
HAL Id: tel-03557305
https://theses.hal.science/tel-03557305v2

Submitted on 4 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the expressive power of invariant logics over sparse
classes of structures

Julien Grange

To cite this version:
Julien Grange. On the expressive power of invariant logics over sparse classes of structures. Logic in
Computer Science [cs.LO]. Université Paris sciences et lettres, 2020. English. �NNT : 2020UPSLE042�.
�tel-03557305v2�

https://theses.hal.science/tel-03557305v2
https://hal.archives-ouvertes.fr

Préparée à l'Ecole Normale Supérieure

On the Expressive Power of Invariant Logics over

Sparse Classes of Structures

Soutenue par

Julien GRANGE

Le 29 juin 2020

Ecole doctorale n° 386

Sciences Mathématiques de

Paris-Centre

Spécialité

Informatique

Composition du jury :

Cristina SIRANGELO
Professeur,

Université Paris Diderot Présidente

Anuj DAWAR

Professeur,

University of Cambridge Rapporteur

Etienne GRANDJEAN

Professeur émérite,

Université de Caen Rapporteur

Mamadou KANTE

Maître de conférences,

Université Clermont Auvergne Examinateur

Leonid LIBKIN

Professeur,

Ecole Normale Supérieure Examinateur

Luc SEGOUFIN

Directeur de recherches,

Ecole Normale Supérieure Directeur de thèse

Je voudrais remercier sincèrement mon directeur de thèse, Luc Segoufin,
pour son encadrement particulièrement formateur et sa disponibilité sans faille
au cours de ces trois années.

J’adresse un grand merci, sans me lancer dans un inventaire qui risquerait à
tort d’être perçu comme non order-invariant, à tous mes proches.

Cette thèse est dédiée à la mémoire de Jacquot l’Anglais.

2

Contents

1 Introduction 5

2 Preliminaries 9
2.1 Structures and logics . 9

2.1.1 Relational structures . 10
2.1.2 First-order logic . 12
2.1.3 Monadic second-order logic 13

2.2 Invariant logics . 15
2.2.1 General setting . 15
2.2.2 Order-invariance . 16
2.2.3 Successor-invariance . 20

2.3 Tools for proving expressivity results 22
2.3.1 Similarity and Ehrenfeucht-Fräıssé games 24
2.3.2 FO-interpretations and bi-FO-interpretations 26

2.4 First expressivity results . 28
2.4.1 Separating examples . 29
2.4.2 Locality . 31
2.4.3 Upper bounds and collapses of invariant logics 33

2.5 Treewidth and pathwidth . 34
2.5.1 Treewidth and pathwidth of a graph 35
2.5.2 Logical perspective on decompositions 36
2.5.3 Domino decompositions 38
2.5.4 Decompositions of bounded diameter 40
2.5.5 Interpretation of path-decompositions 41
2.5.6 Interpretation of tree-decompositions 45

2.6 Methodology for proving a collapse 53
2.6.1 Lifting a pre-established collapse 53
2.6.2 The direct method . 53
2.6.3 The chaining method . 54

2.7 Model checking for successor-invariance 55
2.8 Review of expressivity results . 56

3 Successor-Invariant FO on Classes of Bounded Degree 59
3.1 Overview of the result . 59
3.2 Fractal types and layering . 62
3.3 Proof of the collapse . 65

3.3.1 General method . 65
3.3.2 Separation between rare and frequent types 66

Contents

3.3.3 Around rare types . 67
3.3.4 Around junctions . 68
3.3.5 Carrying S1 over to G2 . 68
3.3.6 Completion of S1 and S2 71
3.3.7 Examples of construction 72
3.3.8 Properties of S1 and S2 74
3.3.9 Conclusion of the proof 78

3.4 Conclusion . 79

4 Order-Invariant FO on Hollow Trees 81
4.1 Definitions . 82

4.1.1 General notations . 82
4.1.2 Hollow trees . 82

4.2 Overview of the results . 85
4.2.1 Main result . 85
4.2.2 Corollaries . 86

4.3 Swaps and pumping . 87
4.3.1 Crossing-S-swaps . 89
4.3.2 E-swaps . 91
4.3.3 Pumping . 102

4.4 Inclusion and pseudo-inclusion 103
4.5 Tools for reorganizing S-edges . 110

4.5.1 S-siblings re-association 110
4.5.2 S-stabilization . 112

4.6 Removing unnecessary material 118
4.6.1 Loop minimization . 119
4.6.2 Loop elimination . 120
4.6.3 S-parents re-association 126

4.7 Proof of the main result . 139
4.8 Conclusion . 142

5 Conclusion 143

4

Chapter 1

Introduction

Finite model theory offers to develop formalisms for expressing properties of
finite structures, and focuses on proving relations between, and bounds on,
these languages.

The most basic of these formalisms is probably first-order logic, FO, in which
one can quantify over elements of the structures. Its expressive power has been
studied extensively and is known to be very restrained, as it can only express
properties that are local, which roughly means that it can only talk about the
immediate surroundings of a small number of elements, and it is unable to count.

There are several ways to define logics extending FO in order to enhance
its expressive power. For instance, monadic second-order logic MSO takes FO
as a building block, and allows quantification not only over elements, but also
over sets of elements. Alternatively, one could add a fixpoint operator to FO
and get least fixpoint first-order logic LFP. Both these additions break the local
character of the logic.

Another way to define logics from FO is through the addition, in an invariant
way, of arithmetic predicates on the structure that are exterior to the vocabulary.
This amounts to arbitrarily identifying the domain of the structure with an
initial segment of the integers, and allowing some arithmetic on them. However,
we want these extensions to define properties of the structures, and not to
depend on a particular ordering on their elements: thus we focus on invariant
extensions of FO.

If the only predicate allowed is the order, we get order-invariant first-order
logic, < -inv FO. Restricting a bit the additional relation, we get successor-
invariant first-order, Succ-inv FO. In this formalism, we only grant an access
to the successor relation derived from the order, provided that the evaluation of a
sentence using this successor relation is independent of the choice of a particular
successor. The focus of this thesis will be on those two logics. Note that we use
here the term “logic” somewhat liberally, since < -inv FO and Succ-inv FO do
not have a recursive syntax, which is a usual requirement for a logic.

A strong motivation for the study of these two formalisms comes from
database theory. On top of that, some profound relations between complex-
ity theory and invariant logics exist, reinforcing the interest in these notions.

Chapter 1. Introduction

As databases are commonly stored on disks that implicitly order their mem-
ory segments, when one wishes to express a query in FO, one has access to
an additional order on the elements of the database. However, making use of
this order without care could result in queries that evaluate differently on two
implementations of the same database, which is clearly an undesirable behavior
breaking the physical data independence principle from [10]. We want to use
this order only in an invariant manner; that way, the result of a query depends
only on the database it is run on, and not on the way the data is stored on
disk. This amounts exactly to the definition of < -inv FO, or Succ-inv FO if we
restrict the way this order can be accessed.

It is straightforward that < -inv FO is at least as expressive as Succ-inv FO,
which in turn can express any FO-definable property. Gurevich constructed a
class of finite structures that can be defined by an < -inv FO sentence, but which
is not FO-definable. Though this construction wasn’t published by Gurevich,
it can be found e.g. in Section 5.2 of [27]. Rossman extended this result, and
proved in [33] that on finite structures, Succ-inv FO is strictly more expressive
than FO.

Grohe and Schwentick [24] proved that these logics are Gaifman-local, giving
an upper bound to their power of expression. Other upper bounds were given by
Benedikt and Segoufin [5], who proved that < -inv FO, and hence Succ-inv FO,
are included in MSO on classes of bounded treewidth and on classes of bounded
degree. Elberfeld, Frickenschmidt and Grohe [16] extended the first inclusion
to a broader setting, that of decomposable structures. Whether these logics are
included in MSO in general is still an open question.

The classes of structures involved in the separating examples by Gurevich
and Rossman are dense, and no other example is known on classes that are
sparse. Far from it, < -inv FO and a fortiori Succ-inv FO are known to collapse
to FO on several sparse classes, meaning that < -inv FO and FO can define the
same properties on those classes of structures. Benedikt and Segoufin [5] proved
the collapse on trees, while Eickmeyer, Elberfeld and Harwarth [14] obtained an
analogous result on graphs of bounded tree-depth.

As for model-checking considerations, the result from Grohe, Kreutzer and
Siebertz [23] stating that the model checking problem for FO is fixed-parameter
tractable on nowhere dense classes of graphs has been extended to Succ-inv FO
by Van den Heuvel, Kreutzer, Pilipczuk, Quiroz, Rabinovich and Siebertz [38],
as long as we restrict ourselves to classes of bounded expansion.

Contribution: In this thesis, we improve the understanding of the expressive
power of Succ-inv FO and < -inv FO by broadening the setting in which they
are known to collapse to FO.

In Chapter 3, we prove that Succ-inv FO collapses to FO on classes of
structures of bounded degree.

To do this, we show how to construct successors on two FO-similar structures
(that is, structures that satisfy the same FO-sentences which quantification
nesting is below some threshold) of small degree, such that the two structures
remain FO-similar when considering the additional successor relation.

6

A sparsity notion orthogonal to degree boundedness is that of treewidth,
which measures in some sense the distance from a structure to a tree. It is an
open question whether < -inv FO or Succ-inv FO collapse to FO on classes of
graphs of bounded treewidth, or even bounded pathwidth.

In Chapter 4, which is based on a joint work with Luc Segoufin [22], we take
a step in that direction, by showing that < -inv FO collapses to FO over the
class of hollow trees.

Hollow trees are a generalization of binary trees, and are closely related to
structures of pathwidth 2.

More precisely, the vocabulary of hollow trees contains two binary relations.
They are interpreted so that the resulting structure is a tree with the following
features: each element has at most four neighbors - its first child, its last child
and up to two siblings. One of the binary relation is symmetrical and defines the
sibling relation while the other one is oriented and defines the partial parent-
child relation. A parent may have an arbitrary number of children, but it is
directly only related to two of them. Note that while this can be done in MSO,
FO cannot reconstruct the complete parent-child relation of every node within
a hollow tree.

The proof that < -inv FO is no more expressive that FO on hollow trees
follows a strategy similar to the that used for binary trees in [5]: we first exhibit a
set of operations over hollow trees (or, more precisely, over structures FO-similar
to hollow trees) that preserve order-invariance similarity. We then show that if
two hollow trees are FO similar then one of them can be transformed using our
set of operations into the other, lifting FO similarity to < -inv FO similarity.
The first part is standard, though it adds a new kind of operation to previously
used set of operations, and makes use of the locality of < -inv FO [24]. The
second part is more combinatorial and forms the main technical contribution of
this Chapter.

7

Chapter 1. Introduction

8

Chapter 2

Preliminaries

In this chapter, we recall some of the basic definitions, examples and properties
from finite model theory, as well as some notions relating to tree-decompositions.
We also review the state of the art with respect to order-invariant and successor-
invariant logics.

For a complete course in finite model theory, we refer the reader to [27].

We start by setting in Section 2.1 the general framework of finite model
theory, by introducing relational structures and defining first-order and second-
order logics on such structures. We then define in Section 2.2 several extensions
of these logics by means of invariant relations. Classical methods for establishing
expressivity results for those logics are described in Section 2.3, and used in
Section 2.4 where we recall the main results known about the expressive power
of invariant logics.

In Section 2.5, we turn to structures of bounded treewidth and pathwidth.
After recalling the classical definitions for graphs, we extend these notions to
all structures and establish a logical framework for them.

Section 2.6 describes the strategies that will later be used in Chapter 3 and
4 for proving a collapse between two logics. We then give an overview of the
complexity of the model checking problem in the case of successor-invariant first-
order logic in Section 2.7, before concluding the chapter by listing in Section 2.8
all the expressivity results spread throughout the previous sections.

2.1 Structures and logics

We define the basic notions of finite model theory in three steps.

First, we explain in Section 2.1.1 how mathematical objects can be seen as
relational structures. Sections 2.1.2 and 2.1.3 then provide two usual formalisms
to express properties about these objects. Those languages, or logics, are re-
spectively first-order logic, FO, and monadic second-order logic, MSO. While
FO only allows quantification over elements of the structures (e.g. edges of a
graph), MSO broadens the quantification to sets of elements, thus allowing to
express more properties such as connectivity.

Chapter 2. Preliminaries

2.1.1 Relational structures

By relational vocabulary, we mean a set Σ := {R1, · · · , Rn, c1, · · · , cm} of
symbols together with an arity function Ar : {R1, · · · , Rn} → N. The Ri are
called Ar(Ri)-ary relation symbols, and the cj are called the constant symbols.

For a finite alphabet σ of symbols, we define the relational vocabulary

Pσ := {Ps : s ∈ σ} ,

where every Ps is a unary relation symbol, i.e. such that Ar(Ps) = 1.

For the remainder of this chapter, we consider a relational vocabulary

Σ := {R1, · · · , Rn, c1, · · · , cm} .

A Σ-structure A is a tuple (A,RA1 , · · · , RAn , cA1 , · · · , cAm) where:

• A is a nonempty set

• for every i ∈ {1, · · · , n}, RAi ⊆ AAr(Ri)

• for every j ∈ {1, · · · ,m}, cAj ∈ A

A is called the domain of A. We say that each relation symbol Ri is
interpreted as the Ar(Ri)-ary relation RAi , and that each constant symbol cj
is interpreted as the element cAj

We say that A is a finite Σ-structure if its domain is finite.
Two structures A and B are isomorphic if there exists a bijection f between

their domains such that f and f−1 preserve relations and constants. This is
denoted A ' B. Every class of structures under consideration will be closed
under isomorphism.

Let’s illustrate the definition of structure with several examples:

Example 2.1.1. Let σ be a finite alphabet. There are several ways to represent
a word w ∈ σ∗ as a relational structure.

First, let’s consider an additional relation symbol < of arity 2. Every word
w ∈ σ∗ can be seen as a Pσ ∪ {<}-structure Aw, where:

• Aw is the set {0, · · · , |w| − 1} (where |w| denotes the length of w)

• < is interpreted as the natural order on Aw

• for every letter s ∈ σ, Ps is interpreted as the set of positions at which the
letter s occurs in w.

By extension, we will call such a structure Aw a word over σ, as it is
the most common way in the literature to represent a word of σ∗ as a logical
structure.

Now, let’s consider the relational vocabulary Pσ ∪ {S} instead of Pσ ∪ {<},
where S is also a binary relation symbol. We can define Bw as for Aw, but
where S is interpreted as the successor relation on {0, · · · , |w| − 1}.

10

2.1. Structures and logics

Such a structure will be referred to as a dipath over σ.

If we now symmetrize the interpretation of S in Bw, we get a path over σ.

Depending on whether we choose to represent w ∈ σ∗ as a word, a dipath or
a path, the properties that we are able to express may vary.

For instance on the alphabet σ := {a, b, c}, using first-order logic as defined
in Section 2.1.2, one is able to state that there exists an occurrence of the letter
a that comes before every occurrence of the letter b in Aw; however this cannot
be expressed in Bw. In other words, whether the language

c∗aσ∗

is definable in first-order logic depends on the representation we chose.
Likewise, the language

c∗abc∗abc∗

is definable in first-order on words and dipaths, but not on paths.
As we will see in Section 2.1.3, the more expressive logic MSO is able to

define transitive closure. In that case, every property definable on words is also
definable on dipaths.

Example 2.1.2. Similarly, one can easily consider any tree t over an alphabet σ
as a relational structure over Pσ∪{S}, where S is a binary symbol. Depending on
the setting, we can interpret S as the ancestor-descendant relation, the parent-
child relation, or their symmetric closure.

As for words, the choice of the model has an impact on the properties that
are expressible in weak logics, such as first-order logic. When considering words
or trees as relational structures, we will always make clear which representation
we choose.

Example 2.1.3. More generally, any colored finite graph with a set σ of colors
can be seen as a Pσ ∪ {E}-structure, whose domain is the set of nodes of the
graph, and which interprets the binary relation symbol E as the edge relation of
the graph.

It will be convenient to identify the graph and the corresponding structure
(or better still, to define a graph as such a structure).

Proviso. Unless stated otherwise, we will only consider finite structures.
For clarity purposes, structures will always be denoted through calligraphic

upper-case letters and their domain through the corresponding standard upper-
case letter.

Given a Σ-structure A, we will often identify the symbols Ri, cj ∈ Σ with
their interpretations in A.

The Gaifman graph GA of a Σ-structure A is defined as (A, V) where
(x, y) ∈ V iff x and y appear in the same tuple of a relation of A. In particular,
if a graph is seen as a relational structure on the vocabulary {E}, its Gaifman
graph is the unoriented version of itself.

The degree of A is the degree of its Gaifman graph, and a class C of Σ-
structures is said to be of bounded degree if there exists some d ∈ N such
that the degree of every A ∈ C is at most d.

11

Chapter 2. Preliminaries

Note 2.1.4. There exist other definitions for the degree of a structure. For
instance, one could consider the degree of an element x ∈ A to be the total
number of tuples in which it appears, i.e. the cardinal of the set

{ȳ ∈ RA : x ∈ ȳ, R ∈ Σ} .

This definition is equivalent to the one we have adopted, in the sense that
classes of bounded degree are the same for both notions, as long as the vocabulary
is finite.

By distA(x, y), we denote the distance between x and y in GA. Given two
sets S and T of elements of A and m ∈ N, we say that S and T are m-distant
in A, if distA(x, y) ≥ m for all x ∈ S and all y ∈ T .

We now give the definition of the neighborhood type of an element.
Let c be a constant symbol that doesn’t appear in Σ.
For k ∈ N and x ∈ A, the k-neighborhood N k

A(x) of x is the (Σ ∪ {c})-
structure whose Σ-restriction is the substructure of A induced by {y ∈ A :
distA(x, y) ≤ k}, and where c is interpreted as x.

The k-neighborhood type τ = tpkA(x) is the isomorphism class of its k-
neighborhood. We say that τ is a neighborhood type over Σ, and that x is an
occurrence of τ in A. |A|τ denotes the number of occurrences of τ in A, and
for t ∈ N∪ {∞}, we write [[A]]k =t [[B]]k to mean that for every k-neighborhood
type τ , |A|τ and |B|τ are either equal, or both larger than t. If t =∞, it means
that |A|τ and |B|τ are equal for every k-neighborhood type τ .

We extend those definitions to tuples of elements by considering several new
constant symbols, fixing the tuples pointwise.

This notion of neighborhood type is not to be confused with the other use
of the word “type” in logic, which refers to the set of formulas with one free
variable satsfied by an element. When speaking of types, we always refer to the
former meaning.

2.1.2 First-order logic

Let Var be a countably infinite set of fresh symbols, called the variable sym-
bols. We will usually denote the variable symbols through the letters x, y, z, · · ·

A Σ-atom is a token of the form Ri(t1, · · · , tAr(Ri)) for i ∈ {1, · · · , n} or
t1 = t2, where the tk are either one of the constant symbols c1, · · · , cm or a
variable symbol of Var.

The set of first-order formulas over Σ is defined as the closure of the set
of atoms under the unary symbols {¬}∪{∃x : x ∈ Var} and the binary symbols
{∨}.

The set FO(Σ) of first-order sentences over Σ contains every first-order
formula ϕ over Σ having no free variable, i.e. such that for every x ∈ Var
occurring in an atom a of ϕ, there exists an ancestor of a labelled ∃x or ∀x in
the syntactic tree of ϕ.

Formulas and sentences will be denoted through the letters ϕ, φ, ψ, · · ·
Σ will be omitted when it is clear from the context.
The quantifier rank of an FO-formula is the maximal number of nodes

labelled ∃x, x ∈ Var on a branch of the syntactic tree of ϕ.

12

2.1. Structures and logics

We now give a semantics à la Tarksi to FO(Σ).
Let A be a Σ-structure A together with a partial function v : Var → A

covering all the free variables of a FO-formula ϕ. It will be convenient to
extend v with v : cj 7→ cAj for j ∈ {1, · · · ,m}.

We define inductively the relation A, v |= ϕ as follows:

• ϕ is the atom Ri(t1, · · · , tn) and (v(t1), · · · , v(tn)) ∈ RAi
• ϕ is the atom t1 = t2, and v(t1) = v(t2) (the first ’=’ is just a symbol,

while the second one refers to the equality of elements of A)

• ϕ is of the form ∃x.ψ, and there exists an element a ∈ A such that, defining
v′ as v together with x 7→ a (where this mapping takes precedence over
x 7→ v(x) if v(x) was defined), A, v′ |= ψ

• ϕ is of the form ¬ψ (resp. ψ ∨ φ), and A, v 6|= ψ (resp. A, v |= ψ or
A, v |= φ)

If ϕ is a FO-sentence, then we say that A satisfies ϕ if A, v |= ϕ where v
is the empty valuation. We then write A |= ϕ.

Similarly, if x1, · · · , xn ∈ Var are the free variables of ϕ, and a1, · · · , an are
elements of A, then for any partial function v : Var→ A,

A, v] {x1 7→ a1, · · · , xn 7→ an} |= ϕ

will be abbreviated as
A |= ϕ(a1, · · · , an) .

We have only defined the logical connectors ∃x, ¬ and ∨, but we will freely
use the shortcuts ∀x, ∧, → and ↔, which can be derived from the first one
accordingly to the well-known De Morgan laws.

Each sentence ϕ of FO(Σ) (and actually, of any logic L) defines a property of
Σ-structures; namely, the set {A : A |= ϕ}. When we mention the expressivity
of a logic, we refer to the range of properties that can be defined with sentences
of that logic.

We will define precisely what it means for a logic to be more expressive than
another one on a class of structures in Section 2.3.

2.1.3 Monadic second-order logic

The expressive power of FO is very limited. We will see in Section 2.4.2 that it
is local, namely that FO can only define properties that concern a small radius
around a limited number of elements.

Even simple properties such as the connectivity of a graph cannot be defined
in FO. We now turn to a fundamental extension of FO: monadic second-order
logic, MSO. Not only the transitive closure of a relation is definable in MSO
(and thus the connectivity property), but it has the very nice property of cap-
turing exactly the regular languages on words and trees.

In FO, one can only quantify over elements of the structure, whereas in
MSO, we allow quantification on sets of elements. For that, we need a new set

13

Chapter 2. Preliminaries

of variables: let VAR be a countably infinite set of fresh symbols, called the
set-variable symbols. We will usually refer to those variables as X,Y, Z, · · ·

We define the set of MSO-formulas over Σ as we did the set of FO-
formulas over Σ, with the following additions:

• for every X ∈ VAR and t ∈ Var ∪ {c1, · · · , cm}, X(t) is an atom

• we consider the new unary operations {∃X : X ∈ VAR} for the closure

As for FO, an MSO-sentence is an MSO-formula which has no free variable
and no free set-variable.

The quantifier rank of an MSO-formula is the maximal number of nodes
labelled ∃x or ∃X, x ∈ Var, X ∈ VAR on a branch of the syntactic tree of ϕ.

To define the semantics of an MSO-formula ϕ on a Σ-structureA, in addition
to the partial function v : Var → A (extended to {c1, · · · , cm}), we consider a
partial function V : VAR→ P(A) (P(A) being the power set of A) covering the
set of free variables of ϕ.

In addition to the semantics rules for FO, we need the following rules:

• A, v, V |= X(ci) if v(ci) ∈ V (X)

• A, v, V |= ∃X.ψ if there exists E ⊆ A such that A, v, V ′ |= ψ, where V ′

is defined as V together with X 7→ E (this mapping taking once again
precedence over X 7→ V (X) if it was defined)

If ϕ is an MSO-sentence, v and V can be omitted, and we write A |= ϕ.
Once again, we will use the shortcut ∀X.ψ for ¬∃X.¬ψ.

Example 2.1.5. Let’s prove that the reflexive transitive closure of a binary re-
lation is MSO-definable. Given a binary relation R ∈ Σ, consider the following
MSO-formula with two free variables:

φR∗(x, y) := ∀X. [X(x) ∧ (∀u.∀v.X(u) ∧R(u, v)→ X(v))] → X(y) .

For any Σ-structure A and elements a, b ∈ A, A, {x 7→ a, y 7→ b} |= φR∗(x, y)
if and only if (a, b) belongs to the reflexive transitive closure of RA.

Indeed, if A, {x 7→ a, y 7→ b} |= φR∗(x, y), then mapping X to the set {e ∈
A : (a, e) ∈ R∗} of all the elements reachable by R from a, we get that b is
reachable from a.

Conversely, suppose that (a, b) ∈ R∗, and that we map X to a set E. If E
satisfies the premise, then a ∈ E and E is stable by R, which entails that E
contains all the elements reachable by R from a. In particular, b ∈ E. Thus,
A, {x 7→ a, y 7→ b} |= φR∗(x, y).

We say that φR∗(x, y) defines the reflexive transitive closure of R.

Once again, to each MSO-sentence corresponds the class of structures that
satisfy this sentence. Remember that we showed in Example 2.1.1 how a word
on σ could be thought of as a Pσ ∪{<}-structure. We now state a fundamental
result due to Büchi [9]:

Proposition 2.1.6. The MSO-definable classes of words are exactly the regular
languages.

14

2.2. Invariant logics

This means that for every regular language L, there exists an MSO-sentence
ϕL which is satisfied by a word w (or more precisely, by its associated structure
Aw) iff w ∈ L. Conversely, the language of words satisfying any MSO-sentence
is regular.

Note that when considering MSO, it doesn’t matter whether we choose to
include the full order < or just the successor relation S in the translation from
words to structures. Indeed, given a successor relation S, the MSO-formula
φS∗ from Example 2.1.5 defines exactly <. Conversely, it is not hard to write
a formula defining S from < (to define that restriction, FO is even expressive
enough). We will encounter again such a notion of two-way definability, albeit
only for FO, when we formally define bi-FO-interpretations in Section 2.3.2.
This is a convenient tool to state that two models are equivalent.

A similar result for ranked trees was proven by Thatcher and Wright [36]:

Proposition 2.1.7. The MSO-definable classes of trees are exactly the regular
languages of trees.

The previous proposition also holds on unranked trees.

Let’s now add modulo quantification ∃(m)x for m ∈ N, to MSO. The seman-
tics of these new quantifiers is

A, v, V |= ∃(m)x.ϕ if |{a ∈ A : A, v] {x 7→ a}, V |= ϕ}| ≡ 0 mod m.

In other words, we are now allowed to count, modulo some integer, the
number of witnesses to a formula.

The logic thus defined is monadic second-order logic with counting,
CMSO.

2.2 Invariant logics

In Section 2.1 were introduced two logical framework to express properties on
relational structures. Let’s now extend these logics by introducing some ad-
ditional information on the structures at hand, which can only be used in an
invariant way. For instance, a structure stored on a disk is enriched with an
order on its elements: what happens if we let FO and MSO access this order,
but require that the evaluation of a sentence on an ordered structure does not
depend on the choice of the order?

We start by defining the general notion of invariance in Section 2.2.1, before
specifying it to the case where the additional information is an order relation in
Section 2.2.2, or a successor relation in Section 2.2.3).

2.2.1 General setting

Let Σ and Σ′ be two disjoint relational vocabularies, and consider a class C′ of
Σ′-structures. Let L ∈ {FO,MSO} be a logic.

The notion of C′-invariance allows us to express that an L-formula possibly
uses the structure of C′ without depending on it.

Let A be a Σ-structure and let A′ be a Σ′-structure with the same domain
A. We define (A,A′) as the (Σ ∪ Σ′)-structure with domain A, where every
symbol of Σ (resp. Σ′) is interpreted as in A (resp. A′).

15

Chapter 2. Preliminaries

We say that a sentence ϕ of L(Σ ∪ Σ′) is C′-invariant over A if, for every
Σ′-structures A′,A′′ ∈ C′ with domain A,

(A,A′) |= ϕ ↔ (A,A′′) |= ϕ .

In that case, the choice of the overlaying Σ′-structure of C ′ doesn’t matter,
and we write A |= ϕ if (A,A′) |= ϕ for any (or equivalently, for every) A′ ∈ C′.

We say that ϕ is C′-invariant if it is C′-invariant over every finite Σ-
structure. The set of C′-invariant L(Σ ∪ Σ′)-sentences is denoted C′-inv L(Σ).

Note 2.2.1. The reason for requiring the invariance only over finite structures
will be apparent in Note 2.2.4. Indeed, if an FO(Σ∪Σ′)-sentence is C′-invariant
over all finite and infinite structures, Beth Definability Theorem [6] ensures that
it is equivalent to an FO(Σ)-sentence as long as C′ is FO(Σ′)-definable.

We now define C′-inv/C L(Σ), where C is a class of Σ-structures, as the set
of L(Σ ∪ Σ′)-sentences that are C′-invariant over every structure of C.

When we prove that some invariant logic collapses to FO, we will mention
whether the result still holds when we restrict the class of structures over which
our sentences are required to be invariant.

Note that L(Σ) ⊆ C′-inv/C L(Σ) for every C, C′: a sentence of L(Σ) makes
no use of symbols of Σ′, and is thus necessarily C′-invariant over C.

In particular, L(Σ) ⊆ C′-inv L(Σ).
Furthermore, if C1 ⊆ C2, then

C′-inv/C2 L(Σ) ⊆ C′-inv/C1 L(Σ) .

The converse is not true. We will see later on, e.g. with C′ being the class of
linear orderings, C2 being the class of all finite and infinite structures and C1
being the class of all finite structures, that

C′-inv/C1 L(Σ) 6⊆ C′-inv/C2 L(Σ) .

Let’s now focus on two such classes C′, which will be at the center of this
thesis: the class of ordered structures, and the class of structures with a succes-
sor.

2.2.2 Order-invariance

Consider the vocabulary Σ′ consisting of a single binary relation symbol <, and
the class C′ of linear orders, i.e. the class of Σ-structures A′ such that <A

′
is a

total order on the domain A.
For the sake of simplicity, C′-inv L(Σ) will be abbreviated as <-inv L(Σ), or

even <-inv L when Σ is clear from the context.
If L = FO, we get < -inv FO, order-invariant FO. If L = MSO, we get

< -inv MSO, order-invariant MSO.
To reformulate, an FO(Σ ∪ {<})-sentence ϕ is in < -inv FO iff for any Σ-

structure A and any linear orders <1 and <2 on A,

(A, <1) |= ϕ iff (A, <2) |= ϕ .

Let’s look at a non-trivial property definable in < -inv FO, based on a ex-
ample from Potthoff [31].

16

2.2. Invariant logics

Example 2.2.2. An unordered binary tree with descendant is a {S,D}-structure
whose restriction to {S} is a binary tree (where S(x, y) holds iff x is the parent
of y, and a node has either 0 or 2 children), and whose interpretation of D is
the transitive closure of S. Note that no distinction is made between the two
children of an internal node.

It is not hard to see that the class of unordered binary trees with descendant
is definable in FO({S,D}), through an FO-sentence Φ.

Let C be the class of unordered binary trees with descendant whose branches
all agree on the parity of their length, i.e. such that all the paths from the root
to the leaves have an odd length, or all of them have an even length. Let’s show
that C is definable in < -inv FO({S,D}).

Suppose that we are given an order < on an unordered binary tree with
descendant. Such an order induces an order among the children of any internal
node, which can be used to state that the zig-zag branch going out of a node x,
i.e. the path from x to a leaf alternating between first and second children, has
even length. Indeed, consider the FO({S,D,<}) formula ϕeven zigzag(x) stating
that either x is a leaf, or

• there exists a leaf l that is a descendant of x

• for every successive nodes u1, u2 and u3 belonging to the branch between
x and l, u2 is the first child of u1 iff u3 is the second child of u2

• the first node of the branch is the first child of x

• l is the second child of its parent.

Let’s emphasize that such a property is FO-definable only because we consid-
ered the descendant relation; if a tree only has access to the parent-child relation,
one wouldn’t be able to define branches in FO.

Now, note that if some unordered binary tree with descendant T doesn’t
belong to C, it must contain an internal node t whose two children u and v are
such that all the branches from u are of even length, and all the branches from
v are of odd length. An illustration is given in Figure 2.1.

•

• •

• • • •

• • • • • •

• • • • • •

• • • •

t

u v

Figure 2.1: A node t witnessing that T /∈ C. Red arrows denote the relation
parent/first (wrt. <) child, and the blue ones the relation parent/second child.
The zigzag branches of different parity are the drawn in plain arrows

17

Chapter 2. Preliminaries

Then a {S,D,<}-structure, which interprets < as a linear order, satisfies

ϕC := Φ ∧ ¬∃t, u, v. S(t, u) ∧ S(t, v) ∧ ϕeven zigzag(u) ∧ ¬ϕeven zigzag(v)

iff it belongs to C. Since belonging to C has nothing to do with the interpretation
of <, it becomes apparent that ϕC is <-invariant, and thus C is definable in
< -inv FO({S,D}).

It is important to note that two different orders on the same tree may give
rise to different witnessing branches in ϕeven zigzag; however, the formula will
evaluate similarly on both ordered structures.

As will be developed in Section 2.4.1, this example illustrates that < -inv FO
is strictly more expressive than FO, as it turns out that C is not definable in
FO({S,D}) (this can easily be proven with the tools developed in Section 2.3.1).

The problem of determining whether an FO-sentence using an order or a
successor relation is invariant wrt. this relation is undecidable, by reduction
from Trakhtenbrot’s theorem. Hence we use here the term logic somewhat
liberally, since having a recursive syntax is a usual requirement for a logic.

Proposition 2.2.3. If Σ contains a relation symbol R with Ar(R) ≥ 2, then
< -inv FO(Σ) doesn’t have a recursive syntax.

Proof. Let R be a relation symbol of Σ of arity 2. It is straightforward to adapt
this proof to any relation symbol of arity at least 3.

Let inv be the problem at hand:

input: ϕ ∈ FO(Σ ∪ {<})

question: is ϕ order-invariant?

Let’s consider the modified finite satisfiability problem msat for FO(Σ):

input: ϕ ∈ FO(Σ)

question: does there exist a finite Σ-structure A such that:{
A |= ∃x.∃y.R(x, y) ∧ ∃x.∃y.¬R(x, y)

A |= ϕ

The well-known Trakhtenbrot’s theorem [37] states that msat in undecid-
able.

We reduce msat to the complement of inv: from a sentence ϕ ∈ FO(Σ), we
compute the FO(Σ ∪ {<})-sentence

ϕ̄ := ϕ ∧ ∀min .∀max .(∀x.¬(x < min) ∧ ¬(max < x))→ R(min,max) .

If ϕ is a positive instance of msat, with a witnessing structure A, then ϕ̄ is
not order-invariant over A. Indeed, depending on the order, the second part of
ϕ̄ will or won’t be satisfied.

Conversely, if ϕ̄ is a negative instance of inv, then there is a struture A on
which ϕ̄ holds or not depending on the order. Such an A must satisfy ϕ, and
RA can be neither the complete nor the empty relation.

18

2.2. Invariant logics

Note that determining whether a sentence is order-invariant is already un-
decidable on the class of dipaths [5].

If however each relation symbol of Σ is at most unary, then inv becomes
decidable. Indeed, order-invariance then amounts to the commutativity of a
language definable in FO (thus a regular language), which can be decided by
checking whether its syntactic monoid is commutative.

Order-invariance is also decidable on the fragment of FO that uses only two
variables, as shown by Harwath and Zeume [40].

Note 2.2.4. In the definition, we required for any sentence ϕ of < -inv FO
to be order-invariant over all finite structures, and not all finite and infinite
structures. With the latter definition, < -inv FO would immediately collapse
to FO. This can be proved either with Beth Definability Theorem [6], or with
Craig’s Interpolation Theorem [12] from classical model theory; we do the latter.
Let’s first state Craig’s Interpolation Theorem:

Proposition 2.2.5. Let Σ1,Σ2 be two relational vocabularies and Σ := Σ1∩Σ2.

Let Φ1 and Φ2 be respectively an FO(Σ1)-sentence and an FO(Σ2)-sentence.

If

Φ1 → Φ2

holds in every (finite or infinite) (Σ1 ∪ Σ2)-structure, there there exists an
FO(Σ)-sentence Φ such that both

Φ1 → Φ and Φ→ Φ2

hold in every (finite or infinite) (Σ1 ∪ Σ2)-structure.

Suppose that an FO(Σ ∪ {<})-sentence ϕ is order-invariant over all finite
and infinite structures. Using Proposition 2.2.5, let’s prove that ϕ is equivalent
to some FO(Σ)-sentence ψ.

Let <1 and <2 be two distinct order symbols, Σ1 := Σ∪{<1}, Σ2 := Σ∪{<2},
and ϕ1 (resp. ϕ2) be the result of the replacement in ϕ of all the occurrences of
the symbol < by the symbol <1 (resp. <2).

Now, let Ψ1 (resp. Ψ2) be an FO(Σ1)-sentence (resp. FO(Σ2)-sentence)
stating that <1 (resp. <2) is a linear order.

The formula

Ψ1 ∧ ϕ1 → (Ψ2 → ϕ2)

holds in every finite or infinite (Σ1 ∪ Σ2)-structure, by order-invariance of ϕ.

Proposition 2.2.5 guarantees the existence of some Σ-sentence ψ such that
both

Ψ1 ∧ ϕ1 → ψ (2.1)

and

ψ → (Ψ2 → ϕ2) (2.2)

hold in every finite or infinite Σ ∪ {<1, <2}-structure.

Let’s now prove that ψ is equivalent to ϕ on every Σ-structure A:

19

Chapter 2. Preliminaries

• Suppose that A |= ϕ. Then for any linear order <A1 on A,

(A, <A1) |= Ψ1 ∧ ϕ1 ,

which together with (2.1) entails (A, <A1) |= ψ, hence A |= ψ.

• Suppose now that A |= ψ. For any linear order <A2 on A, (2.2) gives
(A, <A2) |= ϕ2, i.e. A |= ϕ.

This reasoning explains why order-invariance is only interesting on finite
structures.

Furthermore, combined with the fact that FO (< -inv FO (we’ve begun to
see this with Example 2.2.2, and this will be developed in Section 2.4.1) , it
shows that there is no equivalent to Craig’s Interpolation Theorem in the finite.

Let’s now give an example of a property definable in < -inv MSO over the
empty vocabulary:

Example 2.2.6. One can write an MSO({<})-formula Φalt with one free set
variable X, stating that X contains every second element wrt. <:

Φalt(X) := ∀x.∀y. (x < y ∧ ¬∃z. x < z ∧ z < y)→ (X(x)↔ ¬X(y)) .

Using Φalt(X), it is now easy to express that the domain of a structure has
even size, with

ϕeven := ∃min .∃max .∃X. ∀x. ¬(x < min) ∧ ¬(max < x)

∧ X(min) ∧ Φalt(X) ∧ ¬X(max) .

Indeed, an ordered structure satisfies ϕeven iff the set containing the minimal
element and every second element doesn’t contain the last element. Note that
this property depends only on the domain of the structure, and not on the order:
thus ϕeven ∈ < -inv MSO(∅).

2.2.3 Successor-invariance

A order-invariant sentence can make use of an order as long as the result of its
evaluation doesn’t depend on the choice of this order. Let’s now weaken the
additional structure our sentences can access, by restricting the order to the
successor relation.

We say that a binary relation on a finite set A is a successor relation on
A if it is the graph of a circular permutation of A, i.e. a bijective function from
A to A with a single orbit. This differs from the standard notion of successor in
that there is neither minimal nor maximal element. However, this doesn’t have
any impact on our results, as we will prove in Proposition 2.2.7.

Let Σ′ be the relational vocabulary containing a single binary relation symbol
S, and let C′ be the class of Σ′-structures A′ such that SA

′
is a successor relation

on the domain A.
Then C′-inv FO is abbreviated as Succ-inv FO, successor-invariant FO.

20

2.2. Invariant logics

To reformulate, an FO(Σ ∪ {S})-sentence ϕ is in Succ-inv FO iff for any
Σ-structure A and any successors S1 and S2 on A,

(A, S1) |= ϕ iff (A, S2) |= ϕ .

Let’s now prove that our decision to consider circular successors instead
of the more traditional linear ones (with a minimal and a maximal element)
bears no consequence on the expressivity of the logic defined. If we define
LinSucc-inv FO in the same way that Succ-inv FO, but where the invariant
relation is a linear successor S̄, we get:

Proposition 2.2.7. For every vocabulary Σ,

Succ-inv FO(Σ) = LinSucc-inv FO(Σ) ,

i.e. Succ-inv FO(Σ) and LinSucc-inv FO(Σ) define the same properties of Σ-
structures.

Proof. Given ϕ ∈ Succ-inv FO, let’s prove that there exists a formula

ψ ∈ LinSucc-inv FO

such that ψ is equivalent to ϕ, i.e. for every Σ-structure A, A |= ϕ iff A |= ψ.
Let ψ be defined as ϕ in which every atom S(x, y) has been replaced with

S̄(x, y) ∨ ¬∃z.(S̄(x, z) ∨ S̄(z, y)).
Let A be a Σ-structure and S̄A be a linear successor on A. Then

(A, S̄A) |= ψ iff (A, SA) |= ϕ ,

where SA is the circular successor obtained from S̄A by adding an edge from
the maximal element to the minimal one.

This guarantees that ψ ∈ LinSucc-inv FO, and that ψ and ϕ are equivalent.

Conversely, let ψ ∈ LinSucc-inv FO and let ϕ be the formula ∃min .Cut(ψ),
where Cut(ψ) is obtained by replacing in ψ every S̄(x, y) with S(x, y)∧¬y = min.

Let A be a Σ-structure, let SA be a circular successor on A, and let min ∈ A.
Then

(A, SA,min) |= Cut(ψ) iff (A, S̄A) |= ψ ,

where S̄A is the linear successor obtained from SA by removing the edge pointing
to min. Hence (A, SA) |= ϕ iff there exists a linear successor S̄A obtained from
SA by an edge removal such that (A, S̄A) |= ψ, that is iff A |= ψ.

This ensures that ϕ ∈ Succ-inv FO and that ϕ and ψ are equivalent.

Note that although LinSucc-inv FO and Succ-inv FO have the same expres-
sive power, one may be more concise than the other. However, the succinctness
(both in terms of quantifier rank and size of the formulas) of one with respect
to the other cannot be more than linear.

Note 2.2.8. There is no need to define Succ-inv MSO. Indeed, recall from
Example 2.1.5 that the transitive closure is definable in MSO.

Mimicking the proof techniques from Proposition 2.2.7, one can easily show
that < -inv MSO and Succ-inv MSO define the same properties.

21

Chapter 2. Preliminaries

Let’s give an example of Succ-inv FO sentence. For this first example, it
will be more convenient to use the LinSucc-inv FO framework.

Example 2.2.9. Let’s consider the empty vocabulary. Note that ∅-structures
are bare sets.

We define FO({S̄})-formulas (ψk(x, y))k∈N such that, if S̄ is a linear suc-
cessor on A and if a, b ∈ A, then A |= ψk(a, b) iff a and b are at distance 2k

according to S̄ (not taking the orientation of S̄ into consideration).
The (ψk(x, y))k are defined by induction on k as follows:

• ψ0(x, y) := S̄(x, y) ∨ S̄(y, x)

• ψk+1(x, y) := x 6= y ∧ ∃m.∀z.(z = x ∨ z = y)→ ψk(z,m) .

The slight complexification in the definition of ψk+1 from ψk allows the
(ψk(x, y))k to be linear in k, both in terms of quantifier rank and of size.

For n ∈ N, we define φn as

∃min .∃max . (∀z.¬S̄(z,min) ∧ ¬S̄(max, z)) ∧ ψn(min,max) .

Provided that S̄A is indeed a linear successor relation on A, we get that
A |= φn iff |A| = 2n + 1.

Furthermore, it is clear that φn ∈ LinSucc-inv FO(∅), as the this property
depends only on the size of A, and not on the particular interpretation of S̄.

It is well known, and can easily be shown using Ehrenfeucht-Fräıssé games,
that any sentence of FO(∅) defining this property must have quantifier rank (and
thus, size) at least 2n + 2.

This example proves the following proposition.

Proposition 2.2.10. Succ-inv FO(∅) is at least exponentially more succinct
than FO(∅), both in terms of quantifier rank and size.

For the same reasons as < -inv FO, Succ-inv FO doesn’t have a recursive
syntax in general:

Proposition 2.2.11. If Σ contains a relation symbol R with Ar(R) ≥ 2, then
Succ-inv FO(Σ) doesn’t have a recursive syntax.

2.3 Tools for proving expressivity results

We have defined a number of different logics in Sections 2.1 and 2.2, and seen
that some are more expressive than others when it comes to the range of prop-
erties they can define. In this section, we develop the framework as well as
some useful tools to prove such results about the expressivity of the previously
defined logics. The first results that follow from these techniques are presented
in Section 2.4.

The notion of similarity between two structures, and thus their indistin-
guishability by a given logic, is defined in Section 2.3.1. Ehrenfeucht-Fräıssé
games, in which quantification is seen as the choice of a move in a two-player
game, and their link to FO-similirity, are also developed in that section.

We then introduce in Section 2.3.2 the notion of FO-interpretation as a way
to define structures from other structures, and show how they can be used to
lift expressivity results from one class of structures to another.

22

2.3. Tools for proving expressivity results

Let’s first establish some vocabulary to express relations between the ex-
pressive power of two logics.

Given two classes of Σ-structures P ⊆ C and a logic L, we say that P is
L-definable on C if there exists an L-sentence ϕ such that

∀A ∈ C, A ∈ P iff A |= ϕ .

If C is not mentioned, it is understood to be the class of all finite Σ-structures.
Note that the notion of L-definability on C differs from the notion of L-

definability as soon as C itself is not L-definable.
Given a class of structures C and two logics L,L′, we say that L′ is at least

as expressive as L on C, abbreviated L ⊆ L′ on C, if every property P ⊆ C
that is L-definable on C is also L′-definable on C.

We write L = L′ on C if L and L are equally expressive on C, i.e. if L ⊆ L′
on C and L′ ⊆ L on C.

Once again, if C is not specified, we understand it to be the class of all finite
Σ-structures.

Note 2.3.1. One has to be careful with the class of structures over which in-
variance is assumed. In this thesis, by

< -inv FO = FO on C

we mean that for every FO(Σ ∪ {<})-sentence ϕ that is <-invariant over all
finite structures, there exists an FO(Σ)-sentence that is equivalent on C.

This is not to be confused with the stronger property requiring that, for every
FO(Σ ∪ {<})-sentence ψ that is <-invariant over C, there exists an FO(Σ)-
sentence that is equivalent on C. This is denoted

< -inv/C FO = FO on C .

The relations between such invariant logics with restricted invariance support
do not relativize. For instance, while

< -inv FO = FO on C

entails
< -inv FO = FO on C′

as soon as C′ ⊆ C, there is no reason for

< -inv/C FO = FO on C

to entail
< -inv/C′ FO = FO on C′ .

Indeed, with the weakening of the invariance requirement from C to C′, a
sentence of < -inv/C′ FO could fall outside of < -inv/C FO.

In this section, we give a few standard tools that will be convenient when
delimiting the expressive power of a logic.

23

Chapter 2. Preliminaries

2.3.1 Similarity and Ehrenfeucht-Fräıssé games

It will prove useful to measure to which extent two structures are alike, from
the point of view of a specific logic.

Given a logic

L ∈ {FO,MSO, < -inv FO,Succ-inv FO}

and two Σ-structures A,B, we say that A is L-similar to B at depth k, and
we note A ≡Lk B, if A and B agree on every L-sentence ϕ of quantifier rank at
most k; that is, if A |= ϕ iff B |= ϕ for every such ϕ.

For every k ∈ N and L, the relation ≡Lk is obviously an equivalence relation
on the class of Σ-structures. Furthermore, it has finite index, i.e. the number of
equivalence classes for this relation is finite (recall that we assumed the finiteness
of Σ). On top of that, every equivalence class is definable by an L-sentence of
quantifier rank k.

The main technique for proving an inclusion between two logics follows from
this remark:

Proposition 2.3.2. Let Σ be a relational vocabulary, let C be a class of Σ-
structures and let L,L′ ∈ {FO(Σ),MSO(Σ), < -inv FO(Σ),Succ-inv FO(Σ)}.

If there exists a function f : N→ N such that

∀k ∈ N, ∀A,B ∈ C A ≡L
′

f(k) B → A ≡Lk B ,

then
L ⊆ L′ on C .

Proof. Let P ⊆ C be a property L-definable on C: there exists an L-sentence ϕ
of quantifier rank k such that

∀A ∈ C, A ∈ P iff A |= ϕ .

By definition, all the Σ-structures in any equivalence class for ≡Lk agree on
ϕ. The class of Σ-structures satisfying ϕ is thus a union of equivalence classes
for ≡Lk ; let Eϕ be the (finite) set of equivalence classes of that union. We have

P =
⋃
c∈Eϕ

c ∩ C .

By hypothesis, for each c ∈ Eϕ, there exists a (finite) set E′c of equivalence

classes for ≡L′f(k) such that

c ∩ C =
⋃
c′∈E′c

c′ ∩ C

Combining these, we get

P =
⋃
c∈Eϕ

⋃
c′∈E′c

c′ ∩ C .

All the unions being finite, and all the c′ being definable via an L′-sentence
of quantifier rank f(k), we get that P is L′-definable on C by the disjunction of
these sentences, thus proving

L ⊆ L′ on C .

24

2.3. Tools for proving expressivity results

We now define Ehrenfeucht-Fräıssé games for FO, which capture exactly
FO-similarity. There exist similar games for MSO, but we won’t need them in
this thesis.

Given two Σ-structures A and B, the k-round Ehrenfeucht-Fräıssé game
for FO(Σ) is played between two players: the Spoiler and the Duplicator. At
round i ∈ {1, · · · , r}, the Spoiler chooses an element pAi in A or pBi in B. The
Duplicator then chooses an element pAi in A (if the Spoiler played in B) or pBi
in B (if the Spoiler played in A).

After k rounds, one can think of the (pAi)i (resp. (pBi)i) as the interpretations
in A (resp. in B) of some fresh constant symbols (pi). Consider the new vocab-
ulary Σ′ := Σ] {pi : i ∈ {1, · · · , k}}, and the two thus defined Σ′-structures A′
and B′.

The Duplicator has won the k-round Ehrenfeucht-Fräıssé game if for every
relation symbol R ∈ Σ ∪ {=} of arity r (= being of arity 2), and every con-
stant symbols c1, · · · , cr ∈ Σ′ (thus including the true constants of Σ, plus the
elements chosen during the game),

A |= R(c1, · · · , cr) iff B |= R(c1, · · · , cr) .

We say that the Duplicator has a wining strategy for this game if he can win
no matter the choices of the Spoiler.

It turns out the k-round Ehrenfeucht-Fräıssé game for FO captures exactly
the FO-similarity at depth k:

Proposition 2.3.3. For every k ∈ N, the Duplicator has a winning strategy in
the k-round Ehrenfeucht-Fräıssé game between A and B iff A ≡FO

k B.

The following result, due to Fagin, Stockmeyer and Vardi [18], is a key com-
ponent of our proofs. It states that when the degree is bounded, an equivalence
class for ≡FO

k is characterized by the number of occurrences of neighborhood
types of a large enough radius, up to a large enough threshold.

Recall that [[A]]r =t [[B]]r means that A and B contain the same number of
occurrences of each r-neighborhood type up to a threshold t.

Proposition 2.3.4. For every vocabulary Σ, and for every k, d ∈ N, there exist
r, t ∈ N such that for every Σ-structures A and B of degree at most d,

[[A]]r =t [[B]]r → A ≡FO
k B .

Describing a winning strategy for the Duplicator in the k-round Ehrenfeucht-
Fräıssé game between two structures gets out of hand as soon as the structures
are slightly non-trivial, and is tedious task even on the simplest structures.

When proving that A ≡FO
k B, Proposition 2.3.4 allows us to replace the

description of such a strategy with a simple counting of every neighborhood
type, which is often much more convenient.

Note that the converse obviously holds: when the degree is bounded, one
can state in FO that every fixed-radius neighborhood type has a given number
of occurrences, up to some threshold.

25

Chapter 2. Preliminaries

2.3.2 FO-interpretations and bi-FO-interpretations

At numerous points in this thesis, it will be convenient to define new structures
from existing ones. MSO-transductions and FO-interpretations are probably
the two most standard tools for doing so in a purely logical fashion. As our
interest goes to weakly-expressive logics, we will only make use of the latter;
being less permissive, it allows greater control on the thus defined structures.

Let Σ and Σ′ be two relational vocabularies. It will be convenient to assume
that Σ′ = {R1, · · · , Rn} is purely relational, i.e. doesn’t contain any constant
symbol.

An interpretation I from Σ to Σ′ is a tuple (φ, ϕ1, · · · , ϕn) of FO(Σ)-
formulas where

• φ has r free variables

• for i ∈ {1, · · · , n}, ϕi has Ar(Ri) · r free variables.

We call arity of I the number r of free variables in φ, and depth of I the
maximum among the quantifier ranks of φ, ϕ1, · · · , ϕn.

Given a Σ-structure A, the Σ′-structure I(A) is defined as follows:

• its domain is {(a1, · · · , ar) ∈ Ar : A |= φ(a1, · · · , ar)}

• for every i ∈ {1, · · · , n}, the Ar(Ri) r-tuples

(a1
1, · · · , a1

r), · · · , (a
Ar(Ri)
1 , · · · , aAr(Ri)

r)

belong to the interpretation of Ri iff

A |= ϕi(a
1
1, · · · , a1

r, · · · , a
Ar(Ri)
1 , · · · , aAr(Ri)

r) .

Proposition 2.3.5. Let L ∈ {FO, < -inv FO,Succ-inv FO} and let I be an
FO-interpretation from Σ to Σ′, of arity r and depth d.

For every Σ-structures A,B and for every k ∈ N,

A ≡L(Σ)
rk+d B → I(A) ≡L(Σ′)

k I(B) .

Proof. This is a well-known result when L is FO; let’s start by proving the
proposition in that case.

The interpretation I translates into a transformation I−1 from FO(Σ′) to
FO(Σ). I−1 is defined by induction as follows:

• for every i ∈ {1, · · · , n}, and x1, · · · , xAr(Ri) ∈ Var,

I−1(Ri(x
1, · · · , xAr(Ri))) := ϕi(x

1
1, · · · , x1

r, · · · , x
Ar(Ri)
1 , · · · , xAr(Ri)

r)

• for every x, y ∈ Var,

I−1(x = y) :=

r∧
j=1

xj = yj

26

2.3. Tools for proving expressivity results

• for every x ∈ Var, I−1(∃x.ψ) := ∃x1. · · · .∃xr.φ(x1, · · · , xr) ∧ I−1(ψ)

• I−1(¬ψ) := ¬I−1(ψ) and I−1(ψ ∨ ψ′) := I−1(ψ) ∨ I−1(ψ′) .

If ψ ∈ FO(Σ′) is of quantifier rank k, then the quantifier rank of I−1(ψ) is
rk + d. Furthermore, for every Σ-structure A,

A |= I−1(ψ) ↔ I(A) |= ψ . (2.3)

If A ≡FO
rk+d B, then for any such ψ, both structures agree on I−1(ψ), hence

I(A) and I(B) agree on ψ by (2.3). This entails I(A) ≡FO
k I(B).

Let’s now prove that an analogous result holds for < -inv FO, the proof for
Succ-inv FO being similar.

We expand the given interpretation I from Σ to Σ′ into an interpretation I<
from Σ∪{<} to Σ′∪{<}, with the new order being defined as the lexicographical
order on r-tuples based on the first order. Note that I< has the same depth
as I, since the lexicographical order is definable by an FO-formula of quantifier
rank 0.

The proof relies on the following remark: given a sentence ψ ∈ < -inv FO(Σ′)
of quantifier k, (I<)−1(ψ) is order-invariant. Indeed, if <1 and <2 are two orders
on the domain of a Σ-structure A, then

(A, <1) |= (I<)−1(ψ) iff I<(A, <1) |= ψ (by (2.3))

iff I(A) |= ψ

iff I<(A, <2) |= ψ

iff (A, <2) |= (I<)−1(ψ) .

Now, if A ≡<-inv FO
rk+d B, then for every ψ ∈ < -inv FO(Σ′) of quantifier rank

at most k, A and B agree on the order-invariant sentence (I<)−1(ψ). Hence for
any orders <A and <B on their respective domains, I<(A, <A) and I<(B, <B)
agree on ψ. This entails, ψ being order-invariant, that I(A) and I(B) agree on
ψ.

In the end, we get that I(A) ≡<-inv FO
k I(B).

We now define a tool for reducing the collapse of < -inv FO (or similarly, of
Succ-inv FO) to FO from one class of structures to another.

Let C1, C2 be two classes of structures over the respective vocabularies Σ1

and Σ2.
We say that C1 is bi-FO-interpretable through C2 if there exist two FO-

interpretations I12 and I21, respectively from Σ1 to Σ2, and from Σ2 to Σ1,
such that for every A ∈ C1, I12(A) ∈ C2 and I21(I12(A)) ' A. The following
result is rather straightforward:

Proposition 2.3.6. Let L ∈ {< -inv FO,Succ-inv FO}.
If C1 is bi-FO-interpretable through C2 and L = FO over C2, then L = FO

over C1.

Proof. We show that there exists some function f such that for every k ∈ N
and A,B ∈ C1, if A ≡FO

f(k) B, then A ≡Lk B. Proposition 2.3.2 then allows us to
conclude.

27

Chapter 2. Preliminaries

As L = FO over C2 we know that there is a function g such that for all k ∈ N
and A,B ∈ C2, if A ≡FO

g(k) B, then A ≡Lk B: to any L-sentence with a quantifier
rank less than k, choose arbitrarily a FO-sentence equivalent to it over C2 and
take g(k) as the max of their quantifier rank.

Let r12, d12 (resp. r21, d21) be the arity and depth of I12 (resp. I21), and
set f(k) := r12g(r21k + d21) + d12.

Assume now that A,B ∈ C1 are such that A ≡FO
f(k) B.

Applying I12 to both structures gives us I12(A) ≡FO
g(r21k+d21) I12(B), in virtue

of Proposition 2.3.5.
Hence by the choice of g, I12(A) ≡Lr21k+d21

I12(B), which yields A ≡Lk B
after applying I21 (Proposition 2.3.5).

Note 2.3.7. Proposition 2.3.6 offers a convenient way to lift a collapse result
from one class of structures to another. However, it is not necessary to rely on
a bi-FO-interpretation to prove such a result: it is enough to prove that there
exists functions f12, f21 : N → N such that, for every A,B ∈ C1, there exist
PB(A), PA(B) ∈ C2 such that

∀n ∈ N, A ≡FO
f12(n) B → PB(A) ≡FO

n PA(B) (2.4)

and such that

∀n ∈ N, PB(A) ≡Lf21(n) PA(B) → A ≡Ln B . (2.5)

Under these conditions, the proof of Proposition 2.3.6 can trivially be adapted
to get that the collapse of L to FO on C2 entails the collapse of L to FO on C1.

Bi-FO-interpretations have the advantage of being easy to manipulate and to
guarantee (2.4) and (2.5). They can be thought of as uniform version of the pre-
vious statement: indeed, PB(A) now only depends on A, and not anymore on B.
In that sense, bi-FO-interpretations are reminiscent of bicontinuous mappings
from C1 in C2: if two structures are close together in C1, so are their images in
C2, and conversely.

Note 2.3.8. Though we will not concern ourselves with this matter throughout
this thesis, note that this bi-FO-interpretation method can be adapted to lift
other kinds of upper-bound results.

For instance, if one knows that < -inv FO ⊆ MSO on a class C2 and
wants to prove that this inclusion holds on another class C1, it is enough to
show the existence of an MSO-transduction (which is basically the equivalent
of an FO-interpretation, but with MSO-formulas) from C1 to C2 and of an
FO-interpretation from C2 to C1.

2.4 First expressivity results

We now turn to the main focus of this thesis: the study of the expressive power
of order-invariant and successor-invariant logics.

We list in this section some known results about the expressivity of the logics
defined in Sections 2.1 and 2.2. We start by showing in Section 2.4.1 that order
and successor-invariant logics are more expressive (at least when the vocabulary
is rich enough) than their classical counterparts.

28

2.4. First expressivity results

On the other hand, the following sections establish upper bounds on the ex-
pressivity of invariant logics. The locality of invariant first-order logics, which
amounts to their inability to distinguish between elements that are locally sim-
ilar, is discussed in Section 2.4.2. We then present in Section 2.4.3 a series of
sparse classes of structures on which order and successor-invariant first-order
logics are known to have a limited expressive power: may that be an inclusion
in MSO, or even a collapse to FO.

2.4.1 Separating examples

Let’s first establish a few straighforward inclusions between plain and invariant
first-order logics.

As a sentence of FO(Σ) makes use of neither the successor relation nor the
order, it is obvious that FO ⊆ Succ-inv FO and FO ⊆ < -inv FO on any class
of structures.

Furthermore, the FO-formula

ϕS(x, y) := x < y ∧ ¬∃z. x < z ∧ z < y

defines the linear successor relation associated to an order. With this formula,
we can define an interpretation IS from Σ∪{<} to Σ∪{S} which transforms the
order into the corresponding successor relation. Using the notations from the
proof of Proposition 2.3.5, we get a transformation (IS)−1 from FO(Σ ∪ {S})
to FO(Σ ∪ {<}). It is easy to notice that if ψ is successor-invariant, then
(IS)−1(ψ) is order-invariant. Furthermore, A |= ψ iff A |= (IS)−1(ψ), thus
entailing LinSucc-inv FO ⊆ < -inv FO.

Combining this inclusion with Proposition 2.2.7, we get the first sequence of
inclusions

FO ⊆ Succ-inv FO ⊆ < -inv FO .

We can now ask ourselves whether there inclusions are strict. The second
one is conjectured to be strict [33], but we know no proof of that fact.

The first example separating order-invariant FO from plain FO dates back
to the beginning of the 1990s and is due to Gurevich, though he did not publish
it. He exhibited a class of graphs that is definable in < -inv FO, but not in FO.

Proposition 2.4.1. As long as Σ contains a relation of arity at least 2,

FO(Σ) (< -inv FO(Σ) .

Proof. We describe the class exhibited by Gurevich and give a sentence of <
-inv FO defining it. Full details of the proof that this class is not FO-definable
can be found in Section 5.2 of [27].

To understand the genesis of this example, recall Example 2.2.6 where we
defined an < -inv MSO-sentence stating that the domain of a structure has even
size, by asserting the existence of a set containing the first element wrt. <, every
second element, and not containing the last element.

Of course, one cannot directly quantify over sets in FO, but the idea of the
Gurevich separating example is to simulate in FO quantification over sets, by
having elements in the structure that behave like those sets. Then quantifying
over those elements amounts to quantifying over the set they stand for, and

29

Chapter 2. Preliminaries

it becomes possible to simulate the previous separating example in < -inv FO.
The most natural way to treat subsets of X as elements is to take the powerset
P(X) as working structure.

Let’s consider the most general setting, where Σ only contains a binary
relation symbol; it will be convenient to denote it ⊂.

Given n ∈ N, let Bn denote the boolean algebra over {1, · · · , n}, that is
the Σ-structure having the powerset P({1, · · · , n}) as domain, and where ⊂ is
interpreted as the strict inclusion over the subsets of {1, · · · , n}.

One can construct an FO-sentence φ defining the class of all Σ-structures
that are isomorphic to some Bn. Start by stating that ⊂ is antireflexive, an-
tisymmetric and transitive, and that there is exactly one element of in-degree
0 (corresponding to the empty set) included in all the elements. Then the ele-
ments of in-degree 1 are meant to be the singletons. From there, one can state
in FO all the properties of boolean algebras (two sets are equal if they contain
the same elements, i.e. if they are supersets of the same singletons; the union
of two sets exists; etc.)

Recall the example separating < -inv MSO from MSO. In a structure satis-
fying φ, we mimick this idea by stating in a sentence ψeven of FO(Σ∪ {<}) the
existence of an element (of the powerset) containing the minimal singleton with
respect to <, containing every second singleton wrt. <, and not containing the
last singleton wrt. <.

Now, φ ∧ ψeven defines exactly the Σ-structures that are isomorphic to Bn
for some even n. Since this property does not depend on the order, we have
that φ ∧ ψeven ∈ < -inv FO(Σ).

It only remains to prove that for any k ∈ N, there exists a large enough n ∈ N
such that the Duplicator has a winning strategy in the k-round Ehrenfeucht-
Fräıssé game between B2n and B2n+1. Though this result seems quite obvious,
describing precisely such a strategy is rather tedious; we refer the reader to
Section 5.2 of [27], where one is described through a compositional argument.

Recall from Proposition 2.3.3 that Ehrenfeucht-Fräıssé games capture FO-
similarity: this entails that FO cannot discriminate between boolean algebras
over odd and even sets, as long as they are large enough. Thus there is no
FO-sentence equivalent to φ ∧ ψeven, and FO (< -inv FO on Σ.

To the best of our knowledge, there exist two other examples separating
< -inv FO from FO. Otto [30] formulated a property relating to connectivity,
definable in < -inv FO (but not in FO) in a specific setting involving once again
a boolean algebra, used to simulate quantification over sets when only allowed
to quantify over elements. The third example, very different from the above
two, is due to Potthoff [31] and explicited in Example 2.2.2.

If, on the other hand, Σ doesn’t contain relation of arity at least 2, < -inv FO
collapses to FO:

Proposition 2.4.2. If Σ contains only relations of arity at most 1, then

FO(Σ) = < -inv FO(Σ) .

Proof. Let’s assume for simplicity’s sake that all the relations of Σ are of arity
1. Relations of arity 0 are not an issue, since they are nothing but propositional
variables.

30

2.4. First expressivity results

We show that for every α ∈ N, there exists f(α) ∈ N such that for every
Σ-structures G1,G2,

G1 ≡FO
f(α) G2 → G1 ≡<-inv FO

α G2 ;

Proposition 2.3.2 then concludes the proof.
For that, we prove the existence, under this hypothesis, of orders <1 and <2

such that
(G1, <1) ≡FO

α (G2, <2) .

Let f(α) := 2α + 1. For every G1,G2 such that G1 ≡FO
f(α) G2, we have that

[[G1]]0 =2α [[G2]]0.
For every subset S of Σ, let GS1 (resp. GS2) be the set of elements of G1

(resp. G2) appearing exactly in the interpretations of the unary relations in S.
Then [[G1]]0 =2α [[G2]]0 means that for every S ⊆ Σ, GS1 and GS2 have the same
cardinality up to a threshold 2α.

Let’s now fix an arbitrary order ≺ on P(Σ). This order yields preorders ≺1

on G1 and ≺2 on G2, such that x ≺i y iff x ∈ GSi and y ∈ GS′i with S ≺i S′.
Let <1 (resp. <2) be any order on G1 (resp. G2) refining ≺1 (resp. ≺2).

We claim that (G1, <1) ≡FO
α (G2, <2): it is possible for the Duplicator to win

the α-round Ehrenfeucht-Fräıssé game by applying, for each S ⊆ Σ, either the
identity strategy (if |GS1 | = |GS2 |) or the well-known strategy guaranteeing that
two linear orders of length at least 2α are α-similar. Such a strategy is described,
for instance, in the proof of Theorem 3.6 of [27].

This entails the collapse FO(Σ) = < -inv FO(Σ).

The proof of the following proposition, due to Rossman [33], is much more
involved than the previous one.

Proposition 2.4.3. As long as Σ contains a relation of arity at least 2,

FO(Σ) (Succ-inv FO(Σ) .

We now turn to the expressive power of < -inv MSO. Example 2.2.6 en-
sures that MSO (< -inv MSO, as the parity of the domain is definable in
< -inv MSO but not in MSO. A straightforward generalization of this example
shows that < -inv MSO can count modulo any integer, yielding the inclusion
CMSO ⊆ < -inv MSO, which turns out to be strict as well, according to a
result by Ganzow and Rubin [20]:

Proposition 2.4.4. CMSO (< -inv MSO

2.4.2 Locality

All the properties that one can define in first-order logic take into account only
the immediate neighborhoods of a fixed number of elements. There is no hope,
for instance, to define in FO the reachability property in a graph: a path joining
two elements could be arbitrarily long and venture arbitrarily far from them.

The notion of locality is one way to formalize this idea. It comes in two
versions: Gaifman locality, and Hanf locality.

31

Chapter 2. Preliminaries

A formula ϕ of any logic with free (element) variables x1, · · · , xn is said to
be Gaifman local with radius r if for any structure A, and any elements
a1, · · · , an and b1, · · · , bn, if

tprA(a1, · · · , an) = tprA(b1, · · · , bn)

then
A |= ϕ(a1, · · · , an) iff A |= ϕ(b1, · · · , bn) .

In other words, the set of n-uple of elements of A defined by ϕ only depends
on the r-neighborhood type of these tuples.

We say that a logic is Gaifman local if each formula ϕ of that logic is
Gaifman local with some radius rϕ.

A formula ϕ of any logic with free variables x1, · · · , xn is said to be Hanf
local with radius r if for any structures A and B and any elements a1, · · · an ∈
A and b1, · · · , bn ∈ B, if

[[(A, a1, · · · , an)]]r =∞ [[(B, b1, · · · , bn)]]r

(where it is understood that the ai and bi are the interpretations of new con-
stants symbols ci), then

A |= ϕ(a1, · · · , an) iff B |= ϕ(b1, · · · , bn) .

In the case where ϕ is a sentence, stating that ϕ is Hanf local with radius r
amounts to saying that ϕ cannot discriminate between two structures that have
the same number of occurrences of every r-neighborhood type.

We say that a logic is Hanf local if each formula ϕ of that logic is Hanf
local with some radius rϕ.

Hella, Libkin and Nurmonen [25] proved that Hanf locality is a stronger
notion than Gaifman locality:

Proposition 2.4.5. If a formula ϕ is Hanf local with radius r, then it is Gaif-
man local with radius 3r + 1.

The following result, due to Grohe and Schwentick [24], allows to prove many
inexpressibility results for < -inv FO. The core of their proof is a construction
of orders that maintain FO-similarity between two very close structures: we
will use their construction in Chapter 4 to prove the order-invariance of some
operations.

Proposition 2.4.6. < -inv FO is Gaifman local.

However, whether < -inv FO is Hanf local is still an open question.

For k ∈ N, let’s define FO+MODk as the extension of FO with modulo-
counting quantifiers of the form ∃i mod kx with 0 ≤ i < k, such that A, v |=
∃i mod kx.ψ iff

|{a ∈ A : A, v′ |= ψ}| = i mod k ,

where v′ is defined as v together with x 7→ a.

32

2.4. First expressivity results

In other words, FO+MODk allows to count modulo k. A consequence of
the results of [25] is that for every k ∈ N, FO+MODk is Gaifman local.

It is intersting to note that unlike for plain FO, the addition of an order to
FO+MODk breaks the local property of the logic. Indeed, Niemistö [29] showed
that for any k ≥ 2, < -inv (FO+MODk) is not Gaifman local. In particular,
his example separates < -inv (FO+MODk) from FO+MODk. He however
proved that < -inv (FO+MODk) retains some weaker notion of locality, which
he called alternating Gaifman locality.

Let’s now consider the infinite vocabulary Σ′ consisting of a relation symbol
P̃ for every numerical predicate P ⊆ Nr. Let Arb be the class containing all
the Σ′-structures whose domain can be identified with an initial segment of N
so that every P̃ is interpreted as P .

In accordance with the definition of invariant logics from Section 2.2, let
Arb-inv FO(Σ) denote the set of FO(Σ ∪ Σ′)-sentences that are invariant wrt
Arb. Arb-inv FO is obviously more expressive than < -inv FO, as the order is
a particular numerical predicate.

Anderson, van Melkebeek, Schweikardt and Segoufin [1] studied the locality
of Arb-inv FO, and proved that it was not Gaifman local. However, Arb-inv FO
is Gaifman local with polylogarithmic radius in the following sense: for every
formula ϕ ∈ Arb-inv FO, there exists a polylogarithmic function f such that
if two tuples ā and b̄ of elements of some structure A have the same f(|A|)-
neighborhood type, then

A |= ϕ(ā) iff A |= ϕ(b̄) .

Whether a similar result holds when considering Hanf locality is not known.

2.4.3 Upper bounds and collapses of invariant logics

Let’s define informally ∃SO (resp. ∀SO) as second-oder logic where, in contrast
with MSO which can only quantify over unary relations, one can quantify over
relations of arbitrary arity, provided that this is done in a purely existential
(resp. universal) fashion. In those logics, it is possible to introduce an order re-
lation, which is either quantified existentially or universally (which is equivalent
by order-invariance). It is thus apparent that

< -inv FO ⊆ ∃SO ∩ ∀SO .

Using the fact that an order is MSO-definable modulo set variables on classes
of structures of bounded degree, Benedikt and Segoufin [5] proved the following
upper bound for < -inv FO.

Proposition 2.4.7. Let d ∈ N and let Cd denote the class of graphs of degree
at most d. Then

< -inv/Cd FO ⊆MSO on Cd .

Recall the discussion from Note 2.3.1 about the class on which sentences are
required to be invariant. Proposition 2.4.7 states that for any FO-sentence ϕ

33

Chapter 2. Preliminaries

that is order-invariant over all the graphs of Cd, there exists an MSO-sentence
that is equivalent to ϕ on Cd. In particular, this result is stronger than

< -inv FO ⊆MSO on Cd ,

which only asserts that for every FO-sentence ϕ that is order-invariant over all
finite graphs, there exists an MSO-sentence that is equivalent to ϕ on Cd.

In the same article, Benedikt and Segoufin proved the following collapse on
trees. Here, trees do not have access to the descendant relation (recall Exam-
ple 2.2.2). Trees can either be n-ranked (meaning that the degree is at most n
and the children of any node are ordered through an other binary relation) or
unranked and unordered (in which case the degree is not bounded, but there is
no distinction between elements of a siblinghood).

Proposition 2.4.8. Let Tree be either the class of n-ranked trees for some
n ∈ N or the class of unranked trees. Then

< -inv/Tree FO = FO on Tree .

Once again this entails that < -inv FO = FO on Tree.
It is not known whether < -inv FO collapses to FO on classes of trees of

unbounded degree when the siblinghoods are ordered. However, in these con-
ditions, the lexicographical order is definable in MSO, which guarantees that
< -inv FO ⊆MSO.

Many techniques used in Chapter 4 are closely inspired from those presented
in this article. We discuss them more in depth in Section 2.6.

The collapse on trees was proved independently by Niemistö [29].

The treedepth of a graph G is defined as the minimal height of a forest F
with the descendant relation (recall Example 2.2.2), such that G is a subgraph
of F when forgetting about the orientation of edges.

Eickmeyer, Elberfeld and Harwath [14] proved the following result:

Proposition 2.4.9. Let TreeDepthn be the class of graphs of treedepth at most
n. Then

< -inv/TreeDepthn FO = FO on TreeDepthn .

2.5 Treewidth and pathwidth

When one takes a look at the separating examples from Section 2.4.1, it seems
that dense classes of graphs are required for order and successor-invariant logics
to be more expressive than plain first-order logic. On the other hand, results
from Section 2.4.3 lead us to believe that on sparse classes, these invariant logics
collapse to FO.

Trying to extend these collapse results, it is natural to study the behavior of
invariant logics on classes of bounded treewidth and bounded pathwidth. These
notions were introduced in 1986 by Robertson and Seymour [32] to measure how
far a given graph is from being a tree or a path.

We first recall those definitions in Section 2.5.1, and extend them in Sec-
tion 2.5.2 to all purely relational structures. We then consider a special kind of
decompositions, more fitting for our purpose, in Sections 2.5.3 and 2.5.4.

34

2.5. Treewidth and pathwidth

2.5.1 Treewidth and pathwidth of a graph

Let G be a graph. A tree-decomposition of G is a tree T together with a bag
function β : T → P(G) such that

• every element x ∈ G appears in some bag: ∃t ∈ T, x ∈ β(t)

• for every edge (x, y) of G, ∃t ∈ T.x ∈ β(t) ∧ y ∈ β(t)

• the set of elements of T containing a given element of G is connected:

∀x ∈ G, {t ∈ T : x ∈ β(t)} is connected in T .

It will be convenient to assume that a bag is always non-empty.
A tree-decomposition (T , β) is called path-decomposition if T is a dipath.
The width of the tree or path-decomposition (T , β) is max{|β(t)| : t ∈ T}−1.

The first condition is only required to ensure that the notion of width makes
sense when there are only isolated points in the graph. We say that a class
C has treewidth (resp. pathwidth) k ∈ N if every graph of C admits a tree-
decomposition (resp. path-decomposition) of width at most k, and C is said to
be a class of bounded treewidth (resp. bounded pathwidth) if it has treewidth
(resp. pathwidth) at most k for some k ∈ N.

Example 2.5.1. Let T be a tree. It is not hard to see that T together with

β : t ∈ T 7→ {t, u} , where u is the parent of t in T if it exists,

is a tree-decomposition of T .
Hence the class of trees has treewidth 1. This is the reason we subtracted 1

to max{|β(t)| : t ∈ T} in the definition of treewidth.

Note 2.5.2. Any class of graphs of treedepth d has pathwidth at most d: visiting
in a lexicographical order the leaves of a forest witnessing the fact that a graph
has treedepth d yields a path-decomposition of width d.

Benedikt and Segoufin [5] gave an upper bound to < -inv FO when the
treewidth of a class is bounded:

Proposition 2.5.3. Let TreeWidthn be the class of graphs of treewidth at most
n ∈ N. Then

< -inv/TreeWidthn FO ⊆MSO on TreeWidthn .

Elberfeld, Frickenschmidt and Grohe [16] extended this result to what they
called decomposable structures, which covers graphs of bounded treewidth as
well as planar graphs.

Proposition 2.5.4. On the class of planar graphs, and on any class of bounded
treewidth:

• < -inv FO ⊆MSO

• < -inv MSO = CMSO .

35

Chapter 2. Preliminaries

2.5.2 Logical perspective on decompositions

Our aim is to combine FO-interpretations and tree or path-decompositions in
an attempt to lift the collapse < -inv FO = FO on trees from Proposition 2.4.8
to classes of bounded treewidth or pathwidth.

Recall the discussion from Section 2.3.2: the first step towards lifting this
collapse is to show that two FO-similar graphs admit FO-similar decomposi-
tions.

To give a meaning to the notion of FO-similarity between two decompo-
sitions, we need to fix a logical framework for these decompositions. In the
process, we extend these definitions to the context of purely relational struc-
tures. We omit the constant symbols for simplicity’s sake, but one could consider
vocabulary with constant with an extra bit of care.

Intuitively, a tree-decomposition is a colored tree, where the color of a node
describes the content of the corresponding bag (i.e. the isomorphism class of
the substructure induced by the bag) as well as how to glue that bag to the
bags of the parent and the children of the node.

Let Σ be a relation vocabulary without constant symbols. For k ∈ N, let’s
consider the vocabulary Λk := Σ ∪ {I0, · · · , Ik, O0, · · · , Ok} where all the Ii, Oi
are fresh unary relation symbols. Bags of a decomposition of width k are seen
as Λk-structures, where all the relations in Σ are inherited from the underlying
structure, and the Ii (resp. Oi) contain the elements that also appear in the
parent’s bag (resp. some child’s bag).

More precisely, we say that a Λk-structure B is a k-bag if it satisfies the
following conditions:

• |B| ≤ k + 1

• for every 0 ≤ i ≤ k, |IBi | ≤ 1 and |OBi | ≤ 1

• for every 0 ≤ i < j ≤ k, IBi ∩ IBj = OBi ∩OBj = ∅ .

Let σk be the (finite) set of isomorphism classes of k-bags, and Σk := Pσk ∪
{S} where Pσk is the vocabulary defined in Section 2.1.1 and S is a new binary
relation symbol. For c ∈ σk, we will write c |= ϕ if any (or equivalently, every)
B ∈ c satisfies ϕ.

We say that a Σk-structure T is a valid tree-decomposition of width k
if

• its restriction to {S} is an unranked tree, meaning that an element may
have an arbitrary number of children, and makes no difference among
them

• the interpretations of the unary relations of Pσk partition its domain T

• ∀c ∈ σk, ∀t ∈ T such that T |= Pc(t) and ∀i ∈ {0, · · · , k},
c |= ∃x,Oi(x) iff there exists a child u of t in T such that T |= Pd(u) with
some d ∈ σk such that d |= ∃y, Ii(y)

• if T |= Pc(r) where r is the root of T , then c |=
∧

0≤i≤k ¬∃x, Ii(x) .

36

2.5. Treewidth and pathwidth

Basically, these conditions amount to saying that an output element Oi is
always interfaced with a corresponding input element Ii in some child’s bag,
and conversely. Those elements will be merged in the construction to come.

Let TDk be the class of all valid tree-decompositions of width k, and PDk

the subclass of TDk containing all the tree-decompositions whose restriction to
{S} is a dipath.

Every T ∈ TDk generates a Σ-structure Ext(T) in the natural way: we take
the disjoint union of the Σ-structures which correspond to the colors of all the
elements of T , and we identify in this union an element colored with Ii with the
element colored with the corresponding Oi in the parent’s bag. Note that all of
this can be done via an MSO-transduction.

More precisely, Ext(T) is constructed as follows. For every c ∈ σk and every
element t ∈ T belonging to PTc , we consider a k-bag Bt belonging to c, such
that the (Bt)t∈T have pairwise disjoint domains. Let A :=

⋃
t∈T Bt. We define

the interface relation I on A, such that I(x, y) holds iff x ∈ Bt and y ∈ Bu for
some t, u ∈ T , such that

• T |= S(t, u), i.e. t is the parent of u in T

• Bt |= Oi(x) for some 0 ≤ i ≤ k

• Bu |= Ii(x) for the same i .

Now, let ∼ be the most coarse-grained equivalence relation extending I.
Ext(T) is defined as follows:

• its domain is A/∼

• for every r-ary relation symbol R ∈ Σ,

for every equivalence classes x̄1, · · · , x̄r for ∼,

Ext(T) |= R(x̄1, · · · , x̄r) iff there exist t ∈ T , and x1, · · · , xn ∈ Bt such
that xi ∈ x̄i (1 ≤ i ≤ r) and Bt |= E(x1, · · · , xr) .

Roughly speaking, a tuple belongs to the interpretation of R in Ext(T) iff it
appears in some bag of T .

An illustration of this process is given in Figure 2.2. In this example,
k = 2 and Σ is the vocabulary of graphs colored with four colors, i.e. Σ =
{E,Pred, Pyellow, Pgreen, Pblue}, represented in the figure as colored circles. The
colored squares represent the equivalence classes of 2-bags, i.e. the unary pred-
icates of Σ2.

We are now ready to define the logical notion of tree-decompositions and
treewidth in the case of Σ-structures. For the remainder of this thesis, let’s
consider that these definition override the classical ones given in Section 2.5.1
for graphs. This is not an issue, since there is a correspondence between de-
compositions in both senses. In particular, a graph (seen as a {E}-structure)
admits a tree-decomposition in TDk in the following sense iff it has treewidth
k in the classical sense.

A tree-decomposition (resp. path-decomposition) of width k of a Σ-
structure A is a Σk-structure T ∈ TDk (resp. T ∈ PDk) such that Ext(T) ' A.

37

Chapter 2. Preliminaries

� :
O0 O1

•
• •

� :
O0

I0 I1

O2•
• •

� :
I0•
• •

� :
I2

I0 •
• •

•

•

•

•

•

• •

• •

Figure 2.2: On colored graphs, T ∈ TD2 (on the left) and Ext(T) (on the right)

Let TWk (resp. PWk) denote the class of all Σ-structures of treewidth (resp.
pathwidth) at most k, that is structures that admit a tree-decomposition
(resp. path-decomposition) of width at most k.

We say that a class C has treewidth (resp. pathwidth) at most k if
C ⊆ TWk (resp. C ⊆ PWk), and that C is a class of bounded treewidth (resp.
bounded pathwidth) if it has treewidth (resp. pathwidth) at most k for some
k ∈ N.

2.5.3 Domino decompositions

In the classical definition of a tree-decomposition (see Section 2.5.1) of a graph,
there is no restriction to the number of bags, and their distance, containing a
given element of the graph. This carries over to the definition we gave of a tree-
decomposition of a Σ-structure, in that the equivalence classes for the relation
∼ may be composed of elements coming from k-bags that are arbitrarily far
apart in the tree-decomposition.

For us to be able to combine FO and tree and path-decompositions in an at-
tempt to lift the collapse of Proposition 2.4.8 to classes of structures of bounded
treewidth or pathwidth, it will be necessary to consider particular decomposi-
tions. Indeed, if elements appear in bags that are far apart in the decomposition,
then it becomes impossible to interpret in FO the structure in its decomposition.

38

2.5. Treewidth and pathwidth

To see that, consider the following example on graphs for k = 1. Let’s
define the path-decomposition Tn as in Figure 2.3, where n is the number of
occurrences of the middle bags.

� :
O1

O0

•

•

•
� :

I1

I0

O0

O1

•

•
� :

I1

I0

•

•

•

· · ·

n

Tn:

Ext(Tn), n even:
•

•

• •

Ext(Tn), n odd:
•

•

•

•

Figure 2.3: A path-decomposition (on the bottom left) Tn ∈ PD1, and Ext(Tn)
(on the bottom right), depending on the parity of n

FO is unable to count modulo two, hence

∀m ∈ N, ∃n ∈ N, T2n ≡FO
m T2n+1 ,

yet

Ext(T2n) 6≡FO
2 Ext(T2n+1) .

This shows that there is no hope to use the bi-FO-interpretation method from
Proposition 2.3.6 or any similar method to lift the collapse of < -inv FO to FO
on trees (Proposition 2.4.8) to structures of bounded treewidth, as long as we
allow such decompositions.

To avoid this issue, we consider a more restrictive notion of decomposition,
based on the definition introduced independently by Ding and Oporowski [13]
and by Bodlaender and Engelfriet [8]. Let’s first give the definition from [8].

A tree or path-decomposition (in the classical sense) (T , β) of a graph G is
said to be domino if for every x ∈ G, there are at most two t ∈ T such that x
belongs to β(t).

If a (simple and loopless) graph admits a domino tree-decomposition of width
k, then its degree is necessarily bounded by 2k, as any element can be linked
only to an element appearing in the same bag. The converse question of finding
a domino tree-decomposition of small width for any graph of bounded degree
and bounded treewidth was answered in [13] and [8]. Bodlaender later improved
the bound in [7]:

Proposition 2.5.5. Let k ∈ N and d ∈ N.
Any graph of treewidth at most k and degree at most d admits a domino

tree-decomposition of width at most (9k + 7)d(d+ 1)− 1.

39

Chapter 2. Preliminaries

Let’s show that Proposition 2.5.5 doesn’t have an equivalent for domino
path-decomposition. For that, we exhibit a family of structures (namely, graphs)
(An)n>1 of degree 3 and pathwidth 2 such that for every n ∈ N, An admits no
domino path-decomposition of width at most n.

For n > 1, let An be the structure from Figure 2.4 with

m :=

⌊
n2(n+ 1)

(n2 − 2n− 1)

⌋
+ 1

and where every dashed path has length n2.

• • • • • • • • • •
a1 b1 a2 b2 a3 b3 am bm

· · ·

Figure 2.4: The graph An: all the plain arcs are edges, and dashed arcs are
paths of length n2.

First, note that the family (An)n is indeed of pathwidth 2: going through
these graphs from left to right (and adding bi to the bags from the moment
we visit ai until we reach bi along the dashed path) yields a simple path-
decomposition of width 2.

Now, let’s show that An doesn’t admit any domino path-decomposition of
width at most n.

We will need the observation that if x and y are two elements of a graph G,
then in any domino decomposition of G, a bag containing x and a bag containing
y cannot be at distance more than distG(x, y) + 1. The proof of this fact is a
straightforward induction on distG(x, y).

Suppose that there exists a domino path-decomposition Tn of width at most
n of An. The diameter of An is less than n2 + 2m− 2, hence according to the
previous remark, the length of Tn is at most n2 + 2m− 1.

There are at most n2 + 2m bags in Tn, and each one contains at most n+ 1
elements. Yet, the size of An is m(n2 + 1); this is absurd, since we chose m to
ensure m(n2 + 1) > (n+ 1)(n2 + 2m).

This concludes the proof that the family (An)n>1 doesn’t admit domino
path-decompositions of any fixed width.

2.5.4 Decompositions of bounded diameter

Let’s now extend the definition of domino decompositions to the general setting
of Σ-structures. Our motivation is to be able to interpret in FO a structure
in its decompositions, i.e. make sure that the MSO-transduction that defines
a structure in any of its decompositions is already in FO. For that, we may
weaken the condition that an element can appear only in two (or a bounded
number of bags). Indeed, as long as all the bags containing a given element
are in a bounded radius, FO will be able to recreate its neighborhood in the
structure; it is not necessary for their number to be bounded.

The diameter of a tree-decomposition T ∈ TWk is defined as the maximum
over the equivalence classes c of ∼ (recall the definition of ∼ from Section 2.5.2)
of the maximal distT (t, u), where t, u ∈ T each contain an element of c. In other
word, the diameter of T is the maximal distance between two bags containing
elements that are merged in Ext(T).

40

2.5. Treewidth and pathwidth

Let TDδ
k (resp. PDδ

k) denote the class of tree-decompositions (resp. path-
decompositions) of width at most k and of diameter at most δ, and TWδ

k (resp.
PWδ

k) denote the class of Σ-structures admitting a decomposition in TDδ
k (resp.

PDδ
k).

Note 2.5.6. In the case of graphs, TD1
k corresponds to all the domino tree-

decompositions of width k.
However, as soon as δ ≥ 2, TWδ

k contains graphs of arbitrarily large degree.
For instance, TW2

1 contains all the star graphs.

It is straightforward to construct, for any k, δ ∈ N, an FO-interpretation Iδk
such that for every T ∈ TDδ

k, Iδk(T) ' Ext(T).
To be able to use Proposition 2.3.6, one would need the converse, namely

that it is possible to interpret in FO a tree-decomposition of bounded diameter
in structures of TWδ

k . In other words, one would need FO-interpretations J δk
such that, for every A ∈ TWδ

k , Ext(J δk (A)) ' A.
We show in Section 2.5.6 that such FO-interpretations do not exist. Before

that, we show in Section 2.5.5 that it isn’t possible either to interpret in FO
a path-decomposition of bounded diameter in structures of PWδ

k . We actually
prove stronger results, that deny the hope to use the more general method from
Note 2.3.7 as well.

2.5.5 Interpretation of path-decompositions

Let’s prove that it isn’t possible to interpret in FO a path-decomposition of
bounded diameter in structures of PWδ

k . We in fact prove a stronger result,
which entails this one.

Let’s consider the vocabulary of colored graphs Σ := {E,P0, P1} where E is
binary and P0, P1 are unary.

Let k, δ ∈ N. We exhibit two families (Gβ)β∈N and (Hβ)β∈N of Σ-structures
of PW2

2 such that

• ∀β ∈ N, Gβ ≡FO
β Hβ

• ∃α ∈ N,∀β ∈ N, for all decompositions D(Gβ),D(Hβ) ∈ PDδ
k,

D(Gβ) 6≡FO
α D(Hβ) .

In other words, we show that no matter how large, both in term of width
and diameter, we allow our decompositions to be, there are similar structures of
PW2

2 that do not have similar path-decompositions of this width and diameter.
In particular, this entails that there is no hope to find an FO-interpretation
of a path-decomposition in structures of PW2

2 , even by blowing the width and
diameter.

Let k, δ ∈ N. We set α := δ(n + 1), where the value of n will be apparent
later on, and depends only on k. Let β ∈ N.

The structures Gβ and Hβ will be based on a series of gadgets. The first
one, Apn, is defined in Figure 2.5. The value of p will be specified later on.

For any integers n1, n2 ≤ n, we define Apn[n1, n2] as Apn, where the path (of
length pn− 1, hence having pn nodes) from a0 to a1 is colored with P0, P1 as

(0n−n11n1)p

41

Chapter 2. Preliminaries

•s •t

pn− 1

•a
1

2 β

2
β

a0
•

pn− 1

•a
3

2
β2 β a

2•

Figure 2.5: The gadget Apn, where the lengths of the different unoriented paths
depend on β, p, n ∈ N.

and the path from a2 to a3 is colored with P0, P1 as

(0n−n21n2)p .

Σ being fixed before k and δ are known, these colorings are a way to encode
a number of colors which can depend on k and δ. The integer α, which can
depend on k and δ, will help us decode these colorings.

Note 2.5.7. If x and y are two elements of a structure G, then in any decom-
position of G of diameter at most δ, a bag containing x and a bag containing y
must at distance at most δ(distG(x, y) + 1) from each other.

The proof of this fact is a straightforward induction on distG(x, y).

Consider a path-decomposition P ∈ PDδ
k of Apn[n1, n2].

Suppose that any two bags containing respectively s and t are at distance
at least

2δ(2β + 1) + 1

from one another in P.
Then there must exist a bag containing some node of the path [a0, a1] as

well as some node of the path [a2, a3]. Indeed, according to Note 2.5.7 any bag
containing a0 must be at distance at most δ(2β + 1) from any bag containing s
and similarly for a2 and s, a1 and t and a3 and t. By assumption, there must
exists at least one bag in P that separates all the bags containing a0 or a2 from
all the bags containing a1 or a3. Such a bag must contain both a node of [a0, a1]
and a node of [a2, a3].

In that case, P satisfies the property Pn(n1, n2): ”there exists a bag con-
taining both a node that is part of a path 0n−n11n1 , and a node that is part of
a path 0n−n21n2”.

Note that any path-decomposition P ′ ∈ PDδ
k such that P ′ ≡FO

α P must also
satisfy Pn(n1, n2), by choice of α.

We now define Apn[n1, n2]m as the concatenation of m copies of Apn[n1, n2],
as illustrated in Figure 2.6.

Now, consider a path-decomposition P ∈ PDδ
k of Apn[n1, n2]m.

42

2.5. Treewidth and pathwidth

• • • • •Apn[n1, n2] Apn[n1, n2] Apn[n1, n2]· · ·s0

s1

s2 sm−1 sm

Figure 2.6: The gadget Apn[n1, n2]m.

Suppose that for every 0 ≤ i < m, there exist bags containing respectively
si and si+1 that are at distance at most

2δ(2β + 1)

from one another. Then the length of P cannot be too large. Indeed, any
element of Apn[n1, n2]m is at distance at most

2β +
pn− 1

2

from the nearest si. This means, according to Note 2.5.7, that the length of P
can be bounded by

δ(2β +
pn− 1

2
) +m · (2δ(2β + 1) + δ) + δ(2β +

pn− 1

2
)

(joining a bag containing the nearest si, then jump at most m times to bags
containing other sj until we reach the closest to the destination point, then
reach the destination).

This expression can be coarsely bounded by

δ(2β+4m+ pn) .

This means that the size of Apn[n1, n2]m is at most

(k + 1)[δ(2β+4m+ pn) + 1] . (2.6)

However, Apn has size
2β+2 + 2pn− 2 ,

hence Apn[n1, n2]m has size

m(2β+2 + 2pn− 2)− (m− 1) ,

which is greater than
m(2β+2 + 2pn− 3) . (2.7)

As in the example from Section 2.5.3, p and m can be chosen such that the
expression (2.7) is bigger than (2.6), which is absurd.

Indeed, showing that (2.7) is bigger that (2.6) amounts to finding p and m
such that

m[2β+2 + 2pn− 3− (k + 1)δ2β+4] > (k + 1)(δpn+ 1) .

This can be done by first choosing p so that

2β+2 + 2pn− 3− (k + 1)δ2β+4 > 0 ,

43

Chapter 2. Preliminaries

and choosing m in consequence.
Hence, there must exist 0 ≤ i < m such that no pair of bags containing

respectively si and si+1 at distance at most δ · 2β+1 from each other. As we’ve
seen, this means that P satisfies Pn(n1, n2).

We now have constructed a gadget Apn[n1, n2]m which is such that any path-
decomposition P ∈ PDδ

k of Apn[n1, n2]m satisfies Pn(n1, n2).
Since Pn(n1, n2) is a property that is preserved by ≡FO

α , we will use it as a
lever to prove that there is no path-decompositions in PDδ

k of Gβ and Hβ that
are FO-similar at depth α.

For that, we define Gβ as in Figure 2.7. The value of n and l will be fixed in
the remainder of the proof. Recall that while l will depend on β, n must not,
since α is a function of n.

Apn[0, 1]m Apn[0, 1]m Apn[2, 3]m Apn[2, 3]m Apn[4, 5]m · · ·

· · · Apn[n − 1, n]m Apn[n − 1, n]m

l l

l

Figure 2.7: The structure Gβ , where p,m are chosen as above, and n is an odd
integer to be fixed. The dotted edges are unoriented paths of length l, which
will also be fixed later on.

Using the same values for n and l, Hβ is defined as in Figure 2.8.

Apn[0, 0]m Apn[1, 1]m Apn[2, 2]m Apn[3, 3]m Apn[4, 4]m · · ·

· · · Apn[n − 1, n − 1]m Apn[n, n]m

l l

l

Figure 2.8: The structure Hβ .

One can easily see that Gβ ≡FO
β Hβ . This result from the observation that,

for every 0 ≤ i ≤ n−1
2 , two copies of Apn[2i, 2i+ 1]m are FO-similar at depth β

to the union of Apn[2i, 2i]m and Apn[2i+ 1, 2i+ 1]m. Indeed, the paths of length
2β in all the Apn[n1, n2] prevent the Spoiler in the β-round Ehrenfeucht-Fräıssé
game from spotting which integers n1, n2 appear in the same Apn[n1, n2].

Furthermore, Gβ and Hβ belong to PW2
2 . Indeed, they each admit a path-

decomposition of width 2 that goes from their left to their right, which moves
in each Apn[n1, n2] one step in the top path, then one step in the bottom path.

It remains to prove that Gβ and Hβ do not admit decompositions in PDδ
k

that are FO-similar at depth α.
Suppose that D(Gβ),D(Hβ) ∈ PDδ

k are respective decompositions of Gβ and
Hβ such that

D(Gβ) ≡FO
α D(Hβ) . (2.8)

As we’ve seen above, D(Gβ) must satisfy all the properties

Pn(0, 1), Pn(2, 3), · · · , Pn(n− 1, n) .

44

2.5. Treewidth and pathwidth

By (2.8), D(Hβ) must satisfy them too. By construction of Hβ , this means
that for every 0 ≤ i ≤ n−1

2 , there exists a bag of D(Hβ) containing both a node
of Apn[2i, 2i]m and a node of Apn[2i + 1, 2i + 1]m. This prevents D(Hβ) from
being to long.

More precisely, since any Apn[n1, n2]m has diameter bounded by

m(pn− 1 + 2β+1) .

Note 2.5.7 entails that any of its decompositions in PDδ
k has length at most

δ[m(pn− 1 + 2β+1) + 1] .

With the requirement that for every i, Apn[2i, 2i]m and Apn[2i + 1, 2i + 1]m

overlap in D(Hβ), the length of D(Hβ) is at most

l

2
+ nδ[m(pn− 1 + 2β+1) + 2] +

l

2
,

which can be bounded by

nδm(pn+ 2β+1) + l − 1 .

This implies that the size of Hβ cannot exceed

(k + 1)[nδm(pn+ 2β+1) + l] . (2.9)

However, recall from (2.7) that any Apn[n1, n2]m has size at least

m(2β+2 + 2pn− 3) ,

hence the size of Hβ is at least

(n+ 1)m(2β+2 + 2pn− 3) + n(l − 1) . (2.10)

The right choice of n and l make (2.10) bigger than (2.9), which is absurd.
Indeed, (2.10) is bigger that (2.9) iff

l[n− (k + 1)] > (k + 1)[nδm(pn+ 2β+1) + l]− (n+ 1)m(2β+2 + 2pn− 3) + n .

Choosing n := k + 2 allows us to set l so that this inequality holds.
It follows that Gβ and Hβ do not have decompositions in PDδ

k that are
FO-similar at depth α, thus concluding the proof.

2.5.6 Interpretation of tree-decompositions

We have seen proved in Section 2.5.5 that path-decompositions of bounded
diameter are not FO-interpretable in structures of PWδ

k , even when increasing
the width and the diameter.

Let’s now show an equivalent result for tree-decomposisions. For that, we
proceed in a similar way.

Let’s consider the vocabulary of colored graphs Σ := {E,P0, P1} where E is
binary and P0, P1 are unary.

Let k, δ ∈ N. We exhibit two families (Gβ)β∈N and (Hβ)β∈N of Σ-structures
of TW2 and of degree 5 such that

45

Chapter 2. Preliminaries

• ∀β ∈ N, Gβ ≡FO
β Hβ

• ∃α ∈ N,∀β ∈ N, for all decompositions D(Gβ),D(Hβ) ∈ TDδ
k,

D(Gβ) 6≡FO
α D(Hβ) .

We introduce in Figure 2.9 the gadget Llp, which is composed of two complete
binary trees of height p, whose leaves are pairwise linked by a path of length l.

· · ·

p

l

p

•

•

...

•

•

...

•

•

...

•

•

...

•

•

...

•

•

...

•

•

...

•

•

...

a0

b0

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a2p−2

b2p−2

a2p−1

b2p−1

. .
. ...

...
. . .

. . .
...

... . .
.

• • • •

• • • •

• • • •
• •

•

• • • •
• •

•

a

b

Figure 2.9: The gadget Llp, where l is the length of the dotted paths. All the

edges are undirected. The nodes a and b are the sources of Llp.

The interest of Llp resides in the fact that, provided that p is large enough
with respect to the width of a tree-decomposition, the sources (that is, the
elements a and b) cannot be far apart in this decomposition, while they can be
made arbitrarily distant, by choice of l, in the original graph.

More precisely, let T be a tree-decomposition of Llp in TDδ
k, where

p = dlog(k + 2)e .

We claim that in T , any bag containing a and any bag containing b are at
distance at most d := 2δ(p+ 2) + 2δ from one another.

Suppose otherwise, and consider the bags ta and tb ∈ T which minimize
distT (ta, tb) among bags containing respectively a and b. Since T has diameter
δ, we must have that

distT (ta, tb) ≥ 2δ(p+ 1) + 1 .

46

2.5. Treewidth and pathwidth

Let t ∈ T be a bag on the path between ta and tb at distance at least δ(p+1)+1
from each other. By virtue of T being a tree and in view of Note 2.5.7, t
disconnects all the bags containing the ai from all the bags containing the bi.

This means that all the 2p disjoint paths from ai to bi must intersect t, which
is absurd since 2p ≥ k + 2.

This proves that any bag containing a and any bag containing b are at
distance at most 2δ(p+ 2) from one another in T .

Once k and δ are given, we set p := dlog(k + 2)e.
Our construction will depend on an integer n whose value depends only on

k and δ, and will be set later on. The integer α will also be chosen later on.
Let β ∈ N, and set l := 2β .

Let’s now construct the structures Gβ and Hβ . Both of them will amount to
a concatenation of many instances of Llp (by concatenation of two Llp, we mean
the disjoint union of those structures, where we merge one of their sources).
On top of that, all the sources will have a label. As in Section 2.5.6, labels are
encoded with the unary relations P0, P1 on a path of length at most n.

Let’s deal with Gβ first. We start by considering some nodes (sw)w∈{0,1}≤n ,

i.e. one element for each one of the 2n+1− 1 sequences of bits of length at most
n. All those sw belong to Gβ .

We now add the aforementionned labels: for every w ∈ {0, 1}≤n we attach
to sw a path of length |w|, and color it with P0 and P1 in order to code w.

On top of that, for every w ∈ {0, 1}≤n−1, we link sw to sw0 with an copy of
Llp; in other words, sw and sw0 are the sources of this gadget. All those copies
are disjoint. Note that up until now, each sw1 with |w| = n − 1 is alone with
its label in its connected component of Gβ . This stage of the construction is
depicted in Figure 2.10.

As of now, Gβ is a union of concatenations of copies of Llp, together with
some isolated nodes. However, we will specify later how to agglomerate all those
connected components so that Gβ becomes a single concatenantion of copies of
Llp. Basically, we will add copies of Llp between the connected components to

group them into a single sequence of Llp, as illustrated in Figure 2.11.

Similarly, Hβ is obtained by linking each sw to the corresponding sw1 with
a copy of Llp. In the end Hβ will also be a single concatenation of copies of Llp.

The idea behind those constructions is that, in the complete binary tree
where the nodes are the words of {0, 1}≤n, each edge (w,w′) is taken into
account as a copy of Llp either in Gβ (if w′ = w0) or in Hβ (if w′ = w1).

The labels will help us identify sw in Gβ and Hβ , with the help of the FO-
similarity at depth α of their tree-decompositions.

We can now start establishing some results. Suppose that D(Gβ) and D(Hβ)

are respective tree-decompositions of Gβ and Hβ in TDδ
k such that

D(Gβ) ≡FO
α D(Hβ) . (2.11)

We’ve seen that in D(Gβ), for any w ∈ {0, 1}≤n−1, any bags containing
respectively sw and sw0 are at distance at most d := 2δ(p+2) from one another.

47

Chapter 2. Preliminaries

• • • • •Llp Llp Llp· · ·
sε s0

0

s00

0

0

s0n−1

0

0

0

n − 1

s0n

0

0

0

n

• • • •Llp Llp· · ·
s1

1

s10

1

0

s10n−2

1

0

0

n − 1

s10n−1

1

0

0

n

• • • •Llp Llp· · ·
s01

0

1

s010

0

1

0

s010n−3

0

1

0

0

n − 1

s010n−2

0

1

0

0

n

...

• •Llp
s1n−1

1

1

1

n − 1

s1n−10

1

1

0

n

• • • •· · ·
s0n−11

0

0

0

1

n

s0n−211

0

0

1

1

n

s0n−3101

0

1

0

1

n

s1n

1

1

1

1

n

Figure 2.10: Gβ , at the beginning of the construction.

• • • • •Llp Llp Llp· · ·
sw0

w0

sw1

w1

sw2

w2

sw2n+1−3

w
2n+1−3

sw2n+1−2

w
2n+1−2

Figure 2.11: Gβ , at the end of the construction, for some ordering
w0, · · · , w2n+1−2 of the words of {0, 1}≤n to be fixed later on. It extends the
construction from Figure 2.10.

Let’s choose a large enough α with respect to n, d and δ so that the property

“any bags containing nodes with labels w and w0 are at distance at most d”

48

2.5. Treewidth and pathwidth

is expressible as an FO-sentence of quantifier rank α. By (2.11), any bags of
D(Hβ) containing respectively sw and sw0 must be at distance at most d.

Similarly, both in D(Gβ) and D(Hβ), any bags containing respectively sw
and sw1 must be at distance at most d := 2δ(p+ 2) from one another.

In the end, for w,w′ ∈ {0, 1}≤n, in D(Gβ) as well as in D(Hβ), any bags
containing respectively sw and sw′ must be at distance at most 2nd from one
another. This is because the complete binary tree of height n as diameter 2n.

Thus in both decompositions, assuming (2.11), the 2n+1 − 1 nodes sw are
contained in a subtree whose diameter is linear in n. This compactness is key
to this counter-example, and is the reason for this tree-like construction.

The next step is to show that we can identify the parts of D(Gβ) and D(Hβ)
which contain the elements sw.

More precisely, we show that there exist subtrees SG and SH of D(Gβ) and
D(Hβ) such that

• SG ' SH

• the diameter of SG,SH is at most 2nd

• SG and SH have degree at most 2k + 3

• every sw belongs to at least one bag of SG, and one bag of SH .

For that, we start by considering the minimal subtree SG of D(Gβ) which
contains all the bags containing any sw. As we’ve seen, this subtree has diameter
at most 2nd.

There is however no restriction on the degree of SG. To get the desired
properties, we trim SG in the following way.

While there exists at least one, pick a bag t of SG of degree greater than
2k + 3. Let S1, · · · ,Sr be the connected components of SG \ {t}.

We claim that at most 2k + 3 of the Si contain some sw which does not
appear in t. Recall, although at this point we have only partially constructed
Gβ , that in the end it will be a concatenation of Llp (i.e. will consist of all the

sw, arranged in some sequence, and pairwise linked with a copy of Llp).
Let w0, · · · , w2n+1−2 be the sequence of words of {0, 1}≤n appearing in the

same order as the sw in Gβ , c.f. Figure 2.11.
Suppose that there are at least 2k + 4 connected components Si containing

some sw which does not appear in t.
For each such Si, let m(i) be the maximal index such that swm(i)

belongs to

Si and not to t. For at most one Si we can have m(i) = 2n+1 − 2. For all the
others (i.e. for at least 2k + 3 of them), swm(i)+1

does not belong to Si.
Given that t is a bag of size at most k + 1, there must exist at least k + 2

indexes i such that

• swm(i)
belongs to Si and not to t,

• swm(i)+1
belongs neither to Si neither to t.

By construction, swm(i)
and swm(i)+1

are linked with a copy of Llp in Gβ . Thus
for each of these k + 2 couples, there exists a path from swj to swj+1

, which

49

Chapter 2. Preliminaries

must intersect t. All such path being disjoint, t must intersect k + 2 distinct
paths, which is absurd.

We trim out of SG all the Si which contain no sw which does not appear in
t. In the new subtree, t has degree at most 2k + 3, and each sw still belongs to
at least one of its bags.

In the end, SG has degree at most 2k + 3, and its diameter is a most 2nd.
We find SH using (2.11): by setting α big enough wrt. n, k and δ, the Spoiler

in the α-round Ehrenfeucht-Fräıssé game between D(Gβ) and D(Hβ) can cover
SG (which has bounded diameter and degree) as well as enough bags of D(Gβ)
to cover the labels of each of the sw. The corresponding moves of the Duplicator
in D(Hβ) yield SH .

In the remainder of the proof, we let S := SG ' SH .

To conclude the proof, we are now going to show that these decompositions
are too compact to exist.

In S, we pick a node t. Let S1, · · · ,Sr be the connected components of
S \ {t}, with r ≤ 2k + 3.

Let’s establish some vocabulary. We say that sw only occurs in Si, which
we denote sw ∈! Si, if sw is contained in some bag of Si, but not in t. Note
that this implies, by nature of tree-decompositions, that sw doesn’t belong to
any bag of any Sj , j 6= i.

If sw ∈! Si, we say that sw is an Si-inode. If sw′ ∈! Sj for some j 6= i, we
say that sw is an Si-onode.

We say that sw and sw′ are adjacent in Gβ (resp. in Hβ) if they are linked
by a copy of Llp in Gβ (resp. Hβ).

We say that they are adjacent if they are adjacent in Gβ or in Hβ . For now,
sw and sw′ are adjacent iff w′ = w0, w′ = w1, w = w′0 or w = w′1, but as said
previously, we are going to add some copies of Llp in both structures.

We say that {sw, sw′} is an Si-bridge if

• sw ∈! Si

• sw′ ∈! Sj for some j 6= i

• sw and sw′ are adjacent.

Let Si be a connected component of S \ {t}. Then there are at most 2k + 2
Si-bridges. Otherwise there would exist at least k + 2 Si-inode adjacent in Gβ
(without loss of generality) to some Si-onode. Thus t would intersect with at
least k + 2 disjoint paths, which is absurd.

Let h < n whose value will be apparent later on. With this remark in mind,
let’s now show that there cannot exist i such that

N ≤ |{sw ∈! Si}| ≤ (2n+1 − 1)− (k + 1)−N , (2.12)

where
N := (2h − 1) + (4k + 4)(2n−h+1 − 1) + 1 .

This amount to saying that the sw cannot be spread evenly across the S1, · · · ,Sr:
as soon as at least N sw only occur in some Si, then most of the sw must only
occur in that Si. We will then see that this is absurd.

Let’s now show that there doesn’t exist any Si satisfying (2.12). Suppose
that there does exist such an Si.

50

2.5. Treewidth and pathwidth

For any w of length h, let Tw be the set of sw′ such that w is a prefix of
w′, together with a copy of Llp joining every sw′ and sw′′ where w′′ = w′0 or
w′′ = w′1. Basically, Tw corresponds to the subtree rooted in w in the complete
binary trees of universe {0, 1}≤n, where the edges are replaced with copies of
Llp. There are 2h such Tw. Let’s call them h-trees.

Note that if some h-tree Tw contains

• an Si-inode,

• an Si-onode,

• no sw appearing in t,

then there must exist an Si-bridge included in Tw. Since, as seen earlier, there
cannot exist more than 2k + 2 Si-bridges and t contains at most k + 1 sw, this
entails that of the 2h disjoint h-trees, at most 3k + 3 can contain at the same
time some Si-inode and some Si-onode.

Recall that we supposed in (2.12) that there were at least N Si-inodes. Since
there are only 2h − 1 sw not belonging to any h-tree (those for which |w| < h),
and since each h-tree contains 2n−h+1 − 1 sw, by choice of N there must exist
at least 4k + 5 h-trees containing some Si-inode.

Similarly, since the second inequality of (2.12) entails that there exist at least
N Si-onodes, there must exist at least 4k + 5 h-trees contining some Si-onode.

We’ve seen that at most 3k + 3 of the h-trees can contain at the same time
an Si-inode and an Si-onode. Thus, there must exist at least k + 2 h-trees
T containing only Si-inodes and sw appearing in t; hence there exists some
h-tree T containing only Si-inodes. Similarly, there must exist some h-tree T ′
containing only Si-onodes.

Let’s now finish the construction of Gβ and Hβ so that the existence of T
and T ′ yields at least 2k+ 3 Si-bridges. For that, we add copies of Llp between
the sw, |w| = n in order to make sure that for every h-trees Tw 6= Tw′ , there are
2k + 3 leaves of Tw which are adjacent to leaves of Tw′ . Once we’ve shown how
to do this, we get 2k + 3 Si-bridges involving leaves of T (which are Si-inodes)
and leaves of T ′ (which are Si-onodes).

Consider an h-tree Tw. In Tw, there are 2n−h−1 leaves sw′ with w′ ending
with a 1. Those are isolated (not taking into account their label) in Gβ . Since
there are 2h − 1 other h-trees, as long as 2n−h−1 ≥ (2k + 3)(2h − 1) i.e. in
particular for

h := bn− 1− log(2k + 3)

2
c , (2.13)

we can arbitrarily put 2k + 3 copies of Llp between the leaves ending with 1
of every pair of h-tree. This leads to an impossibility, which comes from the
assumption of the existence of an Si satisfying (2.12).

At this point, Gβ and Hβ are still unions of concatenations of copies of Llp
(indeed, in the previous step, copies of Llp were only added between isolated sw
of Gβ). As promised, we now arbitrarily add copies of Llp in Gβ and Hβ so that

both of them are a concatenation of copies of Llp.

51

Chapter 2. Preliminaries

As desired, both structures have degree 5, and treewidth at most 2 (indeed,
they are series-parralel graphs). Setting l := 2β ensures that

Gβ ≡FO
β Hβ ,

since the Spoiler in the β-round Ehrenfeucht-Fräıssé game has no way of deter-
mining in which order the sw are linked in Gβ and Hk.

We’ve seen that for every bag t ∈ S, there are at most 2k + 3 connected
components S1, · · · ,Sr in S \ {t}. Furthermore, no Si can satisfy (2.12).

It is not possible for all the connected components of S \ {t} to have less
than N inodes, as long as n is large enough, since

(2k + 3)(N − 1) + (k + 1) < 2n+1 − 1 .

Hence there must exist some Si with at least N Si-inodes. Since Si cannot
satisfy (2.12), there must exist more than (2n+1 − 1)− (k + 1)−N Si-inodes.

Each other connected component Sj , j 6= i must then have less than N
Sj-inode.

This unique Si is called the large connected component of S \ {t}.
We are now ready to conclude the proof. For that, consider Algorithm 1.

Algorithm 1

1: Arbitrarily pick a bag t ∈ S
2: while true do
3: Print t
4: t← the neighbor of t in the large connected component of S \ {t}.
5: end while

Let’s look at the infinite sequence output by Algorithm 1.
S being acyclic and finite, some sequence t1, t2, t1, with t1, t2 ∈ S, must

occur at some point in the output string.
Let S1 (resp. S2) be the connected component of S \ {(t1, t2)} containing t1

(resp. t2). The apparition of the sequence t1, t2, t1 in the output means that

• S2 is the large connected component of S \ {t1}

• S1 is the large connected component of S \ {t2}.

In particular, this means that there exist more that (2n+1− 1)− (k+ 1)−N
S1-inodes, and more than (2n+1 − 1)− (k + 1)−N S2-inodes. However, those
sets of inodes are disjoint, and the sum of their number exceeds 2n+1−1 as long
as n is chosen large enough wrt. k and δ (recall that N = O(2

n
2)).

We have thus reached an impossibility, proving that there cannot exist tree-
decompositions D(Gβ) and D(Hβ) in TDδ

k such that

D(Gβ) ≡FO
α D(Hβ) .

As a corollary, we get the impossibility to FO-interpret, in structures of
bounded treewidth and degree, one of their tree-decompositions of bounded
diameter.

52

2.6. Methodology for proving a collapse

2.6 Methodology for proving a collapse

When attempting to prove that L ∈ {< -inv FO,Succ-inv FO} collapses to FO
on a class C of structures, one can follow several strategies. We detail in this
section three such strategies.

2.6.1 Lifting a pre-established collapse

The first idea is to find another class of structures C′ on which it is known that
L = FO, and such that C is bi-FO-interpretable through C′. Proposition 2.3.6
then allows us to lift the collapse from C′ to C.

This method is first used in Corollary 3.1.2, in which we lift the collapse of
Succ-inv FO to FO from graph classes of bounded degree to near-uniform graph
classes (see [19]), which are exaclty the classes of graphs FO-interpretable in
graph classes of bounded degree. It turns out that each one of these near-uniform
classes can be FO-intepreted in a class of graphs of bounded degree, with the
property that the FO-interpretation can be reversed: its converse is not a proper
FO-interpretation (hence we fall outside the scope of bi-FO-interpretations),
but it still preserves FO-similarity, allowing the use of Note 2.3.7.

We also use this method in Corollary 4.2.1, to lift the collapse < -inv FO =
FO on a class of graphs to a class containing directed version of those graphs.
For that, it is enough to provide FO-definable encoding and decoding of the
orientation in the undirected setting.

Although this seems to be the natural way to lift the collapse of < -inv FO
to FO from trees to structures of bounded treewidth and degree, we’ve seen in
Section 2.5.6 that this cannot be done. It might be possible, when restricting
to structures of bounded pathwidth and degree, to find an FO-interpretation
which defines in each such structure one of its tree-decompositions of bounded
diameter. Although not excluding this possibility, the result from Section 2.5.5
leads us to believe that there is not much hope in that direction, by showing
that path-decompositions of bounded diameter are not definable in this way.

2.6.2 The direct method

If the bi-FO-interpretation approach fails, one could try the direct method. For
example, in the case of < -inv FO, it amounts to proving that there exists a
function f : N→ N such that, for every structures A,A′ ∈ C, there exist orders
< on A and <′ on A′ such that

∀n ∈ N, A ≡FO
f(n) A

′ → (A, <) ≡FO
n (A′, <′) .

This is indeed enough to prove that < -inv/C FO = FO on C in virtue of
Proposition 2.3.2.

Similarly, to prove that Succ-inv/C FO = FO, one would need, given a pair
of structures of C, to construct two successors that maintain FO-similarity to
some degree between those two structures. We will use this method in Chapter 3
to prove that Succ-inv FO is no more expressive than plain FO on classes of
structures of bounded degree.

While it appears to be possible to construct such successors on well-behaved
graphs, such a task seems ambitious in the case of orders. In fact, it is not

53

Chapter 2. Preliminaries

even clear that such a construction is possible on the class of dipaths, on which
< -inv FO is known to collapse to FO (Proposition 2.4.8). Even if such orders
existed, the fact that they are hard to find already on paths suggests that there
is not much hope to exhibit such orders in the case, for instance, of structures
of bounded treewidth.

Note that the technique used in [14] to prove that < -inv FO collapses to
FO when the treedepth is bounded is related to the direct method. Instead
of constructing orders maintaining FO-similarity between two structures, the
authors exhibit canonical orders on structures of bounded treedepth such that
the equivalence classes of the ordered structures are FO-definable. Once again,
it seems difficult to extend this technique to a broader setting.

2.6.3 The chaining method

As we’ve seen, already on paths, it appears difficult to construct orders on
FO-similar structures and preserve similarity. This is mainly because the FO-
similarity constraint on the initial structures enforces only local likeness (recall
Section 2.4.2), while FO-similarity in the presence of an order requires a global
likeness, as the diameter of the Gaifman graph of an ordered structure is 1.
There is no guarantee that such orders even exist.

The techniques developed in [4] and [5] to prove that < -inv FO = FO on
trees, although not presented through that lens in those papers, can be seen
as a more flexible construction. It generalizes the previous method insofar as,
instead of exhibiting orders < and <′ respectively on A and A′ that directly
maintain FO-similarity, it goes through a chain of intermediate structures and
orders.

More precisely, the key is to show the existence of a function f : N→ N such
that, for every n ∈ N and A,A′ ∈ C satisfying A ≡FO

f(n) A
′, there exist structures

(Ai)1≤i≤p and corresponding orders (<i, <
′
i)1≤i≤p as well as orders < on A and

<′ on A′ such that

(A, <) ≡FO
n (A1, <

′
1)

(A1, <1) ≡FO
n (A2, <

′
2)

. . .

(Ap, <p) ≡FO
n (A′, <′)

This progression in the equivalences entails that all the Ai, as well as A and
A′, belong to the same equivalence class for ≡<-inv FO

n . We can conclude with
Proposition 2.3.2.

This chaining method corresponds to the n-flip defined by Barceló and
Libkin in [3].

It is shown in [16] (for < -inv MSO, but the proof also holds for < -inv FO)
that as soon as < -inv FO = FO on C, such a chain exists for every pair of
structures of C for some f . In other words, this method is complete; of course,
finding the intermediate structures may not be an easy task.

In [4], each progression in the chaining corresponds to some operation on the
tree. The orders are derived from the proof given in [24] of Proposition 2.4.6.

54

2.7. Model checking for successor-invariance

Finding orders maintaining FO-similarity is a manageable task in that context
because there are few modifications between a structure of the chain and the
following one.

A similar technique is used in Chapter 4, although some complications arise.
Indeed, while in [4], all the intermediate structures of the chain belong to the
class under consideration (namely, the class of trees), in Chapter 4, we consider
structures that fall out of the class at hand.

If for a class C of structures one manage to prove that such a chain always
exists, and that all intermediate structures belong to a class C′ ⊇ C, we get not
only that < -inv FO = FO on C, but also that

< -inv/C′ FO = FO on C .

In other words, an FO(Σ∪ {<})-sentence need only be order-invariant on C′ to
have an FO-sentence equivalent on C.

2.7 Model checking for successor-invariance

A related question to that of the expressivity of invariant logics is the matter of
the complexity of the model checking for these logics, i.e. the difficulty one has
to determine whether a model satisfies a given invariant sentence.

This question will not play a direct role in this thesis, but we mention the
state of the art in this domain for completeness.

The model checking problem for a logic L, MC(L), is given a structure
A and an L-sentence ϕ, to determine whether A |= ϕ. There are several ways
to measure the complexity of the model checking problem for a logic, depending
on which of A and ϕ are treated as input or as parameter.

We speak of combined complexity of the model checking problem con-
siders if both A and ϕ are part of the input. Stockmeyer [35] proved that
the combined complexity of MC(FO) is PSPACE-complete. The hardness
comes from the formula part: even on a model with two elements, MC(FO) is
PSPACE-complete.

To see to what extent the structure weighs in the complexity of the model
checking problem, Vardi [39] defined the data complexity, where only A is
considered as part of the input, while ϕ is treated as a parameter of the problem.
The data complexity of MC(FO) is in LOGSPACE (and in fact, even in AC0).

To get a finer-grained understanding of the complexity of the model checking
problem, it is useful to consider parametrized complexity. MC(L) is said to
be fixed-parameter tractable if it is solvable in time f(|ϕ|) · |A|c for some
constant c, where it is only asked of f to be a computable function (here, |ϕ|
denotes the size of ϕ). If c = 1, we say that this problem is fixed-parameter
linear.

The fundamental result that MC(MSO) is fixed-parameter linear on classes
of graphs of bounded treewidth was proved by Courcelle [11].

The classes of graphs on which the model checking for FO is fixed-parameter
tractable has been widely studied. It has originally been proven by Seese [34]
that MC(FO) is fixed-parameter linear on any class of bounded degree. After a

55

Chapter 2. Preliminaries

series of improvements on this result, Grohe, Kreutzer and Siebertz [23] showed
that MC(FO) is fixed-parameter tractable on any nowhere dense class of graph.
Without getting in the technical definitions, let’s just state that the notion of
nowhere dense classes of graphs captures some idea of sparsity. In particular, it
generalizes the notions of classes excluding a minor (hence, of classes of bounded
treewidth) and of classes of bounded degree.

We have seen in Proposition 2.4.3 that Succ-inv FO is more expressive than
plain FO. Whether this improvement in expressivity comes at the cost of the
complexity of the model checking problem is an interesting question, which has
been investigated e.g. in [17, 15, 38].

Van den Heuvel, Kreutzer, Pilipczuk, Quiroz, Rabinovich and Siebertz[38]
proved that MC(Succ-inv FO) is fixed-parameter tractable on any class of
bounded expansion (which is less general than the nowhere dense setting, but
also includes any class of bounded degree or treewidth).

Since there is no indication that Succ-inv FO is more expressive than FO
on classes of bounded expansion, this could possibly be due to a collapse of
Succ-inv FO to FO on those classes. Our restult from Chapter 3 showing
that Succ-inv FO collapses to FO on classes of bounded degree, together with
the aforementioned result from [34], gives an alternative proof of the fact that
MC(Succ-inv FO) is fixed-parameter linear when the degree is bounded.

We know of no result concerning the complexity of MC(< -inv FO) other
than the ones ensuing from bounds on < -inv FO, either in the form of a collapse
to FO or of an inclusion in MSO.

2.8 Review of expressivity results

Before we list the expressivity results on invariant logics exposed throughout
this chapter, let us mention the fundamental result proved independently by
Immerman, Vardi and Livchak (see, for instance, [26]), linking order-invariance
to complexity theory.

Proposition 2.8.1. < -inv LFP captures PTIME.

Here, LFP is the expansion of FO with a least fixpoint operator; see [27]
for a formal definition of that logic.

Finding a logic with recursive syntax capturing PTIME is one of the long
lasting quests of descriptive complexity. A profound understanding of the ex-
pressive power of order-invariance is necessary if one is to find an equivalent
logic to LFP, which hopefully can be acquired through the study of weaker
logics, such as < -inv FO and Succ-inv FO. This result, as well as the following
proposition by Vardi [39], underline the importance of invariant logics.

Proposition 2.8.2. < -inv PFP captures PSPACE.

Here, PFP is the expansion of FO with a partial fixpoint operator.

Let’s now list the few inclusions between invariant and plain logics that
we have mentioned throughout this chapter. Concerning order and successor-
invariance, we have seen that

FO (Succ-inv FO ⊆ < -inv FO

56

2.8. Review of expressivity results

and that
CMSO (< -inv MSO .

Recall that all the known separating examples are dense. On the other
hand, we have seen some upper-bounds for invariant logics on sparse structure.
Namely, the collapse of < -inv FO (hence, of Succ-inv FO) to FO has been
proved on

• dipaths,

• unordered trees without the descendant relation,

• ranked trees without the descendant relation (as well as with the descen-
dant relation, trivially),

• classes of bounded treedepth,

while the inclusion of < -inv FO (hence, of Succ-inv FO) in MSO has been
proved on

• planar graphs,

• classes of bounded treewidth,

• classes of bounded degree.

As for < -inv MSO, it is known to collapses to CMSO on

• planar graphs,

• classes of bounded treewidth.

This thesis contributes to this field by adding the following results:

• Succ-inv FO collapses to FO on classes of bounded degree (Theorem 3.1.1)

• < -inv FO collapses to FO on paths (Corollary 4.2.2)

• < -inv FO collapses to FO on hollow trees (Theorem 4.2.1), as defined in
Section 4.1.2

57

Chapter 2. Preliminaries

58

Chapter 3

Successor-Invariant FO on
Classes of Bounded Degree

As we’ve seen in Proposition 2.4.3, Succ-inv FO is in general more expressive
than plain FO. However, the separating example by Rossman [33], which is to
the best of our knowledge the only one, involves a dense class of structures.

This leaves open the possibility of a collapse of Succ-inv FO to FO on sparse
classes of structures. In this chapter, we show that this is the case when the
degree is bounded.

We start by stating the collapse result and giving an overview of the proof
in Section 3.1.

We then define fractal types in Section 3.2, which is a key notion in our
proof. We eventually move to the core of the proof, which is detailed in the
several subparts of Section 3.3.

This chapter reformulates the content of [21].

The remainder in the division of n ∈ N by m > 0 is denoted n[m].

3.1 Overview of the result

The main theorem of this section is the following collapse result:

Theorem 3.1.1. Let Σ be a relational vocabulary, let d ∈ N and let Cd denote
the class of all Σ-structures of degree at most d. Then

Succ-inv/Cd FO = FO on Cd .

Let’s first state a corollary of this result. Gajarský, Hliněný, Obdržálek,
Lokshtanov and Ramanujan [19] characterized the graph classes which are FO-
interpretable in a class of graphs of bounded degree as the near-uniform graph
classes.

Let D be such a class of graphs, which is FO-interpretable in a class of
graphs of bounded degree C′. The construction from the aforementioned paper
exhibits a class C of graphs of bounded degree (which may be larger that the

Chapter 3. Successor-Invariant FO on Classes of Bounded Degree

degree of C′) and an FO-interpretation I such that every H ∈ D is isomorphic
to I(G) for some G ∈ C, and such that I admits a converse which preserves
FO-similarity (this is strongly reminiscent of a bi-FO-interpretation, although
the converse in not an FO-interpretation itself); namely, for every k ∈ N, there
exists k′ ∈ N such that for every H,H′ ∈ D such that

H ≡FO
k′ H′

then there exist G,G′ ∈ C such that

H ' I(G) ∧ H′ ' I(G′) ∧ G ≡FO
k G′ .

Note 2.3.7 together with Theorem 3.1.1 entail the following corollary:

Corollary 3.1.2. Let D be a near-uniform class of graphs, i.e. a class of graphs
FO-interpretable in a class of graphs of bounded degree. Then

Succ-inv/D FO = FO on D .

The proof of Theorem 3.1.1 is given in Section 3.3, and constitutes the core
of this chapter. We give here a sketch of this proof; this will motivate the
definitions given in Section 3.2.

To prove this collapse, we follow the direct method as developed in Sec-
tion 2.6.2. Namely, given two structures G1 and G2 of degree at most d that
are FO-similar (that is, such that G1 ≡FO

n G2 for a large enough n), our goal is
to construct a successor relation S1 on G1 and S2 on G2 such that (G1, S1) and
(G2, S2) stay FO-similar. We can then use Proposition 2.3.2 to conclude the
proof.

It thus remains to construct suitable successor relations S1 and S2. Recall
that the neighborhood type of an element is the description, up to isomorphism,
of its neighborhood. When the degree is bounded, there are a finite number of
neighborhood types, and if some type has many occurrences, then some occur-
rences must be far apart from each other. With this in mind, we separate the
neighborhood types occurring in G1 and G2 into two categories:

• on the one hand, the rare types, which have few occurrences in G1 and G2

(and thus, that have the same number of occurrences in both structures,
by FO-similarity)

• on the other hand, the frequent types, which have many occurrences both
in G1 and G2.

In order to make the proof of FO-similarity of (G1, S1) and (G2, S2) as simple
as possible, we want an element of G1 (and similarly for G2 and S2) and its
successor by S1 to have the same neighborhood type in G1 as much as possible,
and to be far enough in G1, in order for the neighborhood types occurring in
(G1, S1) to be as “regular” as possible. As long as there are at least two different
neighborhood types, the first constraint obviously cannot be satisfied, but we
will construct S1 as close as possible to satisfying it.

For instance, suppose that G1 contains three frequent neighborhood types
τ0, τ1 and τ2, and one rare neighborhood type χ with two occurrences. At the

60

3.1. Overview of the result

end of the construction, S1 will (mostly) look like in Figure 3.1, where the
relations of G1 have been omitted and the arrows represent S1, which is indeed
a circular successor.

Note that all the elements of type τ1 form a segment wrt. S1, as well as all
the elements of type τ2. τ0, the first frequent type, has a special role in that it
is used to embed all the elements of rare type (here, χ). Furthermore, and this
is not apparent in the figure, two successive elements for S1 are always distant
in G1.

τ0

τ0

τ0

χ

χ

τ1

τ2

•

•

•

•
•

•
•

•••••
•

•
•

•

•

•

•

•

•

•
•
•
•
• • • • •

•
•
•
•

•

•

}

}

}

}
}

}

Figure 3.1: Illustration of S1 when there are three frequent neighborhood types
(τ0, τ1, τ3) and one rare type (χ) in G1. The elements of rare type are surrounded
by occurrences of the first frequent type, τ0. Junction elements are circled.

Keeping this idea in mind, S1 (and similarly, S2) is constructed iteratively,
by adding S-edges to the initial structures one at a time. For practical reasons,
we will start the construction of S1 around occurrences of rare types: for each
element x of rare type, we find two elements of neighborhood type τ0 that are
far apart in G1, and far from x. Then we add two S-edges in order for those two
elements to become the S1-predecessor and the S1-successor of x. We repeat
this process for every element of rare type (and actually, for every element
that belongs to the neighborhood of a rare element) until each one is protected
by a ball of elements of frequent type. This is possible because there are few
elements of rare type, and many elements of any frequent type; since the degree
is bounded, those elements of frequent type are spread across the structure, and
can be found far from the current construction.

Once this is done, we apply a similar construction around elements of fre-
quent types that will, in the end, be the S1-predecessor or S1-successor of an
element of another frequent type - that is, elements that will be at the border
of the segments (for S1) of a given frequent type. Such elements are circled in

61

Chapter 3. Successor-Invariant FO on Classes of Bounded Degree

Figure 3.1. We must choose only a small number of such elements (two for each
frequent type, of which there are few due to the degree boundedness hypoth-
esis), hence we can find enough far-apart elements of frequent type to embed
them. Once again, degree boundedness is crucial.

After these two steps, S1 has been constructed around all the singular points.
It only remains to complete S1 by adding edges between the remaining elements
(all of which are occurrences of frequent types), in such a way that elements of
a same frequent type end up forming a segment for S1, and such that S1 brings
together elements that were far apart in the initial structure G1. Once again,
the high number of occurrences of each frequent type allows us to do so.

Applying the same construction to G2, we end up with two structures (G1, S1)
and (G2, S2) that cannot be distinguished by FO-formulas of small (wrt. the
initial FO-similarity index between G1 and G2) quantifier rank, which concludes
the proof.

We have given a global overview of the construction process of S1; however,
there are technical difficulties to take care of, which are dealt with in Section 3.3.
For that, we need the definitions given in Section 3.2, which formalize the notion
of regularity of a neighborhood type in (G1, S1) and (G2, S2).

3.2 Fractal types and layering

To prove Theorem 3.1.1, we will start from two structures G1 and G2 that are
FO-similar, and construct successor relations S1 and S2 on their domains so that
the structures remain FO-similar when we take into account these additional
successor relations.

We want to construct Sε, for ε ∈ {1, 2}, in a way that makes tpk(Gε,Sε)(a) as
regular as possible for every a ∈ Gε, in order to ease the proof of FO-similarity
of (G1, S1) and (G2, S2).

Ideally, the Sε-successors and Sε-predecessors of any element should have the
same k-neighborhood type in Gε as this element. On top of that, there should
not be any overlap between the k-neighborhoods in Gε of elements that are
brought closer by Sε (this “independence” is captured by the layering property,
introduced in Definition 3.2.3).

If we now try to visualize what tpk(Gε,Sε)(a) would look like in those perfect

conditions, we realize that it reminds of a fractal (although the patterns - that is,
the neighborhood types - are obviously repeated only a finite number of times).

This is why we introduce in Definition 3.2.1 the fractal type [τ]k.

Aside from a small number of exceptions (namely, for neighborhood types
that don’t occur frequently enough, and around the transitions between frequent
types), every element of k-neighborhood type τ in Gε will have the fractal type
[τ]k in (Gε, Sε).

If N is a representative of a neighborhood type τ , cN is called the cen-
ter of N . Recall from Section 2.1.1 that c is the constant symbol added to
Σ when considering neighborhood types to pinpoint the central element of a
neighborhood.

62

3.2. Fractal types and layering

Definition 3.2.1 (Fractal types). We define by induction on k ∈ N, for every
k-neighborhood type τ over Σ, the k-neighborhood types [τ]k, [τ]+k and [τ]−k over
Σ ∪ {S}.

For k = 0, [τ]0 = [τ]+0 = [τ]−0 = τ (meaning that S is interpreted as the
empty relation in [τ]0, [τ]+0 and [τ]−0).

Starting from a representative N of center a of the isomorphism class τ , we
construct N ′ as follows.

For every x ∈ N at distance d ≤ k−1 from a, letM+
x andM−x be structures

of respective isomorphism type [χ]+k−d−1 and [χ]−k−d−1, where χ is the (k−d−1)-
neighborhood type of x in N , and of respective center x+ and x−.
N ′ is defined as the disjoint union of N and all the M+

x and the M−x , for
x 6= a, together with all the edges S(x, x+) and S(x−, x).

From there, N+ (resp. N−) is defined as the the disjoint union of N ′ and
M+

a (resp. M−a) together with the edge S(a, a+) (resp. S(a−, a)). Likewise,
N+/− is defined as the disjoint union of N ′, M+

a and M−a together with the
edges S(a, a+) and S(a−, a). In each case, a is taken as the center.

Now, [τ]k, [τ]+k and [τ]−k are defined respectively as the isomorphism type of
N+/−, N+ and N−.

An illustration of this definition is given in Figure 3.2.

a•

a+•

a−•

x•

x+•

τ

τ|k−1

τ|k−1

χ|k−d−1

d

Figure 3.2: Partial representation of N+/−, of type [τ]k. Here, χ is the (k− d)-
neighborhood type of the element x, at distance d from a in τ . The dashed
arrows represent S-edges.

Definition 3.2.2 (Path and cycles). A cycle of length l ≥ 2 in the Σ ∪ {S}-
structure A is a sequence (x0, . . . , xl−1) of distinct vertices of A such that for
every 0 ≤ i < l, xi and xi+1[l] appear in the same tuple of some relation of A (in
other words, it is a cycle in GA). If furthermore (xi, xi+1[l]) ∈ S for every i, then
we say that it is an S-cycle. If for some i, (xi, xi+1[l]) ∈ S or (xi+1[l], xi) ∈ S,
then we say that the cycle goes through an S-edge. A path is defined similarly,
without the requirement on xl−1 and x0, and its length is l − 1 instead of l.

Definition 3.2.3 (Layering). We say that an r-neighborhood N over Σ∪{S, c}
is layered if it doesn’t contain any cycle going through an S-edge. Every [τ]r
is obviously layered by construction.

We say that a structure over Σ ∪ {S} satisfies the property (Layer[r]) iff
all the r-neighborhoods of this structure are layered.

It turns out (Layer[r]) can be reformulated in a way that doesn’t involve
the r-neighborhoods of the structure:

63

Chapter 3. Successor-Invariant FO on Classes of Bounded Degree

Lemma 3.2.4. A structure G over Σ∪ {S} satisfies (Layer[r]) if and only if
it contains no cycle of length at most 2r + 1 going through an S-edge.

Proof. If G contains a cycle of length at most 2r + 1 going through an S-edge,
then the r-neighborhood of any vertex of this cycle contains the whole cycle,
thus (Layer[r]) doesn’t hold in G.

Conversely, suppose that there exists x ∈ G such that N r
G(x) contains a cycle

going through an S-edge, and let S(y, z) be such an edge.
For any u ∈ N r

G(x), we define the cone Cu at u as the set of elements
v ∈ N r

G(x) such that every shortest path from x to v in N r
G(x) goes through u.

There are two cases, depending on the relative position of y, z and their
cones:

• If z /∈ Cy and y /∈ Cz, let py→x (resp. px→z) be a path of minimal length
from y to x, not going through z (resp. from x to z, not going through y).

Let X be the set of nodes appearing both in py→x and px→z. X is not
empty, as x ∈ X, and y, z /∈ X. Let v ∈ X such that distG(x, v) is maximal
among the nodes of X, and let py→v (resp. pv→z) be the segment of py→x
(resp. of px→z) from y to v (resp. from v to z).

Then pv→z · (z, y) · py→v is a cycle going through an S-edge, and is of
length at most 2r + 1. This is illustrated in Figure 3.3.

x
•

y• z•

v•

Cy
Cz

S

Figure 3.3: Existence of a short cycle joining y, z and v.

• Otherwise, suppose without loss of generality that z ∈ Cy. This entails
that y /∈ Cz and distG(x, z) = d+ 1 where d := distG(x, y).

Let the initial cycle be (z, v1, · · · , vm−1, y), with the notation v0 = z and
vm = y.

Let i be the minimal integer such that vi /∈ Cz. Let px→vi be a shortest
path from x to vi: by definition, it doesn’t intersect Cz, and has length
at most r. Thus, there exists a path py→vi = py→x · px→vi from y to vi of
length at most r + d going only through nodes outside of Cz.

Since vi−1 ∈ Cz, there exists a path pvi−1→z from vi−1 to z of length at
most r − (d+ 1) going only through nodes of Cz.

Hence py→vi · (vi, vi−1) · pvi−1→z · (z, y) is a cycle going though an S-edge,
and its length is at most 2r + 1. This is depicted in Figure 3.4.

64

3.3. Proof of the collapse

y
•

z•

vi−1 • vi•
Cz

S

Figure 3.4: Existence of a short cycle joining y, z, vi−1 and vi.

This characterization of (Layer[r]) allows us to state the following lemma,
which is now straightforward. It gives a method to add an S-edge without
breaking the property (Layer[r]).

Lemma 3.2.5. Let r ∈ N, and (G, S) be a structure satisfying (Layer[r]).
If x, y ∈ G are such that dist(G,S)(x, y) > 2r + 1, then (Layer[r]) holds in

(G, S ∪ {(x, y)}) .

3.3 Proof of the collapse

We are now ready to prove Theorem 3.1.1. Recall the sketch of proof from
Section 3.1. We proceed in several steps:

Section 3.3.1 details the general framework of the proof. In Section 3.3.2,
we divide the neighborhood types into rare ones and frequent ones.

We then begin the construction of S1: Section 3.3.3 is dedicated to the con-
struction of S1 around the occurrences in G1 of rare types. Then, in Section 3.3.4,
we keep constructing S1 around the occurrences (two for each neighborhood
type) of frequent types that are designed to make, when the construction is
complete, the S1-junction between two frequent types.

At this point, S1 will be fully built around the singular points of G1. Sec-
tion 3.3.5 deals with the transfer of this partial successor relation S1 over to G2:
this will result in a partial S2, built in a similar way around the singular points
of G2.

In Section 3.3.6, S1 and S2 are completed independently, to cover G1 and
G2. These expansions do not need to be coordinated, since at this point, the
elements that are not already covered by S1 and S2 are occurrences of frequent
types and their resulting types will be regular (i.e. fractal) both in (G1, S1) and
(G2, S2).

We then give some simple examples in Section 3.3.7, before establishing prop-
erties of S1 and S2 in Section 3.3.8, and concluding the proof in Section 3.3.9.

3.3.1 General method

Let Cd be the class of Σ-structures of degree at most d. We show the following:
for every α ∈ N, there exists some f(α) ∈ N such that, given G1,G2 ∈ Cd, if

G1 ≡FO
f(α) G2 then G1 ≡

Succ-inv/Cd FO
α G2. For that, we will exhibit successor

relations S1 and S2 such that (G1, S1) ≡FO
α (G2, S2).

65

Chapter 3. Successor-Invariant FO on Classes of Bounded Degree

To prove that (G1, S1) ≡FO
α (G2, S2), we will use Proposition 2.3.4: there

exist integers r and t depending on Σ, α and d such that

[[(G1, S1)]]r =t [[(G2, S2)]]r → (G1, S1) ≡FO
α (G2, S2) .

We will construct S1 and S2 iteratively in a way that ensures, at each step,
that the property (Layer[r]) holds in (G1, S1) and in (G2, S2). (Layer[r]) is
obviously satisfied in (G1, ∅). Each time we add an S1-edge or an S2-edge, we
will make sure that we are in the right conditions to call upon Lemma 3.2.5, so
that (Layer[r]) is preserved.

Note 3.3.1. Note that the size of any r-neighborhood of degree at most d is

bounded by a function N of d and r; namely by N(d, r) := d · (d−1)r−1
d−2 + 1 if

d 6= 2, and by N(2, r) := 2r + 1 if d = 2.

3.3.2 Separation between rare and frequent types

Knowing the values of r and t as defined in Section 3.3.1, we are now able
to divide the r-neighborhood types of degree at most d (that is, occurring in
structures of degree at most d) into two categories: the rare types and the
frequent types. The intent is that the two structures have the same number
of occurrences of every rare type, and that frequent types have many occurrences
(wrt. the total number of occurrences of rare types) in both structures. This
“many occurrences wrt.” is formalized through a function g which is to be
specified later on.

More precisely,

Lemma 3.3.2. Given d, r ∈ N and an increasing function g : N → N, there
exists p ∈ N such that for every Σ-structures G1,G2 ∈ Cd satisfying G1 ≡FO

p G2,
we can divide the r-neighborhood types over Σ of degree at most d into rare types
and frequent types, such that

• every rare type has the same number of occurrences in G1 and in G2,

• both in G1 and in G2, every frequent type has at least g(β) occurrences,
where β is the number of occurrences of all the rare types in the structure,

• if there is no frequent type, then G1 and G2 are isomorphic.

Proof. Let χ1, · · · , χn be an enumeration of all the r-neighborhood types over
Σ of degree at most d, ordered in such a way that ∀i < j, |G1|χi ≤ |G1|χj . Note
that n is a function of d and r.

The classification of neighborhood types between rare ones and frequent ones
is done through Algorithm 2.

At the end of Algorithm 2, we call χ1, · · · , χi−1 the rare types, and χi, · · · , χn
the frequent ones.

Note that β indeed counts the total number of occurrences of rare types in
G1.

We now define the integers (ai)1≤i≤n as a1 := g(0) and

ai+1 := max{ai, g(iai)} .

66

3.3. Proof of the collapse

Algorithm 2 Separation between rare and frequent types

1: β ← 0
2: i← 1
3: while i ≤ n and |G1|χi < g(β) do
4: β ← β + |G1|χi
5: i++
6: end while

. If i ≤ n, χi is the frequent type with the least
occurrences in G1.
If i = n+ 1, all the neighborhood types are rare.

As g is monotone, it is easy to show by induction that for each rare type χj
with j < i, |G1|χj < aj .

As long as p is chosen large enough so that G1 ≡FO
p G2 entails [[G1]]r =an [[G2]]r,

we have by construction that every rare type has the same number of occurrences
(which is smaller that an) in G1 and in G2. Furthermore, in G1 as in G2, if β
denotes the total number of occurrences of rare types, every frequent type has
at least g(β) occurrences.

We just need to make sure that the two structures are isomorphic when all
the neighborhood types are rare. If this is the case, then |G1| = |G2| ≤ n(an−1).
Hence, as long as p ≥ n(an − 1), G1 ≡FO

p G2 implies G1 ' G2 when all the types
are rare.

Let τ0, · · · , τm−1 be the frequent types. From now on, we suppose that
m ≥ 1: there is nothing to do if m = 0, since G1 and G2 are isomorphic. Let β
be the total number of occurrences of rare types in G1.

3.3.3 Construction of S1 around elements of rare type

To begin with, let’s focus on G1, and start the construction of S1 around occur-
rences of rare types. Algorithm 3, on page 69, deals with this construction.

For a given occurrence x of some rare type, we choose as its S1-successor
and S1-predecessor two occurrences of type τ0 (the first frequent type), far
apart from one another and from x. The existence of those elements relies on
the bounded degree hypothesis. This is done on lines 8 and 11.

When line 14 is reached, every occurrence of rare type has an S1-predecessor
and an S1-successor of neighborhood type τ0.

It is not enough, however, only to deal with the occurrences of rare types.
We need to “protect” them up to distance r in (G1, S1). For that purpose, we
construct the subsets Rk of G1, for 0 ≤ k ≤ r. In the following, R≤k denotes⋃
0≤j≤k

Rj .

For each k, the subset Rk is constructed in order to be the set of elements
at distance exactly k in (G1, S1) from the set of occurrences of rare types. Until
we have reached k = r (that is, distance r from occurrences of rare types),
every element of Rk is given an S1-successor (line 21) and/or an S1-predecessor
(line 26) of its neighborhood type, if it doesn’t already have one. Once again,
those elements are required to be far (i.e. at distance greater than 2r+ 1) from
what already has been constructed.

67

Chapter 3. Successor-Invariant FO on Classes of Bounded Degree

Provided that g is large enough, it is always possible to find x+ and x−

on lines 8, 11, 21 and 26. Indeed, all the neighborhood types considered are
frequent ones, and the size of the (2r + 1)-neighborhood of R≤k+1 is bounded
by a function of d, r and β (the total number of occurrences of rare types in
G1). More precisely, at any point of the construction, (G1, S1) has degree at
most d+ 2. Hence, the (2r + 1)-neighborhood of Rr has size at most

βN(d+ 2, 3r + 1)

(recall the definition of N from Note 3.3.1), and it is enough to make sure that

g(β) ≥ βN(d+ 2, 3r + 1) + 1 .

3.3.4 Construction of S1 around the junctions between two
frequent types

Recall that there is a second kind of singular elements: those which will be at
the junction between two successive frequent types. That is, elements of neigh-
borhood type τi that will, in the final structure (G1, S1), have an S1-successor
of neighborhood type τi+1[m], or an S1-predecessor of type τi−1[m].

Those junction elements need to be treated in a similar way as the occur-
rences of rare types in Section 3.3.3. This construction is done throughout
Algorithm 4 on page 70.

The idea of Algorithm 4 is very similar to that of Algorithm 3. We start
by picking two elements x+

i and x−i for every frequent type τi (for loop line 2),
that are far from each other and from the previous construction.

Then we build m S1-edges between those elements on line 9: these edges are
intended to be at the junction between the frequent types in the final structure.

The set P0 of those 2m elements will have the same role as the set R0 of
occurrences of rare types for Algorithm 3: we build S1-edges at depth r around
it. This is done through the subsets Pk of G1, for 0 ≤ k ≤ r, Pk being the set of
elements at distance k from P0 in (G1, S1). Once again, P≤k denotes

⋃
0≤j≤k

Pj .

For the same reason as for Algorithm 3, it is always possible to find elements
x+ and x− on lines 17 and 22.

Note that if m = 1, there is obviously no transition elements: we simply
construct an S1-edge between x+

0 and x−0 .

3.3.5 Carrying S1 over to G2
In Sections 3.3.3 and 3.3.4, S1 has been constructed around the singular points
of G1, i.e. occurrences of rare types and elements that are to make the junction
between two S1-segments of frequent types.

Before we extend S1 to the remaining elements (all of them being occurrences
of frequent types) of G1, we carry it over to G2. This transfer is possible under
the starting hypothesis that G1 and G2 are FO-similar.

Let {
A1 := R≤r ∪ P≤r
B := {x ∈ G1 : dist(G1,S1)(x,A1) ≤ r}

68

3.3. Proof of the collapse

Algorithm 3 Construction of S1 around elements of rare type

1: S1 ← ∅
2: R0 ← {x ∈ G1 : tprG1(x) is rare}
3: R1, · · · , Rr ← ∅
4: for all x ∈ R0 do
5: for all neighbor y /∈ R≤1 of x in G1 do
6: R1 ← R1 ∪ {y}
7: end for
8: find x+ such that

tprG1(x+) = τ0 and

dist(G1,S1)(x
+, R≤1) > 2r + 1

. We pick a node at distance greater than
2r + 1 in compliance with Lemma 3.2.5,
so that neighborhoods stay layered.
Recall that τ0 is the first frequent type.

9: R1 ← R1 ∪ {x+}
10: S1 ← S1 ∪ {(x, x+)}
11: find x− such that

tprG1(x−) = τ0 and

dist(G1,S1)(x
−, R≤1) > 2r + 1

12: R1 ← R1 ∪ {x−}
13: S1 ← S1 ∪ {(x−, x)}
14: end for

. At this point, every element of rare
type has an S1-predecessor and an S1-
successor of neighborhood type τ0

15: for k from 1 to r − 1 do
16: for all x ∈ Rk do . tpkG1(x) is a frequent type
17: for all neighbor y /∈ R≤k+1 of x in G1 do
18: Rk+1 ← Rk+1 ∪ {y}
19: end for
20: if x doesn’t have a successor by S1 then
21: find x+ such that

tprG1(x+) = tprG1(x) and

dist(G1,S1)(x
+, R≤k+1) > 2r + 1

22: Rk+1 ← Rk+1 ∪ {x+}
23: S1 ← S1 ∪ {(x, x+)}
24: end if
25: if x doesn’t have a predecessor by S1 then
26: find x− such that

tprG1(x−) = tprG1(x) and

dist(G1,S1)(x
−, R≤k+1) > 2r + 1

27: Rk+1 ← Rk+1 ∪ {x−}
28: S1 ← S1 ∪ {(x−, x)}
29: end if
30: end for
31: end for

If we let tdr be the number of r-neighborhood types of degree at most d over
Σ, we must have that m ≤ n thus |A1| can be bounded by

(β + 2tdr)N(d+ 2, r) .

69

Chapter 3. Successor-Invariant FO on Classes of Bounded Degree

Algorithm 4 Construction of S1 around the junctions between two frequent
types

1: P0, · · · , Pr ← ∅
2: for i from 0 to m− 1 do
3: find x+i such that

tprG1(x+i) = τi and

dist(G1,S1)(x
+
i , R≤r ∪ P0) > 2r + 1

4: P0 ← P0 ∪ {x+i }
5: find x−i such that

tprG1(x−i) = τi and

dist(G1,S1)(x
−
i , R≤r ∪ P0) > 2r + 1

6: P0 ← P0 ∪ {x−i }
7: end for
8: for i from 0 to m− 1 do
9: S1 ← S1 ∪ {(x−i , x

+
i+1[m])}

10: end for
11: for k from 0 to r − 1 do
12: for all x ∈ Pk do
13: for all neighbor y /∈ P≤k+1 of x in G1 do
14: Pk+1 ← Pk+1 ∪ {y}
15: end for
16: if x doesn’t have a successor by S1 then
17: find x+ such that

tprG1(x+) = tprG1(x) and

dist(G1,S1)(x
+, R≤r ∪ P≤k+1) > 2r + 1

18: Pk+1 ← Pk+1 ∪ {x+}
19: S1 ← S1 ∪ {(x, x+)}
20: end if
21: if x doesn’t have a predecessor by S1 then
22: find x− such that

tprG1(x−) = tprG1(x) and

dist(G1,S1)(x
−, R≤r ∪ P≤k+1) > 2r + 1

23: Pk+1 ← Pk+1 ∪ {x−}
24: S1 ← S1 ∪ {(x−, x)}
25: end if
26: end for
27: end for

Similarly, the size of B can be bounded by

(β + 2tdr)N(d+ 2, 2r) ,

which is a function of β, r and d. Hence as long as f(α) is larger than that
number, the Duplicator has a winning strategy in the Ehrenfeucht-Fräıssé game
between G1 and G2 in which the Spoiler chooses every element of B. Let h :
B → G2 be the function resulting from such a strategy.

h defines an isomorphism from G1|B to G2|Im(h). Let A2 := h(A1). By
taking f(α) one higher than required, to make sure that Im(h) covers the r-
neighborhood in G2 of every element of A2, we have that for every x ∈ A1,
tprG2(h(x)) = tprG1(x).

We set S2 := {(h(x), h(y)) : (x, y) ∈ S1}. h now defines an isomorphism from
(G1, S1)|B to (G2, S2)|Im(h), and for every x ∈ A1, tpr(G2,S2)(h(x)) = tpr(G1,S1)(x).

70

3.3. Proof of the collapse

3.3.6 Completion of S1 and S2

Now that S1 and S2 are constructed around all the singular points both in G1

and G2, it remains to extend their construction to all the other elements of the
structures. Recall that all the remaining elements are occurrences of frequent
types.

From (Gε, Sε) (ε ∈ {1, 2}) at any point in the construction, let’s define the
partial function S∗ε : Gε → Gε that maps x ∈ Gε to the (unique) y that
is Sε-reachable (while taking the orientation into account) from x and that
doesn’t have an Sε-successor. This function is defined on every element that
doesn’t belong to an Sε-cycle (and in particular, on every element without an
Sε-predecessor).

Likewise, we define S−∗ε by reversing the arrows of Sε.
At this point, for every x /∈ A1, S∗1 (x) = S−∗1 (x) = x, and for every x /∈ A2,

S∗2 (x) = S−∗2 (x) = x.

We now run Algorithm 5, on page 72. We first treat G1, and then apply a
similar method to G2, replacing x+

i and x−i by h(x+
i) and h(x−i). The idea is,

for every frequent type τi, to insert all its remaining occurrences between (in
the sense of S1) x+

i and x−i .
The first approach (the loop at line 2) is greedy: while constructing Sε on

nodes of neighborhood type τi, we choose as the successor of the current node
any occurrence of τi that is at distance greater than 2r + 1 from the current
node s and the closing node of neighborhood type τi, S

−∗
ε (x−i). This, together

with Lemma 3.2.5, ensures that (Layer[r]) holds after every addition. The
conditions line 11 also ensure that the final edge addition, line 15, doesn’t break
(Layer[r]).

Once we cannot apply this greedy approach anymore, we know that only a
small number (which can be bounded by 2N(d + 2, 2r + 1)) of nodes of neigh-
borhood type τi remain without S1-predecessor. The loop at line 17 considers
one such node x at a time. As long as g is large enough, we have constructed
S1 around enough elements of type τi in the greedy approach to ensure the ex-
istence of some S1(y, z), with y, z of type τi and at distance greater than 2r+ 1
from x; x is inserted between y and z (line 20). For that, it is enough to have
constructed at least

2N(d+ 2, 2r + 1) + 1

S1-edges in the greedy phase. This is the case in particular when there are at
least

4N(d+ 2, 2r + 1) + 1

elements of neighborhood type τi without S1-predecessor at the beginning of
Algorithm 5, which can be ensured by having

g(β) ≥ |A1|+ 4N(d+ 2, 2r + 1) + 1 .

This holds in particular when

g(β) ≥ (β + 2tdr)N(d+ 2, r) + 4N(d+ 2, 2r + 1) + 1 .

We will prove in Lemma 3.3.6 that all these insertions preserve (Layer[r]).

71

Chapter 3. Successor-Invariant FO on Classes of Bounded Degree

Algorithm 5 Completion of Sε
1: for ε from 1 to 2 do
2: for i from 0 to m− 1 do
3: if ε = 1 then
4: s← S∗1 (x+i)
5: t← S−∗1 (x−i)
6: else
7: s← S∗2 (h(x+i))
8: t← S−∗2 (h(x−i))
9: end if

10: while such an x exists do
11: find x with no Sε-predecessor, such that tprGε(x) = τi,

dist(Gε,Sε)(s, x) > 2r + 1,
dist(Gε,Sε)(x, t) > 2r + 1 and
dist(Gε,Sε)(S

∗
ε (x), t) > 2r + 1

12: Sε ← Sε ∪ {(s, x)}
13: s← S∗ε (x)
14: end while

. At this point, only a bounded number of
elements of type τi are left without an
Sε-predecessor

15: Sε ← Sε ∪ {(s, t)}
16: end for
17: for i from 0 to m− 1 do
18: for all x without Sε-predecessor, s.t. tprGε(x) = τi do
19: find y, z /∈ Aε such that

tprGε(y) = tprGε(z) = τi,
(y, z) ∈ Sε,
dist(Gε,Sε)(y, x) > 2r + 1 and
dist(Gε,Sε)(S

∗
ε (x), z) > 2r + 1

20: Sε ← Sε \ {(y, z)} ∪ {(y, x), (S∗ε (x), z)}
21: end for
22: end for
23: end for

3.3.7 Examples of construction

Before we give the proof of correctness of these algorithms, let us see how they
apply in some simple cases.

Example 3.3.3. Suppose that there are no occurrences of rare types, and only
one frequent type τ0, and assume r = 2.

In this case, Algorithm 3 is irrelevant, and all Algorithm 4 does is pick x−0
and x+

0 far from each other, and start building S1 around those nodes in order
to construct their complete r-neighborhood in (G1, S1). In order to make the
figure more readable, let us consider that x−0 and x+

1 have only one neighbor. In
Figure 3.5, the plain lines represent edges in G1, and the dashed arrows represent
S1.

We now apply Algorithm 5. The first step is to add elements between (in the
sense of S1) S∗1 (x+

0) and S−∗1 (x−0) in order to join them, in a greedy fashion.
Once this is done, there only remain a few elements that haven’t been assigned
an S1-predecessor. This is depicted in Figure 3.6.

72

3.3. Proof of the collapse

x−0

•
x+0

•
• •

•

•

•

•

•

•

• •

Figure 3.5: After Algorithm 4, with one frequent type.

x−0 x+0

x S∗1 (x)

• • •
•
•
•

••••
•
•
•

•
•

• • •

•

•

Figure 3.6: After the greedy part of Algorithm 5, with one frequent type.

Now we consider one by one each of the elements that don’t have an S1-
predecessor: let’s start with x in Figure 3.6. Our goal is to insert it in the
S1-cycle while still respecting (Layer[r]). For that, we find two successive
elements y, z of the cycle that are far from x and S∗1 (x), and we insert x between
them, as shown in Figure 3.7.

x−0 x+0

y
z

x S∗1 (x)

• • •
•
•
•

••••
•
•
•

•
•

• • •

•

•

Figure 3.7: Inserting x in the S1-cycle, as in the second part of Algorithm 5,
with one frequent type.

We treat all the elements without an S1-predecessor in the same way, until
S1 is fully built.

Example 3.3.4. Suppose now that there are two frequent types τ0 and τ1, and
still no occurrences of rare types.

The procedure is very similar: in Algorithm 4, we build the r-neighborhood
in (G1, S1) of the four nodes x−0 , x+

0 , x−1 and x+
1 .

After the greedy part of Algorithm 5, S1 looks like in Figure 3.8, where
occurrences of τ0 are represented as • and occurrences of τ1 as ◦. The remaining
of Algorithm 5 is as unchanged.

Note that if there existed some occurrences of rare types, they would be em-
bedded in the τ0 part of the S1-cycle.

73

Chapter 3. Successor-Invariant FO on Classes of Bounded Degree

x−0 x+1

x−1x+0

x S∗1 (x)

◦ ◦
◦
◦
◦

◦◦

◦

••
•
•
•

•

•

• • •

•

•

Figure 3.8: After the greedy part of Algorithm 5, with two frequent types.

3.3.8 Properties of S1 and S2

We are now ready to show that, after the successive run of Algorithms 3, 4 and
5,

• S1 and S2 are indeed successor relations (Lemma 3.3.5),

• (G1, S1) and (G2, S2) satisfy (Layer[r]) (Lemma 3.3.6),

• any singular element (around a rare or a junction element) of (G1, S1) and
its corresponding element via h in (G2, S2) have the same r-neighborhood
type (Lemma 3.3.9), while any other element in both structures has a
regular (i.e. fractal) r-neighborhood type (Lemma 3.3.8).

These properties will allow us to prove in Section 3.3.9 that (G1, S1) and
(G2, S2) have the same number of occurrences of every r-neighborhood type, up
to a threshold t.

Lemma 3.3.5. S1 (resp. S2) is a successor relation on G1 (resp. G2).

Proof. This result is rather transparent, but a rigorous proof requires the usage
of a somewhat cumbersome invariant.

Let us focus on G1; the proof is the same for G2, replacing every x+
i and x−i

with h(x+
i) and h(x−i).

Let a ∈ G1 be defined as S−∗1 (x−m−1) at the beginning of Algorithm 5. By
construction, tprG(a) = τm−1 and a has no S1-predecessor as of now.

We show that at any point before line 15 of the loop iteration i = m− 1 of
Algorithm 5,

(i). S−∗1 (s) = a

(ii). S−∗1 (x−m−1) = a

(iii). let y, z /∈ A1 such that (y, z) ∈ S1 and tprG1(y) = tprG1(z) = τj for some j;

then S−∗1 (y) = a

(iv). for every i, (x−i , x
+
i+1[m]) ∈ S1

(v). there is no S1-cycle

(vi). for every j > i, tprG1(S−∗1 (x−j)) = τj .

74

3.3. Proof of the collapse

This is obviously satisfied at the beginning of Algorithm 5: there are not
yet such y, z as in (iii), and s = S∗1 (x+

0) is S1-reachable from x−m−1 (since

(x−m+1, x
+
0) ∈ S1) hence (i) holds.

Line 4 preserves the invariant. Indeed, the new value of s is S1-reachable
from its previous value (this is guaranteed by (iv)), which means that they have
the same image through S−∗1 , namely a.

Let’s prove that line 12 preserves the invariant. (i) and (ii) still hold since
x 6= a: indeed, for i < m − 1, x and a don’t share the same neighborhood
type, while for i = m − 1, a = t (because of (ii)) and the distance condition
prohibits x = a. (iii) still holds, as the only new possibility for such a couple
(y, z) is (s, x), which is such that S−∗1 (y) = a (because of (i)). (iv) obviously
holds, as does (v), since the only way for an S1-cycle to have been created is if
x = S−∗1 (s), that is x = a. We have seen that this is absurd. (vi) is satisfied,
as the only way for it to fail is for x to be some S−∗1 (x−j), for j > i, which is
impossible due to type requirements.

Now, let’s move to line 13. Only (i) needs verification, and the argument is
the same as for line 4.

Finally, let’s look at line 15, for i < m − 1. t 6= a since their neighborhood
types are different, hence (i), (ii) and (v) still hold. (iii) still holds, as the only
new possibility for such a couple (y, z) is (s, t), which is such that S−∗1 (y) = a
because of (i) (actually, (s, t) doesn’t even fit the condition, since t ∈ A1). (iv)
is still satisfied. (vi) holds, as the only way for it to fail is for t to be some
S−∗1 (x−j), for j > i, which is impossible due to type requirements.

We now prove that from line 17 until the end of Algorithm 5, there is exactly
one S1-cycle, which contains every y, z /∈ A1 such that (y, z) ∈ S1 and tprG1(y) =
tprG1(z) = τj for some j.

This is true after line 15 of the loop iteration m− 1, which creates the first
S1-cycle, as (i) and (ii) ensure t = a = S−∗1 (s). (iii) guarantees that this newly
created S1-cycle contains all the couple (y, z) satisfying the condition.

It remains to show that line 20 preserves this property: by hypothesis, y
and z belong to the S1-cycle. After line 20, there is still exactly one S1-cycle,
which corresponds to the previous one where the S1-edge has been replaced by
the S1-segment [x, S∗1 (x)]. The only S1-edges that have been added belong to
the S1-cycle, hence the second part of the property still holds.

In the end, every element of G1 has a predecessor by S1, hence S1 is a
permutation of G1. We’ve shown that it has a single orbit.

Lemma 3.3.6. (Layer[r]) holds in (Gε, Sε), for ε ∈ {1, 2}.

Proof. This property is guaranteed by the distance conditions of the form

dist(Gε,Sε)(., .) > 2r + 1

imposed throughout Algorithms 3, 4 and 5, and by Lemma 3.2.5.

One can very easily verify that (Layer[r]) is guaranteed by Lemma 3.2.5
to hold in (Gε, Sε) prior to the run of Algorithm 5.

We focus on Algorithm 5, and we use Lemma 3.2.5 to prove that (Layer[r])
remains valid in (Gε, Sε) throughout its run. There are three edge additions we
have to prove correct:

75

Chapter 3. Successor-Invariant FO on Classes of Bounded Degree

• For the edge addition of line 12, this follows directly from Lemma 3.2.5.

• For the edge addition of line 15, we show that the invariant

dist(Gε,Sε)(s, t) > 2r + 1

is satisfied at the beginning and at the end of the while line 10. This
invariant, together with Lemma 3.2.5, will be enough to conclude.

The invariant holds before the first execution of the while loop (except for
m = 1, where it only bootstraps after two executions of the loop).

Working towards a contradiction, suppose that the invariant is broken
during an execution of the loop. We use the pre notations. There must
exists a path from S∗ε (x) (which is to become the new value of s at the
end of the loop) to t in (Gε, Sε∪{(s, x)}) of length at most 2r+1; consider
a shortest one. As is cannot be valid in (Gε, Sε) by choice of x, it must go
through the newly added edge (s, x). This means that in (Gε, Sε), either
there exist paths of length at most 2r + 1 from S∗ε (x) to s and from x
to t, or paths of length at most 2r + 1 from S∗ε (x) to x and from s to t.
The former is absurd considering the way x was chosen, and the latter
contradicts the previous invariant.

• Let’s prove that the addition of the two Sε-edges of line 20 doesn’t break
(Layer[r]). By choice of y, we know that dist(Gε,Sε)(y, x) > 2r + 1. A
fortiori, we must have dist(Gε,Sε\{(y,z)})(y, x) > 2r + 1, and Lemma 3.2.5
ensures that (Gε, Sε \{(y, z)}∪{(y, x)}) satisfies the property (Layer[r]).

Now, to the second addition: let’s prove that, at the beginning of line 20,
dist(Gε,Sε\{(y,z)}∪{(y,x)})(S

∗
ε (x), z) > 2r + 1. We are then able to conclude

with Lemma 3.2.5.

Suppose it’s not the case and consider a shortest path from S∗ε (x) to z,
which must be of length at most 2r + 1. This path cannot be valid in
(Gε, Sε), thus it has to go through the new edge (y, x). Since there cannot
exist a path of length at most 2r from S∗ε (x) to y in (Gε, Sε) (as this would
contradict dist(Gε,Sε)(S

∗
ε (x), z) > 2r + 1), it has to borrow the edge from

x to y.

Then in (Gε, Sε \ {(y, z)}), there is a path of length at most 2r from y to
z, which contradicts (Layer[r]) in (Gε, Sε).

The following lemma states that the only time Sε joins two nodes that have
different r-neighborhood types in Gε is when one of them is an occurrence of a
rare type (in which case its Sε-predecessor and Sε-successor are of neighborhood
type τ0) or when they are the elements which make the transition between two
frequent types (that is, one is x−i and the other is x+

i+1[m], for some i < m).

Lemma 3.3.7. ∀x, y ∈ G1 such that (x, y) ∈ S1 and (x /∈ R0 and y /∈ R0) and
(x /∈ P0 or y /∈ P0), then tprG1(x) = tprG1(y) .
∀x, y ∈ G2 such that (x, y) ∈ S2 and (x /∈ h(R0) and y /∈ h(R0)) and

(x /∈ h(P0) or y /∈ h(P0)), then tprG2(x) = tprG2(y) .

76

3.3. Proof of the collapse

Proof. The property clearly holds at the end of Algorithm 3 and Algorithm 4.
For any i from 0 to m−1, the only S1-edges (resp. S2-edges) that are added

during the i-th loop are between two nodes of neighborhood type τi.

Recall the discussion at the beginning of Section 3.2. We now prove that,
as long as an element is far from any occurrence of a rare type and from the
elements that make the transition between two frequent types, its neighborhood
type in (Gε, Sε) is the fractal of its neighborhood type in Gε.

Lemma 3.3.8. For ε ∈ {1, 2} and for every 0 ≤ k ≤ r and x /∈ R≤k ∪ P≤k (if
ε = 1) or x /∈ h(R≤k ∪ P≤k) (if ε = 2),

tpk(Gε,Sε)(x) = [tpkGε(x)]k .

Proof. We prove the result by induction on k. For k = 0, there is nothing to do
but note that no edge Sε(x, x) has been created.

Suppose that we’ve proven the result for some k < r, and let x /∈ R≤k+1 ∪
P≤k+1, or x /∈ h(R≤k+1 ∪ P≤k+1) .

Let y be such that distGε(x, y) = d, for some 1 ≤ d ≤ k + 1. By construc-
tion of the Ri and Pi, and of h, we have that y /∈ R≤k+1−d ∪ P≤k+1−d, or
y /∈ h(R≤k+1−d ∪ P≤k+1−d) (this is easily shown by induction on d). Hence,
tpk+1−d

(Gε,Sε)(y) = [tpk+1−d
Gε (y)]k+1−d .

Because Lemma 3.3.6 ensures that the (k+ 1)-neighborhood of x in (Gε, Sε)
is layered, it only remains to show that the Sε-successor x+ and predecessor x−

of x are such that tpk(Gε,Sε)(x
+) = tpk(Gε,Sε)(x

−) = [tpkGε(x)]k. Let’s show this

for x+ .
Lemma 3.3.7 ensures tprGε(x

+) = tprGε(x). It only remains to note that
x+ /∈ R≤k ∪ P≤k, or x+ /∈ h(R≤k ∪ P≤k), and the induction hypothesis allows
us to conclude.

When we first defined h, it preserved r-neighborhood types by construction.
The last step before we are able to conclude the proof of Theorem 3.1.1 is to
make sure that h still preserves r-neighborhood types, taking into account the
Sε-edges added during the run of Algorithm 5.

Lemma 3.3.9. ∀x ∈ A1, tp
r
(G2,S2)(h(x)) = tpr(G1,S1)(x) .

Proof. We prove by induction on 0 ≤ k ≤ r that

∀x ∈ A1, tp
k
(G2,S2)(h(x)) = tpk(G1,S1)(x) .

There is nothing to prove for k = 0.
Moving from k to k + 1, let x ∈ A1 and let y be such that distG1(x, y) = d,

for some 1 ≤ d ≤ k + 1. Note that y ∈ B, hence it has an image by h.
If y ∈ A1, the induction hypothesis allows us to conclude that

tpk+1−d
(G2,S2)(h(y)) = tpk+1−d

(G1,S1)(y) .

Else, Lemma 3.3.8 ensures that:

tpr(G2,S2)(h(y)) = [tprG2(h(y))]r = [tprG1(y)]r = tpr(G1,S1)(y) .

In both cases, tpk+1−d
(G2,S2)(h(y)) = tpk+1−d

(G1,S1)(y) .

77

Chapter 3. Successor-Invariant FO on Classes of Bounded Degree

Because of (Layer[r]), it only remains to show that the Sε-successors of x
and h(x), as well as their Sε-predecessors, have the same k-neighborhood type in
(Gε, Sε). Let’s prove this for the successors, respectively named x+ and h(x)+.

If x+ ∈ A1, then by construction h(x)+ = h(x+), and the induction hypoth-
esis allows us to conclude.

Otherwise, neither x+ nor h(x)+ belongs to A1. Under this hypothesis,
Lemma 3.3.7 ensures that

tprG2(h(x)+) = tprG2(h(x)) = tprG1(x) = tprG1(x+) .

Now, Lemma 3.3.8 ensures that

tpr(G2,S2)(h(x)+) = [tprG2(h(x)+)]r

= [tprG1(x+)]r

= tpr(G1,S1)(x
+) .

3.3.9 Conclusion of the proof

We are now able to conclude the proof. Recall that we want to prove that

[[(G1, S1)]]r =t [[(G2, S2)]]r .

Let τ be an r-neighborhood type over Σ ∪ {S} which occurs in (G1, S1).
There are two cases to consider:

• if τ occurs outside of A1, then Lemma 3.3.8 ensures that τ = [χ]r for some
frequent r-neighborhood type χ. We can choose g so that χ is guaranteed
to have at least t occurrences in G1 outside of A1, and in G2 outside of A2.
This is ensured as long as

g(β) ≥ |A1|+ t ,

and in particular when

g(β) ≥ (β + 2tdr)N(d+ 2, r) + t .

Lemma 3.3.8 then ensures that τ occurs at least t times both in (G1, S1)
and in (G2, S2).

• if τ occurs only in A1, then it cannot occur in (G2, S2) outside of A2 (for
the same reasons as above).

Lemma 3.3.9 guarantees that τ has the same number of occurrences in A1

and in A2, hence in (G1, S1) and in (G2, S2).

Recall that r and t where chosen accordingly to 2.3.4 for Σ and α: we have
that [[(G1, S1)]]r =t [[(G2, S2)]]r entails

(G1, S1) ≡FO
α (G2, S2) .

78

3.4. Conclusion

We have thus shown that for every α ∈ N, there exists some f(α) ∈ N such
that for any Σ-structures G1,G2 of degree at most d,

G1 ≡FO
f(α) G2 → G1 ≡

Succ-inv/Cd FO
α G2 .

This, together with Proposition 2.3.2, proves that

Succ-inv/Cd FO ⊆ FO on Cd .

3.4 Conclusion

We have shown in this section that Succ-inv FO collapses to FO on any class of
bounded degree, as well as on classes of graphs which are FO-interpretable in
graph classes of bounded degree, namely near-uniform graph classes as defined
in [19].

Our proof gives a constructive translation from Succ-inv FO to FO on classes
of bounded degree. The quantifier rank of the translated sentence is triple-
exponential in the quantifier rank of the original formula. As seen in Propo-
sition 2.2.10, the blowup is at least exponential, but we do not know if an
exponential translation is at all possible.

Similar considerations arise when we take into account the length of the
sentences instead of their quantifier rank - in this regard, our construction is
even non-elementary, and all we know is that the blowup is at least exponential.

An interesting task would be to improve the succinctness of the translation,
or to give tighter lower bounds on such constructions.

Apart from these considerations, there are two main directions in which one
could look to extend the present result. One possibility would be to keep looking
at classes of bounded degree while climbing up in the ladder of expressivity, and
ask whether < -inv FO collapses to FO as well on these classes of structures.
New techniques would be needed, as contrary to what was the case with a
successor, the addition of an order doesn’t preserve the bounded degree property.
Furthermore, even if < -inv FO = FO in this setting, it is not clear whether
such orders can be directly constructed. It may be necessary to construct, as in
[5], a chain of intermediate structures and orders.

Alternatively, we could change the setting, and study the expressivity of
Succ-inv FO on other sparse classes of structures, e.g. on classes of bounded
treewidth. If showing the collapse of Succ-inv FO to FO on these classes
proved itself to be out of reach, a possibility would be to aim at proving that
Succ-inv FO is Hanf local (which would be stronger than the known Gaifman
locality). In that case, the starting hypothesis on the structures G1 and G2

would be stronger, as the existence of a k-neighborhood type-preserving bijec-
tion between the two structures would be assumed.

These tasks are much harder without any bound on the degree, which was
what guaranteed that we could find elements of a given frequent type far from
each other.

79

Chapter 3. Successor-Invariant FO on Classes of Bounded Degree

80

Chapter 4

Order-Invariant FO on
Hollow Trees

After proving the collapse of Succ-inv FO to FO on classes of bounded degree
in Chapter 3, we turn to < -inv FO.

Contrary to a successor relation, adding an order to a structure brings all
the elements close together, as the Gaifman graph of an ordered structure has
diameter 1. With this in mind, using a method similar to that of Chapter 3
(i.e. what we called the direct method in Section 2.6) to prove a collapse of
< -inv FO to FO on any non-trivial class of structures seems ambitious.

Such a task seems difficult, if at all possible, already for dipaths. Recall from
Proposition 2.4.8 that < -inv FO = FO on the class of dipaths. However, it
is not clear whether, given two FO-similar dipaths, there exist orders on those
dipaths that preserve FO-similarity.

It thus seems that in order to prove collapses of < -inv FO to FO, the
chaining method from Section 2.6.3 is the most appropriate. For instance, it
was the strategy used in [4] and [5] to prove that < -inv FO = FO on trees.

In this chapter, we prove the collapse of < -inv FO to FO on hollow trees.
We believe that this result is a step towards proving the collapse on classes of
pathwidth 2, as will be explained in Section 4.1.2. As a corollary, we get that
< -inv FO = FO on paths.

We start by defining hollow trees in Section 4.1, and we explain in which
way they relate to graphs of pathwidth 2. In Section 4.2, we state the main
result of this chapter, as well as some corollaries.

Sections 4.3 through 4.6 detail the techniques used in the proof of this result,
which is given in Section 4.7.

This chapter, which is a slightly altered version of [22], results from a joint
work with Luc Segoufin.

Chapter 4. Order-Invariant FO on Hollow Trees

4.1 Definitions

4.1.1 General notations

In the course of this chapter, we will need the following definitions.

For k ∈ N, we define the k-enrichment Ek(A) of a Σ-structure A as A itself
where each element has been recolored with its k-neighborhood type. Ek(A) is
a structure over the vocabulary Σ augmented with a unary predicate for every
k-neighborhood type over Σ: there is a finite number of them as long as we
consider classes of structures of bounded degree.

Recall that, for any k-neighborhood type τ , we denote by |A|τ the number
of elements of A whose k-neighborhood type is τ .

In this chapter, most of our structures will be enriched by recoloring each el-
ement by its k-neighborhood type, hence we will essentially use 0-neighborhood
types, which capture k-neighborhood types in the original structure. In view
of this we denote by [[A]] the function τ 7→ |A|τ whose domain is the set of
0-neighborhood types over the considered vocabulary. Note that [[Ek(A)]] is the
function τ 7→ |A|τ whose domain is the set of all k-neighborhood types over Σ.
In particular, [[Ek(A)]] = [[Ek(B)]] iff [[A]]k =∞ [[B]]k.

Let d,D ∈ N, and f, g be functions from a same domain to N; in practice, f
and g will be [[Ek(A)]] for some k and some structure A. We say that f ≤Dd g if,
for every x in the domain,

• if f(x) ≤ d, then f(x) = g(x)

• if f(x) 6= g(x), then g(x) ≥ f(x) +D .

By f < g, we mean that ∀x, (f(x) < g(x) or f(x) = g(x) = 0) .

Let A be a structure over a vocabulary containing the binary relation symbol
R. We say that U ⊆ A is R-stable if

∀x ∈ U,∀y ∈ A, (R(x, y) ∨R(y, x))→ y ∈ U .

4.1.2 Hollow trees

Barát, Hajnal, Lin and Yang [2] proved that any graph of pathwidth at most
2 can be decomposed in a series of what they called tracks. Thus, a first step
towards proving the collapse of < -inv FO to FO on classes of pathwidth at
most 2 is to show that < -inv FO = FO on the class of tracks.

A typical example of track of degree 3 is depicted in Figure 4.1, where the
dashed arcs are colored paths, and all the chords are single edges. Each chord
could actually be a single edge or the juxtaposition of two edges with a single
vertex in the middle; however Proposition 2.3.6 allows us to ignore that case,
since there exists a simple bi-FO-interpretation that gets rid of the middle
vertices by coloring the chords according to whether they are simple or double
edges.

We show in Figure 4.2 how such a track can be turned into a structure
resembling a tree. We add color and number identifiers to clarify the translation.

82

4.1. Definitions

•

•
•

•

•

•
•

•

Figure 4.1: Example of track of degree 3.

Note that those two transformations, as well as their inverse, are definable
as FO-interpretations as soon as the square edge is part of the track. Hence,
Note 2.3.7 guarantees that the collapse of < -inv FO to FO on one of those
classes of structures amounts to the collapse on the others.

This remark motivates the definition of hollow trees. Informally, hollow
trees resemble the aforementioned tree-like structure with the key difference
that the vertical edges (i.e. the parent-child edges) and the horizontal one
are distinguishable. In return for that specification, we do not restrict the
complexity of the underlying tree, while the tree-like structures resulting from
the transformation of a track are very constrained. In particular, the class of
hollow trees has unbounded pathwidth.

Let’s now formally define hollow trees.

An unranked ordered tree is a tree with a successor relation among the chil-
dren of any node. We see unranked ordered trees as structures over the signature
composed of two binary relation symbols S and S′, where S is interpreted as
the parent-child relation, and S′ as the horizontal successor. A set of nodes that
share the same parent is called a siblinghood.

We define a mapping H from the set of unranked ordered trees to structures
over two binary predicates S and E. Given an unranked ordered tree T , H(T)
is defined as follows:

• its domain is T ,

• H(T) |= S(x, y) iff T |= S(x, y) and y is either the first or the last of its
siblings,

• E is interpreted as the symmetrical closure of S′ .

The image of H is the set of hollow trees, denoted H. If P = H(T) then T is
the underlying tree structure of P.

In other words, within a hollow tree, only the two children at the endpoints
of a siblinghood know their parent. Notice that we do not distinguish between
the first and last child, nor do we between the left and right sibling. This makes
the model more general, as explained in Section 4.2.2.

An example of hollow tree is given in Figure 4.3.

83

Chapter 4. Order-Invariant FO on Hollow Trees

1

2
3

4

5

6

7
8

9

•

•
•

•

•

•
•

•

�

• • • • • • • •
1 2 3 4 5 6 7 8 9

� �

1 9

2 8

3 7

4 6

5

•

•

•

•

Figure 4.2: Turning a track of degree 3 into a tree-like structure. One goes
from the track to the intermediate structure by cutting the edge represented
as a square, and from the intermediate structure to the tree-like structure by
contracting each chord into a vertex.

Given a finite alphabet σ, we define Hσ, the set of hollow trees over σ,
as the set of colored extensions of hollow trees using the vocabulary Pσ, where
the interpretations of the predicates of Pσ partition the domain.

84

4.2. Overview of the results

•

• • • •

• • • • •

• •

Figure 4.3: An example of hollow tree. The dotted arrows represent S and the
plain (symmetrical) lines represent E.

Note that for every σ, Hσ is a class of structures of treewidth 2. Therefore,
according to Proposition 2.5.3, < -inv FO ⊆MSO on Hσ.

4.2 Overview of the results

4.2.1 Main result

The main result we prove in this chapter is the collapse of < -inv FO to FO on
hollow trees.

Theorem 4.2.1. For every alphabet σ,

< -inv FO = FO on Hσ .

We sketch here the proof of this result, before developping in Sections 4.3
through 4.6 the tools used in that proof. It will then be given in full details
Section 4.7.

This proof follows the chaining method introduced in Section 2.6.3. Recall
that our goal is to find some function f such that

∀α ∈ N,∀P,Q ∈ Hσ, P ≡FO
f(α) Q → P ≡<-inv FO

α Q .

Proposition 2.3.2 then allows us to conclude.
To show this we fix some α ∈ N and consider two hollow trees P and Q,

such that P ≡FO
f(α) Q for a large enough f(α). As explained in Section 2.6.3, the

general idea is to exhibit a sequence of intermediate ordered structures between
P and Q, which are pairwise FO-similar at depth α.

The hard part is to find such intermediate structures and orders. Each
intermediate structure results from the application of some operation to the
previous one, starting from Q, until we reach P. All of those operations are
designed to be invisible to all formulas of < -inv FO of quantifier rank less than
α.

In the end, we get that P ≡<-inv FO
α Q.

We will use two kinds of operations, as described in Section 4.3: “swap
operations”, which preserve < -inv FO, and one which preserves MSO (and a
fortiori < -inv FO as < -inv FO ⊆MSO on Hσ by Proposition 2.5.3).

85

Chapter 4. Order-Invariant FO on Hollow Trees

The MSO-preserving operation will be used in Section 4.3.3, in order to
pump Q to make sure that every neighborhood type is present at least as many
times in Q as in P.

Once this is done, we explain in Section 4.4 how to transform Q with swap
operations in order to include P into it. Since Q may be larger than P, there
could be some extra material in Q that we call “loops”. The last step is to
remove those loops and this is the goal of Section 4.6.

When performing the swap operations, there will be a constant need for
reorganizing the S-edges (in particular to make sure that the loops are S-stable).
Section 4.5 and Section 4.6.3 compile the results that allow us to do so.

4.2.2 Corollaries

Recall the results from Section 2.3.2: Proposition 2.3.6 states that the collapse
< -inv FO = FO can be lifted from a class to another as long as there exists a
bi-FO-interpretation from the latter through the former.

The first consequence of this result is that we can assume a normal form
on hollow trees without loss of generality. Namely, we can assume that each
S-parent has exactly two S-children, and that no element is at the same time
an S-parent and an S-child. Indeed, there is a simple bi-FO-interpretation
that transforms a general hollow tree into one having the desired properties
(by duplicating nodes that are only child, and those that are simultaneously
S-parent and S-child, and marking them with new unary predicates), and back
to the initial one.

Recall that, in the definition of hollow trees, the relation E is symmetric.
This turns out to be more general than choosing E as an arbitrary directed
binary relation, as shown in the following result, where directed hollow trees
are defined as hollow trees but with a directed binary relation E instead of
a symmetric one. Note that we do not assume that E is a successor relation
among siblings: the direction of E could be arbitrary, but the result below is
valid in particular when E is a successor relation on siblinghoods.

Via a simple bi-FO-interpretation which uses extra colors to encode the
direction of the edges, we get the following result:

Corollary 4.2.1. For every alphabet σ,

< -inv FO = FO on the class of directed hollow trees over σ .

Proof. We use Lemma 2.3.6 and exhibit a bi-FO-interpretation from directed
hollow trees over σ through hollow trees over σ ∪ {—, |}.

We give the first FO-interpretation I (from directed hollow trees to hollow
trees), and leave the reverse one to the reader.

To avoid confusion in the notations, let’s rename the directed binary relation
E as F in the vocabulary of directed hollow trees: hence I goes from the
vocabulary {F, S} ∪ Pσ to {E,S} ∪ Pσ∪{—,|}}.

Given a σ directed hollow tree T , I(T) is defined as follows. An illustration
of this interpretation is given in Figure 4.4.

• Its domain is T , plus two new elements vxy and vyx for every x, y ∈ T
such that T |= F (x, y),

86

4.3. Swaps and pumping

• the interpretation of S is unchanged,

• E is interpreted as the union of

{(x, vxy), (vxy, x), (vxy, vyx), (vyx, vxy), (vyx, y), (y, vyx)}

for every x, y ∈ T such that T |= F (x, y) ,

• the interpretation of every P ∈ Pσ is unchanged,

• P— is interpreted as {vxy : x, y ∈ T, T |= F (x, y)} ,

• P| is interpreted as {vyx : x, y ∈ T, T |= F (x, y)} .

•

• •• •

T

←→ — — —| | |

•

••• •

I(T)

Figure 4.4: The encoding of a directed hollow tree T as the (symmetrical) hollow
tree I(T) .

This encoding allows the converse FO-interpretation to recover the orienta-
tion of the F -edges of T from I(T) in a straightforward way.

Recall from Example 2.1.1 the definition of a path over σ. The class of paths
over σ is obviously bi-FO-interpretable through Hσ: from paths to hollow trees,
just add an S-parent to the endpoints of the path, and from hollow trees to
paths, forget this element. Thus we get the following result:

Corollary 4.2.2. For every alphabet σ,

< -inv FO = FO on the class of paths over σ

Similarly, a straightforward bi-FO-interpretation in conjunction with The-
orem 4.2.1 give us back the result from [5] that < -inv FO = FO on ranked
trees.

4.3 Swaps and pumping

In this section we provide a few operations, which we call swaps, that preserve
≡<-inv FO
α . Although the k-neighborhood type of every element will be left un-

changed, applying these operations may break the somewhat rigid structure of
hollow trees. In order to work with the intermediate structures, we loosen the
definition of hollow trees and define hollow quasitrees as follows.

Definition 4.3.1. For k > 0 and σ a set of colors, we define the set of hollow
k-quasitrees on σ, quasi-Hkσ, as the set of all finite structures over {E,S}∪Pσ
such that the k-neighborhood type of any of their elements is the k-neighborhood
type of some element in some hollow tree in Hσ, and which are such that their
relation E is acyclic.

87

Chapter 4. Order-Invariant FO on Hollow Trees

In other words a hollow quasitree differs from a hollow tree by its relation S
which may not induce a tree structure: a node may have its S-children in two
distinct siblinghoods and a hollow quasitree may have cycles using the relation
S (but not using only the relation E). All these properties are obviously not
definable in FO: locally, a hollow quasitree looks like a hollow tree.

Note that by definition Hσ ⊆ quasi-Hkσ for every k. An example of what a
hollow quasitree could look like is given in Figure 4.5.

•

• • • •

• • • • •

• •

Figure 4.5: An example of hollow quasitree. The dotted arrows represent S and
the plain (symmetrical) lines represent E.

Let T ∈ quasi-Hkσ. We define the support of T as its restriction to the
vocabulary Pσ ∪ {E}. The n-enriched support of T , denoted Suppn(T), is
the support of its n-enrichment (and not the other way around). Hence, it keeps
in memory the local behavior within T . The set End(T) of endpoints of T is
the set of elements of the support having degree one. A connected component
of the support of T is called a thread1. Note that by E-acyclicity of T , each of
its threads is a path, hence contains exactly two endpoints, but those endpoints
may not have the same S-parent. We say that a hollow k-quasitree has the
matching endpoints property if the two endpoints of each thread have the
same S-parent. Note that a hollow tree has the matching endpoints property.
Notice also that in a hollow k-quasitree, any thread of length less than 2k+1 has
matching endpoints, for otherwise the k-neighborhood of the midway element of
the thread would witness that the matching endpoints property is not satisfied,
and its k-neighborhood type would thus never appear in a hollow tree. For
x, y ∈ T belonging to the same thread, [x, y] denotes the set of elements that lie
between them (formally, those who disconnect x from y in Supp0(T)), including
x and y. We naturally define [x, y[as [x, y] \ {y}.

The following lemma, implicit in the proof of Proposition 2.4.6 by Grohe
and Schwentick [24], will allow us to prove that our operations preserve order-
invariance equivalence.

Lemma 4.3.2. Let Σ be a relational vocabulary and let p, α ∈ N. There exists
oΣ
p (α) ∈ N such that for every structure A over Σ, and for every p-tuples of

elements ā, b̄ ∈ Ap that have the same oΣ
p (α)-neighborhood type in A, there are

two orders <āb̄ and <b̄ā on A such that

• (A, <āb̄) ≡FO
α (A, <b̄ā) ,

1A thread is nothing other than a siblinghood when the quasitree is a tree.

88

4.3. Swaps and pumping

• āb̄ is an initial segment of <āb̄ ,

• b̄ā is an initial segment of <b̄ā .

Our operations are divided into three families depending on whether we
modify the relation S, the relation E, or whether we do a global pumping,

In the following, R is a hollow (m+ 1)-quasitree on σ.

4.3.1 Crossing-S-swaps

Let a, a′, a′′, b, b′, b′′ ∈ R be such that S(a, a′), S(a, a′′), S(b, b′), S(b, b′′) and such
that tpmR(a, a′, a′′) = tpmR(b, b′, b′′).

Let R− := R\{S(a, a′), S(a, a′′), S(b, b′), S(b, b′′)} and assume that the sets
{a′, a′′}, {b′, b′′} and {a, b} are pairwise (2m+ 3)-distant in R−.

R′ := R− ∪ {S(a, b′), S(a, b′′), S(b, a′), S(b, a′′)} is called the m-guarded
crossing-S-swap between a and b in R (see Figure 4.6).

a
•

a′ a′′

b
•

b′ b′′

−→
a
•

a′ a′′

b
•

b′ b′′

Figure 4.6: The crossing-S-swap between a and b.

Note 4.3.3. A particular case where the distance condition is met is when
distR(a, b) ≥ 2m+ 5.

Lemma 4.3.4. For all α ∈ N there exists s(α) ∈ N such that for all m ≥ s(α),
and every hollow (m+ 1)-quasitree R,

if R′ is the m-guarded crossing-S-swap between a and b in R,

then R′ ≡<-inv FO
α R, and ∀x ∈ R, tpm+1

R′ (x) = tpm+1
R (x) .

Moreover R′ ∈ quasi-Hm+1
σ and Suppm+1(R′) = Suppm+1(R) .

In order to prove that R′ ≡<-inv FO
α R we need to exhibit a linear order over

R and one over R′ such that we can play an α-round Ehrenfeucht-Fräıssé game
between the resulting ordered structures. The linear orders are constructed
using Lemma 4.3.2 applied to (a′, a′′) and (b′, b′′) and the structure R−. A
simple FO-interpretation is then used to transfer the corresponding orders onto
R and R′.

Proving that the neighborhood type of an element is unchanged is rather
straightforward. It then follows that R′ ∈ quasi-Hm+1

σ , since R was itself a
hollow (m+1)-quasitree, and the same (m+1)-neighborhood types occur in both
structures. Similarly, it entails that Suppm+1(R′) = Suppm+1(R), since only S-
edges has changed between R and R′, which in Suppm+1(R) and Suppm+1(R′)
are only accounted for in the neighborhood type of every element (which is
unchanged).

89

Chapter 4. Order-Invariant FO on Hollow Trees

Proof. We first show that R′ ≡<-inv FO
α R. This is essentially a reduction

to Lemma 4.3.2 using FO-interpretations. Recall the function oΣ
p given by

Lemma 4.3.2. We use it with p = 2 and Σ := Pσ ∪{E,S, P1/2, P3/4} where P1/2

and P3/4 are unary. Assume now that m ≥ oΣ
2 (α + c) where c is a constant to

be chosen later on.
Consider the extension R? of R− to Σ where the interpretation of P1/2 is

{a} and that of P3/4 is {b}. Since PR
?

1/2 and PR
?

3/4 are at distance > m from

a′, a′′, b′ and b′′ in R?, we have that tpmR?(a′, a′′) = tpmR?(b′, b′′).
We can therefore apply Lemma 4.3.2, and get two orders <a′a′′b′b′′ and

<b′b′′a′a′′ such that (R?, <a′a′′b′b′′) ≡FO
α+c (R?, <b′b′′a′a′′). Now, consider the

FO-interpretation that adds an S-edge between u and v if either

• P1/2(u) and v is the first or the second element of <

• or P3/4(u) and v is the third or the fourth element of <,

and then forgets about P1/2 and P3/4.
Take c to be the depth of this FO-interpretation (which has arity 1).
Note that the result of this FO-interpretation on (R?, <a′a′′b′b′′) is an or-

dered extension of R and its result on (R?, <b′b′′a′a′′) is an ordered extension
of R′.

This entails R′ ≡<-inv FO
α R.

Now, let x ∈ R, and let’s show that tpm+1
R′ (x) = tpm+1

R (x).
First, if x is at distance > m+ 1 of {a, a′, a′′, b, b′, b′′} in R, there isn’t any

change in its (m+ 1)-neighborhood.
Otherwise, there are several cases to consider, according to whether x belongs

to Nm+1
R− (a), Nm+1

R− (a′), Nm+1
R− (a′′), Nm+1

R− (b), Nm+1
R− (b′), or Nm+1

R− (b′); we treat
the first one of them, the others being similar.

Set da := distR−(x, a) and db := distR−(x, b). By hypothesis, da ≤ m+ 1.
We distinguish two cases:

• if db > m + 1: because of the distance constraint, we can partition
Nm+1
R (x) into Nm+1

R− (x) and Nm−da
R− (a′, a′′), with two S-edges joining a

in the first and a′, a′′ in the second. These two parts are at distance ≥ 2
in R−, hence they are fully independent (no overlap, and no edge between
the two except for S(a, a′) and S(a, a′′)).

Likewise, we can partition Nm+1
R′ (x) into Nm+1

R− (x) and Nm−da
R− (b′, b′′).

Nm−da
R− (a′, a′′) ' Nm−da

R− (b′, b′′), hence Nm+1
R (x) ' Nm+1

R′ (x).

• otherwise, db ≤ m + 1: now, we can partition Nm+1
R (x) into Nm+1

R− (x),

Nm−da
R− (a′, a′′) and Nm−db

R− (b′, b′′), with two S-edges joining a in the first
to a′, a′′ in the second and two S-edges joining b in the first to b′, b′′ in the
third, as depicted in Figure 4.7. These three parts are at distance ≥ 2 in
R−, hence they are fully independent (no overlap, and no edge between
the two except for S(a, a′), S(a, a′′), S(b, b′) and S(b, b′′)).

Likewise, we can partition Nm+1
R′ (x) into Nm+1

R− (x), Nm−da
R− (b′, b′′) and

Nm−db
R− (a′, a′′), as shown in Figure 4.7. We have that

Nm−da
R− (a′, a′′) ' Nm−da

R− (b′, b′′)

90

4.3. Swaps and pumping

and
Nm−db
R− (a′, a′′) ' Nm−db

R− (b′, b′′) ,

hence
Nm+1
R (x) ' Nm+1

R′ (x) .

a•

a′ a′′

b•

b′ b′′

Nm+1
R− (x)

x
•

Nm−da
R− (a′, a′′) Nm−db

R− (b′, b′′)

−→
a•

a′ a′′

b•

b′ b′′

Nm+1
R− (x)

x
•

Nm−db
R− (a′, a′′) Nm−da

R− (b′, b′′)

Figure 4.7: Evolution of the neighborhood of x before and after a crossing-S-
swap in the proof of Lemma 4.3.4. We see Nm+1

R (x) on the left and Nm+1
R′ (x)

on the right.

4.3.2 E-swaps

We start by defining four different kinds of E-swaps: crossing-E-swaps, mirror-
E-swaps, segment-E-swaps and contiguous-segment-E-swaps.

We then prove some results holding for every kind of E-swap.

Crossing-E-swaps

Let a, b, a′, b′ ∈ R be such that E(a, b), E(a′, b′), a, b and a′, b′ appear in two
different threads ofR and such that {a, b, a′, b′} and End(R) are (2m+3)-distant
in Supp0(R). Furthermore, assume that tpmR(a, b) = tpmR(a′, b′).

Let R′ := R \ {E(a, b), E(a′, b′)} ∪ {E(a, b′), E(a′, b)}.
Then R′ is called the m-guarded crossing-E-swap between ab and a′b′

in R (c.f. Figure 4.8).

a b

a′ b′

� •

♦ ◦

| | | |

| | | |
−→

a b′

a′ b

� ◦

♦ •

| | | |

| | | |

Figure 4.8: Illustration of the m-guarded crossing-E-swap between ab and a′b′

in R.

Mirror-E-swaps

Let a, b, b′, a′ ∈ R appear in that order in a single thread of R, such that
E(a, b), E(a′, b′), and such that {a, b, a′, b′} and End(R) are (2m+ 3)-distant in
Supp0(R). Furthermore, assume that tpmR(a, b) = tpmR(a′, b′).

91

Chapter 4. Order-Invariant FO on Hollow Trees

Let R′ := R \ {E(a, b), E(a′, b′)} ∪ {E(a, b′), E(a′, b)}.
Then R′ is called the m-guarded mirror-E-swap at [b, b′] in R (c.f.

Figure 4.9).

a b b′ a′

◦ •>>>| | | | | | −→
a b′ b a′

◦ •<<<| | | | | |

Figure 4.9: Illustration of the m-guarded mirror-E-swap at [b, b′] in R.

Segment-E-swaps

Consider now a, b, c, d, a′, b′, c′, d′ ∈ R appearing in that order in a single thread
of R, satisfying

• E(a, b), E(c, d), E(a′, b′) and E(c′, d′) ,

• {a, b, c, d, a′, b′, c′, d′} and End(R) are (2m+ 3)-distant in Supp0(R) ,

• tpmR(a, b) = tpmR(a′, b′) ,

• tpmR(c, d) = tpmR(c′, d′).

Let R′ := R \ {E(a, b), E(a′, b′), E(c, d), E(c′, d′)}
∪ {E(a, b′), E(a′, b), E(c, d′), E(c′, d)} .

Then R′ is called the m-guarded segment-E-swap between [b, c] and
[b′, c′] in R (c.f. Figure 4.10).

a b c d a′ b′ c′ d′

� • ~ ◦ ♦| | | | | | | | | | −→
a b′ c′ d a′ b c d′

� ◦ ~ • ♦| | | | | | | | | |

Figure 4.10: Illustration of the m-guarded segment-E-swap between [b, c] and
[b′, c′] in R.

Contiguous-segment-E-swaps

Finally, let a, b, a′, b′, a′′, b′′ be elements of R appearing in that order in a single
thread of R, such that

• E(a, b), E(a′, b′) and E(a′′, b′′) ,

• {a, b, a′, b′, a′′, b′′} and End(R) are (2m+ 3)-distant in Supp0(R) ,

• tpmR(a, b) = tpmR(a′, b′) = tpmR(a′′, b′′) .

Let R′ := R \ {E(a, b), E(a′, b′), E(a′′, b′′)}
∪ {E(a, b′), E(a′, b′′), E(a′′, b)} .

ThenR′ is called the m-guarded contiguous-segment-E-swap between
[b, a′] and [b′, a′′] in R (c.f. Figure 4.11).

As long as m is large enough, all the m-guarded E-swaps preserve ≡<-inv FO
α

and the (m+ 1)-neighborhood type of every element.

92

4.3. Swaps and pumping

a b a′ b′ a′′ b′′

� • ◦ ♦| | | | | | | | −→
a b′ a′′ b a′ b′′

� ◦ • ♦| | | | | | | |

Figure 4.11: Illustration of the m-guarded contiguous-segment-E-swap between
[b, a′] and [b′, a′′] in R.

Lemma 4.3.5. For all α ∈ N there exists s(α) ∈ N such that for every m ≥ s(α)
and every hollow (m+ 1)-quasitree R, if R′ is either

• the m-guarded crossing-E-swap between ab and a′b′ in R

• or the m-guarded mirror-E-swap at [b, b′] in R

• or the m-guarded contiguous-segment-E-swap between [b, a′] and [b′, a′′]
in R

• or the m-guarded segment-E-swap between [b, c] and [b′, c′] in R,

then R′ ≡<-inv FO
α R, ∀x ∈ R, tpm+1

R′ (x) = tpm+1
R (x) and R′ ∈ quasi-Hm+1

σ .

Note 4.3.6. In each of these cases, the swap doesn’t introduce any E-loop.
Hence, once we’ve shown that every elements keeps its (m + 1)-neighborhood
type, we immediately get that R′ ∈ quasi-Hm+1

σ .
However, these operations do not preserve hollowtreeness. This is the reason

why we introduced the notion of quasitree.

The proof is a tedious case analysis. Basically it amounts to the following
idea: if the elements involved in the swap are far away from each other then
we can use Lemma 4.3.2 in the structure R minus the E-edges of interest, and
get orders on R and R′ which make these structures similar as in the proof of
Lemma 4.3.4.

On the other hand, if the elements are close to each other, then the fact
that they share the same neighborhood type induces some periodicity on their
neighborhoods. These neighborhoods can therefore be decomposed into several
consecutive similar pieces. We can then apply Lemma 4.3.2 to these smaller
components to conclude.

We prove Lemma 4.3.5 separately for every type of E-swap. We will need
the following lemmas.

Lemma 4.3.7. Let Q ∈ quasi-Hm+1
σ and x, y ∈ Q such that the sets {x}, {y}

and End(Q) are pairwise (2m+ 3)-distant in Supp0(Q) .
Then distQ(x, y) ≥ 2m+ 3 .

Proof. This is a consequence of the fact that in a hollow (m + 1)-quasitree, a
thread of length less than 2m+ 1 must have matching endpoints.

Suppose that there exists path of length ≤ 2m+ 2 in Q from x to y, and let
p be such a path of shortest length.

The path p may use either an E-edge or an S-edges. We divide p into
segments between two consecutive S-edges. Let t1, · · · , tr be the corresponding
threads in that order (with possible repetitions).

We know that x ∈ t1 and y ∈ tr. As x and y are at distance at least 2m+ 3
when using only E-edges, we must have r ≥ 2.

93

Chapter 4. Order-Invariant FO on Hollow Trees

There are two ways for p to go from ti to ti+1: either (1) using and S-edge
S(a, ei+1) with a ∈ ti and ei+1 ∈ End(ti+1), or (2) using an S-edge S(b, ei) with
b ∈ ti+1 and ei ∈ End(ti).

As x is far from the endpoints of t1, p must go from t1 to t2 using case (1).
Similarly, p must go from tr−1 to tr using case (2). Hence, there must exist
some 1 < i < r such that p moves from ti−1 to ti following (1), and from ti to
ti+1 following (2).

Since p is a shortest path, the two endpoints of ti involved in (1) and (2)
cannot be the same; hence p goes from one endpoint of ti to the other and the
length of ti must be ≤ 2m + 1. Since Q ∈ quasi-Hm+1

σ , branches of length
≤ 2m+ 1 must have matching endpoints. This contradicts the minimality of p,
since p could have avoided ti completely.

Lemma 4.3.8. Let Q ∈ quasi-Hm+1
σ and x 6= y ∈ Q belonging to the same

thread, such that {x, y} and End(Q) are (2m+ 3)-distant in Supp0(Q) .
Every path of length < 2m + 3 between x and y goes through every E-edge

of [x, y] .

In other words, if Q− is Q minus any E-edge of [x, y], distQ−(x, y) ≥ 2m+3.

Proof. The proof is identical as the one of Lemma 4.3.7, by considering a shortest
path of length ≤ 2m + 2 from x to y that doesn’t go through every E-edge of
[x, y]: we arrive at the same contradiction.

The following lemma will only be needed in Section 4.5; however, we state
it here as its proof is very similar to the previous ones.

Lemma 4.3.9. Let Q ∈ quasi-Hm+1
σ , and x, y ∈ End(Q) such that

distSupp0(Q)(x, y) ≥ 2m+ 3 .

Then any path of length ≤ 2m+ 3 from x to y goes through at least one of their
S-parents.

Proof. We proceed similarly as in Lemma 4.3.7; let’s use the same notations.
Suppose that p doesn’t go through x’s parent neither y’s. Let’s show that

p goes from t1 to t2 using case (1): if not, it uses case (2) through the other
endpoint of t1. Hence, t1 would be of length ≤ 2m + 1 (since it takes at least
2 to reach y from there), and would have matching endpoints; this is absurd,
since p would go through x’s parent.

Similarly, we show that p moves from tr−1 to tr following (2).
We can conclude exactly as in Lemma 4.3.7.

We are now ready to prove Lemma 4.3.5 in each of the four cases.

Proof of Lemma 4.3.5 for crossing-E-swaps

We let R− := R \ {E(a, b), E(a′, b′)}.
It follows from Lemma 4.3.7 and Lemma 4.3.8 that a, b, a′ and b′ are at

distance at least 2m+ 3 from each other in R−.

First, we show that R′ ≡<-inv FO
α R. This is essentially a reduction to

Lemma 4.3.2 using FO-interpretations.

94

4.3. Swaps and pumping

Recall the function oΣ
p given by Lemma 4.3.2. We use it with p = 1 and

Σ := Pσ ∪ {E,S, P1, P2} where P1 and P2 are unary. Let’s now assume that
m ≥ oΣ

1 (α+ c), where c is a constant to be chosen later on.

Consider the extension R? of R− to Σ where the interpretation of P1 is {b}
and that of P2 is {b′}. Since PR

?

1 and PR
?

2 are at distance > m from a and a′

in R?, we have that tpmR?(a) = tpmR?(a′).
We can therefore apply Lemma 4.3.2, and get two orders <aa′ and <a′a

such that (R?, <aa′) ≡FO
α+c (R?, <a′a). Now, consider the FO-interpretation

that adds a (symmetrical) E-edge between u and v if either

• P1(u) and v is the first element of <

• or P2(u) and v is the second element of <,

and then forgets about P1 and P2.
Take c to be the depth of this FO-interpretation (which has arity 1). Note

that the result of this FO-interpretation on (R?, <aa′) is an ordered extension
of R and that its result on (R?, <a′a) is an ordered extension of R′. This entails
R′ ≡<-inv FO

α R.

Now, let x ∈ R, and let’s show that tpm+1
R′ (x) = tpm+1

R (x).
First, if x is at distance > m+ 1 of {a, b, a′, b′} in R, there isn’t any change

in its (m+ 1)-neighborhood.
Otherwise, there are several cases to consider, according to whether x belongs

to Nm+1
R− (a), Nm+1

R− (a′), Nm+1
R− (b) or Nm+1

R− (b′); we treat the first one, the others
being similar.

Set d := distR(x, a).
We can partition Nm+1

R (x) into Nm+1
R− (x) and Nm−d

R− (b), with an E-edge
joining a in the first and b in the second.

Because of the distance condition, these two parts are at distance ≥ 2 in
R−, hence they are fully independent (no overlap, and no edge between the two
except for E(a, b)).

Likewise, we can partition Nm+1
R′ (x) into Nm+1

R− (x) and Nm−d
R− (b′).

Nm−d
R− (b) ' Nm−d

R− (b′), hence Nm+1
R (x) ' Nm+1

R′ (x).

Proof of Lemma 4.3.5 for mirror-E-swaps

Let R− := R \ {E(a, b), E(a′, b′)}.
It follows from Lemma 4.3.8 that the three sets {a}, {a′} and {b, b′} are

(2m+ 3)-distant in R−.
The proof that R′ ≡<-inv FO

α R is done exactly as in the case of crossing-E-
swaps.

Now, let x ∈ R, and let’s show that tpm+1
R′ (x) = tpm+1

R (x).
First, if x is at distance > m+ 1 of {a, b, a′, b′} in R, there isn’t any change

in its (m+ 1)-neighborhood.
Otherwise, there are several cases to consider, according to whether x belongs

to Nm+1
R− (a), Nm+1

R− (a′), Nm+1
R− (b) or Nm+1

R− (b′); the first two are similar to the
cases appearing in the proof for crossing-E-swaps.

We treat the third one, the fourth being symmetrical.

95

Chapter 4. Order-Invariant FO on Hollow Trees

Set d := distR−(x, b) and d′ := distR−(x, b′). By hypothesis, d ≤ m+ 1.
Nm+1
R (x) can partitioned into Nm+1

R− (x), Nm−d
R− (a) and the possibly empty

Nm−d′
R− (a′), with an E-edge joining b in the first to a in the second, and an

E-edge joining b′ in the first to a′ in the third (if it is nonempty).
We claim that any two of these three neighborhoods are at distance ≥ 2 in

R−, hence they are fully independent: no overlap, and no edge between any
two of them, except (possibly) for E(a, b) and (possibly) E(a′, b′).

Indeed, suppose (the other pairs of neighborhoods are treated similarly) that
Nm+1
R− (x) and Nm−d

R− (a) are at distance ≤ 1. Then distR−(a, x) ≤ 2m + 2 − d,
hence distR−(a, b) ≤ 2m+ 2, which contradicts Lemma 4.3.8 for a and b (recall
that {a, b} and End(R) are (2m+ 3)-distant in Supp0(R)).

Likewise we can partitionNm+1
R′ (x) intoNm+1

R− (x), Nm−d
R− (a′) andNm−d′

R− (a).

We have that Nm−d
R− (a) ' Nm−d

R− (a′) and Nm−d′
R− (a′) ' Nm−d′

R− (a), hence

Nm+1
R (x) ' Nm+1

R′ (x).

Proof of Lemma 4.3.5 for contiguous-segment-E-swaps

Let R− := R \ {E(a, b), E(a′, b′), E(a′′, b′′)}.
Let x, y be non-endpoint elements belonging to the same thread of some

Q ∈ quasi-Hn+1
σ . Let Q− := Q \ {E(x′, x), E(y, y′)}, where x′ (resp. y′) is the

E-neighbor of x (resp. y) that doesn’t belong to [x, y].
We denote by [x, y]Qn the substructure of Q− induced by the set of nodes at

distance ≤ n in Q− from [x, y], together with a new color marking x as the left
endpoint.

We define concatenation as follows: if x, x1, y1, y appear in the same thread
in that order, and E(x1, y1), then we write [x, y]Qn =: [x, x1]Qn · [y1, y]Qn .

Let us abbreviate distSupp0(Q)(x, y) as |[x, y]| (that is, the distance from x
to y if we are only allowed E-edges).

We first prove that (m + 1)-neighborhood types are unchanged by an m-
guarded contiguous-segment-E-swap.

Let x ∈ R, and let’s show that tpm+1
R′ (x) = tpm+1

R (x)
If x is at distance > m+ 1 of {a, b, a′, b′, a′′, b′′} in R, there isn’t any change

in its (m+ 1)-neighborhood.
Otherwise, there are several cases to consider, according to whether x belongs

to Nm+1
R− (a), Nm+1

R− (b), Nm+1
R− (a′), Nm+1

R− (b′), Nm+1
R− (a′′) or Nm+1

R− (b′′). We
treat the second one, the other ones being similar or simpler.

Set db := distR−(x, b), da′ := distR−(x, a′), and db′a′′ := distR−(b′, a′′). By
hypothesis, db ≤ m+ 1.

We can partition Nm+1
R (x) into Nm+1

R− (x), Nm−db
R− (a), and the possibly

empty Nm−da′
R− (b′) and Nm−1−da′−db′a′′

R− (b′′), with an E-edge joining b in the
first to a in the second, an E-edge joining a′ in the first to b′ in the third,
and an E-edge joining a′′ in the third to b′′ in the fourth (in the case they are
non-empty).

We claim that any two of these four neighborhoods are at distance ≥ 2 in
R−, hence they are fully independent: no overlap, and no edge between any
two of them except (possibly) for E(a, b), E(a′, b′) and E(a′′, b′′).

Indeed, suppose (the other pairs of neighborhoods are treated similarly) that
Nm+1
R− (x) and Nm−db

R− (a) are at distance ≤ 1. Then distR−(a, x) ≤ 2m+ 2− db,

96

4.3. Swaps and pumping

hence distR−(a, b) ≤ 2m+ 2, which contradicts Lemma 4.3.8 for a and b (recall
that {a, b} and End(R) are (2m+ 3)-distant in Supp0(R)).

Likewise, we can partition Nm+1
R′ (x) into

Nm+1
R− (x), Nm−db

R− (a′′), Nm−1−db−db′a′′
R− (a) and Nm−da′

R− (b′′) .

Because tpmR(a, b) = tpmR(a′, b′) = tpmR(a′′, b′′), Nm−db
R− (a) is isomorphic to

the union of Nm−db
R− (a′′) and Nm−1−db−db′a′′

R− (a) with an E-edge joining b′ in the
first and a in the second (if they are both nonempty).

Similarly, the union of Nm−da′
R− (b′) and Nm−1−da′−db′a′′

R− (b′′) with an E-edge
joining a′′ in the first and b′′ in the second (if they are both nonempty) is

isomorphic to Nm−da′
R− (b′′).

Hence Nm+1
R (x) ' Nm+1

R′ (x).

We now exhibit a s(α) such that for every m ≥ s(α), m-guarded contiguous-
segment-E-swaps preserve ≡<-inv FO

α .

We will first set N ∈ N instead of s(α), that will be sufficient for most cases.
Then, we will define s(α) ≥ N which will work for all cases.

Recall the function oΣ
p needed for Lemma 4.3.2, and consider n := oΣ

2 (α+ c)
where c is to be chosen later on, and Σ := Pσ ∪ {E,S, P1, P4} where P1 and P4

are unary. We distinguish between several cases depending on whether a, a′ and
a′′ are close or not, where “close” is relative to n.

1. Assume first that tpnR−(b, a′) = tpnR−(b′, a′′).

This case covers the instances where [b, a′]Rn ' [b′, a′′]Rn , as well as those
where |[a, a′]| and |[a′, a′′]| are both > 2n+ 2.

Consider the extension R? of R− to Σ where PR
?

1 := {a} and PR
?

4 :=
{b′′}. Since PR

?

1 and PR
?

4 are at distance > n from {b, a′, b′, a′′} (this is
guaranteed by Lemma 4.3.8, because we will make sure that s(α) ≥ n),
tpnR?(b, a′) = tpnR?(b′, a′′).

Hence, we can apply Lemma 4.3.2, and get two orders<ba′b′a′′ and<b′a′′ba′

such that (R?, <ba′b′a′′) ≡FO
α+c (R?, <b′a′′ba′).

Now, consider the FO-interpretation that adds a symmetrical E-edge be-
tween u and v if either

• P1(u) and v is the first element of <

• or u is the second element of < and v is either its third one

• or u is the fourth element of < and P4(v),

and then forgets about P1 and P4.

Take c to be the depth of this FO-interpretation (which has arity 1).

Note that the result of this FO-interpretation on (R?, <ba′b′a′′) is an or-
dered extension of R and that its result on (R?, <b′a′′ba′) is an ordered
extension of R′.

This entails R′ ≡<-inv FO
α R.

97

Chapter 4. Order-Invariant FO on Hollow Trees

2. Assume next that [b′, a′′]Rn can be decomposed as

[b′, a1]Rn · [b1, a2]Rn · · · [bk, a′′]Rn ,

where each of these enriched segments is isomorphic to [b, a′]Rn .

We can then apply k + 1 times Case 1 and obtain R′ ≡<-inv FO
α R as

desired.

3. From now on, N ≥ l(2n + 2) + n for a large enough l to be chosen later
on.

As we are not in Case 1, we can restrict our study to the cases where
|[a, a′]| ≤ 2n + 2 (the cases where |[a′, a′′]| ≤ 2n + 2 can be treated simi-
larly).

We need the following claim, which relies on the Lyndon-Schützenberger
Theorem [28].

Claim 4.3.10. Let n ∈ N and R ∈ quasi-Hn+1
σ .

Let a1, b1, a2, b2, a3, b3, a4, b4 appear in that order in a single thread of R,
such that E(a1, b1), E(a2, b2), E(a3, b3) and E(a4, b4).

Suppose that [b1, a2]Rn ' [b3, a4]Rn and [b1, a3]Rn ' [b2, a4]Rn .

Then there exist decompositions [b1, a2]Rn = U1 · · · Up, [b2, a3]Rn = V1 · · · Vq,
and [b3, a4]Rn =W1 · · ·Wp, where all the Ui,Vi and Wi are isomorphic.

Proof. Consider Θn which maps [x, y]Rn to the word [x, y] where each ele-
ment is colored with its n-neighborhood type in [x, y]Rn .

Let u := Θn([b1, a2]Rn), v := Θn([b2, a3]Rn) and w := Θn([b3, a4]Rn).

The hypothesis guarantee u = w and uv = vw. Hence uv = vu.

By Lyndon-Schtzenberger Theorem, there must exist a word a and integers
p, q such that u = w = ap and v = aq [28].

We can decompose [b1, a2]Rn , [b2, a3]Rn and [b3, a4]Rn alongside those decom-
positions of u, v and w, to get [b1, a2]Rn = U1 · · · Up, [b2, a3]Rn = V1 · · · Vq,
and [b3, a4]Rn = W1 · · ·Wp, where all the Ui,Vi and Wi are mapped to a
by Θn, hence are isomorphic.

Let φ be an isomorphism between the N -neighborhood of (a, b) and that
of (a′, b′).

As |[a, a′]| ≤ 2n + 2, a′ and b′ are in the N -neighborhood of (a, b): set
x0 := a′ and y0 := b′. Construct by induction xi+1 := φ(xi) and yi+1 :=
φ(yi) until i > l. Our choice of N ensures that xi and yi are well defined
as xi−1 and yi−1 remain in the N -neighborhood of (a, b). For all j ≤ l,
Xj := [yj−1, xj]

R
n is isomorphic to [b, a′]Rn .

Likewise, starting from (a′′, b′′) instead of (a′, b′), we show that there exist
x′1, y

′
1, · · · , x′l, y′l such that for j ∈ [1, l] (and with the convention that

x′0 = a′′), X ′j := [y′j , x
′
j−1]Rn is isomorphic to [b, a′]Rn .

We distinguish several cases.

98

4.3. Swaps and pumping

(a) Suppose that |[a′, a′′]| ≥ 2N . This ensures that all the (xi)i≥1,
(yi)i≥0, (x′i)i≥0 and (y′i)i≥1 belong to [b′, a′′].

We can decompose [b, a′′]Rn as

[b, a′]Rn · [y0, x1]Rn︸ ︷︷ ︸
X1

· · · [yl−1, xl]
R
n︸ ︷︷ ︸

Xl

·[yl, x′l]Rn · [y
′
l, x
′
l−1]Rn︸ ︷︷ ︸
X ′l

· [y′l−1, x
′
l−2]Rn︸ ︷︷ ︸

X ′l−1

· · · [y′1, x′0]Rn︸ ︷︷ ︸
X ′1

.

Let now R1 be the n-guarded contiguous-segment-E-swap between
[b, x′l−1] and [y′l−1, a

′′] in R (recall that a′′ = x′0).

If l is chosen large enough, namely l ≥ 2n + 4, this swap falls in
Case 1 of this Lemma and therefore R1 ≡<-inv FO

α R.

In R1, [y′l−1, x
′
l−1]R1

n (that is, the segment strictly between a and b′′)
is decomposed as

[y′l−1, x
′
l−2]Rn︸ ︷︷ ︸

X ′l−1

· · · [y′1, x′0]Rn︸ ︷︷ ︸
X ′1

·[b, a′]Rn · [y0, x1]Rn︸ ︷︷ ︸
X1

· · · [yl−1, xl]
R
n︸ ︷︷ ︸

Xl

·[yl, x′l]Rn · [y
′
l, x
′
l−1]Rn︸ ︷︷ ︸
X ′l

.

Now, let R2 be the n-guarded contiguous-segment-E-swap between
[y′l−1, a

′] and [y0, x
′
l−1] in R1.

By choice of l, this swap falls again in Case 1 of this Lemma. Thus,
R2 ≡<-inv FO

α R1.

Observe now that in R2, [b, a′′]R2
n (the segment strictly between a

and b′′) is decomposed as

[y0, x1]Rn︸ ︷︷ ︸
X1

· · · [yl−1, xl]
R
n︸ ︷︷ ︸

Xl

·[yl, x′l]Rn · [y
′
l, x
′
l−1]Rn︸ ︷︷ ︸
X ′l

· [y′l−1, x
′
l−2]Rn︸ ︷︷ ︸

X ′l−1

· · · [y′1, x′0]Rn︸ ︷︷ ︸
X ′1

·[b, a′]Rn ,

that is, [b′, a′′]Rn ·[b, a′]Rn . Hence R2 = R′, and we get R′ ≡<-inv FO
α R.

(b) Suppose now that |[a′, a′′]| < 2N . Set s(α) := (2N + 1)(2n +
2) + n. Just as before (by replacing l with 2N + 1), we define
x0, y0, · · · , x2N+1, y2N+1 and x′0, y

′
0, · · · , x′2N+1, y

′
2N+1, and accord-

ingly, X1, · · · ,X2N+1 and X ′1, · · · ,X ′2N+1 that all are isomorphic to
[b, a′]Rn .

Not all of the (x′i)0≤i≤2N can be in [b′, a′′]. Let k be the smallest
index such that x′i /∈ [b′, a′′] (we know that 1 ≤ k ≤ 2N).

If x′k = a′, we can conclude using Case 2.

Otherwise, a, b, x′k, y
′
k, a
′, b′, x′k−1, y

′
k−1 must appear in that order in

the thread.

[b, a′]Rn ' [y′k, x
′
k−1]Rn by definition.

To see that [b, x′k]Rn ' [b′, x′k−1]Rn , consider the restriction of an
isomorphism between X ′k and X ′k+1 to the final segments of length
|[b′, x′k−1]| = |[b, x′k]|.
We can now apply Claim 4.3.10, and get decompositions [b, x′k]Rn =
U1 · · · Up, [y′k, a

′]Rn = V1 · · · Vq, and [b′, x′k−1]Rn = W1 · · ·Wp, where
all the Ui,Vi and Wi are isomorphic.

99

Chapter 4. Order-Invariant FO on Hollow Trees

Hence, [b, a′]Rn can be decomposed as U1 · · · Up · V1 · · · Vq, and such
a decomposition can be transposed onto each X ′i , 0 < i < k, as
X ′i = Yi1 · · · Yip+q, where all the Yij , the Ui, the Vi and the Wi are
isomorphic.

We can now decompose [b, a′′]Rn as

U1 · · · Up · V1 · · · Vq︸ ︷︷ ︸
[b,a′]Rn

·W1 · · ·Wp︸ ︷︷ ︸
[b′,x′k−1]Rn

· Yk−1
1 · · · Yk−1

p+q︸ ︷︷ ︸
X ′k−1

· · · Y1
1 · · · Y1

p+q︸ ︷︷ ︸
X ′1︸ ︷︷ ︸

[b′,a′′]Rn

.

Now, we can use Case 2 to swap Vq with [b′, a′′]Rn : R1 ≡<-inv FO
α R,

where in R1, the segment strictly between a and b′′ is

U1 · · · Up · V1 · · · Vq−1 · W1 · · ·Wp · Yk−1
1 · · · Yk−1

p+q · · · Y1
1 · · · Y1

p+q · Vq .

Repeating this operation p + q − 1 times allows us to conclude that
R′ ≡<-inv FO

α R.

Proof of Lemma 4.3.5 for segment-E-swaps

The proof that ∀x ∈ R, tpm+1
R′ (x) = tpm+1

R′ (x) is done as for the contiguous-
segment-E-swaps.

Let’s now find s(α) ∈ N that guarantees the ≡<-inv FO
α invariance of any

m-guarded segment-E-swaps, for m ≥ s(α).
Let n := oΣ

2 (α + c) where c is the depth of some FO-interpretation to be
specified later on, and Σ := Pσ ∪ {E,S, P1, P2, P3, P4} where P1, P2, P3 and P4

are unary.
Let R− := R \ {E(a, b), E(a′, b′), E(c, d), E(c′, d′)}.

1. Assume first that tpnR−(b, c) = tpnR−(b′, c′).

This case covers the instances where [b, c]Rn ' [b′, c′]Rn , as well as those
where |[a, c]| and |[a′, c′]| both are > 2n+ 2.

Consider the extension R? of R− to Σ where PR
?

1 := {a}, PR?2 := {d},
PR

?

3 := {a′} and PR
?

4 := {d′}. Since PR
?

1 , PR
?

2 , PR
?

3 and PR
?

4 are at
distance > n from {b, c, b′, c′} (this is guaranteed by Lemma 4.3.8, because
we will make sure that s(α) ≥ n), tpnR?(b, c) = tpnR?(b′, c′).

Hence, we can apply Lemma 4.3.2, and get two orders <bcb′c′ and <b′c′bc
such that (R?, <bcb′c′) ≡FO

α+c (R?, <b′c′bc).
Now, consider the FO-interpretation that adds a symmetrical E-edge be-
tween u and v if either

• P1(u) and v is the first element of <

• or u is the second element of < and P2(v)

• or P3(u) and v is the third element of <

100

4.3. Swaps and pumping

• or u is the fourth element of < and P4(v),

and then forgets about P1, P2, P3 and P4.

Take c to be the depth of this FO-interpretation (which has arity 1).

Note that the result of this FO-interpretation on (R?, <bcb′c′) is an ordered
extension of R and that its result on (R?, <b′c′bc) is an ordered extension
of R′.
This entails R′ ≡<-inv FO

α R.

2. We can now, without loss of generality, assume that |[a, c]| ≤ 2n+ 2.

Let s be the threshold s(α) from the proof of contiguous-segment-E-swaps.
Let us increase that threshold for it to account for segment-E-swaps: set
s(α) := (2n+ 2) +M with M := max(s, n).

Consider an isomorphism ϕ from N s(α)
R (a, b) to N s(α)

R (a′, b′).

By choice of s(α), tpMR (c, d) = tpMR (ϕ(c), ϕ(d)).

Since (ϕ(c), ϕ(d)) 6= (c′, d′) (for otherwise, we would be in the Case 1),
there are only two subcases to consider:

• if a′, b′, ϕ(c), ϕ(d), c′, d′ appear in that order, i.e. the segment strictly
between a and d′ can be decomposed as

[b, c]Rn · [d, a′]Rn · [b′, ϕ(c)]Rn · [ϕ(d), c′]Rn .

LetR1 be theM -guarded segment-E-swap between [b, c] and [b′, ϕ(c)]
in R.

This swap falls under the scope of Case 1 since M ≥ n, hence
R1 ≡<-inv FO

α R and ∀z ∈ R, tpM+1
R1

(z) = tpM+1
R (z). In R1, the

segment strictly between a and d′ can be decomposed as

[b′, ϕ(c)]Rn · [d, a′]Rn · [b, c]Rn · [ϕ(d), c′]Rn .

Hence we are in the conditions (since M ≥ s) to apply Lemma 4.3.5
in the case of the M -guarded contiguous-segment-E-swap between
[d, c] and [ϕ(d), c′] in R1.

We get R2 ≡<-inv FO
α R1. In R2, the segment strictly between a and

d′ can be decomposed as

[b′, ϕ(c)]Rn · [ϕ(d), c′]Rn · [d, a′]Rn · [b, c]Rn = [b′, c′]Rn · [d, a′]Rn · [b, c]Rn .

That is, R2 = R′, and we get R′ ≡<-inv FO
α R as desired.

• if a′, b′, c′, d′, ϕ(c), ϕ(d) appear in that order, i.e. the segment strictly
between a and ϕ(d) can be decomposed as

[b, c]Rn · [d, a′]Rn · [b′, c′]Rn · [d′, ϕ(c)]Rn .

LetR1 be theM -guarded segment-E-swap between [b, c] and [b′, ϕ(c)]
in R.

101

Chapter 4. Order-Invariant FO on Hollow Trees

This swap falls under the scope of Case 1 since M ≥ n, hence
R1 ≡<-inv FO

α R and ∀z ∈ R, tpM+1
R1

(z) = tpM+1
R (z). In R1, the

segment strictly between a and ϕ(d) can be decomposed as

[b′, c′]Rn · [d′, ϕ(c)]Rn · [d, a′]Rn · [b, c]Rn .

Hence we are in the conditions (since M ≥ s) to apply Lemma 4.3.5
in the case of the M -guarded contiguous-segment-E-swap between
[d′, ϕ(c)] and [d, c] in R1.

We get R2 ≡<-inv FO
α R1. In R2, the segment strictly between a and

ϕ(d) can be decomposed as

[b′, c′]Rn · [d, a′]Rn · [b, c]Rn · [d′, ϕ(c)]Rn .

That is, the segment strictly between a and d′ is

[b′, c′]Rn · [d, a′]Rn · [b, c]Rn .

Hence R2 = R′, and we get R′ ≡<-inv FO
α R as desired.

4.3.3 Pumping

The next operation makes use of the fact that < -inv FO ⊆ MSO over hollow
trees. Hence our hollow trees can be “pumped” in order to duplicate some of
their parts.

Proposition 4.3.11. ∀α, n, d ∈ N,∃M ∈ N,∀D ∈ N,
for every P,Q ∈ Hσ such that P ≡FO

M Q,
there exists Q′ ∈ Hσ such that

Q′ ≡<-inv FO
α Q and [[En+1(P)]] ≤Dd [[En+1(Q′)]] .

The proof is a pumping argument: by setting M large enough, we make
sure in FO that if a (n+ 1)-neighborhood type has more occurrences in P than
in Q, then it has enough occurrences in Q so that we can find a context in Q
containing at least one occurrence, and no occurrence of a rare type, such that
we can duplicate this context inside Q without changing its MSO-type.

Proof. Hollow trees have treewidth at most 2, hence Proposition 2.5.3 guaran-
tees that < -inv FO ⊆MSO on Hσ.

In particular, there is a β ∈ N such that ≡MSO
β subsumes ≡<-inv FO

α . We will

construct Q′ such that Q′ ≡MSO
β Q.

Let d′ > d be a number that will be specified during the proof. We choose
M large enough to make sure that every (n + 1)-neighborhood type has the
same number of occurrences in P and in Q up to a threshold d′ (this can be
expressed in FO).

We prove the proposition by induction on κ, where κ is the number of (n+1)-
neighborhood types τ such that |P|τ 6= |Q|τ and |Q|τ < |P|τ +D.

If κ = 0, there is nothing to do as Q′ := Q fits. Otherwise, let τ be such a
type. Notice that because P ≡FO

M Q we must have |Q|τ > d′.
There are two cases to consider.

102

4.4. Inclusion and pseudo-inclusion

• Suppose that there exists a thread in Q which contains at least l nodes
x1, x2, · · · , xl (in that order) having the same (n+ 1)-neighborhood type,
whose subtrees each contains at least one node of neighborhood type τ
in Q, and such that for every i < l, duplicating within the thread the
forest below [xi, xi+1[does not affect the ≡MSO

β of Q, where l is chosen
large enough so that there exists i < l such that the forest below [xi, xi+1[
doesn’t contain any occurrence of a (n + 1)-neighborhood type τ ′ such
that |Q|τ ′ ≤ d.

Then we construct Q′ from Q by duplicating the forest below [xi, xi+1[as
many times as necessary to have enough nodes of type τ . This decreases
κ and guarantees that Q′ ≡MSO

β Q and we can conclude by induction.

• Assume now that there is a chain for the ancestor relation x1, x2, · · · , xl
having the same (n+ 1)-neighborhood type such that each of the contexts
CP(xi, xi+1) (we use here the notations introduced for Lemma 4.6.4 to
denote the context between xi and xi+1, but they should be transparent
enough) contains at least one node of type τ and ∀i, j,SP(xi) ≡MSO

β SP(xj)
(the subtrees at xi and xj), where l is large enough to guarantee the
existence of some i < l such that CP(xi, xi+1) contains no node of any
neighborhood type τ ′ such that |Q|τ ′ ≤ d .
Let Q′ := PP(xi) · CP(xi, xi+1)k · SP(xi+1) (that is, we’ve duplicated k
times the context between xi and xi+1) with k large enough so we have
enough nodes of neighborhood type τ . We have Q′ ≡MSO

β Q and κ has
decreased by 1: we can conclude by induction.

It remains to fix d′ large enough so that one of the two cases above must
hold.

4.4 Inclusion and pseudo-inclusion

Recall that our ultimate goal is to show that if two hollow trees agree on the
same FO sentences of quantifier rank f(α) then they agree on all < -inv FO
sentences of quantifier rank α. For this, we will show that if P and Q are hollow
trees that agree on all FO sentences of quantifier rank f(α) then we can use
operations such as the swap operations described in Section 4.3 to transform Q
into P. As these operations preserve < -inv FO we get the desired result.

In this section we perform the first step towards transforming Q into P. We
show that using the swap operations we can transform Q into Q′ so that Q′
“includes” P. The resulting structure Q′ will be a hollow quasitree. In the next
sections we will continue the transformation and remove from Q′ all the extra
material it contains, deriving P.

In order to define what we mean by “inclusion” we need the notion of an n-
abstract context of a hollow quasitree. Intuitively this is an S-stable n-enriched
substructure. More formally, given a hollow quasitree T ∈ quasi-Hnσ and a set U
of its domain that is S-stable, then C := T|U , together with the function tpn(.)
that maps x ∈ U to its n-neighborhood type in T , is called an n-abstract con-
text denoted C = Ctxtn(T |U). The set of n-abstract contexts is denoted Ctxtnσ.
Note that tpn(x) denotes tpnT (x) and not tpnC(x). We need to remember, at least

103

Chapter 4. Order-Invariant FO on Hollow Trees

locally, how C was glued to the rest of T in order to preserve n-neighborhood
types when moving C to some other place.

We are now ready to define the notion of “inclusion”. We actually define
both “inclusions” and “pseudo-inclusions”. We will need to pseudo-include a
hollow quasitree into another (Proposition 4.4.2), and then to include an ab-
stract context into a hollow quasitree (Proposition 4.4.3). Since a hollow k-
quasitree T ∈ quasi-Hkσ can be seen as a k-abstract context (T = Ctxtk(T |T)),
we only need to define (pseudo-)inclusions from an abstract context into a hollow
quasitree.

Definition 4.4.1. Let k ∈ N, U ∈ Ctxtkσ and Q ∈ quasi-Hkσ. We say that
h : U → Q is a k-pseudo-inclusion if h is injective and for all x, y, z ∈ U the
following is verified:

1. tpkQ(h(x)) = tpk(x),

2. if x and y are in the same thread of U then h(x) and h(y) are also on the
same thread of Q and if moreover z ∈ [x, y] then h(z) ∈ [h(x), h(y)],

3. if U |= E(x, y) and t is the E-neighbor of h(x) in [h(x), h(y)] then t is
the image of y by an isomorphism (induced by the fact that they share the
same k-neighborhood type) between the k-neighborhood of x and that of
h(x).

If U |= E(x, y) and Q 6|= E(h(x), h(y)) then {x, y} is said to be a jumping
pair for h, and tpk−1

Q (h(x), t), where t is the E-neighbor of h(x) in [h(x), h(y)],

is called its type.2

A k-pseudo-inclusion is said to be reduced if there is at most one jumping
pair of a given type.

A k-pseudo-inclusion is called a k-inclusion if it has no jumping pairs, that
is if it preserves E.

The last condition of pseudo-inclusion is a complication induced by the fact
that E is not oriented and that we thus cannot distinguish between the two
siblings of a node. It ensures that h preserves the neighborhoods in the right
order. We can now state the main result of this section. Note that the pre-
condition that Q has more realizations for each neighborhood type than U or
P will not be a problem in view of Proposition 4.3.11. The second proposition
is stronger than the first one as it derives inclusion instead of pseudo-inclusion,
but it requires the stronger hypothesis that every occurring neighborhood type
has strictly more realizations in Q than in U .

Proposition 4.4.2. For every α,m ∈ N, there exists N ∈ N such that
for every P,Q ∈ quasi-HN+1

σ such that

[[EN+1(P)]] ≤ [[EN+1(Q)]] ,

there exists Q′ ∈ quasi-Hm+1
σ such that

Q′ ≡<-inv FO
α Q and [[Em+1(Q′)]] = [[Em+1(Q)]]

and there exists an (m+ 1)-pseudo-inclusion h from P into Q′.
2This is an ease of notation; to be more precise, we should make the type of a jumping

pair symmetrical.

104

4.4. Inclusion and pseudo-inclusion

Proposition 4.4.3. For every α,m ∈ N, there exists N ∈ N such that
for every U ∈ CtxtN+1

σ and every Q ∈ quasi-HN+1
σ such that

[[EN+1(U)]] < [[EN+1(Q)]] ,

there exists Q′ ∈ quasi-Hm+1
σ such that

Q′ ≡<-inv FO
α Q and [[Em+1(Q′)]] = [[Em+1(Q)]]

and such that U is (m+ 1)-included in Q′.
Recall that

[[EN+1(U)]] < [[EN+1(Q)]]

means that every (N + 1)-neighborhood type has more occurrences in Q than
in U .

Proof. We mainly focus on the proof of Proposition 4.4.2. We will then explain
how to modify the proof using the extra hypothesis in order to get inclusion
instead of pseudo-inclusion thus proving Proposition 4.4.3.

We modify Q using E-swaps in order to construct a pseudo-inclusion h from
P. This is done step by step, extending the domain of h thread by thread and,
inside each thread, from one of its endpoint to the other.

We distinguish between two kinds of threads of P. The short ones will be
easily taken care of as they can be completely described in first-order. The long
ones will require more work.

In view of Lemma 4.3.5, we assume that m ≥ s(α). We set n := 3m+ 3. We
will only perform swaps involving nodes at distance (along E) ≥ n −m from
the endpoints; hence, the “distant from endpoints” conditions of m-guarded
E-swaps will always be satisfied.

A thread is short if its length (the distance along E between its two end-
points) is at most 2(n−m). By taking N large enough, our hypothesis

[[EN+1(P)]] ≤ [[EN+1(Q)]]

guarantees that we can find an injective mapping from the short threads of P to
that of Q, which sends each short thread to one having an isomorphic (m+ 1)-
enrichment. We initialize h according to this mapping. It is clear that h is a
partial (m+ 1)-pseudo-inclusion mapping.

It remains to extend the domain of h to the long threads.
Let a be an endpoint of a long thread of P: segtypen−mm+1,P(a) denotes the

isomorphism type of the segment [a, b], where b is the element at distance n−m
of a in its thread, and every element is colored with its (m + 1)-neighborhood
type in P. By Endn−mm+1 (P) ≤ Endn−mm+1 (Q), we mean that every segtypen−mm+1,.(.)
has at least as many occurrences in Q as in P.

Let S̊n−mm+1 (P) be the restriction of Suppm+1(P) to elements that are at
distance > n−m from End(P).

Every intermediate structure Q′ will verify the following invariant:
Q′ ≡<-inv FO

α Q
[[Em+1(Q′)]] = [[Em+1(Q)]]

Endn−mm+1 (P) ≤ Endn−mm+1 (Q′) and h preserves segtypen−mm+1,.(.)

[[S̊n−mm+1 (P)]] ≤ [[S̊n−mm+1 (Q′)]]

(4.1)

105

Chapter 4. Order-Invariant FO on Hollow Trees

As long as N is large enough, the hypothesis guarantees that Q verifies (4.1).
Assume we have already constructed a partial (m + 1)-pseudo-inclusion h

from P to Q′ where Q′ verifies (4.1). We show that we can construct a new
hollow quasitree Q′′ ∈ quasi-Hm+1

σ verifying (4.1), using a sequence of E-swaps
applied to Q′ in such a way that h can be extended by at least one element of
P .

To this end, assume first that the domain of h is the union of a number of
threads, each contained in its entirety (this is the case at the beginning). Let
Im(h) denote the image of h. Let t be any thread of P not in the domain of h
and let x be an endpoint of t. We want to extend h in order for its domain to
contain x.

(4.1) ensures that there exists an endpoint y /∈ Im(h) of a long thread of
Q′ such that segtypen−mm+1,Q′(y) = segtypen−mm+1,P(x). We don’t modify Q′ and
extend h by sending every z ∈ [x, x′] to the corresponding h(z) ∈ [y, y′] (where
x′, y′ are the elements at distance n−m of x, y in their threads). Every z and
h(z) have the same (m+ 1)-neighborhood type, and h preserves E on [x, x′].

By construction, h is a partial (m+ 1)-pseudo-inclusion mapping as desired.

Suppose now that the domain of h contains a set of (entire) threads and
the initial segment of a thread t of P, that includes at least the points of t at
distance ≤ n − m from its endpoint in the domain of h. Let x′ be the last
element of t in the domain of h and x be the first element of t not in the domain
of h. In particular we have E(x′, x). Assume furthermore that x is at distance
greater than n−m from the other endpoint of t.

Since [[S̊n−mm+1 (P)]] ≤ [[S̊n−mm+1 (Q′)]], there must exist an element

y ∈ S̊n−mm+1 (Q′) \ Im(h)

having the same (m+ 1)-neighborhood type as x. Let y′ be the image of x′ by
an isomorphism between Nm+1

P (x) and Nm+1
Q′ (y), and let x̂ be the image of x

by an isomorphism between Nm+1
P (x′) and Nm+1

Q′ (h(x′)) .
By definition, tpmQ′(h(x′), x̂) = tpmQ′(y

′, y).
If y = x̂, leave Q′ unchanged and let h map x to x̂. Otherwise, there are

several cases to consider depending on the positions of y and y′.

1. If y is on a thread that does not intersect Im(h).

Let Q′′ be the m-guarded crossing-E-swap between h(x′)x̂ and y′y in
Q′. Extend h by setting h(x) to y (c.f. Figure 4.12, in which Im(h) is
represented as double lines).

h(x′) x̂

y′ y

•

◦

| | | |

| | | |
−→

h(x′) y

◦

•

| | | |

| | | |

Figure 4.12: An illustration of the progression in the (pseudo-)inclusion (case
1).

2. If y is between h(z) and h(z′) where z and z′ are consecutive node of the
current thread t already in the domain of h and such that y′ is between

106

4.4. Inclusion and pseudo-inclusion

h(z) and y (that is, they are in the right order for a segment-E-swap), c.f.
Figure 4.13.

Let u′ and u be the respective E-neighbors of h(z) and h(z′) in [h(z), h(z′)].
h being a pseudo-inclusion, tpmQ′(h(z), u′) = tpmQ′(u, h(z′)).

Let now Q′′ be the m-guarded segment-E-swap between [u′, y′] and
[h(z′), h(x′)] in Q′, and extend h by setting h(x) to y.

h(z)

u′

y′ y

u

h(z′) h(x′)

• ◦| | | | | | | | | | −→
h(z)

h(z′)

h(x′)

y

u′ y′

•◦| | | | | | | | | |

Figure 4.13: An illustration of the progression in the (pseudo-)inclusion (case
2).

3. If y is between h(z) and h(z′) where z and z′ are consecutive nodes of the
current thread t already in the domain of h and such that y′ is between y
and h(z′) (that is, they are not in the right order for a segment-E-swap),
c.f. Figure 4.14. This means that y, y′, h(x′), x̂ appear in that order.

Let R be the m-guarded mirror-E-swap at [y′, h(x′)] in Q′.
In R, h(z), u′, h(z′), u now appear in that order.

Let Q′′ be the m-guarded mirror-E-swap at [u′, h(z′)] in R and extend h
by setting h(x) to y.

h(z)

u′

y y′

u

h(z′) h(x′)

x̂
• ◦

⇁
| | | | | | | | | | −→

h(z)

u′ y

h(x′) h(z′)

u

y′

• ◦
↽

| | | | | | | | | |

−→
h(z)

h(z′) h(x′)

y

u′ u
◦•

⇁
| | | | | | | | | |

Figure 4.14: An illustration of the progression in the (pseudo-)inclusion (case
3).

4. If y is between h(z) and h(z′) where z and z′ are consecutive node in some
thread different from t already in the domain of h (c.f. Figure 4.15).

Let R be the m-guarded crossing-E-swap between y′y and h(x′)x̂ in Q′.
Let Q′′ be the m-guarded crossing-E-swap between h(z)u′ and uh(z′) in
R, and extend h by setting h(x) to y.

5. If y is on the same thread as h(x′), such that h(x′), x̂, y, y′ appear in that
order (c.f. Figure 4.16).

Then let Q′′ be the m-guarded mirror-E-swap at [x̂, y] in Q′ and extend
h by setting h(x) to y.

6. Finally if y is on the same thread as h(x′) but h(x′), x̂, y′, y appear in that
order.

This is the case where we cannot achieve inclusion without extra hypoth-
esis. For Proposition 4.4.2, we simply allow a “jump” and set h(x) to y
without changing Q′.

107

Chapter 4. Order-Invariant FO on Hollow Trees

h(z) y′ y h(z′)

h(x′) x̂

• ◦| | | | | | | |

| | | |
−→

h(z) u′

y u h(z′)h(x′)

•

◦

| | | | | |

| | | | | |

−→

h(z)

h(z′)

h(x′) y

◦ •

| | | |

| | | | | | | |

Figure 4.15: An illustration of the progression in the (pseudo-)inclusion (case
4).

h(x′) x̂ y y′

>>>| | | | | | −→
h(x′) y

<<<| | | | | |

Figure 4.16: An illustration of the progression in the (pseudo-)inclusion (case
5).

In the previous case analysis, in order to perform E-swaps, it was important
for x (and therefore y) to be far away from the endpoint e of t that is not
already in the domain of h. In order to conclude the proof of Proposition 4.4.3,
it remains to consider the case where x is at distance n−m from e.

By hypothesis, there exists an endpoint a outside of Im(h) of a long thread
such that segtypen−mm+1,Q′(a) = segtypen−mm+1,P(e). Let ξ be the isomorphism be-
tween [e, x] and [a, y], where y is the element at distance n − m of a in its
thread.

If a is not on the same thread as h(x′), let y′ be the E-neighbor of y not in
[y, a]. We let Q′′ be the m-guarded crossing-E-swap between h(x′)x̂ and y′y in
Q′ and extend h by setting h(u) to ξ(u) for all u in [x, e].

Otherwise, we don’t modify Q′ and simply extend h by setting h(u) to ξ(u)
for every u in [x, e]. Notice that there may be a jump between h(x′) and h(x).

This concludes the proof of Proposition 4.4.2. We now move to the proof of
Proposition 4.4.3.

We decompose U as P] V , where P is the union of the threads of U whose
endpoints were endpoints in the structure from which U is derived (that is, their
neighborhood type is a type of endpoint). We let P be (U)|P and proceed as
above with the threads of P.

It all works as above except for the two cases where we introduced a jump.
Consider again the situation of Case 6. Our extra cardinality hypothesis ensures
that there is a z 6= y verifying the same conditions as y (otherwise we would be
in a previous case). Assume without loss of generality that h(x′), y, z appear in
that order (c.f. Figure 4.17).. Set Q′′ to be the m-guarded contiguous-segment-
E-swap between [x̂, y′] and [y, z′] in Q′, and extend h by setting h(x) to y. h is
now an inclusion.

We also introduced a jump when extending h to the endpoint of some thread.
But the cardinality condition ensures that we have two endpoints a1 6= a2

108

4.4. Inclusion and pseudo-inclusion

h(x′) x̂ y′ y z′ z
• ◦| | | | | | | | −→

h(x) y z
◦ •| | | | | | | |

Figure 4.17: An illustration of the progression in the inclusion (case 6, for
Proposition 4.4.3).

outside of Im(h) such that

segtypen−mm+1,Q′(a1) = segtypen−mm+1,Q′(a2) = segtypen−mm+1,P(e) .

Hence at least one of them is on a different thread than h(x′) and the procedure
described above yields an inclusion.

In order to conclude the proof of Proposition 4.4.3 it remains to extend the
domain of h to V . This done in the exact same way but, as the threads of V
may not include the endpoints, it gives rise to new cases. We use the same
notations. Let t be the thread under investigation and let u be its first element
in V . Note that u doesn’t have to be an endpoint of t.

The first difference is in Case 6: it may be the case that there is no z verifying
the same conditions as y. In this case, and if no previous case is applicable, it
must be the case that such a z appear “before” h(u): that is, z, h(u), h(x′), y
appear in that order. There are now two possibilities:

• as described in Figure 4.18, z′, z, h(x′) are in that order, where z′ is the
image of x′ by an isomorphism mapping the neighborhood of x to that of
z. Then set Q′′ to be the m-guarded contiguous-segment-E-swap between
[z, h(x′)] and [x̂, y′] in Q′, and extend h by setting h(x) to y.

z′ z h(u) h(x′)

x̂

y′ y

� • ◦ ♦| | | | | | | | | −→
z′ x̂ y′ z h(u) h(x′)

y
� ◦ • ♦| | | | | | | | |

Figure 4.18: An illustration of the progression in the inclusion of V, first com-
pletion of case 6.

• otherwise, z, z′, h(x′) appear in that order (c.f. Figure 4.19).

Set Q′′ to be the m-guarded mirror-E-swap at [z′, h(x′)] in Q′, and extend
h by setting h(x) to z. Notice that we have “reversed” the direction on
the inclusion of the current thread but this isn’t an issue since E is not
oriented.

z z′ h(u) h(x′)

x̂
• ≫ ◦

⇁
| | | | | | | −→

z

h(u)h(x′) z′ x̂
• ≪ ◦

↽
| | | | | | |

Figure 4.19: An illustration of the progression in the inclusion of V, second
completion of case 6.

The second difference is that it is now possible that none of the cases de-
scribed above are applicable. In that situation, there must exist two nodes y

109

Chapter 4. Order-Invariant FO on Hollow Trees

and z “before” h(u) having the same neighborhood type as x. If at least one
of them (say z) is in reverse order (i.e. z, z′, h(x′) appear in that order, c.f.
Figure 4.19) we proceed exactly as before.

Otherwise, it means that we can set Q′′ to be (assuming without loss of
generality that y, z, h(x′) appear in that order, c.f. Figure 4.20) the m-guarded
contiguous-segment-E-swap between [y, z′] and [z, h(x′)] in Q′ and extend h by
setting h(x) to y.

y z′ z h(u) h(x′)

� • ◦ ♦| | | | | | | | | −→
z h(u) h(x′)y z′

� ◦ • ♦| | | | | | | | |

Figure 4.20: An illustration of the progression in the inclusion of V, if no previous
case is applicable.

4.5 Tools for reorganizing S-edges

In the previous section, we have seen how to “rewrite” Q using E-swap opera-
tions in order to pseudo-include P into the resulting quasitree. By definition,
the pseudo-inclusion h of P into Q respects the enriched support but can be
completely wild relatively to the S-edges. For instance, in Q, the endpoints
of a thread may not have the same S-parent. In this section we show how to
use S-swaps in order to ensure that our pseudo-inclusion mapping takes into
account (to various degrees) the S-edges. We say that two nodes of a quasitree
are S-siblings if they share the same S-parent.

In Section 4.5.1, we show how to make sure that the pseudo-inclusion respects
the S-siblings relation. In Section 4.5.2 we show how to ensure that the image
of a pseudo-inclusion is S-stable. S-stability is required to define and operate
on the loops, as will be established in Section 4.6.

4.5.1 S-siblings re-association

The following lemma shows how to modify a pseudo-inclusion in order for it
to preserve the S-siblings relation. Note that it doesn’t necessarily mean that
the image structure has the matching endpoint property because the initial
structure itself may not have this property as it is derived from a quasitree.

Lemma 4.5.1. ∀α,m ∈ N,∃N ∈ N such that
for every W ∈ CtxtNσ and Q ∈ quasi-HNσ , if h : W → Q is an N -pseudo-

inclusion,
then there exists some Q′ ∈ quasi-Hm+1

σ and some (m+ 1)-pseudo-inclusion
h′ : W → Q′ such that

Q′ ≡<-inv FO
α Q and Suppm+1(Q′) ' Suppm+1(Q)

and such that if x and y are S-siblings in W, then so are h′(x) and h′(y) in Q′.

Proof. We can assume that m ≥ s(α). N is to be fixed later, and will chosen
such that 2N ≥ 2(2m+ 3) + 1.

110

4.5. Tools for reorganizing S-edges

Let (x1, y1), · · · , (xr, yr) denote all the pairs of endpoints of threads of length
≤ 2N − 1 of W (they must be S-siblings), and let (xr+1, yr+1), · · · , (xs, ys)
denote the other pairs of S-siblings of W, in an arbitrary order.

We are going to construct a sequence of structures

Q = Qr ≡<-inv FO
α · · · ≡<-inv FO

α Qs

of same (m+ 1)-enriched support, and functions fr, · · · , fs such that:

• fi (m+ 1)-pseudo-includes W in Qi

• ∀j ≤ i, fi(xj) and fi(yj) are S-siblings in Qi

• ∀j > i, let z be the S-sibling of fi(xj) in Qi. Let Z (resp. Y) be the
element at distance 2m + 3 of z (resp. fi(yj)) in Supp0(Qi) (Z and Y
exist since their threads are of length ≥ 2N).

Then Suppm+1(Qi)|[z,Z] ' Suppm+1(Qi)|[fi(yj),Y].

For i = r, set Qr := Q and fr := h. Note that threads of Q of length at
most 2N − 1 must have matching endpoints. N is chosen large enough so that
the last property holds - N := 2 + (2m+ 3) + (m+ 1) is enough.

Assume now that we have constructed Qi and fi as required. If fi(xi+1) and
fi(yi+1) are S-siblings in Qi, set Qi+1 := Qi and fi+1 := fi.

Otherwise, let z be the S-sibling of fi(xi+1), Z (resp. Y) be the element at
distance 2m + 3 of z (resp. fi(yi+1)) in Supp0(Qi), and Z ′ (resp. Y ′) be the
element at distance 2m + 4 of z (resp. fi(yi+1)) in Supp0(Qi). We know that
Suppm+1(Qi)|[z,Z] ' Suppm+1(Qi)|[fi(yi+1),Y] (witnessed by an isomorphism
φ).

In particular, tpmQi(Z,Z
′) = tpmQi(Y, Y

′), and {Y, Y ′, Z, Z ′} and End(Qi) are
(2m+ 3)-distant in Supp0(Qi) by choice of N .

We distinguish between two cases:

• if Y, Y ′ and Z,Z ′ are in different threads.

Let Qi+1 be the m-guarded crossing-E-swap between ZZ ′ and Y Y ′ in Qi
(c.f. Figure 4.21).

fi(xi+1)

Y ′ Y fi(yi+1)

Z′ Z z

♦
2m+ 3

♦

◦

•

| |

| | | |

| | | |

−→

fi+1(xi+1) = fi(xi+1)

Z′ Y fi(yi+1)

Y ′ Z fi+1(yi+1) = z

♦

♦

•

◦

| |

| | | |

| | | |

Figure 4.21: After the m-guarded crossing-E-swap between ZZ ′ and Y Y ′ in
Qi, fi+1(xi+1) and fi+1(yi+1) are S-siblings.

• if Y, Y ′ and Z,Z ′ are in the same thread.

Let Qi+1 be the m-guarded mirror-E-swap at [Z ′, Y ′] in Qi (c.f. Fig-
ure 4.22).

111

Chapter 4. Order-Invariant FO on Hollow Trees

fi(xi+1)

fi(yi+1) Y Y ′ Z′ Z z
♦ ♦

2m+ 3
>>>

| |

| | | | | |
−→

fi+1(xi+1)

fi(yi+1) Y Z′ Y ′ Z fi+1(yi+1) = z

♦ ♦<<<

| |

| | | | | |

Figure 4.22: After the m-guarded mirror-E-swap at [Z ′, Y ′] in Qi, fi+1(xi+1)
and fi+1(yi+1) are S-siblings.

In both cases, we define fi+1 as Φ◦fi where Φ the permutation of Qi defined
as φ on [z, Z], φ−1 on [fi(yi+1), Y], and the identity elsewhere.

Lemma 4.3.5 guarantees that in both cases, Qi+1 ≡<-inv FO
α Qi and, to-

gether with the invariant Suppm+1(Qi)|[z,Z] ' Suppm+1(Qi)|[fi(yi+1),Y], that
Suppm+1(Qi+1) ' Suppm+1(Qi).

Furthermore, fi+1(xi+1) and fi+1(yi+1) are S-siblings, and it is straightfor-
ward to see that fi+1 is a (m+1)-pseudo-inclusion, and that the other conditions
are still respected.

In the end, Q′ := Qs and h′ := fs fit.

A particular case of the previous lemma is when W is a hollow tree and h
is surjective: then Q′ has the matching endpoints property. This result will be
useful in the proof of Proposition 4.6.8.

4.5.2 S-stabilization

We will often need to state that several sets are far from each other. To this end
we introduce the notion of scattering, which is a compact way of saying that.
For a subset A of a structure R whose vocabulary contains the binary relation
S, define R\S(A) to be R minus all the S-edges adjacent to any element of A.
If A = {z}, we note R \ S(z) instead of R \ S({z}).

Definition 4.5.2. Let A1, · · · , Ak, B be subsets of R, and δ ∈ N.
We say that A1, · · · , Ak are δ-scattered wrt. B if A1, · · · , Ak, B are pair-

wise δ-distant in R \ S(A1 ∪ · · · ∪Ak).

The following lemma will be useful in a couple of proofs. It gives a setting
in which we can apply simultaneous crossing-S-swaps.

Lemma 4.5.3. Let α, s ∈ N, m ≥ s(α),R ∈ quasi-Hm+1
σ , and let

a1, a
′
1, a
′′
1 , b1, b

′
1, b
′′
1 , · · · , as, a′s, a′′s , bs, b′s, b′′s ∈ R

be distinct elements such that, for every i,

• a′i, a′′i (resp. b′i, b
′′
i) are the S-children of ai (resp. bi)

• tpmR(ai, a
′
i, a
′′
i) = tpmR(bi, b

′
i, b
′′
i)

and let
B ⊇ {b1, b′1, b′′1 , · · · , bs, b′s, b′′s}

be such that {a1}, · · · , {as}, B are pairwise (2m+ 5)-distant.

112

4.5. Tools for reorganizing S-edges

Let R′ be R where all the S(ai, a
′
i), S(ai, a

′′
i), S(bi, b

′
i) and S(bi, b

′′
i) have

been replaced by S(ai, b
′
i), S(ai, b

′′
i), S(bi, a

′
i) and S(bi, a

′′
i). In other words, R′

is the simultaneous crossing-S-swap between every ai and bi in R.
Then

• R′ ≡<-inv FO
α R,

• Suppm+1(R′) = Suppm+1(R) (in particular, R′ ∈ quasi-Hm+1
σ),

• and {a1}, {a′1, a′′1}, · · · , {as}, {a′s, a′′s} are m-scattered wrt. B in R′.

Proof. Recall from Note 4.3.3 that 2m+5 provides a sufficient distance condition
to apply an m-guarded crossing-S-swap.

We construct a sequence of structures

R = R0 ≡<-inv FO
α · · · ≡<-inv FO

α Rs

having the same (m+1)-enriched support, whereRi is the simultaneous crossing-
S-swap between aj and bj in R for every j ≤ i.

Let’s show by induction that for every i, Ri verifies (Pi):

1. {ai+1}, · · · , {as}, B are pairwise (2m+ 5)-distant

2. {a1}, {a′1, a′′1}, · · · , {ai}, {a′i, a′′i } are m-scattered wrt. B.

R verifies (P0). Suppose that we have constructed Ri and let Ri+1 be
the m-guarded crossing-S-swap between ai+1 and bi+1 in Ri: (Pi).1 ensures
that distRi(ai+1, bi+1) ≥ 2m + 5. Lemma 4.3.4 gives Ri+1 ≡<-inv FO

α Ri and
Suppm+1(Ri+1) = Suppm+1(Ri). Let’s show that Ri+1 verifies (Pi+1):

(Pi+1).1 holds since the (2m + 4)-neighborhoods of the (aj)j>i+1 haven’t seen
any change, because of (Pi).1.

(Pi+1).2 : Let R−i denote Ri \ S({a1, a
′
1, a
′′
1 , · · · , ai, a′i, a′′i }).

Let R−i+1 denote Ri+1 \ S({a1, a
′
1, a
′′
1 , · · · , ai+1, a

′
i+1, a

′′
i+1}).

Let x, y ∈ {a1}∪{a′1, a′′1}∪· · ·∪{ai}∪{a′i, a′′i } be elements of two different
sets.

(Pi).2 entails that x and y are each at distance ≥ m in R−i from each other
and from B, and (Pi).1 implies (since x and y are at distance 1 of B) that
they are at distance ≥ m in Ri (hence in R−i) from {ai+1, a

′
i+1, a

′′
i+1}.

Hence, the swap doesn’t affect their m-neighborhoods in R−i , and they
are still at distance at least m from each other and from B in

Ri+1 \ S({a1, a
′
1, a
′′
1 , · · · , ai, a′i, a′′i })

hence in R−i+1.

Let a ∈ {ai+1, a
′
i+1, a

′′
i+1} and b ∈ B. A path in R−i+1 of length ≤ m − 1

from a to b or from a to x doesn’t go through the new S-edges, hence
is valid in Ri and contradicts (Pi).1 (in the second case, because x is at
distance 1 from B in Ri).

113

Chapter 4. Order-Invariant FO on Hollow Trees

This entails distR−i+1
(a, b) ≥ m and distR−i+1

(a, x) ≥ m.

It remains to show that distR−i+1
(ai+1, a

′
i+1) ≥ m (and similarly for ai+1

and a′′i+1).

Suppose that there is a path of length ≤ m − 1 in R−i+1 from ai+1 to

a′i+1. This path is valid in R−i . Hence, there would be a “vertical loop”

in NRim+1(ai+1), contradicting Ri ∈ quasi-Hm+1
σ .

We set R′ := Rs, which has the desired properties.

The image of a pseudo-inclusion has no reason to be S-stable, thus neither
has its complement. However, this is a crucial requirement to apply the results
presented in the next section, Section 4.6, in order to remove the extra material
not in the image of the pseudo-inclusion.

The next result provides a method to ensure that the image (and its com-
plement) of a pseudo-inclusion is S-stable.

Recall that a pseudo-inclusion is said to be reduced if there is at most one
jumping pair of a given type. At the end of this process, we get a reduced
pseudo-inclusion, which will allow us to minimize the complement of its image
in Section 4.6.1.

Proposition 4.5.4. For every α,m ∈ N, there exist N, d,D ∈ N such that
for every P ∈ Hσ and Q ∈ quasi-HN+1

σ such that

[[EN+1(P)]] ≤Dd [[EN+1(Q)]]

and such that P is (N + 1)-pseudo-included in Q through some h,
there exist h′ and Q′ ∈ quasi-Hm+1

σ where

Q′ ≡<-inv FO
α Q and Suppm+1(Q′) ' Suppm+1(Q)

and where h′ is a reduced (m+ 1)-pseudo-inclusion of P in Q′ such that

Q′ \ Im(h′) is S-stable in Q′ .

Proof. The idea of the proof is to consider all the pairs of elements x, y which
break the S-stability of Im(h), i.e. such that S(x, y), x ∈ Im(h) and y 6∈ Im(h).
If there are many of them, then at least two of them are far from each other
and we can apply a crossing-S-swap to correct the mapping h. We end up with
a bounded number of problematic pairs that can be corrected separately.

We can assume that m ≥ s(α). We will first provide a non-necessarily
reduced (m′+1)-pseudo-inclusion verifying those conditions, with m′ := 2m+3,
and then modify it as well as the underlying structure to get a fitting reduced
(m+ 1)-pseudo-inclusion.

For every n ∈ N (we will assign a value to n later on), there is an N
such that, under the hypothesis, Lemma 4.5.1 yields R ≡<-inv FO

α Q such that
Suppn+2(R) ' Suppn+2(Q) and g which (n + 2)-pseudo-includes P in R and
respects the S-siblings relation; we denote by V the complement of Im(g) in Q.

114

4.5. Tools for reorganizing S-edges

This implies that two nodes having the same S-parent are both either in Im(g)
(and are the two endpoints of the same thread) or in V .

We say that z ∈ V is misassociated if its S-children are in Im(g). Likewise,
we say that g(x) is misassociated if its S-children are in V . The (n+ 2)-type of
this element is called the type of the misassociation. Note that the number of
misassociations in V and in Im(g) is the same.

First, we deal with all but a bounded number of misassociations. There
exists an M (which depends only on n) such that, if there are more than 2M
misassociations, then we can find a misassociated element of V and one of Im(g)
that have the same type, and are at distance ≥ 2(n+ 1) + 5 from one another:
this is because a hollow quasitree has degree at most 4. We can solve these
misassociations by a (n+1)-guarded crossing-S-swap, according to Lemma 4.3.4
and Note 4.3.3, which preserves Suppn+2(R).

Once we’ve done that, we’re left with at most M misassociations in V , and
the same number in Im(g). Let (z1, g(x′1), g(x′′1)), · · · , (zr, g(x′r), g(x′′r)) be an
arbitrary enumeration of the misassociated elements of V , together with their
S-children (recall that x′i and x′′i are S-siblings in P, and let xi be their S-
parent).

Fix i between 1 and r. There exists a sequence xi = x1
i , · · · , x

si
i of elements

of P , such that, if we name x′ji and x′′ji the S-children of xji in P, for every j,

g(xji) is the S-parent of g(x′j+1
i) and g(x′′j+1

i), and g(xsii) is misassociated ; let
z′i, z

′′
i ∈ V be its S-children, and rename yi := xsii for ease. This sequence is

represented in Figure 4.23.

V

Im(g)

V•
zi

•
g(x1i)

•
g(x2i)

•
g(xsii) = g(yi)

g(x′1i) g(x′′1i)g(x′2i) g(x′′2i)g(x′sii) g(x′′sii) z′i z′′i

· · ·

Figure 4.23: From zi to (z′i, z
′′
i).

For every j,
tpn+2
P (x′j+1

i) = tpn+2
R (g(x′j+1

i)) ,

hence
tpn+1
P (xj+1

i) = tpn+1
R (g(xji)) ,

which in turn implies that

tpn+1
R (g(xj+1

i)) = tpn+1
R (g(xji)) .

For the same reason, we have that tpn+1
R (zi) = tpn+1

R (g(x1
i)). In the end, we

get
τi := tpn+1

R (zi) = tpn+1
R (g(yi)) .

Let B be the set containing the zi, the g(yi), for 1 ≤ i ≤ r, and their
S-children.

Since we’ve bounded r by M and R is of degree 4, we can choose d and D
large enough so that we are able to find t1, · · · , tr ∈ V and u1, · · · , ur ∈ Im(g),

115

Chapter 4. Order-Invariant FO on Hollow Trees

with respective S-children t′i, t
′′
i and u′i, u

′′
i , such that ti and ui are of neighbor-

hood type τi (since zi ∈ V is of type τi, there must be at least d elements of
this type in Im(g) and D in V), and such that {t1}, · · · , {tr}, {u1}, · · · , {ur}, B
are pairwise (2n+ 5)-distant in R.

We can apply Lemma 4.5.3 with

• s := 2r

• (a1, · · · , as) := (t1, · · · , tr, u1, · · · , ur)

• (b1, · · · , bs) := (z1, · · · , zr, g(y1), · · · , g(yr)) .

This ensures that R′ (which is the simultaneous crossing-S-swaps between
zi and ti and crossing-S-swaps between g(yi) and ui) is such that

R′ ≡<-inv FO
α R and Suppn+1(R′) = Suppn+1(R) .

Furthermore, {t1}, {t′1, t′2}, {u1}, {u′1, u′′1}, · · · , {tr}, {t′r, t′′r}, {ur}, {u′r, u′′r} are
n-scattered wrt. B in R′.

Note that we haven’t added any new misassociated element in the process:
the only misassociated elements in R′ are now the ti and the ui.

Choose retrospectively n := 2m′ + 5.
Let’s show that {t1}, · · · , {tr}, {u1}, · · · , {ur} are pairwise (2m′+ 5)-distant

in R′.
Let x, y be distinct elements among them, and let’s prove that

distR′(x, y) ≥ 2m′ + 5 .

Suppose that’s false, and consider a shortest path from x to y. It cannot be
valid in R, hence it must go though at least one new S-edge, and the first one
must be S(x, x′), with x′ being either z′i or z′′i (if x = ui) or g(x′i) or g(x′′i) (if
x = ti) for some i.

The only way to reach y from x′ in less than 2m′+4 is through an S-children
y′ of y.

Now, x 6= y, hence distSupp0(R′)(x
′, y′) ≥ 2m′ + 3 (either they are endpoints

of two different threads, either the thread they’re both in doesn’t have the
matching endpoint property, which ensures that it is of length > 2n + 1). We
can thus apply Lemma 4.3.9, which states that the path of length ≤ 2m′ + 3
from x′ to y′ must go through either x or y. This contradicts the minimality
hypothesis.

We can proceed to the sequence of m′-guarded crossing-S-swap between ui
and ti in R′ for every i.

After the r swaps, we end up with R′′ ≡<-inv FO
α Q, such that

Suppm′+1(R′′) ' Suppm′+1(Q)

and with no misassociation left wrt. g.

If the pseudo-inclusion g isn’t reduced, we reduce it by eliminating one by
one its redundant jumping pairs.

Seeing g as an m-pseudo-inclusion, we get that nodes involved in a jumping
pair are at distance ≥ 2m+ 3 from the endpoints in Supp0(R′′).

116

4.5. Tools for reorganizing S-edges

Let {x, x′} and {y, y′} be two jumping pairs with the same type, and u′, u
(resp v′, v) be the E-neighbors of g(x), g(x′) (resp. g(y), g(y′)) in [g(x), g(x′)]
(resp. [g(y), g(y′)]). We have that

tpmR′′(g(x), u′) = tpmR′′(u, g(x′)) = tpmR′′(g(y), v′) = tpmR′′(v, g(y′)) .

If their images are on two different threads (c.f. Figure 4.24), we can perform
twom-guarded crossing-E-swaps: first, them-guarded crossing-E-swap between
g(x)u′ and vg(y′) in R′′, and then the m-guarded crossing-E-swap between
g(x)g(y′) and ug(x′) in the previous swap, after which {x, x′} is no longer a
jumping pair.

g(x) u′ u g(x′)

g(y) v′ v g(y′)

•

◦

| | | | | |

| | | | | |
−→

g(x)

g(y′)

g(y) u g(x′)

◦ •

| | | |

| | | | | | | |

−→

g(x)

g(x′)

g(y) g(y′)

◦ •

| | | |

| | | | | | | |

Figure 4.24: Elimination of a jumping pair among two, in different threads.

If their images appear on the same thread in the order g(y), g(y′), g(x), g(x′)
(c.f. Figure 4.25), we can perform the m-guarded contiguous-segment-E-swap
between [v′, g(x)] and [u′, u] in R′′, after which {x, x′} is no longer a jumping
pair.

g(y)

v′

g(y′) g(x)

u′ u

g(x′)

• ◦| | | | | | | | | | −→
g(y) g(y′) g(x)

g(x′)
◦ •| | | | | | | | | |

Figure 4.25: Elimination of a jumping pair among two, with a contiguous-
segment-E-swap.

Otherwise, we can assume as in Figure 4.26 that the images appear in the
order g(y), g(y′), g(x′), g(x). We can perform two consecutivem-guarded mirror-
E-swaps: first the m-guarded mirror-E-swap at [v′, g(x′)] in R′′, and then (in
order to reverse again the segment [g(y′), g(x′)] into the initial direction) the
m-guarded mirror-E-swap at [g(x′), u′] in the previous swap, after which {x, x′}
is no longer a jumping pair.

In the end, we get Q′ ≡<-inv FO
α Q, such that Suppm+1(Q′) ' Suppm+1(Q),

and a reduced h′ that (m+ 1)-pseudo-includes P in Q′. Notice that during the
transformation from g (which was misassociation-free) to h, we never created
any misassociation. Hence, Q′ \ Im(h′) is S-stable.

117

Chapter 4. Order-Invariant FO on Hollow Trees

g(y)

v′

g(y′) g(x′) g(x)

• ◦
⇁

| | | | | | | | | | −→
g(y)

g(x′) g(y′)

u′

g(x)

• ◦
↽

| | | | | | | | | |

−→
g(y) g(y′) g(x′)

g(x)
•◦

⇁
| | | | | | | | | |

Figure 4.26: Elimination of a jumping pair among two, with two mirror-E-
swaps.

4.6 Removing unnecessary material

In this section we show how to remove the material in Q that is not present in
the image of the pseudo-inclusion of P. From the previous section we can assume
that the pseudo-inclusion mapping preserves the S-siblings relation and that its
image is S-stable. The remaining part ofQ is then a union of “loops” in the sense
that they connect nodes that have the same neighborhood type. After defining
properly the notion of loop, we will use in Section 4.6.1 a pumping argument in
order to reduce the size of the loop to some constant while preserving ≡<-inv FO

α .
In Section 4.6.2 we then show how to remove small loops without affecting the
order-invariant equivalence class. Finally, in Section 4.6.3 we show that if a
hollow tree and a hollow quasitree have the same enriched support, then they
are ≡<-inv FO

α : this concludes the proof of Theorem 4.2.1.

We start with the definition of an abstract loop.
Let n ∈ N. Let Typenσ[2] denote the set of (n − 1)-neighborhood types for

pairs over the vocabulary Pσ ∪{E,S}, of degree ≤ 4. Let Σn be the vocabulary
enriching Pσ∪{E,S} with two unary symbols J1

τ and J2
τ for every τ ∈ Typenσ[2].

Let h be a reduced n-pseudo-inclusion from P ∈ Hσ to Q ∈ quasi-Hnσ, such
that V := Q \ Im(h) is S-stable.

Let Q+ be an extension of Q to Σn obtained in the following way. Since h is
reduced, for every τ ∈ Typenσ[2], there is at most one jumping pair of type τ . If
there isn’t, J1

τ and J2
τ are interpreted as the empty set. Else, let {x, x′} be this

pair, and u′ (resp. u) be the E-neighbor of h(x) (resp. h(x′)) in [h(x), h(x′)].
Interpret J1

τ as {h(x), u′} and J2
τ as {h(x′), u} (the assignments x 7→ 1 and

x′ 7→ 2 are arbitrary). This is illustrated on the left part of Figure 4.27, where
the double line represents Im(h). We say that Q+ is a h-jump-extension of
Q.

We define V+ = Ctxtn(Q+|V) as the extension of Ctxtn(Q|V) to Σn where
every J iτ is defined consistently with Q+ (i.e. ∀x ∈ V,V+ |= J iτ (x) iff Q+ |=
J iτ (x)). This process is illustrated in Figure 4.27. V+ is called an n-abstract
loop. Let Lnσ be the set of n-abstract loops.

Every Σn-structure will have a ’+’ symbol in its name. When we omit it, we
mean the reduction of the structure to Pσ ∪{E,S} (for instance, from V+ ∈ Lnσ,
we get V := Ctxtn(Q|V) ∈ Ctxtnσ).

Let W+ ∈ Lnσ, and g be an n-inclusion from W to some R ∈ quasi-Hnσ.
Let R+ be an extension of R to Σn obtained in the following way. For every

τ ∈ Typenσ[2], and i ∈ {1, 2}, such that there exists (a unique) xiτ ∈W such that
W+ |= J iτ (xiτ), J iτ is interpreted in R+ as {g(xiτ), yiτ}, where yiτ /∈ Im(g) and
E(g(xiτ), yiτ). The existence and unicity of such yiτ is guaranteed. This process

118

4.6. Removing unnecessary material

h(x) h(x′)
| | | | | |

| |

|
J1
τ J2

τ

| |

| |

|
J1
τ J2

τ

Figure 4.27: Example of a h-jump-extension Q+ of Q (on the left), and its
associated abstract loop V+ of support V := Q \ Im(h) (on the right).

is depicted in Figure 4.28. Every other J iτ is interpreted as the empty set. We
say that R+ is the g-border-extension of R.

g(x1τ) g(x2τ)

| | | | | |

| |

|

−→

| | | | | |

| |

|
J1
τ J2

τ

Figure 4.28: From an inclusion g (double line) of the previous V in R to the
g-border-extension R+.

Let In be the FO-interpretation from the vocabulary Σn to Pσ ∪ {E,S},
which adds an E-edge between a and b if a 6= b, J iτ (a) and J iτ (b) for some
i ∈ {1, 2} and τ , and then forgets about the (J iτ)(i,τ). Every In has arity 1 and

depth 0. Hence for every k ∈ N and Σn-structures A and B, A ≡<-inv FO
k B

entails In(A) ≡<-inv FO
k In(B).

4.6.1 Loop minimization

It will be crucial to bound the size of the loops left by a pseudo-inclusion. The
following result does this using a simple pumping argument.

Proposition 4.6.1. For every α, n ∈ N, there exists N ∈ N such that
for every P ∈ Hσ, Q ∈ quasi-Hnσ and for every reduced n-pseudo-inclusion

h : P → Q, such that V := Q \ Im(h) is S-stable,
there exists Q′ ∈ quasi-Hnσ and a reduced n-pseudo-inclusion h′ : P → Q′

such that

Q′ ≡<-inv FO
α Q

and such that U := Q′ \ Im(h′) is S-stable and |U | ≤ N .

Proof. For every equivalence class C of ≡<-inv FO
α on Lnσ, pick a representative

UC+. Now, set N := max{|UC+| : C equivalence class for ≡<-inv FO
α }. N is well

defined since ≡<-inv FO
α is of finite index.

Let Q+ be a h-jump-extension of Q.
Let U+ be the representative of the class of V+ := Ctxtn(Q+|V).

119

Chapter 4. Order-Invariant FO on Hollow Trees

Since V is S-stable in Q,

Q+ \ {E(h(x), u′), E(u, h(x′)) : {x, x′} jumping pair}

can be decomposed as V+]R+ for some Σn-structure R+.
Note that Q = In(V+] R+). We set Q′ := In(U+] R+) and h′ := h (this

makes sense since R = Im(h)).
By definition of U+,

U+]R+ ≡<-inv FO
α V+]R+ .

Applying In yields
Q′ ≡<-inv FO

α Q .

It remains to show that h′ is an n-pseudo-inclusion. Every thread of P is
still sent on a single thread: indeed, for every jumping pair {x, x′} for h, h′(x)
and h′(x′) lie on the same thread. This is because in U+ ∈ Lnσ.

All that’s left to prove is that for every a ∈ R, tpnQ′(a) = tpnQ(a). This
follows from the fact that for every τ and i ∈ {1, 2}, the element of U+ colored
with J iτ and the element of V+ coloured with J iτ (if they exist) have the same
n-neighborhood type, once again because U+ ∈ Lnσ.

4.6.2 Loop elimination

It now remains to get rid of the small loops. This is a consequence of the
“aperiodicity” of < -inv FO: we cannot distinguish in < -inv FO between k and
k + 1 copies of the same object if k is sufficiently large. Starting from a small
loop, we can use the inclusion results of Section 4.4 to recreate many copies of
the loop within Q, then, according to the following proposition, get rid of one
copy using aperiodicity.

We now turn to loop elimination.
Our goal is to get rid of the extra material found outside of the image of

the pseudo-inclusion. For that, we make sure it is S-stable (Proposition 4.5.4),
we minimize it (Proposition 4.6.1), then we include (Proposition 4.4.3) a great
number a times this loop in Q. However, to be able to remove a copy while
staying in the same ≡<-inv FO

α -class, we need to recreate every of these loops
to the original cape we included: recall indeed that the inclusion preserves the
E-edges, but not necessarily the S-edges.

The following lemma gives a method to modify the including structure so
that the pseudo-inclusion respects S-edges.

Lemma 4.6.2. ∀α, n, ∃N, ∀M,∃D ∈ N such that
for every ∀Q ∈ quasi-HN+1

σ and ∀W ∈ CtxtN+1
σ such that |W | ≤M , and

for every (N + 1)-inclusion h : W → Q such that for every (N + 1)-
neighborhood type τ that occurs in W, there are at least D elements of type
τ in Q \ Im(h),

there exist some Q′ ∈ quasi-Hnσ and some g that n-includes W into Q′ such
that

Q′ ≡<-inv FO
α Q and Suppn(Q′) ' Suppn(Q)

and
W |= S(x, y) → Q′ |= S(g(x), g(y)) .

120

4.6. Removing unnecessary material

Proof. We can assume that n ≥ s(α). We’ll assign values to m and N later on,
in that order.

Keep in mind from Note 4.3.3 that a crossing-S-swap is guarded as long as it
happens between elements of same neighborhood type that are distant enough.
First, we re-associate the S-edges going in/out of the images of every S-parent
and S-child. The hypothesis on the number of excess occurrences of every
neighborhood type allows us to scatter their S-neighbors across the including
structure. Recall that we introduced the notion of scattering in Definition 4.5.2.

Let’s enumerate arbitrarily as (x1, x
′
1, x
′′
1), · · · , (xr, x′r, x′′r) the elements of

W such that S(xi, x
′
i) ∧ S(xi, x

′′
i) ∧ x′i 6= x′′i .

First, we use Lemma 4.5.1 to find R ≡<-inv FO
α Q such that

Suppm+1(R) ' Suppm+1(Q)

and g such that g : W → R is an (m + 1)-pseudo-inclusion that respects the
S-siblings relation, for some m to be specified later on. This sets the value for
N .

Let B := {b1, b′1, b′′1 , · · · , bs, b′s, b′′s} be such that b′i, b
′′
i are the S-children of

bi and ∀i ≤ r, ∃j, k ≤ s, g(xi) = bj , g(x′i) = b′k and g(x′′i) = b′′k (the existence
of a k comes from the fact that g respects the S-siblings relation). Note that
the minimal such B is Im(g) plus the S-children of every g(xi) (if they are not
already in Im(g)), plus the S-parent of every g(x′i), g(x′′i) (if it’s not already in
Im(g)). This guarantees that s ≤ 2r.

Every hollow 1-quasitree has degree at most 4. In R, | Im(g)| ≤M ; hence as
long as D is large enough, there must exist elements (ai)1≤i≤s ∈ R, such that for
every i, a′i, a

′′
i being the S-children of ai in R, tpmR0

(ai, a
′
i, a
′′
i) = tpmR(bi, b

′
i, b
′′
i),

and {a1}, · · · , {as}, B are pairwise (2m+ 5)-distant in R, where m := 2n+ 5.
We are in the right conditions to apply Lemma 4.5.3, and getR′ ≡<-inv FO

α R,
with Supp2n+6(R′) = Supp2n+6(R) and {a1}, {a′1, a′′1}, · · · , {as}, {a′s, a′′s} are
(2n + 5)-scattered wrt. B in R′. Note that g : W → R′ still preserves the
S-siblings relation.

Not all of the ai, a
′
i, a
′′
i are of interest. We re-index them, and focus on

u1, u
′
1, u
′′
1 , · · · , ur, u′r, u′′r , where ui is the S-parent of g(x′i), g(x′′i) and u′i, u

′′
i are

the S-children of g(xi).
The scattering of the ai, a

′
i, a
′′
i entails that {u1}, {u′1, u′′1}, · · · , {ur}, {u′r, u′′r}

are (2n+ 5)-scattered wrt. Im(g) in R′.

SetWi :=W]{x̄i+1, · · · , x̄r} where, for every j > i, S(xj , x
′
j) and S(xj , x

′′
j)

have been replaced by S(x̄j , x
′
j) and S(x̄j , x

′
j). There cannot be a path of length

≤ 2n+ 5 from x′j (or x′′j) to xj , as long as N + 1 ≥ 2n+ 5, for otherwise there

would be a vertical loop in tpN+1
W (xj).

Now, let’s re-associate the S-edges back so that g respects S. We construct
a sequence of structures

T0 ≡<-inv FO
α · · · ≡<-inv FO

α Tr

having the same (n+1)-enriched support, where Ti is the simultaneous crossing-
S-swap between g(xj) and uj in R′ for j ≤ i.

Let’s prove that for every i, Ti verifies (Qi):

121

Chapter 4. Order-Invariant FO on Hollow Trees

1. {ui+1}, {u′i+1, u
′′
i+1}, · · · , {ur}, {u′r, u′′r} are (2n+ 5)-scattered wrt. Im(g)

2. ∀j, k > i, let aj ∈ {x′j , x′′j }. Then

distTi(g(aj), g(xk)) ≥ min(distWi(aj , xk), 2n+ 6)

3. ∀j 6= k > i, aj ∈ {x′j , x′′j } and ak ∈ {x′k, x′′k}, distTi(g(aj), g(ak)) > 2n+ 5

Set T0 := R′.
We check that (Q0).2 holds, for x′j and xk (it is similar for x′′j). Let them

be such that

distT0(g(x′j), g(xk)) ≤ 2n+ 5

and let’s prove that

distW0(g(x′j), g(xk)) ≤ distT0(g(x′j), g(xk)) .

Consider a shortest path from g(x′j) to g(xk) in T0.
Suppose it goes through at least one S-edge: the first time it does, it must

be one that goes out of the thread containing g(x′j), which is contained (because
g is an inclusion) in Im(g). (Q0).1 rules out the possibility for this S-edge to be
of the form S(g(xl), u

′
l) (or S(g(xl), u

′′
l)): from u′l, the only way to reach g(xk)

in ≤ 2n + 4 is through S(g(xl), u
′′
l), which contradicts the minimality of this

path.
Moreover, it cannot be the S-edge landing on the other endpoint of the

thread, since this would mean that the thread is of length ≤ 2n + 4, and since
R′ ∈ quasi-H2n+6

σ , the other endpoint is guaranteed to be g(x′′j). In this case,
there would be a shortest path from g(x′j) to uj , which would directly borrow
S(uj , g(x′j)).

Hence, the first S-edge can only be S(uj , g(x′j)), and (Q0).1 ensures that the
only way this would result in a path of length ≤ 2n+ 5 is if the second edge it
goes through is S(uj , g(x′′j)), from which we can repeat the same reasoning to
prove that from there, the path doesn’t go through any S-edge.

The other possibility is that the path doesn’t go through any S-edge. In
either case, it means that g(x′j) or g(x′′j) and g(xk) are on the same thread, and
the shortest path follows the E-edges of this thread. Hence, a path as short
exists in W0 between x′j and xk.

We now check that (Q0).3 holds: let x′j and x′k (and similarly for x′′j and for
x′′k) be such that

distT0(g(x′j), g(x′k)) ≤ 2n+ 5

and consider a shortest path from g(x′j) to g(x′k).
The same reasoning as before ensures that g(x′k) is on the same thread as

g(x′j) or g(x′′j), and that the shortest path follows the E-edges of that thread,
which must then be of length ≤ 2n+ 5 which in turn implies that j = k.

Now suppose that we have constructed Ti and let Ti+1 be the n-guarded
crossing-S-swap between g(xi+1) and ui+1 in Ti. Suppose that

distTi(g(xi+1), ui+1) < 2n+ 5 .

122

4.6. Removing unnecessary material

Then

distTi(g(xi+1), g(x′i+1)) ≤ 2n+ 5 ,

and (Qi).2 ensures that

distWi
(xi+1, x

′
i+1) ≤ 2n+ 5

which, as seen above, is absurd.

Lemma 4.3.4 ensures that

Ti+1 ≡<-inv FO
α Ti and Suppn+1(Ti+1) = Suppn+1(Ti) .

Let’s show that Ti+1 verifies (Qi+1).

(Qi+1).1 is straightforward: we only need to note that the new S-edges ap-
peared at distance at least 2n+ 4 from every

A ∈ {{ui+2}, {u′i+2, u
′′
i+2}, · · · , {ur}, {u′r, u′′r}}

in Ti \ S(A).

(Qi+1).2 : let j, k > i+ 1 and suppose that there is a path of length l ≤ 2n+ 5
between g(x′j) (and similarly for g(x′′j)) and g(xk) in Ti+1, and consider
a shortest such path. Let’s show that distWi+1

(x′j , xk) ≤ l. If this path
doesn’t go through any of the new S-edges, (Qi).2 allows us to conclude
(any path going through x̄i+1 in Wi can now through xi+1 instead).

Otherwise, (Qi).1 ensures that it doesn’t go through S(ui+1, u
′
i+1) or

S(ui+1, u
′′
i+1). Thus we can decompose this path in a sequence of two

(since it’s a shortest path) paths valid in Ti, joined either by the edge
S(g(xi+1), g(x′i+1)), or S(g(xi+1), g(x′′i+1)), or one then the other.

It is not possible for the path to be decomposable as

g(x′j)
p1 g(ai+1)Sg(xi+1)

p2 g(xk)

(for ai+1 ∈ {x′i+1, x
′′
i+1}), because p1 would be a path of length at most

2n+ 5 in Ti from g(x′j) to g(ai+1), which contradicts (Qi).3.

Hence the path can be decomposed as

g(x′j)
p1 g(xi+1)Sg(ai+1)

p2 g(xk)

with p1 and p2, of respective length l1 and l2 (with l = l1 + l2 + 1) being
valid in Ti.

(Qi).2 allows us to reflect p1 as a path from x′j to xi+1 in Wi of length
at most l1, and p2 as a path from ai+1 to xk in Wi of length at most l2.
Replacing x̄i+1 by xi+1 in those paths gives us paths at least as short valid
in Wi+1. We then link them with S(xi+1, ai+1) ∈ Wi+1, and get

distWi+1(x′j , xk) ≤ l1 + l2 + 1 = l .

123

Chapter 4. Order-Invariant FO on Hollow Trees

(Qi+1).3 : let j 6= k > i+ 1, aj ∈ {x′j , x′′j } and ak ∈ {x′k, x′′k}.
Suppose that there is a path (take a shortest witness) p of length at most
2n + 5 between g(aj) and g(ak) in Ti+1. Because of (Qi).3, p cannot
be valid in Ti. Because of (Qi).1, it cannot go through S(ui+1, u

′
i+1) or

S(ui+1, u
′′
i+1).

Hence, it must go through S(g(xi+1), g(x′i+1)) or S(g(xi+1), g(x′′i+1)). It
cannot go through both, for otherwise we could replace

g(x′i+1)Sg(xi+1)Sg(x′′i+1)

in p by
g(x′i+1)Sui+1Sg(x′′i+1)

and get a path as short in Ti.
We can decompose p either as

g(aj)
p1 g(ai+1)Sg(xi+1)

p2 g(ak)

or, if it goes through the S-edge in the other direction, as

g(aj)
p1 g(xi+1)Sg(ai+1)

p2 g(ak)

with ai+1 ∈ {x′i+1, x
′′
i+1} and p1, p2 valid in Ti, and of length at most

2n+ 5.

This is absurd since either p1 or p2 breaks (Qi).3.

We set Q′ := Tr together with g, which have the desired properties.

Proposition 4.6.3. ∀α ∈ N,∃l ∈ N,∀m ∈ N,∃n ∈ N,∀M ∈ N,∃K ∈ N such
that

for every abstract loop U+ ∈ Ln+1
σ and every Q ∈ quasi-Hn+1

σ such that

|U | ≤M and (l + 1) · [[En+1(U)]] < [[En+1(Q)]]

and such that for every (n+1)-neighborhood type χ that occurs in U , |Q|χ ≥ K,
there exists Q′ ∈ quasi-Hmσ such that

Q′ ≡<-inv FO
α Q and [[Em(Q)]] = [[Em(Q′)]] + [[Em(U)]] .

Proof. The proof is based on the well known result that first-order formulas of
quantifier-rank k cannot distinguish between a linear order of length 2k and a
linear order of length 2k+1 (see, for instance, [27]). Hence if a loop is repeated at
least 2k+1 times, we can eliminate one instance without changing the ≡<-inv FO

k

class of the structure.
First, we include many copies of the loop in Q. The inclusion may not

preserve S-edges: the next step is to re-associate these S-edges with crossing-
S-swaps in order for these copies to be isomorphic. This is made possible by
the hypothesis on the number of occurrences of neighborhood types appearing
in U : it gives us room to make sure the crossing-S-swaps are guarded.

Once this is done, we can remove one copy in a < -inv FO-indistinguishable
way.

124

4.6. Removing unnecessary material

We can assume that m ≥ s(α). Let m1 be given by Lemma 4.6.2 from m, D
be given by Lemma 4.6.2 from m and M and n be given by Lemma 4.4.3 from
m1. Set K := D + (l + 1)M .

We construct U l+,U l+1
+ ∈ Ln+1

σ , such that

• [[En+1(U l)]] = l · [[En+1(U)]] ,

• [[En+1(U l+1)]] = (l + 1) · [[En+1(U)]] ,

• U l+ ≡<-inv FO
α U l+1

+ .

Consider the FO-interpretation J (of arity 2 and depth d, independent of
n) from the vocabulary Σn+1 ∪ {N,<} (where N is a unary relational symbol)
to Σn+1 ∪ {<}, which, given a structure V+, returns J (V+) as follows. For the
sake of simplicity, we will name 1, · · · , r the elements of NV+ accordingly to
<V+ .

• its domain is {1, · · · , r} × (V \NV+)

• J (V+) |= S((i, x), (j, y)) iff i = j and V+ |= S(x, y)

• J (V+) |= E((i, x), (j, y)) ∧ E((j, y), (i, x)) iff i = j and V |= E(x, y), or
j = i+ 1 and V+ |= J2

τ (x) and V+ |= J1
τ (y) for some τ

• for every τ , J (V+) |= J1
τ (i, x) iff i = 1 and V+ |= J1

τ (x)

• for every τ , J (V+) |= J2
τ (i, x) iff i = r and V+ |= J2

τ (x)

• <J (V+) is the lexicographical order

In other words, if we add r elements to the abstract loop U+, color them
with N and add an order, its image by J is the r-fold concatenation of U+ to
itself (in the same direction each time), with an order.

Fix an arbitrary order <U on U . For r ∈ N, let U [r]
+ be the Σn+1 ∪ {N,<}-

structure obtained by adding {1, · · · , r} to the domain of U+, interpreting N as
{1, · · · , r} and ordering the elements as 1, · · · , r and then accordingly to <U .

Now let (Ur+, <r) := J (U [r]
+). See Figure 4.29 for an example.

• • •N

| |

| |

| |

|

U+

J1
τ J2

τ

J1
ξ J2

ξ

J−→

| |

| |

| |

|

| |

| |

| |

|

| |

| |

| |

|

J1
τ J2

τ

J1
ξ J2

ξ

Figure 4.29: Application of J to U [3]
+ . In this illustration, two jumping pair

types τ and ξ are relevant in U+. The new order <3 is the concatenation of the
old ones.

125

Chapter 4. Order-Invariant FO on Hollow Trees

If we choose l := 22α+d, we have

U [l]
+ ≡FO

2α+d U
[l+1]
+ ,

hence
(U l+, <l) ≡FO

α (U l+1
+ , <l+1) ,

which entails
U l+ ≡<-inv FO

α U l+1
+ .

By construction,
[[En+1(U l)]] = l · [[En+1(U)]]

and
[[En+1(U l+1)]] = (l + 1) · [[En+1(U)]] .

By hypothesis, [[En+1(U l+1)]] < [[En+1(Q)]], thus we can apply Proposi-
tion 4.4.3 to get R ≡<-inv FO

α Q such that [[Em1+1(R)]] = [[Em1+1(Q)]] and a
(m1 + 1)-inclusion h from U l+1 to R.

Now, for every (m1 + 1)-neighborhood type ξ occurring in U l+1, |R|ξ =
|Q|ξ ≥ K, hence |R|R\Im(h)|ξ ≥ D by choice of K.

We can apply Lemma 4.6.2, which yields some Rl+1 ≡<-inv FO
α R such that

Suppm(Rl+1) ' Suppm(R), and g m-includes U l+1 in Rl+1, and respects S.
Let Rl+1

+ be the g-border-extension of Rl+1.
Since g(U l+1) is S-stable in Rl+1, we can decompose

Rl+1
+ \ {E(x, y) : x, y ∈ Rl+1, i ∈ {1, 2}, J iτ (x) ∧ J iτ (y)}

as g(U l+1
+)]R′+ for some Σn structure R′+, where g(U l+1

+) is the abstract loop
based upon g(U l+1) such that g respects every J iτ .

Note that Rl+1 = Im(g(U l+1
+)]R′+), and let Rl := Im(g(U l+)]R′+).

g(U l+)]R′+ ≡<-inv FO
α g(U l+1

+)]R′+, hence Rl ≡<-inv FO
α Rl+1.

Now, set Q′ := Rl. We have that Q′ ≡<-inv FO
α Q, and, by construction,

[[Em(Q)]] = [[Em(U l+1)]] + [[Em(R′)]]
= [[Em(U)]] + [[Em(U l)]] + [[Em(R′)]]
= [[Em(U)]] + [[Em(Q′)]] .

4.6.3 S-parents re-association

We now turn to the last step of the proof of Theorem 4.2.1.
After the removal of the extra material in Q, we have transformed our initial

hollow tree Q into a hollow quasitree having the same number of occurrences of
any neighborhood type as the initial P. They both have the same threads but
may differ with their S-edges. The following proposition states that they are
≡<-inv FO
α , thus ending the proof of Theorem 4.2.1.

The techniques used in the proof of the following proposition are strongly
reminiscent of those used in [4]; it requires a notion of vertical-S-swaps adapted
to hollow trees.

126

4.6. Removing unnecessary material

The notion of vertical swap in a tree has been introduced in [5] and is a
crucial operation in their proof. We need here a version of these vertical swaps
adapted to hollow trees. Unlike the other swaps, vertical-S-swap preserve hollow
trees. In the following, T is a hollow tree on σ.

We start by defining classical notions making use of the tree structure of T .
The (strict) ancestor relation within a hollow tree is inherited from the orig-

inal tree and is denoted by x � y (resp. x ≺ y). Note that this relation is not
part of the schema and not expressible in FO from E and S.

Let x, y be two nodes of T such that x ≺ y. We define the context CT (x, y)
at x and y in T (referred using the simplified notation C in the following)
as the substructure of T induced by the set {z ∈ T : x ≺ z ∧ y ⊀ z}, with
three distinguished nodes colored by two new unary predicates > and ⊥: the
S-children x′ and x′′ of x are C’s top-anchors (>C = {x′, x′′}), and y its
bottom-anchor (⊥C = {y}). The set V (C) := {z ∈ C : z � y} is the set of
vertebræ of C. The height height(C) is |V (C)| and correspond to the difference
of depth between y and x. Given n ∈ N, C’s n-skeleton, denoted Skn(C), is
the substructure of C induced by the nodes at distance at most n of V (C), of
S-children of nodes of V (C), or of C’s top-anchors. Additionally, Skn(C) inherits
the restriction of ≺ to V (C). Two contexts are said to be n-similar if their
n-skeletons are isomorphic. Given two contexts C and D, we denote by C · D
the context obtained as the disjoint union of C and D, with an S-edge from C’s
bottom-anchor to each of D’s top-anchor, and where the anchors are redefined
in the natural way: >C·D := >C and ⊥C·D := ⊥D. Similarly, we define the
prefix PT (y) at y in T as the substructure of T induced by {z ∈ T : y ⊀ z}
(the only additional relation being ⊥), and the suffix ST (x) at x in T as the
substructure of T induced by {z ∈ T : x ≺ z} (here, the only additional relation
is >). The concatenation between a prefix and a context, a prefix and a suffix,
and a context and a suffix are defined in the natural way (and results respectively
in a prefix, a hollow tree, and a suffix). Concatenation is associative.

Let
x ≺ xA ≺ xB ≺ xC ∈ T

and
(x′, x′′), (x′A, x

′′
A), (x′B , x

′′
B), (x′C , x

′′
C)

be their respective S-children.
Suppose that

tpkT (x, x′, x′′) = tpkT (xB , x
′
B , x

′′
B)

and
tpkT (xA, x

′
A, x

′′
A) = tpkT (xC , x

′
C , x

′′
C) .

Let us define P := PT (x), A := CT (x, xA), B := CT (xA, xB), C := CT (xB , xC)
and S := ST (xC). With these definitions, T = P · A · B · C · S.

In this case, T ′ := P · C · B ·A · S is called the k-guarded vertical-S-swap
between [x, xA] and [xB , xc] in T , c.f. Figure 4.30.

We wish to show the following lemma:

Lemma 4.6.4. For all α ∈ N, there exists N ∈ N such that
for every hollow tree T on σ, if T ′ is the N -guarded vertical-S-swap between

[x, xA] and [xB , xC] in T ,

127

Chapter 4. Order-Invariant FO on Hollow Trees

P

A

B

C

S

−→

P

C

B

A

S

Figure 4.30: A vertical-S-swap from T to T ′.

then every node in T has the same (N + 1)-neighborhood type in T and in
T ′, and T ′ ≡<-inv FO

α T .

It is immediate to check that an N -guarded vertical-S-swap preserves (N +
1)-neighborhood types. The following is devoted to the proof that it also pre-
serves ≡<-inv FO

α , concluding the proof of Lemma 4.6.4.

We start by proving a special case of Lemma 4.6.4. We will reduce the
general case to it. This case is illustrated in Figure 4.31.

Lemma 4.6.5. For all α ∈ N, there exists M ∈ N such that the following holds.

Let T ∈ Hσ and

x ≺ xA ≺ xB ∈ T

having for respective S-children

(x′, x′′), (x′A, x
′′
A) and (x′B , x

′′
B)

Suppose that

tpMT (x, x′, x′′) = tpMT (xA, x
′
A, x

′′
A) = tpMT (xB , x

′
B , x

′′
B) .

Let P := PT (x), A := CT (x, xA), B := CT (xA, xB) and S := ST (xB).

Then

P · A · B · S ≡<-inv FO
α P · B · A · S .

Proof. We will first set N ∈ N instead of M , that will be sufficient for most
cases. Then, we will define M ≥ N which will work for all cases.

Recall the function oΣ
p introduced in Lemma 4.3.2, and consider

n := oΣ
3 (α+ c) ,

where c is to be chosen later on, and Σ := Pσ ∪ {E,S, P1/2, P6} where P1/2 and
P6 are new unary symbols. We distinguish between several cases depending on
whether x, xA and xB are close or not, where “close” is relative to n.

128

4.6. Removing unnecessary material

P

A

B

S

−→

P

B

A

S

Figure 4.31: vertical-S-swap (special case) from P · A · B · S to P · B · A · S .

1. Assume first that tpnA(x′, x′′, xA) = tpnB(x′A, x
′′
A, xB).

This case covers the instances where A and B are n-similar, as well as
those where distT (x, xA) and distT (xA, xB) are > 2n+ 2.

Consider the extension T − of P]A]B]S to Σ where the interpretation
of P1/2 only contains the bottom-anchor of P, and that of P6 contains the

top-anchors of S. Since P T
−

1/2 and P T
−

6 are at distance +∞ from A and

B, tpnT −(x′, x′′, xA) = tpnT −(x′A, x
′′
A, xB).

Hence, we can apply Lemma 4.3.2, and get two orders <AB (whose first
elements are x′, x′′, xA, x

′
A, x

′′
A, xB) and <BA (whose first elements are

x′A, x
′′
A, xB , x

′, x′′, xA) such that (T −, <AB) ≡FO
α+c (T −, <BA).

Now, consider the FO-interpretation that adds an S-edge between u and
v if either

• P1/2(u) and v is either the first or the second element of <

• or u is the third element of < and v is either its fourth or fifth one

• or u is the sixth element of < and P6(v),

and then forgets about P1/2 and P6.

Take c to be the depth of this FO-interpretation (which has arity 1).

Note that the result of this FO-interpretation of (T −, <AB) is an ordered
extension of P · A · B · S and that its result on (T −, <BA) is an ordered
extension of P · B · A · S .
This entails P · A · B · S ≡<-inv FO

α P · B · A · S .

2. Assume next that B can be decomposed as B1 · · · Bk, where each Bi is
n-similar to A.

We can then apply k times Case 1 and obtain

P · A · B · S ≡<-inv FO
α P · B · A · S

as desired.

3. From now on, N ≥ l(2n + 2) + n for a large enough l to be chosen later
on.

129

Chapter 4. Order-Invariant FO on Hollow Trees

As we are not in Case 1, we can restrict our study to the cases where
distT (x, xA) ≤ 2n + 2 (the cases where distT (xA, xB) ≤ 2n + 2 can be
treated similarly).

We will need the following claims. The first one is just a simple observa-
tion.

Claim 4.6.6. Let U ,V be two n-similar contexts of T .

For every decomposition
U = U1 · · · Up ,

there exists a decomposition

V = V1 · · · Vp

such that for every i, Ui and Vi are n-similar.

Proof. Let ϕ be an isomorphism from Skn(U) to Skn(V), and

x0 ≺ x1 ≺ · · · ≺ xp ∈ T

be such that Ui = CT (xi−1, xi). Since ϕ is ≺-monotonous on V (U), the
Vi = CT (ϕ(xi−1), ϕ(xi)) are well-defined.

We have that V = V1 · · · Vp; it remains to show that for every i, Ui and Vi
are n-similar. Again, the ≺-monotonicity of ϕ entails that

ϕ(Skn(Ui)) ⊆ Skn(Vi) ,

which allows us to conclude.

The next one is a variant of Lyndon-Schtzenberger Theorem stated for
contexts of hollow trees instead of words.

Claim 4.6.7. Let n ∈ N, let T ∈ Hσ, let x ≺ y ≺ z ≺ t be nodes of T ,
and let U := CT (x, y), V := CT (y, z) and W := CT (z, t) such that U and
W are n-similar, U · V and V · W are n-similar.

Then there exist decompositions

U = U1 · · · Up ,

V = V1 · · · Vq
and

W =W1 · · ·Wp

where all the Ui,Vi and Wi are n-similar.

Proof. We define θn which maps two successive vertebræ xi ≺ xi+1 of a
context U to the neighborhood type tpnCU (xi,xi+1)(x

′
i, x
′′
i , xi+1), where x′i

and x′′i are the S-children of xi.

Now, let Θn be the monoid morphism from contexts to words extending
θn; that is, if x0 ≺ · · · ≺ xd are all the vertebræ of U , then

|Θn(U)| = height(U) = d ,

130

4.6. Removing unnecessary material

and the ith letter of Θn(U) is θn(xi, xi+1).

Let u := Θn(U), v := Θn(V) and w := Θn(W).

By n-similarity of U andW, u = w, and by n-similarity of U ·V and V ·W,
uv = vw. Hence uv = vu.

By Lyndon-Schtzenberger Theorem, there must exist a word a and integers
p, q such that u = w = ap and v = aq [28].

We can decompose U ,V andW alongside those decompositions of u, v and
w, to get U = U1 · · · Up, V = V1 · · · Vq, and W =W1 · · ·Wp, where all the
Ui,Vi and Wi are mapped to a by Θn, hence are n-similar.

Let φ be an isomorphism between the N -neighborhood of x and that of
xA.

As distT (x, xA) ≤ 2n + 2, xA is in the N -neighborhood of x and set
x0 := xA and x1 := φ(xA). Construct by induction xi+1 := φ(xi) until
i > l. Our choice of N ensures that xi is well defined as xi−1 remains in
the N -neighborhood of x. We claim that for all j ≤ l,

Xj := CT (xj−1, xj)

is n-similar to A. This is a simple consequence of the fact that the n-
skeleton of of Xj is included into the N -neighborhood of x.

Likewise, starting from xB instead of xA, we show that there exist

y1, · · · , yl ∈ T

such that for j ∈ [1, l] (and with the convention that y0 := xB),

Yj := CT (yj , yj−1)

is n-similar to A.

We distinguish several cases.

(a) Suppose that distT (xA, xB) ≥ 2N . This ensures that all the (xi)i≥1

and (yi)i≥0 belong to B.

• Suppose xl−1 ≺ yl.
If we let C := CT (xl−1, yl), we can decompose B as

X1 · · · Xl−1 · C · Yl · · · Y1 .

If l is chosen large enough, namely l ≥ 2n + 4, the following
decomposition of T :

P · A · X1 · · · Xl−1 · C · Yl︸ ︷︷ ︸ · Yl−1 · · · Y1︸ ︷︷ ︸ ·S
falls in Case 1 of this Lemma and therefore the following equation
holds:

P · A · X1 · · · Xl−1 · C · Yl︸ ︷︷ ︸ · Yl−1 · · · Y1︸ ︷︷ ︸ ·S
≡<-inv FO
α P · Yl−1 · · · Y1︸ ︷︷ ︸ · A · X1 · · · Xl−1 · C · Yl︸ ︷︷ ︸ ·S

131

Chapter 4. Order-Invariant FO on Hollow Trees

Likewise, we get:

P · Yl−1 · · · Y1 · A︸ ︷︷ ︸ · X1 · · · Xl−1 · C · Yl︸ ︷︷ ︸ ·S
≡<-inv FO
α P · X1 · · · Xl−1 · C · Yl︸ ︷︷ ︸ · Yl−1 · · · Y1 · A︸ ︷︷ ︸ ·S

Hence, we have

P · A · B · S ≡<-inv FO
α P · B · A · S

as desired.

• Suppose now that xl−1 ⊀ yl.
Because distT (xA, xB) ≥ 2N , we know that yl ⊀ xl−1: let T1

be the n-guarded crossing-S-swap between xl−1 and yl in T .
Lemma 4.3.4 (we can always assume that n ≥ s(α)) ensures that
T1 ≡<-inv FO

α T and ∀z ∈ T , tpn+1
T1 (z) = tpn+1

T (z). We are now
in the situation to apply Case 2. It only remains to do again
the n-guarded crossing-S-swap between xl−1 and yl afterwards
to derive the desired T ′ ≡<-inv FO

α T .

(b) Suppose now that distT (xA, xB) < 2N . Set

M := (2N + 1)(2n+ 2) + n .

Just as before (by replacing l with 2N + 1), we define

x0, · · · , x2N+1 and y0, · · · , y2N+1

and, accordingly,

X1, · · · ,X2N+1 and Y1, · · · ,Y2N+1

that all are n-similar to A.

There are at most 2N vertebræ in B, hence not all of the (yi)0≤i≤2N

can be in B. Let k be the smallest index such that yk is not a
vertebrate of B (we know that 1 ≤ k ≤ 2N). Since xA ≺ yk−1 and
yk ≺ yk−1, xA and yk must be related by �; by definition of k, we
must have yk � xA. If yk = xA, we can conclude using Case 2.
Otherwise, yk ≺ xA ≺ yk−1.

Likewise, either x ≺ yk or yk � x. By n-similarity of A and Yk, and
because distT (x, xA) ≤ 2n+2, we know that height(A) = height(Yk).
Hence, it cannot be the case that yk � x.

We now have x ≺ yk ≺ xA ≺ yk−1. Let

U := CT (x, yk), V := CT (yk, xA) and W := CT (xA, yk−1) .

We have that U · V = A and V · W = Yk are n-similar.

To see that U and W are n-similar, look at Yk+1: there is an iso-
morphism ϕ from Skn(Yk) to Skn(Yk+1), which is by definition ≺-
monotonous on V (Yk). Hence ϕ sends any vertebrate of Yk to the
vertebrate of Yk−1 whose depth is height(A) smaller. This entails
ϕ(xA) = x, and by restricting ϕ, W and U are n-similar.

132

4.6. Removing unnecessary material

We can now apply Claim 4.6.7, and get decompositions U = U1 · · · Up,
V = V1 · · · Vq, and W = W1 · · ·Wp, where all the Ui,Vi and Wi are
n-similar.

Hence, A can be decomposed as U1 · · · Up·V1 · · · Vq, and such a decom-
position can be transposed as in Claim 4.6.6 onto each Yi, 0 < i < k,
as Yi = Yi1 · · · Yip+q, where all the Yij , the Ui, the Vi and the Wi are
n-similar. T can thus be decomposed as

P · U1 · · · Up · V1 · · · Vq︸ ︷︷ ︸
A

·W1 · · ·Wp︸ ︷︷ ︸
W

· Yk−1
1 · · · Yk−1

p+q︸ ︷︷ ︸
Yk−1

· · · Y1
1 · · · Y1

p+q︸ ︷︷ ︸
Y1︸ ︷︷ ︸

B

·S .

Now, we can use Case 2 with A := Vq and derive that T is ≡<-inv FO
α

to

P·U1 · · · Up·V1 · · · Vq−1·W1 · · ·Wp·Yk−1
1 · · · Yk−1

p+q · · · Y1
1 · · · Y1

p+q ·Vq ·S .

Repeating this operation p+ q − 1 times allows us to conclude that

P · A · B · S ≡<-inv FO
α P · B · A · S .

We are now ready to conclude the proof of Lemma 4.6.4. As in the proof of
Lemma 4.6.5, we distinguish between two cases. Let n := oΣ

3 (α + c) where c is
the depth of some FO-interpretation to be specified later on, and

Σ := Pσ ∪ {E,S, P1/2, P3, P4/5, P6}

where P1/2, P3, P4/5 and P6 are new unary symbols.

1. Assume first that tpnA(x′, x′′, xA) = tpnC(x
′
B , x

′′
B , xC).

This case covers the instances where A and C are n-similar, as well as
those where distT (x, xA) and distT (xB , xC) are larger than 2n+ 2.

Consider the extension T − of P]A]B] C] S to Σ where P T
−

1/2 := {x},
P T

−

3 := {x′A, x′′A}, P T
−

4/5 := {xB} and P T
−

6 := {x′C , x′′C}.

Since P T
−

1/2 , P T
−

3 , P T
−

4/5 and P T
−

6 are at distance +∞ from A and C, we
have

tpnT −(x′, x′′, xA) = tpnT −(x′B , x
′′
B , xC) .

Hence, we can apply Lemma 4.3.2, and get two orders <AC (whose first
elements are x′, x′′, xA, x

′
B , x

′′
B , xC) and <CA (whose first elements are

x′B , x
′′
B , xC , x

′, x′′, xA) such that (T −, <AC) ≡FO
α+c (T −, <CA).

Now, consider the FO-interpretation that adds an S-edge between u and
v if either

• P1/2(u) and v is either the first or the second element of <

• or u is the third element of < and P3(v)

133

Chapter 4. Order-Invariant FO on Hollow Trees

• or P4/5(u) and v is either the fourth or the fifth element of <

• or u is the sixth element of < and P6(v),

and then forgets about P1/2, P3, P4/5 and P6.

Take c to be the depth of this FO-interpretation (which has arity 1).

Note that the result of this FO-interpretation on (T −, <AC) is an ordered
extension of P · A · B · C · S and that its result on (T −, <CA) is an ordered
extension of P · C · B · A · S.

This entails P · A · B · C · S ≡<-inv FO
α P · C · B · A · S .

2. We can now, without loss of generality, assume that distT (x, xA) ≤ 2n+2.

Set N := (2n + 2) + m with m := max(M,n, s(α)), where M is given in
Lemma 4.6.5.

Consider an isomorphism ϕ from NN
T (x, x′, x′′) to NN

T (xB , x
′
B , x

′′
B).

By choice of N ,

tpmT (xA, x
′
A, x

′′
A) = tpmT (ϕ(xA), y′, y′′) ,

where y′ and y′′ are the S-children of ϕ(xA).

Since xB ≺ ϕ(xA) and ϕ(xA) 6= xC (for otherwise we would be in Case 1),
there are only three subcases to consider:

• if xB ≺ ϕ(xA) ≺ xC , set

C′ := CT (xB , ϕ(xA))

and

X := CT (ϕ(xA), xC) .

We then have

T = P · A · B · C′ · X · S .

Let

T1 = P · C′ · B · A · X · S

be the m-guarded vertical-S-swap between [x, xA] and [xB , ϕ(xA)] in
T . This swap falls under the scope of Case 1 since m ≥ n, hence

T1 ≡<-inv FO
α T and ∀z ∈ T, tpm+1

T1 (z) = tpm+1
T (z) .

Hence we are in the conditions (since m ≥M) to apply Lemma 4.6.5
on ϕ(xA) ≺ xA ≺ xC in T1 and get

T2 := P · C′ · X · B · A · S ≡<-inv FO
α T1 .

Note that T ′ = T2, which implies that T ′ ≡<-inv FO
α T .

These sequence of operations is depicted in Figure 4.32.

134

4.6. Removing unnecessary material

P

A

B

C′

X

S

−→

P

C′

B

A

X

S

−→

P

C′

X

B

A

S

Figure 4.32: The swaps solving the case xB ≺ ϕ(xA) ≺ xC . The second opera-
tion swaps the segments between the dark nodes using Lemma 4.6.5.

• if xB ≺ xC ≺ ϕ(xA), set

C′ := CT (xB , ϕ(xA))

and
X := CT (ϕ(xA), xC) .

We then have
T = P · A · B · C · X · S ′ .

Let
T1 = P · C · X · B · A · S ′

be the m-guarded vertical-S-swap between [x, xA] and [xB , ϕ(xA)] in
T . This swap falls under the scope of Case 1 since m ≥ n, hence

T1 ≡<-inv FO
α T and ∀z ∈ T, tpm+1

T1 (z) = tpm+1
T (z) .

Hence we are in the conditions (since m ≥M) to apply Lemma 4.6.5
on xC ≺ ϕ(xA) ≺ xA in T1 and get

T2 := P · C · B · A · X · S ′ ≡<-inv FO
α T1 .

Note that T ′ = T2, which implies that T ′ ≡<-inv FO
α T .

These operations are depicted in Figure 4.33.

• otherwise, we have xB ≺ xC and xB ≺ ϕ(xA) but xC and ϕ(xA) are
≺-incomparable.

Let us decompose C · S as C′[S,S ′] (this notation extends in the
natural way that of context, with two bottom anchors), where

S ′ := ST (ϕ(xA)) ,

that is
T = P · A · B · C′[S,S ′] .

First, let
T1 = P · A · B · C′[S ′,S]

135

Chapter 4. Order-Invariant FO on Hollow Trees

P

A

B

C

X

S ′

−→

P

C

X

B

A

S ′

−→

P

C

B

A

X

S ′

Figure 4.33: The case where xB ≺ xC ≺ ϕ(xA). The second operation swaps
the segments between the dark nodes using Lemma 4.6.5.

be the m-guarded crossing-S-swap between xC and ϕ(xA) in T .
Lemma 4.3.4 ensures (since m ≥ s(α)) that

T1 ≡<-inv FO
α T and ∀z ∈ T, tpm+1

T1 (z) = tpm+1
T (z) .

The distance precondition in Lemma 4.3.4 holds because T is a hollow
tree.

Let

T2 = P · C′[S ′,B · A · S]

be the m-guarded vertical-S-swap between [x, xA] and [xB , ϕ(xA)] in
T1. This swap falls under Case 1, hence (m ≥ n+ 1) we get

T2 ≡<-inv FO
α T1 and ∀z ∈ T, tpm+1

T2 (z) = tpm+1
T1 (z) .

Now, let

T3 = P · C′[B · A · S, S′]

be the m-guarded crossing-S-swap between xA and xC in T2.

Lemma 4.3.4 ensures (since m ≥ s(α)) that T3 ≡<-inv FO
α T2.

Note that

T3 = P · C · B · A · S

is nothing but T ′. Hence T ′ ≡<-inv FO
α T .

This process is illustrated in Figure 4.34.

Proposition 4.6.8. ∀α ∈ N,∃n1 ∈ N such that

for every P ∈ Hσ and ∀Q ∈ quasi-Hn1
σ , if

Suppn1
(P) ' Suppn1

(Q) ,

then

P ≡<-inv FO
α Q .

136

4.6. Removing unnecessary material

P

A

B

C′

S S ′

−→

P

A

B

C′

S ′ S

−→

P

C′

B

A

S ′

S

−→

P

C′

S ′

A

B

S

Figure 4.34: The case where xC and ϕ(xA) are ≺-unrelated. The first operation
is an m-guarded crossing-S-swap between ϕ(xA) and xC . The second operation
uses Case 1. The last operation is the dual of the first one.

Proof. Let n0 be the maximum between the integers given by Lemma 4.6.4 and
Lemma 4.6.5, and s(α).

Let n1 be the integer given by Lemma 4.5.1 for n0.

Because of the isomorphism between the n1-enriched supports, there is a
trivial n1-pseudo-inclusion of P in Q. Thus, Lemma 4.5.1 yields some Q′ ∈
quasi-Hn0+1

σ such that Q′ ≡<-inv FO
α Q, Suppn0+1(Q′) ' Suppn0+1(Q) and some

h′ which (n0+1)-pseudo-includes P in Q′ and which respects S-siblings relation.

Now, P is a hollow tree, hence has the matching endpoints property, and h′

must be surjective: this entails that Q′ has the matching endpoints property.

For the remainder of this proof, we will need to apply vertical-S-swaps to Q′
(and subsequent hollow quasitrees), even though it is not necessarily a hollow
tree. However, the matching endpoints property ensures that the connected
component R containing its root is a hollow tree.

We will only apply vertical-S-swaps in R; when we talk of the vertical-S-
swap in Q′, we mean the disjoint union of the vertical-S-swap in R and of the
other connected components of Q′.

A tree-prefix of P or Q′ is a substructure T which contains the root, is
E-stable and such that if S(x, y) and y ∈ T , then x ∈ T .

Let t be a thread with matching endpoints whose parent is y and an element
x. We say that x ≺ t if x � y. If u is a thread we write t ≺ u if y ≺ z, where z
is the S-parent of both of u’s endpoints.

137

Chapter 4. Order-Invariant FO on Hollow Trees

Let T0, · · · , Tr be a sequence of tree-prefixes of P such that T0 contains only
the root of P, Tr = P , and we go from Ti to Ti+1 by adding a single thread.

We construct a sequence of structures Q′ = Q0, · · · ,Qr with the following
properties:

• Qi+1 ≡<-inv FO
α Qi

• Suppn0+1(Qi+1) = Suppn0+1(Qi)

• Ti is vertically-pseudo-included in Qi, that is for every node x and
thread t of Ti, if x is the parent of t in Ti then x ≺ t in Qi. The smallest
tree-prefix of Qi containing all the threads of Ti is called the Ti-pseudo-
tree.

For i = 0, there is nothing to do: the root of P is vertically-pseudo-included
in Q0 = Q′.

From Ti to Ti+1: we let t be the thread in Ti+1 \ Ti and let x be the parent
of t.

• If t is in the Ti-pseudo-tree of Qi, then there exists some element y and
some thread u in Ti such that in Ti, y is the parent of u, and in Qi,
y ≺ t ≺ u. In Qi, let’s call y′ the parent of u, u′ the thread whose parent
is y, x′ the parent of t and t′ the thread whose parent is x.

There are two cases to consider.

– If y ≺ x in P (c.f. Figure 4.35). Then in Qi, we must have y′ ≺ x,
and we can apply Lemma 4.6.4. Let Qi+1 be the n0-guarded vertical-
S-swap between [y, x′] and [y′, x] in Qi. Note that in the limit case
where y is the parent of t (that is, x′ = y), we apply Lemma 4.6.5
instead of Lemma 4.6.4.

y

x′

y′

x

u′

t

u

t′

−→

y

x

y′

x′

u

t

u′

t′

Figure 4.35: We re-associate y to u and x to t with a vertical-S-swap.

– Otherwise, x and y must be ≺-unrelated in Qi (c.f. Figure 4.36).
Note that because we work in a hollow tree, the conditions to apply
Lemma 4.3.4 are met. Set Q′ to be the n0-guarded crossing-S-swap
between x and x′ in Qi. Then, set Qi+1 to be the n0-guarded
crossing-S-swap between y and y′ in Q′.

• Otherwise, if x ≺ t in Qi, we set Qi+1 := Qi.

138

4.7. Proof of the main result

xy

x′

y′

t′u′

t

u

−→
xy

x′ y′
tu′

t′ u

−→
xy

x′

y′
tu

t′

u′

Figure 4.36: We re-associate y to u and x to t with two crossing-S-swaps.

• Otherwise, x and x′ are ≺-unrelated in Qi. Once again, we are in the
right setting to apply Lemma 4.3.4 because we work in a hollow tree. Let
Qi+1 be the n0-guarded crossing-S-swap between x and x′ in Qi.

In the end, we have vertically-pseudo-included P into Qr. Since they have
the same support, the vertical-pseudo-inclusion is an isomorphism. Hence,

P ≡<-inv FO
α Q .

4.7 Proof of the main result

Let’s recall the main result of this chapter:

Theorem 4.2.1. For every alphabet σ,

< -inv FO = FO on Hσ .

We now have the tools to prove Theorem 4.2.1.

Let α ∈ N. Recall that we want to find f(α) such that ∀P,Q ∈ Hσ, if
P ≡FO

f(α) Q then P ≡<-inv FO
α Q. Proposition 2.3.2 allows us to conclude from

there.

We set, in that order:

139

Chapter 4. Order-Invariant FO on Hollow Trees

• l as in Proposition 4.6.3 (loop elimination), that is such that FO[α] can-
not distinguish the linear order on {1, · · · , l} from the linear order on
{1, · · · , l + 1}

• n1 as in Proposition 4.6.8 (S-parents re-association)

• n2 as in Proposition 4.4.2 (pseudo-inclusion) for n1 − 1

• n3 as in Proposition 4.6.3 (loop elimination) for n2

• M as in Proposition 4.6.1 (loop minimization) for n3 + 1

• K as in Proposition 4.6.3 (loop minimization) for n2 and M

• n4, d1, D as in Proposition 4.5.4 (S-stabilization of the image of a pseudo-
inclusion) for n3

• n5 as in Proposition 4.4.2 (pseudo-inclusion) for n4

• f(α) as in Proposition 4.3.11 (pumping) for n5 and d := max(d1,K).

Starting from P ≡FO
f(α) Q, we unfold the previously set indexes to apply the

corresponding propositions in the reverse order: we transform Q into P along
a sequence of ≡<-inv FO

α hollow quasitrees (with smaller and smaller radius) Qi
as follows.

According to Proposition 4.3.11, we can pump inside Q to get

Q0 ≡<-inv FO
α Q

such that
[[En5+1(P)]] ≤Dd [[En5+1(Q0)]] . (4.2)

Now that we’ve made sure there were at least as many occurrences of every
neighborhood type in Q0 as in P, Proposition 4.4.2 yields

Q1 ≡<-inv FO
α Q0

such that
[[En4+1(Q1)]] = [[En4+1(Q0)]]

and such that P is (n4 + 1)-pseudo-included in Q1 by some h.

Since
[[En4+1(P)]] ≤Dd1 [[En4+1(Q1)]]

by (4.2), Proposition 4.5.4 gives

Q2 ≡<-inv FO
α Q1

such that
Suppn3+1(Q2) ' Suppn3+1(Q1)

as well as some reduced h′ which (n3 + 1)-pseudo-includes P in Q2, where
V := Q2 \ Im(h′) is S-stable in Q2.

140

4.7. Proof of the main result

Proposition 4.6.1 gives us some Q3 and U+ ∈ Ln3+1
σ such that

Q3 ≡<-inv FO
α Q2, |U | ≤M

and

[[En3+1(Q3)]] = [[En3+1(P)]] + [[En3+1(U)]] .

Since |U | ≤ M and for every (n3 + 1)-neighborhood type ξ that occurs in
U , |Q3|ξ ≥ K (indeed: since ξ occurs in U , |Q0|ξ 6= |P|ξ and |Q3|ξ > |P|ξ >
d ≥ K), we can remove the extra elements by applying Proposition 4.6.3, which
gives

Q4 ≡<-inv FO
α Q3

such that

[[En2+1(Q4)]] = [[En2+1(Q3)]]− [[En2+1(U)]] = [[En2+1(P)]] .

Since P and Q4 have the same number of occurrences of every (n2 + 1)-
neighborhood type, we can pseudo-include one into another according to Propo-
sition 4.4.2, which yields

Q5 ≡<-inv FO
α Q4

such that

Suppn1
(Q5) ' Suppn1

(P) .

Indeed, the pseudo-inclusion cannot have any jumping pair.

Finally, Proposition 4.6.8 allows us to conclude that Q5 ≡<-inv FO
α P, com-

pleting our sequence of transformations.
This concludes the proof that P ≡<-inv FO

α Q, which proves Theorem 4.2.1.

Note 4.7.1. Recall the discussion from Section 2.6.3: not only did we prove
that for every alphabet σ,

< -inv FO = FO on Hσ ,

but also that for every σ and every k ∈ N,

< -inv/quasi-Hkσ FO = FO on Hσ .

Indeed, as long as α > k, all the structures involved in the proof belong to
quasi-Hkσ. We not know whether this collapse still hold when k goes to infinity,
namely whether

< -inv/Hσ FO = FO on Hσ .

It is not clear to us what kind of sentence could be order-invariant on hollow
trees but not on hollow quasitrees with arbitrarily large radius.

In our proof, we had to break the structure of hollow trees in the chain of
intermediate structures. It is an interesting question whether this can be avoided
by finding an alternative strategy staying within the realm of hollow trees.

141

Chapter 4. Order-Invariant FO on Hollow Trees

4.8 Conclusion

We have shown in this chapter that < -inv FO = FO on the class of hollow
trees. Now recall from Section 4.1.2 that one of the motivations for the study of
hollow trees comes from pathwidth 2: in order to lift this collapse to tracks of
bounded degree, it suffices to show that < -inv FO = FO over structures that
have the same underlying graph as hollow trees, but without the possibility to
distinguish a sibling from a child. In other words, structures obtained from
hollow trees by subsuming the union of E and S in a single binary relation.

Unfortunately our proof does not extend to this class of structures, since
being able to tell both types of edges apart is crucial in our proof in order to
distinguish between E-swaps and S-swaps. We leave this generalization as an
open problem.

We also have no idea on the path to take when the degree is not assumed to
be bounded. Indeed, in that setting, there is no hope to transform a track into
a tree-like structure by the mean of a bi-FO-interpretation.

142

Chapter 5

Conclusion

In this thesis, we improved the understanding of the expressive power of in-
variant logics by broadening the settings in which order and successor-invariant
logics are known to collapse to FO.

Our main contributions are the proofs that Succ-inv FO collapses to FO
when the degree is bounded, as well as on any class of graphs which is FO-
interpretable in a class of graphs of bounded degree (i.e. near-uniform classes
of graphs), and that < -inv FO collapses to FO on hollow trees.

Besides those results, we believe that the techniques developed throughout
this thesis can be useful in future endeavors. Similarly, we hope that newly in-
troduced tools such as fractal types and mirror swaps could prove useful outside
of the framework of this thesis.

A natural follow-up to the results presented here would be to extend the
setting, and to show that < -inv FO or Succ-inv FO collapses to FO on broader
classes of structures; for instance on structures of bounded treewidth, or path-
width.

When the degree is not supposed to be bounded, proving such a collapse
seems particularly difficult, and we have no idea about a strategy one could
implement to reach that result. It is not even clear to us that < -inv FO = FO
in that setting.

However, on classes of structures of bounded treewidth and of bounded de-
gree, it seems reasonnable to conjecture that < -inv FO collapses to FO. On
classes of pathwidth 2 and of bounded degree for instance, which motivated
the definition of hollow tree, it may be possible, though technically difficult, to
extend the techniques developed in Chapter 4.

In Sections 2.5.5 and Sections 2.5.6, we showed that there was no hope to
interpret in FO path-decompositions (resp. tree-decompositions) of bounded
diameter in structures of bounded pathwdith (resp. bounded treewidth) and
bounded degree. However, these counter-examples do not exclude the possibility
to interpret in FO tree-decompositions of bounded diameter in structures of
bounded pathwidth and bounded degree. Although it seems unlikely to us
that such FO-interpretations exist in the light of our counter-examples, their
existence would entail a lift of the collapse of < -inv FO to FO from trees to
classes of bounded pathwidth and bounded degree.

Chapter 5. Conclusion

It is also conceivable, given the trouble one already goes through when trying
to prove that Succ-inv FO = FO on classes of pathwidth 2, that the notions of
treewidth or pathwidth are not the right measures of sparsity when dealing with
invariant logics. One could then try to find a measure that is more adapted to
such a context. We have seen that the degree boundedness hypothesis is a lever
that can successfully be used in the context of a successor relation; relaxing the
hypothesis on the degree in a careful way may allows to extend the collapse of
Succ-inv FO to FO to broader sparse classes of structures.

144

Bibliography

[1] Matthew Anderson, Dieter van Melkebeek, Nicole Schweikardt, and Luc
Segoufin. Locality from circuit lower bounds. SIAM J. Comput., 2012.

[2] János Barát, Péter Hajnal, Yixun Lin, and Aifeng Yang. On the structure of
graphs with path-width at most two. Studia Scientiarum Mathematicarum
Hungarica, 2012.

[3] Pablo Barceló and Leonid Libkin. Order-invariant types and their applica-
tions. Log. Methods Comput. Sci., 2016.

[4] Michael Benedikt and Luc Segoufin. Regular tree languages definable in
FO and in FOmod . ACM Trans. Comput. Log., 2009.

[5] Michael Benedikt and Luc Segoufin. Towards a characterization of order-
invariant queries over tame graphs. J. Symb. Log., 2009.

[6] Evert W Beth. On padoa’s method in the theory of definition. 1956.

[7] Hans L. Bodlaender. A note on domino treewidth. Discrete Mathematics
& Theoretical Computer Science, 1999.

[8] Hans L. Bodlaender and Joost Engelfriet. Domino treewidth. J. Algorithms,
1997.

[9] J Richard Büchi. Weak second-order arithmetic and finite automata. Math-
ematical Logic Quarterly, 1960.

[10] E. F. Codd. The Relational Model for Database Management, Version 2.
Addison-Wesley, 1990.

[11] Bruno Courcelle. Graph rewriting: An algebraic and logic approach. Else-
vier and MIT Press, 1990.

[12] William Craig. Linear reasoning. A new form of the herbrand-gentzen
theorem. J. Symb. Log., 1957.

[13] Guoli Ding and Bogdan Oporowski. Some results on tree decomposition of
graphs. Journal of Graph Theory, 1995.

[14] Kord Eickmeyer, Michael Elberfeld, and Frederik Harwath. Expressivity
and succinctness of order-invariant logics on depth-bounded structures. In
Mathematical Foundations of Computer Science (MFCS), 2014.

Bibliography

[15] Kord Eickmeyer, Ken-ichi Kawarabayashi, and Stephan Kreutzer. Model
checking for successor-invariant first-order logic on minor-closed graph
classes. In Logic in Computer Science, LICS, 2013.

[16] Michael Elberfeld, Marlin Frickenschmidt, and Martin Grohe. Order in-
variance on decomposable structures. In Logic in Computer Science, LICS,
2016.

[17] Viktor Engelmann, Stephan Kreutzer, and Sebastian Siebertz. First-order
and monadic second-order model-checking on ordered structures. In Logic
in Computer Science, LICS, 2012.

[18] Ronald Fagin, Larry J. Stockmeyer, and Moshe Y. Vardi. On monadic NP
vs. monadic co-np. Inf. Comput., 1995.

[19] Jakub Gajarský, Petr Hlinený, Daniel Lokshtanov, Jan Obdrzálek, and
M. S. Ramanujan. A new perspective on FO model checking of dense
graph classes. CoRR, 2018.

[20] Tobias Ganzow and Sasha Rubin. Order-invariant MSO is stronger than
counting MSO in the finite. CoRR, 2007.

[21] Julien Grange. Successor-invariant first-order logic on classes of bounded
degree. In LICS, Logic in Computer Science, 2020.

[22] Julien Grange and Luc Segoufin. Order-Invariant First-Order Logic over
Hollow Trees. In Computer Science Logic, CSL, 2020.

[23] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-
order properties of nowhere dense graphs. In Symposium on Theory of
Computing, STOC. ACM, 2014.

[24] Martin Grohe and Thomas Schwentick. Locality of order-invariant first-
order formulas. ACM Trans. Comput. Log., 2000.

[25] Lauri Hella, Leonid Libkin, and Juha Nurmonen. Notions of locality and
their logical characterizations over finite models. J. Symb. Log., 1999.

[26] Neil Immerman. Relational queries computable in polynomial time. Infor-
mation and Control, 1986.

[27] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2004.

[28] Roger C Lyndon, Marcel-Paul Schützenberger, et al. The equation aM =
bNcP in a free group. The Michigan Mathematical Journal, 1962.

[29] Hannu Niemistö. Locality and order-invariant logics. PhD thesis, University
of Helsinki, 2007.

[30] Martin Otto. Epsilon-logic is more expressive than first-order logic over
finite structures. J. Symb. Log., 2000.

[31] Andreas Potthoff. Logische klassifizierung regulärer baumsprachen. Univer-
sität Kiel. Institut für Informatik und Praktische Mathematik, 1994.

146

Bibliography

[32] Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects
of tree-width. J. Algorithms, 1986.

[33] Benjamin Rossman. Successor-invariant first-order logic on finite struc-
tures. J. Symb. Log., 2007.

[34] Detlef Seese. Linear time computable problems and first-order descriptions.
Mathematical Structures in Computer Science, 1996.

[35] Larry Joseph Stockmeyer. The complexity of decision problems in automata
theory and logic. PhD thesis, Massachusetts Institute of Technology, 1974.

[36] James W. Thatcher and Jesse B. Wright. Generalized finite automata
theory with an application to a decision problem of second-order logic.
Mathematical systems theory, 1968.

[37] Boris A Trakhtenbrot. Impossibility of an algorithm for the decision prob-
lem in finite classes. Doklady Akademii Nauk SSSR, 1950.

[38] Jan van den Heuvel, Stephan Kreutzer, Michal Pilipczuk, Daniel A.
Quiroz, Roman Rabinovich, and Sebastian Siebertz. Model-checking for
successor-invariant first-order formulas on graph classes of bounded expan-
sion. CoRR, 2017.

[39] Moshe Y. Vardi. The complexity of relational query languages. In Pro-
ceedings of the 14th Annual ACM Symposium on Theory of Computing,
1982.

[40] Thomas Zeume and Frederik Harwath. Order-invariance of two-variable
logic is decidable. CoRR, 2016.

147

ABSTRACT

 This thesis focuses on the expressive power of two invariant logics: successor-invariant first-order logic,

Succ-inv FO, and order-invariant first-order logic, <-inv FO. In these formalisms, on top of plain first-order

logic, FO, an access to an additional successor relation (for Succ-inv FO) or linear order relation (for <-inv

FO) on structures is granted, provided that the evaluation of sentences does not depend on the choice of a

particular relation.

It is well known that both Succ-inv FO and <-inv FO are more expressive than FO in general. However, if one

considers only trees, these logics are no more expressive than plain FO. The two main results of this thesis

extend the classes of structures on which these invariant logics collapse to FO.

First, we prove that Succ-inv FO is no more expressive than FO on classes of bounded degree. For that, we

show how successor relations preserving FO-similarity can be constructed.

Second, we define a new class of structures, that of hollow trees. A hollow tree can be seen as an unranked

tree, where a parent is only linked to its leftmost and rightmost children. Elements of a siblinghood are

linearly related through another binary relation, which is symmetric. The notion of hollow trees is a

generalization of ranked trees, and we believe it to be a gateway to structures of pathwidth 2.

We show that <-inv FO collapses to FO on the class of hollow trees.

MOTS CLÉS

Théorie des modèles finis – Invariance – Logique du premier ordre

RÉSUMÉ

Cette thèse s’attache à l’étude du pouvoir d’expression de deux logiques définies par invariance : successor-

invariant first order logic, Succ-inv FO, et order-invariant first order logic, <-inv FO. Ces

formalismes étendent la logique du premier ordre, FO, en autorisant l’accès à une relation de successeur

(pour Succ-inv FO) ou à une relation d’ordre (pour <-inv FO) sur le domaine des structures considérées, à la

condition que l’évaluation des formules ne dépende pas du choix d’une telle relation.

Il est établi que dans le cadre général, Succ-inv FO et <-inv FO sont plus expressives que la simple logique

du premier ordre. Cependant, si l’on se restreint au cas des arbres, ces deux logiques ont le même pouvoir

d’expression que FO. Les deux résultats centraux de cette thèse étendent les classes de structures sur

lesquelles le pouvoir d’expression de ces logiques définies par invariance est réduit à celui de FO.

Tout d’abord, on montrera que Succ-inv FO n’est pas plus expressif que FO sur les classes de structures dont

le degré est borné. La preuve de ce résultat repose sur la construction de successeurs préservant la similarité

des structures au premier ordre.

Dans un second temps, on définira une nouvelle classe de structures : celle des hollow trees. Un hollow tree

est essentiellement un arbre de rang non borné dans lequel un parent est uniquement relié à son enfant le

plus à gauche et à celui le plus à droite. Les nœuds d’une fratrie sont liés par le biais d’une relation binaire

symétrique. La notion de hollow tree est une généralisation de celle d’arbre de rang borné, et se présente

comme une première étape vers les classes de structures de largeur de chemin au plus 2.

On montrera que sur la classe des hollow trees, <-inv FO n’est pas plus expressive que la logique du premier

ordre.

KEYWORDS

Finite model theory – Order-invariance – Successor-invariance – First-order logic

	Introduction
	Preliminaries
	Structures and logics
	Relational structures
	First-order logic
	Monadic second-order logic

	Invariant logics
	General setting
	Order-invariance
	Successor-invariance

	Tools for proving expressivity results
	Similarity and Ehrenfeucht-Fraïssé games
	FO-interpretations and bi-FO-interpretations

	First expressivity results
	Separating examples
	Locality
	Upper bounds and collapses of invariant logics

	Treewidth and pathwidth
	Treewidth and pathwidth of a graph
	Logical perspective on decompositions
	Domino decompositions
	Decompositions of bounded diameter
	Interpretation of path-decompositions
	Interpretation of tree-decompositions

	Methodology for proving a collapse
	Lifting a pre-established collapse
	The direct method
	The chaining method

	Model checking for successor-invariance
	Review of expressivity results

	Successor-Invariant FO on Classes of Bounded Degree
	Overview of the result
	Fractal types and layering
	Proof of the collapse
	General method
	Separation between rare and frequent types
	Around rare types
	Around junctions
	Carrying S1 over to G2
	Completion of S1 and S2
	Examples of construction
	Properties of S1 and S2
	Conclusion of the proof

	Conclusion

	Order-Invariant FO on Hollow Trees
	Definitions
	General notations
	Hollow trees

	Overview of the results
	Main result
	Corollaries

	Swaps and pumping
	Crossing-S-swaps
	E-swaps
	Pumping

	Inclusion and pseudo-inclusion
	Tools for reorganizing S-edges
	S-siblings re-association
	S-stabilization

	Removing unnecessary material
	Loop minimization
	Loop elimination
	S-parents re-association

	Proof of the main result
	Conclusion

	Conclusion

