists an L-sentence ¢ such that

VAelC, AeP iff AkEep.

If C is not mentioned, it is understood to be the class of all finite X-structures.

Note that the notion of L-definability on C differs from the notion of L-
definability as soon as C itself is not L-definable.

Given a class of structures C and two logics £, L', we say that £’ is at least
as expressive as £ on C, abbreviated £ C £’ on C, if every property P C C
that is L£-definable on C is also £’-definable on C.

We write £ = £' on C if £ and L are equally expressive on C, i.e. if £L C L’
onC and £'C L on C.

Once again, if C is not specified, we understand it to be the class of all finite
Y-structures.

Note 2.3.1. One has to be careful with the class of structures over which in-
variance is assumed. In this thesis, by

<-inv FO =FO on C

we mean that for every FO(X U {<})-sentence ¢ that is <-invariant over all
finite structures, there exists an FO(X)-sentence that is equivalent on C.

This is not to be confused with the stronger property requiring that, for every
FO(X U {<})-sentence ¢ that is <-invariant over C, there exists an FO(X)-
sentence that is equivalent on C. This is denoted

<-inv/e FO=FO onC.

The relations between such invariant logics with restricted invariance support
do not relativize. For instance, while

<-inv FO =FO onC

entails
<-inv FO = FO on C’

as soon as C' C C, there is no reason for
<-inv/¢ FO =FO on C

to entail
<—iHV/c/ FO=FO on('.

Indeed, with the weakening of the invariance requirement from C to C', a
sentence of <-inv/cr FO could fall outside of <-inv/c FO.

In this section, we give a few standard tools that will be convenient when
delimiting the expressive power of a logic.

23

Chapter 2. Preliminaries

2.3.1 Similarity and Ehrenfeucht-Fraissé games

It will prove useful to measure to which extent two st