
�>���G �A�/�, �i�2�H�@�y�j�y�j�8�d�y�8

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�i�2�H�@�y�j�y�j�8�d�y�8

�a�m�#�K�B�i�i�2�/ �Q�M �k �.�2�+ �k�y�k�y

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�a���7�2 ���M�/ �1�{�+�B�2�M�i �_�2�B�M�7�Q�`�+�2�K�2�M�i �G�2���`�M�B�M�; �7�Q�`
�"�2�?���p�B�Q�m�`���H �S�H���M�M�B�M�; �B�M ���m�i�Q�M�Q�K�Q�m�b �.�`�B�p�B�M�;

�1�/�Q�m���`�/ �G�2�m�`�2�M�i

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�1�/�Q�m���`�/ �G�2�m�`�2�M�i�X �a���7�2 ���M�/ �1�{�+�B�2�M�i �_�2�B�M�7�Q�`�+�2�K�2�M�i �G�2���`�M�B�M�; �7�Q�` �"�2�?���p�B�Q�m�`���H �S�H���M�M�B�M�; �B�M ���m�i�Q�M�Q�K�Q�m�b
�.�`�B�p�B�M�;�X �*�Q�K�T�m�i�2�` �a�+�B�2�M�+�2 �(�+�b�)�X �l�M�B�p�2�`�b�B�i�û �/�2 �G�B�H�H�2�- �k�y�k�y�X �1�M�;�H�B�b�?�X ���L�L�h �, ���X ���i�2�H�@�y�j�y�j�8�d�y�8��

Université des Sciences et des Technologies de Lille
Ecole Doctorale Sciences Pour L'ingénieur

Thèse de Doctorat

Spécialité Informatique

présentée par

Edouard Leurent

Safe and Efficient Reinforcement Learning
for Behavioural Planning in Autonomous Driving

sous la direction d' Odalric-Ambrym Maillard
et de Wilfrid Perruquetti ,

ainsi que l'encadrement de Denis E�mov
et de Yann Blanco.

Soutenue publiquement à Villeneuve d'Ascq , le 30 octobre 2020devant le jury composé de

M. Lucian Bu³oniu Universitatea Tehnic din Cluj-Napoca Rapporteur

M. Jorge Villagra Universidad Politécnica de Madrid Rapporteur

Mme Luce Brotcorne Inria Présidente

M. Marc Deisenroth University College London Examinateur

M. Denis E�mov Inria Encadrant

M. Odalric-Ambrym Maillard Inria Directeur de thèse

Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL),

UMR 9189 Équipe SequeL, 59650, Villeneuve d'Ascq, France

À mes grands-pères, Marc et Germain,

qui ont nourri mon goût pour les sciences.

Remerciements

Un concept central en apprentissage par renforcement est celui du �credit assignment�(� attri-

bution du mérite �). Selon ce principe, lors de l'obtention d'une haute récompense, il convient

de remonter l'historique des évènements survenus par le passé a�n d'identi�er ceux qui furent

responsables de ce succès. Prêtons-nous à l'exercice.

Tout d'abord, je dois beaucoup à mes parents, ainsi qu'à mon frère et mes s÷urs. Leur

a�ection et encouragements constants au �l des années m'ont permis de m'engager avec

con�ance dans cette aventure.

Mais je n'aurais pas entrepris cette thèse sans l'exemple éclatant des doctorants de Parrot,

Gauthier Rousseau et Clément Pinard, ni le concours de Jill-Jênn Vie, Edouard Oyallon, Alberto

Bietti et Michal Valko qui ont tous conspiré à me mener au laboratoire SequeL. Je remercie

également l'examen du permis de conduire, auquel mes échecs répétés m'ont permis de

développer un intérêt égoïste mais pragmatique pour ce sujet de thèse en particulier.

J'adresse maintenant mes plus hautestraces d'éligibilitéainsi que mes plus chaleureux

remerciements à mes encadrants. Odalric et Denis, j'admire profondément votre intégrité et

votre rigueur scienti�que, ainsi que l'étendue de vos connaissances, que vous savez mobiliser

pour répondre à la moindre de mes interrogations avec une facilité déconcertante. Merci

également pour votre ouverture d'esprit, dont témoigne particulièrement la rencontre de vos

disciplines respectives et la confrontation fructueuse des points de vue et des méthodes qui en

découle. Mais avant tout, je vous suis reconnaissant pour votre bienveillance, votre disponibilité

et votre soutien appuyé lorsque j'en avais besoin. Yann, je te remercie pour avoir monté ce

projet ambitieux, et pour m'avoir accordé une pleine liberté dans mes recherches, bien qu'elles

se soient parfois écartées des préoccupations très concrètes de l'ingénierie Renault. En�n,

Wilfrid je te remercie pour tes précieux conseils toujours pertinents.

I am also very grateful to Lucian Busoniu and Jorge Villagra for their thoughtful reporting

on this manuscript, as well as to all members of the jury, Luce Brotcorne, Marc Deisenroth and

Rosane Ushirobira, for their valuable feedback, and for giving their time and energy to make

it possible for my defence to take place amid the turmoil of a global pandemic despite being

under lockdown.

J'en viens à mes coreligionnaires de la pause-café, avec qui j'ai pu décompresser, partager

mes intérêts, mes joies et mes peines. A SequeL tout d'abord, je remercie particulièrement

Mathieu et Xuedong, camarades de la première heure avec qui j'ai entamé d'inoubliables

marches aléatoires dans les montagnes de Stellenbosch ; Nicolas et Omar, avec qui j'ai eu le

privilège et le plaisir de collaborer ; Guillaume et Lilian dont l'éloignement rendait la visite

occasionnelle d'autant plus festive ; Nathan et Dorian, dont l'appétence pour le débat n'a

d'égale que leur propension à le trancher à coups d'étude ad-hoc ; Pierre Ménard dont la

cinéphilie et l'hospitalité ont permis la renaissance en grande pompe du Cinéquel ; Pierre

Schegg, compagnon d'armes avec qui nous défendons �èrement le bastion des roboticiens à

SequeL, ainsi que Florian, Ronan, Merwan, Mahsa, Julien, Yannis, Reda, Romain, Jean, Sarah et

Antoine. Sans oublier les chercheurs : merci Emilie, Jill-Jênn et Philippe pour vos contributions

à la vie du laboratoire et à sa convivialité, ainsi que pour les collaborations et conversations

scienti�ques. À Renault maintenant, Jean, j'ai su dès notre rencontre à Munich que ton goût

communicatif et intarissable pour la philosophie nous conduirait à de précieuses et mémorables

conversations. Merci également à Lu, Clara, Edwin, Federico, Louis et Thomas pour nos fameux

repas-mini-docTM . Je salue aussi les doctorants du CAOR, Philip, Marin et Florent, avec qui il

est toujours agréable de discuter, aux Mines ou en conférence, de nos approches di�érentes à

un sujet commun.

Mais il y a une vie en dehors du travail, et je dois ses meilleurs moments à mes amis, merci

Luc, Pierre, Bertrand, Adrien, Benjamin, Mano, Quentin, Thomas D., Thomas L., Simon, Oriane,

Ivain, Magali et Daniel.

En�n, merci Ariane pour ton soutien indéfectible, pour toutes tes qualités que j'admire tant,

et pour me donner envie d'être et de donner le meilleur de moi-même.

vi

Résumé

Dans cette thèse de doctorat, nous étudions comment des véhicules autonomes peuvent ap-

prendre à garantir la sûretéet à éviter les accidents, bien qu'ils partagent la route avec des

conducteurs humains dont les comportements sont incertains. Pour prendre en compte cette

incertitude, nous nous appuyons sur les observations en ligne de l'environnement pour con-

struire une région de con�ance autour de la dynamique du système, qui est ensuite propagée

au cours du temps pour borner l'ensemble des trajectoires possibles des véhicules à proxim-

ité. Pour assurer la sûreté en présence de cette incertitude, nous avons recours à la prise de

décision robuste, qui préconise de toujours considérer le pire cas. Cette approche garantit

que la performance obtenue pendant la plani�cation sera également atteinte sur le système

réel, et nous montrons dans une analyse de bout en bout que la sous-optimalité qui en résulte

est bornée. Nous en fournissons une implémentation e�cace, basée sur des algorithmes de

recherche arborescente.

Une seconde contribution est motivée par le constat que cette approche pessimiste tend à

produire des comportements excessivement prudents : imaginez vouloir dépasser un véhicule,

quelle certitude avez-vous que ce dernier ne changera pas de voie au tout dernier moment,

provoquant un accident ? Ce type de raisonnement empêche les robots de conduire aisément

parmi d'autres conducteurs, de s'insérer sur une autoroute ou de traverser une intersection,

un phénomène connu sous le nom de � robot �gé � . Ainsi, la présence d'incertitude induit un

compromis entre deux objectifs contradictoires : sûreté et e�cacité. Comment arbitrer ce con�it ?

La question peut être temporairement contournée en réduisant au maximum l'incertitude. Par

exemple, nous proposons une architecture de réseau de neurones basée sur de l'attention, qui

tient compte des interactions entre véhicules pour améliorer ses prédictions. Mais pour aborder

pleinement ce compromis, nous nous appuyons sur la prise de décision sous contrainte a�n de

considérer indépendamment les deux objectifs de sûreté et d'e�cacité. Au lieu d'une unique

politique de conduite, nous entrainons toute une gamme de comportements, variant du plus

prudent au plus agressif. Ainsi, le concepteur du système dispose d'un curseur lui permettant

d'ajuster en temps réel le niveau de risque assumé par le véhicule.

Abstract

In this Ph.D. thesis, we study how autonomous vehicles can learn to act safelyand avoid

accidents, despite sharing the road with human drivers whose behaviours are uncertain. To

explicitly account for this uncertainty, informed by online observations of the environment, we

construct a high-con�dence region over the system dynamics, which we propagate through

time to bound the possible trajectories of nearby tra�c. To ensure safety under such uncertainty,

we resort to robust decision-making and act by always considering the worst-case outcomes.

This approach guarantees that the performance reached during planning is at least achieved

for the true system, and we show by end-to-end analysis that the overall sub-optimality is

bounded. Tractability is preserved at all stages, by leveraging sample-e�cient tree-based

planning algorithms.

Another contribution is motivated by the observation that this pessimistic approach tends to

produce overly conservative behaviours: imagine you wish to overtake a vehicle, what certainty

do you have that they will not change lane at the very last moment, causing an accident? Such

reasoning makes it di�cult for robots to drive amidst other drivers, merge into a highway, or

cross an intersection �an issue colloquially known as the �freezing robot problem�. Thus, the

presence of uncertainty induces a trade-o� between two contradictory objectives: safety and

e�ciency. How does one arbitrate this con�ict? The question can be temporarily circumvented

by reducing uncertainty as much as possible. For instance, we propose an attention-based

neural network architecture that better accounts for interactions between tra�c participants to

improve predictions. But to actively embrace this trade-o�, we draw on constrained decision-

making to consider both the task completion and safety objectives independently. Rather than

a unique driving policy, we train a whole continuum of behaviours, ranging from conservative

to aggressive. This provides the system designer with a slider allowing them to adjust the level

of risk assumed by the vehicle in real-time.

viii

Contents

List of Acronyms xiii

List of Symbols xvii

1 Introduction 1

1.1 Context and scope . 1

1.2 Outline and Contributions . 8

I Case Study: Learning to Drive 15

2 Literature Review 17

2.1 Sequential decision-making . 18

2.2 States and partial observability . 22

2.3 Actions and temporal abstraction . 24

2.4 Rewards and inverse reinforcement learning . 25

2.5 Dynamics, o�ine learning and transfer . 27

2.6 Optimality criterion and safety . 29

3 Problem Statement 35

3.1 Perceived states . 36

3.2 Behavioural decisions . 37

3.3 Tra�c dynamics . 38

3.4 Rewards . 40

Contents

3.5 Implementation . 41

II Model-free 43

4 Considering Social Interactions 45

4.1 Motivation . 46

4.2 A social attention architecture . 49

4.3 Experiments . 50

5 Acting under Adjustable Constraints 59

5.1 Motivation . 60

5.2 Budgeted dynamic programming . 62

5.3 Budgeted reinforcement learning . 67

5.4 Experiments . 71

Part Conclusion 79

III Model-based 81

6 Planning Fast by Hoping for the Best 83

6.1 Motivation . 84

6.2 Open-loop optimistic planning . 86

6.3 Graph-based optimistic planning . 102

7 Preparing for the Worst 121

7.1 Motivation . 122

7.2 Con�dent model estimation . 129

7.3 State interval prediction . 130

7.4 Robust stabilisation and constraint satisfaction 148

7.5 Minimax control with generic costs . 157

7.6 Multi-model selection . 161

x

Contents

7.7 Experiments . 164

Part Conclusion 169

8 General Conclusion and Perspectives 171

8.1 Conclusion on our contributions . 171

8.2 Outstanding issues and perspectives . 173

A The highway-env software 177

A.1 General presentation . 177

A.2 Outreach . 180

B Complements on Chapter 5 185

B.1 Proofs . 185

C Complements on Chapter 6 197

C.1 Proofs . 197

C.2 Time and memory complexities . 207

D Complements on Chapter 7 219

D.1 Proofs . 219

D.2 A tighter enclosing polytope . 230

List of Figures 231

List of Algorithms 236

List of Tables 237

List of References 239

xi

List of Acronyms

A

ACC Adaptive Cruise Control , 4

AD Autonomous D riving , 4, 7, 10, 17, 19, 26�29, 31, 33, 35, 60, 78, 174, 175

ADAS Advanced Driver-A ssistance Systems , 4, 178

ADP Approximate D ynamic Programming , 84

AEB Autonomous Emergency Braking , 4

AES Autonomous Emergency Steering , 4

B

BFTQ Budgeted Fitted Q-Learning , 61, 67, 68, 70�73, 75�77, 233, 236

BMDP Budgeted M arkov D ecision Process , 10, 59, 61�67, 71, 77, 78, 188, 232

BRUE Best Recommendation with Uniform Estimation , 85, 117

C

CEM Cross Entropy Method , 84

CMA-ES Covariance Matrix Adaptation Evolution Strategy , 84

CMDP Constrained M arkov D ecision Process , 32, 60�62, 64, 77, 172, 193, 232

CNN Convolutional N eural N etwork , 52

CVaR Conditional V alue-at-Risk , 31, 32, 175

D

xiii

List of Acronyms

DP Dynamic Programming , 31, 66, 78, 84, 85

DQN Deep Q-Network , 47, 49, 52, 69, 164�167

F

FCN Fully-C onnected Network , 51

FTQ Fitted Q-Learning , 67, 68, 71, 73, 76, 77, 233

H

HJI Hamilton-Jacobi-Isaacs , 32

I

i.i.d. independent and identically distributed , 20

IDM Intelligent D river M odel , 39, 51, 179

IRL Inverse Reinforcement Learning , 26, 27

K

KL-OLOP Kullback-Leibler OLOP , 10, 87, 89�92, 97, 98, 101, 117�119, 197, 207, 208, 212,

234, 237

L

LKA Lane-Keeping Assist , 4

LMI linear matrix i nequality , 132, 140, 148, 156, 167

LPV Linear Parameter-Varying , 130, 132, 134, 135, 145, 148

LQ Linear Quadratic , 31, 128

LTI Linear Time-Invariant , 132, 133, 148

M

MAB Multi-A rmed Bandits , 31, 86, 87

MCTS Monte-Carlo Tree Search , 7, 10, 19, 83�86, 102

MDP Markov Decision Process , 5, 7, 9, 22, 23, 27�29, 31, 32, 35, 40, 41, 45, 60, 64, 65,

71, 83�86, 102�104, 177, 206, 235

xiv

List of Acronyms

MDPGapE MDP Gap-based Estimation , 101, 117

ML Machine Learning

MLE Maximum L ikelihood E stimation , 7

MOBIL Minimizing O verall Braking I nduced by L ane change , 39, 179

MOMDP Multi-O bjective Markov D ecision Process , 60�62, 185, 232

MORL Multi-O bjective Reinforcement Learning , 60

MPC Model Predictive Control , 11, 126�128, 143, 152�156, 167, 169, 175

N

NN Neural N etwork , 46, 49, 62, 67, 69, 79

O

OFU Optimism in the F ace of Uncertainty , 86, 104, 128, 174

OLOP Open-Loop Optimistic Planning , 10, 83, 86, 87, 89�92, 98, 101, 118, 173, 197,

207, 237

OPC Optimistic Planning algorithm with Continuous actions

OPD Optimistic Planning of Deterministic Systems , 86, 98, 101, 102, 105�110, 112,

116�119, 158, 159, 162, 164, 202, 215, 216, 234, 236

P

PAC Probably A pproximately C orrect , 84

POMDP Partially O bservable Markov D ecision Process , 23, 24

PRM Probabilistic Roadmap , 19

R

RL Reinforcement Learning , 5�10, 17, 18, 26�28, 30, 31, 45, 46, 60�62, 65, 78, 83,

122, 123, 172, 174, 176, 177, 180, 182

RRT Rapidly-e xploring R andom Trees , 19

S

SOOP Simultaneous Optimistic Optimisation for Planning

xv

List of Acronyms

StOP Stochastic Optimistic Planning , 86

U

UCT Upper Con�dence bounds applied to Trees , 86, 117

V

VaR Value-at-Risk , 31, 175

xvi

List of Symbols

Mathematical notations

N set of integers

[n] range of integers f 1; : : : ; ng

R+ set of positive reals f � 2 R : � � 0g

R set of real numbers

N+ set of positive integers N \ R+

L 1 the set of all inputs u with the property jjujj < 1

jxj Euclidean norm for a vector x 2 Rn

kuk L 1 norm jjujj [t0 ;t 1] with t1 = + 1

kuk[t0 ;t 1] L 1 norm on [t0; t1) of a measurable and locally essentially bounded input

u : R+ ! R

jzj absolute value jzj = z+ + z�

z� negative part z� = z+ � z

z+ positive part max(z;0)

ei normal basis vectors [0: : : 0 1 : : : 0]> in Rn for i = 1; n, where 1 appears in the

i th position

I n the identity matrix with dimension n � n

En� m ; Ep the matrices with all elements equal 1 with dimensions n � m and p � 1,

respectively

M > transpose of a matrix M

kAk2 the induced L 2 matrix norm maxi 2 [n] � i (A> A)

xvii

List of Symbols

kAkmax the elementwise maximum norm kAkmax = max i 2 [n];j 2 [n] jA i;j j, it is not sub-

multiplicative

� (A) the vector of eigenvalues of a matrix A 2 Rn� n

P � 0 (P � 0) a symmetric matrix P 2 Rn� n is negative (positive) de�nite

x1 � x2 for two matrices A1; A2 2 Rn� n , (including vectors), the relation A1 � A2 is

understood elementwise

o(�); O(�);
(�) Landau notations for positive functions: f (x) = o(g(x) means that g(x) 6=

0 and f (x)=g(x) ! 0 for x ! 1 , f (x) = O(g(x)) means that there exists

x0; K > 0 such that f (x) � Kg (x) from x � x0, and f (x) =
(g(x)) means

g(x) = O(f (x))

E expectation under a probabilistic model

V variance under a probabilistic model

M (X) set of probability measures on a measurable spaceX , 5

B Binomial distribution

� Dirac distribution , 46

N Normal distribution

U(X) uniform distribution on a measurable space X , 68

Markov Decision Processes

S set of statess 2 S , 5

A set of actionsa 2 A

R(s; a) reward function R : s; a ! R(s; a) 2 [0; 1] , 5

P (s0 j s; a) transition distribution s0 � P(s0 j s; a) , 5

 discount factor in [0; 1) , 5

� policy , 5

� ? optimal policy , 6

G discounted return for the reward signal , 5

V state value function (? for optimal value, � for policy value) , 6

Q state-action value function (? for optimal value, � for policy value) , 6

T Bellman operator (? for optimality, � for evaluation) , 47

rn simple regret of an algorithm after n samples , 6

xviii

List of Symbols

D dataset , 7

Budgeted Reinforcement Learning

S set of augmented states , 62

A set of augmented actions , 62

B set of admissible budgets , 62

� set of budgeted policies , 62

C cost function , 60

� budget , 60

� a budget allocated to an action , 62

P augmented transition function , 62

R augmented reward function , 62

� budgeted policy , 62

� ? optimal budgeted policy , 68

Gc discounted return for the cost signal

G augmented return , 63

Vc cost value function , 63

Vr reward value function , 63

V augmented value function , 63

Qc cost Q-function , 63

Qr reward Q-function , 63

Q augmented Q-function , 63

T augmented Bellman operator (? for optimality, � for evaluation) , 63

Tree-based Planning

A � set of a �nite words a, representing sequences of actions(a1; : : : ; ah) 2 A h , for

h 2 N

A 1 the set of in�nite sequences of actions (a1; : : :)

ab2 A � the concatenation of two �nite sequences a 2 A � and b 2 A �

; the empty sequence of actions

xix

List of Symbols

a1:t the pre�x (a1; : : : ; at) 2 A t of length t � h of a word a 2 A h

aA � ; aA 1 the set of �nite and in�nite su�xes of a, respectively: aA � = f c 2 A ? : 9b 2 A �

such that c = abg and aA 1 de�ned likewise

T the look-ahead tree

� (a); � (a) the distribution and mean of the reward obtained at the last step after executing

a sequence of actionsa 2 A �

Ua; L a upper and lower bounds on the value V (a) of a sequence of actionsa 2 A �

� e�ective branching factor of a planning tree T , in [1; K]

Linear Systems

X constraint set for safe statesx(t) 2 X � Rp , 126

U constraint set for safe controls u(t) 2 U � Rq , 126

dt time step at which MPC controls are applied , 122

� features for a parametrized , 126

� parameters � 2 Rd for a model

A(�) structured state matrix A(�) 2 Rp� p, depending on unknown parameters � ,

126

� con�dence level for statistical estimates, in (0; 1] , 124

C[N];� high-con�dence set for the estimation of � , such that P(� 2 C[N];�) � 1� � . , 124

x(t) upper-bound of the state interval x(t) � x(t); 8t , 125

x(t) lower-bound of the state interval x(t) � x(t); 8t , 125

GN;� Gramian matrix for the regularised least-square estimation of � , with N samples

and penalty � . , 129

� N;� regularised least-square estimate of � , with N samples and penalty � . , 129

R pessimistic reward function, evaluated on the worst-case reachable states , 157

N number of transition samples

K number of planning iterations

xx

Chapter 1

Introduction

We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the �rst time.

T. S. Eliot, Little Gidding.

1.1 Context and scope

1.1.1 How should a driving robot make decisions?

In the �rst few weeks of my Ph.D., I observed that layman interlocutors, when confronted

with this question on the occasion of a social dinner, have a general tendency to conjure up

disaster scenarios involving imminent accidents with unavoidable casualties. This re�ex is

likely to stem from the popularisation of the Trolley Problem (Foot, 1967), a famous thought

experiment in moral philosophy, depicted in Figure 1.1, in which a runaway trolley is headed

straight toward �ve people tied up on the main track and unable to move. When pulled, a lever

switches the trolley to a side track occupied by one person: what should you do? Answering

this general question of what we oughtto do in any situation, what is a right or wrongdecision, is

the focus of the �eld of normative ethics. This dilemma illustrates a clash between two schools

of thought: utilitarianism and deontological ethics. According to utilitarians, the rightfulness

of an action should be evaluated based on its consequences, and actions maximising autility

�the happiness and well-being for the a�ected individuals� should be preferred. Conversely,

deontologists evaluate the morality of actions per se, according to a series of rules, rather than

based on their consequences. Although this problem was initially introduced as a thought

experiment, its transposition to the context of autonomous driving and arguably more realistic

1

Introduction

Figure 1.1 � The Trolley Problem (Foot, 1967). Illustration by Jesse J. Prinz.

scenarios made it heavily cited in discussions regarding safety (e.g. Lin, 2015; Bonnefon, Shari�,

and Rahwan, 2016; Gogoll and Müller, 2017). In early 2017, MIT's Media Lab launched the

Moral Machineplatform (Awad et al., 2018), in which they invited members of the public to

select the morally acceptable decision out of several options available to an autonomous vehicle.

The authors argued that the recovered global preference would provide �essential topics to be

considered by policymakers�, and Noothigattu et al. (2018) proposed an implementation of a

system aggregating these preferences, trained on the collected data. However, the relevance of

this analogy to inform engineering and policy has been called into question. Thus, De Freitas

et al. (2019) point out that such dilemmas are unlikely to occur on real roads, hard to detect by

perception systems and to act upon by control systems, and that they are distracting researchers

from the more appropriate goal of how to avoid accidents altogether. Indeed, when we drive,

we seldom �nd ourselves in such extreme situations but rather constantly ponder over less

tragic considerations: Where does this vehicle intend to go? Do I have the time to proceed or

should I yield? What is the appropriate speed to drive at right now? The object of this thesis is

to arti�cially reproduce this cognitive process of how to avoid accidents while driving, which

is more a technical matter than an ethical one. Still, the Trolley Problem, though unrealistic,

reveals and raises a number of legitimate questions. Should we base driving decisions on a set

of rules? Can these rules be learned,e.g.by imitating human drivers? Should we instead make

decisions by comparing the utility of possible outcomes, like utilitarians advocate? And if so,

how do we choose a good utility? This last interrogation becomes particularly sensitive if we

add uncertainty to the Trolley Problem. Facing a potential collision, driving slowly decreases

the risk of accident at the expense of e�ciency, which can ultimately have an economical

impact. What is the right level of caution to take? This question directly translates as that of

the value of life, which has been taken up by economists for decades (Abraham and Thédié,

1960; Drèze, 1962; Schelling, Bailey, and Fromm, 1968; Banzhaf, 2014; Tirole and Rendall, 2017;

Charpentier and Cherrier, 2019) and has countless practical implications for public policies,

2

1.1 Context and scope

including recent debates on lowering the speed limits on highways and trunk roads, but also

on the appropriate lockdown durations during a pandemic. It would be illusory to pretend

that the practical implications of the Trolley Problem can simply be swept aside and entirely

replaced by technicality. Throughout this manuscript, we will see that ethical concerns still

underpin most assumptions and design choices of safety-critical software.

1.1.2 Nuts and bolts of self-driving software

Figure 1.2 � The architecture of a typical self-driving software

Historically, autonomous vehicles have been developed following a traditional robotics

pipeline, illustrated in Figure 1.2. This architecture decomposes the task of driving as a series

of three functions: Perception, Decision, and Control (also called the Sense-Plan-Act paradigm,

or Navigation, Guidance and Control in aerospace engineering). The Perception module takes

raw sensor data as input and produces a high-level reconstruction of the scene. The Decision

module then determines the desired trajectory of the vehicle, based on the current situation.

3

Introduction

Finally, the Control module manipulates forces, by way of steering and throttle controls, to track

the desired trajectory. In the context of Autonomous Driving, the Decision module is often

implemented with a hierarchical structure whose layers work at di�erent timescales. First, a

Route Planninglayer searches for the shortest route in a road network from the current location

to the desired destination. Second, the Behavioural Planninglayer speci�es a coarse driving

behaviour through short-term goals or semantic decisions, such as changing lane, slowing

down at an intersection, or yielding to a vehicle. This layer is thus responsible for following

the planned route while adapting to the current state of the tra�c in real-time. Third, the

Motion Planning layer generates a continuous, feasible trajectory that implements the desired

behaviour while ensuring comfort and safety.

Great strides have been made in the two end-of-pipe tasks: Perception has bene�ted from

the substantial progress in the �eld of computer vision due to the recent advent of deep learning

(surveyed in Janai et al., 2020), and many Control schemes (surveyed in Polack, 2018) have

been developed for ground vehicles. In the Decision module, Route Planning is virtually solved

and already provided by services such as Open Street Maps, and there exist a vast body of

Motion Planning algorithms, discussed in Chapter 2. All these building blocks are widely used

for industrial applications, including Advanced Driver-Assistance Systems (ADAS) functions

such as Lane-Keeping Assist (LKA), Adaptive Cruise Control (ACC), Autonomous Emergency

Braking (AEB) or Autonomous Emergency Steering (AES); and in academic research challenges.

Ultimately, we claim that Behavioural Planning remains the only neglected link in the chain.

Indeed, most of these applications focused so far on simple settings with little complexity:

ADAS systems are mostly tailored for highway driving and struggle whenever required to

interact with other drivers, e.g.for merging into tra�c 1. Similarly, most academic challenges

focused on highway driving, with the exception of the DARPA Urban Challenge, which required

more advanced interactions with other vehicles. Nevertheless, even this event still constituted

a controlled environment, simple enough that all participants could rely on rule-based systems

for behavioural planning (Buehler, Iagnemma, and Sanjiv Singh, 2009), such as �nite state

machines whose transitions are triggered by handcrafted criteria (e.g. Baker and Dolan, 2008).

Unfortunately, there is little hope that this approach can scale to complex scenes since responses

tailored for speci�c use-cases cannot be easily merged.

1.1.3 Scope and Challenges of this Thesis

In the light of the above, this thesis is dedicated to addressing a weak link in the Autonomous

Driving (AD) chain: Behavioural Planning. We ask the following question: assuming that we

had access to a ground truth perception and a perfectly accurate control system, what steps

would remain to achieve fully autonomous driving?

1This di�culty, which motivated this thesis, was reported by engineers from the ADAS team at Renault.

4

1.1 Context and scope

Humans in the loop Unless restrained to dedicated infrastructure, Autonomous Vehicles

will have to share the road with human drivers. This introduces a great deal of uncertainty in

the decision problem. Indeed, while the location and velocity of a vehicle can be perceived, the

mind of its driver remains impenetrable. Even though the present state is known, the future

becomes uncertain: where are they headed? Are they paying attention to their surroundings?

In that regard, it seems impossible to manually model all the factors involved in the human

decision-making process. However, human drivers do not drive erratically either, and their

behaviour is highly structured: humans drivers tend to follow the lanes, avoid collisions with

other vehicles, and generally respect road signage. In other words, human drivers are predictable.

This motivates the idea of learning from data, and hope for a better comprehensiveness than

handcrafted decision systems.

Learning to act The skill of driving a car involves taking a series of decisions, where early

stages in�uence the resulting outcomes and subsequent reasoning at late stages. This aspect

is known as sequential (or multistage) decision-making. Let us start by introducing some

useful notations. At each time step t, the system is described by its statest that belongs to a

measurable2 state spaceS. Then, the agent can take anactionat within a measurable action

spaceA, before transitioning to a next state st+1 2 S, drawn from a conditional distribution

P(st+1 j st ; at) that we call the system dynamicsP 2 M (S)S�A , where M (X) denotes the set of

probability measures of a measurable set X . The agent actions can themselves be drawn from

a distribution � (at j st), called the policy � 2 M (A)S.

Reinforcement Learning (RL) is a general framework for learning-based sequential decision-

making. It is formulated as an optimal control problem: the policy � is chosen to maximise an

objective function. It is generally formalised as a Markov Decision Process (MDP), i.e. a tuple

(S; A ; P ; R;) in which at each step t, the agent receives a bounded reward R(st ; at), where

R 2 [0; 1]S�A is a deterministic reward function and 2 [0; 1) is a discount factor. Adequate

long-term behaviour of policies � is fostered by considering their return.

De�nition 1.1 (Policy return) . The returnG� of a policy� is a random variable de�ned as the

discounted sum of rewards

G� =
1X

t=0

 t R(st ; at)

accumulated along a trajectory� = (s0; a0; s1; a1; : : :) induced by the policyat � � (at jst) and

system dynamicsst+1 � P(st+1 j st ; at).

The performance of a policy � is then evaluated through its valuefunction.

2A measurable space is a set with a� -algebra, that allows to de�ne random variables. For example, this set can
�nite ([N]), countable (N), or continuous (R).

5

Introduction

De�nition 1.2 (Value functions) . The state valueV � (s) of a policy� is the expected return of

the policy when starting in a states

V � (s) =� E [G� j s0 = s] :

Similarly, the state-action valueQ� (s; a) of a policy� is the expected return of the policy when

starting in the states and taking the actiona

Q� (s; a) =� E [G� j s0 = s; a0 = a] :

This allows to de�ne the goal of Reinforcement Learning: �nding an optimalpolicy � ?.

De�nition 1.3 (Optimality) . A policy � ? is said to be optimal if it maximises the value functions

V � andQ� in every state and action. We also de�ne the optimal value functionsV ? andQ? as

8s 2 S; V ?(s) =� Q� ?
(s) = max

�
V � (s);

8(s; a) 2 S � A ; Q?(s; a) =� Q� ?
(s; a) = max

�
Q� (s; a):

Sample e�ciency Several performance measures have been introduced to evaluate RL algo-

rithms. In this thesis, we consider the goal of �nding a near-optimal policy as fast as possible.

The �xed-con�dencesetting evaluates the smallest sample complexity, i.e. number of interac-

tions, required to �nd a near-optimal policy � ? with high probability. Alternatively, in the

�xed-budgetsetting, the simple regretrn of an algorithm measures the expectedsub-optimality of

the recommended policy �̂ n after a �xed number n of interactions

rn (s) =� E
�̂ n

h
V ?(s) � V �̂ n (s)

i
:

The goal of this thesis is to provide sample-e�cientalgorithms for learning a driving policy.

In the particular context of Behavioural Planning for Autonomous Driving, this goal will be

articulated around a few main questions and challenges.

Model-free vs. model-based Reinforcement Learning algorithms can be grouped into two

main families. To �nd an optimal policy � ?, model-based Reinforcement Learning algorithms

6

1.1 Context and scope

�rst attempt to estimate the MDP parameters P̂ and R̂ based on a history of transitions D =

f (st ; at ; r t ; st+1)g, using for instance Maximum Likelihood Estimation (MLE) in a hypothesis

class of dynamics and reward functions:

max
P̂

Y

t

P̂ (st+1 j st ; at) and min
R̂

X

t

kR(st ; at) � R̂(st ; at)k2
2:

This allows to plan in the estimated MDP (S; A ; P̂ ; R̂;), i.e. compute the associated optimal

policy �̂ ?. This can be achieved using planning algorithms such as Dynamic Programming or

Linear Programming. Conversely, model-free RL algorithms do not estimate the underlying

MDP and aim instead to optimise a policy � directly. Policy-based methods evaluate the value

Q� of the current policy � , so that it can be locally improved e.g.by gradient ascent. Value-based

method bypass this alternation of evaluation and improvement steps by directly learning the

optimal value function Q?.

The question of which approach is appropriate depends on the underlying problem. Indeed,

model-based techniques are relevant when the dynamics are simple but the optimal policy

is complex. For instance, the case of Computer Go was tackled in AlphaGo (Silver, Huang,

et al., 2016; Silver, Schrittwieser, et al., 2017; Silver, Hubert, et al., 2018) with a Monte-Carlo

Tree Search (MCTS) planning module, which leveraged the knowledge of the Go dynamics

(placing pawns on the board) to sample sequences of plies in a game tree. On the contrary,

the model-free approach is useful when the system dynamics are complex, but the optimal

policy is simple. Thus, a swimming robot would require massive �uid dynamics simulation

to accurately predict the e�ect of moving its �ns, while a simple periodic gait could su�ce

to propel it forward in the water. Which brings us to the question: which scenario does AD

fall into? Unfortunately, the answer is not so clear-cut. On the one hand, the motion planning

literature has historically been heavily relying on kinematics and dynamics models to plan

trajectories, as detailed in Chapter 2. Reliable priors are available to describe the physics of a

vehicle, but not so much for the actual driving policy. On the other hand, automotive companies

such as Mobileye reportedly 3 advocated that the task of predicting a driving scene is actually

more di�cult than that of driving. In fact, the case of Autonomous Driving is peculiar in that

the two problems of prediction and control are somewhat equivalent, due to the presence of

other drivers: a good trajectory predictor can be used to predict the action that a human would

take in place of the ego-vehicle, and a good driving policy can be applied to each agent in

the scene to produce reasonable predictions of their trajectory. Hence, both approaches seem

equally relevant and will be considered in this thesis.

Social interactions and coupled dynamics To ensure safety while driving, traditional motion

planning techniques rely on conservative independence assumptions on the behaviour of other

3These comments are reported from discussions between Renault and Mobileye.

7

Introduction

vehicles. This makes them su�er from an e�ect colloquially known as the �freezing robot problem�

(Trautman and Krause, 2010): due to massive uncertainty, these systems tend to struggle in

situations that require interacting �or negotiating� with other vehicles, such as unprotected

left-turns, intersections, or highway merges (see e.g.these two videos where a Waymo car fails

to merge). Thus, for an autonomous vehicle to e�ciently integrate with the tra�c �ow, it must

anticipate the e�ect of its own actions on the behaviour of other agents. This skill is known

associally-awaredecision-making. Unfortunately, interactions between vehicles translate into

complex and coupled tra�c dynamics where local deviations must be propagated from one

vehicle to the next, which can result in a quick and chaotic build-up of uncertainty. We will

need to contain this escalation to prevent instability in our predictions.

Ensuring safety The complexity of the task of driving leads us to consider learning algorithms.

However, these methods typically raise a legitimate concern among car manufacturers: how

can we guarantee thesafetyof such systems, in the presence of uncertainty? In this thesis, we

will strive to formalise this concern by formulating di�erent notions of risk, as functions of

the distribution of outcomes induced by a policy. We will study SafeReinforcement Learning

algorithms, that seek to explicitly estimate and control the level of risk taken by a policy.

Balancing safety and e�ciency However, protecting against risk often comes at the price of

e�ciency in achieving a goal. Consider for a moment a situation where a vehicle is driving

slowly in front of you on the road, and so you decide to overtake them. How do you know,

at that very moment, that the driver has seen you and is not going to change lane at the last

moment, causing an accident? In fact, you don't, at least not with certainty. In this situation, the

only way to guarantee safety is to refrain from overtaking. By pushing this simple argument

through to its conclusion, it becomes apparent that the only way to fully ensure safety is to

stay in the garage. You are thus facing an irreducible dilemma: the two objectives of driving

fast and safely are contradictory. This opposition induces a trade-o� that we typically observe

with human drivers, especially in situations of negotiations: some people adopt aggressive

behaviours and try to force their way through tra�c, while others act more defensively, favouring

safety. This ambiguity is di�cult to capture manually in an objective function and soon leads

to the pitfall of reward engineering. To provide a principled control over this trade-o�, the

learning algorithms that we consider will be required to respect an adjustablelevel of risk.

1.2 Outline and Contributions

The ultimate goal of this thesis could be summarised in the following question: �how can an

algorithm learn to drive and avoid accidents?�. The �rst step in such an endeavour must necessarily

8

1.2 Outline and Contributions

Figure 1.3 � This thesis is structured around two disjunctions: model-free vs. model-based on the one
hand, and sample-e�ciency vs. safety on the other hand.

be to formalise more precisely the meaning of this ill-posed formula, which we try to do in

Part I . It is only natural that we begin this e�ort by turning to the standard model for sequential

decision making: the Markov Decision Process. At �rst glance, this framework shines with

its simplicity and elegance, but also its apparent generality and representation power. Yet, as

we embark on the ambitious task of casting the blurry problem of autonomous driving into

this rigid mould, we highlight in Chapter 2 how reductive each step of the formalisation is,

how approximations and assumptions always hide behind each symbol and each equation.

This observation is supported by the numerous variations of the framework developed by

the research community, in as many attempts to address these concerns. Such limitations are

as varied as partial observability, temporal abstraction, the reward hypothesis, transfer from

simulation to real-world and safety; and we relate these research directions to speci�c works in

the autonomous driving literature.

In order to progress, we put aside some of these questions in Chapter 3 and commit to an

(observable) state space, a (hierarchical) action space, a (quasi-linear) system dynamics and a

(dense) reward function that we deem suitable for a large class of behavioural planning tasks.

This allows us to refocus on two fundamental issues: sample-e�cientand safeReinforcement

9

Introduction

Learning. In the sequel we tackle them through the perspective of the two main approaches to

Reinforcement Learning aforementioned: �rst model-free, and then model-based algorithms.

This organisation is depicted in Figure 1.3.

Part II is dedicated to the study of how model-free methods can be applied for e�cient and

safe Autonomous Driving. In Chapter 4, we question the choice of state representation and

model architecture in relation to their associated sample-e�ciency. In particular, we identify

desirable properties and inductive biases that the policy should enjoy, such as permutation

invariancewith respect to vehicles in the scene. We propose an attention-based architecture

that ful�ls our criteria, and compare it to standard representations and model architectures

that have been used for behavioural planning tasks.

In Chapter 5, we consider a continuous notion of risk, de�ned as an expected discounted

sum of a cost signal. This formulation allows highlighting a trade-o� between two separate

objectives: the traditional return associated with task completion, and the risk related to safety.

In this multi-objective perspective, the Pareto frontier of non-dominated policies de�nes a

spectrum of behaviours, from risk-averse on one side to risk-seeking on the other. In order to

explicitly control the level of risk taken in real-time, we place ourselves within the Budgeted

Markov Decision Process (BMDP) framework, in which the risk is constrained to lie below an

�adjustable� threshold. So far, BMDPs could only be solved in the case of �nite state spaces with

known dynamics. This chapter extends the state-of-the-art to environments with continuous

state space and unknown dynamics. We show that the solution to a BMDP is a �xed point of

a novel Budgeted Bellman Optimality operator, which enables to estimate both the expected

return and risk of an action, in a model-free fashion. This observation allows us to introduce

natural extensions of Deep Reinforcement Learning algorithms to address large-scale BMDPs.

Part III is devoted to the study of model-based methods, that solve the Reinforcement

Learning problem by planning with a learned generative model. In Chapter 6, we assume

that a reliable generative model has already been learnt and focus on the sample-e�ciency of

the planning procedure speci�cally. More precisely, we look into the theoretical and practical

aspects of planning algorithms under budget constraints. First, we consider the Open-Loop

Optimistic Planning (OLOP) algorithm that enjoys good theoretical guarantees but is overly

conservative in practice, as we show in numerical experiments. We propose a modi�ed version

of the algorithm with tighter upper-con�dence bounds, Kullback-Leibler OLOP (KL-OLOP) ,

that leads to better practical performances while retaining the sample complexity bound.

Second, we study a limitation of MCTS algorithms: they do not identify together two similar

states reached via di�erent trajectories and represented in separate branches of the tree. We

propose agraph-basedplanning algorithm, which takes into account this state similarity, provide

a regret bound that depends on an improved problem-dependent measure of di�culty, and

illustrate its empirical bene�ts numerically.

10

1.2 Outline and Contributions

In Chapter 7, we look back into the issue of model bias, which refers to the gap that exists

between a learned model and the true system dynamics, and can dramatically degrade the

performance of the planned trajectory. More speci�cally, we study the problem of robustand

adaptiveModel Predictive Control (MPC) of a linear system, with unknown parameters that

are learned along the way (adaptive), in a critical setting where failures must be prevented

(robust). To that end, instead of merely considering a point estimate of the dynamics, we

leverage non-asymptotic linear regression to build an entire con�dence regionthat contains the

true dynamics with high probability. To e�ectively propagate this parametric uncertainty, we

design a predictor that produces a tight interval hull bounding the system trajectories. Having

observed the instability of traditional interval predictor techniques, we propose a new one

whose stability is guaranteed by a Lyapunov function analysis and veri�cation of linear matrix

inequalities. These tools enable us to guarantee the system stabilisation and robust constraint

satisfaction, through an MPC algorithm based on a stabilising control that uses the predicted

interval. Finally, in order to go beyond stabilisation problems only, we tackle the minimax

control of more general (non-convex) costs that naturally arise in many practical problems.

To that end, we combine our results with the tree-based planning techniques of Chapter 6.

By adapting the theoretical guarantees at each layer, we provide the �rst end-to-end regret

analysis for this setting. Interestingly, our analysis naturally adapts to handle multiple models

and combines with a data-driven robust model selection strategy, which enables to relax the

modelling assumptions. We strive to preserve tractability at any stage of the method, that we

illustrate numerically.

List of publications

Publications in international conferences with proceedings

ˆ Edouard Leurent, Denis E�mov, and Odalric-Ambrym Maillard (Dec. 2020a). Robust-

Adaptive Control of Linear Systems: beyond Quadratic Costs. In Advances in Neural

Information Processing Systems 33. Virtual (used in Chapter 7)

ˆ Edouard Leurent and Odalric-Ambrym Maillard (Nov. 2020a). Monte-Carlo Graph

Search: the Value of Merging Similar States. In Asian Conference on Machine Learning

(ACML 2020) . Ed. by Sinno Jialin Pan and Masashi Sugiyama. Bangkok, Thailand,

pp. 577�592 (used in Chapter 6)

ˆ Edouard Leurent, Denis E�mov, and Odalric-Ambrym Maillard (Dec. 2020b). Robust-

Adaptive Interval Predictive Control for Linear Uncertain Systems. In 2020 IEEE 59th

Conference on Decision and Control (CDC). Jeju Island, Republic of Korea (used in Chapter 7)

ˆ Nicolas Carrara, Edouard Leurent, Romain Laroche, Tanguy Urvoy, Odalric-Ambrym

Maillard, and Olivier Pietquin (Dec. 2019). Budgeted Reinforcement Learning in Con-

11

Introduction

tinuous State Space. InAdvances in Neural Information Processing Systems 32. Ed. by H.

Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett. Curran

Associates, Inc., pp. 9299�9309 (used in Chapter 5)

ˆ Edouard Leurent, Denis E�mov, Tarek Raissi, and Wilfrid Perruquetti (Dec. 2019). In-

terval Prediction for Continuous-Time Systems with Parametric Uncertainties. In 2019

IEEE 58th Conference on Decision and Control (CDC). Nice, France, pp. 7049�7054 (used in

Chapter 7)

ˆ Edouard Leurent and Odalric-Ambrym Maillard (Sept. 2020b). Practical Open-Loop

Optimistic Planning. In European Conference on Machine Learning and Knowledge Discovery

in Databases. Ed. by Ulf Brefeld, Elisa Fromont, Andreas Hotho, Arno Knobbe, Marloes

Maathuis, and Céline Robardet. Würzburg, Germany: Springer International Publishing,

pp. 69�85 (used in Chapter 6)

Workshop presentations in international conferences

ˆ Edouard Leurent and Jean Mercat (Dec. 2019). Social Attention for Autonomous Decision-

Making in Dense Tra�c. In Machine Learning for Autonomous Driving Workshop at the

Thirty-third Conference on Neural Information Processing Systems (NeurIPS 2019). Montreal,

Canada (used in Chapter 4)

ˆ Edouard Leurent, Yann Blanco, Denis E�mov, and Odalric-Ambrym Maillard (Dec. 2018).

Approximate Robust Control of Uncertain Dynamical Systems. In Machine Learning

for Intelligent Transportation Systems Workshop at the Thirty-second Conference on Neural

Information Processing Systems (NeurIPS 2018). Montreal, Canada (used in Chapter 7)

Software

ˆ Edouard Leurent (2018). An Environment for Autonomous Driving Decision-Making. https:

//github.com/eleurent/highway-env. GitHub repository (used in Chapters 3 to 7)

Collaborations not presented in this thesis

ˆ Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard

Leurent, and Michal Valko (July 2020). Fast active learning for pure exploration in reinforce-

ment learning. Research Report. DeepMind

ˆ Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard

Leurent, and Michal Valko (2020). Adaptive Reward-Free Exploration. Submitted to ALT

2021, under review.

12

1.2 Outline and Contributions

ˆ Anders Jonsson, Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Edouard

Leurent, and Michal Valko (Dec. 2020). Planning in Markov Decision Processes with

Gap-Dependent Sample Complexity. In Advances in Neural Information Processing Systems

33. Virtual

13

Part I

Case Study:

Learning to Drive

Chapter 2

Literature Review

N€ eÖqesai nˆ <nai makrÌc å drìmoc.

. .

Sà pìleic AÊguptiakàc pollàc n€ p”c,

n€ mˆjeic kaÈ n€ mˆjeic ‚p> toÌc spoudasmènouc.

KwnstantÐnoc Kabˆfhc, >Ijˆkh .

This chapter provides an overview of the sequential decision-making literature in the speci�c

context of Autonomous Driving. It is meant to summarise the main directions that researchers

have taken to tackle this wide problem, and discuss the questions that one practitioner may

ask themselves when trying to apply Reinforcement Learning to Autonomous Driving. Thus, I

will prioritise breadth rather than depth, and remind the reader that each of these sections is

not comprehensive and has been surveyed independently.

Contents
2.1 Sequential decision-making . 18

2.2 States and partial observability . 22

2.3 Actions and temporal abstraction . 24

2.4 Rewards and inverse reinforcement learning 25

2.5 Dynamics, o�ine learning and transfer . 27

2.6 Optimality criterion and safety . 29

17

Literature Review

Figure 2.1 � A lattice structure connects a discrete set of states by feasible trajectories

2.1 Sequential decision-making

Section 1.1.3 presented the Reinforcement Learning framework, that formulates the learning

procedure as an optimal control problem. In this section, I start by recalling other design

principles that have been considered for coming up with a good driving policy � .

2.1.1 Motion Planning

The development of motion planning techniques for intelligent vehicles dates back to the late

80s, supported by international research projects such as Eureka (1987) of the Prometheus

program, followed by the DARPA Grand and Urban Challenges (2004, 2007), and more recently

the VIAC (2010), GCDC (2011) and Delphi (2015) challenges. In two surveys (González et al.,

2016; Paden et al., 2016) studying the literature of this period, the authors identi�ed three main

approaches.

Search-based algorithms This method is based on a regular discrete partition of the state

spaceS called a lattice, which must be connected by feasible trajectories (e.g. Pivtoraiko and

Kelly, 2005). This framing reduces motion planning to the problem of �nding a shortest path

in a known graph. Then, traditional graph-search algorithms such as Dijkstra's algorithm

(Dijkstra, 1959), A? (Hart, Nilsson, and Raphael, 1968) or D ? (Stentz, 1994) can be used to

compute the optimal trajectory. This technique has been applied by at least �ve di�erent teams

during the DARPA Urban Challenge for driving on structured roads and unstructured parking:

Dijkstra for team Ben Franklin (Bohren et al., 2008) and VictorTango (Bacha et al., 2008), and

A? for Stanford University (Montemerlo et al., 2008) and KIT (Kammel et al., 2008), and D ?

by the winning team from CMU (Urmson et al., 2008). Kinematics constraints can also be

included in the con�guration graph, as in (e.g. Latombe, 1991; T. Fraichard, 1993; Laumond

et al., 1994).

18

2.1 Sequential decision-making

Sampling-based algorithms The limitation of search-based algorithms lies in the di�culty of

formulating a regular lattice structure covering the states space S with feasible transitions, and

in the real-time constraint that may not be met by graph-search algorithms. To address them,

sampling-based motion planners iteratively grow a set of reachable con�gurations by randomly

sampling valid transitions. The most popular ones are Probabilistic Roadmap (PRM) (Kavraki

et al., 1996), Rapidly-exploring Random Trees (RRT) (Lavalle, 1998; Karaman and Frazzoli,

2011) and MCTS algorithms (Coulom, 2007b; Kocsis and Szepesvári, 2006). These methods

have been used in the context of Autonomous Driving in (e.g. Lamiraux and Lammond, 2001;

Sánchez L., Zapata, and Arenas B., 2002; D. Lenz, Kessler, and Knoll, 2016; Paxton et al., 2017;

Faust et al., 2018).

Optimisation-based algorithms The third approach consists in optimising a parametrised

trajectory with respect to a real-valued objective function. The most popular instance is in-

terpolation between the current and goal states, which has been applied to various classes of

functions in the context of Autonomous Driving, such as lines and circles (Reeds and Shepp,

1990), clothoids (Funke et al., 2012), polynomials (W. Xu, Wei, et al., 2012), and Bézier curves

(González et al., 2016; Artuñedo, Villagra, and Godoy, 2019).

These three approaches to motion planning thus rely on deterministic models of the vehicle

dynamics. These models are often required to take a simple form so that the search or optimi-

sation procedure can be solved e�ciently, and other objects in the scene are often considered

as static. In order to study more complex multi-agent interactions speci�cally, a collaborative

approach to motion planning has been developed.

Cooperative planning The di�culty of predicting intricate interaction patterns between mul-

tiple agents can be bypassed in one particular setting: cooperative motion planning for multiple

vehicles. Indeed, instead of predicting how vehicles react to one another, the behaviours of

these vehicles are jointly optimised. As an e�ect, prediction outputs are replaced by input

variables that can be chosen freely to maximise an objective function. Two main variations

have been studied: coordination along �xed paths (Altché, Qian, and La Fortelle, 2016; Altché

and La Fortelle, 2016; Altché, Qian, and de La Fortelle, 2017), and general unconstrained

motion planning (LaValle and Hutchinson, 1998). However, this framework does not allow

to represent human behaviours, or more generally any behaviour that is not explained by the

objective function. In particular, that lack of communication between agents and the resulting

uncertainty lead to suboptimal, uncertain and multimodal trajectories that are not handled by

cooperative planning approaches.

19

Literature Review

2.1.2 Imitation Learning

An orthogonal strategy to motion planning techniques is to learn a reactive policy � (ajs) under

supervision of an expert � E that produces a datasetD of demonstration trajectories. To that

end, we optimise a parametrised policy � � to minimise a regression loss L , such as theKL

divergence to the distribution of expert action:

min
�

E
s�D

[L (� � (ajs); � E (ajs))]

This approach is also referred to as behavioural cloning, and is particularly suited when only

low-level high-dimensional inputs are available, such as camera images, which prevents access

to the dynamics model required by motion planning approaches. The �rst application of

imitation learning to autonomous driving is the ALVINN (Autonomous Land Vehicle In a

Neural Network) project (Pomerleau, 1989), where a 3-layer neural network was trained for

the task of road following, as shown in Figure 2.2.

Figure 2.2 � The 3-layer architecture used in ALVINN (Pomerleau, 1989).

Compounding errors Unfortunately, the behavioural cloning paradigm is known to su�er

from compounding errors: since the future states depend on previous predictions (actions),

the assumption made in statistical learning that input variables are independent and identically

distributed (i.i.d.) does not hold. Therefore, small mistakes will place the system into states that

are outside the training data distribution, as illustrated in Figure 2.3, and resulting policies

struggle to maintain high performances on long time horizons. This e�ect was identi�ed and

tackled in (S. Ross, G. J. Gordon, and J. A. Bagnell, 2011), who proposed to iteratively request

20

2.1 Sequential decision-making

expert labels (actions) from the states encountered by the current trained policy, rather than

from the initial expert distribution. However, this can only be accomplished at the cost of a

signi�cant labelling e�ort. In the context of a Lane Keeping application, Bojarski et al. (2016)

Figure 2.3 � As the agent deviates from the expert trajectories, the errors compound and push the agent
further and further from the training distribution.

proposed instead to mitigate this issue during the data collection step by simulating deviations

from the expert trajectories by means of two side cameras facing at the edge of the road. The

corresponding synthetic expert controls were obtained by adding a constant adjustment term

to steer the vehicle back on track. Researchers at Waymo reported using the same technique of

synthesising perturbations for their ChauffeurNet imitation model (Bansal, Krizhevsky, and

Ogale, 2018). The e�ect of compounding errors can also be delayed by further increasing the

prediction performance, e.g.by considering temporal dependencies as in (Eraqi, Moustafa, and

Honer, 2017; Huazhe Xu et al., 2017). Other techniques than maximum likelihood estimation

can be used to train the models, such as Generative Adversarial Imitation Learning (J. Ho and

Ermon, 2016), used for highway driving from range measurements in (Kue�er et al., 2017;

Bhattacharyya et al., 2018).

Policy conditioning A limitation of imitation learning for autonomous driving is the fact that

merely imitating human drivers by sampling likely trajectories is not su�cient: the sampling

must also be conditioned on the current short-term destination speci�ed by the Route planner.

Codevilla et al. (2018) propose to achieve this by considering several policy heads for three

possible behaviours when reaching an intersection: go straight, turn left or turn right. At

test time, the appropriate policy is used at each intersection depending on the planned route.

Rhinehart, McAllister, Kitani, et al. (2019) and Rhinehart, McAllister, and Levine (2020)

present a model-based approach that consists in learning a probabilistic model q(s) of expert

trajectories used as a prior, and inferring the maximum a posteriori trajectory given a test-time

goal likelihood p(goal j s).

21

Literature Review

2.1.3 Reinforcement Learning

While the MDP framework undoubtedly constitutes a convenient theoretical framework for

analysis, it may be too narrow a frame to accommodate the real world. In the sequel, by trying

to cast the problem of Autonomous Driving as an MDP, we will identify multiple underlying

assumptions that do not hold in practice, and relate them to existing research areas for which

researchers proposed variants and solutions.

2.2 States and partial observability

(a) �Area of potential danger�. A partial observability stemming from sensor
occlusion in a turn.

(b) �Area of uncertainty�. A partial observabil-
ity stemming from unknown intentions of hu-
man agents.

Figure 2.4 � Sources of Partial Observability in Autonomous Driving. Illustrations from (Editions
Nationales du Permis de Conduire, 2017).

22

2.2 States and partial observability

Figure 2.5 � Information-seeking behaviours: the tailgating vehicle (top) should slow down, although
it might decrease its immediate rewards, to gain valuable information in return (bottom). Image from
(Editions Nationales du Permis de Conduire, 2017).

In order to specify an MDP, the �rst step consists in de�ning the state space S, with the

underlying assumption that the agent will have access to its current state s 2 S. Yet in practice,

information about the scene can only be obtained through sensors, which produce typically

noisy measurements (Ulbrich and Maurer, 2013; Du et al., 2010; Artuñedo, Villagra, Godoy,

and Castillo, 2020). Worse, parts of the state may be missing altogether, as is the case when a

scene entity is occluded by an obstacle (e.g. Brechtel, Gindele, and Rüdiger Dillmann, 2013;

M. Bouton, A. Nakhaei, et al., 2018; Sun et al., 2019), as shown in Figure 2.4a. To account for

these di�culties, the concept of a Partially Observable Markov Decision Process (POMDP) was

introduced in (Åström, 1965), extending the MDP framework with two additional quantities:

an observation space
 , and an measurement model O such that the observation o 2
 is

measured at states0with the conditional probability O(o j s0; a). At each time step t, a belief

bt 2 M (S) over the state st 2 S is updated by performing Bayesian Filtering to compute the

posterior state distribution:

bt+1 (st+1) =
O(ot jst+1 ; at)

P
st 2S P(st+1 j st ; at)bt (st)

P
s2S O(ot js; at)

P
st 2S P(s j st ; at)bt (st)

:

By conditioning the policy � (at jbt) on the belief bt , the POMDP framework allows to optimally

balance between information gathering and task completion, as shown in Figure 2.5. However,

there is a price to pay: the belief space M (S) is much larger than the state space S (e.g.

continuous of dimension n when S is �nite of size n), which drastically increases the planning

complexity. Exact solutions exist when S is �nite (Pineau, G. Gordon, and Thrun, 2003), and

approximate ones when it is compact (Porta et al., 2006; Silver and Veness, 2010). Even the belief

update is intractable in general, when S is compact. In the case of linear dynamics and Gaussian

measurement noise, the belief update is known as Kalman Filtering (Kalman et al., 1960). It

has been applied in (Bry and N. Roy, 2011; M. Bouton, Cosgun, and M. J. Kochenderfer, 2017;

23

Literature Review

Berg, Patil, and Alterovitz, 2017, e.g.), and in the context of quadratic costs � i.e. the standard

LQG problem� which enables e�cient computation of the optimal policy (see e.g. W. Xu, Pan,

et al., 2014; Berg, Abbee, and Goldberg, 2011). The more complex observation model of sensor

occlusions in continuous-space is handled in (Brechtel, Gindele, and Rüdiger Dillmann, 2013;

Brechtel, Gindele, and Rudiger Dillmann, 2014; M. Bouton, A. Nakhaei, et al., 2018) where

cautious driving policies are learned for crossing intersections; and in (Sun et al., 2019) where

the observed behaviour of nearby vehicles is used to infer the presence of potentially occluded

pedestrians. Furthermore, the POMDP framework has been used to account for uncertainty in

the intentions of other agents, as illustrated in Figure 2.4b. In (Bandyopadhyay et al., 2013),

the authors propose a Mixed-Observability framework (MOMDP) in which the other drivers'

locations are observed but not their destinations. In (Barbier et al., 2018), the uncertainty lies

in whether the other agents intend to give or take the right of way. The value of inferring these

drivers intentions has been assessed in (Sunberg, C. J. Ho, and Mykel J. Kochenderfer, 2017),

in comparison to MDP baselines where a static or maximum-likelihood behavioural model is

assumed instead.

2.3 Actions and temporal abstraction

Figure 2.6 � Temporally extended sequences of actions can be used as skills, oroptions, and futher used
by a meta-policy to plan over long time horizons (Sutton, Precup, and Satinder Singh, 1999).

The second step of when specifying an MDP is to choose an action spaceA. Suppose

you are taking your �rst driving lesson, your instructor will be providing you with very

detailed instructions about actuation such as �turn the steering wheel by a full turn�, �change

gear�, �brake smoothly�, etc. After a few lessons, however, the instructor will switch to more

general instructions such as �change lane to overtake this vehicle�, �yield to vehicles on the roundabout

before merging�or �drive slower in this area�. And when, having �nally got your driver's license,

24

2.4 Rewards and inverse reinforcement learning

you start driving in an unfamiliar city, your friend in the passenger seat will merely give

you directions: �follow the signs for the train station, and turn into the third street on the left�.

In short, driving involves reasoning at several time scales, and the corresponding decisions

have di�erent granularities. This can hardly be expressed in the MDP framework, where a

single action spaceA is considered. In particular, relying on shorter actions yields a smaller

signal-to-noise ratio, which leads to slow learning when planning over a long time horizon

(Shalev-Shwartz, Shammah, and Shashua, 2017). To address this issue, the concept oftemporal

abstractionwas introduced: nuclear actions a 2 A can be used to de�ne temporally-extended

skills � o : S ! M (A), also called options, which in turn can be used as meta-actions by a

high-level option policy� (ojs). This idea is also referred to asHierarchical Reinforcement Learning,

and was �rst analysed with the semi-Markov Decision Process (SMDP) extension (Sutton,

Precup, and Satinder Singh, 1999), illustrated in Figure 2.6. In autonomous driving, this

hierarchy is typically imposed by the pipeline presented in Chapter 1: Behavioural planning

corresponds to the policy over options � (ojs), while the low-level options � o are achieved

in the Motion planning layer. However, this requires manually specifying the interfaces at

each layer. For instance, in (Barbier et al., 2018) a behavioural policy can only be trained

after having de�ned a �nite set of low-level skills, namely Stop, Yield, and Pass. Consequently,

using a �xed set of options constrains the comprehensiveness of the set of option-policies,

and may prevent recovering optimality if the architecture is not versatile enough. To bypass

these limitations, Shalev-Shwartz, Shammah, and Shashua (2016) proposed to ensure su�cient

comprehensiveness of the class of available options by generating new options on-the-�y as

paths in an option-graph, shown in Figure 2.7. Other works attempt to learn low-level skills

jointly with the meta-policy (Bacon, Harb, and Precup, 2017; Vezhnevets et al., 2017; Heess

et al., 2016). In (Paxton et al., 2017), low-level skills such as followand overtakeare trained using

Neural Networks and ad-hoc reward functions, while serving as meta-actions for a high-level

tree-based planner.

2.4 Rewards and inverse reinforcement learning

Having de�ned the state and action spaces S and A, we come to specify which state-action

pairs are deemed desirable, through the de�nition of the reward function R. Paradoxically

enough, humans know how to drive but not necessarily how to explicit the reasons for their

actions, especially in the form of a �xed evaluable objective. A common approach to reward

speci�cation is colloquially known as reward engineering, in which the reward function is

typically parametrised as a linear combination of features R(s; a) =
P

i ! i � i (s; a) . For example,

such features may include the ego-vehicle speed, its longitudinal distance to a short-term goal,

lateral distance to the lane centerline, or the presence of collisions. By handling more and more

use-cases, the number of features to consider will rise quickly, some of which contradicting

25

Literature Review

Figure 2.7 � A graph used to generate options (Shalev-Shwartz, Shammah, and Shashua, 2016).

each other. Then, the issue of how to properly choose the weights ! i remains, and it can be

increasingly hard to strike the right trade-o�. Besides, this di�culty is further exacerbated by

an ambiguity lying in the blurry boundary between the reward function R(s; a) and the value

function V (s). For instance, are safety distances desirableper se, or only because respecting

them means we are less likely to end up in an accident, which is the actual feature of interest

here? Likewise, do road tra�c regulation rules describe rewarding states or high-value states?

One practical solution to these concerns is to iteratively re�ne the reward function R until

the corresponding optimal policy � ? matches the expected behaviour � E of human drivers.

The careful or well-versed reader will have noticed that this approach is directly opposed to

the Reinforcement Learning problem, where the optimal behaviour � ? stems from the reward

function R. Accordingly, the aptly named Inverse Reinforcement Learning (IRL) framework

aims at �nding a reward function that makes the expert behaviour appear uniquely (near)-

optimal. At �rst glance, this problem seems related to Imitation Learning formulation of

Section 2.1.2 in its attempt to reproduce expert behaviour. This intuition is supported by the

fact that RL � IRL is the dual problem of state-action occupancy matching with respect to expert

trajectories (J. Ho and Ermon, 2016). Example applications of IRL to Autonomous Driving

include the work of Kuderer, Gulati, and Burgard (2015) who learn the trade-o� between

comfort and e�cacy in human lane-change trajectories.

In addition to �nding a good candidate reward for the ego-vehicle behaviour, Inverse

Reinforcement Learning can also be applied for the purpose of predicting how other agents

26

2.5 Dynamics, o�ine learning and transfer

Figure 2.8 � Trajectory prediction for a pedestrian modelled as an optimal planner with a learned cost
(Ziebart, Ratli�, et al., 2009).

in the scenes are likely to behave, by modelling them as rational agents trying to maximise

an unknown reward function to be learned. In that sense, RL � IRL is a form of model-

based Reinforcement Learning. For instance, this approach has been used to model routing

preferences of taxi-drivers (Ziebart, Maas, et al., 2008), to predict the future trajectory of

pedestrians (Ziebart, Ratli�, et al., 2009) as shown in Figure 2.8, and the behaviour of human

drivers at an intersection (Sun et al., 2019) or on a highway (Sadigh et al., 2016).

2.5 Dynamics, o�ine learning and transfer

We now come to the last element of the Markov Decision Process tuple: the dynamics P(s0 j s; a).

Contrary to the state and actions which are the input and output interfaces of the agent, and to

the reward function which is generally chosen by the system designer, there is usually no need

to specify the system dynamics. Indeed, one of the most signi�cant assets of Reinforcement

Learning is its ability to handle unknown dynamics that are only accessed through interaction.

Unfortunately, this assumption that the agent is allowed direct interaction with the true envi-

ronment is both unacceptable and unrealistic in the context of Autonomous Driving. Indeed,

the traditional learning-by-actingpipeline requires exploration, which would imply having

autonomous vehicles violate the rules of the road and generate accidents, which is obviously

out of the question. Besides, most Reinforcement Learning algorithms require a tremendous

amount of interaction data to learn an optimal policy, including for MDPs such as Atari games

which are arguably less diverse and complex than real-world driving scenes. Not to mention

that, perhaps evidently but contrary to simulated games, the real world can only run in real time.

This issue can be addressed in two ways. A �rst solution is to consider the o�ine Reinforce-

ment Learning problem (Levine, Kumar, et al., 2020), in which the agent can no longer interact

27

Literature Review

with the environment and is instead provided with a staticdataset D = f (st ; at ; r t ; st+1)g of

interaction data, and must learn the best policy it can with this dataset. These interaction data

are collected by an exploration policy � E , in our case, human driving. However, for the same

reasons mentioned in Section 2.1.2, this limited data available induces a loss of optimality:

any attempt to improve the policy may steer the agent in regions of the state space S that

are not present in the dataset D, typically accident states, o�-road driving, etc. in the case of

Autonomous Driving. Still, safe policy improvement guarantees can be derived under some

conditions, e.g.for �nite MDPs (Laroche, Trichelair, and Combes, 2019; Nadjahi, Laroche, and

Tachet des Combes, 2020). This derivation often requires to constrain how much the learned

policy � can di�er from the exploration policy � E , so as to bound the state distribution shift

(Kakade and Langford, 2002; Schulman et al., 2015).

Figure 2.9 � Sim-to-real unsupervised transfer (M. -Y. Liu, Breuel, and Kautz, 2017) from synthetic
images of the cynthia dataset (Ros et al., 2016) to realistic images of theCityscapesdataset (Cordts
et al., 2016).

A second decision is to leverage simulation. The vast majority of Reinforcement Learning

systems currently running are interacting simulated environments. Indeed, simulation provides

many advantages: it is generally much cheaper than real experiments, it can run much faster,

be easily parallelised, be reset to an initial state when it fails, and failures are not costly and

can be experienced at will. Unfortunately, these bene�ts come at a price: there is always a gap

between simulation and reality, an issue known as model bias. The problem of adapting a policy

learned in one environment to another related one is known as transfer, and has been tackled

by researchers in di�erent ways. A general strategy is to use simulation as a pre-training and

�ne-tune to the policy in the target environment (Liang et al., 2019). This method allows to

obtain satisfactory initial behaviour and cut down on training time. To reduce the gap between

simulation and reality, three approaches can be taken:

(i) make the simulation as realisticas possible. For instance, Xinlei Pan and C. Lu (2017)

translate the virtual images rendered by a simulator to realistic synthetic images, using

28

2.6 Optimality criterion and safety

an Image-to-Image Translation Networks similar to that shown in Figure 2.9, so that the

observations seen by the agent while training are closer to those it will observe when

deployed in the real environment.

(ii) make the simulation more diverse, by partially randomising the observations and dy-

namics, so that the real world appears like yet another realisation of that diversity. This

approach is known as Domain Randomisationand has been widely applied to robotic ma-

nipulation tasks (Tobin et al., 2017; OpenAI et al., 2019), and in the context of Autonomous

Driving (Prakash et al., 2019; Pouyanfar et al., 2019).

(iii) make both the simulation and the real-world abstract, by mapping them to intermediate

observation and action spaces so that the encapsulated policy is not directly exposed

to raw perceptual inputs and low-level controls. For instance, semantically segmented

images and waypoints are used as observations and actions in (Mueller et al., 2018).

2.6 Optimality criterion and safety

Figure 2.10 � A risky situation: should the vehicle merge into the roundabout?

Once the Markov Decision Process is fully speci�ed, a policy � is said to be optimal if it

maximises the expectedreturn

max
�

E
�;P

"
X

t

 t Rt

#

:

But is this an appropriate performance measure? Consider a driving decision �say merging

into a roundabout as illustrated in Figure 2.10� that, given the uncertainty on the behaviour of

other agents, can lead to a collision with a certain probability � . When maximising the return

in expectation, the agent is allowed to balance the rare accident penalty with the more likely

29

Literature Review

Decision Merge Wait

Outcome Success Failure Boredom
Probability 1 � � � 1
Reward 1 � 1� �

� 0

E[R] 0 0
V(R) 1� �

� ' 1
� 0

min R � 1� �
� ' � 1

� 0

Table 2.1 � A simple bandit problem associated with Figure 2.10. When trying to merge, an accident
happens with probability � and the agent su�ers a high penalty 1� �

� . If the agent decides to wait instead,
it su�ers a small penalty of 0 for the inconvenience. We show the associated expected reward, worst-case
reward, and reward variance.

perspective of a successful merge. As observed by Shalev-Shwartz, Shammah, and Shashua

(2017), assuming that rewards are normalised in [0; 1] for standard behaviours, for the agent

to care about avoiding accidents with probability 1 � � requires the penalty associated with a

collision to be in the order of 1=� , as we illustrate in Table 2.1. This leads to a high variance in

the observed rewards, which is likely to impede learning. Furthermore, the optimal agent is

willing to gamble a collision now and then, if it allows for an increased e�ciency the rest of the

time. This question of whether and how to weigh human lives with economic bene�ts brings

us straight back to the ethical considerations of Section 1.1.1.

This questioning has lead researchers and practitioners to consider alternative de�nitions

of optimality, tailored for an increased awareness of events of small probability and high

consequences. These approaches are grouped under the name ofSafeReinforcement Learning,

and typically involve giving up some expected performance in favour of the lower tail of the

return distribution. They were surveyed by García, Fern, and Fernández (2015), who identi�ed

four main paradigms: the �rst three involve a change of the optimisation criterion, while the

fourth one de�nes a constraint on the exploration process.

2.6.1 Risk-sensitive Criterion

Risk-sensitive methods augment the traditional expected performance criterion with a measure

of variability. For instance, in the above example of Table 2.1 the two decisions are equivalent

in terms of expected return, but Mergehas a signi�cantly higher variance than Wait . A �rst

instance of risk-sensitive objective is the variance-penalizedcriterion (Markowitz, 1959) which

takes the form

max
�

E
�;P

"
X

t

 t Rt

#

� � V
�;P

"
X

t

 t Rt

#

;

where the weight � > 0 is often tuned manually and allows to trade-o� expected performance

for consistency (higher � means lower variance in the outcomes).

30

2.6 Optimality criterion and safety

Many other risk measures have been investigated, such as the Value-at-Risk (VaR), the

Conditional Value-at-Risk (CVaR) and percentile performance, in both the Multi-Armed Ban-

dits setting (Torossian, Aurélien Garivier, and Picheny, 2019) and the Reinforcement Learning

setting (Moody and Sa�ell, 2001; Tamar, Di Castro, and Mannor, 2012; L.A. and Ghavamzadeh,

2013; Delage and Mannor, 2010). In their seminal paper, Artzner et al. (1999) identi�ed a set of

properties deemed necessary for a risk measure to becoherent, and policy gradient methods

have been designed to optimise this class of measures (Tamar, Chow, et al., 2015). In the context

of Autonomous Driving, the variance-penalised objective has been applied in e.g.(Naghshvar,

Sadek, and Wiggers, 2018) to highway ramp scenarios with occlusions and limited sensor

range.

2.6.2 Worst-case criterion

In model-based Reinforcement Learning, the model parameters are typically estimated from

noisy interaction data, which can lead to modelling errors that may have fatal consequences

in real, physical systems. To address this issue, robust control community has formulated to

optimise the outcome of a policy � with respect to an ambiguity setP of likely dynamics:

max
�

min
P 2P

E
�;P

"
X

t

 t Rt

#

This problem was �rst studied by the control community, which focused on the minimax

control of the H 1 -norm (Basar and Bernhard, 1996) and H 2-norm (Berkenkamp and Schoellig,

2015) of linear systems. Minimax-control of quadratic costs �the so-called robust Linear

Quadratic (LQ) problem� was later considered in (Abbasi-Yadkori and Szepesvári, 2011;

Ibrahimi, Javanmard, and B. V. Roy, 2012; Faradonbeh, Tewari, and Michailidis, 2020; Ouyang,

Gagrani, and Jain, 2017; Abeille and Lazaric, 2018; Dean et al., 2019; Dean et al., 2018). The

case of �nite MDPs with uncertain parameters was studied by Iyengar (2005), Nilim and

El Ghaoui (2005), and Wiesemann, Kuhn, and Rustem (2013), who showed that the main

results of Dynamic Programming (DP) could be recovered under a rectangularityassumption

for the structure of uncertainty. Their work was extended to the RL setting in (Tamar, Mannor,

and Huan Xu, 2014).

2.6.3 Constrained Criterion

Another approach is to formulate safety as constrained optimisation: the task is to max-

imise a target function f (x) while satisfying an inequality constraint g(x) � � . For instance,

Berkenkamp, Schoellig, and Krause (2016) apply this principle to safe blackbox optimisation

using Gaussian Process regression. This idea is extended to a sequential decision-making in the

31

Literature Review

Constrained Markov Decision Process (CMDP) framework (Altman, 1999; Achiam et al., 2017),

a variant of MDPs augmented with a cost function C, and such that the return maximisation

objective is subjected to a constraint on the maximum expected cumulative discounted cost:

max
�

E
�;P

"
X

t

 t Rt

#

subject to E
�;P

"
X

t

 t Ct

#

� �:

Extensions have also been proposed to this framework: in (Tessler, Mankowitz, and Mannor,

2019), more general constraints than discounted sums are considered, while in (Geibel and

Wysotzki, 2005; Chow, Ghavamzadeh, et al., 2017) the constraint does concern the expectation

of the discounted total cost, but rather its percentile or CVaR. CMDPs have been applied in

(Maxime Bouton, Karlsson, et al., 2019; Maxime Bouton, Alireza Nakhaei, et al., 2019) to control

the probability for the ego-vehicle to reach its goal safely, and in (Le, Voloshin, and Yue, 2019)

to enforce two behavioural constraints in car racing simulation: smooth driving (expected

number of braking actions) and lane tracking (expected distance to the lane centre).

2.6.4 Safe Exploration

The three paradigms mentioned so far aim to revisit the de�nition of optimality. However,

these adjustments only alter the optimal policy once it is learnt, but they leave the exploration

process subject to failures. Consequently, other approaches have been developed to enforce

safety constraints at all time. The most common formalisation, robust constraint satisfaction,

consists in preventing the agent from visiting any error stateduring exploration �or equivalently

to remain within a safe set X� by relying on prior knowledge such as expert demonstrations or

an initial feasible policy. According to Thierry Fraichard (2014), this objective is challenging as

it requires the ability to �reason about the future�as illustrated in Figure 2.11a, and to �consider

obstacles globally and not individually�as shown in Figure 2.11b.

When the system is fully known, a general solution to this problem is provided by the

Hamilton-Jacobi-Isaacs (HJI) reachability equation, in the form of a di�erential game. This

approach is followed in (Leung et al., 2020; Fisac et al., 2019) by decomposing the system into

a known deterministic part subject to an adversarial bounded perturbation. In the context of

�nite MDPs with unknown dynamics, assuming the safe states are de�ned as the level-set

of a safety function C(s; a) � � whose smoothness is known, Turchetta, Berkenkamp, and

Krause (2016) propose an algorithm that explores a maximum reachable ergodic safe setwithout

visiting unsafe states. Since solving the HJI equation is intractable in general, researchers have

considered more structured special cases, namely linear systems and convex (often polytopic)

constraints (Fukushima, Kim, and Sugie, 2007; Adetola and Guay, 2008; Aswani et al., 2013;

Lorenzen, Allgöwer, and Cannon, 2017; Köhler et al., 2019; X. Lu and Cannon, 2019).

32

2.6 Optimality criterion and safety

(a) A minimum horizon T > t c � t ics is required (b) Obstacles must be consideredglobally.

Figure 2.11 � Inevitable Collision States (ICS), images from (Thierry Fraichard, 2014).

Figure 2.12 � An ordinary highway-driving situation, but prone to accidents under adversarial be-
haviours.

Yet, it is questionable whether the property of robust constraint satisfaction under adversar-

ial disturbances is relevant for an Autonomous Driving application. Indeed, this requirement

might be too restrictive since many nominal states are prone to errors under adversarial be-

haviours, as shown in the example of Figure 2.12. A strategy of avoiding this region of the

state-space altogether would be overly cautious and unacceptable. To cope with that issue,

weaker models of safety have been proposed. Thus, rather than avoiding all collisions, Passive

motion safety (Ma �cek et al., 2008; Sara Bouraine, Thierry Fraichard, and Salhi, 2012; S. Bouraine

et al., 2014) only requires the robot to be motionless whenever a collision could possibly occur.

To account for limited dynamic capabilities of other agents, the stronger Passive-friendlymotion

safety model was introduced (Mitsch et al., 2017), ensuring not only that the ego-vehicle

safely stops itself, but also allows su�cient space for other vehicles to stop before a collision

occurs. Note that this is equivalent to the original motion safety model with a restricted set of

adversarial behaviours for other agents, requiring them to brake and avoid collisions when

possible. Finally, Shalev-Shwartz, Shammah, and Shashua (2017) de�nes a notion of Respon-

sibility Sensitive Safetyspeci�c to Autonomous Driving, which formalizes �an interpretation of

Duty of Care from Tort law�. This interpretation is summarised by �ve main rules tailored for a

33

Literature Review

speci�c set of use-cases (including several road geometries, right of way rules, pedestrians and

occlusions) and implemented as a set of dynamic geometrical constraints.

34

Chapter 3

Problem Statement

Notre héritage n'est précédé d'aucun testament.

On ne se bat bien que pour les causes qu'on modèle soi-même

et avec lesquelles on se brûle en s'identi�ant.

René Char,Feuillets d'Hypnos(62�63) .

Having discussed at length the range of Autonomous Driving modelling perspectives in

Chapter 2, we now formalise the speci�c problem that we are going to consider in this thesis.

This chapter attempts to cast Behavioural Planning as a Markov Decision Process, by specifying

each element of a(S; A ; P ; R;) tuple suitable for a set of tactical decision-making tasks.

Contents
3.1 Perceived states . 36

3.2 Behavioural decisions . 37

3.3 Tra�c dynamics . 38

3.4 Rewards . 40

3.5 Implementation . 41

35

Problem Statement

3.1 Perceived states

As discussed in Sections 1.1.2 and 2.2, information about the world is typically obtained

from noisy sensory measurements. The Perception module is responsible for recognising and

tracking the signal from the noise, so as to provide a high-level probabilistic description of the

scene. In particular,

(i) a Mapping layer reconstructs the geometry of the road network and its associated signage,

including stop signs and tra�c lights;

(ii) a Localisationlayer recovers the position, velocity and heading of the ego-vehicle;

(iii) a Scene understandinglayer returns the position, velocity and geometry of any vehicle or

obstacle nearby.

Since we focus on the Decision module, we will take a simplifying assumption and ignore

all aspects related to Perception. Namely, we take the liberty of assuming noise-free access to

every feature of the driving scene that we will deem relevant.

Vehicles As mentioned in Chapter 1, the main challenge of Behavioural Planning is to interact

with other vehicles. Therefore, the state should include a description of every vehicle nearby.

In addition to the ego-vehicle, indexed by 0, the scene contains a number Nv of other vehicles

indexed by the range [1; Nv]. Any vehicle of index i 2 [0; Nv] is represented by

(i) its position (px
i ; py

i) 2 R2,

(ii) its forward speed vi 2 R,

(iii) its heading i 2 R.

The resulting joint state is the tra�c description:

s =

2

6
6
4

px
0 py

0 v0 0
...

...
...

...

px
N v

py
N v

vN v N v

3

7
7
5 2 S =� R(N v +1) � 4: (3.1)

We can make a few observations: �rst, the state space is continuous, which means we will have

to resort to function approximation to represent either the policy � , the value function Q or the

dynamics P. Second, it has a variable size, since it depends on the number of vehicles nearby,

which the function approximation scheme will have to accommodate. Its dimensionality should

be in the order of �fty at most, for a dozen observed vehicles.

Roads We also assume knowledge of the road network, comprising:

36

3.2 Behavioural decisions

(i) a graph description of the network topology, where the nodes represent intersections and

the edges represent road segments;

(ii) the geometry of every lane L in the network (every edge), described by its centre-line para-

metric curve s ! (px
L (s); py

L (s)) 2 R2; and heading L : s ! tan � 1
�

dpy
L

ds (s)=dpx
L

ds (s)
�

2 R

(tangent to the curve) where s 2 [0; lL] is the curvilinear abscissa and lL is the length of

the lane L .

However, we do not include this information as part of the state but rather of the system

dynamics, described later. Consequently, model-free algorithms will learn policies tailored for

the particular scene seen during training, and will not be able to adapt to di�erent scenes, unless

the state space is augmented to include road features. Conversely, model-based algorithms can

leverage road information in their dynamics models and thus generalise to unseen scenes.

3.2 Behavioural decisions

We follow the hierarchical architecture of the Decision module discussed in Sections 1.1.2

and 2.3. Since we focus on Behavioural Planning speci�cally, we assume the availability 1 of

(i) a Route Planning layer, that automatically selects the next road segment to follow at each

intersection, e.g.the proper exit on a highway, or the right direction at an intersection;

(ii) a Motion Planning and Control layer, that controls the vehicle by way of low-level throttle

and steering actuators to reach any desired position and speed in the selected road

segment.

Thus, the purpose of the Behavioural Planning layer is to specify short-term instructions for

the Motion Planning layer, in the form of a lane to follow and a speed to adapt. The produced

trajectory will always conform to the planned route, but the Behavioural Planner is in charge

of e.g. deciding when to merge on a highway, negotiating right of way at an intersection,

overtaking vehicles, etc.. To that end, we specify the following space of meta-actions:

A =�
(

change to the left lane; change to the right lane;

drive faster ; drive slower ; maintain speed and lane

)

(3.2)

Meta-actions are rather slow to a�ect the state of the vehicle and are thus executed at a

low frequency of 1 Hz. We will consider a behavioural planning horizon of a dozen seconds

(enough to e.g.take/give way to a vehicle and merge in tra�c), which corresponds to a dozen

of decision points. We describe next how these meta-actions in�uence the evolution of the state

s 2 S.
1These two modules are described as part of the dynamics.

37

Problem Statement

3.3 Tra�c dynamics

This section describes how the behavioural decisions in�uence the evolution of the perceived

states, under their above de�nitions, through the dynamics distribution P(s0 j s; a). As ex-

plained in Chapter 1, it is crucial that the simulated vehicles in the scene are able to reactto the

actions of the ego-vehicle, so that interaction patterns can be learnt.

3.3.1 Kinematics

We represent the non-holonomic motion capabilities of every vehicle i 2 [0; Nv] in the scene by

the Kinematic Bicycle Model (see e.g. Polack, Altché, and D'Andréa-Novel, 2017):

_px
i = vi cos(i + � i);

_py
i = vi sin(i + � i);

_ i =
vi

l
sin(� i);

(3.3)

where l is the vehicle half-length, _vi is the throttle command and � i is the slip angle at the

centre of gravity, used as a steering command.

3.3.2 Motion planning and control

We equip the ego-vehicle �and also other vehicles i 2 [0; Nv] in the scene� with a capability to

execute the meta actionsA . This requires the ability to follow a lane L i , described by the road

information mentioned above through its lateral position py
L i

and heading L i . To that end,

vehicles follow a cascade controller of lateral position and heading in the form

_ i = K
i

�
 L i + sin � 1

�
~vi;y

vi

�
� i

�
;

~vi;y = K y
i (py

L i
� py

i);
(3.4)

where K y
i 2 R and K

i 2 R are control gains. Note that the corresponding steering command

� i can be obtained from (3.4) as:

� i = sin � 1
�

l
vi

_ i

�
:

Furthermore, the ego-vehicle needs to be able to control its speed as per the meta actionsA .

To that end, we use a linear longitudinal controller

_v0 = K v
0 (vr � v0);

38

3.3 Tra�c dynamics

where vr 2 R is the reference speed, incremented by� 5 m=s by the drive fasterand drive slower

meta-actions, and K v
0 2 R is a control gain.

3.3.3 Behavioural models

Other simulated vehicles follow simple behavioural models from the tra�c simulation literature,

that dictate how they accelerate and steer on the road.

Longitudinal behaviour The acceleration command ai of a vehicle i 2 [1; Nv] is controlled

directly by the Intelligent Driver Model (IDM) from (Treiber, Hennecke, and Helbing, 2000):

_vi = ai

2

41 �

v
v0

i

! �

�
�

d?
i

di

� 2
3

5 ;

where d?
i = d0

i + Ti vi +
vi � vi

2
q

a+
i bi

;

(3.5)

vi is the vehicle velocity, di is the distance to its front vehicle. The dynamics of vehicle i 2 [1; Nv]

are thus parametrised by the desired velocity v0
i , the time gap Ti , the jam distance d0

i , the

maximum acceleration ai and deceleration bi , and the velocity exponent � .

Lateral behaviour The discrete lane change decisions are given by the Minimizing Overall

Braking Induced by Lane change (MOBIL) model from (Kesting, Treiber, and Helbing, 2007).

According to this model, a vehicle i 2 [1; Nv] decides to change lane when

(i) it is safeto cut-in:

~an � � bsafe;

(ii) there is an incentive, for the ego-vehicle and possibly its followers:

~ac � ac| {z }
the vehicle

+ p

0

@ ~an � an| {z }
new follower

+ ~ao � ao| {z }
old follower

1

A � � ath ;

where c is the centre vehicle,o is its old follower beforethe lane change, andn is its new follower

after the lane change;a and ~a are the predicted accelerations of the vehiclesbeforeand after the

lane change respectively;p is a politeness coe�cient, � ath is the acceleration gain required to

trigger a lane change; and bsafe is the maximum braking imposed to a vehicle during a cut-in.

A lane change decision modi�es the target lane L i followed by vehicle i on its current road

segment. The actual trajectory planning and steering control to track this lane is then performed

by the lateral controller of (3.4).

39

Problem Statement

3.3.4 Route planning

So far, we explained how both the ego-vehicle (i = 0) and the other simulated vehicles (i 2

[1; Nv]) behave on a multi-lanes road segment, through their Behavioural and Control layers.

The Route Planning layer is �nally responsible for selecting the sequence of road segments

leading to a destination, sampled randomly at initialisation. To that end, the Route Planning

performs a Breadth-First Search in the graph description of the road network mentioned above,

and returns a shortest path of road segments from the initial position to the destination.

In the end, we frame the state spaceS as fully observable but subjected to uncertain transition

dynamics P(s0 j s; a), which are parametrised by several unobserved variables including the

destinations of agents in the scenes and the parameters of their Behavioural and Control layers.

3.4 Rewards

As discussed in Section 2.4, choosing an appropriate reward function that yields realistic

optimal driving behaviour is a challenging problem, that we do not address in this thesis. In

particular, we do not wish to specify every single aspect of the expected driving behaviour

inside the reward function, such as keeping a safe distance to the front vehicle. Instead, we

would rather only specify a reward function as simple and straightforward as possible, and

focus solely on the di�culties related to safe decision-making under uncertainty, in the hope

to see adequate behaviour emerge from learning. In this perspective, keeping a safe distance

would be optimal not for being directly rewarded but for robustness against the uncertain

behaviour of the leading vehicle, which could brake at any time.

Thus, we focus on only two features: a vehicle should (i) progress quickly on the road;

(ii) avoid collisions.

Since the MDP formalism requires rewards to be bounded, by convention we normalise

them in the [0; 1] range. Note that we forbid negative rewards, since they may incentivise

the agent to prefer terminating an episode early (by causing a collision) rather than risking

su�ering a negative return if no satisfying trajectory can be found.

Thus, unless otherwise stated, the reward function R is chosen as follows:

R(s; a) =

8
>>><

>>>:

1 if the ego-vehicle is at full speed;

0 if the ego-vehicle has collided with another vehicle;

0:5 else.

(3.6)

A more realistic reward function may include comfort terms, such as penalising high

acceleration or jerk, and lane changes manoeuvres, but we do not consider them for simplicity.

40

3.5 Implementation

This reward function is dense2, since the maximum reward can easily be obtained from any

state by accelerating, which should guide exploration to e�cient driving styles. However, it is

also non-convex, sincee.g.the collision penalty is incurred at the locations of any two obstacles

but not in-between. It is even non-smooth, given that it is discontinuous at collision states.

3.5 Implementation

Figure 3.1 � highway-env repository status (on 27/11/2020).

I created the highway-env environment, a minimalist driving simulator tailored for be-

havioural planning tasks following the MDP formalisation presented in this chapter. It is

written in Python and published online under an open-source license (Leurent, 2018). An

extensive documentation is also available. We discuss at length the features and architecture of

this software in Chapter A. We mention that in addition to our own works, several students

and researchers already make use of this environment, as shown in Figure 3.1 and discussed in

Section A.2. The source code for the agents, allowing to reproduce every numerical experiment

presented throughout this manuscript, is also available in the rl-agents repository.

2Rewards are said to bedensewhen they are a rich signal obtained at (nearly) every step of decisions, which
helps quickly shaping the behaviour and guiding exploration. In contrast, sparserewards are obtained for only a
few goal states which are seldom reached (e.g.only at the exit of a maze, or the end of a board game), which makes
exploration much harder and requires assigning credit to the action(s) responsible for a win/loss

41

Part II

Model-free

Agir en primitif. . .

René Char,Feuillets d'Hypnos(72) .

Chapter 4

Considering Social Interactions

O what a strange parcel of creatures are we,

Scarce ever to quarrel, or even agree;

. .

Like social companions we never fall out,

Nor ever care what one another's about;

Elizabeth Hands, On An Unsociable Family.

Having detailed the MDP model in Part I, we now study in Part II how model-free
Reinforcement Learning algorithms can learn an optimal behavioural planning policy. In this
chapter, we focus on the design of sample-e�cientlearning architectures, tailored for dense
tra�c situations. Such architectures should deal with a varying number of nearby vehicles, be
invariant to the ordering chosen to describe them, while staying accurate and compact. We
observe that the two most popular representations in the literature do not �t these criteria, and
perform badly on a complex negotiation task. We propose an attention-based architecture that
satis�es all these properties and explicitly accounts for interactions between the tra�c
participants. We empirically show that this architecture enjoys signi�cant performance gains,
and is able to capture interactions patterns that can be visualised and qualitatively
interpreted. 1

Contents
4.1 Motivation . 46

4.2 A social attention architecture . 49

4.3 Experiments . 50

1This chapter is based on a preprint (Leurent and Mercat, 2019) presented at the Machine Learning for Autonomous
Driving workshopat the NeurIPS 2019 conference. It is a collaboration with my friend and colleague Jean Mercat,
who pursued this idea in further work on trajectory forecasting, which was published at the 2020 International
Conference on Robotics and Automation(Mercat et al., 2020) and won two international competitions.

45

Considering Social Interactions

4.1 Motivation

Value-based Reinforcement Learning algorithms such as Q-Learning (Watkins and Dayan,

1992) and its variants rely on estimating the optimal state-action value function Q?. Since the

state spaceS chosen in Chapter 3 is continuous, we must resort to function approximation.

Thus, independently of how S was de�ned, we now have to specify how a state s 2 S will be

representedas an input to parametrised model Q� . The choice of both the model class and state

representation will strongly in�uence the system performances. In particular, we claim that the

two most widely used representations both su�er from di�erent drawbacks: on the one hand,

the list of featuresrepresentation is compact and accurate but has a varying-size and depends

on the choice of ordering. On the other hand, the spatial gridrepresentation addresses these

concerns but in return su�ers from an accuracy-size trade-o�.

Our contributions are the following: �rst, we propose an attention-based architecture for

decision-making involving social interactions. This architecture allows to satisfy the variable-

size and permutation invariance requirements even when using a list of featuresrepresentation. It

also naturally accounts for interactions between the ego-vehicle and any other tra�c participant.

Second, we evaluate our model on a challenging intersection-crossing task involving up to 15

vehicles perceived simultaneously. We show that our proposed method provides signi�cant

quantitative improvements and that it enables us to capture interaction patterns in a visually

interpretable way.

4.1.1 Background

We start by giving some background on standard model-free learning algorithms �with a focus

on value-based methods�, on usual state representations used for behavioural planning, and

on attention mechanisms for Neural Networks (NNs).

Value-based deep Reinforcement Learning

Recall from De�nition 1.3 that Q? can be computed from an optimal policy � ? sinceQ? = Q� ?
.

However, the converse that � ? can be obtained from knowing Q? is also true since

Proposition 4.1 (Optimality of the greedy policy, Bellman, 2010) . A greedy policy de�ned as

8s 2 S; � ?(� j s) = � a? ; wherea? 2 arg max
a

Q?(s; a);

and� x = � (x � �) denotes the Dirac distribution inx, is optimal.

46

4.1 Motivation

Finding an optimal policy thus reduces to computing the optimal value function Q?. Fortu-

nately,

Theorem 4.2 (Bellman Optimality Equation, Bellman, 2010) . The optimal action-value func-

tion Q? satis�es the Bellman Optimality Equation:

Q?(s; a) = (T Q?)(s; a) =� E
s0� P (s0js;a)

max
a02A

�
R(s; a) + Q ?(s0; a0)

�
:

Moreover,T is a -contraction for thek � k1 norm:

8Q1; Q2 2 RS�A ; kT Q1 � T Q2k1 � kQ1 � Q2k1 :

Thus, sinceQ? is a �xed-point of a contracting operator, it can be computed by iteratively

applying T in a �xed-point iteration fashion. The Q-learningalgorithm (Watkins and Dayan,

1992) follows this procedure by applying a sampling version T to a batch of collected experience.

When dealing with a continuous state space S, we need to employ function approximation in

order to generalise to nearby states. The Deep Q-Network (DQN) algorithm (Mnih et al., 2015)

implements this idea by using a neural network model to represent the action-value function

Q.

Common tra�c state representations

In order to apply a reinforcement learning algorithm such as DQN to an autonomous driving

problem, a state spaceS must �rst be chosen, that is, a representation of the scene. The state

should at least contain a description of every nearby vehicle, when social interactions are

relevant to the decision. We recall our de�nition (3.1) of S from Chapter 3, in which a vehicle

driving on a road is described by it's continuous position, heading and velocity, and the joint

state of a road tra�c with one ego-vehicle denoted s0 and Nv other vehicles can be described

by a list of individual vehicle states:

s =

2

6
6
4

px
0 py

0 v0 0
...

...
...

...

px
N v

py
N v

vN v N v

3

7
7
5 2 S =� R(N v +1) � 4:

This description was appropriate to simply describe the system dynamics. However, it has

several drawbacks when used for function approximation: because of its 2� -periodicity, the

heading i is either clipped to (� �; �] which causes a discontinuity at � � , or unclipped which

causes several inputs to correspond to the same state. Likewise, the forward velocity vi needs

47

Considering Social Interactions

Figure 4.1 � The list of features(left) and spatial grid(right) representations

to be combined with the heading i and projected to inform the future positions px
i ; py

i of the

vehicle i . Consequently, we slightly modify the features describing the vehicle states as

s = (si) i 2 [0;N v] where si =
h
px

i py
i _px

i _py
i cos i sin i

i
(4.1)

This representation, that we call list of features, is illustrated in Figure 4.1 (left) and was used

for instance in (Bai et al., 2015; Gindele, Brechtel, and Rudiger Dillmann, 2015; Song, Xiong,

and H. Chen, 2016; Sunberg, C. J. Ho, and Mykel J. Kochenderfer, 2017; Paxton et al., 2017;

Galceran et al., 2017; Y. F. Chen et al., 2017).

This encoding is e�cient in the sense that it uses the smallest quantity of information

necessary to represent the scene. However, it lacks two important properties. First, its size varies

with the number of vehicles which can be problematic for the sake of function approximation

which often expects constant-sized inputs. Second, we expect a driving policy � to bepermutation

invariant, i.e. not to be dependent on the order in which other tra�c participants are listed.

Ideally, this property should be enforced and not approximated by relying on the coverage of

the Nv ! possible permutations � of any given tra�c state in the dataset. Formally, we require

that

� (�j(s0; s1; : : : ; sN v)) = � (�j(s0; s� (1) ; : : : ; s� (N v))) ; 8� 2 S N v ; (4.2)

where S N v is the symmetricgroup of permutations of the integer range [1; Nv]. A popular

way to address these limitations is to use a spatial gridrepresentation. Instead of explicitly

representing spatial information as variables x; y along with other features f directly inside a

state f si = (px
i ; py

i ; f i)gi 2 [0;N] indexed on the vehicles, they are instead represented implicitly

through the layout of several feature variables f ij organised in a tensor structure, where the (i; j)

indexes refer to a quantisation of the 2D-space. This representation is illustrated in Figure 4.1

(right). Note that the size of this tensor is related to the area covered divided by the quantisation

step, which re�ects a trade-o� between accuracy and dimensionality. In an occupancy grid,

48

4.2 A social attention architecture

the f features contains presence information (0-1) and additional channels such as velocity

and heading, as in (e.g. Isele et al., 2018; Lex Fridman, Terwilliger, and Jenik, 2018; Bansal,

Krizhevsky, and Ogale, 2018; Rehder, Wirth, et al., 2018). Another example is the use of

top-view RGB images (e.g. J. Bagnell et al., 2010; Rehder, Quehl, and Stiller, 2017; Rehder,

Wirth, et al., 2018; J. Liu et al., 2018).

This permutation invariance property (4.2) can also be implemented within the architecture

of the policy � . A general technique to achieve this is to treat each entity similarly in the early

stages � e.g.through weight sharing � before reducing them with a projection operator that is

itself invariant to permutations, for instance, a max-pooling as in (Y. F. Chen et al., 2017; Hoel,

Wol�, and Laine, 2018) or an average as in (Qi et al., 2017). A particular instance of this idea is

attention mechanisms.

Attention mechanisms

The attention architecture was introduced to enable NNs to discover interdependencies within

a variable number of inputs. It has been used for pedestrian trajectory forecasting in (Vemula,

Muelling, and Oh, 2018) with spatiotemporal graphs and in (Sadeghian, Kosaraju, et al., 2019)

with spatial and social attention using a generative Neural Network. Sadeghian, Legros, et al.

(2018) use attention over top-view road scene images for car trajectory forecasting. Multi-head

attention mechanism has been developed by Vaswani et al. (2017) for sentence translation.

In (Messaoud et al., 2019) a mechanism called non-local multi-head attention is developed.

However, this is a spatial attention that does not allow vehicle-to-vehicle attention. In the

present chapter, we use a multi-head social attention mechanism to capture vehicle-to-ego

dependencies and build varying input size and permutation invariance into the policy model.

4.2 A social attention architecture

Out of a complex scene description, the model should be able to �lter information and consider

only what is relevant for the decision. In other words, the agent should pay attentionto vehicles

that are close or con�ict with the planned route.

The proposed architecture is presented in Figure 4.2. We use it to represent theQ-function

that will be optimised by the DQN algorithm. It is composed of a �rst linear encoding layer

whose weights are shared between all vehicles. At that point, the embeddings only contain

individual features of size dx . They are then fed to an ego-attention layer, composed of several

heads stacked together. Theegopre�x highlights that it similar to a multi-head self-attention

layer (Vaswani et al., 2017) but with only a single output corresponding to the ego-vehicle.

Such an ego-attention head is illustrated in Figure 4.3 and works in the following way: in order

49

Considering Social Interactions

ego

vehicle1

...
vehicleN v

Encoder

Encoder
...

Encoder E
go

-a
tte

nt
io

n
E

go
-a

tte
nt

io
n

E
go

-a
tte

nt
io

n Decoder action values

Figure 4.2 � Block diagram of our model architecture. It is composed of several identical linear encoders,
a stack of ego-attention heads, and a linear decoder.

to select a subset of vehicles depending on the context, the ego-vehicle �rst emits a single query

Q = [q0] 2 R1� dk , computed with a linear projection L q 2 Rdx � dk of its embedding. This query

is then compared to a set of keysK = [k0; : : : ; kN v] 2 R(N v +1) � dk containing descriptive features

ki for each vehicle, again computed with a shared linear projection L k 2 Rdx � dk . The similarity

between the query q0 and any key ki is assessed by their dot product q0kT
i . These similarities

are then scaled by the inverse-square-root-dimension 1=
p

dk
2 and normalised with a softmax

function � across vehicles. We obtain a stochastic matrix called theattention matrix, which is

�nally used to gather a set of output value V = [v0; : : : ; vN v], where each value vi is a feature

computed with a shared linear projection L v 2 Rdx � dv . Overall, the attention computation for

each head can be written as

output = �

QK T
p

dk

!

| {z }
attention matrix

V: (4.3)

The outputs from all heads are �nally combined with a linear layer, and the resulting tensor is

then added to the ego encoding as in residual networks. We can easily see that this process is

permutation invariant: indeed, a permutation � will change the order of the rows in keys K

and values V in (4.3) but will keep their correspondence. The �nal result is a dot product of

values and key-similarities, which is independent of the ordering.

4.3 Experiments

Videos and source code of the experiments below are available3.

Environment In this experiment, we use the highway-env environment (Leurent, 2018) pre-

sented in Chapter A. We consider a task where vehicle-to-vehicle interaction plays a signi�cant

part: crossing a four-way intersection. The scene � composed of two roads crossing perpendicu-

larly � is populated with several tra�c participants initialised with random positions, velocities,

2This scaling is due to the fact that the dot-product of two independent random vectors with mean 0, variance 1,
and dimension dk , is a random variable with mean 0 and variance dk

3https://eleurent.github.io/social-attention/

50

4.3 Experiments

Figure 4.3 � Architecture of an ego-attention head. After received the encoded vehicle states, the ego-
query q, all keys k and all values v are produced by three linear projections. Then, the attention matrix
is computed by matching the keys K to the ego query q0, and the corresponding values V are retrieved.
The resulting embedding is �nally forwarded to a decoder to obtain the predicted Q-values as an output.

and destinations. As described in Chapter 3, these vehicles are simulated with the Kinematic

Bicycle Model, their lateral control is achieved by a low-level steering controller tracking a

target route, and their longitudinal behaviour follows the IDM model (Treiber, Hennecke, and

Helbing, 2000). However, this model only considers same-lane interactions and special care

was required to prevent lateral collisions at the intersection. To that end, I implemented the

following simplistic behaviour: each vehicle predicts the future positions of its neighbours over

a three-seconds horizon by using a constant velocity model. When a collision with a neighbour

is predicted, the yielding vehicle is determined based on road priorities and brakes until the

collision prediction ceases.

In this context, the agent must drive a vehicle by controlling its speed chosen from a �nite

set of actions A =� f drive faster ; drive slower ; maintain speedg. Note that we removed the

lane change actions from the general de�nition (3.2) of Chapter 3 since the roads are all single-

lane in this example. The lateral control is performed automatically by a low-level controller,

such that the problem complexity is focused on the high-level interactions with other vehicles,

namely the decision to either give or take way. The reward function R is de�ned as in (3.6).

Agents We evaluate three di�erent agents, whose characteristics are summarised in Table 4.1.

ˆ FCN/List : a list of featuresstate representation is used, as described in Section 4.1.1. The

model is a simple Fully-Connected Network (FCN). Because this architecture requires a

�xed-size input, we use zero-padding to �ll the input tensor up to a maximum number

51

Considering Social Interactions

Table 4.1 � Characteristics of the agents

Architecture FCN/List CNN/Grid Ego-Attention

Input sizes [15, 7] [32, 32, 7] [� , 7]
Layers sizes [128, 128] Convolutional layers: 3

Kernel Size: 2
Stride: 2

Head: [20]

Encoder: [64, 64]
Attention: 2 heads

dk = 32
Decoder: [64, 64]

Number of parameters 3.0 � 104 3.2� 104 3.4� 104

Variable input size No No Yes
Permutation invariant No Yes Yes

N = 14 of observed vehicles, and add an additional presencefeature to the coordinates

described in (4.1) so as to identify active rows.

ˆ CNN/Grid: aspatial gridrepresentation is used, as described in Section 4.1.1, with a32� 32

grid where each cell represents a2m � 2m square. The model is a Convolutional Neural

Network (CNN).

ˆ Ego-Attention : a list of featuresstate representation is used along with the Ego-Attention

architecture described in Section 4.2. As this model supports varying-size inputs, zero-

padding is not required.

These agents are all trained with the DQN algorithm using the same hyperparameters, and

their architectures are scaled to admit about the same number of trainable parameters for fair

comparison.

Performances We plot in Figure 4.4 the evolution of the total reward, episode length and

average speed during training, over 4000 episodes and repeated across 120 random seeds. The

FCN/List agent learns to accelerate to earn short-term rewards, as shown by its high average

speed, but fails to exploit the information of other vehicles and crashes often, leading to short

episodes. We obtain a risky and blind policy that is the worst-performing. Conversely, the

CNN/Gridarchitecture bene�ts from its invariance to permutations and manages to learn to

brake upon arrival at the intersection to avoid collisions, as we can see from its higher episode

length. However, it only proceeds when the intersection has been fully cleared, as re�ected by

its low average speed. This results in an overly cautious policy � a common trait colloquially

known as the �freezing robot problem�(Trautman and Krause, 2010) � with a slight increase in

performance. In stark contrast, the Ego-Attention policy quickly learns both when it must

slow down at the intersection (see the high episode length), but also when it can exploit the

gaps in the tra�c and take way to vehicles that are far or slow enough (see the higher average

52

4.3 Experiments

speed than CNN/Grid). This translates as a signi�cant performance improvement, and the

resulting overall behaviour is qualitatively more nuanced and human-like.

(a) Average return G =
P

t t R(st ; at) (higher is better)

(b) Average episode length. Higher is better, since
episodes are terminated at collisions (or after 13 steps).

(c) Average speedv0 of the ego-vehicle (higher is better)

Figure 4.4 � Performances of the tree agents according to various measures. We display the mean values
� along with their 95% con�dence interval � averaged over 120 random seeds.

Attention interpretation In any given state, the attention matrix can be visualised in the

following way: we connect the ego-vehicle to every vehicle by a line of width proportional to

the corresponding attention weight. Since the architecture can contain several ego-attention

heads, we use di�erent colours to distinguish them. In our experiments, two attention heads

were used and are represented in green and blue. We observe in Figure 4.5 that they specialised

to focus on di�erent areas: the green head is only watching the vehicles coming from the left,

53

Considering Social Interactions

Figure 4.5 � The attention heads specialised
in di�erent areas: left and front/right.

Figure 4.6 � The attention paid to a vehicle tends to in-
crease as it gets closer.

while the blue head restricts itself to vehicles in the front and right directions. However, we

notice that both heads exhibit a common behaviour: they direct their attention to incoming

vehicles that are likely to collide with the ego-vehicle, depending on their current position,

heading, velocity, and ignore those that are too far or in a con�ict-less situation. In particular,

the attention tends to increase when vehicles get closer, as shown in Figure 4.6. It can also be

very sensitive to small variations in the tra�c state, as re�ected in Figure 4.7. A full episode

showcasing interactions with several vehicles is shown in Figure 4.8.

Exploiting interaction patterns The agent decisions regarding the right of way are not en-

forced through rewards but experienced interactions: based on the de�ned road priorities,

some vehicles will take way to the ego-vehicle while others will not. By changing which is a

priority road, we can in�uence the rules of interactions which a�ects the learnt behaviour. In

Figure 4.9, we compare two policies placed in the exact same initial state and observe how their

decisions are a�ected by their internal model of how incoming vehicles interact with them.

This di�erence showcases the ability of our proposed architecture to discover and exploit such

interaction patterns.

Goal conditioning In the previous examples, we trained a policy tailored for left-turns only

because it is the hardest direction with the most con�ict points and the lowest priority level.

Two individual policies tailored for right turns and driving straight can be trained as well,

with similar results. Training a generic intersection policy would be less e�cient without any

prior information on where the ego-vehicle is headed. To remedy this problem, the destination

could be added as additional features in (4.1) , for instance encoded as a desired direction

54

4.3 Experiments

(a) The agent has stopped at the intersection,
its attention is focused on an incoming vehicle
whose destination is still uncertain.

(b) As soon as the vehicle orientation changes,
revealing its intention of turning right, the at-
tention drops and the agent starts accelerating
right away.

Figure 4.7 � Sensitivity to uncertainty.

Figure 4.8 � A complete episode. From left to right, top to bottom: 1. The green and blue heads direct their
attentions to the left and front vehicles, respectively; 2. The left-vehicle is passing and is no longer a
threat; 3. Immediately, the green attention head switches to the next vehicle coming from the left; 4. The
front vehicle has now passed, and the blue attention head is now focused on the ego-vehicle; 5. The
ego-vehicle waits for one last vehicle coming from the left 6. The ego-vehicle can �nally proceed, and its
attention is focused on itself.

55

Considering Social Interactions

(a) When trained on a non-priority road, the agent
learns to yield to incoming vehicles.

(b) When trained on a priority road, the agent expects
other vehicles to give way and is consequently more
aggressive.

Figure 4.9 � E�ect of the right of way.

(dx ; dy). This destination feature could also be used for other tra�c participants to encode

blinker information when available. This should result in a more e�cient and generic policy.

Chapter conclusion

In this chapter, we showed that the list of featuresrepresentation, commonly used to describe

vehicles in autonomous driving literature, is not tailored for use in a function approximation

setting, in particular with neural networks. These concerns can be addressed by the spatial

grid representation, but at the price of an increased input size and loss of accuracy. In contrast,

we proposed an attention-based neural network architecture to tackle the aforementioned

issues of thelist of featuresrepresentation without compromising either size or accuracy. This

architecture enjoys a better performance on a simulated negotiation and intersection crossing

task, and is also more interpretable thanks to the visualisation of the attention matrix. The

resulting policy successfully learns to recognise and exploit the interaction patterns that govern

the nearby tra�c.

Let us back up a moment and re�ect again on the behaviours exhibited by Figure 4.4.

Though Ego-Attention performs better than CNN/Grid, it also has shorter episodes, which

means it collides more often with other vehicles. Though this aggressive behaviour is deemed

better by our choice of reward function, it may not be desirable in practice. A straightforward

way to make the optimal policy more conservative is to manually tune the reward function

56

4.3 Experiments

and increase the weight of collisions. However, setting too high a penalty may also result in

overly cautious behaviours. Finding the sweet spot between these two extremes can be di�cult

and demanding since changing the reward requires retraining the policy entirely. In the next

chapter, we study a way to learn not a single policy but rather a whole range of policies that

exhibit di�erent levels of risk.

57

Chapter 5

Acting under Adjustable Constraints

If you can meet with Triumph and Disaster

And treat those two impostors just the same;

. .

If you can make one heap of all your winnings

And risk it on one turn of pitch-and-toss

Rudyard Kipling, If� .

When we drive, we must comply with two contradictory objectives: e�ciency and safety. In
this chapter, we strive to reconcile them by formalising a �rst notion of risk. We consider
BMDPs, in which risk is implemented as a cost signal constrained to lie below an adjustable
threshold. The latter provides the system manufacturer with a slider allowing them to adjust
in real-time the level of risk taken by the vehicle. So far, BMDPs could only be solved in the
case of known dynamics and �nite state spaces, which is not suitable for our application which
features continuous kinematic states and unknown human behaviours. This chapter extends
the state-of-the-art to continuous spaces and unknown dynamics. Our approach is motivated
by the prospect of training a risk-sensitive driving policy for a two-way road, where overtaking
a vehicle requires driving on the wrong lane. 1

Contents
5.1 Motivation . 60

5.2 Budgeted dynamic programming . 62

5.3 Budgeted reinforcement learning . 67

5.4 Experiments . 71

1This chapter is based on an article published in the proceedings of the 32nd conference on advances in Neural
Information Processing Systems (NeurIPS)(Carrara, Leurent, et al., 2019). It is joint work with Nicolas Carrara, who
came up with the algorithm and carried-out the dialogue experiment. I did most of the theoretical analysis, the
driving experiment; and we worked together on the exploration procedure and scaling-up the implementation.

59

Acting under Adjustable Constraints

5.1 Motivation

As stated in Chapter 1, Reinforcement Learning is a general framework for decision-making

under uncertainty. Formally, we seek a policy � 2 M (A)S that maximises in expectation the

 -discounted return of rewards G� =
P 1

t=0 t R(st ; at).

However, this modelling assumption comes at a price: no control is given over the spread

of the performance distribution (Dann et al., 2019). In many critical real-world applications,

including Autonomous Driving, failures may turn out very costly. This is an issue as most

decision-makers would rather give away some amount of expected optimality to increase the

performances in the lower-tail of the distribution. As discussed in Chapter 2, this has led to

the development of several risk-averse variants where the optimisation criteria include other

statistics of the performance, such as the worst-case realisation (Iyengar, 2005; Nilim and

El Ghaoui, 2005; Wiesemann, Kuhn, and Rustem, 2013), the variance-penalised expectation

(Tamar, Di Castro, and Mannor, 2012; García, Fern, and Fernández, 2015), the Value at Risk

(Mausser and Rosen, 1999; Luenberger, 2013), or the Conditional Value at Risk (Chow, Tamar,

et al., 2015; Chow, Ghavamzadeh, et al., 2017).

Reinforcement Learning also assumes that the performance can be described by a single

reward function R. Conversely, real problems typically involve many aspects, some of which

can be contradictory (C. Liu, X. Xu, and Hu, 2014). In our case, a self-driving car needs to

balance between progressing quickly on the road and avoiding collisions. In Multi-Objective

Reinforcement Learning (MORL), each of these aspects is independently modelled by a separate

reward signal. Then, the set of policies is partitioned into (i) the class of dominatedpolicies

� , for which there exists an improvement, i.e. another policy � 0 with at least some objectives

increased, and none decreased; (ii) the Pareto front� ?, of undominated policies, illustrated in

Figure 5.1.

A standard way to cast a MOMDP into an MDP is to aggregate several objectives in a single

reward function (Roijers et al., 2013). However, this does not allow to explicitly control the

trade-o� between the di�erent objectives, since higher rewards can compensate for higher

penalties. For instance, if a weighted sum is used to balance velocity v and crashesc, then for any

given choice of weights ! the optimality equation ! v E[
P

 t vt] + ! a E[
P

 t ct] = G? = max � G�

is the equation of a line in (E[
P

 t vt]; E[
P

 t ct]), and the automotive company cannot control

where its optimal policy � ? lies on that line.

Both of these concerns are addressed in the Constrained Markov Decision Process (CMDP)

setting (Beutler and K. W. Ross, 1985; Altman, 1999), illustrated in Figure 5.2a. In this multi-

objective formulation, task completion and safety are considered separately. We equip the

MDP with a cost signal C 2 RS�A and a cost budget � 2 R. Similarly to G� , we de�ne the

60

5.1 Motivation

Figure 5.1 � A Multi-Objective Markov Decision Process (MOMDP) with two objectives: the rewards R
must be maximised, while the costs C must be minimised. The policies are partitioned into dominated
policies, shown in light shades of green, and the Pareto front � ?, shown in dark green. Cautious policies
with low e�ciency and risk are located on the bottom-left, while aggressive policies with high e�ciency
and risk are on the top-right.

return of costs G �
c =

P 1
t=0 t C(st ; at) and the new cost-constrained objective:

max
� 2M (A)S

E[G � js0 = s] s.t. E[G �
c js0 = s] � � (5.1)

This constrained framework allows for better control of the performance-safety trade-o�. How-

ever, it su�ers from a major limitation: the budget has to be chosen before training, and cannot

be changed afterwards.

To tackle this issue, the Budgeted Markov Decision Process (BMDP) was introduced in

(Boutilier and T. Lu, 2016) as an extension of CMDPs to enable the online control over the

budget � within a closed interval B � R of admissible budgets. Instead of �xing the budget

prior to training, the objective is now to �nd a generic optimal policy � ? that takes � as input

so as to solve the corresponding CMDP (5.1) for all budgets � 2 B . This gives the system

designer the ability to move in real-time the optimal policy � ? along the Pareto front of the

di�erent reward-cost trade-o�s, as shown in Figure 5.2b.

In the seminal work of Boutilier and T. Lu (2016), BMDPs were originally studied in the

context of �nite states S, �nite horizon, and known BMDP parameters. Our �rst contribution is

to re-frame the BMDP formulation in the context of continuous states and in�nite discounted

horizon. We then propose a novel Budgeted Bellman Optimality Operator and prove the optimal

value function to be a �xed point of this operator. Second, we use this operator in Budgeted

Fitted Q-Learning (BFTQ) , a batch RL algorithm, for solving BMDPs online, without prior

knowledge of the (P ; R; C) parameters, by interacting with an environment. Third, we scale

61

Acting under Adjustable Constraints

(a) In a CMDP, we learn a single policy � ? (blue dot �)
with a �xed expected risk � 2 B

(b) In a BMDP, we learn a set � ? of policies called the
Pareto front (blue frontier �), for the whole range B of
allowed risks

Figure 5.2 � Comparison between the CMDP and BMDP frameworks.

this algorithm to large problems by (i) providing an e�cient implementation of the Budgeted

Bellman Optimality operator based on convex programming, (ii) a tailored risk-sensitive

exploration procedure, and (iii) leveraging tools from Deep Reinforcement Learning such as

Neural Networks for function approximation and synchronous parallel computing. Finally, we

validate our approach in two environments that display a clear trade-o� between rewards and

costs: a dialogue system example, and a behavioural planning problem for overtaking on a

two-way road.

5.2 Budgeted dynamic programming

We work in the space of budgeted policies, where � both depends on � and also outputs the

next budget � a. Hence, the budget � is neither �xed nor constant as in the CMDP setting but

instead evolves as part of the dynamics.

We cast the BMDP problem as a MOMDP problem (Roijers et al., 2013) by considering

augmentedstate and action spacesS = S � B and A = A � B , and equip them with the

augmented dynamics P 2 M (S)S� A de�ned as:

P
�
s0 �

� s;a
�

= P
�
(s0; � 0)

�
� (s; �); (a; � a)

�
=� P(s0js; a)� (� 0� � a); (5.2)

where � is the Dirac indicator distribution.

In other words, in these augmented dynamics, the output budget � a returned at time t by a

budgeted policy � 2 � = M (A)S will be used to condition the policy at the next timestep t + 1 .

We stack the rewards and cost functions in a single vectorialsignal R 2 (R2)S� A :

62

5.2 Budgeted dynamic programming

De�nition 5.1. Given an augmented transition(s;a) = ((s; �); (a; � a)) , we de�ne

R(s;a) =�
"
R(s; a)

C(s; a)

#

2 R2: (5.3)

Likewise, we augment the return:

De�nition 5.2. The returnG� = (G� ; G�
c) of a budgeted policy� 2 � refers to

G� =�
1X

t=0

 t R(st ; at): (5.4)

as well as the value functions:

De�nition 5.3. The value functionsV � , Q� of a budgeted policy� 2 � are de�ned as

V � (s) = (V �
r ; V �

c) =� E
h
G�

�
�
� s0 = s

i

Q� (s;a) = (Q�
r ; Q�

c) =� E
h
G�

�
�
� s0 = s;a0 = a

i
:

(5.5)

We restrict S to feasible budgets only: Sf =� f (s; �) 2 S : 9� 2 � ; V �
c (s) � � g that we

assume to be non-empty for the BMDP to admit a solution. We still write S in place of Sf for

brevity of notations.

Proposition 5.4 (Budgeted Bellman Expectation) . The value functionsV � andQ� verify:

V � (s) =
X

a2 A

� (ajs)Q� (s;a) Q� (s;a) = R(s;a) +
X

s02 S

P
�
s0 �

� s;a
�

V � (s0): (5.6)

Moreover, consider the Budgeted Bellman Evaluation operatorT � : 8Q 2 (R2)SA ; s 2 S; a 2 A ,

T � Q(s;a) =� R(s;a) +
X

s02 S

X

a02 A

P(s0js; a)� (a0js0)Q(s0; a0): (5.7)

ThenT � is a -contraction andQ� is its unique �xed point.

63

Acting under Adjustable Constraints

Proof. We provide the proof in Section B.1.1.

We now come to the de�nition of budgeted optimality. We want an optimal budgeted

policy to: (i) respect the cost budget � ; (ii) maximise the -discounted return of rewards G;

(iii) in case of tie, minimise the -discounted return of costs Gc.

De�nition 5.5 (Budgeted Optimality) . To that end, we de�ne for alls 2 S,

(i) admissible policies� a as

� a(s) =� f � 2 � : V �
c (s) � � g wheres = (s; �); (5.8)

(ii) the optimal value function for rewardsV ?
r and candidate policies� r as

V ?
r (s) =� max� 2 � a (s)V

�
r (s) � r (s) =� arg max� 2 � a (s)V

�
r (s); (5.9)

(iii) the optimal value function for costsV ?
c and optimal policies�

?
as

V ?
c (s) =� min � 2 � r (s)V

�
c (s); �

?
(s) =� arg min� 2 � r (s)V

�
c (s): (5.10)

We de�ne the budgeted action-value functionQ? similarly as

Q?
r (s;a) =� max

� 2 � a (s)
Q�

r (s;a) Q?
c(s;a) =� min

� 2 � r (s)
Q�

c (s;a); (5.11)

and denoteV ? = (V ?
r ; V ?

c), Q? = (Q?
r ; Q?

c).

Figure 5.3 � On the left hand side, a simple risky-vs-safeBMDP. The probability of picking the risky
action is � 1. On the right hand side an attempt to relax the problem with negative rewards.

Contrary to MDPs which always admit a deterministic optimal policy, this is generally

not the case in a CMDP, and a fortiori in a BMDP. To illustrate this fact, let us consider the

trivial BMDP on the left of Figure 5.3. In this example we have G� = 10� 1 and G�
c = � 1. The

64

5.2 Budgeted dynamic programming

deterministic policy consisting in always picking the safe action is feasible for any � � 0. But if

� = 1=2, the most rewarding feasible policy is to randomly pick the safe and risky actions with

equal probabilities. If we attempt to cast this BMDP into an MDP by replacing the costs by

negative rewards, the corresponding greedy policy will be deterministic, hence sub-optimal.

However, the optimal value function Q? in a BMDP can still be characterised by a �xed-point

equation, similarly to Theorem 4.2 for MDPs.

Theorem 5.6 (Budgeted Bellman Optimality) . The optimal budgeted action-value functionQ?

veri�es

Q?(s;a) = T ?Q?(s;a) =� R(s;a) +
X

s02 S

P(s0js; a)
X

a02 A

� greedy(a0js0; Q?)Q?(s0; a0); (5.12)

where the greedy policy� greedyis de�ned by:8s = (s; �) 2 S; a 2 A ; 8Q 2 (R2)A� S;

� greedy(ajs; Q) 2 arg min
� 2 �

Q
r

E
a� �

Qc(s;a); (5.13a)

where �
Q
r =� arg max

� 2M (A)
E

a� �
Qr (s;a) (5.13b)

s.t. E
a� �

Qc(s;a) � �: (5.13c)

Proof. We provide the proof in Section B.1.2.

Remark 5.7 (Appearance of the greedy policy) . In classical Reinforcement Learning,

the greedy policy takes a simple form� greedy(s; Q?) = arg max a2A Q?(s; a), and the term

� greedy(a0js0; Q?)Q?(s0; a0) in (5.12) conveniently simpli�es tomaxa02A Q?(s0; a0). Unfortunately,

in a budgeted setting the greedy policy requires solving the nested constrained optimisation program

(5.13) at each state and budget in order to apply this Budgeted Bellman Optimality operator.

Proposition 5.8 (Optimality of the greedy policy) . The greedy policy� greedy(� ; Q?) is uniformly

optimal:

for all s 2 S; � greedy(� ; Q?) 2 �
?
(s):

In particular,

V � greedy(�;Q
?
) = V ? andQ� greedy(�;Q

?
) = Q?:

65

Acting under Adjustable Constraints

Proof. We provide the proof in Section B.1.3.

Algorithm 5.1: Budgeted Value Iteration

1 Data: P; Rr ; Rc

2 Result: Q?

3 Q0 0
4 repeat
5 Qk+1 T Qk

6 until convergence (kQk+1 � Qkk1 � ")

Budgeted Value Iteration The Budgeted Bellman Optimality equation is a �xed-point equa-

tion, which motivates the introduction of a �xed-point iteration procedure. We introduce

Algorithm 5.1, a Dynamic Programming algorithm for solving known BMDPs. If it were to

converge to a unique �xed point, this algorithm would provide a way to compute Q? and

recover the associated optimal budgeted policy � greedy(� ; Q?).

Theorem 5.9 (Non-contractivity of T ?) . For any BMDP (S; A ; P; R; C;) with jAj � 2, T ?

is not a contraction. Precisely,

8" > 0; 9Q1; Q2 2 (R2)SA : kT Q1 � T Q2k1 �
1
"

kQ1 � Q2k1 :

Proof. We provide the proof in Section B.1.4.

Unfortunately, as T ? is not a contraction, we can guarantee neither the convergence of

Algorithm 5.1 nor the unicity of its �xed points. Despite those theoretical limitations, we

empirically observed the convergence to a �xed point in our experiments (Section 5.4). We

provide a possible explanation:

Theorem 5.10 (Contractivity of T on smooth Q-functions) . The operatorT ? is a contraction

when restricted to the subsetL ofQ-functions such that �Qr is Lipschitz with respect toQc�:

L =

(
Q 2 (R2)SA s.t. 9L < 1

 � 1 : 8s 2 S; a1; a2 2 A;

jQr (s;a1) � Qr (s;a2)j � L jQc(s;a1) � Qc(s;a2)j

)

; (5.14)

8Q1; Q2 2 L ; kT Q1 � T Q2k1 < kQ1 � Q2k1 :

66

5.3 Budgeted reinforcement learning

Proof. We provide the proof in Section B.1.5.

Thus, we expect that Algorithm 5.1 is likely to converge when Q? is smooth, but could

diverge if the slope of Q? is too high. L 2-regularisation can be used to encourage smoothness

and mitigate the risk of divergence.

5.3 Budgeted reinforcement learning

In this section, we consider BMDPs with unknown parameters that must be solved by interaction

with an environment.

5.3.1 Budgeted Fitted-Q

When the BMDP is unknown, we need to adapt Algorithm 5.1 to work with a batch of samples

D = f (st ; at ; r t ; s0
t)gt2 [1;N] collected by interaction with the environment. Applying T ? in (5.12)

would require computing an expectation Es0� P over next statess0and hence an access to the

model P. We instead useT̂ ?, a sampling operator, in which this expectation is replaced by

T̂ ?Q(s;a; r; s0) =� r +
X

a02 A

� greedy(a0js0; Q)Q(s0; a0):

We introduce in Algorithm 5.2 the BFTQalgorithm, an extension of the Fitted Q-Learning

(FTQ) algorithm adapted to solve unknown BMDPs. Because we work with continuous state

spaceS and budget spaceB , we need to employ function-approximation in order to generalise

to nearby states and budgets. Precisely, given a parametrized model Q� , we seek to minimise a

regression lossL (Q� ; Qtarget; D) =
P

D kQ� (s;a) � Qtarget(s;a; r; s0)k2
2. Any model can be used,

such as linear models, regression trees, or Neural Networks.

Algorithm 5.2: Budgeted Fitted-Q

1 Data: D
2 Result: Q?

3 Q� 0
 0

4 repeat
5 � k+1 arg min� L (Q� ; T̂ Q� k

; D)
6 until convergence (kQ� k +1 � Q� k k1 � ")

67

Acting under Adjustable Constraints

5.3.2 Risk-sensitive exploration

In order to run Algorithm 5.2, we must �rst gather a batch of samples D. The following strategy

is motivated by the intuition that a wide variety of risk levels needs to be experienced during

training, which can be achieved by enforcing the risk constraints during data collection. Ideally,

we would need samples from the asymptotic state-budget distribution lim t !1 P(st) induced

by an optimal policy � ? given an initial distribution P(s0), but as we are actually building this

policy, it is not possible. Following the same idea of " -greedy exploration for FTQ, we introduce

an algorithm for risk-sensitive exploration. We follow an exploration policy: a mixture between

a random budgeted policy � rand and the current greedy policy � greedy. The batchD is split into

several minibatches generated sequentially, and � greedy is updated by running Algorithm 5.2 on

D upon mini-batch completion. � rand is designed to obtain trajectories that only explore feasible

budgets: we impose that the joint distribution P(a; � ajs; �) veri�es E[� a] � � . This condition

de�nes a probability simplex � A from which we sample uniformly. Finally, when interacting

with an environment, the initial state s0 is usually sampled from a starting distribution P(s0).

In the budgeted setting, we also need to sample the initial budget � 0. Importantly, we pick a

uniform distribution P(� 0) = U(B) so that the entire range of risk-level is explored, and not

only reward-seeking behaviours as would be the case with a traditional risk-neutral " -greedy

strategy. The pseudo-code of our exploration procedure is shown in Algorithm 5.3.

Algorithm 5.3: Risk-sensitive exploration

1 Data: An environment, a BFTQ solver, W CPU workers
2 Result: A batch of transitions D
3 D ;
4 for each intermediate batchdo
5 split episodes between W workers
6 for each episode in batchdo // run this loop on each worker in parallel
7 sample initial budget � � U (B)
8 while episode not donedo
9 update " from schedule

10 sample z � U ([0; 1])
11 if z < " then sample (a; � a) � U (� AB) // Explore
12 else sample (a; � a) � � greedy(a; � ajs; � ; Q?) // Exploit
13 append transition (s; �; a; � a; R; C; s0) to batch D
14 step episode budget � � a

15 � greedy(�; Q?) BFTQ(D)

16 return the batch of transitionsD

In the following, we introduce an implementation of the BFTQalgorithm designed to operate

e�ciently and handle large batches of experiences D.

68

5.3 Budgeted reinforcement learning

5.3.3 How to compute the greedy policy?

As stated in Remark 5.7, computing the greedy policy � greedy in (5.12) is not trivial since it

requires solving the nested constrained optimisation program (5.13). However, it can be solved

e�ciently by exploiting the structureof the set of solutions with respect to � , that is, concave

and increasing.

Proposition 5.11 (Equality of � greedy and � hull) . The greedy policy� greedyis equal to a convex-

hull policy � hull de�ned in Algorithm 5.4:

� greedy(ajs; Q) = � hull(ajs; Q):

Thus, Algorithm 5.1 and Algorithm 5.2 can be run by replacing� greedyin the equation(5.12) of T

with � hull .

Proof. We provide the proof in Section B.1.6.

Algorithm 5.4: Convex hull policy � hull (ajs; Q)

1 Data: s = (s; �), Q

2 Q+ f Qc > minf Qc(s;a) s.t. a 2 arg maxa Qr (s;a)gg // dominated points

3 F top frontier of convex_hull (Q(s;A) n Q+) // candidate mixtures
4 FQ F \ Q(s;A)
5 for pointsq = Q(s;a) 2 F Q in clockwise orderdo
6 if �nd two successive points((q1

c ; q1
r); (q2

c ; q2
r)) ofFQ such thatq1

c � � < q 2
c then

7 p (� � q1
c)=(q2

c � q1
c)

8 return the mixture (1 � p)� (a � a1) + p� (a � a2)

9 else return � (a � arg maxa Qr (s;a)) // budget � always respected

The computation of � hull in Algorithm 5.4 is illustrated in Figure 5.4: �rst we get rid of

dominated points. Then we compute the top frontier of the convex hull of the Q-function.

Next, we �nd the two closest augmented actions a1 and a2 with cost-value Qc surrounding � :

Qc(s;a1) � � < Q c(s;a2). Finally, we mix the two actions such that the expected spent budget

is equal to � . Because of the concavity of the convex hull top frontier, any other combination of

augmented actions would lead to a lower expected reward Qr .

5.3.4 Function approximation

Neural Networks are well suited to model Q-functions, as is done in the DQN algorithm (Mnih

et al., 2015). We approximate Q = (Qr ; Qc) using one single Neural Network, as illustrated in

69

Acting under Adjustable Constraints

Figure 5.4 � Representation of � hull . When the budget lies between Q(s;a1) and Q(s;a2), two points of
the top frontier of the convex hull, then the policy is a mixture of these two points.

Figure 5.5. Thus, the two components are optimised jointly, which accelerates convergence and

fosters the learning of useful shared representations. Moreover, as in (Mnih et al., 2015), we are

dealing with a �nite (categorical) action space A. Instead of including the action in the input,

we add an output to the Q-function for each action. Again, it provides a faster convergence

toward useful shared representations and it only requires one forward pass to evaluate all

action values. Finally, beside the states there is one more input to a budgeted Q-function: the

budget � a. This budget is a scalar value whereas the states is a vector of potentially large size.

To avoid a weak in�uence of the budget � a compared to the state s in the prediction, we include

an additional encoder for the budget, whose width and depth may depend on the application.

A straightforward choice is a single layer with the same width as the state.

5.3.5 Parallel computing

In a simulated environment, a �rst process that can be distributed is the collection of transitions

in the exploration procedure of Algorithm 5.3, as � greedy stays constant within each minibatch

which avoids the need of synchronisation between workers. Second, the main bottleneck of BFTQ

is the computation of the target T Q. Indeed, when computing � hull we must perform at each

epoch a Graham-scan of complexity O(jAjj ~B j log jAjj ~B j) per transition in D to compute the

convex hulls of Q (where ~B is a �nite discretisation of B). The resulting total time-complexity 2

is O(j
D jjAjj ~B j log (" (1 �)) log jAjj ~B j). This operation can easily be distributed over several

CPUs provided that we �rst evaluate the model Q(s0; A � ~B) for each states extracted from

the dataset D, which can be done in a single forward pass. By using multiprocessing in

2log (" (1 �)) is the sample complexity of Value Iteration with accuracy " , and each of these iterations requires
a Graham-scan for each state in the datasetD, action a 2 A and budget � 2 ~B .

70

5.4 Experiments

s0

s1

� a

Qr (a0)

Qr (a1)

Qc(a0)

Qc(a1)

(s; � a)

Encoder

Hidden
Layer 1

Hidden
Layer 2 Q

Figure 5.5 � Neural Network for Q-functions approximation when S = R2 and jAj = 2 .

the computations of � hull , we enjoy a linear speedup. The full description of our scalable

implementation of BFTQis recalled in Algorithm 5.5.

5.4 Experiments

There are two hypotheses we want to validate.

Exploration strategies We claimed in Section 5.3.2 that a risk-sensitive exploration was re-

quired in the setting of BMDPs. We test this hypothesis by confronting our strategy to a classical

risk-neutral strategy. The latter is chosen to be a "-greedy policy slowly transitioning from

a random to a greedy policy 3 that aims to maximise E� G� regardless of E� G�
c . The quality

of the resulting batch D is assessed by training aBFTQpolicy and comparing the resulting

performance.

Budgeted algorithms We compare our BFTQalgorithm to an FTQ(�) baseline. This baseline

consists in approximating the BMDP by a �nite set of CMDPs problems. We solve each of

these CMDP using the standard technique of Lagrangian Relaxation: the cost constraint is

converted into a soft penalty weighted by a Lagrangian multiplier � in a surrogate reward

function: max� E� [G� � �G �
c]. As shown in Figure 5.6, the optimal deterministic policy can be

obtained by a line-search on the Lagrange multiplier values � . Then, according to Beutler and

K. W. Ross (1985, Theorem 4.4), the optimal policy is a randomised mixture of two deterministic

policies: the safest deterministic policy that violates the constraint � � � and the most risky

feasible policy � � + . The resulting MDPs can be solved by any RL algorithm, and we chose

3We train this greedy policy using FTQ.

71

Acting under Adjustable Constraints

Algorithm 5.5: A scalable implementation of BFTQ

1 Data: D, ~B a �nite subset of B, , a model Q 2 (R2)SA , a regression algorithm fit , a set
of CPU workers W

2 Result: Q?

3 Q 0
4 X f si ; ai ; � ai gi 2 [0;jDj]

5 S0 f s0
i gi 2 [0;jDj]

6 repeat
7 Evaluate Q(S0; A ; ~B) in a single forward pass
8 Split D among workers: D = [w2 W Dw

9 for w 2 W do // Run in parallel
10 for (�; �; � ai ; Rr i ; Rci ; s0

i) 2 D do
11 P f (Qc(s0

i ; A ; ~B); Qr (s0
i ; A ; ~B))g

12 P:prune() // Remove all dominated points
13 H convex_hull (P):vertices() // in cw order
14 k minf k : � i � qc with (qc; qr) = H [k]g
15 q2

c ; q2
r ; q1

c ; q1
r H [k]; H [k � 1]

16 p (� ai � q1
a)=(q2

c � q1
c)

17 Y w;i
c Rci + ((1 � p)q1

c + pq2
c)

18 Y w;i
r Rr i + ((1 � p)q1

r + pq2
r)

19 Join the results: Y [w2 W (Y w
c ; Y w

r)
20 Q fit (X; Y)
21 until convergence

72

5.4 Experiments

Figure 5.6 � Calibration of a penalty multiplier according to the budget � . The optimal multiplier � ?
avg is

the smallest one to satisfy the budget constraint on average. Safer policies can also be selected according
to the largest deviation from this mean cost.

FTQfor being closest to BFTQ. In our experiments, a single training of BFTQcorresponds to 10

training runs for FTQ(�) policies. Each run was repeated Nseeds times. Given the high variance,

it requires a lot of simulations to get a proper estimate of the calibration curve. Our purpose is

to avoid this calibration phase.

5.4.1 Environments

We evaluate our method on three di�erent environments involving reward-cost trade-o�s.

Corridors This simple environment is only meant to highlight clearly the speci�city of ex-

ploration in a budgeted setting. It is a continuous gridworld with Gaussian perturbations,

consisting in a maze composed of two corridors: a risky one with high rewards and costs, and a

safe one with low rewards and no cost. In both corridors, the outermost cell is the one yielding

the most reward, which motivates an in-depth exploration.

Parameter Description Value

- Size of the environment 7 x 6

-
Standard deviation of the Gaussian
noise applied to actions

(0.25,0.25)

H Trajectory duration 9

Table 5.1 � Parameters of Corridors

73

Acting under Adjustable Constraints

Spoken dialogue system Our second application is a dialogue-based slot-�lling simulation

that has already bene�ted from batch RL optimisation in the past (L. Li, Williams, and S.

Balakrishnan, 2009; Chandramohan, Geist, and Pietquin, 2010; Pietquin et al., 2011). The

system �lls in a form of slot-values by interacting a user through speech, before sending them

a response. For example, in a restaurant reservation domain, it may ask for three slots: the area

of the restaurant, the price range and the food type. The user could respectively provide those

three slot-values : Cambridge, Cheapand Indian-food . In this application, we do not focus on

how to extract such information from the user utterances; but rather on the decision-making

for �lling in the form. To that end, the system can choose among a set of generic actions. As in

(Carrara, Laroche, et al., 2018), there are two ways of asking for a slot value: a slot value can be

either be provided with an utterance, which may cause speech recognition errors with some

probability, or by requiring the user to �ll in the slots by using a numeric pad. In this case,

there are no recognition errors but a counterpart risk of hang-up: we assume that manually

�lling a key-value form is time-consuming and annoying. The environment yields a reward if

all slots are �lled without errors, and a constraint if the user hang-ups. Thus, there is a clear

trade-o� between using utterances and potentially committing a mistake, or using the numeric

pad and risking a premature hang-up.

Parameter Description Value

� Sentence Error Rate 0.6
� ? Gaussian mean for misunderstanding -0.25
� > Gaussian mean for understanding 0.25
� Gaussian standard deviation 0.6
p Probability of hang up 0.25
H Trajectory duration 10
- Number of slots 3

Table 5.2 � Parameters of Slot-Filling

Two-way road In our third application, we use the highway-env environment presented in

Chapters A and 3. We de�ne a task that displays a clear trade-o� between safety and e�ciency,

illustrated in Figure 5.7. As we mentioned, the agent controls a vehicle with a �nite set A

of manoeuvres (3.2) implemented by low-level controllers. It is driving on a two-way road

populated with other tra�c participants: the vehicles in front of the agent drive slowly, and there

are incoming vehicles on the opposite lane. The parameters controlling their behaviours are

randomised, which introduces some uncertainty concerning their possible future trajectories.

The task consists in driving as fast as possible, which is modelled by a reward proportional

to the velocity: R(st ; at) / vt . This motivates the agent to try and overtake its preceding

vehicles by driving fast on the opposite lane. This optimal but overly aggressive behaviour can

be tempered through a cost function that embodies a safety objective: C(st ; at) is set to 1=H

74

5.4 Experiments

Figure 5.7 � The two-way road environment requires the vehicle to drive in the wrong lane and risk
front collisions in order to overtake slow vehicles.

whenever the ego-vehicle is driving on the opposite lane, where H is the trajectory horizon.

Thus, the constrained signal Gc is the maximum proportion of time that the agent is allowed to

drive on the wrong side of the road.

Parameter Description Value

Nv Number of other vehicles 2 - 6
� p Standard deviation of vehicles initial positions 100 m
� v Standard deviation of vehicles initial velocities 3 m s = 1

H Trajectory duration 15 s

Table 5.3 � Parameters of highway-env

5.4.2 Results

In the following �gures, each patch represents the mean and 95% con�dence interval over

Nseedsseeds of the means of(G� ; G�
c) ((G� ; G�

c) for BFTQ) over N trajs trajectories. That way, we

display the variation related to learning (and batches) rather than the variation in the execution

of the policies.

We �rst bring to light the role of risk-sensitive exploration in the corridors environment.

Figure 5.8a shows how the two strategies behave in the corridor environment: the risk-neutral

procedure focuses on high-reward corridor only, while the risk-sensitive procedure also explores

low-risk trajectories. Videos showing the data collection process are available 4. In Figure 5.8b,

we observe that this better distributed exploration translates as a uniformly better performance

across the rangeB of risk budgets. When the budget is low, the corresponding optimal

budgeted policy � ? takes the safest path on the left. When the budget increases, it gradually

switches to the other lane, earning higher rewards but also costs. This gradual process could

4https://budgeted-rl.github.io/#risk-sensitive-exploration

75

Acting under Adjustable Constraints

not be achieved with a deterministic policy as it would choose either one path or the other.

Videos illustrating these optimal policies for di�erent level of risks are available 5.

(a) State occupations for the two strategies. Left: in
the risk-sensitive batch, trajectories are well-distributed
among both corridors. Right: conversely, in the risk-
neutral batch, trajectories focus on the risky corridor (to
the right) only and ignore the safe corridor (to the left).

(b) Performances of the optimal budgeted policy � ?

trained on batches of transitions obtained by following
a risk-neutral and a risk-sensitive exploration. The risk-
sensitive procedure attains a better performance across
the whole spectrum of risk budgets.

Figure 5.8 � Comparison of two exploration strategies in the corridors environment.

Figure 5.9 � Performance comparison of FTQ(�) and BFTQon slot-�lling (left) and highway-env(right)

In a second experiment displayed in Figure 5.9, we compare the performance of FTQ(�) to

that of BFTQin the dialogue and autonomous driving tasks. For each algorithm, we plot the

reward-cost trade-o� curve. In both cases, BFTQperforms almost as well as FTQ(�) despite only

requiring a single model. All budgets are well-respected on slot-�lling , but on highway-env

we can observe an underestimation of Qc, sincee.g.E[Gcj� = 0] ' 0:1. This underestimation

can be a consequence of two approximations: the use of the sampling operator T̂ instead of

5https://budgeted-rl.github.io/#optimal-budgeted-policies-learnt-with-a-risk-sensitive-exploration

76

5.4 Experiments

the true population operator T , and the use of the neural network function approximation Q�

instead of Q. Still, BFTQprovides better control over the expected cost of the policy, than FTQ(�).

Besides,BFTQbehaves more consistently than FTQ(�) overall, as shown by its lower extra-seed

variance. Qualitatively, the budgeted agents display a variety of behaviours, shown in several

videos6. When � = 1 , the ego-vehicle drives in a very aggressive style: it immediately switches

to the opposite lane and drives as fast as possible to pass slower vehicles, swiftly changing

lanes to avoid incoming tra�c. On the contrary, when � = 0 , the ego-vehicle is conservative: it

stays on its lane and drives at a low velocity. With intermediate budgets such as � = 0 :2, the

agent sometimes decides to overtake its front vehicle but promptly steers back to its original

lane afterwards.

Discussion

Algorithm 5.2 is an algorithm for solving large unknown BMDPs with continuous states. To

the best of our knowledge, no algorithm in the current literature combines all those features.

Algorithms have been proposed for CMDPs, which are less �exible sub-problems of the

more general BMDP. When the environment parameters (P, R, C) are known but not tractable,

solutions relying on function approximation (Undurti, Geramifard, and How, 2011) or ap-

proximate linear programming (Poupart et al., 2015) have been proposed. For unknown

environments, Online algorithms (Geibel and Wysotzki, 2005; Abe et al., 2010; Achiam et al.,

2017; Chow, Ghavamzadeh, et al., 2017) and a batch algorithm (Thomas, Theocharous, and

Ghavamzadeh, 2015; Ghavamzadeh, Petrik, and Chow, 2016; Laroche, Trichelair, and Combes,

2019; Le, Voloshin, and Yue, 2019) can solve large unknown CMDPs. Nevertheless, these

approaches are limited in that the constraints thresholds are �xed before training and cannot

be updated in real-time at policy execution to select the desired level of risk.

Budgeted Markov Decision Processes algorithms To our knowledge, there were only two

ways of solving a BMDP. The �rst one is to approximate it with a �nite set of CMDPs (e.g.

see ourFTQ(�) baseline). As explained on Figure 5.6, the optimal deterministic policy can be

obtained by a line-search on the Lagrange multiplier values � . Then, according to Beutler and

K. W. Ross (1985, Theorem 4.4), the optimal policy is a randomised mixture of two deterministic

policies: the safest deterministic policy that violates the constraint � � � and the riskier of the

feasible ones� � + . SoFTQcan be easily adapted for continuous states CMDP and BMDP through

this methodology, but given the high variance, it requires many simulations to get a proper

estimate of the calibration curve. Our solution not only requires one single model but also

avoids any supplementary interaction.

6https://budgeted-rl.github.io/#driving-styles

77

Acting under Adjustable Constraints

The only other existing BMDP algorithm, and closest work to ours, is the DP algorithm

proposed by Boutilier and T. Lu (2016). However, their work was established for �nite state

spaces only, and their solution relies heavily on this property. For instance, they enumerate

and sort the next statess0 2 S by their expected value-by-cost, which could not be performed

in a continuous state spaceS. Moreover, they rely on the knowledge of the model (P, R, C),

and do not address the question of learning from interaction data.

Chapter Conclusion

Budgeted Markov Decision Processes are a principled framework for safe decision making

under uncertainty, which could be bene�cial to the di�usion of Reinforcement Learning in

industrial applications. They formulate risk as an expected cumulative cost, which can be

estimated and controlled in a model-free fashion. However, BMDPs could so far only be solved

in �nite state spaces which limits their interest for Autonomous Driving applications that

require dealing with continuous variables such as vehicle positions. We extend their scope to

continuous states by introducing a novel Dynamic Programming operator, that we build upon

to propose a Reinforcement Learning algorithm. In order to scale to large problems, we provide

an e�cient implementation that exploits the structure of the value function and leverages tools

from Deep Distributed Reinforcement Learning. We show that on two simulated tasks our

solution performs similarly to a baseline Lagrangian relaxation method while only requiring

a single model to train, and relying on an interpretable risk budget � instead of the tedious

tuning of the penalty � .

78

Part Conclusion

Review of our Requirements

Let us come back to the speci�cations of desirable properties for a behavioural planning

algorithm, that we advocated in Chapter 1. In Table 5.4, we examine whether these criteria are

met by the methods developed in Part II.

Criterion Description

Social Awareness X In Chapter 4, we introduced an attention-based Neural

Network architecture that explicitly attends to other drivers

in the scene, sorting out irrelevant vehicles from those that

represent a source of danger.

Sample E�ciency X We showed in Figure 4.4a that this architecture also comes

with an inductive bias � permutation invariance � that al-

lows to fasten the training process.

Safety X A �rst notion of risk was introduced in Chapter 5, in the

shape of a cost signalC(s; a) constrained to remain below

a threshold � , in expectation. This formulation makes it

possible to state safety speci�cations orthogonal to the tra-

ditional reward maximisation objective.

Balance between safety

and e�ciency

X The cost budget � can be adjusted in real time as an input

of the budgeted policy � to trade-o� safety with e�ciency

Table 5.4 � Do the methods of Part II comply with the speci�cations of Chapter 1?

79

Part III

Model-based

. . .et prévoir en stratège.

René Char,Feuillets d'Hypnos(72) .

Chapter 6

Planning Fast
by Hoping for the Best

Nous voulons, tant ce feu nous brûle le cerveau,

Plonger au fond du gou�re, Enfer ou Ciel, qu'importe ?

Au fond de l'Inconnu pour trouver du nouveau !

Charles Baudelaire,Le Voyage.

This third part studies model-based RL algorithms, that estimate the MDP dynamics P

so as toplan for the corresponding optimal policy. In this chapter, we focus on this planning

step under real-time requirements, which calls for provably and empirically sample-e�cient

algorithms. Since our continuous state spaceS precludes the use of Dynamic Programming,

we consider tree-based planning algorithms. First, to handle uncertain human behaviours

modelled as stochasticdynamics, we consider the OLOPalgorithm, highlight its faulty behaviour

and propose a modi�ed version that alleviates this issue. Second, we tackle a paradox: despite

the MDP transitions having a graph structure, MCTS algorithms use a tree structure that

prevents them from merging similar states. We show that doing so with a graph-based planner

better exploits the structure of motion planning problems where trajectories tend to overlap. 1

Contents
6.1 Motivation . 84

6.2 Open-loop optimistic planning . 86

6.3 Graph-based optimistic planning . 102

1This chapter is based on two articles published in the 2019 Europeanand 2020 Asian Conferences on Machine
Learning(Leurent and Maillard, 2020b; Leurent and Maillard, 2020a).

83

Planning Fast by Hoping for the Best

6.1 Motivation

In this chapter, we assume that an estimation oracleprovides us with a good estimate of the MDP

(S; A ; P; R;), and we ponder over the planning problem: how to compute the corresponding

optimal policy � ?? When state-action spaceS�A is discrete, Dynamic Programming algorithms

such as Value Iteration (Bellman, 2010) and Policy Iteration (Howard, 1960) enable to compute

an "-optimal policy with a computational complexity of O
�
jSjjAj log (" (1 �))

�
. However,

when S is continuous or large, exact DP is not feasible. Then, a popular solution to this issue is

to perform Approximate Dynamic Programming (ADP), where the value function or policy is

approximated within a given hypothesis class, at the cost of the loss of optimality.

Another option is to resort to sampling-based optimisation. This family of methods does not

require the full knowledge of the MDP parameters, but rather only assume access to a generative

model(e.g.a simulator) which yields samples of the next state s0 � P(s0js; a) and reward R(s; a)

when queried. Thus, black-box optimisation algorithms such as Cross Entropy Method (CEM)

or Covariance Matrix Adaptation Evolution Strategy (CMA-ES) can be directly applied

in the space of sequences of actions. When the action spaceA is discrete2, the sequential

nature of the optimisation problem is better exploited by MCTS algorithms, which leverage

the discrete action branching to build a look-aheadtree rooted at the current state. This online

planning strategy is illustrated in Figure 6.1. At each decision step, a look-ahead tree rooted

at the current state is progressively expanded by sampling trajectories through n calls to the

generative model, before returning a recommendation for the estimated best action ân . The

quality of recommended actions is evaluated by their simple regret

rn (ân) = V ?(s) � Q?(s; ân):

There are two main frames of analysis for planning algorithms.

ˆ In the �xed-con�dencesetting, the generative model is called for a random number of

samplesn until we can con�dently identify a near optimal-action:

P(rn (ân) � ") � 1 � �:

So-called Probably Approximately Correct (PAC) algorithms verifying this property are

then evaluated by their expected sample complexity E[n].

ˆ In the �xed-budgetsetting, the generative model can only be called a �xed number of times

n. Fixed-budget algorithms aim at minimising the expected simple regret E[rn].

2This requirement has been circumvented by the work of Coulom (2007a), Chaslot et al. (2008), Wang, Audibert,
and Rémi Munos (2009), Bu³oniu, Daniels, et al. (2013), and Bu³oniu, Páll, and Rémi Munos (2018)

84

6.1 Motivation

Figure 6.1 � Online planning with a generative model. The true interaction cycle between the agent and
the environment is depicted in blue. At each step of real interaction, a full planning cycle of simulated
trajectories is run, depicted in green.

In a real-time scenario, decisions need to be taken at a given frequency, even if this means

settling for a suboptimal action. Therefore, we will focus on the �xed-budget setting, whose

bounded computational complexity makes it more appropriate for our application.

MCTS algorithms were a breakthrough for online decision-making in MDPs, that lead to

key successes in the domain, including Computer Go (Coulom, 2007b; Silver, Hubert, et al.,

2018). They enjoy two main bene�ts: �rst, they do not require the knowledge of the MDP

parameters contrary to e.g.DP algorithms, but only the access to a generative modelthat allows

sampling trajectories from the current state. Second, the theoretical performance bounds of

MCTS algorithms are typically independent of the size of the state space S. Instead, they

depend on the maximum depth at which an optimal node in the search tree can be reached

within the allowed budget n of trajectory samples. This translates as ane�ective branching factor

in the regret bounds, related to the notion of near-optimality dimension in multi-armed bandits.

Related work Algorithms for planning with a generative model date back at least to the

seminal work of Kearns, Mansour, and Ng (2002) who proposed the Sparse Sampling algo-

rithm using a tree structure to represent the value estimate and uniform sampling of trajec-

tories. This strategy was further analysed more recently in (Feldman and Domshlak, 2014),

where the Best Recommendation with Uniform Estimation (BRUE) algorithm provides an

85

Planning Fast by Hoping for the Best

enhanced value estimation. Another family of algorithms rely on the principle of Optimism

in the Face of Uncertainty (OFU) (surveyed by Rémi Munos, 2014), inspired by the Multi-

Armed Bandits (MAB) problem. This principle was �rst used in the context of planning in

the CrazyStone software (Coulom, 2007b) for computer Go. It was later formalised with

the Upper Confidence bounds applied to Trees (UCT) algorithm (Kocsis and Szepesvári,

2006), but was shown by Coquelin and Rémi Munos (2007) to have a doubly-exponential

complexity in the worst case. The Optimistic Planning of Deterministic Systems (OPD)

algorithm introduced by Hren and Rémi Munos (2008) was the �rst to provide a polynomial

regret bound, but was limited to systems with deterministic rewards and dynamics. It was

then extended to stochastic rewards and dynamics with the Open-Loop Optimistic Planning

(OLOP)algorithm (Sébastien Bubeck and Rémi Munos, 2010), but only in the open-loopset-

ting of state-independent policies (i.e. sequences of actions), a restriction of the policy class

that causes a loss of optimality. Known stochastic transitions were handled by Bu³oniu and

Remi Munos (2012). For MDPs with stochastic and unknown transitions, polynomial sample

complexities have been obtained for Stochastic Optimistic Planning (StOP) (Szörényi,

Kedenburg, and Remi Munos, 2014), TrailBlazer (Grill, Valko, and Remi Munos, 2016) and

SmoothCruiser (Grill, Darwiche Domingues, et al., 2019), but despite their theoretical merits

these algorithms are intractable in practice: StOPrequires the expensive storage of policies,

while TrailBlazer and SmoothCruiser only terminate after a prohibitive amount of samples,

even for very small MDPs.

Contributions This chapter focuses on two questions. First, in Section 6.2, we exhibit a faulty

behaviour of the OLOPalgorithm when applied to numerical problems, and propose a modi�ed

version that addresses it, leading to improved performance with a retained guarantee. Second,

in Section 6.3 we look into how MCTS can bene�t from merging overlapping trajectories, in

order to better exploit the underlying graphical structure of the dynamics.

6.2 Open-loop optimistic planning

The goal of this section is to study the empirical performance of the OLOPalgorithm. We focus on

that algorithm for its ability to tractably handle stochastic dynamics (though in open-loop only).

Indeed, our MDP formulation of Chapter 3 involves unknown parameters in the dynamics,

such as the driving styles and destinations of other drivers. Thus, in a probabilistic modelling of

this uncertainty, a prior distribution over these unknown parameters induces a distribution over

the next state of each observed vehicle,i.e. stochastic dynamics. However, OLOPwas introduced

with a theoretical sample complexity analysis, but no experiment was carried out. We show in

our experiments that this algorithm is overly pessimistic, especially in the low-budget regime,

and we provide an intuitive explanation by casting light on an unintended e�ect that alters its

86

6.2 Open-loop optimistic planning

behaviour. We circumvent this issue by leveraging modern tools from the MAB literature to

design and analyse a modi�ed version with tighter upper-con�dence bounds called KL-OLOP.

We show that we retain the asymptotic regret bounds of OLOPwhile improving its performances

by an order of magnitude in numerical experiments.

This section is structured as follows: in Section 6.2.1, we presentOLOP, give some intuition

on its limitations, and introduce KL-OLOP, whose sample complexity is further analysed in

Sections 6.2.2 and 6.2.3, and whose empirical performance is evaluated in Section 6.2.4 in several

numerical experiments.

Notations We follow the notations from (Sébastien Bubeck and Rémi Munos, 2010) and use

the standard notations over alphabets, as described in the List of Symbols.

During the planning process, the agent iteratively selects sequences of actions until it

reaches the allowed budget of n actions. More precisely, at time t during the mth sequence, the

agent played am
1:t = am

1 � � � am
t 2 A t and receives a reward R(sm

t). We denote the probability

distribution of this reward as � (am
1:t) = P(R(sm

t ; am
t)jsm

t ; am
t)

Q t � 1
k=1 P

�
sm

k+1 jsm
k ; am

k

�
, and its

mean as� (am
1:t), where sm

1 = s1 is the current state.

De�nition 6.1 (Sequence values). We de�ne the valueV (a) of a sequence of actionsa 2 A h as

the maximum expected discounted cumulative reward one may obtain after executinga:

V (a) = sup
b2 aA 1

1X

t=1

 t � (b1:t): (6.1)

6.2.1 Kullback-Leibler Open-Loop Optimistic Planning

We present KL-OLOP, a combination of the OLOPalgorithm of (Sébastien Bubeck and Rémi

Munos, 2010) with the tighter Kullback-Leibler upper con�dence bounds from (Olivier Cappé

et al., 2013). We �rst frame both algorithms in a common structure before specifying their

implementations.

General structure First, following OLOP, the total sample budget n is split in M trajectories of

length L in the following way:

M is the largest integer such that M dlogM=(2 log 1=)e � n;

L = dlogM=(2 log 1=)e:

87

Planning Fast by Hoping for the Best

The look-ahead tree of depth L is denoted T =
P L

h=0 A h .

Then, we introduce some useful de�nitions. Consider episode 1 � m � M . For any

1 � h � L and a 2 A h , let

Na(m) =�
mX

i =1

1f ai
1:h = ag

be the number of times we played an action sequence starting with a, and Sa(m) the sum of

rewards collected at the last transition of the sequence a

Sa(m) =�
mX

i =1

R(si
h ; ai

1:h)1f ai
1:h = ag:

The empirical mean reward of a is �̂ a(m) =�
Sa(m)
Na(m)

if Na(m) > 0, and + 1 otherwise. Here,

we provide a more general form for upper and lower con�dence bounds on these empirical

means:

U �
a (m) =� max f q 2 I : Na(m)d(�̂ a(m); q) � f (m)g (6.2)

L �
a (m) =� min f q 2 I : Na(m)d(�̂ a(m); q) � f (m)g (6.3)

where I is an interval, d is a divergence on I � I ! R+ and f is a non-decreasing function. They

are left unspeci�ed for now and their particular implementations and associated properties

will be discussed in the following sections.

These upper-bounds U �
a for intermediate rewards �nally enable us to de�ne an upper

bound Ua for the value V (a) of the entire sequence of actionsa:

Ua(m) =�
hX

t=1

 t U �
a1: t

(m) +
 h+1

1 �
: (6.4)

where h +1

1� comes from upper-bounding by one every reward-to-go in the sum (6.1) , for

t � h + 1 . In (Sébastien Bubeck and Rémi Munos, 2010), there is an extra step to �sharpen the

bounds� of sequences a 2 A L by taking

Ba(m) =� inf
1� t � L

Ua1: t (m) (6.5)

The general algorithm structure is shown in Algorithm 6.1. We now discuss two speci�c

implementations that di�er in their choice of divergence d and non-decreasing function f . They

are compared in Table 6.1.

88

6.2 Open-loop optimistic planning

Algorithm 6.1: General structure for Open-Loop Optimistic Planning

1 for each episodem = 1 ; � � � ; M do
2 Compute Ua(m � 1) from (6.4) for all a 2 T
3 Compute Ba(m � 1) from (6.5) for all a 2 A L

4 Sample a sequence with highest B-value:am 2 arg maxa2A L Ba(m � 1)

5 return the most played sequencea(n) 2 arg maxa2A L Na(m)

Table 6.1 � Di�erent implementations of Algorithm 6.1 in OLOPand KL-OLOP

Algorithm OLOP KL-OLOP

Interval I R [0, 1]
Divergence d dQUAD dBER

f (m) 4 logM 2 logM + 2 log log M

OLOP

To recover the original OLOPalgorithm of Sébastien Bubeck and Rémi Munos (2010) from

Algorithm 6.1, we can use a quadratic divergence dQUADon I = R and a constant function f 4

de�ned as follows:

dQUAD(p; q) =� 2(p � q)2; f 4(m) =� 4 logM

Indeed, in this case U �
a (m) can then be explicitly computed as

U �
a (m) = max

�
q 2 R : 2(�̂ a(m) � q)2 �

4 logM
Na(m)

�
= �̂ a(m) +

s
2 logM
Na(m)

;

which is the Cherno�-Hoe�ding bound used originally in section 3.1 of (Sébastien Bubeck and

Rémi Munos, 2010).

An unintended behaviour

From the de�nition of Ua(m) as an upper-bound of the value of the sequence a, we expect

increasing sequences(a1:t)t to have non-increasing upper-bounds. Indeed, every new action at

encountered along the sequence is a potential loss of optimality. However, this property is only

true if the upper-bound de�ned in (6.2) belongs to the reward interval [0; 1].

Lemma 6.2 (Monotony of Ua(m) along a sequence).

ˆ If it holds that U �
b (m) 2 [0; 1] for all b 2 A � , then for anya 2 A L the sequence

(Ua1:h (m))1� h� L is non-increasing, and we simply haveBa(m) = Ua(m).

89

Planning Fast by Hoping for the Best

ˆ Conversely, ifU �
b (m) > 1 for all b 2 A � , then for anya 2 A L the sequence(Ua1:h (m))1� h� L

is non-decreasing, and we haveBa(m) = Ua1:1 (m).

Proof. We prove the �rst proposition, and the same reasoning applies to the second. For a 2 A L

and 1 � h � L � 1, we have by (6.4):

Ua1:h +1 (m) � Ua1:h (m) = h+1 U �
a1:h +1

(m) +
 h+2

1 �
�

 h+1

1 �

= h+1 (U �
a1:h +1

(m)
| {z }

2 [0;1]

� 1) � 0

We can conclude that (Ua1:h (m))1� h� L is non-increasing and that Ba(m) = inf 1� h� L Ua1:h (m) =

Ua1:L (m) = Ua(m).

Yet, the Cherno�-Hoe�ding bounds used in OLOPstart in the U �
a (m) > 1 regime � initially

U �
a (m) = 1 � and can remain in this regime for a long time especially in the near-optimal

branches where �̂ a(m) is close to one.

Under these circumstances, the Lemma 6.2 has a drastic e�ect on the search behaviour.

Indeed, as long as a subtree under the root veri�es U �
a (m) > 1 for every sequence a, then

all these sequences share the same B-valueBa(m) = Ua1:1 (m) . This means that OLOPcannot

di�erentiate them and exploit information from their shared history as intended, and behaves

as uniform sampling instead. Once the early depths have been explored su�ciently, OLOP

resumes its intended behaviour, but the problem is only shifted to deeper unexplored subtrees.

This consideration motivates us to leverage the recent developments in the Multi-Armed

Bandits literature, and modify the upper-con�dence bounds for the expected rewards U �
a (m)

so that they respect the reward bounds.

KL-OLOP

We propose a novel implementation of Algorithm 6.1 where we leverage the analysis of the

kl-UCB algorithm from (Olivier Cappé et al., 2013) for multi-armed bandits with general

bounded rewards. Likewise, we use the Bernoulli Kullback-Leibler divergence de�ned on the

interval I = [0 ; 1] by

dBER(p; q) =� plog
p
q

+ (1 � p) log
1 � p
1 � q

90

6.2 Open-loop optimistic planning

Figure 6.2 � The Bernoulli Kullback-Leibler divergence dBER, and the corresponding upper and lower
con�dence bounds U �

a and L �
a for the empirical average ^� a . Lower values of f (m) give tighter con�dence

bounds that hold with lower probabilities.

with, by convention, 0 log 0 = 0 log 0=0 = 0 and x logx=0 = + 1 for x > 0. This divergence and

the corresponding bounds are illustrated in Figure 6.2.

U �
a (m) and L �

a (m) can be e�ciently computed using Newton iterations, as for any p 2 [0; 1]

the function q ! dBER(p; q) is strictly convex and increasing (resp. decreasing) on the interval

[p, 1] (resp. [0, p]).

Moreover, we use the constant function f 2 : m ! 2 logM + 2 log log M . This choice is

justi�ed in the end of Section 6.2.3. Becausef 2 is lower than f 4, the Figure 6.2 shows that the

bounds are tighter and hence less conservative than that of OLOP, which should increase the

performance, provided that their associated probability of violation does not invalidate the

regret bound of OLOP.

Remark 6.3 (Upper bounds sharpening) . The introduction of the B-valuesBa(m) was made

necessary inOLOPby the use of Cherno�-Hoe�ding con�dence bounds which are not guaranteed to

belong to [0, 1]. On the contrary, we have inKL-OLOPthat U �
a (m) 2 I = [0 ; 1] by construction.

By Lemma 6.2, the upper bounds sharpening step in line 3 of Algorithm 6.1 is now super�uous as

we trivially haveBa(m) = Ua(m) for all a 2 A L .

6.2.2 Sample complexity

We say that un = ~O(vn) if there exist �; � > 0 such that un � � log(vn) � vn . Let us denote the

proportion of near-optimal nodes � 2 as

91

Planning Fast by Hoping for the Best

� 2 =� lim sup
h!1

�
�
�
�
�

(

a 2 aH : V (a) � V � 2
 h+1

1 �

) �
�
�
�
�

1=h

Theorem 6.4 (Sample complexity) . We show thatKL-OLOPenjoys the same asymptotic regret

bounds asOLOP. More precisely, for any� 0 > � 2, KL-OLOPsatis�es:

E[rn] =

8
><

>:

~O
�

n� log 1 =
log � 0

�
if

p
� 0 > 1;

~O
�
n� 1

2

�
if

p
� 0 � 1:

Proof. We provide the proof in Section 6.2.3.

We provide a time and memory e�cient implementation of OLOPand KL-OLOPin Sec-

tion C.2.1, bringing an exponential speed-up that allows scaling these algorithms to high

sample budgets.

6.2.3 Proof of Theorem 6.4

We follow step-by-step the pyramidal proof of (Sébastien Bubeck and Rémi Munos, 2010), and

adapt it to the Kullback-Leibler upper con�dence bound. The adjustments resulting from the

change of con�dence bounds are highlighted. The proofs of lemmas which are not signi�cantly

altered are listed in Section C.1.

We start by recalling their notations. Let 1 � H � L and a? 2 A L such that V (a?) = V .

Considering sequences of actions of length1 � h � H , we de�ne the subset I h of near-optimal

sequences and the subsetJ of sub-optimal sequences that were near-optimal at depth h � 1

I h =

(

a 2 A h : V � V (a) � 2
 h+1

1 �

)

; J h =
n

a 2 A h : a1:h� 1 2 I h� 1 and a 62 Ih
o

By convention, I 0 = f;g . From the de�nition of � 2, we have that for any � 0 > � 2, there exists

a constant C such that for any h � 1, jI h j � C� 0h Hence, we also havejJ h j � K jI h� 1j = O(� 0h).

Now, for 1 � m � M , a 2 A t with t � h, h0 < h , we de�ne the set Pa
h;h 0(m) of su�xes of a

in J h that have been played at least a certain number of times

Pa
h;h 0(m) =

n
b 2 aA h� t \ J h : Nb(m) � 2f (m)(h + 1) 2 2(h0� h+1) + 1

o

and the random variable

92

6.2 Open-loop optimistic planning

� a
h;h 0(m) = 1f Na(m � 1) < 2f (m)(h + 1) 2 2(h0� h+1) + 1 � Na(m)g

Lemma 6.5 (Regret and sub-optimal pulls) . The following holds true:

E[rn] �
2K H +1

1 �
+

3K
M

HX

h=1

X

a2J h

 h

1 �
Na(m)

Proof. We provide the proof in Section C.1.1.

The rest of the proof is devoted to the analysis of the term E
P

a2J h
Na(m). The next lemma

describes under which circumstances a suboptimal sequence of actions inJ h can be selected.

Lemma 6.6 (Conditions for sub-optimal pull) . Assume that at stepm + 1 we select a sub-

optimal sequenceam+1 : there exist0 � h � L; a 2 J h such thatam+1 2 aA � . Then, it implies

that one of the following propositions is true:

Ua? (m) < V; (UCB violation)

or
hX

t=1

 t L �
a1: t

(m) � V (a); (LCB violation)

or
hX

t=1

 t � U �
a1: t

(m) � L �
a1: t

(m)
�

>
 h+1

1 �
(Large CI)

Proof. As am+1
1:h = a and because the U-values are monotonically increasing along sequences

of actions (see Remark 6.3 and Lemma 6.2), we haveUa(m) � Uam +1 (m). Moreover, by

Algorithm 6.1, we have am+1 = arg max a2A L Ua(m) and a? 2 A L , soUam +1 (m) � Ua? (m) and

�nally Ua(m) � Ua? (m).

Assume that (UCB violation) is false, then

hX

t=1

 t U �
a1: t

(m) +
 h+1

1 �
= Ua(m) � Ua? (m) � V (6.6)

93

Planning Fast by Hoping for the Best

Assume that (LCB violation) is false, then

hX

t=1

 t L �
a1: t

(m) < V (a); (6.7)

By taking the di�erence (6.6) - (6.7),

hX

t=1

 t �
U �

a1: t
(m) � L �

a1: t
(m)

�
+

 h+1

1 �
> V � V (a)

But a 2 J h , soV � V (a) � 2 h +1

1� , which yields (Large CI) and concludes the proof.

In the following lemma, for each episode m we bound the probability of (UCB violation)

or (LCB violation) by a desired con�dence level � m , whose choice we postpone until the

end of this proof. For now, we simply assume that we picked a function f that satis�es

f (m) log(m)e� f (m) = O(� m). We also denote� M =
P M

m=1 � m .

Lemma 6.7 (Boundary crossing probability) . The following holds true, for any1 � h � L and

m � M ,

P((UCB violation) or (LCB violation) is true) = O((L + h)� m)

Proof. SinceV �
P h

t=1 t � (a?
1:t) + h +1

1� , we have,

P((UCB violation)) = P(Ua? (m) � V)

= P

 LX

t=1

 t U �
a?

1: t
(m) �

LX

t=1

 t � (a?
1:t)

!

� P
�
91 � t � L : U �

a?
1: t

(m) � � (a?
1:t)

�

�
LX

t=1

P
�
U �

a?
1: t

(m) � � (a?
1:t)

�

In order to bound this quantity, we reduce the question to the application of a deviation

inequality. For all 1 � t � L , we have on the event f U �
a?

1: t
(m) � � (a?

1:t)g that �̂ a?
1: t

(m) �

U �
a?

1: t
(m) � � (a?

1:t) < 1. Therefore, for all 0 < � < 1 � � (a?
1:t), by de�nition of U �

a?
1: t

(m):

d(�̂ a?
1: t

(m); U �
a?

1: t
(m) + �) >

f (m)
Na?

1: t
(m)

As d is continuous on (0; 1) � [0; 1], we have by letting � ! 0 that:

94

6.2 Open-loop optimistic planning

d(�̂ a?
1: t

(m); U �
a?

1: t
(m)) �

f (m)
Na?

1: t
(m)

Since d is non-decreasing on[�̂ a?
1: t

(m); � (a?
1:t)],

d(�̂ a?
1: t

(m); � (a?
1:t)) � d(�̂ a?

1: t
(m); U �

a?
1: t

(m)) �
f (m)

Na?
1: t

(m)

We have thus shown the following inclusion:

f U �
a?

1: t
(m) � � (a?

1:t)g �

(

� (a?
1:t) > �̂ a?

1: t
(m) and d(�̂ a?

1: t
(m); � (a?

1:t)) �
f (m)

Na?
1: t

(m)

)

Decomposing according to the values of Na?
1: t

(m) yields:

f U �
a?

1: t
(m) � � (a?

1:t)g �
m[

n=1

�
� (a?

1:t) > �̂ a?
1: t ;n and d(�̂ a?

1: t ;n ; � (a?
1:t)) �

f (m)
n

�

We now apply the deviation inequality provided in Lemma 2 of Appendix A in (Olivier

Cappé et al., 2013):8" > 1, provided that 0 < � (a?
1:t) < 1,

P

 m[

n=1

n
� (a?

1:t) > �̂ a?
1: t ;n and ndBER(�̂ a?

1: t ;n ; � (a?
1:t)) � "

o
!

� ed" logmee� " :

By choosing " = f (m), it comes

P((UCB violation)) �
LX

t=1

edf (m) log mee� f (m) = O(L� m)

The same reasoning gives: P((LCB violation)) = O(h� m).

Lemma 6.8 (Con�dence interval length and number of plays) . Let1 � h � L , a 2 J h and

0 � h0 < h . Then(Large CI) is not satis�ed if the following propositions are true:

80 � t � h0; Na1: t (m) � 2f (m)(h + 1) 2 2(t � h� 1) (6.8)

and

Na(m) � 2f (m)(h + 1) 2 2(h0� h� 1) (6.9)

95

Planning Fast by Hoping for the Best

Proof. We start by providing an explicit upper-bound for the length of the con�dence interval

U �
a1: t

� L �
a1: t

. By Pinsker's inequality:

dBER(p; q) > d QUAD(p; q)

Hence for all C > 0,

dBER(p; q) � C =) 2(q � p)2 < C =) p �
q

C=2 < q < p +
q

C=2

And thus, for all b 2 A � , by de�nition of U � and L � :

U �
b (m) � L �

b (m) �
Sb(m)
Nb(m)

+

s
f (m)

2Nb(m)
�

Sb(m)
Nb(m)

�

s
f (m)

2Nb(m)

!

=

s
2f (m)
Nb(m)

Now, assume that (6.8) and (6.9) are true. Then, we clearly have

hX

t=1

 t �
U �

a1: t
(m) � L �

a1: t
(m)

�
�

h0
X

t=1

 t

s
2f (m)

Na1: t (m)
+

hX

t= h0+1

 t

s
2f (m)

Na1: t (m)

�
1

(h + 1) � h� 1

h0
X

t=1

1 +
1

(h + 1) � h� 1

hX

t= h0+1

 t � h0

�
 h+1

h + 1

�
h0+

1 �

�
�

 h+1

1 �
:

Lemma 6.9. Let1 � h � L; a 2 J h and0 � h0 < h . Then� a
h;h 0 = 1 implies that either equation

(UCB violation) or (LCB violation) is satis�ed or the following proposition is true:

91 � t � h0 : jP a1: t
h;h 0(m)j < 2(t � h0) (6.10)

Proof. We provide the proof in Section C.1.2.

Lemma 6.10. Let1 � h � L and0 � h0 < h . Then the following holds true,

E jP ;
h;h 0(M)j = ~O

0

@ � 2h0
1h0> 0

h0
X

t=0

(2� 0)t + (� 0)h � M

1

A :

96

6.2 Open-loop optimistic planning

Proof. We provide the proof in Section C.1.3.

Lemma 6.11. Let1 � h � L . The following holds true,

E
X

a2J h

Na(m) = ~O
�
 � 2h + (� 0)h(1 + M � M + � M) + (� 0 � 2)h � M

�

Proof. We provide the proof in Section C.1.4.

Thus by combining Lemmas 6.5 and 6.11 we obtain

E[rn] = ~O
�
 H + � H M � 1 + (� 0)H M � 1(1 + M � M + � M) + (� 0)H � H M � 1� M

�

Finally,

ˆ if � 0 2 � 1, we take H = blogM=(2 log 1=)c to obtain

E[rn] = ~O
�

M � 1
2 + M � 1

2 + M � 1
2 M

log � 0

2 log 1 = � M

�

For the last term to be of the same order of the others, we need to have� M = O(M � log � 0

2 log 1 =).

Since� 0 2 � 1, we achieve this by taking � M = O(M � 1).

ˆ if � 0 2 > 1, we take H = blogM= log � 0c to obtain

E[rn] = ~O
�

M
log
log � 0 + M

log
log � 0(1 + M � M + � M) + M

log 1 =
log � 0 � M

�

Since � 0 2 > 1, the dominant term in this sum is M
log
log � 0M � M . Again, taking � M =

O(M � 1) yields the claimed bounds.

Thus, the claimed bounds are obtained in both cases as long as we can impose� M = O(M � 1),

that is, �nd a sequence (� m)1� m� M and a function f verifying:

MX

m=1

� m = O(M � 1) and f (m) log(m)e� f (m) = O(� m) (6.11)

By choosing � m = M � 2 and f (m) = 2 log M + 2 log log M , the corresponding KL-OLOP

algorithm does achieve the regret bound claimed in Theorem 6.4.

97

Planning Fast by Hoping for the Best

6.2.4 Experiments

We have performed some numerical experiments to evaluate and compare the following

planning algorithms 1:

ˆ Random: returns a random action, we use it as a minimal performance baseline.

ˆ OPD: the Optimistic Planning for Deterministic systemsfrom (Hren and Rémi Munos, 2008),

used as a baseline of optimal performance. This planner is only suited for deterministic

environments, and exploits this property to obtain faster rates. However, it is expected to

fail in stochastic environments.

ˆ OLOP: as described in Section 6.2.1.2

ˆ KL-OLOP: as described in Section 6.2.1.2

ˆ KL-OLOP(1): an aggressive version of KL-OLOPwhere we used f 1(m) = log M instead of

f 2(m). This threshold function makes the upper bounds even tighter, at the cost of an

increased probability of violation. Hence, we expect this solution to be more e�cient in

close-to-deterministic environments. However, since we have no theoretical guarantee

concerning its regret as we do with KL-OLOP, it might not be conservative enough and

converge too early to a suboptimal sequence, especially in highly stochastic environments.

They are evaluated on the following tasks, using a discount factor of = 0 :8:

ˆ A highway driving environment (Leurent, 2018): a vehicle is driving on a road ran-

domly populated with other slower drivers, and must make their way as fast as possible

while avoiding collisions by choosing on the the following actions: change-lane-left ,

change-lane-right , no-op, faster , slower .

ˆ A gridworld environment (Chevalier-Boisvert, Willems, and Pal, 2018): the agent navi-

gates in a randomly-generated gridworld composed of either empty cells, terminal lava

cells, and goal cells where a reward of 1 is collected at the �rst visit.

ˆ A stochastic version of the gridworld environment with noisy rewards, where the noise

is modelled as a Bernoulli distribution with a 15% probability of error, i.e. receiving a

reward of 1 in an empty cell or 0 in a goal cell.

The results of our experiments are shown in Figure 6.3. The OPDalgorithm converges

very quickly to the optimal return in the two �rst environments, shown in Figure 6.3a and

Figure 6.3b, because it exploits their deterministic nature: it needs neither to estimate the

rewards through upper-con�dence bounds nor to sample whole sequences all the way from

1The source code is available at https://eleurent.github.io/kl-olop/.
2Note that we use the lazy version of OLOPand KL-OLOPpresented in Section C.2.1, otherwise the exponential

running-time would have been prohibitive.

98

6.2 Open-loop optimistic planning

(a) Highway

(b) Gridworld (c) Stochastic Gridworld

Figure 6.3 � Numerical experiments: for each environment-agent con�guration, we compute the average
return over 100 runs � along with its 95% con�dence interval � with respect to the available budget n.

99

Planning Fast by Hoping for the Best

Figure 6.4 � The look-ahead trees (down to depth 6) expanded by the planning algorithms from the
same initial state in the highway environment with the same budget n = 103. The width of edges
represents the nodes visit count Na(m).

100

6.2 Open-loop optimistic planning

the root when expanding a leaf, which provides a signi�cant speed-up. It can be seen as

an oracle allowing to measure the conservativeness of stochastic planning algorithms. And

indeed, even before introducing stochasticity, we can see that OLOPperforms quite badly on the

two environments, only managing to solve them with a budget in the order of 103:5. In stark

contrast, KL-OLOPmakes much better use of its samples and reaches the same performance an

order of magnitude faster. This is illustrated by the expanded trees shown in Figure 6.4: OPD

exploits the deterministic setting and produces a sparse tree densely concentrated around the

optimal trajectory. Conversely, the tree developed by OLOPis evenly balanced, which suggests

that OLOPbehaves as uniform planning as hypothesised in Line 5. KL-OLOPis more e�cient

and expands a highly unbalanced tree, exploring the same regions as OPD. Furthermore, in the

stochastic gridworld environment shown in Figure 6.3c, we observe that the deterministic OPD

planner's performance saturates as it settles to suboptimal trajectories, as expected. Conversely,

the stochastic planners all �nd better-performing open-loop policies, which justi�es the need

for this framework. Again, KL-OLOPconverges an order of magnitude faster than OLOP. Finally,

KL-OLOP(1) enjoys good performance overall and displays the most satisfying trade-o� between

aggressiveness in deterministic environments and conservativeness in stochastic environments;

hence we recommend this tuning for practical use.

6.2.5 On a closed-loop algorithm

We brie�y mention an extension of KL-OLOPto closed-loop policies, in the setting where

the transitions have a �nite support of size B < 1 . The algorithm, named MDP Gap-based

Estimation (MDPGapE), was developed as part of a collaboration (Jonsson et al., 2020) and

analysed in the �xed-con�dence setting.

It relies on estimating con�dence sets Ct on the probability vector p(�js; a)

Ct (s; a) =�
�

p 2 � S : KL
�
bpt (�js; a); p

�
�

� p(nt (s; a); n)
nt (s; a)

�
;

and forming recursive upper and lower con�dence bounds in the form

Uh(s) = max
a2A

"

ut (s; a) + max
q2Ct (s;a)

X

s0

q(s0js; a)Uh+1 (s0)

#

;

L h(s) = max
a2A

"

` t (s; a) + min
q2Ct (s;a)

X

s0

q(s0js; a)L h+1 (s0)

#

:

101

Planning Fast by Hoping for the Best

6.3 Graph-based optimistic planning

The goal of this section is to address a limitation of MCTS algorithms: they rely on a tree

structure that �despite its simplicity� does not allow to merge information across states. That is, if a

states can be reached via two trajectories, it will be represented twice in the look-ahead tree.

For instance, in Figure 6.5 (left), two paths lead to the same state represented in orange. MCTS

algorithms do not merge the information of the two trajectories to update a shared estimate of

the state value.

Related work The idea of merging information between branches of a search tree appears in

(Silver, Hubert, et al., 2018), where the state values are approximated with a shared Neural

Network. However, this network is merely updated between two planning instances and not

during the planning procedure itself. Another work of interest is that of Hostetler, A. Fern, and

Dietterich (2014), who propose to partition the state space S into a smaller set Y of equivalence

classes. By aggregating similar states within a class, they reduce the branching factor of the

search tree from jSjjAj to jYjjAj , which substantially improves sample complexity as they

illustrate empirically. However, this procedure requires providing a relevant state partition,

only aggregates trajectories that traverse the same sequence of classes (i.e. local deformations),

and comes with a (bounded) loss of optimality. The closest work to ours is that of Ballesteros

et al. (2013), in the context of partially observable MDPs, who identify similar belief states and

plan with a graph structure. They focus on empirically comparing various similarity measures

on robotic tasks and do not provide any theoretical analysis of the e�ect of aggregation. This is

precisely our goal and contribution here.

In this section, we introduce a planning algorithm named GBOP-D, a graph-based version

of the tree-based OPDalgorithm for deterministic systems. We analyse the bene�ts of this

graph-based formulation in Section 6.3.2, and provide in Theorem 6.27 a regret guarantee. The

corresponding regret bound features a novel problem-dependent di�culty measure that we

introduce to capture the bene�t of using a graph structure. We show that this measure can only

improve over the performance of OPD, and provide an example where it does. We discuss in

Section 6.3.3 an extension of our method to stochastic MDPs, calledGBOP. Finally, Section 6.3.4

illustrates the bene�ts of GBOPin two numerical simulations.

6.3.1 Graph-Based Planning for Deterministic Systems

In this section, we introduce a simple yet highly e�ective variant of tree-based planning al-

gorithms. We �rst consider the simple setting of MDPs with deterministic dynamics, and

will denote P(s; a) the unique next state s0sampled from P (s0js; a). We start by giving some

background on the interplay of data structures and optimistic planning algorithms.

102

6.3 Graph-based optimistic planning

Figure 6.5 � Black arrows depict how the Bellman backup operators Bn (left) and Bn (right) propagate
value estimates from successor nodes to their parents. Information travels freely in a graph, but only
upwards in a tree.

Data structures

In this section, we compare two data structures for planning in an MDP: tree and (directed)

graph, represented in Figure 6.5. In order to distinguish them, we refer to trees with Roman

symbols, e.g. T; U; L; B ; and to graphs with calligraphic symbols, e.g. G; U; L ; B. In both

structures, we say that a node is internal if it has outgoing edges, and externalelse.

In a tree, a node of depth h represents a sequence of actionsa 2 A h . The root of the tree

corresponds to the empty action sequence, and hence to the initial states1 2 S. At iteration

n, we denote the current tree as Tn . Borrowing notations from topology, we denote its set of

internal nodes as �Tn and its set of external nodes (the leaves) as @T n . Note that since the MDP

is deterministic, a sequence of actiona is associated with its �nal state denoted s(a), but this

association is not one-to-one: several sequences of action can lead to the same state, which will

be represented several times in the tree.

In a graph, the nodes represent statess 2 S, and the edges represent transitions between

states. Thesourceof the graph corresponds to the initial state s0. At iteration n, we denote the

current graph as Gn , its set of internal nodes as �Gn and its set of sinksas@Gn .

Both structures are built iteratively from a single starting node, by selecting an external

node (leaf or sink) to expand. The expansionof a node a or s refers to calling the generative

model to sample the reward r and next state s0 for each action a 2 A , and adding child nodes

to the data structure. In a tree, the expansion of a node a 2 A h always lead to the creation of

new leaves that represent the su�x sequence of action ab2 A h+1 ; b 2 A . The maximum depth

of an expanded node in Tn is denoted dn . In contrast, in a graph the next state s0 reached from

103

Planning Fast by Hoping for the Best

s; a might already be present in Gn , in which case we add the edge between s and s0without

creating a new node. These data structures can be used to store information about the MDP,

such as the transitions and rewards r (s; a), or other information useful for planning.

Optimistic planning

A planning algorithm is typically composed of two main rules:

(i) A sampling rule, that selects promising transitions to simulate at each iteration n;

(ii) A recommendation rule, that recommends a good �rst action ân to take (in s1).

These rules can be chosen with the goal of minimising the simple regret rn . A popular

approach is to follow the principle of Optimism in the Face of Uncertainty (OFU) (see Rémi

Munos, 2014), which consists in exploring the option that maximises an upper-bound of the

true objective. In the context of planning, it has been applied by forming bounds on the state

value function V ?, that we simply denote V for brevity.

De�nition 6.12 (Value bounds) .

On trees. We denote byL : Tn ! R andU : Tn ! R a lower-bound and upper-bound for the

state valueV de�ned on the treeTn , such that

8a 2 Tn ; L (a) � V (s(a)) � U(a):

On graphs. Likewise, we denote byL : Gn ! R and U : Gn ! R a lower-bound and

upper-bound for the state valueV de�ned on the graphGn , such that

8s 2 Gn ; L (s) � V (s) � U (s):

Following the OFU principle, at iteration n we must leverage available information to design

an upper-bound Un (or Un) on V as tight as possible. Then, in order to select a promising

external node to expand, the sampling rule starts from the root (or source) and follows the

optimistic strategy of always selecting the action which maximises Un (or Un), until reaching

an optimistic leaf (or sink) to expand. This strategy was used in (e.g. Kocsis and Szepesvári,

2006; Hren and Rémi Munos, 2008; Sébastien Bubeck and Rémi Munos, 2010; Bu³oniu and

Remi Munos, 2012).

For instance, since we assume that the rewards are bounded in [0, 1], trivial bounds on

V(s) are 0 � V (s) � Vmax =�
P

t t 1 = 1=(1 �). However, these trivial bounds are the same

for every node, which makes them non-informative, and do not make use of the observed

104

6.3 Graph-based optimistic planning

Figure 6.6 � Illustration of the Bellman backup operators B (left) and B (right). Notice that Bn only
propagates information upward in the tree.

information. Still, they can be used as a valid starting point. Every observed transition stored

can then be used to tighten these bounds, by resorting to the Bellman optimality operator.

De�nition 6.13 (Bellman optimality operator) .

On trees. We de�ne the Bellman optimality operatorBn on the treeTn as

Bn (f)(a) =�
8
<

:

maxb2A R(s(a); b) + f (ab) if a 2 �Tn ;

f (a) if a 2 @T n .
(6.12)

On graphs. Likewise, we de�ne the Bellman optimality operatorBn on the graphGn as

Bn (f)(s) =�
8
<

:

maxb2A R(s; b) + f (P(s; b)) if s 2 �Gn ;

f (s) if s 2 @Gn .
(6.13)

The updates of both Bellman operators are depicted in Figure 6.6.

Hren and Rémi Munos (2008) used this Bellman operator Bn in their OPDalgorithm to

de�ne a pair of bounds (L n ; Un) at each iteration n. They use trivial bounds at the leaves, and

backup these estimates up to the root by iteratively applying Bn . We can show that, under

a monotonicitycondition (satis�ed by the trivial bounds 0 and Vmax), applying Bn can only

tighten a bound and converges in a �nite time.

105

Planning Fast by Hoping for the Best

De�nition 6.14 (Monotonicity) . A pair of bounds (L , U) or (L ; U) is monotonic if they are

respectively non-decreasing and non-increasing along transitions:

8a 2 Tn ; L (a) � Bn (L)(a); U(a) � Bn (U)(a)

8s 2 �Gn ; L (s) � B n (L)(s); U(s) � B n (U)(s)

Lemma 6.15(Properties of Bn) .

(i) Bn preserves monotonicity and tightens monotonic bounds:

if L � V � U, thenL � Bn (L) � V � Bn (U) � U;

(ii) The sequenceB k
n = Bn � � � � � Bn| {z }

k times

converges in a �nite timek = dn , wheredn is the depth of

Tn .

Proof. We provide a proof in Section C.1.5.

This enables Hren and Rémi Munos (2008) to de�ne 3 non-trivial valid bounds on V :

L n =� B dn
n (0); Un =� B dn

n (Vmax); (6.14)

where 0 is the null function. The corresponding OPDalgorithm is described in Algorithm 6.2.

Likewise, we show that the graph version Bn veri�es similar properties.

Lemma 6.16(Properties of Bn) .

(i) Bn preserves monotonicity and tightens monotonic bounds:

if L � V � U , thenL � B n (L) � V � B n (U) � U ;

(ii) B is a -contraction, and we denoteB1
n =� lim k!1 Bk

n .

Proof. We provide a proof in Section C.1.6.

3We use an iteration of operators while a recursive de�nition was used originally.

106

6.3 Graph-based optimistic planning

Algorithm 6.2: The Optimistic Planning of Deterministic Systems(OPD) algorithm from
(Hren and Rémi Munos, 2008).

1 for each iterationn do
2 Compute the bounds L n = B dn

n (0) and Un = B dn
n (Vmax).

3 bn ;
4 while the nodebn 2 �Tn is internal do
5 bn arg max

a02 bn A
r (a0) + U n (a0) . Optimistic sampling rule

6 for actiona 2 A do . Node expansion
7 Simulate r r (s(bn); a) and s0 P(s(bn); a).
8 Add a new leaf bna to Tn+1 , with associated reward r .

9 return arg max
a2A

r (s; a) + L n (a). . Conservative recommendation rule

10

This motivates us to propose Algorithm 6.3, following the approach of Algorithm 6.2

adapted to a graph structure.

Algorithm 6.3: Our proposed Graph-Based Optimistic Planning for Deterministic systems
(GBOP-D) algorithm.

1 for each iterationn do
33 Compute the bounds L n = B1

n (0) and Un = B1
n (Vmax).

4 sn s1

5 while the nodesn 2 �Gn is internal do
77 sn arg max

s0
r (sn ; a) + Un (s0) . Optimistic sampling rule

8 for actiona 2 A do . Node expansion
9 Simulate r r (sn ; a) and s0 P(sn ; a).

10 Get or create the nodes0 in Gn+1 , and add the transition (sn ; a) ! s0; r .

11 return arg max
a2A

R(s; a) + L n (s(a)) . . Conservative recommendation rule

Remark 6.17 (Termination and complexity) . There are two procedures inGBOP-Dthat may not

terminate in �nite time whenGn contains a loop: the computation ofB1
n (line 1) and the sampling

rule loop (line 2). We handle these steps carefully in Section C.2.2, where we discuss an approximate

implementation in which these two procedures are stopped whenever they reach a desired accuracy" ,

along with an analysis of the corresponding time complexity and impact on the performance.

Though both algorithms share a similar design, we claim that using graphs provides

substantial theoretical and practical performance improvements, and back up this statement in

Sections 6.3.2 and 6.3.4.

107

Planning Fast by Hoping for the Best

6.3.2 Analysis

Comparing OPDand GBOP-Ddirectly is di�cult since they do not involve the same structure,

which causes implicit di�erences in their behaviours. Studying them under a common frame-

work makes these di�erences explicit. To leverage the analysis of OPDby Hren and Rémi Munos

(2008), we will frame GBOP-Das a tree-based planning algorithm: the graph operator B will be

represented as tree backupB applied on an unrolledtree T(Gn), de�ned below.

Background on the sample complexity of OPD

First, we recall the analysis of Hren and Rémi Munos (2008) and introduce some notations.

Lemma 6.18 (Sequence values). The value of a �nitesequenceof actionsa 2 A h , de�ned in

De�nition 6.1, veri�es

V (a) = G(s1; a) + hV(s(a)) ;

whereG(s; a) =
P h� 1

t=0 t r t is the return obtained by executing the sequence of actionsa starting

from the states.

Proof. We provide a proof in Section C.1.7.

This enables to de�ne a measure of the di�culty of a planning problem.

De�nition 6.19 (Di�culty measure) . We de�ne the near-optimal branching factor� of an MDP

as

� = lim sup
h!1

jT 1
h j1=h 2 [1; K] (6.15)

whereT 1
h =

(

a 2 A h : V ? � V (a) �
 h

1 �

)

is the set of near-optimal nodes at depthh.

This problem-dependent measure � is the branching factor of the subtree T1 =
S

h T1
h of

near-optimal nodes that can be sampled by OPD, and acts as an e�ective branching factor as

opposed to the true branching factor K . When � is small, fewer nodes must be explored at

a given depth allowing the algorithm to plan deeper for a given budget n. Thus, it directly

impacts the simple regret that can be achieved by OPDwhen run on a given MDP.

108

6.3 Graph-based optimistic planning

Theorem 6.20 (Regret bound of Hren and Rémi Munos, 2008) . The Algorithm 6.2 enjoys the

following regret bound:

rn = ~O
�
n� log 1

 =log �
�

;

wheref n = ~O(n� �) means that for any� 0 < � , f n = O(n� � 0
), for all � 2 R+ [f + 1g .

Proof. We provide a proof in Section C.1.8.

The near-optimal branching factor � is related (Sébastien Bubeck and Rémi Munos, 2010) to

the near-optimality dimension studied in the online optimisation literature (see e.g. Sébastien

Bubeck et al., 2009; Rémi Munos, 2011). It is typically small in problems where there is one

single optimal trajectory, of which any deviation can be quickly dismissed as suboptimal.

Conversely, � is large when many sub-optimal trajectories cannot be distinguished easily based

on their values, which requires the exploration of a large part of the tree T of branching factor

K .

Motivation for an improved regret bound

We start by reformulating the sampling rule used for the OPDalgorithm. To that end, notice that

when some bounds (L; U) on the state valuesV (s(a)) are available, they also induce bounds

(L; U) on values V (a) of sequences of actionsa of length h de�ned as

R(s1; a) + hL(a)
| {z }

L (a)

� V (a) � R(s1; a) + hU(a)
| {z }

U(a)

:

One can easily see that, since the(L n ; Un) used in the optimistic sampling rule described in

Algorithm 6.2 are invariant by Bn by de�nition, this rule can be equivalently expressed as

bn 2 arg max
a2 @T n

Un (a): (6.16)

Likewise, the conservative recommendation rule returns the �rst action of

an 2 arg max
a2 @T n

L n (a) (6.17)

As shown in Figure 6.6, in a tree the Bellman operator Bn only propagates the information

upward, and the leaves cannot be updated. Thus, Un = B dn
n (Vmax) and Vmax coincide on @T n

which means that the sampling rule of OPDcan be summarized as using (6.16) with the trivial

109

Planning Fast by Hoping for the Best

upper-bound Un = Vmax . Likewise, the recommendation rule simply uses (6.17) with the

trivial lower-bound L n = 0 . Thus, OPDamounts to simply using the trivial bound (0; Vmax)

on leaf nodes, and does not make use of all the available information in Tn to improve these

bounds.

Let us now assume for the moment that we had access to tighter bounds (L; U) provided

by an oracle:

0 � L � V � U � Vmax :

De�nition 6.21 (A �ner di�culty measure) . We de�ne the near-optimal branching factor

according to the bounds (L; U) as

� (L; U) =� lim sup
h!1

�
�T 1

h (L; U)
�
�1=h 2 (1; K]; (6.18)

whereT 1
h (L; U) =

n
a 2 A h : V ? � V (a) � h(U(a) � L (a))

o
:

Lemma 6.22. This branching factor shrinks as the bounds(L; U) get tighter:

L 2 � L 1 � V � U1 � U2 =) � (L 1; U1) � � (L 2; U2):

In particular, � (L; U) � � .

Proof. We provide a proof in Section C.1.9.

Theorem 6.23. Let L � V � U monotonic bounds, then planning withL andU in (6.16) and

(6.17) yields the following simple regret bound:

rn = ~O
�
n� log 1

 =log � (L;U)
�

:

Proof. We provide a proof in Section C.1.10.

This theorem states that we can potentially improve the performance of the planning

algorithm if we manage to �nd bounds (L; U) that are tighter than the trivial ones at the leaves

@Tn , which may be possible if we have already seen the states corresponding to this leaves, but

it does not explain how to obtain such bounds. In the next subsection, we describe a method

to build a sequence of increasingly tight bounds (L n ; Un), at each planning iteration n. The

corresponding regret bound, our main result, is stated in Theorem 6.27.

110

6.3 Graph-based optimistic planning

Unrolling the tree to tighten the bounds

In order to reproduce the behaviour of Algorithm 6.3 on a tree structure, we rely on the following

observation: expanding a node s in Gn simultaneously expands all the paths leading to this

node. To account for this observation in the analysis, we will consider an unrolling operator T

that builds a potentially in�nite tree T(Gn) containing every sequence of actions that can be

traversed in a graph Gn .

T(Gn) = f a 2 A h : st+1 2 Gn with st+1 = P(st ; at) for 0 � t < h g (6.19)

Figure 6.7 � The tree T(Gn) obtained by unrolling Gn . Contrary to Tn shown in Figure 6.5, the red leaf
a is expanded at the same time as the internal red node, which enables to tighten its value bounds
(L n (a); Un (a)) by applying Bn .

We analyseGBOP-Dthough the prism of T(Gn), which is only used as a theoretical tool.

We can de�ne the counterpart of the bounds (L n ; Un) in the same way as (6.14) applied to

T(Gn) rather than Tn , except that the depth dn of T(Gn) can now be in�nite:

L n = B 1
n (0); Un = B 1

n (Vmax): (6.20)

This de�nition is equivalent to that of GBOP-Din the sense that

Lemma 6.24 (Bound equivalence) . For any sequence of actiona 2 T(Gn), we haveL n (a) =

L n (s(a)) andUn (a) = Un (s(a)) .

111

Planning Fast by Hoping for the Best

Proof. We provide a proof in Section C.1.11.

In T(Gn), the unrolling mechanics behave as if any leaf a sharing the same states(a) as an

internal node a0was automatically expanded, and thus had its bound L n (a); Un (a) tightened

by the Bellman backup Bn to a sub-interval of the trivial bounds (0; Vmax) that are used in OPD.

The sampling and recommendation rules of GBOP-Dalso amount to running those of OPD

on the tree T(Gn), except that the sampled sequencebn and recommended sequencean can

now have in�nite depth since T(Gn) itself can be in�nite (we say that an and bn are represented

by nodes of in�nite depth). In the sequel, we analyse how these rules behave on T(Gn).

Lemma 6.25(Expansion) . Any nodea of depthh traversed by the optimistic sampling rule of

GBOP-Dat iterationn belongs toT1
h (L n ; Un):

V ? � V (a) � h(Un (a) � L n (a)) : (6.21)

In particular, if the sampling rule samples an in�nite sequencea 2 A 1 , it is an optimal sequence,

and we write that(6.3) also holds fora with h = 1 .

Proof. We provide a proof in Section C.1.12.

Lemma 6.26(Recommendation) . The actionan recommended byGBOP-Dhas a simple regret

rn � dn

1� , wheredn 2 R [f1g is the maximal depth of expanded nodes inT(Gn).

Proof. We provide a proof in Section C.1.13.

Note that even though T(Gn) can be in�nite, there is only one node bt that is selected for

expansion at each iteration t � n.

Regret guarantee

In Theorem 6.23, we assumed that some bounds(L; U) were revealed by an oracle and available

from the onset for planning. In (6.20), we instead built a sequenceof bounds (L n ; Un)n� 0 (6.20)

that is non-increasing in the sense of inclusion, i.e.

0 � � � � � L n� 1 � L n � V � Un � Un� 1 � � � � � Vmax :

112

6.3 Graph-based optimistic planning

We can consider the sequence� n = � (L n ; Un). It is non-increasing and lower-bounded by

1, thus converges. Let � 1 = lim n !1 � (L n ; Un) 2 [1; K].

Theorem 6.27. GBOP-Denjoys the following regret bound, with� 1 � � :

rn = ~O
�
n� log 1

 =log � 1
�

:

Proof. We provide a proof in Section C.1.14.

Intuitively, � 1 should be much lower than � in problems where trajectories overlap a lot.

For instance, it will be the case for problems where two actions cancel each other out (e.g.

moving left or right), or are commutative (e.g.placing pawns on a board game). However,

this is merely an intuition. We now show that there exist problem instances in which � 1 < � ,

which is a legitimate concern since their non-existence would make Theorem 6.27 trivial.

Illustrative example

In Proposition 6.28, we consider a toy MDP M shown in Figure 6.8. The transitions are

described visually while the rewards are de�ned as follows: let 0 � r ? � , and r � = r ? �
1� S,

r + = r ? + S with S = r ?
�

1
 � 1

�
: Note that this choice ensures that r ?; r � ; r + and S are all in

[0; 1].

Figure 6.8 � A toy MDP with three states and K � 2 actions. We start in the top state. The �rst action a1

is represented by green arrows, and all other actions a2; : : : ; aK are represented by orange arrows. The
rewards are shown next to the transitions.

Proposition 6.28 (Branching factors) . The MDPM veri�es � = K � 1 and� 1 = 1 .

Proof. We provide a proof in Section C.1.15.

113

Planning Fast by Hoping for the Best

This result con�rms that Theorem 6.27 is non-trivial since we exhibit a problem for which

� 1 < � (when K � 3), and legitimates our attempt to improve planning performances by

merging the tree into a graph.

6.3.3 Extension to Stochastic Systems

The approach developed in Sections 6.3.1 and 6.3.2 consists in using state similarity to tighten a

pair of lower and upper bounds (L; U) for the value function V . Thus, any planning algorithm

that is based on such bounds can bene�t from this insight, and any theoretical result based on

the validity and rate of convergence of these bounds will be preserved.

Con�dence intervals for rewards. When the reward kernel P (r j s; a) is stochastic4, devia-

tion inequalities can be used to design a con�dence interval [` t (s; a); ut (s; a)] over its expected

value E [r js; a]. For instance, the Cherno�-Hoe�ding deviation inequality was used to design

con�dence intervals in (Kocsis and Szepesvári, 2006; Sébastien Bubeck and Rémi Munos, 2010;

Kaufmann and Koolen, 2017). In our recent works (Leurent and Maillard, 2020b; Jonsson et al.,

2020), the tighter Kullback-Leibler con�dence interval is preferred:

ut (s; a) =� max
�

v : kl
�
r̂ t (s; a); v

�
�

� r (nt (s; a); n)
nt (s; a)

�
;

` t (s; a) =� min
�

v : kl
�
r̂ t (s; a); v

�
�

� r (nt (s; a); n)
nt (s; a)

�
;

where r̂ t (s; a) is the sample mean, � r is an exploration function and kl(u; v) is the binary

Kullback-Leibler divergence between Bernoulli distributions: kl(u; v) = u log u
v +(1 � u) log 1� u

1� v .

Con�dence region for transitions. Likewise, when the transition kernel P (s0 j s; a) is stochas-

tic, a con�dence set on the probability vector p(�js; a) can be de�ned as

Ct (s; a) =�
�

p 2 � S : KL
�
bpt (�js; a); p

�
�

� p(nt (s; a); n)
nt (s; a)

�
;

where bpt (�js; a) =� nt (s; a; �)=nt (s; a) is the empirical distribution, � S is the probability simplex

over S, � p is an exploration function and KL(p; q) =
P

s2 S p(s) log p(s)
q(s) is the Kullback-Leibler

divergence between categorical distributions.

Bellman operator with stochasticity. In this section, we do not discuss the tuning of � r , � p,

but simply assume that they are chosen such that the rewards and transitions belong to their

4We assumed known deterministic rewards until now, since it is typically chosen by the autonomous vehicle
designer.

114

6.3 Graph-based optimistic planning

con�dence regions with su�ciently high probability to obtain performance guarantees for the

planning algorithm. For more details on such a choice, refer to Section 6.2.1 or (e.g. Jonsson

et al., 2020). We modify the De�nition 6.13 of the Bellman operator on graphs Bt as

B+
t (U)(s) = max

a2A

"

ut (s; a) + max
q2Ct (s;a)

X

s0

q(s0js; a)U(s0)

#

;

B�
t (L)(s) = max

a2A

"

` t (s; a) + min
q2Ct (s;a)

X

s0

q(s0js; a)L (s0)

#

;

for all s 2 �Gn , where the maximum and minimum over these Kullback-Leibler con�dence

regions Ct (s; a) can be computed as explained in (Appendix A of Filippi, O. Cappé, and A.

Garivier, 2010). Under the event that every con�dence regions [` t (s; a); ut (s; a)] and Ct (s; a)

are valid at time t, the Lemma 6.16 still holds for B�
t ; B+

t .

Structure of the planning algorithm In the deterministic setting, once a transition has been

observed, it is known with certainty and does not need to be sampled ever again, which is

why only external nodes @Gn are sampled in GBOP-D. Conversely, in the stochastic setting,

the expected reward and transition probabilities must be estimated from samples, which

implies that internal nodes �Gn must be sampled as well. Then, it is common to adopt an

episodic standpoint where we sample trajectories of a �xed horizon H , tuned depending on

the budget n. This is the case in (e.g. Kearns, Mansour, and Ng, 2002; Kocsis and Szepesvári,

2006; Sébastien Bubeck and Rémi Munos, 2010; Feldman and Domshlak, 2014; Leurent and

Maillard, 2020b; Jonsson et al., 2020). We also follow this scheme in our proposed Algorithm 6.4

algorithm.

Algorithm 6.4: Graph-Based Optimistic Planning(GBOP) algorithm.

1 for trajectorym in [1; M] do
2 for time t in [1; H] do
3 n (m � 1)H + h.
4 Compute the bounds L n = (B�

n)1 (0) and Un = (B+
n)1 (Vmax).

5 bt arg max
a2A

r (st ; a) + Un (s0) . Optimistic sampling rule

6 Simulate r t ; st+1 � P (r; s t+1 j st ; bt).
7 Get or create the nodest+1 in Gn+1 , and add an occurence of the transition

(st ; bt ; r t ; st+1).

8 return arg max
a2A

r (s; a) + L n (s(a)) . . Conservative recommendation rule

115

Planning Fast by Hoping for the Best

6.3.4 Numerical Experiments

To evaluate the practical bene�ts of our approach, we compare graph-based and tree-based

planning algorithms in various problems.

Figure 6.9 � State occupancies of tree-basedvs. graph-based algorithms in a deterministic gridworld.

Parameters. In every experiment, we used = 0 :95. In GBOP-Dand GBOP, the �xed accuracy

" = 1 � 10� 2 was used for computing B1
n , and the sampling rule was stopped after reaching

the depth d+
n = n (see Section C.2.2). Regarding the tuning of con�dence intervals in GBOP,

since the rewards are deterministic and the transitions are stochastic in both domains we

used � r (nt (s; a); n) = 0 and � p(nt (s; a); n) = log n, following the observations of Section 6.2.1.

The maximal size B of the support of the transitions P (s0js; a) was also used (B = 4 in the

gridworld domain and B = 3 in the sailing domain) to accelerate the computations of the

con�dence region Ct for transitions, as explained in (Jonsson et al., 2020).

Gridworld domain. We consider a grid in which the agent can move in K = 4 directions.

The reward function is 0 everywhere, except in the vicinity of a goal located at (10; 10), around

which the reward decreases quadratically from 1 to 0 in a ball of radius 5. The Figure 6.9 shows

number of times a state is sampled by OPDand GBOP-D, both run with a budget n = 5460 and

discount = 0 :95. In the absence of rewards, OPDsamples sequences of actions uniformly

(in a breadth-�rst search manner), which �because of the dynamics structure� results in a

non-uniform occupancy of the state space S, where the trajectories concentrate near the starting

state. In contrast,GBOP-Dexplores uniformly in S, sampling each state up to four times (from its

four neighbours), until it �nds the goal vicinity and �nally samples the goal location inde�nitely.

We reproduce the experiment in the stochastic setting by adding noise on the transitions with

probability p = 10%, and comparing GBOPto UCTas we show in Figure 6.10. To quantify

116

6.3 Graph-based optimistic planning

Figure 6.10 � State occupancies of tree-basedvs. graph-based algorithms in a stochastic gridworld.

these qualitative di�erences, we de�ne in Figure 6.11a an exploration score: the mean distance

d(st ; s1) of sampled states to the initial state (exploration) minus the distance d(st ; sg) to the

goal state (exploitation).

Sailing domain (Vanderbei, 1996). In a second experiment, a boat is sailing in K = 8 di-

rections to reach a goal, and su�ers a cost (move duration) that depends on the direction of

the wind which follows stochastic dynamics. Figure 6.11b shows the evolution of the simple

regret rn of stochastic planning algorithms with respect to the number n of oracle calls. We

show the mean regret and its 95% con�dence interval computed over 500 simulations. The

asymptotic log-log slope � provides an empirical measurement of the e�ective branching factor

� e = exp(� log(1=)=�) for each algorithm. We measure that for n > 103:5, � � � 0:04 and

� e � 3:6 for BRUE, KL-OLOP, MDPGapE, UCT. In contrast, we measure � � � 0:3 and � e � 1:2 for

GBOP, which suggests that our result of Theorem 6.27 might generalize to the stochastic setting.

In Figure 6.12, we compare the treesTn expanded by OPDand KL-OLOPto the unrolled graph

T(Gn) of GBOP-Din the deterministic gridworld domain. For clarity of the �gure, we only display

the nodes selected for expansion and not the entire T(Gn) as in Figure 6.7, since it is in�nite

and fractal. We observe that OPDexplores uniformly in the space of sequences, which results

117

Planning Fast by Hoping for the Best

(a) Exploration score in the gridworld domain for several
algorithms.

(b) Mean simple regret r n in the sailing domain, with
its 95%con�dence interval.

Figure 6.11 � Benchmark of planning performances.

in a concentrated exploration in the state space, as seen in Figure 6.9. This phenomenon is

similar to the concentration properties of martingales. KL-OLOPbehaves similarly, but allocates

its budget n in fewer trajectories of higher length than OPD, which results in a sparser tree and

slightly better exploration (compare Figure 6.9 to Figure 6.10). In contrast, GBOP-Dexpands a

very sparse and unbalanced treeT(Gn) which corresponds to uniform exploration in the state

space, and allows to explore deeper for the same budget n (The tree is only shown up to depth

12, but continues much deeper since the optimal transition is sampled inde�nitely once it is

discovered). In particular, the paths towards the goal are sampled many times, while other

algorithms are still balanced at the root in terms of number of visits.

Chapter conclusion

In this chapter, we studied the theoretical and practical performances of planning algorithms,

that can be used to compute a near-optimal trajectory for a known stochastic non-linear system.

We �rst introduced an enhanced version of the OLOPalgorithm for open-loop online planning,

whose design was motivated by an investigation of the over-conservative search behaviours

of OLOP. We analysed its sample complexity and showed that the original regret bounds are

preserved, while its empirical performances are increased by an order of magnitude in several

numerical experiments. Second, we studied the value of merging information between similar

states during planning. We showed that using a graph structure provides a bene�t compared to

tree structures in the deterministic setting, in the form of an improved regret bound that depends

on a smaller problem di�culty. This improvement translates into enhanced performance in

practice, and can be adapted to stochastic problems as we demonstrate experimentally.

118

6.3 Graph-based optimistic planning

Figure 6.12 � Trees expanded by OPD, by KL-OLOP, and sequences of actions sampled byGBOP-D. The
width of edges is proportional to the number of visits.

119

Chapter 7

Preparing for the Worst

Two roads diverged in a wood, and I�

I took the one less traveled by,

And that has made all the di�erence.

Robert Frost, The Road Not Taken.

Model-based algorithms often assume a certainty equivalenceto decouple estimation and

control: they use a point estimate P̂ of the dynamics as if it was the true value. Unfortunately,

this model biascan signi�cantly degrade the performances. In this chapter, we address this issue

by resorting to robustdecision-making: instead of a mere point estimate, we build a con�dence

regionthat contains the true dynamics P with high probability, and consider the worst-case

outcome with respect to this uncertainty. We propose an integrated framework leveraging

non-asymptotic linear regression, interval prediction and tree-based planning to achieve robust

stabilisation and minimax control with generic costs; along with an end-to-end analysis. 1

Contents
7.1 Motivation . 122

7.2 Con�dent model estimation . 129

7.3 State interval prediction . 130

7.4 Robust stabilisation and constraint satisfaction 148

7.5 Minimax control with generic costs . 157

7.6 Multi-model selection . 161

7.7 Experiments . 164

1This chapter is based on three articles published in the 2019 and 2020 Conferences on Decision and Controland
the 2020 Conference on Neural Information Processing Systems(Leurent, Denis E�mov, Raissi, et al., 2019; Leurent,
Denis E�mov, and Maillard, 2020b; Leurent, Denis E�mov, and Maillard, 2020a).

121

Preparing for the Worst

7.1 Motivation

Remark 7.1 (Change of notations) . So far, we borrowed notations from the Reinforcement

Learning community to describe statess 2 S, actionsa 2 A and transitionsst+1 = P(st+1 j st ; at).

In this chapter, we change conventions and switch to notations from the Control community, which

are better suited to describe continuous-time dynamics: states are denoted asx(t), controls asu(t),

and dynamics as_x(t) = f (x(t); u(t)) . The system dynamics are described in continuous time, but

sensing and control are performed in discrete time with time-stepdt > 0. For any variablez, we

use subscript to refer to these discrete times:zn = z(tn) with tn = ndt andn 2 N. We use bold

symbols to denote temporal sequencesz = (zn)n2 N.

Model bias Despite the recent successes of Reinforcement Learning (e.g. Mnih et al., 2015;

Silver, Hubert, et al., 2018), it has hardly been applied in real industrial issues. This could be

attributed to two undesirable properties which limit its practical applications. First, it depends

on a tremendous amount of interaction data that cannot always be simulated. This issue can be

alleviated by model-based methods � which we consider in this part � that often bene�t from

better sample e�ciencies than their model-free counterparts. Second, it relies on trial-and-error

and random exploration, which is unacceptable in a critical setting where mistakes are costly

and must be avoided at all times.

Since experiencing failures is out of the question, the only way to prevent them from the

outset is to rely on some sort of prior knowledge. In this chapter, we assume that the system

dynamics are partially known, in the form of di�erential equation with unknown parameters

and inputs. More precisely,

Assumption 7.2 (Structure I) . We consider a dynamical system with statex 2 Rp, acted on by

controlsu 2 Rq and perturbations! 2 Rr , with dynamics in the form

_x(t) = f � (x(t); u(t); ! (t)) ;

where the dynamics structuref : � ! f � is known , and the parameter vector� belongs to a known

compact set� � Rd.

We argue that this structure assumption is realistic given that most industrial applications to date

have been relying on physical models to describe their processes and well-engineered controllers

to operate them, rather than machine learning. Our framework relaxes this modelling e�ort by

allowing some structured uncertaintyaround the nominal model.

122

7.1 Motivation

We adopt a data-driven scheme to estimate the parameters � more accurately as we inter-

act with the true system. Most model-based reinforcement learning algorithms rely on the

estimated dynamics �̂ to derive the corresponding optimal controls (e.g. I. Lenz, Knepper,

and Saxena, 2015; Levine, Finn, et al., 2016), but su�er from model bias: they ignore the error

between the learned and true dynamics, which can dramatically degrade control performances

(Doyle, 1978; Schneider, 1997).

(a) Optimal control (RL) operates near constraint
saturation which produces risky behaviours.

(b) As a result, model bias easily causes accidents
when predictions are slightly wrong (here by less
than half a meter).

Figure 7.1 � Illustration of the issue of model bias when merging into a roundabout. 2

In particular, this is likely to happen when maximising an objective under constraints, which

naturally pushes the system to operate in the vicinity of constraint saturation and makes it

prone to failure. For instance, consider the task of merging into a roundabout with �owing

tra�c, where the agent is rewarded for driving fast while avoiding collision, as de�ned in (3.6) .

This formulation is almost equivalent to the problem of maximising speed under a collision-free

constraint. When planning with the oracle (true) dynamics, an optimal policy will generally

operate as close as possible to the system constraints,i.e. it will brushother vehicles, resulting

in dangerous behaviours as shown in Figure 7.1a. Consequently, when the model predictions

are slightly wrong, collisions will happen, as shown in Figure 7.1b. In short, there is no such

thing as continuity of the optimal policy with respect to the underlying dynamics, especially

when the reward function is sharp. A reward-engineering solution to this issue would be to

modify the reward function R(s; a) to include a notion of safety distance, that the agent would

be penalised for not respecting. However, this would require a tedious tuning of the penalty

for the possible location and speed of every vehicle nearby, and would not generalise to other

situations. In contrast, in this thesis we would rather specify a reward function as simple and

straightforward as possible �avoid collisions�, and wish to see the notion of safety distance

2An illustrative video is also available at https://www.youtube.com/embed/8khqd3BJo0A?start=3&end=39.

123

Preparing for the Worst

emergeas a by-product of safe decision-making with respect to our uncertainty of other vehicles'

behaviours.

Figure 7.2 � The model estimation procedure. The con�dence region C[N];� shrinks with the number of
samplesN .

Embracing model ambiguity To address the issue of model bias, we turn to the framework

of robustdecision-making: At time step N 2 N, instead of merely considering a point estimate

of the dynamics, the control scheme needs to rely on an entire con�dence regionC[N];� , illustrated

in Figure 7.2, that contains the true dynamics parameters with high probability:

P
�
� 2 C[N];�

�
� 1 � �; (7.1)

where � 2 (0; 1] is the con�dence level. In order to derive an explicit form for this con�dence

region C[N];� , additional assumptions need to be taken regarding the relation between the state

transition _x and its parameter � . Out of the various hypothesis classes that could represent

f � , we require one that provides con�dence regions for regression. Thus, we make a �rst

assumption that f � is linearly dependent on � , so as to leverage the statistical tools developed

for non-asymptotic linear regression.

Assumption 7.3 (Structure II) . We assume thatf � takes the form

_x(t) = � (x(t); u(t); ! (t)) � + (x(t); u(t); ! (t)) ;

124

7.1 Motivation

where� and are known functions that depend onx(t); u(t); ! (t) but not � .

In Section 7.2, having observed a history D [N] = f (xn ; yn ; un)gn2 [N] of transitions, our �rst

contribution extends the work of Abbasi-Yadkori, Pál, and Szepesvári (2011), who provide a

con�dence ellipsoid for the least-square estimator, to our setting of feature matrices rather than

feature vectors.

Figure 7.3 � The state prediction procedure. At each time step, we bound the set of reachable states x(t)
(in green) under model uncertainty C[N];� inside the interval [x(t); x(t)] (in red).

Propagation of uncertainty In order to inform the controls, the uncertainty C[N];� about the

dynamics needs to be propagated to the induced trajectories. To that end, we wish to derive an

interval predictor [x(t); x(t)] which takes the information on the current state xN , the con�dence

region C[N];� , a planned control sequenceu and admissible perturbation bounds [! (t); ! (t)];

and veri�es the inclusion propertyillustrated in Figure 7.3:

x(t) � x(t) � x(t); 8t � tN : (7.2)

Yet, in order to obtain a closed-form for [x(t); x(t)], we need to know how the uncertainty over

x(t) can a�ect that of the next state x(t + dt), which requires further specifying the shape of

the features � and . Again, we make an assumption that � and are linearly dependent on

the statesx(t), controls u(t) and perturbations ! (t), so as to draw on the theory of interval

observers for linear systems. Thus, in this chapter we will consider a dynamical system in the

following form.

125

Preparing for the Worst

Assumption 7.4 (Structure III) . There exists a known feature tensor� 2 Rd� p� p such that for

all � 2 � ,

_x(t) = A(�)x(t) + Bu(t) + D! (t); t � 0; (7.3)

with

A(�) = A +
dX

i =1

� i � i ; (7.4)

whereA; � 1; : : : ; � d 2 Rp� p are known.

For all n, we denote � n = [� 1xn : : : � dxn] 2 Rp� d. The control matrix B 2 Rp� q and

disturbance matrix D 2 Rp� r are known. We also assume access to the observation ofx(t) and

to a noisy measurement of _x(t) in the form

y(t) = _x(t) + C� (t); (7.5)

where � (t) 2 Rs is a measurement noise andC 2 Rp� s is known. Assumptions over the

disturbance ! and noise � will be detailed further, and we denote � (t) = C� (t) + D! (t).

In Section 7.3, as a second contribution, we derive an interval predictor[x(t); x(t)] for the

system (7.3), and analyse its stability.

Robust stabilisation and constraint satisfaction As a third contribution and �rst application,

we consider the problem of robustly stabilising the system (7.3) at a vicinity of the origin under

parametric uncertainty and bounded perturbations, while also ensuring that

x(t) 2 X; u(t) 2 U 8t � 0; (7.6)

where [x0; x0] � X � Rp and U � Rq are given bounded constraint sets for the state and the

control, respectively. In Section 7.4, we introduce a Dual-MPC scheme that achieves this result

by relying on a stabilising control for the predicted intervals [x(t); x(t)].

Minimax control beyond quadratic costs Yet, many tasks cannot be framed as stabilisation

problems (e.g. obstacle avoidance). To achieve more �exible goals, these tasks can be bet-

ter formulated with the minimax control objective(Ben-Tal, El Ghaoui, and Nemirovski, 2009;

Bertsimas, Brown, and Caramanis, 2011; Gorissen, Yan�ko§lu, and den Hertog, 2015), that we

consider as a second application. This objective aims to maximise the worst-case return V r

126

7.1 Motivation

with respect to the con�dence region C[N];� and admissible perturbations

sup
u2 (Rq)N

inf
� 2C[N];�

! 2 [! ;!]N

2

4
1X

n= N +1

 nR(xn (u; !))

3

5

| {z }
V r (u)

; (7.7)

where xn (u; !) is the state reached at stepn under controls u and perturbations ! within the

given admissible bounds [! (t); ! (t)], and R is an arbitrary bounded reward function. This

choice of rich reward space is crucial to have su�cient �exibility to model non-convex and

non-smooth functions that naturally arise in many practical problems involving combinatorial

optimisation, branching decisions, etc., while quadratic costs are mostly suited for tracking a

�xed reference trajectory (e.g. Vinodh Kumar and Jerome, 2013).

Unfortunately, minimax problems such as (7.7) are already notoriously hard when the

reward R has a simple form. Without a restriction on the shape of functions R, solving the

optimal � not to mention the robust � control objective is intractable and we cannot hope to

derive an explicit solution. Thus, in Section 7.5we propose a robust MPC algorithm for solving

(7.7) numerically. Facing a sequential decision problem with continuous states, we turn to the

literature of tree-based planning algorithms studied in Chapter 6. However, these techniques

are designed for a single known generative model rather than a con�dence region for the

system dynamics. We adapt them to the robust objective (7.7) by approximating it with a

tractable surrogate V̂ r that exploits the interval predictions [x(t); x(t)] to de�ne a pessimistic

reward R. In our main result, we show that the best surrogate performance achieved during

planning is guaranteed to be attained on the true system, and provide an upper bound for the

approximation gap and simple regret of our framework in Theorem 7.30. This is our fourth

contribution and the �rst result of this kind for minimax control with generic costs to the best

of our knowledge.

Multi-model extension In Section 7.6, our �fth contribution extends the proposed frame-

work to consider multiple modelling assumptions, while narrowing uncertainty through data-

driven model rejection, and still ensuring safety via robust model-selection during planning.

Numerical experiments Finally, in Section 7.7 we demonstrate the applicability of our ap-

proach in two numerical experiments: a simple illustrative example and a more challenging

simulation for safe autonomous driving on highway-env .

127

Preparing for the Worst

7.1.1 Related Work

The control of uncertain systems is a long-standing problem, to which a vast body of literature

is dedicated. Existing work is mostly concerned with the problem of stabilisationaround a �xed

reference state or trajectory, including approaches such asH 1 control (Basar and Bernhard,

1996), sliding-mode control (X. -Y. Lu and Spurgeon, 1997) or system-level synthesis (Dean

et al., 2019; Dean et al., 2018). This chapter �ts in the popular MPC framework, for which

adaptive data-driven schemes have been developed to deal with model uncertainty (Sastry,

Bodson, and Bartram, 1990; Tanaskovic et al., 2014; Amos et al., 2018), but lack guarantees.

The family of tube-MPC algorithms seeks to derive theoretical guarantees of robust constraint

satisfaction: as in Section 7.4, the statex and control u are constrained in a safe regionX � U

around the origin, often chosen convex (Fukushima, Kim, and Sugie, 2007; Adetola and Guay,

2008; Aswani et al., 2013; Turchetta, Berkenkamp, and Krause, 2016; Lorenzen, Allgöwer, and

Cannon, 2017; Köhler et al., 2019; X. Lu and Cannon, 2019). Our work in Section 7.4 mainly

di�ers in that it relies on intervals rather than zonotopes, for simplicity of implementation and

computational e�ciency.

Moreover, as we argue previously, many tasks cannot be framed as stabilisation problems

(e.g.obstacle avoidance) and are better addressed with the minimax control objective, which

can allow more �exible goal formulations. Minimax control has mostly been studied in two

particular instances.

Finite states Minimax control of �nite Markov Decision Processes with uncertain parameters

was studied in (Iyengar, 2005; Nilim and El Ghaoui, 2005; Wiesemann, Kuhn, and Rustem,

2013), who showed that the main results of Dynamic Programming can be extended to their

robust counterparts only when the dynamics ambiguity set veri�es a certain rectangularity

property. Since we consider continuous states, these methods do not apply.

Linear dynamics and quadratic costs Several approaches have been proposed for cumulative

regret minimisation in the LQ problem. In the OFU paradigm, the best possible dynamics

within a high-con�dence region is selected under a controllability constraint, to compute the

corresponding optimal control in closed-form by solving a Riccati equation. The results of

(Abbasi-Yadkori and Szepesvári, 2011; Ibrahimi, Javanmard, and B. V. Roy, 2012; Faradonbeh,

Tewari, and Michailidis, 2020) show that this procedure achieves a ~O
�
N 1=2

�
regret. Posterior

sampling algorithms (Ouyang, Gagrani, and Jain, 2017; Abeille and Lazaric, 2018) select

candidate dynamics randomly instead, and obtain the same result. Other works use noise

injection for exploration, such as (Dean et al., 2019; Dean et al., 2018). However, neither

optimism nor random exploration �ts a critical setting, where ensuring safety requires instead

to consider pessimistic outcomes. The work of Dean et al. (2019) is close to our setting: after an

128

7.2 Con�dent model estimation

o�ine estimation phase, they estimate a simple regret between a minimax controller and the

optimal performance. Our work di�ers in that it addresses a generic shape cost. Another work

of interest is that of Rosolia and Borrelli (2019) where worst-case generic costs are considered.

However, they assume knowledge of the dynamics, and their rollout-based solution only

produces inner-approximations and does not yield any guarantee. In this chapter, interval

prediction is used to produce oversets, while a near-optimal control is found using a tree-based

planning procedure.

7.2 Con�dent model estimation

The goal of this section is to derive a con�dence region (7.1) for the parameters � of the

dynamics (7.3).

We abuse notations and de�ne a virtual measurement signal, still denoted y(t), that includes

additional known terms

y(t) = _x(t) + C� (t) � Ax (t) � Bu(t);

to obtain a linear regression system yn = � n � + � n :

Regularised least square To derive an estimate on � , we consider the weighted L 2-regularised

regression problem with weights � p 2 Rp� p and parameter � 2 R+
� :

min
� 2 Rd

NX

n=1

kyn � � n � k2
� � 1

p
+ � k� k2: (7.8)

The solution can be obtained as:

Proposition 7.5 (Regularised solution) . The solution to(7.8) is

� N;� =� G� 1
N;�

NX

n=1

� T
n � � 1

p yn ; (7.9)

where GN;� =�
NX

n=1

� T
n � � 1

p � n + �I d 2 Rd� d: (7.10)

Proof. We provide a proof in Section D.1.1.

129

Preparing for the Worst

Substituting yn into (7.9) yields the regression error

� N;� � � = G� 1
N;�

NX

n=1

� T
n � � 1

p � n � �G � 1
N;� �: (7.11)

To bound this error, we need the noise � n to concentrate. We assume that

Assumption 7.6 (Bounded disturbance) . At each timet � 0, the disturbance! (t) is enclosed by

known signals! (t) � ! (t) � ! (t), whose amplitude veri�es
P 1

n=0 nC! (tn) < 1 , where

C! (t) =� sup
� 2 [0;t]

k! (�) � ! (�)k2:

Assumption 7.7 (Sub-Gaussian observations). At each timet � 0, the combined noise� (t) is an

independent sub-Gaussian noise with covariance proxy� p 2 Rp� p:

8u 2 Rp; E [exp (uT � (t))] � exp
�

1
2

uT � pu
�

:

Under these assumptions, we can derive a con�dence ellipsoid for � .

Theorem 7.8 (Con�dence ellipsoid, a matricial version of Abbasi-Yadkori, Pál, and

Szepesvári, 2011). Under Assumption 7.7, it holds with probability at least1 � � that

k� N;� � � kGN;� � � N (�); (7.12)

with

� N (�) =�

vu
u
t 2 log

det(GN;�)1=2

� det(�I d)1=2

!

+ (�d)1=2k� k1 : (7.13)

Proof. We provide a proof in Section D.1.2.

7.3 State interval prediction

In this section, we view our dynamics (7.3) of Assumption 7.4 as an instance of the more general

context of the Linear Parameter-Varying (LPV) representation of the dynamics (J.S. Shamma,

2012; Marcos and Balas, 2004; J. Shamma and Cloutier, 1993; Tan, 1997)

_x(t) = A(� (t))x(t) + Bu(t) + D! (t); t � 0; (7.14)

130

7.3 State interval prediction

where the (known) matrix function A : � ! Rn� n is only locally bounded (continuous) and

does not have to be linear in � , and where unknown parameters � (t) are free to evolve within

the known set of admissible values � , � 2 L d
1 .

Moreover, we assume that Assumption 7.6 is veri�ed, such that the input ! (t) belongs to a

known bounded interval [! (t); ! (t)] for all t 2 R+ , which is the standard hypothesis for interval

estimation (D. E�mov and Raïssi, 2016; Raïssi and D. E�mov, 2018). We also suppose in the

following Assumption 7.9 that the system (7.14) generates stable trajectories with a bounded

statex for the applied class of inputs u(t); ! (t), and the initial conditions x(0) are constrained

to belong to a given interval [x0; x0].

Assumption 7.9 (Bounded state) . In the system(7.14), x 2 L n
1 .

In addition,x(0) 2 [x0; x0] for some knownx0; x0 2 Rn .

Note that since the function A and the set � are known, and � 2 � , then there exist matrices

A; A 2 Rp� p, which can be easily computed, such that

A � A(�) � A; 8� 2 � :

The objective of this section is to design an interval predictorfor the system (7.14), which

takes the information on the initial conditions [x0; x0], the admissible bounds on the values of

the exogenous input [! (t); ! (t)], the information about A(�) and � (e.g.the matrices A; A, but

not the instant value of � (t)) and generates bounded interval estimates x(t); x(t) 2 Rp such that

x(t) � x(t) � x(t); 8t � 0: (7.2)

In the presence of uncertainty (unknown parameters � or/and external disturbances ! (t))

the design of a conventional estimator or predictor, approaching the ideal value of the state,

can be realised under restrictive assumptions only. However, an interval estimation/prediction

remains frequently feasible: using input-output information an algorithm evaluates the set of

admissible values (interval) for the state at each instant of time (D. E�mov and Raïssi, 2016;

Raïssi and D. E�mov, 2018). The interval length must be minimised via a parametric tuning of

the system, and it is typically proportional to the size of the model uncertainty (Chebotarev

et al., 2015). It is worth stressing that the interval estimation or prediction is not a relaxation of

the original problem, in fact it is an improvement since the interval mean value can be used

as the state pointwise estimate, while the interval bounds provide a simultaneous accuracy

evaluation for given uncertainty.

There are many approaches to design interval/set-membership estimators and predictors

(Jaulin, 2002; Kie�er and Walter, 2004; Olivier Bernard and J. -L. Gouzé, 2004; Moisan, O.

131

Preparing for the Worst

Bernard, and J. Gouzé, 2009), and this section focuses on the design based on the monotone

systems theory (Olivier Bernard and J. -L. Gouzé, 2004; Moisan, O. Bernard, and J. Gouzé,

2009; Raïssi, Videau, and Zolghadri, 2010; Raïssi, D. E�mov, and Zolghadri, 2012; D. E�mov,

L.M. Fridman, et al., 2012). In such a way the main di�culty for synthesis consists in ensuring

cooperativity of the interval error dynamics by a proper design of the algorithm. As it has been

shown in (Mazenc and O. Bernard, 2011; Raïssi, D. E�mov, and Zolghadri, 2012; Combastel,

2013), such a complexity of the design can be handled by applying an additional transformation

of coordinates, which maps a stable system into a stable and monotone one. An approach

for selection of a constant similarity transformation matrix representing a given interval of

matrices to an interval of Metzler matrices (providing monotonicity) has been developed in

(D. E�mov, Raïssi, Chebotarev, et al., 2013a; Chebotarev et al., 2015).

When designing a predictor, the main di�culty to overcome is the predictor stability, which

contrarily to an observer cannot be imposed by a proper design of the gains. An interval

inclusion of the uncertain components can be restrictive and transform an initially stable system

to an unstable one. In other words, an important problem is to keep the interval predictor

stability in the presence of uncertainties and saving the interval inclusion property of the

estimates, then an unstable system can de�nitely enclose the trajectories of a stable one, but

at the price of precision. To solve this problem, �rst, a generic predictor is proposed for an

LPV system, whose estimates can be combined with the interval frequency-based estimator

presented earlier. To analyse the stability of the predictor, which is modelled by a nonlinear

Lipschitz dynamics, a novel non-conservative Lyapunov function is developed, whose features

can be veri�ed through solution of linear matrix inequalities (LMIs). Second, we revisit the case

of Linear Time-Invariant (LTI) models and demonstrate an asymptotic accuracy improvement

that can be achieved if a piece of additional information about external signals is given: the

admissible interval of frequency spectrum. Finally, the utility of the developed theory is

demonstrated with a safe motion planning application on highway-env .

The section is organised as follows: in Section 7.3.1, we start by giving an introduction to

the theory of interval estimation for LTI systems, before considering a motivating example. An

improved interval predictor is presented in Section 7.3.2. The asymptotic accuracy is enhanced

using frequency-based estimation in Section 7.3.3. Application of the developed theory to the

problem of path planning for an autonomous vehicle is shown in Section 7.3.4.

7.3.1 Preliminaries

We �rst give some background on interval arithmetic and nonnegative systems, before consid-

ering a motivating example.

132

7.3 State interval prediction

Interval arithmetic

Lemma 7.10(D. E�mov, L.M. Fridman, et al., 2012) . Letx 2 Rn be a vector variable,x � x � x

for somex; x 2 Rn .

(1) If A 2 Rm� n is a constant matrix, then

A+ x � A � x � Ax � A+ x � A � x: (7.15)

(2) If A 2 Rm� n is a matrix variable andA � A � A for someA; A 2 Rm� n , then

A+ x+ � A+ x � � A � x+ + A � x � � Ax � A+ x+ � A+ x � � A � x+ + A � x � : (7.16)

Furthermore, if � A = A � 0 � A, then the inequality (7.16) can be simpli�ed:

� A(x+ + x �) � Ax � A(x+ + x �):

Nonnegative systems

De�nition 7.11 (Hurwitz) . A matrix A 2 Rn� n is calledHurwitz if all its eigenvalues have

negative real parts.

De�nition 7.12 (Metzler) . A matrix A 2 Rn� n is calledMetzler if all its elements outside the

main diagonal are nonnegative.

Any solution of the LTI system

_x(t) = Ax (t) + Bu(t) + D! (t); t � 0; (7.17)

y(t) = Cx(t) + E! (t);

with x(t) 2 Rn , y(t) 2 Rp and a Metzler matrix A 2 Rp� p, is elementwise nonnegative for all

t � 0 provided that x(0) � 0, u : R+ ! Rq
+ , ! : R+ ! Rr

+ and B 2 Rp� q
+ , D 2 Rp� r

+ (Farina

and Rinaldi, 2000; Smith, 1995). The output solution y(t) is nonnegative if C 2 Rs� p
+ and

E 2 Rs� r
+ . Such dynamical systems are called cooperative (monotone) or nonnegative if only

initial conditions in Rn
+ are considered (Farina and Rinaldi, 2000; Smith, 1995).

133

Preparing for the Worst

Lemma 7.13(Raïssi, D. E�mov, and Zolghadri, 2012) . Given the matricesA 2 Rp� p, Y 2

Rp� p andC 2 Rs� p. If there is a matrixL 2 Rp� s such that the matricesA � LC andY have the

same eigenvalues, then there is a matrixS 2 Rp� p such thatY = S(A � LC)S� 1 provided that

the pairs(A � LC; � 1) and(Y; � 2) are observable for some� 1 2 R1� p, � 2 2 R1� p.

This result allows to represent the system (7.17) in its nonnegative form via a similarity

transformation of coordinates.

Lemma 7.14(D. E�mov, Raïssi, Chebotarev, et al., 2013a). Let D 2 � � Rp� p be a matrix

variable satisfying the interval constraints� = f D 2 Rp� p : Da � � � D � Da + � g for some

D T
a = Da 2 Rp� p and� 2 Rp� p

+ . If for some constant� 2 R+ and a diagonal matrix� 2 Rp� p

the Metzler matrixY = �E p� p � � has the same eigenvalues as the matrixDa, then there is an

orthogonal matrixS 2 Rp� p such that the matricesSTDS are Metzler for allD 2 � provided that

� > p jj � jjmax .

In the last lemma, the existence of similarity transformation is proven for an interval of

matrices, e.g. in the case of LPV dynamics.

A motivating example

Following the result of Lemma 7.10, there is a straightforward solution to the problem:

Proposition 7.15. Let Assumptions 7.6 and 7.9 be satis�ed for the system(7.14), then the interval

predictor

_x(t) = A+ x+ (t) � A+ x � (t) � A � x+ (t) + A � x � (t) + Bu(t) + D + ! (t) � D � ! (t);

_x(t) = A+ x+ (t) � A+ x � (t) � A � x+ (t) + A � x � (t) + Bu(t) + D + ! (t) � D � ! (t);

with x(0) = x0; x(0) = x0;

(7.18)

ensures the inclusion property(7.2) .

Proof. The relations (7.2) can easily be obtained by recursively applying Lemma 7.10 at each

time step.

Unfortunately, the stability analysis of the system (7.18) is more tricky. Indeed, (7.18) is a

purely nonlinear system (since x+ , x � , x+ and x � are globally Lipschitz functions of the state

134

7.3 State interval prediction

Figure 7.4 � The results of prediction by (7.18): even in such a simplistic setting, the predictor is unstable
and diverges quickly.

x and x), whose robust stability with respect to the bounded external inputs ! and ! can be

assessed if a suitable Lyapunov function is found. And it is easy to �nd an example, where the

matrices A and A are stable, but the system (7.18) is not:

Example (motivating) . Consider a scalar system

_x(t) = � � (t)x(t) + ! (t); t � 0;

where x(t) 2 R with x(0) 2 [x0; x0] = [1 :0; 1:1], � (t) 2 � = [� ; �] = [0 :5; 1:5] and ! (t) 2

[! ; !] = [� 0:1; 0:1] for all t � 0. Obviously, Assumptions 7.6 and 7.9 are satis�ed, and this

uncertain dynamics produces bounded trajectories (to prove this consider a Lyapunov function

V (x) = x2). Then the interval predictor (7.18) takes the form

_x(t) = � � x+ (t) + � x � (t) + ! ;

_x(t) = � � x+ (t) + �x � (t) + !:

The results of simulation are shown in Figure 7.4. As we can conclude, additional consideration

and design are needed to properly solve the posed problem.

7.3.2 Interval predictor design

Note that, in related papers (Ait Rami, Cheng, and Prada, 2008; Raïssi, Videau, and Zolghadri,

2010; Bolajraf, Rami, and Helmke, 2011; D. E�mov, Raïssi, Chebotarev, et al., 2013a; D. E�mov,

Raïssi, and Zolghadri, 2013; Chebotarev et al., 2015), various interval observers for LPV systems

have been proposed, but in those works the cooperativity and stability of the estimation error

dynamics are ensured by a proper selection of observer gains and/or by design of control

135

Preparing for the Worst

algorithms, which can be dependent on x, x and guarantee the observer robust stability. For an

interval predictor there is no such a freedom, and a careful selection of hypotheses has to be

made in order to provide a desired solution. We will additionally assume the following:

Assumption 7.16. There exist a matrixA0 2 Rp� p and matrices� A i 2 Rp� p, i 2 [M] for some

M 2 N+ such that the following relations are satis�ed for all� 2 � :

A(�) = A0 +
MX

i =1

� i (�)� A i ;

MX

i =1

� i (�) = 1; � i (�) 2 [0; 1]; i 2 [M]:

Therefore, it is assumed that the matrix A(�) for any � 2 � can be embedded in a polytope

de�ned by M known vertices � A i with the given centre A0.

To connect this assumption to the results obtained from model estimation in previous

section, we can enclose the con�dence ellipsoid C[N];� on � obtained from (7.12) at time t = tN

into a polytope P on A(�). For simplicity, we present here a simple but coarse strategy: bound

the ellipsoid by its enclosing sphere, and then the sphere by its enclosing hypercube. We obtain

P =

(

AN +
MX

i =1

� i � AN;i : � � 0;
MX

i =1

� i = 1

)

; (7.19)

where

AN = A + � T
N;� �; M = 2 d

� AN;i =

s
� N (�)

� max (GN;�)
hi

> �; h i 2 f� 1; 1gd:

Another strategy presented in Section D.2 produces a much tighter polytope, at the price of an

increased computational cost required by the diagonalisation of GN;� .

In the rest of this section, we will temporarily consider that N is �xed and consider the

interval prediction problem for t � tN . For simplicity of notations, we will keep denoting AN

and � AN;i asA0 and �A i , and tN = 0 .

For the given centre A0 to admit useful properties of nonnegative systems, we will further

require that it is Metzler. More precisely, according to the results of Lemmas 7.13 and 7.14,

this can be imposed by applying a properly designed similarity transformation, which maps a

matrix (interval of matrices) to a Metzler one. Design of such a transformation is not considered

in this chapter, and we will just suppose the following:

136

7.3 State interval prediction

Assumption 7.17. There exists a nonsingular matrixZ 2 Rp� p such thatZ � 1A0Z is Metzler.

In practice, this assumption is often veri�ed. It is for instance the case whenever A0 is

diagonalizable, or a method from (D. E�mov, Raïssi, Chebotarev, et al., 2013b) computes a

similarity transformation Z when the system is observable with respect to a scalar output. To

simplify the notation, we further assume that Z = I p so that the system (7.14) has already been

put in the right form:

_x(t) = [A0 +
MX

i =1

� i (� (t))� A i]x(t) + Bu(t) + D! (t):

Denote

� A+ =
MX

i =1

� A+
i ; � A � =

MX

i =1

� A �
i ;

then the following interval predictor can be designed:

Theorem 7.18. Let Assumptions 7.6, 7.9, 7.16 and 7.17 be satis�ed for the system(7.14), then an

interval predictor

_x(t) = A0x(t) � � A+ x � (t) � � A � x+ (t) + Bu(t) + D + ! (t) � D � ! (t);

_x(t) = A0x(t) + � A+ x+ (t) + � A � x � (t) + Bu(t) + D + ! (t) � D � ! (t);

with x(0) = x0; x(0) = x0

(7.20)

ensures the inclusion property(7.2) . If there exist diagonal matricesP, Q, Q+ , Q� , Z+ , Z � , 	 + ,

	 � , 	 , � 2 R2p� 2p such that the following LMIs are satis�ed:

P + min f Z+ ; Z � g > 0; � � 0; � > 0;

Q + min f Q+ ; Q� g + 2 min f 	 + ; 	 � g > 0;

where

� =

2

6
6
6
6
6
4

� 11 � 12 � 13 P

� >
12 � 22 � 23 Z+

� >
13 � >

23 � 33 Z �

P Z+ Z � � �

3

7
7
7
7
7
5

;

� 11 = A > P + PA + Q; � 12 = A > Z+ + PR+ + 	 + ;

137

Preparing for the Worst

� 13 = A > Z � + PR� + 	 � ; � 22 = Z+ R+ + R>
+ Z+ + Q+ ;

� 23 = Z+ R� + R>
+ Z � + 	 ; � 33 = Z � R� + R>

� Z � + Q� ;

A =

"
A0 0

0 A0

#

; R+ =

"
0 � � A �

0 � A+

#

; R� =

"
� A+ 0

� � A � 0

#

;

then the predictor(7.20) is input-to-state stable with respect to the inputs! , ! .

Note the requirement that the matrix P has to be diagonal is not restrictive, since for a

Metzler matrix A , its stability is equivalent to existence of a diagonal solution P of the Lyapunov

equation A > P + PA � 0 (Farina and Rinaldi, 2000).

Proof. First, let us demonstrate (7.2), to this end note that

� � A �
i � � i � A i = � i � A+

i � � i � A �
i � � A+

i

for any � i 2 [0; 1]; then using Lemma 7.10 we obtain

� � A+
i x � � � A �

i x+ � � i � A i x � � A+
i x+ + � A �

i x �

provided that x � x � x. Hence,

� � A+ x � � � A � x+ �
NX

i =1

� i � A i x � � A+ x+ + � A � x �

and introducing usual interval estimation errors e = x � x and e = x � x and calculating their

dynamics we get:

_e(t) = A0e(t) + r 1(t) + r 2(t);

_e(t) = A0e(t) + r 1(t) + r 2(t);

where

r 1 =
MX

i =1

� i � A i x + � A+ x � + � A � x+ ;

r 2 = D! � D + ! + D � !;

r 1 = �
MX

i =1

� i � A i x + � A+ x+ + � A � x � ;

r 2 = D + ! � D � ! � D!:

138

7.3 State interval prediction

Non-negativity or r 2 and r 2 follows from Assumption 7.6 and Lemma 7.10. The signals r 1 and

r 1 are also nonnegative provided that (7.2) holds and due to the calculations above. Note that

the relations (7.2) are satis�ed for t = 0 by construction and Assumption 7.9, then since the

matrix A0 is Metzler by Assumption 7.16, we have that _ei (0) 2 Rp
+ or _ei (0) 2 Rp

+ provided that

ei (0) = 0 or ei (0) = 0 , respectively, for any i 2 [p] (the error cannot become negative). Next,

repeating these arguments it is possible to show that e(t) � 0 and e(t) � 0 for all t � 0 (Smith,

1995), which con�rms the relations (7.2).

Second, let us consider the stability of (7.20), and for this purpose de�ne the extended state

vector as X = [x> x>]> , whose dynamics admit the di�erential equation

_X (t) = AX (t) + R+ X + (t) � R� X � (t) + � (t);

where

� (t) =

"
� D � D +

D + � D �

"
! (t)

! (t)

#

:

is a bounded input vector, whose norm is proportional to ! , ! . Consider a candidate Lyapunov

function

V (X) = X > PX + X > Z+ X + � X > Z � X �

=
2nX

k=1

Pk;k X 2
k + (Z+)k;k X kX +

k � (Z �)k;k X kX �
k

=
2nX

k=1

Pk;k X 2
k + (Z+)k;k jX k jX +

k + (Z �)k;k jX k jX �
k ;

which is positive de�nite provided that

P + min f Z+ ; Z � g > 0;

and whose derivative for the system dynamics takes the form

_V = 2 _X > PX + 2 _X > Z+ X + � 2 _X > Z � X �

=

2

6
6
6
6
6
4

X

X +

� X �

�

3

7
7
7
7
7
5

>

�

2

6
6
6
6
6
4

X

X +

� X �

�

3

7
7
7
7
7
5

� X > QX � (X +)> Q+ X +

� (X �)> Q� X � � 2(X +)> 	 X � � 2(X +)> 	 + X

� 2(� X �)> 	 � X + � > � �:

139

Preparing for the Worst

Note that

(X +)> 	 X � = 0 ;

(X +)> 	 + X � 0;

(� X �)> 	 � X � 0

for any diagonal matrix 	 and

	 + � 0; 	 � � 0:

Hence, if � � 0, as it is assumed in the theorem, we obtain that

_V � � X > QX � (X +)> Q+ X + � (X �)> Q� X �

� 2(X +)> 	 + X � 2(� X �)> 	 � X + � > � �

� � X >
 X + � > � �;

where

 = Q + min f Q+ ; Q� g + 2 min f 	 + ; 	 � g > 0

is a diagonal matrix. The substantiated properties of V and its derivative imply that (7.20) is

input-to-state stable (Khalil, 2002) with respect to the input � (or, by its de�nition, with respect

to (! ; !)).

Remark 7.19 (Global constraints) . The LMIs of the above theorem are not conservative, since

the restriction on positive de�niteness of involved matrix variables is not imposed on all of them

separately, but on their combinations:

P + min f Z+ ; Z � g > 0; � > 0;

Q + min f Q+ ; Q� g + 2 min f 	 + ; 	 � g > 0;

then some of them can be sign-inde�nite or negative-de�nite ensuring the ful�lment of the last

inequality � � 0:

Remark 7.20 (Asymptotic linearity) . Assume that� ! = ! = const6= 0 and the conditions

of Theorem 7.18 are satis�ed, then asymptoticallyx andx are negative and positive, respectively.

Therefore, the dynamics of(7.20) takes the form for su�ciently high values oft � 0:

_x(t) = (A0 � � A+)x(t) � � A � x(t) + Bu(t) + D + ! � D � !;

_x(t) = (A0 + � A+)x(t) + � A � x(t) + Bu(t) + D + ! � D � ! ;

140

7.3 State interval prediction

Figure 7.5 � The results of prediction by (7.20): the new predictor is stable and produces tight bounds.

which is a linear system

_X (t) =

"
A0 � � A+ � � A �

� A � A0 + � A+

#

X (t) +

"
B

B

#

u(t) +

"
� D � D +

D + � D �

"
!

!

#

; (7.21)

where as beforeX = [x> x>]> .

Example (motivating, continue) . Let us apply the predictor (7.20) to the motivating example:

_x(t) = � �x (t) � (� � �)x � (t) + ! ;

_x(t) = � � x(t) + (� � �)x+ (t) + !;

where A0 = � � is chosen, then� A+ = � � � , � A � = 0 and all conditions of Theorem 7.18 are

veri�ed. The results of simulation are shown in Figure 7.5. As we can see the new predictor

generates very reasonable and bounded estimates.

7.3.3 Frequency-based interval estimation

The domain of convergence of the linear system (7.21), and hence of (7.20), can be tightened

under an additional hypothesis that ! (t) has a known and bounded frequency spectrum.

Assume that there exist two signals ! ; ! : R+ ! Rr and two vectors x0; x0 2 Rp such that

! (t) � ! (t) � ! (t); 8t � 0;

x0 � x(0) � x0;

141

Preparing for the Worst

and there is a matrix L 2 Rp� s such that A � LC is Hurwitz and Metzler, then an interval

observer for the system (7.17) can be written as follows (Raïssi, D. E�mov, and Zolghadri,

2012):

_x(t) = (A � LC)x(t) + Bu(t) + Ly (t) + (D � LE)+ ! (t) � (D � LE) � ! (t);

_x(t) = (A � LC)x(t) + Bu(t) + Ly (t) + (D � LE)+ ! (t) � (D � LE) � ! (t);

with x(0) = x0; x(0) = x0;

(7.22)

guaranteeing the desired interval relations

x(t) � x(t) � x(t); 8t � 0:

This solution uses only information about amplitude of the external input ! , and its precision

can be largely improved if we assume that there is also information about admissible frequency

spectrum in ! :

Lemma 7.21. Let there existf 1; f 2 2 N+ andT; W > 0 such that

! (t) = a0 +
f 2X

f = f 1

af sin
�

2�f
T

t + � s

�
;

for somea0; af ; � f 2 R with f 2 [f 1; f 2] andjjdjj � W . Then for anyx(0) 2 Rn in (7.17) and

any " > 0 there exists� > 0 such that

jx i (t)j � sup
w2 [2�

T f 1 ; 2�
T f 2]

jei (jwI n � A) � 1DE r jW + " 8t � �;

wherej corresponds to the imaginary unit, provided that the matrixA is Hurwitz.

Proof. The solution of the system (7.17) can be written as follows:

x(t) = eAt x(0) +
Z t

0
eA(t � �) (Bu(�) + D! (�))d �;

where the �rst term (eAt x(0)) is converging asymptotically to zero since the matrix A is Hurwitz

by hypothesis. And in order to estimate the second term, the Bode magnitude plot can be used,

which provides the asymptotic amplitude of the state for the given frequency input. Under

the introduced hypotheses, the frequency of the input lies in the interval [2�
T f 1; 2�

T f 2] and the

amplitude is upper-bounded by W, then there exist constants� > 0 and " > 0, related with

x(0), such that the claim of the lemma is true.

142

7.3 State interval prediction

The interval observer (7.22), if we assume that ! (t) = � ! (t) = WEr and L = 0 , asymp-

totically will converge to the interval [�j ei A � 1BE r jW; jei A � 1BE r jW] (that corresponds to the

result of Lemma 7.21 with f 1 = f 2 = 0), which is the estimate from Bode plot given for the

frequency 0, and it is a well-known fact that for many stable systems the Bode magnitude

plot is a decreasing function of the frequency. Therefore, if the information about frequency

spectrum is known and it is separated from zero, then the asymptotic interval accuracy can

be signi�cantly improved. Of course, Lemma 7.21 can be applied iteratively for a decreasing

sequence of" > 0 and an increasing one in � > 0.

Example. Let us illustrate these conclusions on a simple example:

A =

"
� 1 1

0:1 � 1

#

; B =

"
� 2

1

#

; L = 0 ;

! (t) = � ! (t) = 1 ;

x0 = [2 1]> ; x0 = [� 1 � 2]> :

And assume that ! (t) = d0 sin(f t + � 0); f = 7 ; then the system trajectories and intervals are

shown in Figure 7.6.

7.3.4 Prediction for a self-driving vehicle

We consider the problem of safe decision-making for autonomous highway driving (Leurent,

2018)3.

As described in Chapter 3, an autonomous vehicle is driving on a highway populated with

N other agents, and uses Model Predictive Control to plan a sequence of decisions. To that

end, it relies on parametrized dynamical model for each agent to predict the future trajectory

of each tra�c participant:

_x i = f i (x; � i); i 2 [Nv];

where f i are described in Chapter 3,x i 2 R4 is the state of a vehicle,x = [x>
1 ; : : : ; xN v

>]> 2 R4N v

and � i 2 R5 is the corresponding vector of unknown parameters. Crucially, this system describes

the couplings and interactions between vehicles, so that the autonomous agent can properly

anticipate their reactions. However, we assume that we do not have access to the true values of

the behavioural parameters � = [� 1; : : : ; � N v]> ; instead, we merely know that these parameters

lie in a set of admissible values � � R5N v . In order to act safely in the face of uncertainty, the

agent must consider all possible vehicle trajectories in order to take its decisions. In this section,

we focus on how to compute these trajectory enclosures through interval prediction.

3Videos and source code of all experiments are available at https://eleurent.github.io/interval-prediction/.

143

Preparing for the Worst

Figure 7.6 � The results of prediction for di�erent values of the frequency. Taking � = 4
min i = 1 ;n j � i (A) j =

5:85 and " = 0 :05; the trajectories of the interval observer (7.22) are presented for t � 0:5� , and as
we can conclude, these estimates are rather conservative. Next, fort 2 [0:5�; �] the estimates given in
Lemma 7.21 for the cases1 = s2 = 0 are shown, which are already more accurate. Finally, for t � � the
estimates of Lemma 7.21 are presented fors1 = s2 = s, which demonstrate a de�nite improvement.

144

7.3 State interval prediction

LPV formulation

The system presented in Chapter 3 is non-linear and must be cast into the LPV form. We

approximate the non-linearities induced by the trigonometric operators through equilibrium

linearisation around yi = yL i and i = L i .

This yields the following longitudinal dynamics:

_px
i = vi ;

_vi = � i; 1(v0 � vi) + � i; 2(vf i � vi) + � i; 3(px
f i

� px
i � d0 � vi T);

where � i; 2 and � i; 3 are set to0 whenever the corresponding features are not active.

It can be rewritten in the form

_x = A(�)(x � xc) + d:

For example, in the case of two vehicles only,

x =

2

6
6
6
6
6
4

px
i

px
f i

vi

vf i

3

7
7
7
7
7
5

; xc =

2

6
6
6
6
6
4

� d0 � v0T

0

v0

v0

3

7
7
7
7
7
5

; d =

2

6
6
6
6
6
4

v0

v0

0

0

3

7
7
7
7
7
5

A(�) =

i f i i f i
2

6
6
6
6
4

3

7
7
7
7
5

i 0 0 1 0

f i 0 0 0 1

i � � i; 3 � i; 3 � � i; 1 � � i; 2 � � i; 3 � i; 2

f i 0 0 0 � � f i ;1

The lateral dynamics are in a similar form:

"
_py
i
_ i

#

=

"
0 vi

� � i; 4 � i; 5
vi

� � i; 5

"
py

i � py
L i

 i � L i

#

+

"
vi L i

0

#

Here, the dependency in vi is seen as an uncertain parametric dependency,i.e. � i; 6 = vi , with

constant bounds assumed for vi using an overset of the longitudinal interval predictor.

145

Preparing for the Worst

Change of coordinates

In both cases, the obtained polytope centre A0 is non-Metzler. We use Lemmas 7.13 and 7.14

to compute a similarity transformation of coordinates. Precisely, we ensure that the polytope

is chosen so that its centreA0 is diagonalisable having real eigenvalues, and perform an

eigendecomposition to compute its change of basis matrix S. The transformed system x0 =

S� 1(x � xc) veri�es Assumption 7.16 as required to apply the interval predictor of Theorem 7.18.

Finally, the obtained predictor is transformed back to the original coordinates x by using the

interval arithmetic of Lemma 7.10.

Results

We show the resulting intervals in Figure 7.7. The target vehicle with uncertain behaviour is in

blue, while the ego-vehicle is in green. Its trajectory interval is computed over a duration of

two seconds and represented by an area �lled with a colour gradient representing time. The

ground-truth trajectory is shown in blue. In Figure 7.7a, we observe that the direct predictor

(7.18) is unstable and quickly diverges to cover the whole road, thus hindering any sensible

decision-making. In prior work (Leurent, Blanco, et al., 2018), we had to circumvent this

issue by subdividing � and [x; x] to reduce the initial overestimations and merely delay the

divergence (Adrot and Flaus, 2003), at the price of a heavy computational load. In stark contrast,

we see in Figure 7.7b that the novel predictor (7.20) is very stable even over long horizons,

which allows the ego-vehicle to plan an overtaking manoeuvre. Until then, there was little

uncertainty in the predicted trajectory for the target vehicle was isolated, but as the ego-vehicle

cuts into its lane in Figure 7.7c, we start seeing the e�ects of uncertain interactions between the

two vehicles, in both longitudinal and lateral directions. Note that this formulation naturally

exhibits socially aware predictions, and accounts for these interactions. Our framework is

also quite �exible in representing di�erent assumptions on the admissible behaviours. For

instance, we show in Figure 7.7d a simulation in which we model right-hand tra�c where

drivers are expected to keep to the rightmost lane. In such a situation, it is reasonable to assume

that in the absence of any obstacle in front, a vehicle driving on the middle lane will either

stay there or return to the right lane, but has no incentive to change to the left lane. This

simple assumption on L i can easily be incorporated in the interval predictor, and enables the

emergence of a realistic behaviour when running the robust decision-making procedure: the

ego-vehicle cannot pass another vehicle by its right side, and can only overtake it by its left side.

These behaviours displaying safe reasoning under uncertainty are showcased in the attached

videos.

146

7.3 State interval prediction

(a) The naive predictor (7.18) quickly diverges

(b) The proposed predictor (7.20) remains stable

(c) Prediction during a lane change manoeuvre

(d) Prediction with uncertainty in the followed lane L i

Figure 7.7 � State intervals obtained by the two methods in di�erent conditions.

147

Preparing for the Worst

Section conclusion

The prediction problem for uncertain LPV systems is solved by designing an interval predictor,

which is described by nonlinear di�erential equations, and whose stability is evaluated using a

new Lyapunov function. The corresponding robust stability conditions are expressed in terms

of LMIs. An approach is presented to improve the asymptotic accuracy of interval estimation

or prediction in LTI systems provided that the exogenous inputs have a known spectrum of

frequencies. The pro�ciency of the methods is demonstrated in application to a problem of

safe motion planning for a self-driving car.

7.4 Robust stabilisation and constraint satisfaction

In this section, as a �rst application of the estimation and prediction tools introduced above,

we set out to design a robust control u(t) that stabilises (7.3) , (7.5) at a vicinity of the origin

under Assumptions 7.4, 7.6 and 7.9 such that

x(t) 2 X; u(t) 2 U 8t � 0; (7.6)

where [x0; x0] � X � Rp and U � Rq are given bounded constraint sets for the state and the

control, respectively.

7.4.1 Stabilising control for (7.18) and (7.20)

Note that both interval predictors, (7.18) and (7.20), admit a representation in the form

_� (t) = A 0� (t) + A 1� + (t) + A 2� � (t) + Bu(t) + � (t); (7.23)

where � (t) = [x> (t) x> (t)]> 2 R2p is the extended state vector of the predictors,

� (t) =

"
D + � D �

� D � D +

"
! (t)

! (t)

#

2 R2p

is the external known input, B = [B > B >]> ,

A 0 =

"
0 0

0 0

#

; A 1 =

"
A+ � A �

� A � A+

#

; A 2 =

"
� A+ A �

A � � A+

#

for (7.18),

and

A 0 =

"
A0 0

0 A0

#

; A 1 =

"
0 � � A �

0 � A+

#

; A 2 =

"
� � A+ 0

� A � 0

#

for (7.20).

148

7.4 Robust stabilisation and constraint satisfaction

Note that (7.23) is a nonlinear system due to the presence of globally Lipschitz nonlinearities

� + (t) and � � (t).

Due to the inclusion property (7.2) , the boundedness of � (t) implies the same property

of x(t). Therefore, in order to regulate (7.3) it is required to design a state feedback u(t)

minimizing the asymptotic amplitude of the state � (t) for given input � (t) (D. E�mov, Raïssi,

and Zolghadri, 2013). In other words, it is necessary to design a control u(t) that input-to-state

stabilises (7.23). It is proposed to look for such a control in the form

u(t) = K 0� (t) + K 1� + (t) + K 2� � (t) + S� (t); (7.24)

where K 0; K 1; K 2 2 Rq� 2p and S 2 Rq� 2p are the gains to be designed ((7.24) contains a

nonlinear feedback). The selection of S is simple, it has to minimise the norm of BS + I 2p,

and it can be made independently of K 0; K 1; K 2. Therefore, denoting ~� (t) = (BS + I 2p)� (t) the

closed-loop system (7.23), (7.24) takes the form:

_� (t) = D0� (t) + D1� + (t) + D2� � (t) + ~� (t); (7.25)

where D i = A i + BK i for i 2 [3], and the restrictions, which the gains K 0; K 1; K 2 have to

respect, are given below:

Theorem 7.22. If there exist diagonal matricesP, Q, Q+ , Q� , Z+ , Z � , 	 + , 	 � , 	 , � 2 R2p� 2p

such that the following linear matrix inequalities are satis�ed:

P + min f Z+ ; Z � g > 0; � � 0; � > 0;

Q + min f Q+ ; Q� g + 2 min f 	 + ; 	 � g > 0;

where

� =

2

6
6
6
6
6
4

� 11 � 12 � 13 P

� >
12 � 22 � 23 Z+

� >
13 � >

23 � 33 � Z �

P Z+ � Z � � �

3

7
7
7
7
7
5

;

� 11 = D>
0 P + PD0 + Q; � 12 = D>

0 Z+ + PD1 + 	 + ;

� 13 = PD2 � D >
0 Z � � 	 � ; � 22 = Z+ D1 + D>

1 Z+ + Q+ ;

� 23 = Z+ D2 � D >
1 Z � + 	 ; � 33 = � Z � D2 � D >

2 Z � + Q� ;

then(7.25) is input-to-state stable with respect to! ; ! .

149

Preparing for the Worst

Note that the requirement that the matrix P has to be diagonal is not restrictive, since for a

Metzler matrix D0 (the case of (7.18) and (7.20)), its stability is equivalent to existence of a

diagonal solution P of the Lyapunov equation D>
0 P + PD0 � 0 (Farina and Rinaldi, 2000).

Proof. Consider a candidate Lyapunov function

V (�) = � > P � + � > Z+ � + � � > Z � � �

=
2pX

k=1

Pk;k � 2
k + (Z+)k;k � k � +

k � (Z �)k;k � k � �
k

=
2pX

k=1

Pk;k � 2
k + (Z+)k;k j� k j� +

k + (Z �)k;k j� k j� �
k ;

which is positive de�nite provided that

P + min f Z+ ; Z � g > 0

since all terms in V are quadratic-like, and whose derivative for the system (7.25) dynamics

takes the form

_V = 2 _� > P � + 2 _� > Z+ � + � 2 _� > Z � � �

=

2

6
6
6
6
6
4

�

� +

� �

~�

3

7
7
7
7
7
5

>

�

2

6
6
6
6
6
4

�

� +

� �

~�

3

7
7
7
7
7
5

� � > Q� � (� +)> Q+ � +

� (� �)> Q� � � � 2(� +)> 	 � � � 2(� +)> 	 + �

� 2(� � �)> 	 � � + ~� > � ~�:

Note that

(� +)> 	 � � = 0 ;

(� +)> 	 + � � 0;

(� � �)> 	 � � � 0

for any diagonal matrix 	 and 	 + � 0, 	 � � 0. Hence, if � � 0, as it is assumed in the

theorem, we obtain that

_V � � � > Q� � (� +)> Q+ � + � (� �)> Q� � �

� 2(� +)> 	 + � � 2(� � �)> 	 � � + ~� > � ~�

� � � >
 � + ~� > � ~�;

150

7.4 Robust stabilisation and constraint satisfaction

where

 = Q + min f Q+ ; Q� g + 2 min f 	 + ; 	 � g > 0;

is a diagonal matrix. The substantiated properties of V and its derivative imply that (7.25) is

input-to-state stable (E. D. Sontag, 2001; Dashkovskiy, D.V. E�mov, and E. Sontag, 2011) with

respect to the input ~� (or, by its de�nition, with respect to (! ; !)).

Following the proof of Theorem 7.22, for all � 2 R2p,

� > (P + min f Z+ ; Z � g)� � V (�) � � > (P + Z +
+ + Z +

�)�;

then
_V � � �V + ~� > � ~�

for all �; ~� 2 R2p, where

� = min
i 2 [2p]

� i

�

(P + Z +

+ + Z +
�) � 1

�
;

and we can de�ne the set (recall that the signal ~� (t) is known for all t � 0)

Xf = f � 2 R2p : V (�) � � � 1 sup
t � 0

j~� > (t)� ~� (t)jg; (7.26)

as the set that asymptotically attracts all trajectories in (7.25).

The conditions of Theorem 7.22 assume that the control gainsK 0; K 1; K 2 are given, let us

�nd these gains as solutions of linear matrix inequalities:

Corollary 7.23. If there exist diagonal matricesP, ~Q, ~Q+ , ~Q� , Z+ , Z � , ~	 + , ~	 � , ~	 , � 2 R2p� 2p

and matricesU0; U1; U2 2 Rq� 2p such that the following linear matrix inequalities are satis�ed:

P > 0; Z+ > 0; Z � > 0; � � 0; � > 0;

~Q + min f ~Q+ ; ~Q� g + 2 min f ~	 + ; ~	 � g > 0;

where

� =

2

6
6
6
6
6
4

� 11 � 12 � 13 I

� >
12 � 22 � 23 I

� >
13 � >

23 � 33 � I

I I � I � �

3

7
7
7
7
7
5

;

� 11 = P � 1A >
0 + A 0P � 1 + U>

0 B> + BU0 + ~Q;

� 12 = A 1Z � 1
+ + BU1 + P � 1A >

0 + U>
0 B> + ~	 + ;

� 13 = A 2Z � 1
� + BU2 � P � 1A >

0 � U>
0 B> � ~	 � ;

151

Preparing for the Worst

� 22 = Z � 1
+ A >

1 + A 1Z � 1
+ + U>

1 B> + BU1 + ~Q+ ;

� 23 = A 2Z � 1
� + BU2 � Z � 1

+ A >
1 � U>

1 B> + ~	 ;

� 33 = ~Q� � Z � 1
� A >

2 � A 2Z � 1
� � U>

2 B> � B U2;

then(7.25) for K 0 = U0P, K 1 = U1Z+ andK 2 = U2Z � is input-to-state stable with respect to

the inputs! ; ! .

Proof. Note that the conditions P > 0, Z+ > 0, Z � > 0 imply P + min f Z+ ; Z � g > 0, and

� =

2

6
6
6
6
6
4

P 0 0 0

0 Z+ 0 0

0 0 Z � 0

0 0 0 I 2p

3

7
7
7
7
7
5

�

2

6
6
6
6
6
4

P 0 0 0

0 Z+ 0 0

0 0 Z � 0

0 0 0 I 2p

3

7
7
7
7
7
5

under substitution U0 = K 0P � 1, U1 = K 1Z � 1
+ , U2 = K 2Z � 1

� , ~Q = P � 1QP � 1, ~Q+ = Z � 1
+ Q+ Z � 1

+ ,
~Q� = Z � 1

� Q� Z � 1
� , ~	 = Z � 1

� 	 Z � 1
+ , ~	 + = P � 1	 + Z � 1

+ and ~	 � = P � 1	 � Z � 1
� . Hence, � � 0

provided that � � 0. The inequalities ~Q + min f ~Q+ ; ~Q� g + 2 min f ~	 + ; ~	 � g > 0 and Q +

minf Q+ ; Q� g+ 2 min f 	 + ; 	 � g > 0 are equivalent due to the diagonal structure of all matrices.

Therefore, under introduced restrictions all conditions of Theorem 7.22 are veri�ed for K 0 =

U0P, K 1 = U1Z+ and K 2 = U2Z � .

The requirements imposed on P; Z+ ; Z � in this corollary are more restrictive than the

conditions of Theorem 7.22, but it allows the gains K 0; K 1; K 2 to be e�ciently calculated.

Under conditions of Theorem 7.22, the control (7.24) ensures stabilisation of the predictor

(7.23) (i.e. (7.18) or (7.20)) in a vicinity Xf of the origin. The size of the vicinity is proportional

to the system (7.3) uncertainty (it can be optimized by the choice of K 0; K 1; K 2), and due to

(7.2) , it implies that the system (7.3) also will reach a neighbourhood of the origin under the

control (7.24). Hence, the posed control problem would be solved provided that (7.6) holds.

In order to ensure the robust constraint satisfaction we consider an MPC design in the next

section.

7.4.2 Robust constraint satisfaction

For brevity, the results of this section are given for the predictor (7.20) only (and the case

of (7.18) can be considered by skipping Assumption 7.17 in the formulation). We need the

following hypothesis in this section:

152

7.4 Robust stabilisation and constraint satisfaction

Assumption 7.24. There existK 0; K 1; K 2 2 Rq� 2p satisfying the conditions of Theorem 7.22 for

the matricesA0 and� A i with i 2 [M] calculated in(7.19) for C[N];� = � , and

Xf � X2;

where the corresponding setXf is given in(7.26), and

K 0� + K 1� + + K 2� � + S� (t) 2 U

for any� 2 Xf andt � 0.

These properties guarantee that there exists a control (7.24) that can be always applied

to stabilise the predictor (7.20) (the worst-case estimate set� is used to calculate the system

matrices) and into the set Xf the restrictions (7.6) also hold for such a control. Recall that we

denote dt > 0 the time step and tn = ndt for n 2 N+ , and de�ne T > dt as the MPC prediction

horizon, i.e. at eachtn � 0, to design the input u(t), an optimal control problem is solved on

the interval [tn ; tn + T], and this optimal control problem is resolved again after dt units of

time (on the interval [tn ; tn+1 = tn + d t) the obtained optimal control is applied). Then the

developed MPC algorithm can be formalized as follows for any tn � 0:

1. Take the con�dence region C[N];� from (7.12) and calculate the matrices A0 and � A i with

i 2 [2d] for (7.19).

2. Find

U = arg min
u:[tn ;t n + T]! Rq

� (tn + T)> W1� (tn + T)+
Z tn + T

tn

� > (s)W2� (s)+ u(s)> W3u(s)ds; (7.27)

where Wi 2 R2p� 2p are given positive de�nite symmetric matrices, such that the following

constraints are satis�ed:

(a) � : [tn ; tn + T] ! R2p is a solution of (7.20) with t = tn .

(b) � (s) 2 X2 and u(s) 2 U for s 2 [tn ; tn + T];

(c) � (tn + T) 2 Xf .

3. For t 2 [tn ; tn+1) select

u(t) =

8
<

:

U(t) � (tn) =2 Xf

(7.24) � (tn) 2 Xf

; (7.28)

where K 0; K 1; K 2 are taken from Assumption 7.24.

153

Preparing for the Worst

As we can conclude, the idea of the proposed dual MPC scheme (see also Michalska and

D. Q. Mayne, 1993; D. Mayne, Rawlings, et al., 2000; D. Mayne, Rakovi¢, et al., 2009) is to use

an open-loop optimal control to reach a neighbourhood of the origin Xf ensuring a robust

constraint satisfaction (7.6) , where a closed-loop control (7.24) can be applied, which provides

asymptotic performances (stability and robustness, also with constraint satisfaction due to

Assumption 7.24 and the de�nition of the terminal set (7.26)).

The main result of the section is as follows:

Theorem 7.25. Let x0; x0 2 X, and Assumptions 7.4, 7.6, 7.9, 7.17 and 7.24 hold with!; ! � !

being non-increasing functions oft � 0. Then the closed-loop system given by(7.3) , (7.5) , (7.20)

and(7.28) has the following properties:

1. Input-to-state stability forx; x and practical input-to-state stability forx with respect to! ; !

in the terminal setXf ;

2. Recursive feasibility with reachingXf in a �nite time;

3. Constraint satisfaction(7.6) .

Proof. Recall that � 2 C[N];� for all tN � 0 due to the result of Theorem 7.8, and we can enforce

that the size of the set C[N];� does not grow with time by iteratively taking the intersection:

C[N];� =� \ C[N];� from (7.12) " \ C [N � 1];� .

Note that if for some tn � 0 the initial conditions (x> (tn); x> (tn))> 2 Xf � X2, then the

control (7.28) equals to (7.24). According to the de�nition (7.26) of Xf and Assumption 7.24,

� (t) 2 Xf and u(t) 2 U for all t � tn , and the system is input-to-state stable with respect to

� (t) = [x> (t) x> (t)]> due to the result of Theorem 7.22. Sincejx(t)j � j � (t)j under (7.2) for

t � tn and j� (tn)j � j x(tn)j + � with � > 0 (that is well de�ned for all initial conditions in Xf),

the practical input-to-state stability for the variable x(t) follows. The point 1. is proven.

Now, let (x> (0); x> (0))> 2 X2 nXf and assume that there is a solution of the optimal control

problem (7.27). Applying such a control through (7.28) for t 2 [0; dt), we have that � (t) 2 X

and u(t) 2 U on this time interval. At t = t1 = d t, if again (x> (t1); x> (t1))> 2 X2 n Xf , then

it recursively exists a solution to (7.27) since the setC[N];� is shrinking by its design and the

signals ! (t); ! (t) � ! (t) are non-increasing by hypotheses of the theorem (i.e., the solution

obtained at tn is a sub-optimal branch of the solution calculated at tn� 1 for all n � 1). Thus,

recursive feasibility follows. Note that Xf is a neighbourhood of the origin, and the given

in (7.27) cost with positive de�nite matrices W1, W2 and W3 is minimized inside Xf . Using

this and sub-optimality arguments, since � (tn + T) 2 Xf in (7.27) (provided that the optimal

control U is applied) and [x(tn); x(tn)] � [x(tn� 1 + d t); x(tn� 1 + d t)] for all n � 1, there is a

154

7.4 Robust stabilisation and constraint satisfaction

�nite time instant tk � T such that (x> (tk); x> (tk))> 2 Xf , and the system further stays there.

The point 2. is substantiated.

The point 3. is a consequence of the previous analysis: under the control (7.28) the con-

strains (7.6) are always satis�ed.

Remark 7.26. At eachtN , N 2 N+ , the gainsK 0; K 1; K 2 can be recalculated for the currently

estimated setC[N];� . If next, the obtained in(7.26) setXf satis�esXf � X2; andK 0� + K 1� + +

K 2� � + S� (t) 2 U for any� 2 Xf andt � 0, as in Assumption 7.24, then the new setXf and

these updated gainsK 0; K 1; K 2 can be used in(7.28).

We illustrate the e�ciency of the proposed MPC approach by numerical experiments.

7.4.3 Numerical experiment

We tackle the problem of the robust adaptive lateral control of an autonomous vehicle for a

lane-keeping application, implemented in highway-env . In contrast with Chapter 3 where

we adopted a kinematic standpoint and simply assumed that the vehicle acceleration could

be controlled directly, we dive deeper into a dynamical description subjected to unknowntire

friction forces. We still represent the state of a rigid vehicle by its position (px ; py), its yaw angle

 , its velocity (vx ; vy) in the body frame and yaw rate r , and additionally denote its mass as

m, its moment of inertia as I z, and its front and rear axle positions as a; b. We consider the

Dynamical Bicycle Model described in (Awan, 2014, Chapter 3.2): the vehicle is moving at

constant longitudinal speed u, and the lateral force Fy of a tire with slip angle � is assumed to

be linear with an unknown friction coe�cient C� : Fy = C� � . The slip angle of the front and

rear tires are respectively denoted as � f ; � r , along with the corresponding friction coe�cients.

Under a small angle approximation for ; � f ; � r , Newton's second law of motion yields the

linear dynamics (7.3) with

x =

2

6
6
6
6
6
4

py

vy

r

3

7
7
7
7
7
5

; � =

"
C� f

C� r

#

; A =

2

6
6
6
6
6
4

0 vx 1 0

0 0 0 1

0 0 0 � vx

0 0 0 0

3

7
7
7
7
7
5

; B =

2

6
6
6
6
6
4

0

0
2
m
a
I z

3

7
7
7
7
7
5

;

� 1 =
� 2

mvx I z

2

6
6
6
6
6
4

0 0 0 0

0 0 0 0

0 0 I z aI z

0 0 am a2m

3

7
7
7
7
7
5

; � 2 =
� 2

mvx I z

2

6
6
6
6
6
4

0 0 0 0

0 0 0 0

0 0 I z � bIz
0 0 � bm b2m

3

7
7
7
7
7
5

:

155

Preparing for the Worst

Figure 7.8 � Top: the model estimation showing the con�dence region C[N];� from (7.23) at di�erent
times tN . Bottom : a lane keeping application, where a car must follow a lane-center curve under
unknown friction and perturbations. X f is shown in green, and � (t) as an area with a color gradient.

Instead of simply stabilising the vehicle state x, we track the lateral position yr (t) of the lane cen-

tre. However, we do not have access to a full state referencexr (t) = [yr (t); r (t); vy;r (t); r r (t)]T

consistent with the dynamics (7.3) . Thus, we de�ne the state ~x = x � [yr (t); 0; 0; 0]T and

consider the remaining unknown terms [0; r (t); vy;r (t); r r (t)] and ur (t) as perturbations ! (t),

bounded since xr ; ur are assumed to belong toX = � [3; 2; 6; 6]T and U = � [10].

The Figure 7.8 depicts our approach. The con�dence region C[N];� from (7.12) is shown in the

top graph, and shrinks with time. To simplify veri�cation of Assumption 7.17 for this example,

an auxiliary preliminary feedback has been applied shifting the eigenvalues of the closed-loop

system. The robust stability of this feedback is assessed with the LMI of Theorem 7.22, and

we compute the corresponding basin of attraction X f from (7.26), represented in green in

the bottom sub�gure. Then, we use a sampling-based MPC scheme (Homem-de-Mello and

Bayraksan, 2014) to solve(7.27) and bring � (t) into X f in T = 3 s. The associated interval

prediction � (t) from (7.23) is represented with a colour gradient from t = tn (red) to t = tn + T

156

7.5 Minimax control with generic costs

(green). Once the vehicles enters X f , we �nally switch to the closed-loop feedback (7.24)

following (7.28) for the rest of the simulation 4.

7.5 Minimax control with generic costs

As we discussed in Section 7.1, the ability to stabilise a system in the neighbourhood of the

origin is not su�cient to tackle many tasks for which there exist no clear notion of equilibrium,

and where the system must continually and dynamically adapt to its surroundings. This

especially includes tasks akin to obstacle avoidance, which constitutes a substantial part of

motion planning.

Therefore, in this section and as a second application of the tools introduced in Sections 7.2

and 7.3, we tackle the arguably more expressive objective of minimax control (7.7) of an

arbitrary bounded reward function R : Rp ! [0; 1], recalled here:

sup
bu2 (Rq)N

inf
� 2C[N];�

! 2 [! ;!]R

2

4
1X

n= N +1

 nR(xn (u; !))

3

5 : (7.7)

Evaluation In order to evaluate this robust objective V r , we approximate it thanks to the

interval prediction [x(t); x(t)] of Section 7.3.

De�nition 7.27 (Surrogate objective) . Let

V̂ r (u) =�
1X

n= N +1

 nRn (u); (7.29)

where Rn (u) =� min
x2 [xn (u);xn (u)]

R(x); (7.30)

andxn (u); xn (u) follow the dynamics de�ned in(7.20).

This amounts to changing the reward function, except that the worst case is assessed over

the whole past trajectory, which makes this pessimistic reward Rn not Markovian.

Theorem 7.28 (Lower bound) . The surrogate objective(7.29) is a lower bound of the true

objective(7.7) :

V̂ r (u) � V r (u)

4A video is available at https://youtu.be/axurBzHRLGY

157

Preparing for the Worst

Algorithm 7.1: Integrated framework for con�dent estimation, interval prediction and
minimax control
1 Data: con�dence level � , structure (A; �), reward R, D[0] ; ; a1 ;
2 for N = 0 ; 1; 2; : : : do
3 C[N];� Model Estimation (D[N]). (7.12)
4 for each planning stepk 2 f N; : : : ; N + K g = N + [K] do
5 [xk+1 ; xk+1] Interval Prediction (C[N];� ; akb) for each action b 2 A . (7.20)
6 ak+1 Pessimistic Planning(Rk+1 ([xk+1 ; xk+1])) . (7.31)

7 Execute the recommended control uN +1 , and add the transition (xN +1 ; yN +1 ; uN +1)
to D[N +1] .

Proof. We provide a proof in Section D.1.3.

A direct consequence of Theorem 7.28 is that since all our approximations are conservative,

if we manage to �nd a control sequence such that no �bad event� (e.g. a collision) happens

according to the surrogate objective V̂ r , then we are guaranteed that they will not happen

either when the controls are executed on the true system.

Planning To optimise V̂ r (7.29), we cannot use Dynamic Programming algorithms since

the state space is continuous and the pessimistic rewards are non-Markovian. Instead, as we

did in Chapter 6, we turn to tree-based planning algorithms, which optimise a sequence of

actions based on the corresponding sequence of rewards, without requiring Markovity nor

state enumeration.

Though there exist works addressing continuous action spaces (Bu³oniu, Páll, and Rémi

Munos, 2018; Weinstein and Littman, 2012), we resort to a �rst approximation and discretise

the continuous decision spaceRq by adopting a hierarchical control architecture: at each time,

the agent can select a high-levelactiona from a �nite space A . Each actiona 2 A corresponds to

the selection of a low-level controller � a, that we take a�ne: u(t) = � a(x(t)) =� � K ax(t) + ua:

For instance, a tracking a subgoalxg can be achieved with � g = K (xg � x). This discretisation

induces a suboptimality, but it can be mitigated by diversifying the controller basis. The robust

objective (7.7) becomes

sup
a2A N

V r (a);

where xn (a; !) stems from (7.3) with un = � an (xn).

This enables us to consider theOPDalgorithm (Hren and Rémi Munos, 2008) tailored for

the case when the relationship between actions and rewards is deterministic. Indeed, the

stochasticity of perturbations and measurements is encased in V̂ r : given the observations up to

time N , both the predictor dynamics (7.20) and the pessimistic rewards (7.30) are deterministic.

158

7.5 Minimax control with generic costs

At each planning iteration k 2 [K], OPDprogressively builds a tree Tk+1 by forming upper-

bounds Ua(k) over the value of sequences of actionsa, and expanding5 the leaf ak with highest

upper-bound:

ak = arg max
a2L k

Ua(k); Ua(k) =
h(a)� 1X

n=0

Rn (a) +
 h(a)

1 �
(7.31)

where L k is the set of leaves ofTk , h(a) is the length of the sequencea, and Rn (a) the pessimistic

reward (7.30) obtained at time n by following the controls un = � an (xn).

Algorithm 7.1 shows the full integration of the three procedures of estimation, prediction

and control.

Lemma 7.29(Planning performance of Hren and Rémi Munos, 2008) . The simple regret of

theOPDalgorithm(7.31) applied to the surrogate objective(7.29) afterK planning iterations is

if � > 1; V̂ r (a?) � V̂ r (aK) = O
�

K � log 1 =
log �

�
;

if � = 1 ; V̂ r (a?) � V̂ r (aK) = O
�
 (1�) log (�= jAj) K=c

�

where� is a problem-dependent measure of the proportion of near-optimal paths:

� = lim sup
h!1

�
�
�
�
�

(

a 2 Ah : V̂ r (a) � V̂ r (a?) �
 h+1

1 �

) �
�
�
�
�

1=h

:

Proof. We provide a proof in Section C.1.8.

Hence, by using enough computational budget K for planning we can get as close as we

want to the optimal surrogate value V̂ r (a?), at a polynomial rate. Unfortunately, there exists

a gap betweenV̂ r and the true robust objective V r , which stems from three approximations:

(i) the true reachable set was approximated by an enclosing interval in (7.2) ; (ii) the time-

invariance of the dynamics uncertainty A(�) 2 C[N];� was handled by the interval predictor

(7.20) as if it were a time-varying uncertainty A(� (t)) 2 C[N];� ; 8t ; and (iii) the lower-bound
P

min � min
P

used to de�ne the surrogate objective (7.29) is not tight. However, this gap

can be bounded with additional assumptions.

Theorem 7.30 (Regret bound) . Under two conditions:

1. a Lipschitz regularity assumption for the reward functionR;

5The expansion of a leaf nodea refers to the simulation of its children transitions aA = f ab; b2 Ag

159

Preparing for the Worst

2. a stability condition: there existP > 0; Q0 2 Rp� p, � > 0, andN0 2 N such that

8N > N 0;

"
AT

N P + PAN + Q0 PjD j

jD jT P � �I r

#

< 0;

we can bound the suboptimality of Algorithm 7.1 with planning budgetK as:

V (a?) � V̂ r (aK) � � !|{z}
robustness to
perturbations

+ O

� N (�)2

� min (GN;�)

!

| {z }
estimation error

+ O
�

K � log 1 =
log �

�

| {z }
planning error

with probability at least1 � � , whereV (a) is the optimal expected return when executing an

actiona 2 A , a? is an optimal action, and� ! is a constant which corresponds to an irreducible

suboptimality su�ered from being robust to instantaneous disturbances! (t).

Proof. We provide a proof in Section D.1.4.

It is di�cult to check the validity of the stability condition 2. since it applies to matrices

AN produced by the algorithm rather than to the system parameters. A stronger but easier to

check condition is that the polytope (7.19) at some iteration becomes included in a set where

this property is uniformly satis�ed. For instance, if the features are su�ciently excited, the

estimation converges to a neighbourhood of the true dynamics A(�). This also allows to further

bound the input-dependent estimation error term.

Corollary 7.31 (Asymptotic near-optimality) . Under an additional persistent excitation (PE)

assumption

9� ; � > 0 : 8n � n0; � 2 � � min (� T
n � � 1

p � n) � �
2
; (7.32)

the stability condition 2. of Theorem 7.30 can be relaxed to apply to the true system: there exist

P; Q0; � such that "
A(�)T P + PA(�) + Q0 PjD j

jD jT P � �I r

#

< 0;

and the regret bound in Theorem 7.30 takes the more explicit form:

V (a?) � V̂ r (aK) � � !|{z}
robustness to
perturbations

+ O

0

@
log

�
N d=2=�

�

N

1

A

| {z }
estimation error

+ O
�

K � log 1 =
log �

�

| {z }
planning error

160

7.6 Multi-model selection

which ensures asymptotic near-optimality whenN ! 1 andK ! 1 .

Proof. We provide a proof in Section D.1.5.

7.6 Multi-model selection

The procedure we developed in Sections 7.2, 7.3 and 7.5 relies on strong modelling assumptions,

such as the dynamics structure in Assumption 7.4. But what if they are wrong?

Model adequacy One of the major bene�ts of using the family of linear models, compared to

richer model classes, is that they provide strict conditions allowing to quantify the adequacy of

the modelling assumptions to the observations.

Given N � 1 observations, Section 7.2 provides a polytopic con�dence region (7.19) that

contains A(�) with probability at least 1 � � . Since the dynamics are linear, we can propagate

this con�dence region to the next observation: yN must belong to the Minkowski sum of a

polytope representing model uncertainty P(A0xN + BuN ; � A1xN ; : : : ; � A2d xN) and a polytope

P(0p; � ; �) bounding the perturbation and measurement noises. Delos and Teissandier (2015)

provide a way to test this membership in polynomial time using linear programming. Whenever

it is not veri�ed, we can con�dently reject the (A; �)-modelling Assumption 7.4. This enables

us to consider a rich set of potential features
�
(A1; � 1); : : : ; (AM ; � M)

�
rather than relying on a

single assumption, and only retain those that are consistent with the observations so far. Then,

every remaining hypothesis must be considered during planning.

Robust selection We temporarily ignore the parametric uncertainty on � to simply consider

several candidate dynamics models, which all correspond to di�erent modelling assumptions.

We also restrict to deterministic dynamics, which is the case of (7.20).

Assumption 7.32 (Multi-model ambiguity) . The true dynamicsf lies within a �nite set of

candidate modelsf 1; : : : ; f M .

9m 2 [M] : _x(t) = f m (x(t); u(t)) ; 8t � 0

161

Preparing for the Worst

We want to adapt our planning algorithm in order to balance these concurrent hypotheses

in a robust fashion, i.e. maximise a robust objective with discrete ambiguity

sup
a2A N

min
m2 [M]

1X

n= N +1

 nRm
n

| {z }
V r (a)

(7.33)

where Rm
n is the reward obtained by following the action sequence a up to step n under the

dynamics f m . This objective could be optimised in the same way as in Section 7.5, but this

would result in a coarse and lossy approximation. Instead, we exploit the �nite uncertainty

structure of Assumption 7.32 to asymptotically recover the true V r by modifying the OPD

algorithm in the following way:

De�nition 7.33 (Robust UCB) . We replace the upper-bound(7.31) on sequence values inOPDby

Ur
a (k) =� min

m2 [M]

h� 1X

n=0

 nRm
n +

 h

1 �
(7.34)

An illustration of the computation of the robust upper-bounds is presented in Figure 7.10.

Note that it is not equivalent to solving each control problem independently and following the

action with highest worst-case value:

Remark 7.34. In the de�nition ofUr
a (k) (D.2) andL r

a(k) (D.4) it is essential that the minimum

over the models is only taken at the end of trajectories, in the same way as for the robust objective

(7.33) in which the worst-case dynamics is only determined after the action sequence has been fully

speci�ed. Assume thatL r
a(k) is instead naively de�ned as

L r
a(k) = min

m2 [1;M]
L m

a (k);

This would not recover the robust policy, as we show in Figure 7.9 with a simple counter-example.

We analyse the sample complexity of the corresponding robust planning algorithm.

Proposition 7.35 (Robust planning performance) . The robust version ofOPD(7.34) enjoys the

same regret bound asOPDin Lemma 7.29, with respect to the multi-model objective(7.33).

162

7.6 Multi-model selection

Figure 7.9 � From left to right: two simple models and corresponding u-values with optimal sequences
in blue; the naive version of the robust values returns sub-optimal paths in red; our robust U-value
properly recovers the robust policy in green.

Figure 7.10 � The computation of robust U-values in (7.34). The simulation of trajectories for every
dynamics model f m is represented as stacked versions of the expanded treeTk .

163

Preparing for the Worst

Proof. We provide a proof in Section D.1.6.

The regret depends on the number K of node expansions, but each expansion now requires

M times more simulations than in the single-model setting. The solution of the robust objective

(7.33) with discrete ambiguity f 2 f f m gm2 [M] can be recovered exactly, asymptotically when

the planning budget K goes to in�nity. This contrasts the results obtained in Section 7.5 for

the robust objective (7.7) with continuous ambiguity � 2 C[N];� , for which OPDonly recovers

the surrogate approximation V̂ r , as discussed in Theorem 7.30. Finally, the two approaches of

Sections 7.5 and 7.6 can be merged by using the pessimistic reward (7.30) in (7.34).

7.7 Experiments

Obstacle avoidance with unknown friction We �rst consider a simple illustrative example,

shown in Figure 7.3: the control of a 2D system with position (px ; py) and velocity (vx ; vy)

moving by means of a force (ux ; uy) in an environment with unknown anisotropic friction.

2

6
6
6
6
6
4

_px

_py

_vx

_vy

3

7
7
7
7
7
5

=

2

6
6
6
6
6
4

0 0 1 0

0 0 0 1

0 0 � � x 0

0 0 0 � � y

3

7
7
7
7
7
5

2

6
6
6
6
6
4

px

py

vx

vy

3

7
7
7
7
7
5

+

2

6
6
6
6
6
4

0

0

ux

uy

3

7
7
7
7
7
5

Note that the Assumption 7.17 for AN is always veri�ed. The reward is non-smooth and

encodes the task of navigating to reach a goal statexg while avoiding collisions with obstacles:

R(x) = � (x)=(1 + kx � xgk2) where � (x) is 0 whenever x collides with an obstacle, 1 otherwise.

The actionsA are constant controls in the up, down, left and right directions. The environment

is illustrated in Figure 7.11.

For the reasons mentioned above, no robust baseline applies to our setting. We compare

Algorithm 7.1 to the non-robust adaptive control approach that plans with the estimated dy-

namics � N;� , and thus enjoys the same prior knowledge of dynamics structure and reward. This

highlights the bene�ts of the robust formulation solely rather than stemming from algorithm

design. We show in Table 7.1 the results of 100 simulations of a single episode: the robust agent

performs worse than the nominal agent on average, but manages to ensure safety while the

nominal agent collides with obstacles in 4 % of simulations 6. We also compare to a standard

model-free approach, DQN, which does not bene�t from the prior knowledge of the system

dynamics, and is instead trained over multiple episodes. The reported performance is that

of the �nal policy obtained after training for 3000 episodes, during which 897� 64collisions

occurred (29:9� 2:1%). We study the evolution of the suboptimality V (xN) �
P

n>N n� N R(xn)

6A video is available at https://youtu.be/jr2yi6Lf0bM

164

7.7 Experiments

Figure 7.11 � Algorithm 7.1 running on the obstacle avoidance environment: we show the predicted
state interval at each prediction time step (from red to green).

Table 7.1 � Performances on the obstacle task. We give the frequency of collision, minimum and average
return achieved on a single episode, repeated with 100 random seeds. The robust agent performs
worse than the nominal agent on average, but manages to ensure safety and attains a better worst-case
performance.

Performance failures min avg � std

Oracle 0% 11.6 14:2 � 1:3

Nominal 4% 2.8 13:8 � 2:0
Algorithm 7.1 0% 10.4 13:0 � 1:5

DQN (trained) 6% 1.7 12:3 � 2:5

with respect to the number of samples N , by comparing the empirical returns from a state xN

to the value V(xN) that the agent would get by acting optimally from xN with knowledge of

the dynamics. Although the assumptions of Theorem 7.30 are not satis�ed (e.g. non-smooth

reward), the mean suboptimality of the robust agent, shown in Figure 7.12, still decreases

polynomially with N : Algorithm 7.1 gets more e�cient as it is more con�dentwhile ensuring safety

at all times. In comparison, the nominal agent enjoys a smaller suboptimality on average, but

higher in the worst-case.

Behavioural planning for an autonomous vehicle We consider the highway-env environ-

ment for simulated driving decision problems. An autonomous vehicle with state x0 2 R4

is approaching an intersection among Nv other vehicles with states x i 2 R4, resulting in a

joint tra�c state x = [x0; : : : ; xN v]> 2 R4N v +4 . These vehicles follow parametrized behaviours

_� i = f i (x; � i) with unknown parameters � i 2 R5. We appreciate a �rst advantage of the

165

Preparing for the Worst

Figure 7.12 � The mean (solid), 95%con�dence interval for the mean (shaded) and maximum (dashed)
simple regret with respect to N .

structure imposed in Assumption 7.4: the uncertainty space of � is R5N v . In comparison, the tra-

ditional LQ setting where the whole state matrix A is estimated would have resulted in a much

larger parameter space� 2 R16N v
2
. The system dynamics f , which describes the interactions

between vehicles, can only be expressed in the form of Assumption 7.4 given the knowledge of

the desired route for each vehicle, with features � expressing deviations to the centerline of

the followed lane. Since these intentions are unknown to the agent, we adopt the multi-model

perspective of Section 7.6 and consider one model per possible route for every observed vehicle

before an intersection. In Table 7.2, we compare Algorithm 7.1 to a nominal agent planning

with two di�erent modelling assumptions: Nominal 1 has access to the true followed route for

each vehicle, while Nominal 2 does not and picks the model with minimal prediction error.

We show the multi-model rejection and robust selection procedure through the display of

several trajectory hulls for all possible destinations of the observed vehicles 7. Again we also

compare to a DQN baseline trained over 3000 episodes, causing1058� 113collisions while

training (35� 4%). As before, the robust agent has a higher worst-case performance and avoids

collisions at all times, at the price of a decreased average performance.

7A video is available at https://youtu.be/DhoJAmJDau4

166

7.7 Experiments

Figure 7.13 � The intersection crossing task. We show the trajectory intervals corresponding to be-
havioural uncertainty for each observed vehicle, and the multi-model assumption over the followed
route.

Table 7.2 � Performances on the driving task. We make the same observations as in Table 7.1.

Performance failures min avg � std

Oracle 0% 6.9 7:4 � 0:5

Nominal 1 4% 5.2 7:3 � 1:5
Nominal 2 33% 3.5 6:4 � 0:3
Algorithm 7.1 0% 6.8 7:1 � 0:3

DQN (trained) 3% 5.4 6:3 � 0:6

Chapter conclusion

We propose a framework for the robust estimation, prediction and control of a partially known

linear system. After deriving a con�dence region for the state matrix through non-asymptotic

linear regression, we design an interval predictor guaranteed to contain the induced trajectory,

and whose stability is guaranteed upon satisfaction of an LMI. We leverage these tools in two

applications. First, the robust stabilisation of the system at the origin under state and control

constraints, that we achieve with a dual MPC and feedback that both exploit the predicted

intervals. Second, the minimax control of a generic (non-quadratic) cost function, for which

we provide a tree-based planning algorithm whose predicted performance is guaranteed and

whose regret is bounded. The applicability of the method is further improved by a multi-model

extension and demonstrated on several simulated driving applications, namely: socially-aware

167

Preparing for the Worst

trajectory prediction for an observed vehicle, steering control under unknown tire friction, and

safe intersection crossing among drivers with uncertain destination and driving styles.

168

Part Conclusion

Review of our Requirements

Again, in Table 7.3 we discuss whether the methods developed in Part III address the challenges

identi�ed in Chapter 1.

Criterion Description

Social

Awareness
X In Chapters 6 and 7, the planning algorithm relies on a predictive model

_x i = f i (x; u) in which the motion of a vehicle i 2 [Nv] is coupled to that

of other vehicles x = [x0; x1; : : : xN v] in the scene, to account for driving

interactions.

Sample

E�ciency
X For model estimation, we rely in Chapter 7 on a structured parametrised

model _x = A(�)x + Bu which incorporates priors over car-like kinemat-

ics (non-holonomic) and human driving behaviours (lane following,

cruise control). The planning step can bene�t from the contributions of

Chapter 6 on optimistic tree-based planning, such as merging the states

of overlapping sampled trajectories.

Safety X Two other notions of risk were introduced in Chapter 7: �rst as a hard

constraint x 2 X; u 2 U under bounded disturbances and parametric

model uncertainty; and second, as a minimax objective that produces

risk-averse behaviours by evaluating the worst possible outcome under

said disturbances and model uncertainty.

Balance

between

safety and

e�ciency

X The conservativeness of the robust MPC algorithms of Chapter 7 can

be tuned by adjusting the con�dence level � to trade-o� the error prob-

ability with the size of the con�dence region C[N];� ; or by considering

additional modelling assumptions (A; �) in the multi-model perspec-

tive, which will increase robustness at the expense of e�ciency.

Table 7.3 � Do the methods of Part III comply with the speci�cations of Chapter 1?

169

Chapter 8

General Conclusion and Perspectives

Nos équipiers

Sur les voies

Ralentissez

Vinci Autoroutes 1

8.1 Conclusion on our contributions

In this thesis, we proposed a learning-based approach to the problem of behavioural planning

for autonomous vehicles, with a focus on scenes with several drivers interacting. Following

an in-breadth (Chapter 2), as well as in-depth (Chapter 3), initial investigation, we identi�ed

a set of key issues which make this problem challenging. We now recall these subjects, and

precise how we strived to address them both in the model-free approach of Part II and the

model-based approach of Part III.

Coupled social dynamics In dense tra�c, the dynamics of distinct vehicles are locally cou-

pled, due to how drivers react and adapt to their surroundings. Consequently, predicting the

course or acting in a driving scene requires a social awarenessskill: the ability to accurately

understand and exploit these couplings. In Chapter 4, this function was performed by a social

attentionmechanism in the policy architecture, which enables the agent to �lter out irrelevant

objects from a complex driving scene and retain only those that represent a risk of collision. In

Chapter 5, this coupling was made explicit by describing the motion of a vehicle i through a

dynamical model _x i = f i (x) taking the whole tra�c state x as input.

1Writings collected by @pooredward.

171

General Conclusion and Perspectives

Uncertainty due to human drivers Another critical di�culty lies in the uncertainty of human

behaviours. In RL, the traditional approach to account for uncertainty is to incorporate stochas-

ticity in the system dynamics, as we did in Chapter 5 where the objectives are formulated

in terms of expectedrewards and costs. Incidentally, we also observed in Chapter 4 that our

attention-based architecture is highly sensitive to ambiguous and disambiguated information,

such as vehicles' destinations. In Chapter 7 however, we adopted another view and assumed

that the dynamics were (close to) deterministic, but dependent on some unknownparameters

�both continuous and discrete� that could be estimated along the way.

Safety To deal with this uncertainty, we studied three models of safety. In Chapter 5, following

the CMDP framework, we formalised risk as the expected discounted sum of an additional

cost signalC(s; a) �separate from the rewards R(s; a)� constrainedto remain below a threshold

� . In Chapter 7, we introduced a novel interval predictorallowing us to bound the set of

reachable trajectories given the current parametric uncertainty over the dynamics, which

required circumventing the instability of previous methods. This enabled us to cast safety as a

robust stabilisationand constraint satisfactionproblem, ensuring that the system stays at all time

within a safe space X � U. Finally, to go beyond stabilisation problems, we considered a third

formalisation of safety as a worst-caseoutcome, and proposed an algorithm for the minimax

control of a genericreward function R(s; a). In addition to being tractable, each component

of this algorithm is theoretically grounded, allowing us to obtain an end-to-end guarantee

that the best performance predicted during planning is achievable on the underlying system,

as well as the �rst regret bound in this setting, extending the state-of-the-art so far limited to

quadratic costs.

Trade-o� between safety and e�ciency As we just saw, safety is always de�ned with respect

to some admissibleuncertainty. The larger the set of scenarios one is willing to consider and

protect against, the more conservative they need to be to ensure safety. In particular, situations

that require interacting with other agents are always susceptible to lead to accidents, when

considering (unlikely) adversarial scenarios. In that sense, absolute safety is not achievable, or

only at the cost of usability. To strike the right level of safety, we need to consider the right level

of uncertainty, the right set of possible outcomes. In Chapter 7, the size of this ambiguity set is

controlled by adjusting the con�dence level � for continuous parameters (e.g.driving style),

and by adding or removing (A; �)-modelling assumptions from the multi-model extension,

for discrete parameters (e.g.potential destinations or lanes for a vehicle). In Chapter 5, we

embrace this trade-o� even more explicitly. Rather than trying to adjust the scope and size of

the uncertainty, we instead directly control its in�uence on both the e�ciency of the policy

(rewards) and its safety (costs), by training a budgetedpolicy � that takes as input the desired

172

8.2 Outstanding issues and perspectives

level of risk � . While this setting was previously studied for �nite states and known dynamics

only, we extended it to continuous states and unknown dynamics.

Sample e�ciency As for most reinforcement learning problems, we were also concerned

about minimising the number of samples required to reach optimality. To that end, we ex-

ploited the speci�cities and structures of the behavioural planning problem in several ways.

In Chapter 4, we embedded an inductive bias into the policy architecture by enforcing its

invariance to permutations of the scene description, and observed that this fastens learning. In

Chapter 7, some structure was similarly imposed �on the dynamics model this time� in the

form of a parametrised linear model, which allowed to reduce the dimension of the hypothesis

space signi�cantly. We were also able to provide a bound on the simple regret relating the agent

performance to the number of observed transition samples. In Chapter 6, we looked into the

sample e�ciency of the planning procedure, and speci�cally tree-based planning algorithms.

First, in the case of stochastic dynamics representing human behaviours, we proposed a modi-

�cation of the OLOPalgorithm that improves its empirical sample complexity by an order on

magnitude, while retaining its theoretical guarantees. Second, we showed that merging similar

nodes in the lookahead tree enables to decrease the near-optimal branching factor featured in

the regret bound of the algorithm. This translated into substantial empirical improvements in

simple path planning tasks, where distinct sequences of actions lead to overlapping trajectories.

8.2 Outstanding issues and perspectives

In this section, I will adopt a more personal and subjective standpoint, and discuss which are

the main barriers between research and industrialisation. Indeed, though we never intended

for this thesis to lead directly to practical applications, they remain the long term goal that

motivates our work, and I must now examine our contributions again in this light.

A �rst and general concern of mine is that, beside the warm comfort of the well-behaved

theoretical frameworks in which we place ourselves, the sheer complexity of the real world

can be overwhelming. While any single aspect � partial observability, temporal abstraction, non-

stationarity, risk aversion, you name it� can be isolated and studied independently, the question

of how to merge all these approaches into one single integrated product seems arduous, if not

hopeless. Yet, any candidate algorithm not addressing any of these issues would be un�t for

deployment. In the sequel, I will not be so ambitious but re�ect instead on a more reasonable

question: are the methods that we developed suitable for a real-world application?

Reinforcement Learning in continuous states Let us start with our work in Part II. Follow-

ing a model-free perspective with continuous states, we resorted to function approximation

173

General Conclusion and Perspectives

using neural networks. Unfortunately, Deep Learning interacts with Reinforcement Learning

algorithms in ways that are yet to be understood, but already infamous for their brittleness. In

Chapter 4, even our best policies still su�er a prohibitive rate of collisions of 6 %, considerably

higher than the required performances. As we discussed, this may be attributed to the reward

function that would not penalise collisions enough, but reward engineering is tedious and

might in turn lead to over-conservative policies. The budgeted approaches of Chapter 5 were

meant to address this issue, but at the price of increased complexity, and our negative result

of Theorem 5.9 raises concerns about convergence in the general case. Another weakness lies

in our use of a very naive exploration policy: the "-greedy, which takes random actions at a

�xed frequency, a strategy widely considered ine�cient and damaging, yet one that we had

no choice but to resort to in the absence of a better solution. Guided exploration strategies

tailored for regret minimisation, and especially following the OFU principle, have been studied

in the context of �nite state-action spaces (Auer, Jaksch, and Ortner, 2009; Azar, Osband, and

Rémi Munos, 2017). These methods typically require the ability to count the number of state

visits, which is not suitable for continuous states. The question of how they can be extended

thus constitutes a promising research perspective. First steps have recently been made in that

direction, by either relying on approximated pseudo-counts(Tang et al., 2017), or by deriving

similar regret bounds under linear function approximation (Jin et al., 2020).

Trial without error? Assume for a moment that the research community was able to solve the

aforementioned problem and came up with exciting new algorithms for continuous state space

with promising regret bounds. There remains an inevitable and fatal limitation: the foundations

of Reinforcement Learning are intrinsically based on trial and error. Unfortunately, this is not an

acceptable paradigm for the development of safety-critical problems such as Autonomous

Driving. For reference, when we applied the model-free methods of Part II to very simple

tasks, they converged in about 50k interaction samples, which represents about 15 h of driving,

throughout which the agents experienced about two thousand collisions. More generally,

having vehicles exploringon the roads among human drivers is morally inconceivable. Is there

any chance at all to come up with a learning algorithm that does not require causing accidents

while training?

Safety guarantees As a �rst candidate, the line of work on safecontrol is committed to

developing algorithms that are guaranteed never to reach an unsafe state, or with a provably

bounded probability of failure. Likewise, in Chapter 7, we managed to obtain some theoretical

guarantees: a robust constraint satisfaction result, and a lower-bound on the worst-case outcome,

that increases towards near-optimal performance with the number of samples. However, it is

evident that these results are only worth as much as their underlying assumptions, which may

turn out to be: very little. Indeed, it seems dubious that the complexity of human behaviours

174

8.2 Outstanding issues and perspectives

can be accurately described by linear dynamics Assumption 7.4, and our own proposed system

largely overlooks vast areas of the driving task. With Assumption 7.24, the safe region X cannot

be chosen freely, but must contain the basin of attraction Xf whose size grows with uncertainty.

Finally, the assumptions of Theorem 7.30 do not hold even in our simple simulations: the

behaviours of observed vehicles are not persistently excited (i.e. continually changing lanes,

or braking behind some vehicle), and the reward function is discontinuous. More generally,

safety analyses can never protect against unmodeled events, such as a tree or a package falling

down the road. Yet, having to model the world in its full complexity is daunting, especially

since theoretical analysis imposes an additional constraint on the modelling e�ort, often at the

expense of empirical performance. Fortunately, all is not bleak and it has been observed in

numerous occasions that even when the guarantees do not hold, the founding principles of

an algorithm can lead to designs that still exhibit the desired properties. Beside this issue of

the practical validity of theoretical assumptions, it seems to me that none of the most popular

safety frameworks is really suitable for AD. First, the ubiquitous concept of stabilisation does

not really apply to a task of motion planning amidst other vehicles, for which there is no

obvious equilibrium state. Second, the robust constraint satisfaction paradigm may be more

relevant if the constraint space X could be de�ned as the collision-free space, but that space is

non-convex which is not handled by most algorithms, e.g.in the Tube MPC family. Third, the

minimax setting where worst-case outcomes are considered can become worthless in situations

of large uncertainty where any decision can possibly result in a collision. In that case, the loss

of sensitivity to probabilities caused to the min formulation means that decisions that are less

likely to lead to a collision will not even be preferred to those that are more likelyto do so. This

ability requires to replace the worst-case evaluation by a more sophisticated measure of the

outcomes distribution, such as the VaR or CVaR. This perspective seems a promising research

direction to me, since to my knowledge no algorithm achieves guaranteed performance for

these risk measures with continuous states, but it is also presumably a very demanding one.

Simulation and beyond? Another enticing way to avoid trial-and-error in the real world

is to rely on simulation. Of course, the e�ort of modelling a complex world remains, but

dropping the analysability requirement relaxes the modelling constraints. We can safely expect

that simulations will continue to play an increasingly signi�cant part in AD technologies, for

both o�ine pre-training and online planning. This can be the occasion to divert our research

e�orts from the traditional regret minimisation objective, which is groundless in a simulated

environment where failures are free but samples are costly. In contrast, a promising research

direction is the study of the more appropriate pure explorationsetting, which aims at relating

the policy suboptimality to the number of samples used. I already took part in collaborations

exploring this direction (Jonsson et al., 2020; Kaufmann, Ménard, et al., 2020; Ménard et al.,

2020) and hope to pursue this path further. Finally, relying on simulation introduces the

175

General Conclusion and Perspectives

additional question of how to adapt knowledge from simulation to the real world. A �ne-

tuning training process in real conditions would involve experiencing real failures again, though

hopefully in reduced numbers, which could be realistic under human interventions (Saunders

et al., 2018; Kendall et al., 2019). Another path of interest to me could be to leverage o�ine RL

methods (Thomas, Theocharous, and Ghavamzadeh, 2015; Laroche, Trichelair, and Combes,

2019), that could enable to safely improve pre-trained policies using real driving data, especially

around nominal states that can be con�dently estimated.

176

Appendix A

The highway-env software

Contents
A.1 General presentation . 177

A.2 Outreach . 180

A.1 General presentation

highway-env is a collection of environments for behavioural planning tasks in autonomous

driving.

Each environment speci�es a full MDP to describe a particular decision-making problem

that an autonomous vehicle may face.

Origins When I started my Ph.D., there existed more ambitious open-source simulators that

relied on heavy physics engines and 3D graphics, such as TORCS (Wymann et al., 2015), Airsim

(Shah et al., 2017) and CARLA (Dosovitskiy et al., 2017). However, those were better suited

for low-level sensing and control, e.g.training of visuomotor policies in a single-agent setting.

On the other hand of the spectrum, SUMO (Lopez et al., 2018) was rather meant for high-scale

tra�c optimisation and lacked details and �exibility on local dynamics. In contrast, I needed a

simulator focused on high-level decisions and vehicle-to-vehicle interactions. Consequently, I

launched highway-env with the intent of having a minimalist simulator, implemented fully in

Python for fast prototyping and easy interfacing with RL libraries.

Usage We show below a basic use of highway-env , with a code snipped showing the inter-

action between the environment, which generates observations and rewards, and the agent

which provides actions according to its policy.

177

The highway-env software

import gym

import highway_env

env = gym. make(' highway � v0 ')

done = Fa lse

while not done :

ac t i on = . . . # Your agent code here

obs , reward , done , in fo = env . s tep (ac t i on)

env . render ()

Listing A.1 � Create, step and render the highway-v0 environment.

The environments To this day, highway-env comes with six di�erent scenes, con�gured with

suitable observation spaceS, action spaceA and reward function R, illustrated in Table A.1.

ˆ Highway. The vehicle is driving on a highway populated with other drivers. The goal

is to drive as fast as possible while avoiding collisions with other vehicles, through a

discrete meta-action space of manoeuvres.

ˆ Merge. The task is similar to highway-v0 , but a vehicle is incoming from an access ramp

and must be able to merge successfully in tra�c. To that end, the ego-vehicle must change

lane or adapt its velocity so that the merging vehicle has su�cient space. This task is

inspired by a practical use case for ADAS systems at Renault.

ˆ Roundabout. The vehicle must cross a roundabout as fast as possible while avoiding

collisions. It requires reasoning about the uncertain destinations of other vehicles.

ˆ Intersection. This environment is similar to roundabout, but with an increased density

of vehicles and types of con�icts. Only the throttle is controlled, and the steering is

performed automatically to track the ego-vehicle destination.

ˆ Parking. A goal-conditioned continuous control environment: the desired parking spot

location is part of the observation, and the ego-vehicle must plan cusp-shaped manoeuvres

to reach it with the proper heading.

ˆ Two-way. This environment is similar to highway, except that the ego-vehicle can change

to a lane facing the opposite direction, with incoming vehicles. This enables to highlight

an e�ciency-safety trade-o� for risk-sensitive decision-making.

Features Several parts of the environment can be con�gured.

178

A.1 General presentation

(a) Highway (b) Merge

(c) Roundabout (d) Intersection

(e) Parking

(f) Two-way

Table A.1 � The di�erent environments available in highway-env .

ˆ Observations. Several types of observations are available, such as thelist of featuresand

occupancy griddescribed in Chapter 4. Other types include RGB images, time-to-collision

maps, and goal locations.

ˆ Actions. In addition to the discrete meta-action space A described in Chapter 3, a contin-

uous spaceA = R2 for throttle and steering can also be selected.

ˆ Dynamics. Other vehicles can follow the IDM and MOBIL behavioural models as de-

scribed in Chapter 3 or its linearised version of Section 7.3. The ego-vehicle can be

controlled with either the Kinematic Bicycle Model as in Chapter 3 or the Dynamic

Bicycle Model as in Section 7.4.

179

The highway-env software

ˆ Rewards. The rewards and penalties associated with speed or collisions are con�gurable.

ˆ Graphics. Graphics are rendered using the pygame library, window size and resolution

can be con�gured.

Development process The project closely follows the insights of Chapter 3 in its de�nition of

the tra�c state, actions, dynamics, and rewards. See the user guide in the documentation for

more details.

It also complies by the OpenAI gym standard interface for RL environments. Continuous

integration (CI) is performed with pytest unit tests automatically triggered with GitHub actions.

The documentation is built from the source code comments using Sphinx, and hosted on Read

the Docs. Finally, multiple examples can be run directly from the browser through Google

Colab notebooks.

A.2 Outreach

In this section, we document the dissemination of the library among several communities.

A.2.1 Academia

We highlight that several researchers have reported using or referred to highway-env in their

publications and submissions:

ˆ Minne Li, Lisheng Wu, Jun WANG, and Haitham Bou Ammar (Dec. 2019). Multi-View

Reinforcement Learning. In Advances in Neural Information Processing Systems 32. Ed. by H.

Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett. Vancouver,

BC, Canada: Curran Associates, Inc., pp. 1420�1431

ˆ Yaodong Yang, Rasul Tutunov, Phu Sakulwongtana, and Haitham Bou-Ammar (May

2020). � � -Rank: Practically Scaling � -Rank through Stochastic Optimisation. In Pro-

ceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems,

AAMAS '20, Auckland, New Zealand, May 9-13, 2020. Ed. by Amal El Fallah Seghrouchni,

Gita Sukthankar, Bo An, and Neil Yorke-Smith. Auckland, New-Zealand: International

Foundation for Autonomous Agents and Multiagent Systems, pp. 1575�1583

ˆ Sriram N N, Buyu Liu, Francesco Pittaluga, and Manmohan Chandraker (Aug. 2020).

SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction. In 16th European

Conference on Computer Vision (ECCV 2020). Glasgow, United Kingdom

180

A.2 Outreach

ˆ Mengdi Xu, Wenhao Ding, Jiacheng Zhu, Zuxin Liu, Baiming Chen, and Ding Zhao

(2020). Task-Agnostic Online Reinforcement Learning with an In�nite Mixture of Gaussian

Processes. preprint

ˆ Xiaoteng Ma, Li Xia, Zhengyuan Zhou, Jun Yang, and Qianchuan Zhao (June 2020).

DSAC: Distributional Soft Actor Critic for Risk-Sensitive Reinforcement Learning. In

Reinforcement Learning for Real Life Workshop at ICML 2019. Long Beach, CA, USA

ˆ Jincheng Mei, Yangchen Pan, Martha White, Amir-massoud Farahmand, and Hengshuai

Yao (2020). Beyond Prioritized Replay: Sampling States in Model-Based RL via Simulated

Priorities. preprint

ˆ Haifeng Zhang et al. (Feb. 2020). Bi-level Actor-Critic for Multi-agent Coordination. In

Proceedings of the AAAI Conference on Arti�cial Intelligence. Vol. 34. 05. New York, pp. 7325�

7332

ˆ Angelos Mavrogiannis, Rohan Chandra, and Dinesh Manocha (2020). B-GAP: Behavior-

Guided Action Prediction for Autonomous Navigation. preprint.

ˆ Ming Zhou et al. (Nov. 2020). SMARTS: Scalable Multi-Agent Reinforcement Learning

Training School for Autonomous Driving. In Conference on Robot Learning (CoRL)

ˆ Justin K. Terry et al. (2020). PettingZoo: Gym for Multi-Agent Reinforcement Learning.

preprint.

ˆ Parv Kapoor, Anand Balakrishnan, and Jyotirmoy V. Deshmukh (2020). Model-based

Reinforcement Learning from Signal Temporal Logic Speci�cations. preprint.

ˆ S. Zhang, Y. Wu, and H. Ogai (Sept. 2020). Spatial Attention for Autonomous Decision-

making in Highway Scene. In 59th Annual Conference of the Society of Instrument and Control

Engineers of Japan (SICE). Chiang Mai, Thailand, pp. 1435�1440

ˆ Jincheng Mei, Yangchen Pan, Martha White, Amir-massoud Farahmand, and Hengshuai

Yao (2020). Beyond Prioritized Replay: Sampling States in Model-Based RL via Simulated

Priorities. preprint

Additionally, we use it in most of our own publications:

ˆ Edouard Leurent, Yann Blanco, Denis E�mov, and Odalric-Ambrym Maillard (Dec. 2018).

Approximate Robust Control of Uncertain Dynamical Systems. In Machine Learning

for Intelligent Transportation Systems Workshop at the Thirty-second Conference on Neural

Information Processing Systems (NeurIPS 2018). Montreal, Canada

181

The highway-env software

ˆ Edouard Leurent, Denis E�mov, Tarek Raissi, and Wilfrid Perruquetti (Dec. 2019). Inter-

val Prediction for Continuous-Time Systems with Parametric Uncertainties. In 2019 IEEE

58th Conference on Decision and Control (CDC). Nice, France, pp. 7049�7054

ˆ Edouard Leurent and Jean Mercat (Dec. 2019). Social Attention for Autonomous Decision-

Making in Dense Tra�c. In Machine Learning for Autonomous Driving Workshop at the

Thirty-third Conference on Neural Information Processing Systems (NeurIPS 2019). Montreal,

Canada

ˆ Nicolas Carrara, Edouard Leurent, Romain Laroche, Tanguy Urvoy, Odalric-Ambrym

Maillard, and Olivier Pietquin (Dec. 2019). Budgeted Reinforcement Learning in Con-

tinuous State Space. InAdvances in Neural Information Processing Systems 32. Ed. by H.

Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett. Curran

Associates, Inc., pp. 9299�9309

ˆ Edouard Leurent and Odalric-Ambrym Maillard (Sept. 2020b). Practical Open-Loop

Optimistic Planning. In European Conference on Machine Learning and Knowledge Discovery

in Databases. Ed. by Ulf Brefeld, Elisa Fromont, Andreas Hotho, Arno Knobbe, Marloes

Maathuis, and Céline Robardet. Würzburg, Germany: Springer International Publishing,

pp. 69�85

ˆ Edouard Leurent, Denis E�mov, and Odalric-Ambrym Maillard (Dec. 2020b). Robust-

Adaptive Interval Predictive Control for Linear Uncertain Systems. In 2020 IEEE 59th

Conference on Decision and Control (CDC). Jeju Island, Republic of Korea

ˆ Edouard Leurent, Denis E�mov, and Odalric-Ambrym Maillard (Dec. 2020a). Robust-

Adaptive Control of Linear Systems: beyond Quadratic Costs. In Advances in Neural

Information Processing Systems 33. Virtual

Finally, the highway-env library is featured in the documentation and examples of two of the

most famous libraries in the RL ecosystem:

ˆ OpenAI Gym, a standard interface for comparing RL algorithms. highway-env is men-

tioned in the list of environments.

ˆ Stable Baselines, a set of improved implementations of RL algorithms based on OpenAI

Baselines.highway-env is used as an example in the documentation.

A.2.2 Education

Since the publication of highway-env , many masters students have contacted me throughout the

years, and reported using the simulator for their �nal project of in various courses, occasionally

182

A.2 Outreach

upon suggestion by their professor. I did not keep track of all these exchanges, but as a trace of

this activity, see:

ˆ the list of issues opened in highway-env .

ˆ the list of issues opened in rl-agents .

A.2.3 Industry

Several engineers, mainly from the Automotive industry, have demonstrated interest in highway-

env, either by reaching out to me directly or by developing their own project on top of the

library. To name a few,

ˆ Simon Chauvin, Machine Learning Engineer at Autonomous Driving at ESR Labs GmbH,

who contacted me to reproduce my results.

ˆ Clément Huber, Product Owner in the Path Planning team at NAVYA Group, and Lucas

Boyer, intern in that team, contacted me on several occasions to discuss the internship of

Lucas based onhighway-env and openai/baselines.

ˆ Munir Jojo-Verge, Motion Planning and Decision Making Manager at Amazon Robotics,

who wrote to me regarding his extension of highway-env to continuous actions, see his

fork which lead to the addition of the parking-v0 environment.

ˆ Craig Quiter, Founder of Deepdrive at Voyage, who mentioned that his recent work was

inspired by highway-env and with whom I had the pleasure to discuss.

ˆ Pinaki Gupta, Behaviour Planning architect at Lucid Motors, see his fork that features

variants of the two-way-v0 and parking-v0 environments augmented with additional

vehicles and multiple goals.

ˆ Guillaume Alleon, Head of AI research at Airbus, see his fork.

ˆ Boris Yangel, Principal Software Engineer at Yandex, see his project.

183

Appendix B

Complements on Chapter 5

B.1 Proofs

B.1.1 Proof of Proposition 5.4

Proof. Thanks to the introduction of the augmented spaces S; A and dynamics P, this proof is

the same as that in classical MOMDPs.

V � (s) =� E
h
G�

�
�
� s0 = s

i

=
X

a2 A

P(a0 = a j s0 = s) E
h
G�

�
�
� s0 = s;a0 = a

i

=
X

a2 A

� (ajs)Q� (s;a):

Q� (s;a) =� E

" 1X

t=0

 t R(st ; at)

�
�
�
�
�

s0 = s;a0 = a

#

= R(s;a) +
X

s02 S

P
�
s1 = s0 �

� s0 = s;a0 = a
�

� E

" 1X

t=1

 t R(st ; at)

�
�
�
�
�

s1 = s0

#

= R(s;a) +
X

s02 S

P
�
s0 �

� s;a
�

E

" 1X

t=0

 t R(st ; at)

�
�
�
�
�

s0 = s0

#

= R(s;a) +
X

s02 S

P
�
s0 �

� s;a
�

V � (s0):

185

Complements on Chapter 5

Contraction of T � . Let � 2 � ; Q1; Q2 2 (R2)SA .

8s 2 S; a 2 A ;
�
�
�T

� Q1(s;a) � T � Q2(s;a)
�
�
� =

�
�
�
�
�
�
�
�

 E
s0� P (s0js;a)
a0� � (a0js0)

Q1(s0; a0) � Q2(s0; a0)

�
�
�
�
�
�
�
�

�

 Q1 � Q2

1
:

Hence,

 T � Q1 � T � Q2

1
�

 Q1 � Q2

1

According to the Banach �xed point theorem (Banach, 1922), T � admits a unique �xed

point. It can be easily veri�ed that Q� is indeed this �xed point by combining the two Bellman

Expectation equations (5.6).

B.1.2 Proof of Theorem 5.6

Proof. Let s;a 2 A� S. For this proof, we consider potentially non-stationary policies � = (�; � 0),

with � 2 M (A), � 0 2 M (A)N. The results will apply to the particular case of stationary optimal

policies, when they exist.

Q?
r (s;a) = max

�; � 0
Q�; � 0

r (s0; a0) (B.1)

= max
�; � 0

R(s; a) +
X

s02 S

P(s0js; a)V �; � 0

r (s0) (B.2)

= R(s; a) +
X

s02 S

P(s0js; a) max
�; � 0

X

a02 A

� (a0js0)Q� 0

r (s0; a0) (B.3)

= R(s; a) +
X

s02 S

P(s0js; a) max
�

X

a02 A

� (a0js0) max
� 02 � a (s0)

Q� 0

r (s0; a0) (B.4)

= R(s; a) +
X

s02 S

P(s0js; a) max
�

E
a0� �

Q?
r (s0; a0) (B.5)

where � = (�; � 0) 2 � a(s) and � 0 2 � a(s0).

This follows from:

(B.1). De�nition of Q?.

(B.2). Bellman Expectation expansion from Proposition 5.4.

(B.3). Marginalisation on a0.

(B.4). ˆ Trivially max� 02 � a (s0)
P

a02 A � �
P

a02 A max� 02 � a (s) �.

186

B.1 Proofs

ˆ Let � 2 arg max� 02 � a (s0) Q� 0

r (s0; a0), then:

X

a02 A

� (a0js0) max
� 02 � a (s0)

Q� 0

r (s0; a0) =
X

a02 A

� (a0js0)Q� 0

r (s0; a0)

� max
� 02 � a (s0)

X

a02 A

� (a0js0)Q� 0

r (s0; a0):

(B.5). De�nition of Q?.

Moreover, the condition � = (�; � 0) 2 � a(s) gives

E
a0� �

Q?
c(s;a) = E

a0� �
Q� 0

c (s;a) = V �
c (s) � �:

Consequently, � greedy(�; Q?) belongs to the arg max of (B.5), and in particular:

Q?
r (s;a) = r (s;a) +

X

s02 S

P(s0js; a) E
a0� � greedy(s0;Q

?
)
Q?

r (s0; a0):

The same reasoning can be made forQ?
c by replacing max operators by min, and � a by

� r .

B.1.3 Proof of Proposition 5.8

Proof. Notice from the de�nitions of T ? and T � in (5.12) and (5.7) that T ? and T � greedy(�;Q
?
)

coincide on Q?. Moreover, since Q? = T ?Q? by Theorem 5.6, we have: T � greedy(�;Q
?
)Q? =

T ?Q? = Q?. Hence,Q? is a �xed point of T � greedy(�;Q
?
) , and by Proposition 5.4 it must be equal

to Q� greedy(�;Q
?
)

To show the same result for V ?, notice that

V � greedy(Q
?
) (s) = E

a� � greedy(Q
?
)
Q� greedy(Q

?
) (s;a) = E

a� � greedy(Q
?
)
Q?(s;a):

By applying the de�nitions of Q? and � greedy, we recover the de�nition of V ?.

B.1.4 Proof of Theorem 5.9

Proof. In the trivial case jAj = 1 , there exits only one policy � and T = T � , which is a contraction

by Proposition 5.4.

In the general casejAj � 2, we can build the following counter-example.

187

Complements on Chapter 5

Figure B.1 � Representation of Q
1
" (blue) and Q

2
" (yellow)

Let (S; A ; P; Rr ; Rc) be a BMDP. For any " > 0, we de�ne Q1
" and Q2

" as

Q1
" (s;a) =

8
<

:

(0; 0); if a = a0
�

1
 ; "

�
; if a 6= a0

Q2
" (s;a) =

8
<

:

(0; "); if a = a0
�

1
 ; 2"

�
; if a 6= a0

Then, kQ1 � Q2k1 = ". Q1
" and Q2

" are represented in Figure B.1.

But for a = (a; � a) with � a = ", we have

kT Q1
" (s;a) � T Q2

" (s;a)k1 =

E
s0� P (s0js;a)

E
a0� � greedy(Q

1
")

Q1
" (s0; a0) � E

a0� � greedy(Q
2
")

Q2
" (s0; a0)

1

=

E
s0� P (s0js;a)

�
1

; "
�

� (0; ")

1

=
1

= 1

Hence,

kT Q1
" � T Q2

" k1 � 1 =
1
"

kQ1 � Q2k1

In particular, there does not exist L > 0 such that

8Q1; Q2 2 (R2)SA ; kT Q1 � T Q2k1 � LkQ1 � Q2k1

188

B.1 Proofs

In other words, T is not a contraction for k � k1 .

B.1.5 Proof of Theorem 5.10

Remark B.1. This proof makes use of insights detailed in the proof of Proposition 5.11 (Sec-

tion B.1.6), which we recommend the reader to consult �rst.

Proof. We now study the contractivity of T ? when restricted to the functions of L de�ned as

follows:

L =

(
Q 2 (R2)SA s.t. 9L < 1

 � 1 : 8s 2 S; a1; a2 2 A;

jQr (s;a1) � Qr (s;a2)j � L jQc(s;a1) � Qc(s;a2)j

)

: (B.6)

That is, for all state s, the setQ(s;A) plot in the (Qc; Qr) plane must be the graphof a L-Lipschitz

function, with L < 1= � 1.

We impose such structure for the following reason: the counter-example presented above

prevented contraction because it was a pathological case in which the slope of Q can be arbitrary

large. As a consequence, when solvingQ?
r such that Q?

c = � , a vertical slice of a k � k1 ball

around Q1 (which must contain Q2) can be arbitrary large as well.

We denote Ball(Q; R) the ball of centre Q and radius R for the k � k1 -norm:

Ball(Q; R) = f Q0 2 (R2)SA : kQ � Q0k1 � Rg:

We give the three main steps required to show that T ? restricted to L is a contraction.

Given Q1; Q2 2 L , show that:

1. Q2 2 Ball(Q1; R) =) F 2 2 Ball(F 1; R); 8s 2 S, where F is the top frontier of the convex

hull of undominated points, as de�ned in Section B.1.6.

2. Q 2 L =) F is the graph of a L-Lipschitz function, 8s 2 S.

3. taking the slice Qc = � of a ball Ball(F ; R) with F L-Lipschitz results in an interval on

Qr of range at most (L + 1) R

These three steps will allow us to control Q2?
r � Q1?

r as a function of R = kQ2 � Q1k1 .

Step 1 We want to show that if Q1 and Q2 are close, thenF 1 are F 2 are close as well in the

following sense:

F 2 2 Ball(F 1; R) () d(F 1; F 2) � R () max
q22F 2

min
q12F 1

kq2 � q1k1 � R: (B.7)

189

Complements on Chapter 5

Assume Q2 2 Ball(Q1; R), we show by contradiction that F 2 2 Ball(F 1; R). Indeed, assume

there existsq1 2 F 1 such that F 2 \ Ball(q1; R) = ; . Denote q2 the unique point of F 2 such that

q2
c = q1

c . By construction of q1, we know that kq1 � q2k1 > R . There are two possible cases:

ˆ q2
r > q1

r : this also directly implies that q2
r > q1

r + R. But q2 2 F 2, so there existq2
1; q2

2 2

Q2; � 2 R such that q2 = (1 � �)q2
1 + �q 2

2. But since Q2 2 Ball(Q1; R), there also exist

q1
1; q1

2 2 Q1 such that kq1
1 � q2

1k1 � R and kq1
2 � q2

2k1 � R, and in particular q1
1r � q2

1r � R

and q1
2r � q2

2r � R. But then, the point q10
= (1 � �)q1

1 + �q 1
2 with � = (q2

c � q1
1c)=(q2

2c � q1
1c)

veri�es q10

c = q1
c and q10

r � q2
r � R > q 1

r which contradicts the de�nition of q1 2 F 1 as

de�ned in (B.12).

ˆ q2
r < q1

r : then the same reasoning can be applied by simply swapping the indexes 1 and 2.

We have shown that F 2 2 Ball(F 1; R). This is illustrated in Figure B.2: given a function Q1,

we show the locus Ball(Q1; R) of Q2. We then draw F 1 the top frontier of the convex hull of Q1

and alongside the locus of all possible F 2, which belong to a ball Ball (F 1; R).

Figure B.2 � We represent the range of possible solutions Q2?
r for any Q

2
2 Ball(Q

1
), given Q1 2 L �

Step 2 We want to show that if Q 2 L , F is the graph of an L-Lipschitz function:

8q1; q2 2 F ; jq2
r � q1

r j � j q2
c � q1

c j: (B.8)

Let Q 2 L and s 2 S, F the corresponding top frontier of convex hull. For all q1; q2 2

F ; 9�; � 2 [0; 1]; q11; q12; q21; q22 2 Q(s;A) such that q1 = (1 � �)q11+ �q 12 and q2 = (1 � �)q21+

�q 22. Without loss of generality, we can assume q11
c � q12

c and q21
c � q22

c . We also consider the

worst case in terms of maximum qr deviation: q12
c � q21

c . Then the maximum increment q2
r � q1

r

190

B.1 Proofs

is:

kq2
r � q1

r k � k q12
r � q1

r k + kq21
r � q12

r k + kq2
r � q21

r k

= (1 � �)kq12
r � q11

r k + kq21
r � q12

r k + � kq22
r � q21

r k

� (1 � �)Lkq12
c � q11

c k + Lkq21
c � q12

c k + �L kq22
c � q21

c k

= Lkq12
c � q1

ck + Lkq21
c � q12

c k + Lkq2
c � q21

c k

= Lkq2
c � q1

ck:

This can also be seen in Figure B.2: the maximum slope of theF 1 is lower than the maximum

slope between two points of Q1.

Step 3 Let F1 be a L-Lipschitz set as de�ned in (B.8) , and consider a ball Ball(F1; R) around

it as de�ned in (B.7).

We want to bound the optimal reward value Q2?
r under constraint Q2?

c = � (regular case

in Section B.1.6 where the constraint is saturated), for any F 2 2 Ball(F1; R). This quantity is

represented as a red double-ended arrow in Figure B.2.

Because we are only interested in what happens locally at Qc = � , we can zoom in on

Figure B.2 and only consider a thin " -section around � . In the limit " ! 0, this section becomes

the tangent to F 1 at Q1
c = � . It is represented in Figure B.3, from which we derive a geometrical

proof:

Figure B.3 � We represent a section [� � "; � + "] of F 1 and Ball(F 1; R). We want to bound the range of
Q2?

r :

� Q2?
r = b+ c

� La + c (F 1 L-Lipschitz)

191

Complements on Chapter 5

= 2LR + 2R = 2R(L + 1) :

Hence,

jQ2?
r � Q1?

r j �
� Q2?

r

2
= R(L + 1)

and Q1?
c = Q2?

c = � . Consequently, kQ2? � Q1?k1 � (L + 1) R.

Finally, consider the edge case in Section B.1.6: the constraint is not active, and the optimal

value is simply arg maxq2F qr . In particular, since we showed that F 2 2 Ball(F 1; R), and since

Q2? 2 F 2, there exist q1 2 F 1 : kQ2? � q1k1 � R and in particular Q1?
r � q1

r � Q2?
r � R.

Reciprocally, by the same reasoning,Q2?
r � Q1?

r � R. Hence, we have that jQ2?
r � Q1?

r j � R �

R(L + 1) :

Wrapping it up We have shown that for any Q1; Q2 2 L , and all s 2 S, F 2 2 Ball(F 1; kQ2 �

Q1k1) and F 1 is the graph of a L-Lipschitz function with L < 1= � 1. Moreover, the solutions

of � greedy(Q1) and � greedy(Q2) at s are such that kQ2? � Q1?k1 � (L + 1) kQ2 � Q1k1 .

Hence, for all a,

kT ?Q1(s;a)� T ?Q2(s;a)k1

=

E
s0� P (s0js;a)

E
a0� � greedy(Q

1
)
Q1(s0; a0) � E

a0� � greedy(Q
2
)
Q2(s0; a0)

1

=

 Q2? � Q1?

1

� (L + 1) kQ2 � Q1k1 :

Taking the sup on SA,

kT ?Q1 � T ?Q2k1 � (L + 1) kQ1 � Q2k1

with (L + 1) < 1. As a conclusion, T ? is a (L + 1) -contraction on L .

B.1.6 Proof of Proposition 5.11

De�nition B.2. LetA be a set, andf a function de�ned onA. We de�ne

ˆ the convex hull ofA: C(A) = f
P p

i =1 � i ai : ai 2 A; � i 2 R+ ;
P p

i =1 � i = 1 ; p 2 Ng;

ˆ the convex edges ofA: C2(A) = f �a 1 + (1 � �)a2 : a1; a2 2 A; � 2 [0; 1]g;

ˆ Dirac distributions ofA: � (A) = f � (a � a0) : a0 2 Ag;

192

B.1 Proofs

ˆ the image ofA by f : f (A) = f f (a) : a 2 Ag.

Proof. Let s = (s; �) 2 S and Q 2 (R2)SA . We recall the de�nition of � greedy:

� greedy(ajs; Q) 2 arg min
� 2 �

Q
r

E
a� �

Qc(s;a) (5.13a)

where �
Q
r = arg max

� 2M (A)
E

a� �
Qr (s;a) (5.13b)

s.t. E
a� �

Qc(s;a) � � (5.13c)

Note that any policy in the arg min in (5.13a) is suitable to compute T ?. We �rst reduce the

set of candidate optimal policies. Consider the problem described in (5.13b),(5.13c): it can be

seen as a single-step CMDP problem with reward R = Qr and cost C = Qc. By (Theorem 4.4

Beutler and K. W. Ross, 1985), we know that the solutions are mixtures of two deterministic

policies. Hence, we can replaceM (A) by C2(� (A)) in (5.13b).

Moreover, remark that:

f E
a� �

Q(s;a) :� 2 C2(� (A))g

= f E
a� �

Q(s;a) : � = (1 � �)� (a � a1) + �� (a � a2); a1; a2 2 A; � 2 [0; 1]g

= f (1 � �)Q(s;a1) + � Q(s;a2); a1; a2 2 A; � 2 [0; 1]g

= C2(Q(s;A))g:

Hence, the problem (5.13b), (5.13c) has become:

~�
Qr

= arg max
(qr ;qc)2C2 (Q(s;A))

qr s.t. qc � �

and the solution of � greedy is q? = arg min
q2 ~�

Q r qc.

The original problem in the space of actions A is now expressed in the space of values

Q(s;A) (which is why we use = instead of 2 before arg min here).

We further restrict the search space of q? following two observations:

1. q? belongs to the undominatedpoints C2(Q�):

Q+ = f (qc; qr) : qc > q �
c = min

q+
q+

c s.t. q+ 2 arg max
q2 Q(s;A)

qr g (B.10)

Q� = Q(s;A) n Q+ : (B.11)

193

Complements on Chapter 5

Denote q? = (1 � �)q1 + �q 2, with q1; q2 2 Q(s;A). There are three possible cases:

(a) q1; q2 62Q� . Then q?
c = (1 � �)q1

c + �q 2
c > q �

c . But then q�
c < q ?

c � � so q� 2 ~�
Qr

with a strictly lower qc than q?, which contradicts the arg min.

(b) q1 2 Q� ; q2 62Q� . But then consider the mixture q> = (1 � �)q1 + �q � . Since

q�
r � q2

r and q�
r < q 2

r , we also have q>
r � q?

r and q>
c < q ?

c , which also contradicts the

arg min.

(c) q1; q2 2 Q� is the only remaining possibility.

2. q? belongs to the top frontierF :

FQ = f q 2 C2(Q�) :6 9q0 2 C2(Q�) : qc = q0
c and qr < q0

r g: (B.12)

Trivially, otherwise q' would be a better candidate than q?.

Let us characterise this frontier F . It is both:

1. the graph of a non-decreasing function: 8q1; q2 2 F such that q1
c � q2

c then q1
r � q2

r .

By contradiction, if we had q1
r > q2

r , we could de�ne q> = (1 � �)q1 + �q � where q� is

the dominant point as de�ned in (B.10). By choosing � = (q2
c � q1

c)=(q�
c � q1

c) such that

q>
c = q2

c , then sinceq�
r � q1

r > q r 2 we also have q>
r > q2

r which contradicts q2 2 F .

2. the graph of a concave function: 8q1; q2; q3 2 F such that q1
c � q2

c � q3
c with � such that

q2
c = (1 � �)q1

c + �q 3
c , then q2

r � (1 � �)q1
r + �q 3

r .

Trivially, otherwise the point q> = (1 � �)q1 + �q 3 would verify q>
c = q2

c and q>
r > q2

r ,

which would contradict q2 2 F .

We denote FQ = F \ Q. Clearly, q? 2 C2(FQ): let q1; q2 2 Q� such that q? = (1 � �)q1 + �q 2.

First, q1; q2 2 Q� � C 2(Q�). Then, by contradiction, if there existed q10
or q20

with equal qc and

strictly higher qr , again we could build an admissible mixture q> = (1 � �)q10
+ �q 20

strictly

better than q?.

q? can be written as q? = (1 � �)q1 + �q 2 with q1; q2 2 F Q and, without loss of generality,

q1
c � q2

c .

Regular case There existsq0 2 F Q such that q0
c � � . Then q1 and q2 must �ank the budget:

q1
c � � � q2

c . Indeed, by contradiction, if q2
c � q1

c > � then q?
c > � which contradicts �

Q
r .

Conversely, if q1
c � q2

c < � then q? < � � q0
c , which would make q? a worse candidate than

q> = (1 � �)q? + �q 0 when � is chosen such thatq>
c = � , and contradict �

Q
r again.

BecauseF is the graph of a non-decreasing function, � should be as high as possible,

as long as the budget q? � � is respected. We reach the highestq?
r when q?

c = � , that is:

� = (� � q1
c)=(q2

c � q1
c).

194

B.1 Proofs

It remains to show that q1 and q2 are two successive points in FQ : 6 9q 2 F Q n f q1; q2g : q1
c �

qc � q2
c . Otherwise, asF is the graph of a concave function, we would have qr � (1 � �)q1

r + �q 2
r .

qr cannot be strictly greater than (1 � �)q1
r + �q 2

r which would contradict q?, but it can still be

equal, which means the tree points q; q1; q2 are aligned. In fact, every points aligned with q1

and q2 can also be used to construct mixtures resulting in q?, but among these solutions we can

still choose q1 and q2 as the two points in FQ closest toq?.

Edge case 8q 2 F Q ; qc < � . Then q? = arg max q2F qr = q� = arg max
q2 Q

� qr .

195

Appendix C

Complements on Chapter 6

Outline We provide proofs for every claimed result in Section C.1. We look into the time

and memory complexity and propose e�cient implementations of OLOPand KL-OLOPin Sec-

tion C.2.1, and of GBOP-Dand GBOPin Section C.2.2.

C.1 Proofs

C.1.1 Proof of Lemma 6.5

Proof. The proof is identical to that of Lemma 4 in (Sébastien Bubeck and Rémi Munos, 2010).

Sincearg maxa2A Ta(M), and
P

a2A Ta(M) = M; we have Ta(n) (M) � M=K , and thus:

M
K

(V � V (a(n))) � (V � V (a(n))) Ta(n) (M) �
MX

m=1

V � V (am)

Hence, we have, rn � K
M

P M
m=1 V � V (am). Now remark that, for any sequence of actions

a 2 A L , we have either:

ˆ a1:H 2 I H ; which implies V � V (a) � 2 H +1

1�

ˆ or there exists 1 � h � H such that a1:h 2 J h ; which implies V � V (a) � V � V (a1:h� 1) +
 h

1� � 3 h

1� .

Thus we can write:

MX

m=1

(V � V (am)) =
MX

m=1

(V � V (am)) (1 f am 2 I H g + 1 f9 1 � h � H : am
1:h 2 J hg)

�
2 H +1

1 �
M + 3

HX

h=1

X

a2J h

 h

1 �
Ta(M)

197

Complements on Chapter 6

C.1.2 Proof of Lemma 6.9

Proof. The event � a
h;h 0 = 1 implies am+1 2 aA � and (6.9) . This implies by Lemma 6.6 that either

(UCB violation) , (LCB violation) or (Large CI) is satis�ed. Now by Lemma 6.8 this implies

that either (UCB violation) is true or (LCB violation) is true or (6.8) is false. We now prove

that if (6.10) is not satis�ed then (6.9) is true, which clearly ends the proof. This follows from:

For any 0 � t � h0:

Ta1: t (m) =
X

b2 a1: t A h � t

Tb(m) �
X

b2P a1: t
h;h 0

Tb(m)

�
�
 2(t � h0)

� �
2f (m)(h + 1) 2 2(h0� h� 1)

�

= 2 f (m)(h + 1) 2 2(t � h� 1) :

C.1.3 Proof of Lemma 6.10

Proof. The proof is identical to that of Lemma 9 in (Sébastien Bubeck and Rémi Munos, 2010).

Let h0 � 1 and 0 � s � h0. We introduce the following random variables:

ma
s = min

�
M; min

n
m � 0 :

�
�
�Pa

h;h 0(m)
�
�
� � 2(s� h0)

o�
:

We will prove recursively that,

�
�
�P ;

h;h 0(m)
�
�
� �

sX

t=0

 2(t � h0) jI t j +
X

a2I s

�
�
�Pa

h;h 0 n [s
t=0 Pa1: t

h;h 0 (ma1: t
t)

�
�
� (C.1)

The result is true for s = 0 since I 0 = f;g and by de�nition of m;
0,

�
�
�P ;

h;h 0(m)
�
�
� � � 2h0

+
�
�
�P ;

h;h 0(m) n P;
h;h 0

�
m;

0

� �
�
�

Now let us assume that the result is true for s < h 0. We have:

X

a2I s

�
�
�Pa

h;h 0(m) n [a1: t
h;h 0 (ma1: t

t)
�
�
� =

X

a2I s+1

�
�
�Pa

h;h 0(m) n [s
t=0 Pa1: t

h;h 0 (ma1: t
t)

�
�
�

�
X

a2I s+1

 2(s+1 � h0) +
�
�
�Pa

h;h 0(m) n [s+1
t=0 Pa1: t

h;h 0 (ma1: t
t)

�
�
�

198

C.1 Proofs

= 2(s+1 � h0) jI s+1 j +
X

a2I s+1

�
�
�Pa

h;h 0(m) n [s+1
t=0 Pa1; t

h;h 0 (ma1: t
t)

�
�
�

which ends the proof of (C.1). Thus we proved (by taking s = h0and m = M):

�
�
�P ;

h;h 0(M)
�
�
� �

h0
X

t=0

 2(t � h0) jI t j +
X

a2I h 0

�
�
�Pa

h;h 0(M) n [s+1
t=0 Pa1: t

h;h 0 (ma1: t
t)

=
h0

X

t=0

 2(t � h0) jI t j +
X

a2J h

�
�
�Pa

h;h 0(M) n [a1: t
h;h 0 (ma1: t

t)
�
�
�

Now, for any a 2 J h , let ~m = max 0� t � h0 ma1: t
t . Note that for m � ~m, equation (6.10) is not

satis�ed. Thus we have

�
�
�Pa

h;h 0 n [s+1
h;h 0Pa1: t

h;h 0 (ma1: t
t)

�
�
� =

M � 1X

m= ~m

� a
h;h 0(m + 1) =

M � 1X

m=0

� a
h;h 0(m + 1) 1f (6.10) is not satis�ed g

�
M � 1X

m=0

� a
h;h 0(m + 1) 1f (UCB violation) or (LCB violation) g

where the last inequality results from Lemma 6.9. Hence, we proved:

�
�
�P ;

h;h 0

�
�
� �

h0
X

t=0

 2(t � h0) jI t j +
M � 1X

m=0

X

a2J h

1f (UCB violation) or (LCB violation) g

Taking the expectation and applying Lemma 6.7 yield the claimed bound for h0 � 1.

Now for h0 = 0 we need a modi�ed version of Lemma 6.9. Indeed in this case one can directly

prove that � a
h;0(m + 1) = 1 implies that either equation (UCB violation) or (LCB violation) is

satis�ed (this follows from the fact that � a
h;0(m + 1) = 1 always imply that (6.8) is true for

h0 = 0). Thus we obtain:

�
�
�P ;

h;h 0

�
�
� =

M � 1X

m=0

X

a2J h

� a
h;0(m + 1) �

M � 1X

m=0

X

a2J h

1f (UCB violation) or (LCB violation) g

Taking the expectation and applying Lemma 6.7 yield the claimed bound for h0 = 0 and ends

the proof.

199

Complements on Chapter 6

C.1.4 Proof of Lemma 6.11

Proof. The proof is identical to that of Lemma 10 in (Sébastien Bubeck and Rémi Munos, 2010):

X

a2J h

Ta(M) =
X

a2J h nP ;
h;h � 1

Ta(M) +
h� 1X

h0=1

X

a2P ;
h;h 0nP ;

h;h 0� 1

Ta(M) +
X

a2P ;
h; 0

Ta(M)

� 2f (m)(h + 1) 2 2(h� 2� h) jJ h j

+
h� 1X

h0=1

2f (m)(h + 1) 2 2(h0� 2� h) logM
�
�
�P ;

h;h 0

�
�
� + M

�
�
�P ;

h;0

�
�
�

= ~O

�
� 0� h + � 2h

h� 1X

h0=1

 2h0
�
�
�P ;

h;h 0

�
�
� + M

�
�
�P ;

h;0

�
�
�

!

Taking the expectation and applying the bound of Lemma 6.10 give the claimed bound.

C.1.5 Proof of Lemma 6.15

Proof. The tightening property is directly obtained by de�nition of monotonicity. Let us show

the preservation of monotonicity. Let U a monotonic upper-bound, a 2 A h . Then, for any

b 2 A :

U(ab) � B (U)(ab) =) r (ab) + U (ab) � r (ab) + B (U)(ab):

Thus, my taking the max on b, B (U)(a) � B 2(U)(a): The same can be obtained for a lower-

bound L.

The �nite time convergence can be obtained by recursion from the leaves to the root, by

noticing that if the value of a set of siblings aA is invariant by B , then the value of their parent

a is invariant by B 2.

C.1.6 Proof of Lemma 6.16

Proof. The proof of tightening and monotonicity preservation is the same as that of Lemma 6.15.

The contraction property is standard for the Bellman Operator, see e.g.Puterman M., Markov

Decision Processes: Discrete Stochastic Dynamic Programming (2005).

200

C.1 Proofs

C.1.7 Proof of Lemma 6.18

Proof. By de�nition, for a 2 A h ,

V (a) = sup
b2 aA 1

1X

t=1

 t � (b1:t)

=
hX

t=1

 t � (a1:t) sup
b2 aA 1

1X

t= h+1

 t � (b1:t)

= G(s1; a) h sup
b2A 1

1X

t=1

 t � (b1:t starting from s(a))

= G(s1; a) hV(s(a))

C.1.8 Proof of Theorem 6.20

We recall the main steps of the proof of Hren and Rémi Munos (2008).

1. The recommendation an has a maximal depth dn in the tree, and its gap rn = V ? � V (an;1)

is bounded by rn � dn

1� . We need to relatedn to n.

2. Each expanded node belongs toT 1 =
S

h� 0 T 1
h , where

T 1
h =

(

a 2 A h : V ? � V (a) �
 h

1 �

)

:

Introduce the di�culty measure � such that jT 1
h j = O(� h) (the smallest).

3. In the worst case, expanded nodes fully �ll the depths of T 1 up to dn : n =
P dn

d=1 nd �

C
P dn

d=1 � d =

8
<

:

O(dn) if � = 1

O(� dn) else.

Hence rn =

8
<

:

O(n) if � = 1

O(
log n
log �) = O(n� log 1 =

log �) else.

C.1.9 Proof of Lemma 6.22

Proof. Let L 2 � L 1 � V � U1 � U2, then T 1
h (L 1; U1) � T 1

h (L 2; U2); which implies

jT 1
h (L 1; U1)j1=h � jT 1

h (L 2; U2)j1=h

201

Complements on Chapter 6

and the claimed result in the limit h ! 1 .

C.1.10 Proof of Theorem 6.23

In this proof, we temporarily assume that U = B (U) and L = B (L). We follow the same steps

as in the proof of the regret of OPD.

Remark C.1. It no longer holds thatan must be of maximal depthdn . This is due to the fact the

exploration bonus hU(a) is not depth-wise constant: consider two nodesa; bat the same depth with

R(a) > R (b). In OPD, both get the same bonus h=(1 �), and the nodea is expanded �rst. But

with the local bonus,bcould be expanded in priority rather thana, if its own bonus is su�ciently

higher than that ofa, precisely ifR(a) + hU(a) < R (b) + hU(b). For instance,U(a) = 0

whena is known to be a terminal state whilebcan lead to future rewards. If after expanding and

exploring the subtree ofbwe �nd out that V (b) = 0 , we still return the recommendationa, which is

of non-maximal depth.

The regret bound still holds, however. First, notice that:

Lemma C.2 (Expansion) . Whenever a nodea of depthh is expanded by the optimistic algorithm,

its �rst action a1 enjoys a simple regretV (a?) � V (a1) � h(U(a) � L (a)) .

Proof. Let t be the time of expansion of a, it holds that U t (b) � U t (a) for all b 2 @T t , in

particular those in a branch starting by an optimal action a?. SinceU = B (U) and L = B (L),

we also have U t (a?) = max b2 a? A � U t (b) � U t (a), and L t (a1) = max b 2 a1A � L t (b) � L t (a).

Thus, V (a?) � V (a1) � U t (a?) � L t (a1) � U t (a) � L t (a) = h(U(a) � L (a)) .

Lemma C.3 (Recommendation) . The recommended actionan has a simple regretrn � dn

1� ,

wheredn is the maximal depth ofTn .

Proof. Let i a node of maximal depth dn , and consider the recommended node an at time

n, of depth d. In particular, L n (an) � L n (i), and since (L t)t is non-decreasing we also have

L n (i) � L t (i). At the time t when i is expanded, we have U t (an) � U t (i), and since (U t)t is

non-increasing we also have Un (an) � U t (an). We can conclude with Lemma C.2 applied to an :

rn � d(U(an) � L (an) = Un (an) � L n (an) � U t (an) � L n (i) � U t (i) � L t (i) = dn (U(i) � L (i),

which yields the claimed bound since U(i) � L (i) � Vmax � 0.

202

C.1 Proofs

Lemma C.4 (Near-optimal nodes) . Every node expanded by(6.16) is in

T 1 (L; U) =
[

h� 0

T 1
h (L; U):

Proof. Let a be a node of depth h expanded at round n, then Un (a) � Un (b) for all b 2 @T n .

Thus, sinceU = B (U), we have U(a) = B (U)(;) = B (U)(s1) � V (s1) = V ?. Thus, V ? � V (a) �

U(a) � L (a) = h(U(a) � L (a)) .

Finally, we can move on to the proof of Theorem 6.23. Let nd be the number of expanded

nodes of depth d, by Lemma C.4 we have nd � jT 1
d (L; U)j � C� (L; U)d. Thus,

n =
dnX

d=1

nd � C
dnX

d=0

� (L; U)d = C
� (L; U)dn +1 � 1

� (L; U) � 1

Hence, dn � C0 log n
log � (L;U) ; which along with Lemma C.2 gives the claimed bound.

Note that if L; U are monotonic bounds that do not verify L = B (L) and U = B (U),

then planning with B (L); B (U) instead will yield the proved bound with a branching factor

� (B (L); B (U)) , and since L � B (L) � V � B (U) � U we have � (B (L); B (U)) � � (L; U),

which still gives

rn = O
�

n� log 1 =
log � (L;U)

�
;

C.1.11 Proof of Lemma 6.24

Proof. We �rst show that if U is equivalent to U, meaning that for any sequence a 2 T(Gn) we

have U(a) = U(s(a)) , then Bn (U) is equivalent to Bn (U).

By de�nition of T(Gn), any sequence of actiona 2 T(Gn) corresponds to a path s1; a1; : : : ;

sh ; ah ; sh+1 in Gn . If a 2 @T(Gn), then necessarilys(a) 2 @Gn , and both are unchanged by Bn

and Bn respectively. Conversely, if a 2 �T(Gn), then s(a) 2 �Gn by construction. Thus,

Bn (U)(a) = max
b2A

r (s(a); b) + U (ab)

= max
b2A

r (s(a); b) + U(s(ab)) (by assumption)

= max
b2A

r (s(a); b) + U(P(s(a); b))

203

Complements on Chapter 6

= Bn (Un)(s(a)) :

By induction, for any k > 0 B k
n (U) is equivalent to Bk

n (U), and at the limit k ! 1 it comes

that Un is equivalent to Un . The same result can be shown similarly for L n and L n .

C.1.12 Proof of Lemma 6.25

We start by showing a preliminary lemma.

Lemma C.5 (Bounds of sequence values). The bounds(L n ; Un) on the value of sequences of

actions verify are respectively non-decreasing and non-increasing with respect ton, and verify: for

all a 2 A � , Un (a) = max a02 aA 1 U(a0).

Proof. The second property can be easily shown by induction using the fact that Un and L n

are �xed-points of Bn by de�nition. Applying this equation at each depth h gives the result.

From this observation, we can deduce that L n is increasing with n. Indeed, since when T(Gn) is

expanded with additional nodes compared to T(Gn� 1), the leavesa of T(Gn� 1) with previous

value L n� 1(a) = 0 are updated to L n (a) = max b r (s(a); b) � 0 = L n� 1(a), and this increase

at the leaves is then propagated through maxa02 aA 1 to any internal node a. Thus, L n is non-

decreasing and likewise, Un is non-increasing with respect to n. The same is obtained directly

of the bounds on sequence values(L n ; Un).

Which enables us to proceed to the proof of Lemma 6.25.

Proof. Let t be the time of expansion of a, it holds that U t (b) � U t (a) for all b 2 T(Gn). In

particular for b in a branch starting by an optimal action a? U t (a) � maxb2 a? A � U t (b) = U t (a?).

Thus, V (a?) � V (a) � U t (a?) � L t (a) � U t (a) � L t (a) = h(Ut (a) � L t (a)) .

C.1.13 Proof of Lemma 6.26

Proof. Let i an expanded node of maximal depth dn 2 R[f1g , and consider the recommended

node an at time n, of depth d 2 R [f1g . In particular, L n (an) � L n (i), and since (L t)t is

non-decreasing we also have L n (i) � L t (i). At the time t when i is expanded, we have

U t (an) � U t (i), and since (U t)t is non-increasing we also have Un (an) � U t (an). We can

conclude with Lemma 6.25 applied to an : rn � V ? � V (an) � d(U(an) � L (an) = Un (an) �

L n (an) � U t (an) � L n (i) � U t (i) � L t (i) = dn (Ut (i) � L t (i), which yields the claimed bound

sinceU(i) � L (i) � Vmax � 0.

204

C.1 Proofs

C.1.14 Proof of Theorem 6.27

Proof. Let � 0 > � 1 . Since � (L n ; Un) ! � 1 , there exists n0 2 N such that for all n � n0,

� (L n ; Un) � � 0. By Lemma 6.25, at each iteration n the expanded node must belong to

T 1 (L n ; Un). Let n � n0, and de�ne d0 = min f d 2 N : 9t 2 [n0; n]; bt 2 A dg. By de�ni-

tion, for all d � d0, any expanded node of depth d was expanded at a time t � n0, and thus

bt 2 T 1
t � T 1

n0
. We denote nd the number of expanded nodes of depth d. If dn = 1 , then

rn = 0 and the bound holds. Else, we obtain

n =
d0 � 1X

d=0

nd +
dnX

d= d0

nd � C0 + C1

dnX

d= d0

(� 0)d � C0 + C0
1(� 0)dn

And since rn � dn

1� by Lemma 6.26, we obtain the claimed bound.

Moreover, given a history of observed transitions up to iteration n, the bounds Un ; L n

obtained from (6.20) on the unrolled tree T(Gn) are tighter than those of (6.14) since Tn �

T(Gn), which implies by Lemma 6.22 that � (L n ; Un) � � . We obtain � 1 � � at the limit.

C.1.15 Proof of Proposition 6.28

The Figure C.1 shows the planning tree corresponding to the MDP M . Whenever the action a1

is taken (in green) the resulting subtree is represented by a leaf node s? of value V ? = r ?

1� .

When, in contrast, we take a sequence of actions amonga2 : : : aK (in orange), we stay in the

states+ and denote Vh the corresponding value at depth h.

Lemma C.6. Any sequence of actions inA n a1 is in T 1 .

Proof. Any such sequence of actions yields the sequence of rewardsr � ; r + ; : : : ; r + . and end

up in the state s+ with value at least V ? (obtained by further taking a1 inde�nitely). Thus its

value Vh veri�es,

Vh �
h� 1X

t=0

 t r t + hV ?

= r � � r + +
h� 1X

t=0

 t r + + hV ?

= (�

1 �
� 1)S +

1 � h

1 �
(r ? + S) + hV ?

= V ? � S
 h

1 �
� V ? �

 h

1 �

205

Complements on Chapter 6

Figure C.1 � Planning tree of the MDP M of Figure 6.8
.

We can directly conclude that � � lim sup jf a2; : : : ; aK gh j1=h = K � 1.

Now, consider the nodes expanded by GBOP-D. The �rst expansion is that of the root, which

discovers s? and s+ . In the absence of information on these two state, the bound Vmax is used

and the �rst action a1 gets a higher U that any other action a2; : : : ; aK since r ? � r � . Hence, at

the second iteration, the node a1 gets expanded. At this point, the self-loop of the state s? is

discovered, which means that form now on the bounds verify L n (a1) = V ? = Un (a1) for n � 2,

which means that L n (a1A �) � Un (a1A �) = 0 . The nodesa2; : : : ; aK can be expanded at most

once before the entire MDP is discovered and L n = V = Un over the entire tree, which means

that T 1
n is the set of optimal nodes, i.e. the nodes in the only optimal sequence a?

1. Hence,

� 1 = 1 :

206

C.2 Time and memory complexities

C.2 Time and memory complexities

C.2.1 KL-OLOP

After having considered the sample e�ciency of OLOPand KL-OLOPin Theorem 6.4, we now

study their time and memory complexities. We will only mention the case of KL-OLOPfor ease

of presentation, but all results easily extend to OLOP.

The Algorithm 6.1 requires, at each episode, to compute and store in memory of the reward

upper-bounds and U-values of all nodes in the tree T =
P L

h=0 A h . Hence, its time and memory

complexities C(KL-OLOP) are

C(KL-OLOP) = O(M jT j) = O(MK L):

The curse of dimensionality brought by the branching factor K and horizon L makes it

intractable in practice to actually run KL-OLOPin its original form even for small problems.

However, most of this computation and memory usage is wasted, as with reasonable sample

budgets n the vast majority of the tree T will not be actually explored and hence does not hold

any valuable information.

We propose in Algorithm C.1 a lazy version of KL-OLOPwhich only stores and processes the

explored subtree, as shown in Figure C.2, while preserving the inner workings of the original

algorithm.

Figure C.2 � A representation of the tree T +
m , with K = 2 actions and after episode m = 2 , when two

sequences have been sampled. They are represented with solid lines and dotsˆ , and they constitute the
explored subtree Tm . When extending Tm with the missing children of each node, represented with
dashed lines and diamonds � , we obtain the full extended subtree T +

m . The set of its leaves is denoted
L +

m and shown as a dotted set.

207

Complements on Chapter 6

Algorithm C.1: Lazy Open Loop Optimistic Planning

1 Let M be the largest integer such that M logM=(2 log 1=) � n
2 Let L = log M=(2 log 1=)
3 Let T +

0 = L +
0 = f;g

4 for each episodem = 1 ; � � � ; M do
5 Compute Ua(m � 1) from (6.4) for all a 2 T +

m� 1
6 Compute Ba(m � 1) from (6.5) for all a 2 L +

m� 1
7 Sample a sequence with highest B-value:a 2 arg maxa2L +

m � 1
Ba(m � 1)

8 Choose an arbitrary continuation am 2 AA L �j aj // e.g. uniformly
9 Let T +

m = T +
m� 1 and L +

m = L +
m� 1

10 for t = 1 ; � � � ; L do
11 if am

1:t 62 T+
m then

12 Add am
1:t � 1A to T +

m and L +
m

13 Remove am
1:t � 1 from L +

m

14 return the most played sequencea(n) 2 arg maxa2L +
m

Na(m)

Proposition C.7 (Time and memory complexity) . Algorithm C.1 has time and memory com-

plexities of

C(Lazy KL-OLOP) = O(KLM 2)

The corresponding complexity gain compared to the original Algorithm 6.1 is:

C(Lazy KL-OLOP)
C(KL-OLOP)

=
n

K L � 1

which highlights that only a subtree corresponding to the sample budgetn is processed instead of the

search whole treeT .

Proof. At episode m = 1 ; � � � ; M , we compute and store in memory the reward upper-bounds

and U-values of all nodes in the subtree T +
m . Moreover, the tree T +

m is constructed iteratively

by adding K nodes at most L times at each episode from 0 to m. Hence, jT +
m j = O(mKL). This

yields directly C(Lazy KL-OLOP) =
P M

m=1 O(mKL) = O(M 2KL).

Proposition C.8 (Consistency) . The set of sequences returned by Algorithm C.1 is the same as

the one returned by Algorithm 6.1. In particular, Algorithm C.1 enjoys the same regret bounds as in

Theorem 6.4.

208

C.2 Time and memory complexities

Proof. To prove consistency of Algorithm C.1, we need to show that the sequences of actions

am sampled at every episode are chosen arbitrarily from the same sets as in Algorithm C.1.

Namely,

8
<

:
b 2 AA L �j aj : a 2 arg max

a2L +
m � 1

Ba(m � 1)

9
=

;
= arg max

a2A L
Ba(m � 1)

To that end, we �rst introduce some useful notations:

Let Tm be the set of visited nodes after episodem:

Tm =� f a 2 A � : Na(m) > 0g

We also de�ne its extension T +
m of visited nodes and their children:

T +
m =� Tm + Tm A

Now for a 2 A � , � m (a) (resp. � +
m (a)) refers to its longest pre�x within Tm (resp. T +

m):

� m (a) =� arg max
b2T m

fj bj : a 2 bA � g

� +
m (a) =� arg max

b2T +
m

fj bj : a 2 bA � g

Finally, L m and L +
m are the image of A L by � m and � +

m , respectively.

L m =� � m (A L)

L +
m =� � +

m (A L)g

Remark C.9 (About children extensions) . We could frame Algorithm C.1 in terms ofTm and

L m , for which mathematical proofs are more straight-forward. However, the iterative construction

of L m is tricky and it would require inverting� m on L m which is non-trivial. On the contrary,

introducing their extensionsT +
m andL +

m slightly complicates the proof, but greatly simpli�es the

construction ofL +
m and the computation of� +

m
� 1 onL +

m , which is why we use these sets in practice.

209

Complements on Chapter 6

Lemma C.10 (Sets construction) . T +
m andL +

m are indeed the sets computed in Algorithm C.1.

Proof. Note that for each episode 1 � m � M � 1, we have:

Tm+1 = Tm +
LX

t=0

am+1
1:t (C.2)

Indeed, the nodes visited at least once at time m + 1 where either already visited once at time

m (e.g.in Tm) or have been visited for the �rst time during episode m + 1 , which means they

are a pre�x of am+1 . The reverse is clearly true as well.

This enables to write:

T +
m+1 = Tm+1 + Tm+1 A by de�nition

= Tm +
LX

t=0

am+1
1:t + (Tm +

LX

t=0

am+1
1:t)A by (C.2)

= (Tm + Tm A) +
LX

t=0

am+1
1:t +

LX

t=0

am+1
1:t A

= T +
m + am+1

1:0 +
LX

t=0

am+1
1:t A as

LX

t=1

am+1
1:t �

LX

t=0

am+1
1:t A

= T +
m +

LX

t=0

am+1
1:t A asam+1

1:0 = ; 2 T 0 � T m � T +
m

This recursion is the one implemented in Algorithm C.1: at each episode m, we add to T +
m the

children of the nodes along the sampled action sequence am .

Finally, we highlight that L +
m = � + (A L) is the set of leaves ofT +

m . Indeed, nodes of L +
m

belong to T +
m , but they cannot have a child in T +

m as it would contradict the de�nition of

L +
m . Conversely, any leaf a of T +

m can be continued arbitrarily to a sequence b of A L , which

a = � +
m (b) 2 � + (A L) = L +

m .

Thus, when updating T +
m� 1, the set of its leaves is updated accordingly: when the children

of a leaf am
1:t � 1 are added to T +

m , they become new leaves in place of their parent. Hence, they

are added to L +
m while am

1:t � 1 is removed from it.

210

C.2 Time and memory complexities

Lemma C.11 (U-values conservation) . For all a 2 A � ,

Ua(m) = U� m (a) (m) = U� +
m (a) (m)

Proof. Let a 2 A � , denote h = jaj and h0 = j� m (a)j.

By de�nition of � m (a), 0 � h0 � h, and

ˆ for 1 � t � h0, we have a1:t = � m (a)1:t ;

ˆ for h0+ 1 � t � h, we have a1:t 62 Tm , henceTa1: t (m) = 0 and U �
a1: t

(m) = 1 .

Then,

Ua(m) =
hX

t=1

 t U �
a1: t

(m) +
 h+1

1 �

=
h0

X

t=1

 t U �
a1: t

(m) +
hX

t= h0+1

 t U �
a1: t

(m)
| {z }

1

+
 h+1

1 �

=
h0

X

t=1

 t U �
� m (a)1: t

(m) +
 h0+1

1 �

= U� m (a) (m)

Now, consider � +
m (a) 2 T +

m . By de�nition, it belongs either to Tm or Tm A.

ˆ If � +
m (a) 2 Tm , then � +

m (a) = � m (a) and U� +
m (a) (m) = U� m (a) (m).

ˆ Else,� +
m (a) 2 Tm A and p(� +

m (a)) = � m (a).

As � +
m (a) 62 Tm , we have T� +

m (a) (m) = 0 and U �
� +

m (a)
(m) = 1 . This yields:

U� +
m (a) (m) =

h0
X

t=1

 t U �
� +

m (a)1: t
(m) + h0+1 U �

� +
m (a)

(m)
| {z }

1

+
 h0+2

1 �
= U� m (a) (m)

We showed that U� +
m (a) (m) = U� m (a) (m), which concludes the proof.

211

Complements on Chapter 6

Lemma C.12 (Inverse projection) . For all a 2 L +
m of lengthh � L ,

� +
m

� 1(a) = aA L � h

This allows to easily pick a sequence inside� +
m

� 1(a): just continue the sequencea with a default

action ofA (e.g. the �rst) until it reaches lengthL .

Proof. Let a 2 L +
m .

By de�nition of � +
m , any sequence in� +

m
� 1(a) is a su�x of a of length L , so we clearly have

the direct inclusion � +
m

� 1(a) � aA L � h .

Now for the other side: let b 2 AA L � h , i.e. a = b1:h . We need to show that � +
m (b) = a. As

a 2 L +
m , there existsc 2 A L such that � +

m (c) = a.

ˆ If h = L, then b = a, sob 2 L +
m � T +

m , and hence� +
m (b) = b = a.

ˆ If h < L, we can show by contradiction that a 62 Tm . Indeed, if a 2 Tm , then c1:h+1 is the

child of a node of Tm and hence belongs toT +
m . But then, c1:h+1 is a pre�x of c in T +

m with

greater length than a, which contradicts the de�nition of a = � +
m (c).

Now, because a 62 Tm , it is also true for all su�xes of a, and in particular for b1:t with

h � t � L . Indeed, we have as
1:t = b1:t =) as

1:h = b1:h = a, so:

Tb1: t (m) =
mX

s=1

1f as
1:t = b1:t g �

mX

s=1

1f as
1:h = ag = Na(m) = 0

Hence, b1:t 62 Tm for all h � t � L , so in particular b1:t 62 T+
m for all h + 1 � t � L . Since

b1:h = a 2 T +
m , a is indeed the longest pre�x of b in T +

m , that is: � +
m (b) = a.

We have shown the other side of the inclusion: aA L � h � � +
m

� 1(a), which entails that the two

sets are in fact equal.

We can now conclude our proof of Proposition C.8: at episode m, KL-OLOPsamples a

sequence of actionam within the set arg maxa2A L Ua(m). However, we have:

arg max
c2A L

Uc(m) = arg max
c2A L

U� +
m (c) (m) by Lemma C.11

212

	Contents

