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RÉSUMÉ EN FRANÇAIS

Contexte et motivations

A�n de guider nos actions dans l'environnement dans lequel nous évoluons, nous dispo-

sons de nos sens, classiquement la vision, l'audition, le toucher, le goût et l'odorat. D'autres

pourraient être ajoutés à cette liste, tels que le sens de l'équilibre ou la capacité à ressentir

la température. Certains animaux disposent d'ailleurs de sens qui nous sont inaccessibles,

comme la magnétoréception pour certains cétacés et oiseaux, qui leur permet de percevoir

les champs magnétiques, ou encore l'écholocalisation pour les chauve-souris ou les dauphins

notamment, qui leur sert à sonder l'espace autour d'eux. Des capteurs complexes et variés

sont à l'origine de ces sens. Parmi ceux qui ont été énumérés, la vision présente un intérêt

particulier. En effet, dans un environnement constitué d'air, de vide ou même d'eau peu pro-

fonde, la vision fournit une information riche et détaillée sur les objets environnants. De plus,

étant fondée sur la perception de la lumière, la vision permet d'obtenir des informations sur

des objets distants pratiquement instantanément. Pour cette raison, nous avons tendance à

largement nous reposer sur ce sens pour analyser notre environnement et y évoluer.

Même en se concentrant uniquement sur la vision, l'environnement reste particulièrement

complexe. Il est commun de voir simultanément de nombreux objets et personnes, chacun

d'entre eux requérant potentiellement une action de la part de l'observateur. Une première

possibilité pour correctement évoluer dans de tels environnements serait de prêter attention en

permanence à chaque élément de la scène. Bien qu'une approche de ce type conviendrait en

théorie, ce n'est pas ce que nous faisons en pratique. Tout d'abord, notre champ de vision est

limité. À l'intérieur de ce champ, notre vision centrale, qui s'appuie sur la partie de l'œil appelée

la fovéa, est plus précise que notre vision périphérique. Ce fait implique qu'il est nécessaire de

bouger la tête et les yeux pour pouvoir analyser l'ensemble des régions de l'environnement, et

en particulier pour pouvoir se focaliser sur un élément. De plus, une analyse à la fois perma-

nente et détaillée de la scène observée requerrait un coût en énergie plus élevé, sans compter

la nécessité d'une plus grande complexité du cerveau pour pouvoir mener cette analyse.

Pour pouvoir analyser en permanence notre environnement à un coût raisonnable, nous

nous appuyons sur l'attention visuelle. L'attention visuelle est contrôlée à la fois par le monde

extérieur et par le cerveau. Son rôle est de sélectionner des information importantes en s'ap-

puyant sur les indices de saillance. Une fois que les éléments d'intérêt sont identi�és, il est

possible de nous focaliser sur eux et d'allouer nos ressources à leur analyse.
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Résumé en français

Une première famille d'indices de saillance est liée à l'apparence des objets. Par exemple,

une poignée de framboises rouges sera perçue comme saillante sur un fond de buissons,

d'arbres et d'herbe verts. Dans une scène avec une majorité d'objets ayant une apparence

similaire, il est aisé de prendre conscience de la présence de ces objets. Il n'y a pas de raison

particulière de regarder un objet plutôt qu'un autre. Par contre, s'il y a un objet qui a une

apparence très différente, le ré�exe sera certainement de l'analyser plus en détail et de se

focaliser sur celui-ci. Ce type d'indices de saillance relève essentiellement d'une comparaison

avec une apparence normale dans la scène.

FIGURE 1 – Exemples de cas où la saillance est due à des indices d'apparence (première ligne)
et de mouvement (seconde ligne). Le cheval et le panneau sont clairement distincts de leur en-
vironnement, ce qui est bien entendu voulu pour le panneau. Les deux caméléons dans l'image
en bas à gauche sont nettement plus faciles à distinguer lorsqu'ils sont vus en train de bouger.
Si un piéton traversait la route pour la con�guration illustrée en bas à droite, le mouvement des
voitures serait un élément central auquel prêter attention. Les images proviennent de MSRA-B
[Wan+17], Camou�aged Animals [ BLM16] et de FBMS-59 [OMB14].

Une deuxième famille d'indices de saillance est liée au mouvement. Face à une scène sta-

tique, seuls quelques instants sont généralement suf�sants pour avoir un aperçu de la scène.

Ensuite, si rien n'a bougé, il est possible d'en déduire qu'il n'y a pas de nouveaux éléments

et que l'analyse passée reste valable. Au contraire, si un objet en mouvement entre dans le

champ de vision, cet objet n'a naturellement pas été analysé et mérite plus d'attention que le

reste de la scène. De façon plus générale, n'importe quel objet en mouvement de l'environne-

ment présente un intérêt. À cause de son mouvement, il pourrait interagir avec l'observateur, en

8



Résumé en français

l'approchant, le fuyant, le chassant, ou simplement en croisant son chemin. Dans toutes ces si-

tuations, l'observateur devrait réagir de façon appropriée. Les indices de mouvement sont donc

pertinents pour sélectionner l'élément sur lequel se concentrer. Dans le cas où plusieurs objets

sont en mouvement, la plus forte emphase devrait correspondre à l'objet avec le mouvement

le plus singulier, qui peut être l'objet le plus rapide, celui suivant un mouvement particulier ou

encore celui suivant un mouvement erratique, et qui est le plus susceptible de nécessiter une

réponse spéci�que. Les indices de mouvement sont dérivés de l'évolution de la scène au cours

du temps. Naturellement, si la tête ou les yeux de l'observateur bougent, un mouvement appa-

rent sera induit dans la scène. L'introduction dans le processus de perception de mécanismes

pour prendre ce phénomène en compte devrait ainsi conduire à une meilleure estimation de la

saillance.

L'apparence et le mouvement sont donc à l'origine de deux types d'indices de saillance,

à la fois utiles mais distincts, comme illustré en Figure 1. L'apparence attire l'attention sur les

éléments ayant les formes ou couleurs les plus singulières. Les indices de mouvement orientent

l'attention vers les éléments mobiles suivant un mouvement particulier ou effectuant une action

singulière.

La discussion ci-dessus s'est concentrée sur le rôle spéci�que de la vision pour la percep-

tion de l'environnement des personnes et de nombreuses espèces d'animaux, ainsi que sur

l'importance de la saillance pour permettre un traitement ef�cace du signal. Si nous nous inté-

ressons maintenant au problème de la construction de systèmes robotiques capables d'agir de

façon autonome dans leur environnement, nous pouvons constater que ces systèmes doivent

conduire une analyse similaire de la scène dans laquelle ils se trouvent pour mener à bien

leurs tâches. De plus, de tels systèmes ont habituellement accès à des ressources embar-

quées limitées et doivent respecter certaines contraintes, en particulier en ce qui concerne la

consommation d'énergie, le temps de calcul ou la charge du processeur, ce qui rend un trai-

tement ef�cace nécessaire. Il est également possible de considérer le problème plus général

de l'analyse de vidéo, qui inclut la vidéosurveillance, le résumé de vidéos ou encore l'étude du

mouvement des foules. Pour l'ensemble de ces cas, l'analyse devrait être restreinte à la partie

la plus pertinente pour éviter de mobiliser inutilement des ressources de calcul et pour extraire

les informations vraiment pertinentes. L'intérêt des indices de mouvement pour ces problèmes

est dû au fait qu'ils fournissent des informations sur la dynamique des objets dans la scène, ce

qui les rend adéquats pour permettre une navigation sûre, ou pour surveiller et détecter des

comportements inhabituels et potentiellement dangereux. L'objectif de cette thèse est précisé-

ment d'étudier le problème d'estimation de la saillance du mouvement dans des vidéos.
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Travaux en lien avec la saillance du mouvement

Une revue détaillée des travaux existants en lien avec la saillance du mouvement est pré-

sentée dans un chapitre dédié. Dans ce qui suit, nous nous bornerons à présenter le contexte

général et les points les plus notables.

L'estimation de la saillance est un sujet de recherche actif, pouvant correspondre à un mé-

canisme de pré-attention ou pouvant être un objectif en soi. Lorsqu'il s'agit de traiter des images

ou des vidéos, la sortie va généralement consister en des cartes de saillance fournissant la pro-

babilité de saillance pour chaque pixel. L'estimation de la saillance est liée à l'attention visuelle,

à la détection d'objets ou encore à la segmentation d'image. Il n'existe pas une unique dé�nition

formelle de la saillance d'images, qui peut se décliner de plusieurs façons. Nous avons déjà

exposé la distinction entre la saillance d'apparence et de mouvement. Les déclinaisons sui-

vantes de la saillance sont communément utilisées. Une première possibilité est de considérer

que ce qui attire l'attention d'un observateur humain est saillant. Il est possible de l'enregistrer

avec des appareils spéci�ques de suivi du regard, dont le rôle est de mesurer les endroits où

les personnes �xent leur attention. Une deuxième possibilité est de considérer que les objets

avec une apparence ou un mouvement particulièrement singuliers sont saillants. Typiquement,

les objets situés au premier plan qui suivent un mouvement marqué sont considérés comme

saillants.

Lorsque la saillance est dé�nie de l'une de ces façons, l'apparence et le mouvement jouent

tous deux un rôle pour l'identi�cation des éléments d'intérêt. Les méthodes conçues pour ce

type de tâches ont donc naturellement tendance à s'appuyer sur ces deux aspects. En ce

qui concerne l'apparence, les information sur la couleur, la texture, les contours ou les formes

sont typiquement utilisées. En ce qui concerne le mouvement, la cohérence temporelle, le �ot

optique, à partir duquel l'amplitude de mouvement ou les frontières de mouvement peuvent

être extraites, sont communément employés. La différence entre les méthodes existantes ré-

sidera principalement dans la façon dont ces éléments sont extraits et combinés pour estimer

la saillance. Ceci peut se faire en concevant un algorithme dédié pour assembler et traiter ces

différentes informations. Une autre possibilité est de s'appuyer sur les réseaux de neurones

profonds, qui ont montré leur ef�cacité pour l'analyse et le traitement d'images et qui sont

adoptés par la plupart des méthodes récentes.

Plus généralement, il est possible qu'un élément soit considéré comme saillant à partir du

moment où il dévie de la norme ou si son comportement est inattendu. Dans les contextes ou

cette dé�nition est utilisée, il est plus commun de parler de détection d'anomalie. La détection

d'anomalie peut s'appliquer sur des images ou des vidéos, mais également sur d'autres types

de données. Les trajectoires peuvent ainsi être concernées, tout en étant pertinentes pour

notre problème, étant donné qu'elles traduisent une information sur le mouvement avec la
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particularité d'opérer sus un temps long. Pour les méthodes traitant cette famille de problèmes,

le but est de repérer dans les données des comportements ou des motifs inhabituels. Cela

peut se faire en exploitant les connaissances d'expert liée au problème particulier traité, en

utilisant des outils statistiques ou encore en recourant à des réseaux de neurones profonds

avec apprentissage.

Contributions de cette thèse

Les méthodes existantes tendent à mêler les indices de saillance de mouvement et d'ap-

parence pour produire une estimation de la saillance unique. Cette approche conduit à perdre

l'information de la cause de la saillance, ce qui est regrettable. Pour les exemples présentés

plus haut (la navigation pour la robotique mobile, la vidéosurveillance...), l'intérêt peut ne por-

ter que sur la saillance du mouvement, auquel cas la saillance liée à l'apparence ne devrait

pas jouer le rôle d'un distracteur. Notons d'ailleurs qu'il existe des situations où l'apparence ne

joue qu'un rôle très secondaire voire nul. Un exemple typique correspond au cas d'un individu

marchant en contre-sens dans une foule. Des con�gurations de ce type peuvent se retrouver

dans des applications diverses, telles que la surveillance du tra�c urbain ou routier [ RB19 ;

BFM19], la sécurité des zones publiques accueillant des foules denses [PRBB17], l'étude de la

dynamique des cellules pour la bio-imagerie [Rou+17], ou encore l'identi�cation de conditions

météorologiques se dégradant [Pap+00]. Dans tous ces cas, le mouvement peut être le seul

élément permettant d'extraire des information pertinentes sur la scène observée.

Trois types d'entités peuvent être impliquées dans la caractérisation de la saillance du mou-

vement dans une séquence d'images :

— la scène statique mais observée avec une caméra mobile,

— les éléments mobiles saillants de la scène,

— les éléments mobiles normaux de la scène.

Puisque nous nous intéressons à la saillance du mouvement, la scène statique n'a pas lieu

d'être considérée comme saillante. À l'opposé, les objets suivant un mouvement singulier sont

saillants. Il est également possible de rencontrer des situations dans lesquelles plusieurs objets

suivent le même mouvement. Dans ce cas, les objets saillants seront les objets qui suivent un

mouvement qui se démarque de ce mouvement principal, plutôt que les objets faisant partie

de ce �ux. Maintenant que nous avons fait la distinction entre ces trois entités, nous pouvons

noter qu'elles peuvent être perçues par une caméra qui peut être statique ou mobile. Dans ce

dernier cas, un mouvement apparent sera induit dans l'ensemble de l'image, modi�ant par là

la perception du mouvement de son contenu. Nos travaux décrits dans les chapitres suivants

seront positionnés par rapport à ces aspects.

Les contributions de cette thèse sont organisées autour de trois axes, qui permettent d'ana-
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lyser de façon complémentaire la saillance du mouvement.

Le premier axe s'intéresse à la détection temporelle de la saillance du mouvement dans

des séquences d'images. Le but est d'être capable de décider pour chaque image s'il y a

présence de saillance du mouvement ou non. Dans ce dernier cas l'image peut être ignorée.

À notre connaissance, ce problème n'a pas été étudié en tant que tel. Il constitue cependant

un pré-requis nécessaire pour les méthodes de localisation de la saillance. Ces dernières font

généralement l'hypothèse implicite que de la saillance est présente, ce qui n'est pas forcément

le cas et peut conduire à l'estimation de cartes de saillance factices. Notre objectif est ainsi de

construire un mécanisme de pré-attention qui peut être utilisé pour déclencher des traitements

additionnels des images, uniquement si requis et légitime.

Le second axe traite de l'estimation de cartes valuées de saillance du mouvement (voir

l'illustration en Figure 2). Lorsque la saillance du mouvement est détectée dans l'image, il est

utile de localiser précisément l'élément saillant. Un système de robotique mobile autonome

pourrait s'en servir pour décider s'il est nécessaire d'adapter sa trajectoire et de quelle façon le

faire, et un système d'analyse de vidéos pourrait indiquer à un opérateur humain la localisation

de l'élément d'intérêt.

FIGURE 2 – Illustration de cartes de saillance annotées à la main pour quatre exemples. Une
première possibilité est que la scène ne contienne pas d'élément ayant un mouvement saillant.
Dans ce cas, cela se traduit par une carte de saillance vide. Les deux exemples de la première
ligne correspondent à une situation de ce type. Nous les avons acquis pour constituer la base
de données qui sera décrite dans le chapitre 3. Au contraire, lorsque des éléments mobiles
saillants sont présents, ils seront délimités dans la vérité terrain. C'est le cas des deux exemples
de la seconde ligne, qui proviennent de la base de données DAVIS 2016 [Per+16]. Ici, la vérité-
terrain est en fait exprimée par une carte binaire.

Le troisième axe se concentre sur l'estimation de la saillance de trajectoires. La saillance du

mouvement peut n'apparaître qu'après un certain délai, et les trajectoires constituent un bon

moyen de représenter des évènements d'une certaine durée, comme illustré en Figure 3. Les
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trajectoires peuvent être extraites à partir de vidéos avec des systèmes de suivi (ou tracking).

Les trajectoires ne sont cependant pas restreintes à cette con�guration, et peuvent provenir de

capteurs dédiés dont notamment les GPS, qui sont désormais répandus par exemple dans les

voitures ou les téléphones portables. De façon plus générale, n'importe quelle série temporelle

peut être vue comme une trajectoire et traitée de façon similaire. L'objectif de ce troisième axe

est de dé�nir une méthode pour estimer la saillance de trajectoires, c'est-à-dire identi�er les

trajectoires singulières dans un groupe de trajectoires semblables ou normales.

a) b)

c) d)

FIGURE 3 – Illustration de quatre con�gurations de saillance de trajectoires. Les mouvements
normaux sont représentés en bleu et les mouvements saillants en orange. Dans les con�gura-
tions a) et b), la trajectoire saillante se démarque clairement des trajectoires normales. Dans la
con�guration c), la trajectoire saillante suit une direction légèrement différente par rapport à la
norme, tandis que dans la con�guration d), la trajectoire saillante correspond à un mouvement
plus rapide donc un parcours plus long en un temps donné. Pour ces deux derniers cas, la
saillance est moins marquée. N'observer les trajectoires que pendant un bref instant risque de
ne pas être suf�sant pour identi�er convenablement celles qui sont saillantes, en particulier
si les mouvements ne sont pas parfaitement réguliers. La prise en compte d'une période de
temps plus étendue autorisera une décision plus �able.

Organisation du manuscrit

Le manuscrit est organisé en quatre chapitres principaux, en plus de l'introduction et de la

conclusion générale. Le chapitre 2 consiste en une revue des travaux existants en lien avec la

saillance du mouvement. Dans le chapitre 3, nous développons une méthode pour la détection

de la présence de saillance du mouvement au niveau de chaque image d'une vidéo. Le cha-

pitre 4 présente une méthode pour l'estimation de cartes valuées de saillance du mouvement

fondée de manière originale sur la reconstruction ou inpainting du �ot optique. Le chapitre 5

traite de la saillance de trajectoire. De plus, l'annexe A explore l'estimation de la saillance rela-
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tive à l'aide d'une base de vidéos 3D. Ci-dessous, nous présentons un bref aperçu de chacune

de ces parties et de nos contributions associées.

Chapitre 2

Dans le chapitre 2, nous passons en revue des travaux en lien avec l'estimation de la

saillance et la détection d'anomalie, qui sont des domaines étroitement liés à la saillance du

mouvement. Cette revue nous permet d'identi�er d'autres champs de recherche pertinents

pour notre objectif d'estimation de la saillance du mouvement. Plusieurs des domaines abor-

dés dans ce chapitre seront explorés pour la dé�nition de nos méthodes, notamment les do-

maines concernant les réseaux convolutifs profonds, l'estimation du �ot optique, le deep metric

learning, et l'apprentissage avec une supervision faible.

Chapitre 3

Dans le chapitre 3, nous nous intéressons au problème de la détection temporelle de la

saillance du mouvement au niveau de l'image, qui consiste à prédire quelles images d'une vi-

déo incluent de la saillance du mouvement. La méthode que nous proposons est composée de

deux étapes principales. Dans un premier temps, le mouvement d'ensemble dû au mouvement

de la caméra est estimé et compensé. Dans un second temps, la classi�cation d'une image

en saillante ou non saillante est réalisée à l'aide d'un réseau convolutif. Nous avons appliqué

notre méthode soit directement aux images couleur, soit au �ot optique. De plus, nous avons

expérimenté deux méthodes pour l'estimation du mouvement dominant de l'image dû au dé-

placement de la caméra. Ceci conduit à un total de quatre variantes de notre méthode, qui

sont comparées et évaluées. L'apprentissage et l'évaluation expérimentale de ces variantes

s'appuient sur une base de données synthétiques de paires d'images avec un mouvement

connu, et une base de données de vidéos réelles. Les résultats expérimentaux montrent que la

variante la plus performante, dénotée RFS-Motion2D, s'appuie sur le �ot optique. La compen-

sation du mouvement dominant est effectuée en soustrayant le �ot dominant au �ot optique, ce

qui produit un �ot résiduel utilisé comme entrée du réseau de classi�cation. Les résultats ex-

périmentaux montrent également que notre méthode est capable de détecter correctement la

présence de saillance du mouvement, même pour des scènes dans lesquelles des objets sta-

tiques présentent un fort mouvement apparent du fait de leur position en avant-plan de la scène

et du mouvement de la caméra. Nous atteignons un taux de détection correcte de 87,5% sur

notre jeu de données réelles, et même de 93,3% sur la base de données DAVIS 2016 [Per+16].
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Chapitre 4

Dans le chapitre 4, nous considérons le problème de l'estimation de cartes de saillance, qui

consiste à prédire une valeur de saillance (codée entre 0 et 1) pour chaque pixel des images

d'une vidéo. Pour le résoudre, nous dé�nissons une méthode s'appuyant sur l'inpainting ou la

reconstruction du �ot optique. Des régions saillantes candidates sont d'abord extraites à partir

des frontières du �ot optique calculé. Le �ot optique à l'intérieur de ces régions est ensuite

reconstruit à partir du �ot environnant. L'idée est que, si la région est saillante, le �ot recons-

truit devrait être clairement distinct du �ot calculé à l'origine dans cette région. Au contraire, si

la région n'est pas saillante, le �ot reconstruit et le �ot originel devraient être similaires. Nous

exploitons la différence entre ces deux �ots pour calculer la carte de saillance du mouvement.

Les résultats expérimentaux montrent que notre méthode se compare favorablement à des

méthodes existantes d'estimation de la saillance, en arrivant en seconde position par rapport

à ces méthodes avec les métriques considérées. Nous notons que ces résultats sont obte-

nus sans utiliser d'indices liés à l'apparence, contrairement aux méthodes d'estimation de la

saillance générique auxquelles nous comparons expérimentalement notre méthode. Ce type

d'indices est en effet exploitables pour la base de test utilisée, étant donné que celle-ci n'a pas

été construite spéci�quement pour l'évaluation de la saillance du mouvement. Nous n'avons

également pas utilisé d'apprentissage pour l'étape d'extraction de la saillance à partir du �ot

optique. Nous avons ainsi dé�ni une méthode ef�cace et non supervisée.

Chapitre 5

Le chapitre 5 est dédié au problème de l'estimation de la saillance de trajectoires. Les trajec-

toires permettent d'aborder la saillance qui n'apparaît qu'avec le temps, c'est-à-dire de manière

progressive. De plus, en présence de plusieurs objets, les trajectoires de ces objets fournissent

un moyen naturel de comparer leurs mouvements respectifs et d'identi�er la saillance relative.

Obtenir cette information de saillance relative à partir de la méthode précédente n'est en effet

pas toujours possible. Cela dépend de la con�guration respective des trois entités de la scène

précédemment évoquées. Pour résoudre ce problème, nous élaborons une méthode dont le

cœur est un réseau de neurones récurrent faiblement supervisé. Le rôle de ce réseau est de

représenter les trajectoires avec un code latent de faible dimension, facilitant la décision ulté-

rieure. La faible supervision est réalisée avec une structure d'auto-encodeur, complétée par

une contrainte de cohérence ajoutée à la fonction de perte. Cette contrainte traduit le fait que

les trajectoires normales sont semblables, et sa fonction est de rapprocher leurs codes dans

l'espace de représentation. La classi�cation des trajectoires en saillantes ou non saillantes

s'appuie sur une comparaison des codes au code médian dans l'espace de représentation.

Des expériences menées sur des données synthétiques et réelles ont permis d'évaluer les
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performances de la méthode. Les trajectoires réelles sont des trajectoires de piétons extraites

dans la gare de Lausanne avec un réseau de caméras et un algorithme de suivi dédié présen-

tés dans [ARF14]. En particulier, inclure la contrainte de cohérence permet dans la majorité

des cas d'obtenir de meilleures performances. Cet effet est plus visible lorsque la différence

entre la saillance et la normalité est plus prononcée.

Annexe A

Dans l'annexe A, nous présentons des expériences complémentaires concernant l'estima-

tion de la saillance de mouvement relative directement depuis des vidéos. La saillance relative

émerge lorsqu'un �ot principal d'objets mobiles est présent et que quelques objets mobiles ne

suivent pas ce �ot. Il n'existe à notre connaissance pas de base de données de vidéos réelles

dédiées à ce problème. Nous avons donc construit une base de vidéos 3D synthétiques pour

des �ns d'apprentissage et d'évaluation. Nous étudions deux approches pour cette tâche. La

première repose sur l'exploitation du �ot optique. La seconde s'appuie sur une segmentation

de la scène en objets, puis sur le suivi de ces objets pour en extraire les trajectoires.

Perspectives

Plusieurs idées peuvent être explorées pour améliorer et étendre les travaux présentés

dans cette thèse. Les perspectives de court terme incluent le test de nouvelles architectures

pour les différentes méthodes. C'est bien sûr le cas des différents réseaux convolutifs utili-

sés, qui pourraient béné�cier d'une exploration plus poussée de l'espace des con�gurations.

L'amélioration des autres composantes pourrait également conduire à de meilleures perfor-

mances. C'est par exemple le cas de l'estimation du mouvement dominant pour la détection

de la saillance, actuellement réalisée avec un modèle af�ne. Les perspectives de plus long

terme incluent la capacité à séparer la saillance de profondeur de la saillance du mouvement

pour l'estimation de cartes de saillance. S'appuyer sur de l'apprentissage est une piste envi-

sageable pour résoudre ce problème. En�n, il serait intéressant d'explorer des mécanismes

d'apprentissage faiblement supervisé comme celui proposé pour la saillance de trajectoires à

d'autres problèmes, comme par exemple la détection d'anomalies.
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CHAPTER 1

INTRODUCTION

1.1 Context and motivations

In order to guide our actions in the environment in which we evolve, we dispose of our

senses, classically classi�ed into vision, hearing, touch, taste and smell, and to which we can

add several other ones such as for instance the sense of equilibrium or the ability to feel the tem-

perature. Some animal species even dispose of additional senses, such as magnetoreception

for some cetaceans or birds, which allows them to perceive magnetic �elds, or echolocation for

bats or dolphin notably, which allows them to use sound to probe their surroundings. Various

and complex sensors are the foundation of these senses. Among all these senses, vision is

of particular interest. Indeed, in an environment �lled with air, void or even shallow water, it

provides rich and detailed information about surrounding objects. Moreover, by relying on the

perception of light, vision can provide information about distant objects almost instantly. For this

reason, we tend to largely rely on this sense to analyse and navigate in our environment.

Even when focusing on vision alone, the environment is extremely complex. It is common to

see simultaneously many objects or people, all of them potentially requiring an action from the

observer. Birds should rather �ee if they see a cat, and a sheep may be tempted by rich grass in

a pasture. Pedestrians should be careful when crossing a road, and cars should avoid collisions

with static or moving objects. A �rst solution to properly handle such complex environments

would be to permanently pay attention to each and every element of the whole scene. While

this would solve the problem at hand, this solution is not the one we apply in practice. First of

all, our �eld of view is limited. In this �eld of view, our central vision, that relies on the region of

the eye called the fovea, is sharper than our peripheral vision. This alone means that we must

move our head and eyes if we want to analyse fully our environment, and in particular if we

want to focus on one element. Moreover, a permanent full analysis of the viewed scene would

require a high energy cost, without mentioning the need of a higher complexity of the brain to

conduct the analysis.

To permanently analyse the environment at a reasonable cost, we rely on visual attention.

Visual attention is triggered by both the external environment and the brain. Its role is to select

important information by relying on saliency cues. Once relevant elements are identi�ed, we

can focus on them and dedicate our resource to analyse them.
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A �rst family of saliency cues is linked to the appearance of objects. For instance, a few red

raspberries will be salient among the green bushes, green trees and green grass. In a scene

with a majority of similarly looking objects, we are likely to be already aware of the presence of

these objects, and to have undertaken the required actions if necessary. There is no particular

reason to look more speci�cally at one of these objects than at another one. On the other

hand, if there is an additional object with a very different appearance, the only way to analyse

this speci�c object is to focus on it. It is then possible to decide whether this object requires

attention or if we can ignore it. Saliency is in this case simply de�ned by a comparison with a

normal appearance in the scene.

FIGURE 1.1 – Saliency determined with appearance cues (�rst line), and saliency determined
with motion cues (second line). The horse and the sign are clearly distinct from their surroun-
ding, which is by design for the sign. The two chameleons in the bottom left image are far
easier to distinguish when they are seen in motion than in a static image such as this one. If
a pedestrian were crossing the road in the bottom right setting, the cars motion would be a
key element to pay attention to. The images are from the MSRA-B [Wan+17], Camou�aged
Animals [BLM16] and FBMS-59 [OMB14] datasets.

A second family of saliency cues is linked to motion. First, by looking at a static scene, it can

take only a few instants to overview the scene, and to analyse or decide to ignore its content.

Then, if nothing moves in the scene, it means that there are no new elements, and that the

past analysis still holds. It is then unnecessary to spend more energy to analyse again any

part of the scene. On the contrary, if a moving object enters the �eld of view, this object has

not been analysed and deserves more attention than the rest of the scene. More generally,
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any moving object of the environment presents an interest. Because of its motion, it may in-

teract with the viewer, either by coming to him/her, �eeing him/her, hunting him/her, or simply

potentially crossing his/her path. In all these cases, the viewer should undertake the appro-

priate action. Leveraging motion indices is then a relevant way to select the element on which

to focus. If there are several moving objects, motion saliency cues should provide the most

signi�cant highlight on the object with the most distinctive motion, which can be for instance

the fastest/slowest one, the one with a distinct motion pattern, or the one following an erratic

trajectory, and which is the most likely to require a speci�c response. Motion cues are based

on the evolution of the scene across time. Naturally, if the head or eyes of the viewer move, this

will induce an apparent motion for the static objects as well. Nevertheless, this phenomenon is

mitigated in human and animal perception. However, it must be explicitly taken into account in

arti�cial vision systems.

Appearance and motion yield two useful but different kinds of saliency cues, further illus-

trated in Figure 1.1. Appearance cues drive attention toward elements with potentially speci�c

shapes or colors. Motion cues trigger attention toward moving elements undergoing speci�c

motion or action.

The discussion above was focused on the speci�c role of vision for the perception of the

environment of people and many animals, and on the importance of saliency to allow for an

ef�cient processing of the input signal. Now, if we consider the problem of building robotics

systems able to act autonomously in a given environment, they should be able to conduct a

similar analysis of their surroundings. Such systems are commonly built with constrained re-

sources, namely limited energy consumption, processing time and processor load, thus making

an ef�cient processing needed. We can also consider the broader problem of video analysis,

which includes tasks such as video surveillance, video summary or crowd motion analysis. In

all these cases, the detailed analysis should be restricted to the most interesting parts to avoid

wasting computing resources. The particular relevance of motion cues for all these tasks is due

to the fact that it provides information about the dynamics of objects in the scene. It it then the

adequate piece of information to either ensure a safe navigation, or to monitor and detect unu-

sual and potentially dangerous behaviours. The objective of this thesis is precisely to consider

and analyse the problem of motion saliency estimation in video sequences.

1.2 Related work

Related work will be discussed in details in a dedicated chapter. Here, let us simply present

an overview of the most notable points.

Saliency estimation is a frequent concern. It may operate as a pre-attention mechanism or

be a goal in itself. When working with image or video data, its output usually consists of saliency
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maps providing the probability of saliency at each pixel. Actually, saliency estimation is close

to visual attention, object detection, or even image segmentation. There is not really a single

formal de�nition of image saliency, which can have several declinations. We already made the

distinction between appearance and motion saliency. In the literature, the following declinations

of saliency are commonly used. A �rst possibility is to consider that what attracts the attention

of human observers is salient. This can be recorded with speci�c eye-tracking devices, which

measure the spatial location where people look at when they view videos. A second possibility

is to consider that objects with very distinctive appearances and motion are salient. Typically,

objects located in the foreground and with a pronounced motion are considered to be salient.

For these de�nitions of saliency, both appearance and motion play a role for the identi�ca-

tion of the elements of interest. It is then natural for saliency estimation methods targeted at

these tasks to exploit both. Regarding appearance, information about colors, textures, border

and shape are typically used. Regarding motion, the temporal consistency, the optical �ow,

from which the displacement magnitude or motion boundaries can be extracted, are commonly

leveraged. The difference between the different methods mainly lies in the way these elements

are extracted and combined to estimate saliency. This can be done by designing a dedicated

framework to put these pieces together. Another possibility is to rely on deep neural networks,

which have proven very effective to handle image data and which are adopted by most recent

methods.

More generally, elements deviating from the normal or whose behaviour is unexpected can

be considered to be salient. When dealing with this generic de�nition, it is more common to

speak of anomaly detection. Anomaly detection extends to non image data as well. Trajectories

are an example of such data, which is relevant for our problem as they convey motion informa-

tion. For this family of problems, the goal will be to �nd anomalous patterns in the data, which

can be done through the exploitation of domain knowledge, the use of statistical tools or again

with deep neural networks.

1.3 Overall contributions

Although motion saliency cues present a clear interest for scene analysis, existing me-

thods commonly mix motion saliency with appearance saliency to produce a unique combined

saliency estimate. This is unfortunate, since it hides the cause of the saliency decision. For

examples given above (navigation for mobile robotics, video surveillance...), we may be inter-

ested in motion saliency only. In this case, appearance saliency should not act as a distractor.

In fact, there are situations where the appearance does not play any role. A typical example is

an individual walking against a crowd. It can occur in many diverse applications, such as ur-

ban and road traf�c monitoring [ RB19 ; BFM19], ensuring safety of public areas prone to dense
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crowd [PRBB17], studying cell dynamics in bio-imaging [Rou+17], or identifying adverse wea-

ther conditions in meteorological image sequences [Pap+00]. In all these cases, motion is likely

the only element of concern to extract relevant information about the viewed scene.

When dealing with motion saliency, three kinds of entities are usually involved :

— The static scene,

— Salient moving elements,

— Normal moving elements.

Since we are interested in motion saliency, the static scene is obviously not likely to be salient.

In contrast, objects undergoing a singular motion are salient. It is also possible to encounter

situations where several or many objects are moving and follow the same motion pattern. In this

case, they will be considered as normal. Salient moving elements will be objects undergoing

motion departing from the main one. These different groups of objects may be perceived by

a camera that can be either static or itself moving. In the later case, apparent motion will be

induced over the whole image, modifying the con�guration of motions in the video. Our work

will address these issues in the following chapters.

The contributions of this thesis are organised around three axes of motion saliency analysis.

The �rst one is concerned with the temporal detection of motion saliency in video se-

quences. The goal is to be able to decide which frames contain no motion saliency and can

then be further ignored, and which frames do contain motion saliency. To our knowledge, this

problem has not been investigated so far. It is however a useful pre-requisite for saliency lo-

calisation methods, which often assume that saliency is present. Our purpose is then to build

a pre-attention mechanism that can be used to trigger further processing of the video frames,

exclusively when it is relevant.

The second axis deals with the estimation of motion saliency maps (see the illustration in

Figure 1.2). When motion saliency is found present, it is useful to locate the salient element in

the image. An autonomous mobile robotics system could then use the estimated map to decide

whether and how to adapt its trajectory, and a video analysis system can highlight to a human

operator the location of the element of interest.

The third axis focuses on the estimation of trajectory saliency. Long-lasting motion saliency

can appear only after some delay, and trajectories are a good way to capture lasting events, as

illustrated in Figure 1.3. The trajectories can be extracted from videos with tracking systems.

Trajectories are however not restricted to this setting, as they can be provided by sensors such

as GPS, nowadays commonly present in cars or mobile phones. More generally, any time series

can be viewed as a trajectory and processed similarly. The goal of this third axis is to de�ne

a method to estimate trajectory saliency, that is, in a group consisted mostly of similar normal

trajectories, �nding the few dissimilar ones.
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FIGURE 1.2 – Ground-truth motion saliency maps associated to four examples. A �rst possibility
is that no element of the scene undergoes any salient motion. In this case, we get an empty
ground truth saliency map. The two �rst samples correspond to such a situation. We acquired
these videos as part of the dataset described in Chapter 3. In contrast, salient moving elements
are present in the two last samples, as highlighted in the ground truth. The two last samples
come from the DAVIS 2016 dataset [Per+16].

a) b)

c) d)

FIGURE 1.3 – Illustration of four trajectory saliency settings. Normal trajectories are drawn in
blue and salient ones in orange. In settings a) and b), the salient trajectory is clearly distinct
from normal ones. In setting c), the salient trajectory has a slightly different direction, and in
setting d) the salient trajectory corresponds to a slightly faster motion compared to normality.
For the two last settings, motion saliency is less pronounced. Looking at the motion at only one
instant may not be suf�cient to correctly discriminate salient ones, especially if motions are not
regular enough. An observation covering a longer time period, as provided by trajectories, will
help making better predictions.

22



Introduction

1.4 Organisation of the manuscript

The manuscript is organised in four main chapters. Chapter 2 consists in a survey of the

relevant literature. In Chapter 3, we develop a method for frame-based motion saliency detec-

tion. Chapter 4 introduces a method for motion saliency map estimation based on optical �ow

inpainting. Chapter 5 is focused on trajectory saliency. Additionally, Appendix A investigates

relative motion saliency with a 3D video dataset. Below, we present a brief overview of each of

these parts.

Chapter 2

In Chapter 2, we describe related work regarding saliency estimation and anomaly detec-

tion, which are �elds closely related to motion saliency estimation. This survey allows us to

identify research �elds related to our overall objective of de�ning motion saliency estimation

methods. Several �elds addressed in this chapter will be explored to build our methods, that is,

deep neural networks, optical �ow estimation, deep metric learning and methods for learning

with weak supervision.

Chapter 3

In Chapter 3, we investigate the problem of frame-based motion saliency detection, that is,

deciding which frames of a video contain motion saliency. The method we propose involves two

steps. First, the dominant motion due to the camera displacement is cancelled. Then, the clas-

si�cation into the salient or non salient class is achieved with a convolutional neural network.

We experiment working with either raw images or the optical �ow in our work�ow. Additionally,

we consider two methods for the estimation of the dominant motion in the image due to the

camera motion. This gives a total of four variants, that will be compared and evaluated. The

training and the experimental evaluation of our method variants rely on a synthetic dataset

of image pairs with known motion and a dataset of real videos. The experimental results will

show that we are able to correctly detect motion saliency, even in presence of static elements

which may have a strong apparent motion due to the camera motion and their location in the

foreground of the scene.

Chapter 4

In Chapter 4, we address the problem of motion saliency map estimation, which consists in

predicting a saliency value for each pixel of the video frames. To solve it, we will elaborate a

method relying on optical �ow inpainting. In a �rst step, candidate salient regions are extracted.

Then, the optical �ow inside these regions is inpainted from the surrounding �ow. The idea is
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that, if the region is salient, the inpainted �ow should be clearly distinct from the �ow computed

originally in that region. In contrast, if the region is not salient, the reconstructed �ow and the

original one should be similar. We leverage the difference between these two �ows to compute

the motion saliency map. Experimental results will demonstrate that our method compares

favourably against existing methods.

Chapter 5

In Chapter 5, we tackle the problem of trajectory saliency estimation. Trajectories enable to

handle motion saliency that progressively appears over time. Moreover, when several moving

objects are present, trajectories allow us to compare more easily the respective motions, and

consequently to �nd relative motion saliency. It would be less immediate from raw optical �ows.

In addition, it may be not accurate enough to lead to a precise identi�cation of all the moving

objects in the image. We will develop a framework whose core is a weakly supervised recurrent

neural network. The role of this network is to represent trajectories with a latent code, so that

similar trajectories should be represented with close codes, and dissimilar trajectories with dis-

tant codes. The weak supervision is achieved with an auto-encoder structure, complemented

by a consistency constraint added to the loss. This constraint expresses that non salient tra-

jectories are similar, and its role is to make non salient codes closer in the embedding space.

Experiments will be carried out on synthetic and real datasets.

Appendix A

In Appendix A, we present further (preliminary) investigations regarding the estimation of

relative motion saliency from video sequences. Relative motion saliency occurs when there is

a main stream of moving objects, and a few salient objects exhibiting different motions. To our

knowledge, there is no real video dataset with ground truth dedicated to this problem. Then, we

have built a 3D synthetic video dataset for training and evaluation purpose. We have designed

two methods for this task. The �rst one is based on optical �ow. The second one requires the

segmentation of the scene into objects. The successive segmentation throughout the video will

supply their trajectories. The second method will yield encouraging results, but also raises still

open issues.
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CHAPTER 2

MOTION SALIENCY : RELATED WORK

In this chapter, we review work related to motion saliency estimation. We will start by consi-

dering two research �elds on which many image and video processing methods rely, and that

will be particularly relevant for motion saliency estimation. The �rst of these �elds is deep lear-

ning. Section 2.1 will summarise its most notable theoretical and practical aspects. We further

discuss two aspects of deep learning in Sections 2.2 and 2.3. Section 2.2 will be dedicated to

work concerning weak supervision for deep learning, and Section 2.3 will address the �eld of

deep metric learning.

The second of the research �elds commonly leveraged when estimating motion saliency is

the estimation of motion in videos through optical �ow. It will be discussed in Section 2.4.

The review will then focus on several declinations of saliency estimation in Section 2.5,

namely, eye-tracking saliency, static image saliency, video saliency and anomaly detection.

Most of these tasks are related to motion, and they all have in common the goal of identifying

elements departing from their context.

We will �nally discuss in Section 2.6 work related to trajectory analysis. Indeed, trajectories

represent a natural approach to handle long-term information, and then to estimate long-term

motion saliency. Section 2.7 contains concluding comments.

2.1 Deep neural networks

Arti�cial neural networks have been developed with a double objective. The �rst one is to

propose a model of natural neural networks found in the brain. The second one is to exploit this

model to make it possible for machines to reproduce some of the brain functionalities. We will

focus on what has been achieved for this latter objective. In Section 2.1.1, important milestones

as well as core elements de�ning arti�cial neural networks will be discussed. Section 2.1.2 will

be centred on additional considerations for the successful usage of neural networks in practice.

2.1.1 Brief history and core elements of deep neural networks

The perceptron, proposed by [Ros58] in 1958, is an early example of arti�cial neural net-

work. A perceptron is composed of neurons. These neurons process the input through linear

25



Chapter 2 – Motion saliency : related work

combinations and non-linear thresholding operations to produce the output value. The percep-

tron was developed to serve as a (simple) model of the brain.

A major milestone in the history of neural networks is a theoretical result regarding their

modelling capabilities. In [HSW+89], the authors proved mathematically that, if a neural network

contains at least one hidden layer, uses an arbitrary squashing function, and has a suf�ciently

large number of hidden units, it is able to approximate any function from one �nite dimensional

space to another which is Borel measurable. The functions considered in practice are expected

to be Borel measurable, which means that neural networks can be considered as universal

function approximators.

Following these theoretical guarantees, the next question was how to successfully apply

neural networks to practical problems.

A key element is the architecture of the neural network. Let us discuss convolutional neural

network, that were originally designed for image classi�cation and that are a central element in

the success of deep networks for image processing applications. For the image classi�cation

task, the input is an image, consisting in a grid of pixels whose colors are represented by

a (Red, Green, Blue) triplet. For each class we want to recognise, for instance digits, cats,

people, etc., the network typically produces a score. The prediction of the network will be the

class associated to the highest score. The question is then how to map the input, which is a

2-dimensional image, to the output, a 1-dimensional vector with as many components as the

number of classes. The core ingredient is a succession of 2D convolutions, each of them being

followed by a non linearity. The role of the 2D convolutions is to leverage the spatial structure

of the image. The non linearity, which can be for instance a sigmoid, an hyperbolic tangent or

simply a ReLU, is required to make it possible for the network to approximate any mapping,

and not only linear ones. The successive layers learn more and more abstract features, while

reducing the size of the feature map. The �nal score vector is then obtained with fully connected

layers. The famous LeNet network [LeC+98], represented in Figure 2.1, illustrates these general

design principles.

Over the years, it has been found that neural networks with a larger number of layers can

lead to better performance. These neural networks were then quali�ed as “deep”. Note that

depending on the context, a network with as few as three layers may be quali�ed as deep. By

extension, the expression “deep learning” is commonly used to qualify methods that rely on the

training of deep neural networks.

Architectures following the above-mentioned principles necessarily comprise a huge num-

ber of parameters, which can easily reach hundreds of thousands or even several millions. At

this point, the question is how to set values for all these parameters that would produce a rele-

vant mapping between input and output. Training is required which is often based on Stochastic

Gradient Descent (SGD). The idea is to de�ne a loss function to minimise by an iterative pro-
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FIGURE 2.1 – Architecture of the LeNet-5 convolutional neural network designed for digit re-
cognition. Reproduced from [LeC+98].

cess. A few samples are grouped into a batch, and the weights are updated to minimise the

loss for this batch with a gradient descent algorithm. This is repeated until some convergence

is reached.

An example of loss frequently used for image classi�cation is the cross-entropy loss. Let

us assume that we have a network taking images as input and that produces an output vector

of dimension C, with C the number of classes considered. The output vector stores a score x i

for each of the C classes. These scores x i 2 R can be converted into estimated probabilities

pi 2 [0; 1] that the image corresponds to the i th class by taking :

pi =
exp(x i )

P C
j =1 exp(x j )

: (2.1)

In standard classi�cation setups, the classes are often considered to be mutually exclusive, this

is why the probabilities are de�ned so that their sum is equal to 1. The cross-entropy loss for a

sample image whose class index is c is then de�ned by :

L = � log(pc)

= � log

 
exp(xc)

P C
j =1 exp(x j )

!

= � xc + log

0

@
CX

j =1

exp(x j )

1

A

(2.2)

A validation set can help monitoring the training stage. The most frequently used optimisa-

tion methods include Adagrad [DHS11], RMS Prop [TH12] or Adam [KB14].

The labelled training data is an important part of the optimisation process. Indeed, the avai-

lability of a huge training dataset has proven to be crucial for the success of deep learning me-

thods. Examples of datasets include MNIST [LeC+98], Cifar [KH+09], or ImageNet [Rus+15]
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for image classi�cation, Kitti [ GLU12], Flying Chairs [Dos+15] or Sintel [But+12] for optical �ow

estimation, FBMS [OMB14] and DAVIS [Per+16] for video object segmentation. In particular,

the impressive breakthrough obtained by [KSH12] for image classi�cation was made possible

by leveraging the very large ImageNet dataset, that includes millions of labelled images. In

[Sun+17], the authors found that performance increases logarithmically based on volume of

training data. To reach this conclusion, they considered a dataset of 300 million images with

noisy labels. They even found that for a large dataset generated automatically but involving

noise, the negative impact of the noise is more than counterbalanced by the scale of the data.

Still, it is in practice not always easy to get a large annotated dataset, and this point remains an

open challenge that we will further discuss in Section 2.2.

A consequence of the requirement of a huge dataset is that a fair amount of computational

power is required to train deep networks. In [KSH12], the authors were able to leverage the Ima-

geNet dataset with millions of images by optimising their neural network on a GPU (graphical

processing unit). GPUs are able to handle ef�ciently many operations in parallel, which is very

bene�cial for deep neural networks designed for image processing. Since then, many frame-

work have been developed to allow for a quick and ef�cient design of deep networks, such as

Theano [Ber+11], Caffe [Jia+14], Keras [Cho15], Tensor�ow [ Aba+16] and PyTorch [Pas+19].

Thanks to the efforts that have been made to optimise both the hardware and software, typical

deep network architectures can now run in real time.

FIGURE 2.2 – Architecture of a residual block. The output of the block is the output of its second
convolutional layer, added to the input of its �rst convolutional layer. This structure allows the
gradient to �ow easily through the whole residual network, which is composed of a succession
of residual blocks. Reproduced from [He+16].

Since the work described in [KSH12], deep architectures were improved for the image clas-
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si�cation task, notably in [ Sze+15 ; He+16 ; Hua+17]. There has been a trend to develop deeper

and deeper nets, which can even reach several hundred layers [He+16]. A notable trick consists

in adding shortcuts between layers to ensure that the gradient-based optimisation can update

all the weights. This takes the form of residual connection in [He+16] (see Figure 2.2) and of

dense connections in [Hua+17].

After their successful application to image classi�cation, deep networks have been investi-

gated for other computer vision tasks. The success they encountered often led to a paradigm

shift in these �elds. It is then common to make the distinction between deep-learning based

methods and classical methods.

FIGURE 2.3 – Architecture of the U-Net network for biomedical image segmentation. The net-
work is constituted of a contracting part, whose role is to learn features at a limited computa-
tional cost, and an expanding part, which ensures that the prediction has the same size as the
original image. Reproduced from [RFB15].

To process sequential data, a family of networks has been developed, namely recurrent

neural networks. These networks include memory cells, whose role is to hold and update past

information. Recurrent neural networks such as the LSTM, proposed originally in [HS97], have

been designed for the processing of sequential data. Such networks were applied to applica-

tions such as speech recognition [FGS07], natural language processing [Kum+16], but also on

video processing [JXW17 ; Lai+20].

Let us mention a few examples of other applications to conclude this section. In [RFB15],

the authors applied deep networks to biomedical image segmentation. A central architectural

change consists in relying on operations that allow to predict an output map of the same size
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as the input one instead of an output vector. For this, the authors rely on an upsampling of

the feature map followed by standard convolutional layers (see Figure 2.3). In [Che+18b], the

authors rely on a similar idea, by proposing to use dilated convolutions to upsample the feature

map. The work of [He+17] is an example of application to the task of object instance segmen-

tation, with a deep network which, in addition to recognizing the object classes present in the

image, separates the different objects belonging to the same class. Deep networks have also

been successfully applied to video processing tasks, as for instance automated description of

videos [Yao+15], or action recognition in videos [SZ14 ; SKS16 ; Li+18].

2.1.2 Performance and computational cost issues

The design and training of deep neural networks remain in part an empirical process. The

application of appropriate tricks can in practice lead to improved performance. These tricks can

be used when de�ning and testing new architectures, but some of them can as well be used to

improve existing methods. This section discusses a few notable tricks.

In [Ben12], the author makes practical recommendations for the training of a deep net-

work. Many options or hyper-parameters are involved : the pre-processing of the input data, the

choice of the learning algorithm, in turn requiring to set parameters such as the learning rate,

the batch size or the training schedule. Even without taking into account the multiple possible

architectures for the network, there are already many choices to �x. The author notes that all

these hyperparameters do not have the same impact on performance. For instance, properly

setting the learning rate is often critical. On the other hand, the batch size is mainly linked to

computational ef�ciency (it is generally desirable to feed simultaneously to the GPU as many

images as possible). The search of the right hyperparameters can be done with a grid search.

However, the high number of possible combinations of hyperparameters makes an exhaustive

investigation with this approach not tractable. Another option proposed by [Ben12] is to perform

a random search in the hyperparameter space. The author found it better than exploring the

many possible con�gurations. In [ Jad+17], the authors went further in this direction by de�ning

the Population-Based Training algorithm. This algorithm leverages large computing resources

to train several models in parallel. The idea is to train a population of models. Regularly, the

lowest-performing models are discarded. They are replaced by the best-performing models

whose weights and hyperparameters are slightly modi�ed before resuming training. This ap-

proach provided better results and faster convergence than grid and random search.

To further emphasize the impact of training, let us mention the following point. Published

results tend to be considered as the best possible results obtainable for the models described,

but this is not necessarily the case. In the context of optical �ow estimation, the authors of

[Sun+20] provide an empirical analysis of the impact of training. By modifying the training pro-

cedure (notably by including learning rate disruption), they could reach a higher precision with
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a FlowNetC network than with the original FlowNet 2.0 network [Ilg+17], while FlowNetC is a

subnet of FlowNet 2.0.

A deep network should not only deliver accurate results, it should also have a limited me-

mory footprint, which is particularly critical for embedded systems with limited resources such

as mobile phones. Large neural networks can be pruned to 10-20% of the number of their ori-

ginal weights, while maintaining the same level of performance [FC18]. However, retraining the

pruned model from scratch generally yields lower performance. To explain this, the authors for-

mulate the lottery ticket hypothesis, according to which the lucky initialisation of a sub-network

is what enables good performance. Such a lucky initialisation is more likely to happen in a larger

network, which comprises many sub-networks.

The loss function plays an important role for obtaining good performance. It ensures that

the network gains relevant information from the data through back-propagation. This is parti-

cularly true for tasks requiring a prediction for all pixels of images. For such tasks, classical

losses such as the cross-entropy loss, which is computed and summed for all the pixels of the

image, may provide a comparatively negligible learning signal for small misclassi�ed elements.

In [Lin+17], the authors propose the focal loss to address this issue. This loss is prone to in-

crease the value of the gradient for misclassi�ed pixels compared to the value of the gradient

for properly classi�ed pixels. By doing so, even small objects can have a signi�cant contribu-

tion to the model update, which leads to performance improvement. Another important concern

regarding the loss function is its adequacy with the �nal objective. Generally, one or several me-

trics are used to evaluate how well the network performs. In [Bru+20], the authors consider the

problem of visual saliency estimation. They �nd that a loss consisting of a linear combination of

several terms, individually focusing on a different aspect, with for instance a pixel-based term,

a distribution-based term or a saliency-inspired term, allows to improve the performances. In

particular, performances are more evenly distributed over all the metrics, that emphasize each

a different point.

2.2 Weak supervision for deep learning

As we have seen so far, deep learning methods are successfully used for a wide range of

tasks. However, a major constraint is the need of large training datasets, which usually require

expensive annotation efforts to be built. Research works have then been dedicated to reduce

the amount of supervision needed to train deep neural networks. With weak supervision, it is

easier to make a method applicable to new con�gurations, or to increase the amount of training

data and improve performance. Weakly supervised networks are also relevant for anomaly

detection in general, and for motion saliency in particular.

Let us �rst highlight an important point raised in [ Rol+17]. In a supervised setting, deep
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neural networks can be trained successfully even with a high proportion of erroneous training

labels. For the unsupervised setting, it means that the learning signal, which depends on the

choice of the loss function applied to the data, may also be noisy. In [Pap+15], the authors

take advantage of this property. They develop a method for semantic image segmentation with

low supervision. It involves an inaccurate annotation (bounding box or even image-level label),

combined with a few strongly labelled images to further improve performance. A probabilistic

approach is used to de�ne the loss from the coarse labels. Another kind of abundant noisy

data is leveraged in [Mah+18] for pre-training. The authors designed a network to predict the

hashtags associated to billions of images extracted from social media. This kind of data can be

obtained with weak annotation cost.

Another way to get information to train a network in an unsupervised way is to �nd a relevant

pretext task, which is a task not directly related to the �nal objective, but that requires no super-

vision for training. In [GSK18], the authors randomly rotate images by an angle � 2 [0; �
2 ; �; 3�

2 ],

and train a network to predict the angle. The idea is that, to be able to solve this problem, the

network should use the canonical orientation of the objects present in the image. This means

that the network should be able to extract relevant features to characterise objects. Following a

similar idea, the authors of [NF16] construct jigsaw puzzles from images. They build a network

to predict the position of the image patches composing the jigsaw puzzle. The network is ex-

pected to learn a representation of the spatial organisation of images, which can be reused for

other tasks.

Weak supervision can also be achieved by leveraging multi-modal data. In [Nav+19], the au-

thors develop a robotic system equipped with a camera and a short-range sensor. The authors

make use of the short-range proximity sensor to label training data for the camera. In [Par+19],

the authors combine audio and visual information with a weakly supervised scheme. For this,

they leverage video-level label with no precise spatial or temporal information. In [Sun+19], the

authors de�ned the videoBERT method that learns from visual and text input. Their objective is

to learn a joint representation. The supervision is obtained by masking a part of the signal and

by trying to predict it (for instance, masking a word in a sentence). They �nd that leveraging

multi-modal information helps to improve performance.

The authors in [Wan+19a] achieve tracking within an unsupervised framework. They rely on

the fact that tracking an object forward and then backward should give the initial position of the

object.

Finally, another family of unsupervised methods is based on auto-encoder networks, and

more speci�cally Generative Adversarial Networks (GANs) [ Goo+14]. Two networks are trained

together by competing against each other. The �rst network is a generator network, whose

goal is to generate samples not distinguishable from real samples. The second network is a

discriminator network, which tries to predict whether its input samples have been produced by
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FIGURE 2.4 – Trick for unsupervised learning for tracking proposed in [Wan+19a]. The authors
track the same element forward and backward. This process should lead to the initial position of
the tracked element, which is used to de�ne the unsupervised training algorithm. Reproduced
from [Wan+19a].

the generator or whether they are real samples. The training of GANs is known to be tricky, and

methods have been proposed for a better convergence, such as in [Sal+16]. In the context of

the trajectory prediction task, the GAN framework has been used as a means to train a model

without requiring manual annotations [AHP19]. In this work, the authors make use of an Info-

GAN [Che+16] to avoid the problem of mode collapsing, which may otherwise be encountered

with GAN networks.

The reader is referred to the survey [JT20] for a deeper analysis.

2.3 Deep metric learning

The potential of deep learning has been con�rmed through many experiments concerned

with image classi�cation. However, deep neural networks are not limited to the classi�cation

task, and deep learning can be bene�cial to other issues, possibly with other paradigms. In

particular, deep metric learning is another way to tackle problems, which will inspire us on

several occasions. This section then provides insights on the �eld of deep metric learning.

Deep neural networks are able to approximate practically any function from a �nite dimen-

sional input space to a �nite dimensional output space [ HSW+89]. As discussed in Section 2.1,

for image classi�cation, the output consists in general of a vector with as many components

as the number of classes. The value of each component represents the probability that the

sample corresponds to a particular class. However, this way of proceeding is only one of the

many possibilities that could be considered. It also has drawbacks : to be able to recognise a
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new class, the architecture of the network has to be modi�ed and the network itself must at

least be �ne-tuned.

Instead of predicting an array of probabilities, another possibility is to predict a feature vector

to embed each input sample. The task at hand will then be solved by processing this embed-

ding. A common desirable property for the embedding is the following : similar samples should

be represented with similar embeddings, and dissimilar samples should be represented with

dissimilar embeddings. Deep metric learning methods are methods that attempt to learn em-

beddings with such properties. For instance in [SKP15], the authors consider face recognition

and clustering. For this, they propose to learn an embedding c of faces with a triplet loss. This

loss, schematically represented in Figure 2.5, is de�ned from three samples. Two of them are

pictures of the same person. They are called the anchor and positive sample, and they are

represented with embeddings ca and cp respectively. The last sample is a picture of another

person. It is the negative sample, represented with the embedding cn . The triplet loss is then

de�ned as :

L = max(jjca � cpjj2
2 � jj ca � cn jj2

2 + �; 0): (2.3)

The objective of this loss is to ensure the distance between ca and cp is smaller than the distance

between ca and cn by a margin � . In [HA15], the authors develop a similar idea. They use a

triplet network to learn such an embedding from the data. A triplet architecture is an architecture

with three branches sharing the same weights, used to predict an embedding for three samples

(the reference, the positive the negative one). They use the predicted embeddings to decide

whether images represent the same class of object or not.

FIGURE 2.5 – Illustration of the triplet loss. Three samples are represented in the embedding
space. The anchor and the positive samples are similar and should be represented with similar
embeddings. The negative sample is different from the anchor, and the embeddings of the
anchor and the negative element should be clearly distinct. The triplet loss acts as a force in
the embedding space designed to enforce these properties.

In [HBL17], the authors warn that, for deep metric learning, the stagnation of the loss func-

tion does not mean the training should be stopped. Indeed, if the training continues for a while,

it is quite common to see the network improving again. This behaviour is due to the fact that,
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while the codes are evolving in the embedding space, but are not yet positioned in clearly sepa-

rated clusters representing the different classes, the classi�cation step will not be able to reach

good performance. The authors also note that to help the network learn, it is often necessary to

mine hard triplets. Hard triplets are triplets for which making an accurate prediction is more dif-

�cult, for instance due to their similar appearance. They design a loss function that includes this

hard mining automatically to enforce this point. In fact, deep metric learning allows for a variety

of loss functions to shape the embedding space. In [Wan+17], the authors consider the triangle

formed by a triplet on the embedding space. They de�ne an angular loss from this triangle, in

order to achieve scale invariance. In [Wan+19c], the authors consider a list of (more than three)

samples to build the loss. It allows them to extract more information about the structure of the

data.

Let us now review how deep metric learning can be used in practice to solve a variety of

tasks. A �rst application is the ef�cient processing of an image database. In [ Wan+14], the

authors rely on deep metric learning to estimate image similarity with the help of a learned em-

bedding. Their goal is to retrieve images in the database images that are similar to the query.

Moreover, this can be done ef�ciently by computing only once a compact embedding for each

image. This embedding contains all the information required and can be processed at a much

lower cost than the whole image. Another application is tracking. Given the initial location of an

object of interest, the goal is to predict its location throughout the video. In [HLT16], the authors

use deep metric learning to compute a similarity between samples in order to build their tra-

cker. In [RT18], the authors consider a multi-target multi-camera tracking scenario. One notable

challenge of this setting is the need to re-identify tracked people among many distractors. To

solve it, they integrate in their framework deep metric learning, by leveraging a new adaptative

weighted triplet loss and hard identity mining. In [ZDK19], the authors consider the problem of

end-to-end place recognition. Their deep metric learning framework that includes an adapta-

tive similarity metric for training, allows them to learn relevant features robust to appearance

change.

The dimension of the embedding can a priori be chosen arbitrarily. In [NHD17], the authors

adopt a 1-dimensional embedding to solve multi-person pose estimation and semantic seg-

mentation. For pose estimation, the 1-dimensional embedding is used to separate the persons

in the scene. The network learns to assign a unique number to each person, which proved

adapted to the task. However, leveraging a higher-dimensional embedding can be more ad-

vantageous for more complex tasks. Each dimension can be interpreted as a feature, and it

becomes unnecessary to predict increasingly large scalars to represent large numbers of ele-

ments. For semantic instance segmentation, [Fat+17] built a multi-dimensional embedding to

separate object instances.

Similar approaches have been developed for the task of video object segmentation (VOS).
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In [Li+18b], the authors deal with an unsupervised setting, in which no indication of the object to

segment is given. They use objectness score and optical �ow to identify the regions of interest

and to de�ne seed points. Then, the embeddings are learned for instance segmentation on

static images to estimate the similarity between pixels and to segment objects. The tracking

works properly because the embedding, although being learned on static images, is stable

over time. In [Che+18c] and [Voi+19], the authors consider the semi-supervised setting of VOS,

in which the ground truth masks of the objects to track are provided in the �rst frame of the

video. The authors obtain state-of-the-art results, with very low computation time compared to

competing approaches.

We refer the interested reader to [KB19] for a survey of the �eld of deep metric learning.

2.4 Optical �ow estimation

The estimation of motion in videos provides valuable information for various computer vision

tasks, such as moving object segmentation, object tracking or motion saliency estimation. This

section will then discuss optical �ow estimation. By de�nition, the optical �ow provides for a

given frame the apparent velocity at every pixel. The optical �ow is a 2-dimensional �eld, given

by the horizontal and the vertical component of the velocity vectors. It can also be visualised as

a color image using a speci�c color code. Examples are drawn in Figure 2.6.

The pioneering work for optical �ow estimation based on global optimisation was introduced

in [HS81]. It relies on the hypothesis of brightness consistency, which states that the brightness

of a given point in the scene will not change across time. It also assumes that the �ow is

spatially smooth. These two constraints are expressed into two energy terms of an optimisation

problem, which is solved to supply the optical �ow. A local optimisation approach still relying on

the brightness consistency assumption was �rst designed in [ LK+81]. The reader is referred to

[FBK15] for a survey on optical �ow estimation before the advent of deep learning methods.

Recently, the investigation of deep neural networks for optical �ow estimation has allowed

to outperform classical methods, while providing fast methods. In [Dos+15], the authors �rst

showed the feasibility of applying deep learning methods to optical �ow estimation. In [ Ilg+17],

the authors obtained state-of-the-art results comparable to classical methods, the latter being

however much slower. The architecture used by the authors does not only involve stacked

convolutional layers. It also include image warping with intermediate optical �ow, and the use

of a correlation layer between feature maps to help estimate the motion �eld. A sub-network

specialised in small displacements is also designed, and the training schedule has been care-

fully selected.

A key element making the training of deep networks successful is the availability of large

labelled datasets, and the task of optical �ow estimation is no exception to this. Then, research
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FIGURE 2.6 – The �rst two lines display the visualisation of the ground truth optical �ow (left)
and the corresponding frame (right). These samples are extracted from the MPI Sintel dataset
[But+12]. The optical �ow is represented with the HSV color representation, provided in the
third line. The hue represents the motion direction, and the saturation represents the motion
magnitude.
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efforts do not only focus on the development of new architectures, but also on the constitution

of large training datasets. In [May+18], the authors discuss what makes good training data

for optical �ow estimation. For this problem, synthetic data is much easier to generate. The

authors argue that realism is not as strong a prerequisite as it may seem, and that training with

simple synthetic data with a data augmentation step is often suf�cient. In fact, it has become a

common practice to pre-train networks on Flying Chairs [Dos+15] or FlyingThings3D [May+16]

(see Figure 2.7), which are both very unrealistic. The �rst one is generated by deforming chairs

with af�ne transformations in 2D images, and the second by randomly moving 3D models of

random objects in a 3D space. The authors of [May+18] emphasise that an important point is

rather to carefully de�ne the training schedule. In particular, simpler data should be presented

�rst to the network to let it learn basic concepts. More dif�cult data should be presented only

after this initial step. The authors even warn that training solely on challenging data yields

poorer performance than training only on simpler data.

FIGURE 2.7 – Image from the FlyingThings3D dataset of [May+16] (left) and corresponding
ground truth optical �ow (right). This dataset consists of random objects in motion in a 3D
space. As can be seen in the image, the objects are even allowed to pass through each other,
which leads to a rather unrealistic scene. However, object motion is well de�ned in this dataset,
which has proven to be relevant for the training of optical �ow estimation methods.

Many methods have since been developed to estimate optical �ow with deep networks. In

[XRK17], the authors estimate the �ow with the help of a cost volume. To compute the cost

volume, a deep network that embeds each pixel into a feature vector is trained. The idea of

the cost volume is to represent likely displacements with low values and unlikely displacements

with high values. For this, the cost volume is computed with dot products involving the features

from the past and present images. The authors then apply a classical processing to estimate

the �ow.

Other methods chose to follow an end-to-end approach. For LiteFlowNet [HTL18] and PWC-

Net [Sun+18], the authors notably rely on feature warping instead of image warping. In [HTL18],

a �ow regularisation layer is also included in the architecture to tackle the problem of out-

liers and vague �ow boundaries. Both methods rely on a signi�cantly more lightweight mo-
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del than FlowNet 2.0, while achieving comparable or even better performance for some set-

tings. Improving the training procedure for the same architecture is another way to improve

results. This is what is done in [Sun+20] (already mentioned in Section 2.1.2) or in [BHW20].

In [BHW20], the authors modify the sampling procedure to ensure dif�cult fast motions are not

under-represented in the training data. They also choose to decrease data augmentation and

regularisation as training progresses.

Unsupervised learning is applicable to optical �ow estimation [ YHD16 ; ZN17], or even in the

context of bio-imaging [LF18]. A common way is to use the brightness consistency assumption

to de�ne the training procedure of the network. The image is warped using the predicted �ow,

and the warped image is compared with the observed image. If the �ow is predicted properly,

the two images should be similar. Further re�nements can be developed, such as the inclusion

in the loss of a term ensuring the smoothness of the prediction. In [Liu+19], occlusion is also

handled. They leverage non occluded areas, for which the �ow can be more reliably obtained,

by generating arti�cial occlusion in these areas.

The research �eld of optical �ow estimation has seen many evolutions in recent years. The

interested reader who wishes to get a deeper understanding of this domain is referred to the

very recent survey given in [HR20]. Concerning our problem of motion saliency estimation, we

will retain that we dispose of a way to estimate motion between frames almost in real time, and

with a good accuracy.

2.5 Saliency and anomaly detection

Now, we will address saliency estimation in general, as well as anomaly detection. These

domains are related to our objective of motion saliency estimation. We will review work concer-

ning saliency based on eye-tracking in Section 2.5.1, static image saliency in Section 2.5.2,

video saliency in Section 2.5.3 and anomaly detection in Section 2.5.4.

2.5.1 Eye-tracking saliency

One way to de�ne saliency is to ask people to view images or videos, and to record the

places they look at. This recording can be made with dedicated devices, as done for instance

by [PLN02], [BT06] or [JXW17] (see Figure 2.8 for an illustration). People can be given a speci�c

task when viewing to orient their attention. They can also be asked to watch with no particular

instruction to observe where their attention will naturally focus. After the recording session, a

succession of �xation points in the image is available for each viewer. It is then possible to

de�ne a saliency value for each pixel, by combining for instance the observations of all the

viewers, and with a smoothing procedure to convert the �xation points to a two-dimensional
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FIGURE 2.8 – Eye-tracking saliency maps (bottom) and associated frames (top) of the LEDOV
dataset. The saliency maps are obtained from the recorded eye-�xation of 32 subjects, which
are combined and smoothed. These samples illustrate that the gaze is �rst attracted by people,
by faces and by moving objects. Reproduced from [JXW17].

valued saliency map [LMB13].

Many methods have been designed to solve this task. An example is given in [Liu+14]. In this

article, the authors divide the image into superpixels. Then, they work at the superpixel-level to

extract appearance and motion information, such as histograms of color and motion. Elements

which attract the attention of the observer have a distinctive appearance and motion, which is

used to build the saliency map. It is also common to include in the method a mechanism to

reproduce the phenomenon of central bias, such as for instance in [PLN02]. Indeed, human

observers tend to look more often at the central areas of images. Moreover, it is worth noting

that the area people will look at will depend from factors such as their state of mind, their

interests of their age. These factors can consequently be exploited for a more precise saliency

prediction. This is done for instance in [LM+17], in which the authors propose a saccadic model

that is age-dependent. The goal of saccadic models is to estimate visual scanpaths, providing

information about how people explore the scene.

A shift of paradigm has recently occurred, with more and more methods relying on deep

neural networks to obtain state-of-the-art results. In [JXW17], the authors speci�cally built a

large eye-tracking dataset for the training of such methods. They design a deep network with

two branches to extract objectness and motion information, that are eventually concatenated.

To predict the saliency map, the features are fed to a convolutional LSTM (long-short term

memory), which is a form of recurrent neural network.

In [ZC18], the authors similarly rely on a deep network with two streams to predict saliency

(see the illustration in Figure 2.9). In their work, the temporal network relies on 3D convolution

with 7 frames given as input simultaneously. For the training, they use the linear combination

of three saliency metrics. By doing so, their objective is to obtain balanced performance. In

[Lai+20], in addition to the two-stream network approach, the authors include a convGRU, which

is a recurrent network to handle long-term dependencies. In [NSK20], the authors propose a

network with a self-attention mechanism to handle images of human crowds.
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FIGURE 2.9 – Two-stream network for eye-tracking saliency proposed by [ZC18]. The temporal
stream relies on 3D convolutions to process frames at different time instants. Reproduced from
[ZC18].

Although deep networks can obtain good performance in general, exploiting the knowledge

of the problem at hand is an effective way to improve results. In [LH18], the authors rely on a

spatial LSTM to build a deep spatial contextual long-term recurrent convolutional network. Their

idea is that a spatial LSTM is a way to reproduce the behaviour of the human visual system, in

particular the cortical lateral inhibition. The authors of [Wei+19] consider the task of predicting

saliency maps for people with autism spectrum disorder. Knowing where autistic people look

at can help design visual content such as teaching material that is more adapted to them. To

solve this problem, the training of the network is adapted, with an initial pre-training stage on a

dataset of standard observers, followed by a �ne-tuning stage with data from autistic observers.

For a more detailed review of the literature of eye-saliency estimation, the interested reader

is referred to [Bor18]. Finally, let us conclude this section by mentioning the work of [QGH18].

In this paper, the objective is to segment the foreground object in videos. To do this, the au-

thors rely on eye-�xation information to provide the necessary clues to their framework. This

is possible because objects in the foreground often attract the attention of observer. In fact,

segmenting the objects in the foreground of images or videos is an alternative way to de�ne

saliency, that we will explore in the following section.
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FIGURE 2.10 – Static images and associated ground truth saliency from the MSRA-B dataset
[Wan+17]. The ground truth is de�ned manually and is binary. The salient area corresponds to
the object with the most distinctive appearance is the scene, usually an object in the foreground.

2.5.2 Static image saliency

This section is concerned with static image saliency. When searching for saliency in an

image alone, motion information will obviously not be taken into account. However, saliency

clues present in static images still remain in videos. Then, they may be relevant for video sa-

liency as well. Therefore, we will distinguish methods for video saliency in general and methods

for video motion saliency in particular.

Ground truth saliency in images can be de�ned by the mask of the foreground object with

the most distinctive appearance. Examples are given in Figure 2.10. With this de�nition, sa-

liency has a binary value for each pixel : either it is salient or it is not. In fact, it can be assi-

milated to object segmentation, the object to be segmented being the salient object. This is in

contrast to eye-tracking based saliency, for which there is no explicit notion of object and for

which even the ground truth is valued. Let us note that this distinction affects mainly the ground

truth. In practice, many methods will predict valued saliency maps even with a binary ground

truth.

Although de�ning saliency that way is not equivalent to resorting to eye-tracking data, there

are many common points. In both cases, an object with a very distinctive appearance compa-

red to the background is likely to be salient. In [Jia+13], the authors begin by grouping pixels

into superpixels to get a simpli�ed representation of the image. Then, they consider the graph

formed by the superpixels, which is processed with the aid of Markov chains to extract saliency.

Another typical approach is to design features, which are supposed to characterise saliency.

Examples of features include color, texture, shape or brightness. In [LLU20], these features are

leveraged to �nd saliency in microscopy imaging. In [ EE13], the authors also consider such

features but go one step further, by combining them into covariance matrices used in turn as

descriptors for saliency estimation.

In [JH13], the authors consider that low-level saliency features are not suf�cient, and they
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design a method that relies on objectness estimation. An object is represented by a bounding

box, which is a rectangle designating the object location. Candidate bounding boxes are then

evaluated with dedicated criteria. For instance, the borders of the object are supposed to be

associated to strong edges, and the colors of the object are supposed to depart from the colors

of the surrounding. The object locations are re�ned to obtain the �nal saliency map with a

Markov random �eld.

Again, the recent years showed a shift of paradigm, with more and more works leveraging

deep networks.

In an early attempt [LY16], the authors used a deep network to extract deep features at

several scales for saliency estimation. The network is trained on the large ImageNet dataset

[Rus+15] initially de�ned for object classi�cation. A very large amount of data is required to

train a deep network, and many more training images are available for object classi�cation than

for saliency estimation.

In [Zen+18], the authors also rely on a network pre-trained for image classi�cation. They

argue that saliency is image-speci�c, as the same object may be salient or not, depending on

the image. Then, they do not predict directly saliency. Instead, the network is �ne-tuned, not

to produce saliency labels directly, but to estimate a similar embedding for all pixels belonging

to the salient region, and another embedding for pixels belonging to the non-salient regions.

At test time, an existing saliency detector provides an initialisation for the salient regions. This

detector is then “promoted”, that is, the embeddings estimated by the network are used to

iteratively re�ne the original saliency map predicted by the detector.

In contrast to works cited above, the authors of [LH16] go one step further. They propose

a network called DHSNet, which is an end-to-end architecture : the network predicts the sa-

liency map from an input image with no additional processing (see Figure 2.11). Designing their

method this way allowed the authors to reach a speed of 23 fps on GPU. To predict saliency,

the authors estimate a coarse saliency map in the �rst part of their network. Then, this map is

re�ned with a hierarchical processing including recurrent convolutions.

Due to the promising results and the high computation speed of end-to-end approaches,

many other works have explored this approach for saliency computation. With end-to-end net-

works, the focus shift from the design of the features to the design of the network. In [Hou+19],

short connections are introduced, which create shortcuts between different layers to provide

better multi-scale features. In [Zha+18], recurrence and attention are combined to estimate sa-

liency. Attention consists in introducing a mechanism in the network to associate a multiplicative

weight to features, for instance between 0 and 1. The higher the weight associated to a given

feature, the more the attention of the network will be focused on this feature. The attention mo-

dule can act channel-wise to select the most relevant feature, or spatially to highlight the most

relevant regions. The authors argue that attention mechanism is bene�cial for saliency, to avoid
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FIGURE 2.11 – Convolutional neural network for static image saliency from [LH16]. The network
is composed of a contracting and an expanding part, which is typical of a U-net architecture
[RFB15]. This structure allows one to integrate information from distant areas in the image,
while limiting the computational burden. For the method of [LH16], the loss is applied not only
to the �nal saliency map, but also to lower resolution intermediate saliency maps. Reproduced
from [LH16].

distraction from irrelevant details.

2.5.3 Video saliency

This section about video saliency is organised in two sub-parts. First, methods whose ob-

jective is to estimate generic valued saliency maps will be presented. Then, we will consider

the video object segmentation task, whose objective is to identify the most distinctive objects in

videos, and which is somewhat related to video saliency.

2.5.3.1 Valued video saliency maps

Video saliency can be de�ned by extending image saliency to videos. For video saliency,

motion will play a role to determine which elements should be salient in the ground truth. The

salient elements may still have a distinctive appearance compared to the background, but they

are also supposed to undergo distinctive motion. Consistently, video saliency methods are ge-

nerally designed to leverage both appearance and motion.

In videos, apparent motion can be caused by two factors. First, objects in the scene may

be moving in the 3D scene. Second, the camera itself may be moving. Depending on the

position of the objects in the 3D scene, they will have a speci�c apparent motion. Methods

such as [Fan+14 ; KK14 ; MGS14] directly estimate saliency from appearance and motion cues.
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Other authors, for video saliency map estimation [Hua+14], but also for eye �xation saliency

estimation in videos [LLB07], �rst compensate for the camera motion. In both cases, the scene

may comprise dynamic textures [Cri+13] such as �ags in the wind or ripples on the water, which

are generally not considered as salient and that will act as distractors.

The problem of video saliency map estimation is emblematic of the paradigm shift that fol-

lowed the generalisation of deep learning. Earlier methods are classical methods [Kim+15 ;

WSS15 ; WSP15 ; Kar+16 ; LS16 ; Guo+18 ; Ayt+18 ; Che+18a], which rely on expert know-

ledge to solve the task. Appearance is leveraged for instance through the use of intra-frame

boundary information and contrast [WSS15], object proposals [Guo+18], or color contrast and

background cues [Ayt+18]. Motion information is exploited by relying on motion boundaries

[WSP15], by enforcing temporal consistency [Guo+18], or by relying on motion contrast and

temporal superpixels [Ayt+18]. The �nal saliency map can be obtained through the use of

graphs [Kar+16], by relying on a hierarchical structure of the elements in the frame [LS16],

which is a common processing step to better handle scale variations, or with statistical tools

[Che+18a]. The method of [LS16] is further illustrated in Figure 2.12.

FIGURE 2.12 – Method of [LS16] for video saliency. The authors rely on appearance to realise
a segmentation of the video, and on the optical �ow to extract motion information. The saliency
map is obtained by combining the spatial and temporal information, with the help of Adaptive
Temporal Window (ATW). Reproduced from [LS16].

Many recent methods rely instead on deep networks to predict saliency. In [LS18], the

authors use spatio-temporal deep features extracted with a deep network to estimate video
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saliency. They extend conditional random �elds (CRF) to the temporal domain to re�ne the sa-

liency map. Other works propose more straightforward architectures. In [WSS18], the authors

use a network that extracts �rst static saliency from single images. Then, dynamic saliency is

estimated with image pairs concatenated to the static saliency map. In [Li+18a], the authors

introduce a recurrent LSTM-based network that also uses feature warping with the optical �ow

to compensate for object motion. Finally, the authors of [Che+20] identify long-term saliency

clues. The temporally distant regions are spatially aligned with the current region of interest,

and a deep network uses the aligned regions to predict saliency.

2.5.3.2 Video object segmentation

FIGURE 2.13 – Samples and ground truth from the DAVIS 2016 dataset [Per+16] for Video
Object Segmentation. The salient element is a moving object in the foreground of the video.

Finally, video saliency has several connections with the Video Object Segmentation (VOS)

task. The latter consists in segmenting through the video the foreground moving object of inter-

est (see Figure 2.13 for an illustration).

The �rst variant of VOS is unsupervised VOS. In this particular context, the term unsupervi-

sed refers to the fact that no speci�c indications are given regarding the location of the object to

segment. Methods can again be divided between classical ones [PF13 ; FI14 ; JKK17 ; HHS18 ;

Zhu+19] and deep learning-based ones. In [PF13] and [FI14], the authors rely on appearance

and motion cues. In [JKK17], the authors use superpixels to generate candidate regions and

to merge them. They also explicitly rely on the prior that there is one primary object, present

in the whole sequence. Edge cues are exploited in both [JKK17 ; HHS18], and they are used

by [HHS18] as part of a neighbourhood graph. In [Zhu+19], the authors combine motion sa-

liency and object detection. They include several re�nements, based on CRF, region fusion and

long-term combination.

A �rst example of deep learning-based method is [ DJXG17]. It consists in a two-stream

CNN, with a video frame and optical �ow as input. The authors use weakly annotated videos

and image recognition datasets to augment the amount of training data. In [TAS17], a deep

network leverages optical �ow to �nd objects in motion. In [ Son+18], the authors propose a deep
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architecture with a bidirectional convLSTM and a pyramid structure to handle multiple scales.

They include a training stage on static images for data augmentation too (see Figure 2.14 for the

work�ow of this method). In [ SHT20], the authors propose a non-local deep network, designed

to capture global dependencies. In [Yan+19], the authors detect moving objects in videos with

an adversarial setup. An inpainting network attempts to reconstruct the optical �ow inside a

mask from the �ow outside of it. A generator network attempts to estimate the mask that would

make this reconstruction dif�cult, which can be achieved by predicting masks corresponding

to moving objects. This work was developed in parallel to our work that will be presented in

Chapter 3, and that will rely similarly on optical �ow inpainting.

FIGURE 2.14 – Deep network designed in [Son+18] for Video Object Segmentation. A notable
characteristic of this network is the pyramidal processing in the spatial part to better handle
multiple object sizes. The authors also rely on recurrent networks to exploit the temporal di-
mension. Reproduced from [Son+18].

The task of VOS is also declined in a semi-supervised setting. In this case, the location

of the object to track in the �rst frame is known. The authors of [ Wan+19b] adopt a super-

trajectory representation. A super-trajectories corresponds to a set of point trajectories, which

are grouped because these points share a consistent motion pattern, a similar appearance and

they are close spatially. In [Xia+18], a deep network is trained in two parts : a �rst of�ine pre-

training, and an online �ne-tuning on the �rst frame of each video to process. This is typically

done to leverage the location information provided in the very �rst frame of the video, at the

expense of an increased computational load at test time. In addition, the optical �ow is used

to warp and align the representation of successive frames. In [Yan+19], the authors generate

pseudo-labels from sparse annotation as a core component of their method. This is a way to

reduce the dependency on dense labelling and to get a high amount of training data.
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2.5.4 Anomaly detection

Anomaly detection consists in identifying elements that differ from the norm, the norm

being de�ned by some models or simply corresponding to what is observed most of the time.

Examples of anomalies include people running in an usually quiet place, manufactured objects

with unexpected shapes, or suspect log data obtained when monitoring an ICT (information

and communication technology) system.

Anomalies can be linked to motion, as for the detection of anomalies in videos of crowded

scenes. To solve this problem, the authors of [DC10] rely on a representation of motion based

on histograms of directions combined with a separate indication of the speed. In [PRBB17], the

authors estimate local motion models that are combined into local histogram descriptors. They

introduce a dedicated distance to assess how much these histograms differ to a representation

of normality, which allows them to identify anomalies. Abnormal motions are searched for in

[Man+11] following a multi-scale approach that leverages optical �ow features. In [ DDM19], the

authors are concerned with the detection of small anomalies in moving background. To detect

them, they exploit optical �ow for background subtraction. Then, only noise and potential ano-

malies are left, and the distinction between the two is achieved with a statistical framework. In

[Bar+19], the authors take a broader view, by considering anomalies in time series data in gene-

ral. They de�ne a framework to compare ef�ciently segments of different length. For estimating

the similarity between samples, they de�ne a variant of the Kullback-Leibler divergence.

The methods quoted above are all based on classical processing. Recently, deep networks

have been investigated for anomaly estimation. First, auto-encoder networks, as the one re-

presented in Figure 2.16, have been adopted. The training objective of an auto-encoder is to

reconstruct its input as precisely as possible. To avoid the trivial solution which consists in

learning the identity function, the input is generally compressed to an intermediate compact

representation, also called the latent representation or latent code. In [RLL18] and in [MYY18],

the authors decide that, during the training stage, the auto-encoder only sees normal data.

Then, they assume that once trained, the network will be able to reconstruct properly only

normal data and not anomalous data. The reconstruction error of the auto-encoder serves to

detect anomalies. This approach was applied to video saliency and defect inspection on tex-

tured surfaces respectively. In [Rav+17], the authors leverage the GAN framework (Generative

Adversarial Network, [Goo+14]) to reconstruct the image from the optical �ow and vice versa.

They still expect that only normal events are seen among the training samples and will be

properly reconstructed.

Another family of methods uses auto-encoder and GAN frameworks, but focuses on the la-

tent representation. In [Xu+17], the authors choose denoising auto-encoders to learn features

from images, optical �ow, and a combination of both with early fusion. The �nal anomaly de-

cision relies on classical one-class SVM classi�ers [ Sch+01]. Other methods enforce speci�c
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FIGURE 2.15 – Method of [Rav+17] for abnormal event detection. A GAN (Generative Adversa-
rial Network) is trained to predict normal image and �ow from normal �ow and image respecti-
vely. Reproduced from [Rav+17].

properties for the representation thanks to an adequate training stage. In [Ghe+19], the au-

thors train a GAN in order to represent normal data with codes following a normal distribution,

and anomalous data with codes outside of this distribution. In [Wu+20], an auto-encoder is

trained that ensures the following property of the latent representation : a point between two la-

tent points, representing both normality, should be also a plausible representation of normality.

Anomalies codes should then lie in a different manifold than normal samples.

In more speci�c applications, anomalies can be characterised with a precise model. This is

the case in biology and physics for the study of the diffusion (the motion) of particles. Anoma-

lous diffusions correspond to motions that are either faster or slower than expected. Identifying

anomalous diffusion is interesting to identify physical and biological phenomena. In [Bo+19], the

authors estimate the parameters of the diffusion with a recurrent neural network. From these

parameters, it is then straightforward to detect anomalies.

Let us conclude this section by mentioning the survey on anomaly detection with deep lear-

ning [CC19]. One interest of this survey is the opposition made by the authors between deep

hybrid models and one-class neural networks. Deep hybrid models [AMG16 ; EMK17] use a

network to learn a representation, and classify it with a classical algorithm. On the other hand,

one-class neural networks [Ruf+18 ; CMC18] involve an end-to-end training to �nd anomalies.

The network is expected to form an hyperplane or hypersphere to separate normal data from

anomalies. The authors argue that an end-to-end training gives one more control over the trai-

ning process, which is expected to improve performance. Let us emphasise that this distinction

is made possible because, for the anomaly detection task, there is often an absolute de�nition

of normality. Normality corresponds to the behaviour observed most of the time, for instance pe-
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FIGURE 2.16 – A basic image auto-encoder network. The input is processed by the encoding
part of the network into a compact representation. This representation is then decoded by the
decoding part of the network, whose role is to reconstruct the input. The small dimension of
the compact representation acts as a bottleneck that prevents the network to trivially learn the
identity function.

destrians walking quietly, and not doing unexpected actions such as randomly throwing objects.

Anything that deviates from this norm is anomalous.

If we come back to our objective of motion saliency estimation, one task of interest is to

estimate relative motion saliency. It consists in �nding salient motion among non-salient motions

(for instance a crowd going in one direction, and a salient individual moving in the opposite

direction). This will be addressed in Chapter 5. We can already stress that in this case, it does

not make sense to de�ne saliency in an absolute way : a pedestrian moving to the left is salient

in a group of pedestrians moving to the right, but not in one moving to the left.

2.6 Trajectories

Optical �ow provides information about instantaneous motion. However, motion saliency

can appear progressively over time. In addition, the optical �ow is more dif�cult to exploit when

the objects are denser in the scene, and it becomes harder to distinguish motion patterns. If

the area of interest is very large, it may simply not be easy to cover it with a single camera.

Trajectory representation is then an attractive alternative in these situations.

50



2.6. Trajectories

2.6.1 Trajectory extraction

The simplest way to get trajectories is to measure them with relevant sensors such as GPS,

as in [End+16]. With the growing number of devices equipped with this technology (cars, but

also mobile phones), it provides an opportunity to analyse and better understand motion pat-

terns either in roads or crowds. Autonomous driving vehicles need to analyse their surroundings

in order to navigate successfully. In this case, more complex sensors such as laser scanners

[Gid+10] followed by an adequate processing step can be used to detect road users such as

pedestrians and to extract their trajectories.

When a direct measurement is not possible, it is common to estimate trajectories from

videos with a tracking algorithm. Methods such as the KLT tracker [LK+81 ; TK91] use optical

�ow to build trajectories. The algorithm includes a step to search for points with distinctive

enough features, for which the optical �ow should provide the motion with no ambiguity. Speci�c

trackers can also be developed depending on the domain, and in particular depending on the

imaging technique used. In [CBO13], a tracker is speci�cally designed for biological imaging.

The goal of this tracker is to handle thousands of cells in a cluttered environment, and the

authors adopt a probabilistic framework to achieve it.

To collect trajectories over a large scene, one can design a large-scale tracking system such

as the one used in [ARF14]. To analyse displacements of people in a train station, a network of

cameras captures the scene with an image processing pipeline involving re-identi�cation.

The family of Multiple Object Tracking (MOT) methods, such as [Chu+17 ; Zhu+18 ; MCA19],

tracks multiple objects in videos. In [Chu+17], the authors combine a single object tracker and

an attention mechanism in a deep network to extract the trajectories. In [Zhu+18] attention is

also exploited and a tracking loss is de�ned to focus on hard negative samples. Hard negatives

typically correspond to people with a similar appearance compared to the target, that should

not be confused with it. A data association step enables to recover from temporary failures

of the tracking, for instance due to occlusion. In [MCA19], the authors propose a tracking by

detection framework that relies on the processing of an interlaced representation of the video

by a dedicated deep network.

To conclude this section, we refer the reader to [DT14] for a survey of classical tracking me-

thods, and to [Cia+20] for a survey of Multiple Object Tracking with deep learning approaches.

2.6.2 Trajectory-based video analysis

Trajectory data can be used for a variety of tasks. An obvious use case is for motion analysis

in videos. In [ZTW12], the authors exploit trajectories to analyse dense crowds of people. They

propose a trajectory clustering algorithm to detect areas with a coherent motion. Similarly, the

authors of [SLW14] detect groups in crowd scenes by clustering tracklets extracted with the KLT
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FIGURE 2.17 – Motion analysis from trajectories with the method of [ZTW12]. Coherent motions
are clustered, which provides information regarding the scene. In the images, the dots with the
same color represent trajectories belonging to the same cluster. Reproduced from [ZTW12].

tracker. In [PR+16], the authors rely on trajectories to construct a hierarchical representation

of trajectories in a scene. This representation is obtained by a sparse-coding scheme and by

applying tree-clustering to the codes. The different levels of the resulting hierarchy go from the

most general (the camera motion) to the more speci�c (motion of the object, then motion of the

object parts). The authors of [BFM19] are also investigating motion characterisation, and they

propose an unsupervised hierarchical multiple motion model. It allows them to represent and

classify different types of agents such as pedestrians and bikes. Trajectories can be used as

well to characterise a unique element, as done in [GGCR17]. The authors consider trajectories

of facial landmarks of people while driving. The goal is to automatically detect and raise a

warning when the attention of the driver is oriented toward a smartphone rather than toward

the road.

Regarding the biology imaging �eld, a �ne analysis of trajectories in tissues can lead to an

improved understanding of the underlying mechanisms. Motion of particles can be characte-

rised for instance by a classi�cation into Brownian, sub-diffusive and super-diffusive classes.

In [Bri+20], the authors achieve such a classi�cation with a statistical framework. They identify

con�nement domains in cells. In [ Gra+19], the authors make use of a deep network to classify

the diffusion of particles into Brownian, fractional Brownian and continuous time random walk.

They also estimate parameters such as the Hurst exponent and the diffusion coef�cient, which

characterise these kinds of motion.

Going back to natural images, long-term motion to segment objects has been explored by

several works. In [OMB14], the authors note that short-term motion may exhibit inconsistencies.

For instance, an animal may be static for a given period of time, and the legs of a walking per-

son display a different motion than the body. They argue that trajectories represent long-term

information that can address these concerns. In [KAB15], the authors also rely on trajectories
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for object segmentation in videos. They build a long-term point trajectory graph from the vi-

deo sequence. From this graph, they formulate an optimisation problem, which allows them to

cluster the trajectories into objects.

Trajectories have also been used to �nd parts of images that attract the visual attention due

to their motion. In [Cam+17], the authors make use of the Hough transform applied to motion, to

group motions based on the salient attractive zones where they converge. Besides, in [WQT15]

the authors address the action recognition task with deep features. They extract trajectories

that are then used to pool the deep features, in order to get relevant descriptors.

Computing similarity between two trajectories is useful in various contexts and several clas-

sical metrics have been proposed for this, such as Dynamic Time Warping [YJF98] or the Haus-

dorff distance [AMP10]. In [Yao+19], the authors speed up the computation of known metrics

by approximating them with a deep neural network. Still, recent methods use deep networks to

extract a compact representation, in particular with auto-encoders [Yao+17 ; Su+16 ; CR+18 ;

Cho+18]. In [Yao+17], this representation is used for trajectory clustering, in [Su+16] for crowd

scene understanding. It is included in a reinforcement learning framework in [CR+18].

Finally, let us consider trajectory anomaly detection, which is closer to our goal of motion

saliency estimation. In [JH96], a statistical model of trajectories is learnt to recognise events

and to detect anomalies. In [HBL08], for the same objective, local differential features, invariant

to transforms such as rotation, translation and scaling, are used. These features are embedded

with a hidden Markov model. In [LF14], the authors develop an algorithm for trajectory anomaly

detection involving online learning, allowing to incrementally augmented the training set.

For trajectory anomaly detection, recent methods again use deep networks. In [RB18], the

authors deal with road user trajectories. They reconstruct them with auto-encoders. They as-

sume that trajectories poorly reconstructed are salient, as salient trajectories are rare in the

training data. In an extended work [RB19], they use a Generative Adversarial Network (GAN)

to estimate saliency. They train the discriminator to distinguish normal and abnormal recons-

truction errors (see Figure 2.18 for the illustration of this method). The role of the GAN is to

avoid the need to set manually a decision threshold, but the foundation of the method remains

the reconstruction error.

The trajectory representation is not limited to moving objects, as it can be used for time se-

ries data in general. In [Fan+18], the authors consider building energy data over time. They base

their anomaly detection method on the reconstruction error of an autoencoder. In [Wan+19], the

authors propose a method for generic time series classi�cation. The combination of a convolu-

tional neural network and an adversarial regularisation scheme allows for a better interpretabi-

lity of the decision.
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FIGURE 2.18 – Method of [RB19] for abnormal trajectory detection. The core of the method
is an auto-encoder trained with normal trajectories that is expected to reconstruct correctly
only normal trajectories. A Generative Adversarial Network (GAN), composed of a generator G
and a discriminator D, is used to distinguish reconstruction errors from normal and abnormal
trajectories. Reproduced from [RB19].

2.7 Conclusion

In this chapter, we have seen how saliency methods of the literature leverage both appea-

rance and motion cues to highlight regions in images or videos. This can be done either with

classical frameworks, or more recently with deep learning methods. In both cases, most me-

thods mix appearance and motion cues to produce a unique saliency map. However, we cannot

decipher if emphasis is put on an object because no other objects are similar in the scene, or

because this object is moving in a singular way. In contrast to these approaches, we will focus

exclusively on motion saliency.

In addition to focusing on motion saliency without appearance saliency cues, several chal-

lenges remain. First, existing methods usually assume that saliency is present in the image

before attempting to locate it. Consequently, when computing saliency maps in an image, the

risk is to hallucinate saliency when none is present. Second, the general trend is to relate

saliency to foreground (moving) objects, leading to ground truth focusing on objects and not

motion on its own. Due to the high annotation cost of new data, on several occasions we will

consider approaches requiring as little supervision as possible. Finally, few works are concer-

ned with progressive saliency that can be handled notably with trajectories. This is another

issue that we will investigate.

Our contributions are the following. First, our work devoted to temporal motion saliency
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detection will be presented in Chapter 3. It will explicitly address the issue of whether motion

saliency is present or not in each frame of the video sequence. This information is needed

before attempting to locate saliency in images. However, existing methods usually ignore this

aspect by assuming that saliency is present when computing any saliency maps. To develop

our classi�cation methods, we will leverage deep networks due to their successful application in

many �elds, and optical �ow as an adequate representation of motion. The second method we

propose for motion saliency map estimation will similarly rely on optical �ow to extract regions

that are salient due to their motion. We will take into account that saliency is context-dependent.

This method will be detailed in Chapter 4.

To handle long-term and progressive motion saliency, we will use trajectories computed in

videos. We will search for an adequate compact representation of trajectories, and the auto-

encoder framework will be a proper basis for that. Methods for anomaly detection are more

concerned with an absolute saliency value, for instance by relying on the reconstruction error

of auto-encoders. As a consequence, they are not adapted to our problem. Instead, we will take

inspiration from deep metric learning to propose a weakly supervised method for this task. We

will develop further this subject in Chapter 5.
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CHAPTER 3

FRAME-BASED MOTION SALIENCY

DETECTION

The problem addressed in this chapter appertains to the well known domain of dynamic

motion saliency in videos. However this is a new problem since we aim to �rst detect the tem-

poral segments of the video where motion saliency is present. It turns out to be a frame-based

classi�cation problem. A frame will be classi�ed as dynamically salient if it contains local motion

departing from its motion context. Temporal motion saliency detection is relevant for applica-

tions where one needs to trigger alerts or to monitor dynamic behaviours from videos. It can

also be viewed as a prerequisite before computing motion saliency maps. The proposed ap-

proach handles situations with a mobile camera. It involves two main stages consisting �rst in

cancelling the global motion due to the camera movement, then in applying a deep learning

classi�cation framework. We have investigated two ways of implementing the �rst stage, based

on image warping, and on residual �ow respectively.

3.1 Introduction

Dynamic saliency comes to highlight objects undergoing separate, singular or unexpected

motion in the video sequence. In the literature, dynamic (or video) saliency is mainly attached

to a foreground object moving in front of a (mostly) static scene, as described in Chapter 2.

Then, appearance may play a key role and is consequently exploited. In contrast, we take

a slightly different de�nition of dynamic saliency. It involves all situations where local motion

departs from its context with differences or not in appearance. Then, we will prefer to talk about

motion saliency.

The speci�c problem addressed in this chapter is the temporal detection of motion saliency

in videos, i.e., determining throughout the video which frames contain motion saliency. This

enables to recover time intervals for which motion saliency is present in the video.

To our knowledge, this problem has not been investigated so far, but it is crucial for nume-

rous applications. It can help detecting obstacle irruption for mobile robotics or autonomous ve-

hicles, raising alert for video-surveillance, triggering attention for video analysis, or highlighting
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relevant information for video summary. This frame-based classi�cation acts as a pre-attention

mechanism. More speci�cally, our method can be viewed as a prerequisite to the computation

of dynamic saliency maps. The existing methods extract salient moving objects, while implicitly

assuming that the frame is dynamically salient. More precisely, these methods supply valued

motion saliency maps. One could consider that they could recognize a dynamically non-salient

frame, by providing a "practically" empty output. Yet, it would require designing an additional

stage to reliably decide it. Anyway, we experienced that motion saliency maps are hallucinated

by existing methods on non-salient frames. This shows that existing methods are not able to

address the frame-based motion saliency detection problem. Our method precisely addresses

this issue.

As aforementioned, temporal detection of motion saliency in videos is a classi�cation pro-

blem. It consists in deciding for every frame of a video sequence whether it should be labelled

as dynamically salient or not, that is, whether it contains elements whose local motion deviates

from its surroundings. In practice, the latter will be the global (or dominant) motion in the image.

We will adopt the convolutional neural network (CNN) framework to solve this classi�cation pro-

blem. Before classifying each frame of the video, we cancel the global motion usually due to the

camera movement. We have investigated two ways of implementing it, based on image war-

ping and on residual �ow respectively. This leads to two main variants of our temporal motion

saliency detection approach.

The chapter is organised as follows. In Section 3.2, we present the synthetic and real video

datasets built to evaluate our classi�cation scheme. In Section 3.3, we describe our approach

and the two variants based on image warping and on residual �ow respectively. Experimental

results are reported in Section 3.4. Section 3.5 includes concluding comments.

3.2 Datasets

We start by describing the synthetic and real datasets used in our experiments. The dataset

is indeed a key point for learning-based approaches, especially in the case of deep learning

methods such as the ones we propose in this chapter.

3.2.1 Synthetic dataset

Machine learning methods, and especially deep learning methods, require a training set

large enough for successful learning and generalisation [Sun+17]. Recently, it was demonstra-

ted for computer vision applications [Dos+15 ; May+18], that learning can be ef�ciently achieved

on synthetic datasets. We have then built a synthetic dataset for a �rst training stage of the net-

works involved in our methods.

58



3.2. Datasets

Each element of the synthetic dataset consists of a frame pair. The second frame of the pair

is obtained by applying to the �rst frame a parametric motion model. We take an af�ne motion

model. Motion saliency is attached to added patches taken from other images and undergoing

a different af�ne motion. Images of PascalVOC 2012 [ Eve+12] were used to generate this

dataset. Samples are provided in Figure 3.1. Frames are generated with a probability of 0.5

for absence of motion saliency, 0.25 for presence of one salient moving patch, and 0.25 for

presence of two salient moving patches. Added patches have a limited size, of approximately

0.5% to 1.5% of the frame. We deliberately chose to include small-size patches to produce

motion saliency examples hard to detect.

By generating salient examples that way, we could be faced with the risk that the network

could detect salient frames thanks to the appearance of the added patches which are generally

different from the content of the reference frame. To avoid this, non salient frames can also

contain up to two added patches coming from unrelated images, but still undergoing the global

motion. The shape of the patches extracted from other images was generated randomly, as

illustrated in Figure 3.1.

In order to maximise the variability of the training samples, frame pairs are generated on

the �y during training. Approximately 4 million training samples are generated this way. The

validation and test sets contain 2000 frame pairs each.

3.2.2 Dataset of real videos

A dataset with real videos is necessary for �ne-tuning the networks and to assess the motion

saliency classi�cation methods. Since the proposed methods will have to handle videos with a

mobile camera, the camera should be moving for a signi�cant part of the dataset. Moreover,

the ground truth must express the presence or absence of motion saliency at the frame level.

The dataset constructed by [BL16] meets these requirements. It gathers FBMS-59 [OMB14],

Complex Background [NHLM13] and Camou�aged Animals [ BLM16], all of them being speci�-

cally re-annotated for the problem of moving object segmentation. This dataset contains dif�cult

examples, in particular the videos of Camou�aged Animals for which motion information stron-

gly prevails in the perception of the salient moving animals. We label a frame as dynamically

salient in the ground truth, if it contains at least one independently moving object.

Since our objective is to detect temporal intervals of motion saliency in videos, non salient

frames are required to serve as negative examples. Non salient frames are rare in the dataset

of [BL16]. Consequently, we acquired 71 additional videos with no salient frames, i.e., depicting

static scenes, but acquired with a mobile camera. These videos depict indoor, urban and natural

scenes. The ground-truth is by construction immediately available for all the frames of the 71

additional non-salient videos.

The �nal dataset includes 144 videos, and is split in a training set of 94 videos, a validation
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(a) (b)

(c)

FIGURE 3.1 – Samples of the synthetic video dataset. (a) The top two frames are not salient
while the bottom frames are salient. All frames include added patches cropped from another
image, but only the patches of the bottom frames undergo independent motions. (b) The cor-
responding motion �elds are represented with the colour code depicted in c). The optical �ow
is globally smooth in the top two rows, while it includes outlier patches in the bottom two rows.
(c) Colour code for the �ow �eld represented below.
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FIGURE 3.2 – Four samples of the real dataset. The �rst two examples involve non salient
frames. The last two ones comprise dynamically salient frames (respectively, including a moving
cat, and a (small) moving car behind the parked cars). Four consecutive frames are displayed
for each example.

set of 13 videos and a test set of 37 videos, for a total of 3451 labelled frames. The three sets

contain approximately the same amount of salient and non salient frames. During training, data

augmentation with resizing, cropping, temporal inversion and �ipping around a vertical axis,

was applied. The batches used to train our networks are built so that salient and non salient

frames are correctly balanced. Samples frames are displayed in Figure 3.2.
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FIGURE 3.3 – Our overall motion saliency detection framework.

Motion compensation Motion compensation
with image warping with the residual �ow

Motion estimation with Motion2D WS-Motion2D RFS-Motion2D
Motion estimation with DeepDOM WS-DeepDOM RFS-DeepDOM

TABLE 3.1 – Four variants of our method, depending on the algorithm estimating the dominant
motion, and depending on the way the dominant motion is compensated.

3.3 Temporal motion saliency detection framework

Our overall approach is summarized in Figure 3.3. Its core module is the frame classi�-

cation, which will be achieved with a convolutional neural network (Section 3.3.1). We have

investigated two ways to implement the global motion compensation : image warping (Section

3.3.2), and residual �ow (Section 3.3.3).

We assume that the dominant motion (or global motion) can be represented by a single af-

�ne motion model. We have considered two parametric dominant motion estimation algorithms,

Motion2D and DeepDOM, described in Section 3.3.4. Table 3.1 summarises the four variants

of our method depending on the dominant motion estimation and compensation approaches.

In addition, we have designed three baselines for comparison purpose, since there are no

existing methods available for temporal motion saliency detection. The �rst two baselines are

merely based on a thresholding step, either in the RGB domain for the image warping variant,

or the optical �ow domain for the residual �ow one (Section 3.3.5.1). These essentially allow

us to assess the dif�culty of the problem. The third baseline is de�ned in Section 3.3.5.2. It

leverages the two-stream network introduced by [SZ14].
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3.3.1 Frame classi�cation based on motion saliency

Due to the clear superiority of CNN-based methods in any image classi�cation problem to

date, we adopt a CNN framework for solving the frame classi�cation attached to the temporal

detection of motion saliency. The input will be formatted as 240x240 frames, and speci�ed more

speci�cally for each method of temporal motion saliency detection. We have de�ned the struc-

ture of the CNN for classi�cation (Figure 3.4) from preliminary experiments on the synthetic

dataset. We conclude from these experiments that a too deep network led to over�tting. There-

fore, only three convolutional layers are kept, with 7x7 kernels to have large enough receptive

�elds. The convolutional layers involve respectively 64, 96 and 128 features maps, with a stride

of 2. This architecture also comprises max pooling with a stride of 2, batch normalization, the

ReLU non-linearity and dropout.

FIGURE 3.4 – CNN for motion saliency classi�cation ('str' stands for stride). The number of
channels are mentioned at the relevant places. The input is either the 2-channel residual �ow,
or the 6-channel concatenation of the two RGB images, or the two-channel optical �ow. The
�nal output is the probability of motion saliency, computed with a sigmoid.

Our objective is to build a �exible framework. As a consequence, we keep the same archi-

tecture for the classi�cation in all the motion saliency detection methods, whatever the input

data. With this speci�cation, we can also draw a fair comparison of the methods. The CNN

architecture was trained for each method with the cross-entropy loss.

The network delivers the probability of the frame to be dynamically salient. A frame is then

classi�ed as dynamically salient if this probability is greater than 0.5, and non salient otherwise.

Notwithstanding, we are not facing a threshold setting issue. Comparing to 0.5 is equivalent to

taking the maximum of the two probabilities, when their sum is equal to one. We �rst designed a

network with two output yielding probabilities for the dynamically salient and non-salient classes

respectively. We experimentally noticed that the sum of the two probabilities was very close

to one, without formally imposing this constraint in the network. More precisely, the mean of

the absolute difference between 1 and the sum, on the overall test set, was 3:7 10� 5, and its

maximum value amounts to 4:7 10� 4, knowing that the test set is well balanced between the

two classes. Then, for the sake of simplicity and ef�ciency, we built a network with one single
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output.

FIGURE 3.5 – Empirical cumulative distribution function for the probability of saliency for salient
images (in red), and for the probability of non saliency for non salient images (in green), provi-
ded by the method WS-Motion2D (this method will be presented in more detail in section 3.3.2).
The plot on the left corresponds to the network trained on synthetic data. The plot on the right
corresponds to the network pre-trained on synthetic data and �ne-tuned on real data. In both
cases, the real validation set has been used to compute the cumulative distribution functions.
The optimal time step has been chosen for each network (this aspect will be detailed further in
Section 3.4.3).

We plot in Figure 3.5 the empirical cumulative distribution function of the probability of sa-

liency for salient images, and of the probability of non saliency for non salient images. Ideally,

the right class is predicted with high con�dence : the curves should exhibit values as close to

zero as possible for small values, and there should be a peak at 1. Experimentally, the beha-

viour observed is not that different : there is indeed a high peak close to 1, with also a smaller

peak close to 0 (corresponding to a minority of wrong predictions), and the curve is �at in bet-

ween. This means that the network tends to make predictions with high con�dence in all cases.

All this con�rms that the decision threshold of 0.5 is adapted.

We now present in Sections 3.3.2 and 3.3.3 the two ways compensating the main motion.

They lead to different inputs for the classi�cation network presented in Figure 3.4.

3.3.2 Motion saliency detection based on image warping

The �rst way to cancel the dominant motion is to warp the second image of the pair onto

the �rst one. This is done by displacing each pixel position with the estimated motion, and by
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searching in the second image for the color at the corresponding location. Bilinear interpolation

is used for non integer positions. Also, the image is zero-padded to account for pixels which

would correspond to location outside of the image boundaries.

The method will then rely on the CNN to extract relevant features from the aligned frames to

infer whether motion saliency is present or not, i.e., the frames are partly or fully aligned. The

classi�cation CNN we use is the network introduced in Section 3.3.1. The two colour images,

which are the �rst input image and the second warped image, are concatenated into a 6-

channel input.

FIGURE 3.6 – Motion saliency detection based on image warping.

We consider the two algorithms Motion2D and DeepDOM for motion saliency estimation.

This gives two variants for our methods, which will be called respectively WS-Motion2D or WS-

DeepDOM. WS is standing for Warping-based Saliency. The network is expected to compare

the warped frames and to �nd motion saliency by implicitly searching for misaligned parts due

to their independent motion.

3.3.3 Motion saliency detection based on the residual �ow

Our second motion saliency detection method leverages the fact that motion saliency is

�rst and foremost related to motion. Instead of using colour frames as input, we directly exploit

information related to motion. This allows us to be explicitly agnostic on appearance. We com-

pute the residual optical �ow, by subtracting the af�ne �ow ! �̂ , given by the estimated dominant

motion model of parameters �̂ , to the computed optical �ow �eld ! :

8p 2 
 ; ! res (p) = ! (p) � ! �̂ (p) (3.1)

65



Chapter 3 – Frame-based motion saliency detection

where 
 is the image grid. The residual �ow will serve as input of the CNN classi�er of Fi-

gure 3.4. The whole work�ow of the method is summarized in Figure 3.7. The two components

of the residual �ow are the two channels of the input of the classi�er. A residual �ow close to a

zero �eld over the whole image means a non salient frame.

FIGURE 3.7 – Motion saliency classi�cation based on the residual �ow.

The optical �ow is computed with FlowNet 2.0 [ Ilg+17]. We use a trained model provided by

the authors as it is, without additional �ne-tuning. FlowNet 2.0 was chosen since it is real time,

while delivering good performance. The speed of the optical �ow algorithm is indeed critical, as

optical �ow is computed during training for each pair of every batch. Also, expected applications

of the motion saliency detection method are likely to require real-time execution. Depending on

the motion estimation algorithm used, this method will be denoted RFS-Motion2D or RFS-

DeepDOM, with RFS standing for Residual Flow Saliency.

3.3.4 Parametric estimation of the dominant motion

Most of the time, the image motion induced by the camera forms the dominant motion in

the frame. This dominant motion corresponds to the apparent motion of static elements in the

scene, which usually occupies the main part of the frame. In case of a shallow scene, i.e., depth

and orientation variations in the static scene are small compared to the distance to the camera,

a unique 2D parametric motion model, such as an af�ne model, correctly approximates the

dominant motion. We adopt this simple but ef�cient approach. Results reported in Section 3.4

will show that it generalises well even for non shallow scenes in practice. Let us note that for a

close-up on a moving object, the dominant motion becomes precisely the motion of this object.

The temporal motion saliency detection is still valid, since we are interested in detecting local

motion departing from the global one. For every pixel p 2 
 with p = ( x; y), the �ow �eld given
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by the parametric motion model can be written as :

! � (p) =

 
a1 + a2x + a3y

a4 + a5x + a6y

!

(3.2)

where � = ( a1; :::; a6) is the vector of the model parameters.

We used two methods to estimate the af�ne motion model. We �rst resorted to the robust

multi-resolution algorithm Motion2D [OB95] to estimate the dominant af�ne motion model bet-

ween two frames. It is real-time. It has proven its ef�ciency in many diverse applications that our

research group has dealt with, motion detection with a moving camera [OB97], visual servoing

[CCB98], cell image stabilisation [Oze+13], crowd motion analysis [PRBB17] to name a few.

As an alternative, we have applied the network proposed in [RAS17], initially designed to

estimate geometric transformations between two images, eventually acquired from very distant

viewpoints. The objects to match may even be different instances of the same object class.

In our case, the two input images are far closer and the displacements are smaller, but the

frames may involve outliers, i.e., independently moving objects. The architecture is summari-

zed in Figure 3.8. It was trained, separately from the temporal saliency detection network, with

the synthetic dataset described in Section 3.2.1. We applied the architecture of [RAS17] with

no modi�cation. In this architecture, the convolutional network before the correlation corres-

ponds to the VGG-16 network [SZ15], cropped at the pool4 layer before ReLU and followed by

per-feature L2-normalisation. The convolutional neural network after the correlation operation

is composed of two successive convolutional layers with respectively 7x7 and 5x5 kernels, that

are followed by a fully connected layer, as illustrated in Figure 3.9. This network is called Deep-

DOM, for Deep Dominant Motion estimation. The total number of parameters of this network is

16 891 136. For learning, we will consider batches of 25 elements. The loss function used to train

this network is similar to the one used in [RAS17]. A grid G with nodes q is deformed by the es-

timated global motion of parameters � and by the ground truth � GT . Note that the grid is sparse

(21x21 nodes) compared to the image (240x240 pixels). The loss function � (� ) compares the

two sets of grid displacements as follows :

� (� ) =
1

jGj

X

q2G

jj ! � GT (q) � ! � (q)jj2
2: (3.3)

3.3.5 Baselines and ablation study

In this section, we present three baselines methods, from which we will derive an ablation

study.
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FIGURE 3.8 – DeepDOM network, leveraging the one from [RAS17], for the parametric estima-
tion of the dominant motion.

FIGURE 3.9 – Regression part of the DeepDOM network, which leverages the one from
[RAS17].

68
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3.3.5.1 Basic baselines

As a starting point for performance comparison, we have de�ned two simple baselines.

The �rst one relies on the difference of warped images, similarly to what is presented in

Section 3.3.2. The following function 	 is computed :

	( t) =
1

j
 j

X

p2 


jI (p + ! �̂ (p); t + 1) � I (p; t)j (3.4)

where �̂ denotes the estimated parameters of the dominant motion model, ! �̂ represents

the estimated dominant af�ne �ow, I is the image intensity, 
 is the image grid. Motion2D is

used to estimate the dominant motion model. Then we compare 	( t) to a threshold to decide

whether the frame is dynamically salient (	( t) � � ), or not (	( t) < � ).

In an ideal situation, the warped image would correspond exactly to the �rst image of the

pair, except if there are salient elements that do not undergo the main motion. We have to set

the threshold � . The empirical distribution of function 	 is computed on the validation set of

the real dataset. Then, we �t an exponential distribution to this empirical distribution. We use a

p-value test with a probability of false alarm of 5% to determine the threshold � .

The second simple baseline relies on the residual �ow. We compute the following function

to decide whether the frame t is dynamically salient :

�( t) =
1

j
 j

X

p2 


k! (p; t) � ! �̂ ( t ) (p)k
2

(3.5)

where ! is the computed optical �ow, ! �̂ is the �ow �eld corresponding to the dominant

motion model of estimated parameters �̂ , and 
 is the image grid. Again Motion2D is used to

estimate the dominant motion, and FlowNet 2.0 to compute the optical �ow.

�( t) characterizes the amount of residual motion in the frame t after cancelling the global

motion. We threshold �( t) to classify the frame t as dynamically salient or not. To correctly set

the threshold value � , we proceed as for the �rst baseline. We compute the empirical distribution

of �( t) on the frames of the validation set of the real video dataset. Then, an exponential

distribution is �t to it. A p-value test with a probability of false alarm of 5% is applied to set the

threshold � .

These two baselines can be interpreted as an ablation study of our method. More speci�-

cally, their input is the same as the WS and RFS variants respectively. The difference is that

the classi�cation network of our whole framework is replaced by a simple decision criterion.

Analysing their performances will show the contribution of our deep classi�cation network.
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3.3.5.2 Two-stream network as a baseline

Due to the lack of existing methods to compare with, we designed a third more sophisticated

baseline. It is a direct extension of the well-known two-stream network introduced in [SZ14]. The

two-stream network involves two CNNs in parallel, one for the spatial stream, and one for the

temporal stream. The two-stream network provided convincing results for the action recognition

task. It was also exploited in other works, such as in [TBD18] for dynamic texture synthesis and

for the prediction of eye-�xation maps in [ Bak+18]. We can expect that it is a good candidate

for temporal motion saliency detection as well. However, we need to adapt it for this new task.

We have to produce a prediction for each frame of a video, and not one prediction for the whole

video. Regarding the spatial stream, we concatenate the two considered frames of the video at

times t � � t and t. Accordingly, as input of the temporal stream, we take the optical �ow �eld

computed between the two frames only. In this version of the two-stream network, we still use

the classi�cation CNN of Figure 3.4 for both streams, and FlowNet 2.0 to compute the optical

�ow.

In addition, we will run each stream separately to provide a complementary ablation study

of our own method. Indeed, the spatial and temporal streams are related to the WS and RFS

variants of our method respectively. However, the key difference is that they do not include

the dominant motion compensation step (no image warping or no residual �ow computation

respectively). The two-stream network is trained the same way as our main method, with the

cross-entropy loss. For the ablation study, the same weights than for the whole two-stream net-

work are used (the streams are not retrained separately). The resulting network is summarized

in Figure 3.10.

3.4 Experimental results

3.4.1 Experimental setting

We use the Caffe library [Jia+14] to implement the networks presented in Section 3.3. The

optimization was achieved with the Adam method [KB14] with the parameters proposed by the

authors for all the networks. The runtime for the processing of a batch during the learning stage

(prediction and back-propagation), with a GPU Tesla M40 and a 2.9 GHz processor is respecti-

vely of 1.4 sec, 1.8 sec, 0.7 sec and 1.2 sec for WS-DeepDOM, WS-Motion2D, RFS-DeepDOM

and RFS-Motion2D. The batch size consists of 32, 32, 8 and 12 elements respectively. The

last two batch sizes are lower due to a higher GPU memory requirement of the networks, in

particular for the optical �ow computation with FlowNet 2.0. The total number of parameters of

these networks is 17 817 729for WS-DeepDOM, 926 656for WS-Motion2D, 180 299 060for RFS-

DeepDOM, and 163 407 924for RFS-Motion2D. In the test stage, the prediction for one frame is

70



3.4. Experimental results

FIGURE 3.10 – Two-stream network for temporal motion saliency detection. The spatial and
temporal streams follow the same architecture, as the one detailed in Figure 3.4. The input of
the spatial stream is the 6-channel concatenation of the RGB images at times t � � t and t. The
input of the temporal stream is the two-component optical �ow map. The �nal saliency score is
the average between the spatial and temporal saliency scores.
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performed in respectively 20.0, 15.2, 10.4 and 9.5 fps.

3.4.2 Comparison of the dominant motion estimation methods

The accuracy of the dominant motion estimation methods is likely to play an important role

in the performance of the temporal motion saliency detection methods. We evaluated them on

the synthetic dataset, which contains 2000 elements for which the motion ground truth is avai-

lable by construction. For this evaluation, we proceed as for the loss used to train DeepDOM

(Equation 3.3), by estimating the reconstruction error on a grid for each element. With Deep-

DOM, we obtained a mean error for the estimation of the dominant motion of 0.20 pixels with

a standard deviation of 0.08. With Motion2D, the mean error is of 0.03 pixels and the standard

deviation is of 0.41. This higher standard deviation for Motion2D is caused by a very small num-

ber of samples for which the dominant motion estimation failed, but overall, Motion2D provides

estimates of the dominant motion very close to the ground truth for the synthetic dataset. Yet,

DeepDOM accuracy is good. Let us note that the brightness constancy assumption is valid by

construction on the synthetic data. Motion2D relies on this assumption, which could explain its

very good performances on this dataset. Nevertheless, as illustrated in Figure 3.11, the �ows

estimated by the two methods remain visually close most of the time. The quantitative evalua-

tion reported in Section 3.4.4.2 will allow us to further compare the two methods on real videos,

for which the brightness constancy assumption is not always valid.

3.4.3 Choice of the time step

Another important aspect is the choice of the time step � t between the two frames for

the prediction stage. This discussion assumes standard frame rates around 25 to 30 fps. A

time step of 1 means that we consider two successive frames of the video, a time step of 2,

frames at t � 2 and t, etc. We can expect that more distant frames will make the highlight

of independently moving objects with small motion magnitude easier. On the other hand, the

parametric estimation of the dominant motion is supposed to be more precise on temporally

closer frames. Table 3.2 collects the accuracy of the RFS-Motion2D method for different time

steps. To �nd the best trade-off, time step was set to 1 during training, and the validation set

with real videos is used to select the best time step for every method. Each method has thus

Time step � t 1 2 3 4 5 6 7 8 9
Accuracy 84.9 89 88.3 88.9 89.6 88.9 88.9 89.2 88.5

TABLE 3.2 – Rates of correct classi�cation in percentage for RFS-Motion2D on the real valida-
tion set for growing time steps � t from 1 to 9.
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1)

2)

3)
Method Sample a1 a4 a2 a3 a5 a6

Ground truth 1) -6.31 1.18 0.044 -0.043 -0.030 0.005
Motion2D 1) -6.31 1.18 0.044 -0.043 -0.030 0.005
DeepDOM 1) -6.28 1.01 0.041 -0.043 -0.028 0.002

Ground truth 2) -1.97 5.13 -0.007 0.004 0.033 0.039
Motion2D 2) -1.97 5.12 -0.007 0.004 0.033 0.039
DeepDOM 2) -1.77 4.78 -0.007 0.006 0.030 0.040

Ground truth 3) 3.95 3.05 -0.030 0.024 -0.014 0.036
Motion2D 3) 3.95 3.05 -0.030 0.024 -0.014 0.036
DeepDOM 3) 3.98 2.85 -0.033 0.026 -0.017 0.035

FIGURE 3.11 – Visualisation of the ground truth af�ne dominant motion (left image), motion �eld
estimated with Motion2D (middle image) and with DeepDOM (right image) for three samples.
The table below gives the numerical value of the parameters in each case. The motion model
is described by equation 3.2.
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the most appropriate time step for testing. It will also make the comparison fairer. Nevertheless,

Table 3.2 shows that the key point is to discard a time step of 1. Other values yield similar

results.

3.4.4 Experimental evaluation and comparison

3.4.4.1 Evaluation on the synthetic dataset

All the learning-based motion saliency detection methods were trained �rst on the synthetic

database introduced in Section 3.2.1. The evaluation on the synthetic validation set showed

that for all the methods, the accuracy was higher than 98%. Such a good performance can be

explained by the fact that the synthetic dataset is ideal, as it displays strictly af�ne motions.

3.4.4.2 Evaluation on the real video dataset

Table 3.3 contains the comparative results. First of all, the two simple baselines relying on

criteria (3.4) and (3.5) yield an accuracy of only 50.2% and 54.4% respectively. It demonstrates

that the problem is not trivial, which justi�es the use of a CNN-based framework for the classi�-

cation. The two-stream network has an accuracy of 80.9%, which is better, but leaves room for

improvement. Let us note that the spatial and temporal streams, when used separately to make

the prediction, do not provide equivalent results. The temporal stream performs better than the

spatial stream by a large margin. This con�rms that for the temporal motion saliency detection

task, explicit motion information is the key input. In contrast to the action classi�cation task

investigated in [SZ14], no improvement was obtained by combining the two streams. By com-

paring the spatial and temporal streams to our WS and RFS variants respectively, we observe

that our method consistently obtains better performance. This demonstrates the contribution of

the motion compensation step in both cases.

If we now compare the variants of our method in Table 3.3, we see that the best method is

RFS-Motion2D, which is based on the residual �ow. It reaches an overall accuracy of 87.5%.

Globally, we draw the same conclusion than for the two-stream baseline, that is, for a given

dominant motion estimation algorithm, methods which take �ow as input perform better that

methods that take images as input.

Samples of results are displayed in Figure 3.12 for visual assessment. In the processed

videos, the static scene is not always shallow, and moving objects may be not easily visible. Ho-

wever, the classi�cation results remain convincing as illustrated in the top rows of Figure 3.12.

Dif�cult cases involving static objects in the foreground as trees or walls, dynamic textures as

a �owing river, or camou�aged moving objects as the snail, are yet correctly classi�ed. The

bottom row of Figure 3.12 contains failure cases for frames involving wind in the bushes, or

small moving objects (respectively car, dog, scorpion) partially hidden. These illustrations can
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Method Time Overall Salient Non salient
step frames frames

Baseline 	 4 50,2 87,0 8,2
Baseline � 4 54.4 64.6 42.8

Two-stream network 1 80.9 64.3 99.7
Temporal stream only 2 83.2 71.4 96.7
Spatial stream only 3 72.6 50.4 98.0

WS-Motion2D 6 85.2 78.4 93.0
WS-DeepDOM 2 76.5 59.4 96.2
RFS-Motion2D 5 87.5 79.7 96.4
RFS-DeepDOM 3 84.6 73.0 98.0

TABLE 3.3 – Rates of correct classi�cation on the test set with real videos. Best performance in
bold, second best underlined.

Method Time Overall Salient Non salient
step frames frames

WS-Motion2D af�ne 6 85.2 78.4 93.0
WS-Motion2D quadratic 6 85.2 77.9 93.5

TABLE 3.4 – Rates of correct classi�cation on the test set with real videos for WS-Motion2D,
depending on the choice of the parametric motion model.

Method Overall Salient Non salient
frames frames

WS-Motion2D 80.9 76.8 85.7
WS-DeepDOM 67.3 62.3 73.1
RFS-Motion2D 76.0 62.2 91.8
RFS-DeepDOM 69.7 44.1 99.0

TABLE 3.5 – Rates of correct classi�cation on the test set with real videos, where methods are
trained only on the synthetic dataset.
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help us understand why our method tends to classify non salient frames more correctly than

salient ones as shown in Table 3.3. We can distinguish three cases : non-salient images with

no strong apparent motion in the foreground, non-salient images with foreground static objects

exhibiting strong apparent motion (due to camera motion), and true salient frames. The �rst

case with no strong apparent motion in the foreground is easy to classify. The network will have

to �nd a compromise for the two other cases. Regarding the second case, the network can be

“forced” to classify such frames as non-salient owing to supervised training. However, it will be

achieved at the cost of mis-classi�cationss of some true salient ones as non-salient.

3.4.5 Impact of the quality of the dominant motion estimation

Using DeepDOM did not improve the results compared to the classical method Motion2D.

This suggests that Motion2D still outperforms DeepDOM for real images. Methods WS and

RFS are not equally affected by a lower accuracy of the dominant motion estimation method

on real videos. Table 3.3 shows that the performance decrease is 2.9% for RFS and 8.7% for

WS with the DeepDOM variant. This suggests that RFS is more robust to a less precise motion

estimation method. Intuitively, WS really needs a correct cancellation of the camera motion

when comparing registered pixels at the same location to detect motion saliency. In contrast,

optical �ow contains information directly exploitable, and the camera motion compensation acts

rather as a “denoising” step.

3.4.5.1 Choice of the parametric motion model

All the reported experiments involve an af�ne motion model. To evaluate how the chosen

motion model impacts the classi�cation performance, we ran WS-Motion2D with two different

motion models : the af�ne one and the 8-parameter quadratic one. The latter consists of a poly-

nomial of degree 2 for the two components of the velocity vector for a total of 8 free parameters.

It accounts for the 2D projected motion of a 3D rigid motion of a planar scene, similarly to the

homography for geometric transformation. The WS-Motion2D method has been chosen for this

comparative evaluation, since it is more affected by the quality of the global motion estimation

as mentioned above. The classi�cation CNN is not trained again. Results reported in Table 3.4

show that modifying the motion model at test time has almost no impact on the performance.

3.4.6 Impact of �ne-tuning

We also want to evaluate the impact of the �ne-tuning stage. Table 3.5 contains the rates

of correct classi�cation for the methods trained only on the synthetic dataset. By comparing

Tables 3.3 and 3.5, we notice that further training on real videos always improves the perfor-
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mance. WS-Motion2D has already good performance with training on synthetic data only, but

the other methods really bene�t from the �ne-tuning on real videos.

3.4.7 Temporal evaluation

The temporal behaviour of the four variants is illustrated in Figure 3.13 with timeline plots.

The 12 real video clips respectively depict moving camel, cars (twice), cat, tractor, giraffe and

scorpion for the seven dynamically salient clips, and �eld, river, countryside, campus and in-

doors for the �ve non salient ones. These videos are all represented in Figure 3.12. All the

methods yield more stable results on non salient videos than on dynamically salient ones. The

seventh clip in the row is a very dif�cult example (the scorpion one) of the Camou�aged Ani-

mals dataset. RFS methods are able to partly detect motion saliency in this video, whereas WS

methods fail, demonstrating that motion information is the key clue and appearance may be

useless.

Results obtained with RFS-Motion2D for a subset of the test set, and concatenated in a

single video, can be found at the following link : https://youtu.be/sQjSmBPAkaU . The colour of

the frame border, respectively orange or blue, designates the prediction, respectively dynamic

saliency or non saliency. The green (respectively red) square at the bottom right indicates that

the prediction is correct (respectively wrong). The video shows that non saliency is correctly

predicted even when the shallow scene assumption is not valid, with for instance walls, trees or

pillars in the foreground. The video includes the camou�aged snail case which is successfully

handled.

3.4.8 Additional experiments

We applied RFS-Motion2D to the DAVIS2016 dataset [Per+16], which includes 50 videos

with 3455 annotated frames. It was initially built for the video object segmentation task. The

objects of interest are foreground moving objects. All the frames should be labelled as dyna-

mically salient. We run RFS-Motion2D without any �ne-tuning on the DAVIS2016 dataset. We

obtained an overall correct classi�cation rate of 93.3%, which is signi�cantly better than the one

obtained for our real dataset (79.7% for salient frames, see Table 3.3). Moving objects in our

dataset usually exhibit a smaller motion magnitude than those of the DAVIS2016 dataset. Our

dataset also includes the challenging Camou�aged Animals samples.

In addition, we conducted an experiment regarding the claim made in Section 3.1 about the

applicability of existing saliency map estimation methods to saliency detection. We applied the

method of [WSS18] on the non-salient videos, using the code made available by the authors.

As expected, the method supplied non-empty motion saliency maps, sometimes involving large

non-salient areas. To be fair enough, we added a decision step for an effective classi�cation.
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For this, we considered the saliency map delivered by the �nal sigmoid layer of their method,

which has values in [0,1]. These values represent the probability of saliency at each pixel. Then,

we consider that a frame is salient if at least 100 pixels have a saliency value of more than 0.5,

for images of dimension 240x240. With this procedure, we got a correct classi�cation rate of

non-salient frames of 58%. In contrast, our method reached a rate of 98% (Table 3.3). This

shows that existing methods are not able to solve the problem we have addressed.

3.5 Conclusion

We have formulated the problem of temporal motion saliency detection in videos. We propo-

sed two methods involving camera motion compensation and CNN-based classi�cation. They

were favourably compared to a baseline exploiting the two-stream network. A synthetic dataset

has been constructed and an existing real dataset has been extended. The best method (RFS-

Motion2D) reaches an overall accuracy of 87.5% on our real dataset, and even 93.3% on the

DAVIS2016 dataset. It takes advantage of an explicit motion information given by the residual

�ow.

A challenge for temporal motion saliency detection methods is to properly handle static

objects close to the camera, such as trees or pillars, which can have a strong apparent motion.

Our method learned to properly classify such samples most of the time, as shown by the high

accuracy on non salient frames. On the other hand, our method is also more careful when

predicting saliency and some salient elements are missed. A perspective would then be to

search for a way to better separate apparent and real motion, to make the saliency estimation

easier.
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River Indoors

Campus Corridor

Countryside Billboard

Field Re�ection

Cat Giraffe

Car 1 Snail

Tractor Marple

Camel Car 2

Bushes Parking Dog Scorpion

FIGURE 3.12 – Classi�cation examples for RFS-Motion2D. The four top left rows and top right
rows show eight frames properly classi�ed as respectively non dynamically salient and dyna-
mically salient. The bottom row displays four failure cases. The �rst frame is wrongly classi�ed
as dynamically salient due to wind in the bushes ; the red circle surrounds the salient moving
object in the three other frames that are wrongly classi�ed as non salient.



Method Motion saliency timeline

Ground truth

RFS-Motion2D

RFS-DeepDOM

WS-Motion2D

WS-DeepDOM

FIGURE 3.13 – Comparative timelines of the frame classi�cation on 12 real videos of different
lengths (orange stands for dynamically salient, blue for non-salient).



CHAPTER 4

MOTION SALIENCY MAPS

This chapter addresses the problem of motion saliency in videos, that is, identifying regions

that undergo motion departing from its context. We propose a new unsupervised paradigm

to compute motion saliency maps. The key ingredient is the �ow inpainting stage. Candidate

regions are determined from the optical �ow boundaries. The residual �ow in these regions is

given by the difference between the optical �ow and the �ow inpainted from the surrounding

areas. It provides the cue for motion saliency.

4.1 Introduction

Estimating motion saliency maps consists in locating in each frame of a video the saliency

induced by motion. More precisely, in each frame of the video, regions whose motion signi�-

cantly departs from the surrounding motion will be considered to be salient. Estimating motion

saliency can provide useful information for various applications, such as mobile robotics or au-

tonomous vehicles [DRT18 ; RW20], alert raising for video surveillance [SRB12 ; DDM19], or

the identi�cation of temporal segments of interest for video summary [ LPC09 ; SCB12].

Related works concerning saliency in videos were reviewed in Section 2.5 of Chapter 2.

Here, let us simply summarise the general trends followed by the main methods of the literature.

First, most existing works talk about spatio-temporal saliency or dynamic saliency or video

saliency. The notion of saliency associated to these terms takes into account not only motion but

also appearance. More speci�cally, the primary goal of these methods for saliency estimation

is either to predict the visual attention of human observers, or to highlight the moving object

of interest in the foreground of the video. We note that in the �rst case, it is well-known that

moving objects tend to attract the attention of observers. In particular, a strong motion in the

periphery of the �eld of view will act as a signal which attracts the attention of the observer. In

the second case, motion generally provides a reliable indication regarding the presence of any

object of interest.

In contrast to most existing approaches, we will deal with motion saliency which, by de-

�nition and as opposed to appearance saliency, involves only motion information. We do not

exploit appearance cues and we do not make any speci�c hypothesis related to this aspect.
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Our method is on one hand more focused, as it deals exclusively with motion, but on the other

hand it is also more general. Indeed, in quite common situations, saliency may be due to motion

exclusively. This is for instance the case for anomaly detection in crowds [PRBB17]. An indivi-

dual may follow a different motion compared to the surrounding crowd, and similar situations

can occur for an animal in a herd or �ock, a car in the traf�c, or a cell in a tissue. Notably, ap-

pearance may be of limited use for speci�c imaging modalities, for instance videos taken with

an infrared camera or for �uorescence microscopy.

In addition, our method requires no learning stage, be it supervised or unsupervised. Our

main contribution is the introduction of optical �ow inpainting to design an original and effective

solution for the problem of motion saliency estimation. Relying on optical �ow is natural as it

provides dense information about the motion present in the video. In practice, any optical �ow

method can be used, provided it is precise enough, in particular regarding the preservation of

motion boundaries, and provided the computation time it requires remains low. The optical �ow

can indifferently be estimated by classical methods, for instance by variational approaches,

or by methods built on deep neural networks. The latter are now leading. In both cases, we

exploit methods without any modi�cation, and we take the optical �ow produced as input of our

method. Our method then processes this raw optical �ow to extract motion saliency, and this

processing involves no supervision or learning stage.

The rest of this chapter is organised as follows. Section 4.2 presents our method for the esti-

mation of saliency maps. Section 4.3 reports comparative results with state-of-the-art methods

of video saliency. Section 4.4 contains concluding comments.

4.2 Estimation of motion saliency maps

As stated in the introduction, we estimate motion saliency maps in video sequences only

from optical �ow cues. We expect that the optical �ow �eld will be distinguishable enough

in salient regions. We have to compare the �ow �eld in a given area, likely to be a salient

moving element, with the �ow �eld that would have been induced in the very same area with the

surrounding motion. The former can be computed by any optical �ow method. The latter is not

directly available, since it is not observed. Yet, it can be predicted by a �ow inpainting method.

This is precisely the originality of our motion saliency approach. Our method is then two-fold.

First, we extract candidate salient regions and compare the inpainted �ow to the original optical

�ow in these regions. The discrepancy between the two �ows is then interpreted as an indicator

of motion saliency. We additionally include a backward and forward processing to re�ne the

results. Our overall framework is summarised in Figure 4.1.

In Sections 4.2.1, 4.2.2, 4.2.3 and 4.2.4, we will describe the successive steps of our me-

thod. This description is accompanied by Figures 4.4 to Figures 4.12 (starting at page 89) to
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4.2. Estimation of motion saliency maps

FIGURE 4.1 – Overall framework of our method for motion saliency map estimation with the
two backward and forward streams. Steps a) to d) estimate candidate salient regions. Motions
boundaries are extracted from the HSV representation of the optical �ow. The convex envelopes
are the basis on which, after additional re�nements, the �nal candidate regions are obtained in
c) and d). In step e), the optical �ow in the candidate regions is reconstructed from the external
�ow. The residual �ow, which is the difference between the optical �ow and the inpainted �ow,
is computed in f). It is then converted into the backward and forward saliency maps in g), that
are merged into the �nal saliency map in h).
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FIGURE 4.2 – Colour
code (left) for the cor-
responding optical �ow
�eld (right).

get a better insight of the role of the different steps in different situations. Figure 4.4 displays

eight samples of videos that will be processed, and Figures 4.5 to Figures 4.12 illustrate the

forward and the backward streams of the work�ow. The backward stream is presented on the

left and the forward one on the right for each sample. The cows, motorbike, soapbox, soccerball

and Lucia samples correspond to situations in which the method works as expected, the dog

and goat samples correspond to failure cases, and the Libby sample illustrates a challenging

setting.

4.2.1 Extraction of inpainting masks

First, we have to extract the masks of the regions to inpaint. We will rely on the optical �ow

�eld computed over the images. The optical �ow extracted with FlowNet 2.0 [ Ilg+17] is displayed

in Figure 4.5 for several samples. FlowNet 2.0 has been chosen for its low computation time

and sharp motion boundaries. We will exploit the discontinuities of the optical �ow. Indeed, the

silhouette of any salient moving element should correspond to motion boundaries, since its

motion should differ from the surrounding motion. The surrounding motion is generally given

by the background motion, as can be seen in the examples of the �gure. In the sequel, the

surrounding motion will also be referred to as the global motion.

For the motion boundary extraction, one could directly apply a threshold on the norm of

the gradient of the velocity vectors. This is however likely to produce noisy contours. Instead,

we choose to rely on the classical contour extraction method proposed by Canny [Can86]. To

do this, we convert the optical �ow to its HSV representation, which is taken as input to the

Canny algorithm. The HSV representation of the �ow is commonly used for visualisation, the

hue representing the direction of motion and the saturation its magnitude (see Figure 4.2).

Figure 4.6 displays contours we obtained this way. The location of the salient object can be

visually inferred in most cases when looking at these contours. Still, at this point, the contours

remain curves or sets of curves which are 1-dimensional objects. They do not straightforwardly

allow to �nd the location of the salient elements yet.

Converting the contours to 2-dimensional masks is the goal of the following step. To this end,

contours pieces are �rst organised into connected parts. A connected part is simply de�ned

by the following property : there exists an uninterrupted path between any two points of the

connected part that goes only through other points of this same connected part. More precisely,
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we consider the 8-connexity, and a given pixels is connected to its 8 neighbours. The convex

envelope of each connected part is then computed and dilated with a local kernel. In practice,

we take a kernel of size 5x5. Each resulting region mask is given by the corresponding union

of overlapping dilated convex envelopes. At this point, let us note that it is not a problem if

several close moving objects are covered by a unique mask. Indeed, these moving objects

are potentially salient and should be found as such by our method. For example, the soapbox

sample displays such a con�guration, with several moving objects (two people and the vehicle)

that undergo a salient motion, as can be seen in Figure 4.4.

By construction, we note that region masks tend to be larger than actual salient areas. This

can be seen in Figure 4.7 for most masks. Nevertheless, this is desirable for inpainting, since

inpainting must start from global motion information only.

Yet, a too rough mask can affect the accuracy of motion inpainting, especially for the salient

areas which are non convex. The masks are then re�ned by applying the GrabCut algorithm

[RKB04] on the HSV representation of the optical �ow. To avoid small localisation errors, which

would make the inpainting stage reconstruct the �ow from salient pixels, a dilatation with a 5x5

kernel is again applied to the mask resulting from the application of GrabCut. As illustrated

in Figure 4.8, the �nal borders of the masks correspond better to those of objects. This is

particularly visible for the soapbox sample. The Libby sample also shows that this step can do

more than re�ning the borders of the mask, by discarding some regions with a �ow very similar

to the background. This is a limit case of the GrabCut algorithm, which can discard the whole

mask if it is very similar to the background.

4.2.2 Optical �ow inpainting

At this point, we have a set M of inpainting masks r in the image domain 
 for each video

frame. The issue now is to perform the �ow inpainting in these masks from the surrounding

motion. Note that the idea of relying on the reconstruction of motion has been proposed in

[Mat+06] for shaky video stabilisation or [SDC14] for video completion. The inpainting pro-

blem was �rst popularised for static images leading to image inpainting methods categorised in

exemplar-based methods [CPT03] and diffusion-based methods [Ber+00].

For this step, we adopt the �oating-point representation of the velocity vectors f ! (p); p 2 
 g

with ! (p) 2 R2. The two components of the �ow vectors will be inpainted separately. We retain

this approach for its simplicity, but also because of the smoothness of the �ow to inpaint wi-

thin the mask. Indeed, masks are supposed to encompass the whole salient candidate, which

means that no discontinuities should lie in the area to inpaint. Then, we can obtain a reconstruc-

tion of good quality even by independently inpainting the two components of the �ow. We have

investigated three inpainting techniques for this stage. The �rst two are PDE-based methods

[BBS01 ; Tel04]. Since the background motion to inpaint is globally smooth, a diffusion-based
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approach for inpainting is well-suited. The last approach is a parametric method. In the follo-

wing, we describe each of these methods, as well as how we have applied them for optical �ow

inpainting.

4.2.2.1 Navier-Stokes inpainting

For the de�nition of their inpainting method, the authors of [ BBS01] take inspiration from

�uid dynamics. Their idea is to rely on the Navier-Stokes equation to propagate lines of equal

brightness (also called isophotes) continuously into the region to inpaint. More precisely, they

consider the following vorticity transport equations :

@w
@t

+ v � r w = � r � (h(jr wj)r w); (4.1)

with w = � I = @2 I
@x2 + @2 I

@y2 (I is the image intensity, x and y are the image coordinates) and

v = r I =
�

@I
@x;

@I
@y

�
. The coef�cient � is the coef�cient of anisotropic diffusion and h is a

function allowing the anisotropic diffusion of w. The image intensity I is retrieved by solving

simultaneously equations 4.1 and 4.2 :

� I = w; I j@r= I 0; (4.2)

with I 0 the intensity outside of the inpainting mask and @rthe boundary of the inpainting mask.

We rely on the OpenCV [Bra00] implementation of the method of [BBS01]. To apply it to

the inpainting of the optical �ow, we replace the image intensity I with either the real-valued

horizontal or vertical components constituting the optical �ow.

4.2.2.2 Telea inpainting

The second variant we investigate consists in adapting the image inpainting method based

on fast marching [Tel04] to optical �ow inpainting. This approach was adopted by [ SDC14] for

video completion. In [Tel04], the pixels are progressively inpainted with the following formula :

I (p) =

P
q2 B � (p) w(p; q)[I (q) + r I (q)(p � q)]

P
q2 B � (p) w(p; q)

; (4.3)

with p the pixel to inpaint, B � (p) a neighbourhood of p with known values, and w(p; q) a weighting

function. The pixels are inpainted iteratively. The fast marching method is used to �nd the exact

order in which the pixels are inpainted : the pixels closest to the mask boundary are inpainted

�rst, and the greater the distance, the latter a given pixel will be inpainted.

For the method of [Tel04], we rely on the available OpenCV implementation. To apply it to

the optical �ow, we proceed similarly as for [ BBS01], by replacing the image intensity I with

86



4.2. Estimation of motion saliency maps

either the real-valued horizontal or vertical components constituting the optical �ow.

4.2.2.3 Parametric inpainting

Finally, we developed a parametric alternative, which is based on different principles com-

pared to the two methods presented above. We assume that the surrounding motion, i.e., the

background motion, can be approximated by a single af�ne motion model on the whole image

as follows :

(
! x (x; y) = a0 + a2 � x + a3 � y

! y(x; y) = a1 + a4 � x + a5 � y
; (4.4)

with x and y the coordinate of a point in the image, ! x and ! y the horizontal and vertical

components of the optical �ow vector, and (a0; a1; a2; a3; a4; a5) the parameters of the motion

model.

For the estimation of this af�ne motion model, we make use of the method Motion2D [ OB95].

This method develops a robust approach to ensure a good performance in presence of secon-

dary motion �elds. A multiresolution processing is included to get better performances. In this

case, the inpainted �ow simply corresponds to the �ow issued from the estimated af�ne motion

model, given by equation 4.4, over the masks.

With these three approaches for optical �ow inpainting, we have three variants of our me-

thod. They are respectively named MSI-ns, MSI-fm and MSI-pm. MSI stands for Motion Sa-

liency Inpainting, ns for Navier-Stokes, fm for fast marching, pm for parametric. We note that it

is straightforward to replace the inpainting method in our framework by any other of our choice.

Examples of other inpainting algorithms not investigated here include the recent methods of

[Oli+18] or [Raa+20], speci�cally designed for optical �ow inpainting.

Figure 4.9 shows the inpainted �ows for the MSI-ns variant. We can see that in most cases,

the inpainted �ow is globally smooth and the salient object is no longer visible. This means that

the mask was large enough to cover the whole object. Additionally, Figure 4.3 compares the

inpainting with the three methods for the cow sample. Qualitatively, the reconstructed �ows are

smooth, except for the Telea variant which leads to a more granular reconstruction. We also

observe the apparition of an artifact close to the center of the inpainting mask with this variant.

Still, the reconstructed �ow is in all cases different from the original �ow for this sample. The

more detailed quantitative evaluation of the impact of the inpainting method on the �nal result

will be given in Section 4.3.2.
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FIGURE 4.3 – Optical �ow inpainted with the Navier-Stokes method [ BBS01] (left), the Telea
method [Tel04] (center) and the parametric method [OB95] (right). The inpainting mask is su-
perimposed to the �ow. The reconstructions are globally smooth, except for the Telea variant
which is more granular.

4.2.3 Motion saliency map computation

The residual �ow ! res , i.e., the difference between the optical �ow ! and the inpainted �ow

! inp , is then computed over the masks r; r 2 M :

8p 2 r; r 2 M ! res (p) = ! inp (p) � ! (p) (4.5)

The residual �ow is illustrated in Figure 4.10.

From the residual �ow, we want to get a motion saliency map g, whose values are scalar

and de�ned within [0; 1]. To this end, we de�ne g as follows :

8p 2 
 g(p) = 1 � exp(� � jj ! res (p)jj2) if p 2 r; r 2 M

g(p) = 0 otherwise
(4.6)

where � weights the saliency score. Function g expresses that non-zero residual motion high-

lights salient moving elements. Parameter � allows us to establish a trade-off between robust-

ness to noise and ability to highlight small but still salient motions.

Let us note that, if we were interested in a hard segmentation of independently moving

objects, we would just need to set � to a high value. Indeed, by applying a threshold � to g(p),

we can deduce from (4.6) that p will be segmented if :

jj ! inp (p) � ! (p)jj2 > �
ln (1 � � )

�
: (4.7)

With � arbitrarily set to 1
2 (the middle value of [0; 1]), the decision depends only on � . Pixels

with residual �ow magnitude greater than ln (2)
� will be segmented as salient. This shows that

our method is �exible, since we can shift from the motion saliency problem to the video seg-

mentation problem just by tuning parameter � .
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4.2.4 Bidirectional processing

Finally, we propose to further leverage the temporal dimension to re�ne the saliency map.

To do this, we introduce a bidirectional processing (see Figure 4.1 a)-g)). The whole work�ow

is applied twice in parallel, backward and forward, that is, to the image pair I (t); I (t � 1) and

the image pair I (t); I (t + 1) . This yields two motion saliency maps, respectively gb and gf , such

as the ones that are represented in Figure 4.11. We combine these maps by taking their pixel-

wise minimum to reduce the number of false positive. This gives us the �nal saliency map gF ,

as illustrated in Figure 4.12 :

gF (p) = min(gb(p); gf (p)) : (4.8)

The �gure shows that areas close to motion boundaries are re�ned, as for instance for the

soapbox case. Accordingly, the road pixels between the man and the handle are not highlighted

as salient. We can also observe that areas that have an unstable apparent motion can be

discarded this way. This is the case for instance for the Libby video. The background is close to

the moving camera, and the bidirectional processing made it possible to clean up a signi�cant

part of the �nal saliency map.

The reported experimental results for MSI-ns, MSI-fm, MSI-pm, and for the NM method

introduced in Section 4.3.3, will include the bidirectional processing.

1) Cows 2) Motorbike

3) Soapbox 4) Soccerball

5) Lucia 6) Libby

7) Dog 8) Goat

FIGURE 4.4 – Sample videos processed in the experiments illustrating a variety of scenes. Only
one frame in each video is displayed.
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1) 2)

3) 4)

5) 6)

7) 8)

FIGURE 4.5 – a) Optical �ows computed between two successive images of the videos illus-
trated in Figure 4.4. The backward element is on the left and the forward on the right for each
sample.

1) 2)

3) 4)

5) 6)

7) 8)

FIGURE 4.6 – b) Motion boundaries computed on the �ow �elds of Figure 4.5. The backward
element is on the left and the forward on the right for each sample.
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1) 2)

3) 4)

5) 6)

7) 8)

FIGURE 4.7 – c) Dilated convex envelopes obtained from the contours shown in Figure 4.6. The
backward element is on the left and the forward on the right for each sample.

1) 2)

3) 4)

5) 6)

7) 8)

FIGURE 4.8 – d) Inpainting masks issued from the envelopes of Figure 4.7. The backward
element is on the left and the forward on the right for each sample.
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1) 2)

3) 4)

5) 6)

7) 8)

FIGURE 4.9 – e) Inpainted optical �ows (with the border of the inpainting masks superimposed).
The backward element is on the left and the forward on the right for each sample.

1) 2)

3) 4)

5) 6)

7) 8)

FIGURE 4.10 – f) Residual �ows. The backward element is on the left and the forward on the
right for each sample.
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1) 2)

3) 4)

5) 6)

7) 8)

FIGURE 4.11 – g) Forward and backward motion saliency maps corresponding to the residual
�ows of Figure 4.10.

1) 2)

3) 4)

5) 6)

7) 8)

FIGURE 4.12 – h) Final motion saliency maps computed from the bidirectional maps of Fi-
gure 4.11.
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4.3 Experimental results

We will �rst give additional information regarding the experimental setting in Section 4.3.1.

We will then report quantitative results in Sections 4.3.2 and an ablation study in Section 4.3.3.

Finally, Section 4.3.4 will present a qualitative evaluation.

4.3.1 Experimental setting

The optical �ow is the foundation on which our method is built. The optical �ow method

should then satisfy several properties to make the results satisfying enough. First, the optical

�ow should be as accurate as possible, while being computed as quickly as possible to make

the processing of whole video sequences tractable. In Section 2.4, we observed that deep

learning-based methods have recently supplied state-of-the art results while running practically

in real time. FlowNet 2.0 [Ilg+17] and PWC-Net [Sun+18] are examples of this class of methods

for which pre-trained networks are publicly available.

Here, let us brie�y describe the FlowNet 2.0. algorithm. Its architecture, described in Fi-

gure 4.13, consists in a stack of convolutional networks that progressively re�nes the optical

�ow. The authors train the networks one after the other to avoid over-�tting. The endpoint error

(EPE) can then be used as a training loss for this network. It is de�ned as follows (with ! GT the

ground truth optical �ow and ! the estimated �ow) :

EPE =
1

j
 j

X

p2 


jj ! (p) � ! GT (p)jj2 (4.9)

The PWC-Net network relies on similar principles, with notable differences being that it warps

learned features instead of the images, and that it has signi�cantly fewer parameters than

FlowNet 2.0.

For our method, another important issue is in the preservation of sharp motion discontinui-

ties. Indeed, we rely on motion boundaries to extract the inpainting masks. Figure 4.14 contains

examples of �ows computed with FlowNet 2.0 and PWC-Net, with trained models provided by

the authors. We observe that the �ows estimated with FlowNet 2.0 are sharper compared to

the �ows computed with PWC-Net. Despite the superior performance of PWC-Net on the MPI-

Sintel benchmarks [But+12], we accordingly decided to adopt FlowNet 2.0 for the estimation of

the optical �ow �elds. Since the optical �ow estimation is a research topic that is still quickly

evolving, replacing FlowNet 2.0 with a more accurate method producing sharp motion bounda-

ries is expected to improve our process for motion saliency estimation.

For all the experiments, the parameters of our framework are set as follows. The Canny

edge detector is applied to the image smoothed with a Gaussian �lter of standard deviation

� = 5 . The two thresholds for the Canny edge detector are set to 20 and 60. The ratio of 3
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FIGURE 4.13 – Architecture of FlowNet 2.0. Reproduced from [Ilg+17].

between the two values is chosen following the advice of [Can86]. For the inpainting algorithm,

a radius of 5 pixels around the region to inpaint is used. Let us note that this radius of 5 pixels

as well as the choice of a 5x5 kernel for dilation operations have been used for images of

various dimensions. The images of the DAVIS dataset have a size of 854x480 pixels, and the

additional examples presented in Figure 4.15 have a size of 720x720 pixels for the generated

example and 352x288 for the infrared video. In fact, the value of a radius of 5 pixels and of a

5x5 kernel are expected to be adapted as long as they allow to cover a local neighbourhood.

Indeed, the role of the dilations is simply to be robust to local noise, and the inpainting relies

on the local value at the boundary of the inpainting area. This setting should be adequate for

common image resolutions, except maybe for very large images (height and width of thousands

of pixels) for which a larger radius may be selected. On the other hand, a radius of 5 pixels may

be too large for very small images (height and width of a few dozen of pixels), and in this case

a value of 3 may become preferable.

Finally, the parameter � for the computation of the saliency map has been set to 3
2 . It ap-

peared adapted to highlight the salient moving objects, while putting less emphasis on weaker

motions.

There is no available benchmark explicitly dedicated to motion saliency. Therefore, we

chose the DAVIS 2016 dataset for the evaluation of our method. This dataset has been ini-

tially introduced in [Per+16] for the video object segmentation (VOS) task. It has also been

recently used to evaluate methods estimating saliency maps in videos, as in [WSS18 ; LS18].

For the VOS task, the object to segment is a foreground salient object of the video, which has a

distinctive motion compared to the rest of the scene. It makes this dataset exploitable for motion
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Chapter 4 – Motion saliency maps

FIGURE 4.14 – Optical �ow computed on the soapbox and kite-surf samples with FlowNet 2.0
(left) and PWC-Net (right). The zooms shows that the borders estimated with FlowNet 2.0 are
sharper.
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saliency estimation, although appearance plays a role.

4.3.2 Quantitative comparison

Table 4.1 collects comparative results of our three variants, MSI-ns, MSI-pm and MSI-fm,

with state-of-the-art methods for saliency map estimation in videos : LGFOGR [WSS15], SAG

[WSP15], RST [LS16], STCRF [LS18] and VSFCN [WSS18]. These methods have been pre-

sented in Section 2.5 of Chapter 2. We have collected the performances of these methods from

[LS18], except for [WSS18], for which we used saliency maps provided by the authors to com-

pute the metrics. We carried out the experimental evaluation on the test set of DAVIS 2016,

that contains 20 videos. The quantitative evaluation on the DAVIS 2016 dataset is useful, but

may generate a (small) bias since it is oriented to video segmentation. The available ground

truth on DAVIS 2016 may not fully �t the requirements of the motion saliency task as illustrated

in Figure 4.15 and commented in Section 4.3.4, since it is object-oriented and binary.

For the evaluation, we use the Mean Absolute Error (MAE), F-Adap and F-Max metrics

that we compute the same way as in [LS18]. The MAE is a pixel-wise evaluation of the valued

saliency map g (computed with equation 4.6) compared to the binary ground truth map s. The

MAE is de�ned as follows :

MAE =
1
N

X

p2 


jg(p) � s(p)j (4.10)

with p a pixel of the image domain 
 , and N the number of pixels in the image.

F-Adap and F-Max are based on the weighted F-Measure. This metric requires a binary

saliency map, and the difference between F-Adap and F-Max lies in the way the binarisation is

obtained as explained below. The weighted F-Measure is de�ned as follows, with the weight � 2

being set to 0.3 following [LS18] :

F� =
(1 + � 2)P recision � Recall

� 2 � P recision + Recall
: (4.11)

Note that F� is de�ned this way to provide an evaluation measure considering recall � times as

much important as precision [VR79].

F-Adap involves an adaptive threshold � = � + � to binarise the saliency maps. The values

� and � are computed for each saliency map, and they correspond respectively to the mean

and standard deviation of the saliency values. F-Max is the maximum of the F-Measure for thre-

sholds varying in [0,1], or equivalently in [0,255] if the saliency map is converted to a grayscale

image of integers.

Our method MSI-ns obtains consistently satisfactory results, as it ranks second for the three

metrics. The two other variants, MSI-pm and MSI-fm, respectively rank third and fourth, but

follow MSI-ns by a small margin. Let us recall that we obtain our results without any learning
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on saliency and any appearance cues in contrast to [LS18], which performs the best. Our

parametric and diffusion-based �ow inpainting methods have close performance on the DAVIS

2016 dataset. However, the latter should be more easily generalisable, since the background

motion cannot be always approximated by a single parametric motion model. If we restrict the

parametric model to the surrounding area, then, the issue of specifying the latter will arise.

Regarding the computation time, the MSI-ns method takes 1.2 seconds to estimate the mo-

tion saliency map for a 854x480 frame on a 2.6 GHz processor. Compared to the computation

time we reported in [MBL19b], the code has been re-shaped, which explains the improvement.

Our code is written in Python and can be further optimised. Notably, the forward and backward

streams of the work�ow can be parallelised.

Method MAE # F-Adap " F-Max " Appearance Motion Supervised

STCRF [LS18] 0.033 0.803 0.816 Yes Yes Yes
MSI-ns 0.043 0.735 0.751 No Yes No
MSI-pm 0.044 0.724 0.750 No Yes No
MSI-fm 0.045 0.716 0.747 No Yes No

VSFCN [WSS18] 0.055 0.698 0.745 Yes Yes Yes
RST [LS16] 0.077 0.627 0.645 Yes Yes No

LGFOGR [WSS15] 0.102 0.537 0.601 Yes Yes No
SAG [WSP15] 0.103 0.494 0.548 Yes Yes No

TABLE 4.1 – Comparison with state-of-the-art methods for saliency map estimation on the test
set of DAVIS 2016. In bold, the best performance, underlined, the second best. We also indicate
whether the method relies on appearance information, on motion information, and whether it is
supervised.

4.3.3 Ablation study

In this section, we present an ablation study of our method, and we investigate two main

points.

First, we introduce a naive method (named NM) to motion saliency estimation to better

assess the contribution of the main components of our method. It merely consists in �rst com-

puting the dominant (or global) motion in the image. To this end, we estimate an af�ne motion

model with the robust multi-resolution algorithm Motion2D [OB95]. No inpainting masks are ex-

tracted. The residual �ow contributing to the motion saliency map is now the difference, over

the whole image, between the computed optical �ow and the estimated parametric dominant

�ow. In comparison, the variant MSI-pm computes the residual �ow similarly, but the estimation

is restricted to the inpainting masks. This setting is intended to evaluate the role of the whole

process that consists in �nding and leveraging inpainting masks.
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Results are reported in Table 4.2. We can see that the NM method yields poor perfor-

mances. This demonstrates that extracting candidate masks and applying optical �ow inpain-

ting to these regions only is necessary for the successful application of our method.

The second point we investigate is the role of the bidirectional processing. To do so, we

apply MSI-ns, MSI-fm and MSI-pm without the bidirectional processing, by considering the

forward stream only. The �nal saliency map is then the forward saliency map. By comparing

the results with the standard variants of our method in Table 4.2, we see that the bidirectional

processing consistently improves the performances.

Method MAE # F-Adap " F-Max "

MSI-ns bidirectional 0.043 0.735 0.751
MSI-pm bidirectional 0.044 0.724 0.750
MSI-fm bidirectional 0.045 0.716 0.747

MSI-ns forward 0.047 0.713 0.735
MSI-pm forward 0.051 0.690 0.730
MSI-fm forward 0.048 0.701 0.735

NM 0.453 0.367 0.612

TABLE 4.2 – Ablation study of our method, with results on the DAVIS 2016 dataset. In the �rst
three rows, we recall the performance of the standard variants of our method. Then, we present
the results without the bidirectional processing (only the forward stream is considered). Finally,
the method NM is included. In bold, the best performance, underlined, the second best.

4.3.4 Qualitative evaluation

We complement the quantitative evaluation presented in Section 4.3.2 by a visual qualitative

evaluation. For this, we consider our method MSI-ns, which turns out to be the best of the three

variants as reported in Table 4.1. Figure 4.15 displays the output of our method for frames of the

videos soapbox, Lucia, cows, bear, motorbike, soccerball, kite-surf, Libby, dog and goat of the

DAVIS 2016 dataset, and for two other types of videos. In the eleventh example (lawn video),

a rectangular region in the lawn was arti�cially moved in the image as indicated by the ground

truth. It provides us with an example where the only discriminative information is supplied by the

undergone motion. The twelfth image comes from the park video of the changedetection.net

dataset [Goy+12]. It was acquired with a thermal camera, providing us with an example where

appearance is of limited help.

Computed motion saliency maps and residual �ows are shown in Figure 4.15 c)-d). The

residual �ow, although an intermediate step in our method, is meaningful on its own. It provides

valuable additional information about the direction and magnitude of salient motions in the

video. It can be considered as an auxiliary map to the saliency map.
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For the soapbox and Lucia video clips, the salient elements with clearly distinctive motions

have been almost perfectly extracted. The cows example exhibits an interesting behaviour. The

cow is globally moving, except for its legs which are intermittently static. This illustrates the

difference between the video object segmentation task, for which the whole cow should be

segmented, and the motion saliency estimation task, for which the elements of interest are

elements with distinctive motion. Consistently, our method does not involve the two legs in the

saliency map. The bear displays a similar behaviour, with the salient element globally found

with no highlighting on the almost static parts.

The motorbike and soccerball clips include a salient moving object partly occluded. In both

cases, the method is able to properly �nd the visible part of the salient moving object.

In the kite-surf clip, the sea foam has a non rigid but strong motion, and consequently, it is

likely to belong to the salient moving region. Consistently, our method assigns a high saliency

value to the sea foam. In contrast to the VOS task, the kite-surfer is the only foreground object

to segment as de�ned in the ground truth.

The Libby clip is a challenging case. On one hand, our method is able to properly �nd the

dog despite the occluding pole. On the other hand, this video has been taken with a moving

camera, relatively close to static objects in the background (the trees, the pole, the grid). This

generates a large apparent motion for these elements, which are partly classi�ed as salient.

The dog and goat represent failure cases. For the dog clip, the small magnitude of the dog

motion made the motion boundaries harder to �nd and to link. For the goat clip, the rocks have

a strong apparent motion due to the camera displacement, which made the motion of the goat

comparatively less apparent. We will come back to the problems illustrated by the Libby, dog

and goat clips in the conclusion.

For the last two video clips, saliency is only or mainly due to motion. In the lawn clip, the

square region is easy to detect when seeing the video, but is impossible to localize in a single

frozen image. Our method based on optical �ow is able to recover the salient moving region. Fi-

nally, in the park clip involving an infra-red video with less pronounced appearance, our method

also yields a correct motion saliency map.

4.4 Conclusion

Before concluding, let us discuss two limitations of the method we have de�ned. The �rst

limitation concerns scene depth discontinuities. First, let us recall that the 2D apparent motion

in the image results from both the relative 3D motion between the scene and the camera and

the depth of the viewed objects. Then, motion discontinuities in the image may be due also to

depth discontinuities in the scene. Accordingly, salient moving regions extracted from optical

�ow as we did, may correspond to static objects in the foreground when the camera is moving.
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Indeed, these foreground objects exhibit a larger apparent motion than the rest of the static

background. We will call this speci�c con�guration “depth saliency”. However, our framework

based on optical �ow, that is, the apparent motion in the image, makes no distinction between

“true” motion saliency and depth saliency, as illustrated by Figure 4.16. In a scene with depth

saliency only, we can overcome this problem by �rst applying our supervised method for mo-

tion saliency detection presented in Chapter 3. We can then estimate saliency maps only if

the frame is labelled as dynamically salient. Indeed, we demonstrated that our image-based

saliency detector is robust to depth saliency, certainly owing to the supervised learning stage.

Yet, distinguishing depth and motion saliency when both are present in the very same image

remains an open problem. Computing the depth map would certainly help. However, it is not

suf�cient, the camera motion (or egomotion) should also be estimated. Related work on motion

segmentation has recently investigated a similar problem. They attempt to simultaneously es-

timate depth, camera motion and segment moving objects from a monocular image sequence

using deep neural networks as in [Ran+19].

The second limitation is related to the scenario where there are three groups in the scene :

a moving salient element, a larger number of moving elements that undergo “normal” motion,

and the static background. This can correspond for instance to a �ow of pedestrians going in

one direction, while one pedestrian is moving against the �ow (see Figure 4.16). Depending on

the locations occupied by the three groups of motion in the image, our method will not be able

to correctly identify salient motions. For instance, normal moving objects might be declared as

salient, if they are circumvented by the static background in the image. Properly handling this

situations of relative saliency, that is, salient moving object against normal moving objects, will

be among the objectives of the next chapter.

As a conclusion, we have proposed in this chapter a new paradigm to estimate motion sa-

liency maps in video sequences based on optical �ow inpainting. It yields valued saliency maps

to highlight and locate the presence of motion saliency in videos. We tested our method on the

DAVIS 2016 dataset. We obtained state-of-the-art results, while using only motion information

and introducing no learning stage. This makes our method of general applicability. Additionally,

the computed residual �ow on its own provides additional information on motion saliency, which

could be further exploited.
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a) b) c) d)

FIGURE 4.15 – From left to right : a) one image from the video, b) binary ground truth, c) motion
saliency maps predicted by our method MSI-ns, and d) the estimated forward residual �ow
(displayed with the motion colour code of Figure 4.2).



FIGURE 4.16 – Valued motion saliency map in presence of depth discontinuity in the scene.
The traf�c sign stands in the foreground, and consequently, has a different apparent motion
(larger motion) due to the moving camera than the rest of the static background. Accordingly,
it is found salient by MSI-ns, while it is a static object. Note that this frame is classi�ed as not
salient by the motion saliency detector presented in Chapter 3.

FIGURE 4.17 – Valued motion saliency map in presence of three groups of apparent motion :
the static ground, a �ow of pedestrians moving from bottom to top and one salient pedestrian
moving from top to bottom. The presence of the three groups of apparent motion confuses our
method, which labelled as salient a portion of the ground (left element), the salient pedestrian
(middle element) and a non-salient pedestrian together with another portion of the ground (right
element).





CHAPTER 5

DETECTION OF SALIENT TRAJECTORIES

IN VIDEOS FROM A LEARNED LATENT

REPRESENTATION

5.1 Introduction

This chapter is concerned with the estimation of trajectory saliency. Trajectory saliency na-

turally allows one to consider progressive motion saliency over time. More speci�cally, we are

talking about motion saliency that is not perceptible instantaneously but that progressively ap-

pears over time. It can again be useful to trigger alarms, to allocate additional processing or

to allow for the detection of a speci�c event. Trajectories are the most natural features to sup-

port progressive dynamic saliency detection. Accordingly, we will talk about trajectory saliency.

Indeed, trajectory-based anomaly detection emerges as a growing need in many applications,

possibly under different names [RB19 ; Mou+15 ; Fan+18]. This consists in identifying, among

a group of moving elements, the few that may follow a distinct motion pattern compared to the

collective motion.

To solve this problem, we propose an approach based on the estimation of a latent repre-

sentation of trajectories. Two main issues arise :

— Which representation for the trajectories?

— Which method for trajectory saliency detection?

We aim to design a method as general and ef�cient as possible. To do this, learning-based

approaches seem nowadays superior to hand-crafted representations. As we are not limited by

the amount of data, we can learn the trajectory representation with neural networks. Besides,

we will design a decision algorithm adapted to the desired properties of the learned representa-

tion to solve the second issue. This representation is learned with a constrained auto-encoder

network. For this, we introduce a consistency constraint in the training stage, which expresses

that, in a given scenario, most trajectories are expectedly normal and should then have a similar

representation.

The rest of this chapter is organised as follows. Section 5.2 presents our latent trajectory
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representation based on a LSTM auto-encoder. Section 5.3 deals with the detection of trajec-

tory saliency. In Section 5.4, we present the datasets we use. In Section 5.5, we give all the

implementation details, and in Section 5.6 we report the experimental results including an ob-

jective comparative evaluation. Section 5.7 provides further results to validate design choices

of our method. Section 5.8 proposes complementary visualisation and experiments. Finally,

Section 5.9 contains concluding comments.

5.2 Latent trajectory representation

Our objective is to detect salient trajectories within a set of trajectories, the vast majority

of which are normal trajectories. In the following, a scenario S will consist of a set of normal

trajectories for a given context and possibly a few salient trajectories with respect to the same

context. Indeed, a trajectory is not salient in itself, but with respect to a given context. Salient

trajectories are supposed to depart from the motion pattern shared by the normal trajectories.

First, we need a relevant representation of the trajectories. It must be compact to form the

basis of an ef�cient classi�cation method, while descriptive enough to distinguish normal and

salient trajectories. It is preferable to transform trajectories of any length into a constant-length

representation, in order to enable adaptability to any scenario. It should be applicable to both

2D and 3D trajectories. In that vein, hand-crafted representations based on sophisticated ma-

thematical developments were investigated in the past, as in [HBL08]. The latter aimed to get

representations invariant to a large class of geometrical transformations, including translation,

rotation, scale, and able to achieve �ne classi�cation. However, our goal is different here. In

addition, it is now more tractable to learn the targeted transformation with the advent of neu-

ral networks, providing enough data are available for training [Su+16 ; Yao+17]. An appropriate

means is then the use of auto-encoders. The internal (latent) code in the auto-encoder will pro-

vide us with the desired representation. Besides, a trajectory exhibits a speci�c nature inherent

to the time dimension, making a recurrent network a suitable choice. Below, we will �rst des-

cribe the representation we have designed for trajectories based on these requirements. Then,

in Section 5.3 we will explain how we use it to detect salient trajectories.

5.2.1 LSTM-based network for trajectory representation

Our approach is to compute the trajectory representation with a recurrent auto-encoder net-

work. More speci�cally, we adopt a Long Short-Term Memory (LSTM) network. The objective

of an auto-encoder is to reconstruct its input, by relying on an intermediate compact represen-

tation [RLL18]. This intermediate representation is used as the code c 2 R n representing the

input. An auto-encoder has the advantage of being unsupervised, since no manual annotation
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FIGURE 5.1 – Recurrent auto-encoder network computing the latent representation of trajecto-
ries. Numbers indicate the input dimension for each layer.

is required for training.

This architecture is inspired from existing networks, such as the generator of [AHP19]. We

similarly build a stack of fully connected layers to process the data at each time instant, but

we dedicate the temporal processing to the recurrent LSTM units. This approach allows us to

handle trajectories of variable length. In contrast, a network involving 1D temporal convolutions

instead of temporal recurrence would require additional processing to feed the network with a

constant-length and adequate representation of the whole trajectory.

FIGURE 5.2 – A trajectory in the 2D-space. (x,y) denotes the position along the trajectory, and
(u,v) the velocity.

The architecture of the auto-encoder supplying the trajectory representation is summarised

in Figure 5.1. The input of the network at time t is composed of the concatenation of the 2D

position and velocity vectors constituting the trajectory at time t. For the processing of the whole

trajectory Ti , it gives a total of 4� features if � is the length of the trajectory, i.e., the number of

points it contains. The four-component individual vector is given by (x t ; yt ; ut ; vt ), where (x t ; yt )

is the point position in the 2D-space and (ut ; vt ) the velocity vector at time t as illustrated in Fi-

gure 5.2. In practice, we assimilate the velocity to the displacement. Although the displacement

can be deduced from two successive positions, it turns out to be relevant and it can be obtained

at negligible cost. This is why we include it in the input vector. The 2D-space can be the image
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FIGURE 5.3 – Trajectories of three scenarios S1, S2, S3 are displayed on the left. On the right, a
batch B is represented that is built with trajectories sampled from the three scenarios.

plane and the velocity vector given by the optical �ow. If the 3D movements are planar, the

2D-space could be the ground plane of the 3D scene and trajectories (positions and velocities)

are referred to this plane. An extension to full 3D trajectories would be straightforward.

The exact number of layers and their dimensions have been set during preliminary expe-

riments. In particular, we set the code dimension to n = 32, as this value allows us to store

enough information to represent the motion patterns, while being shorter that the typical trajec-

tory representation of length 4� . In the experiments, we consider trajectories with a number of

positions that varies between 20 to 200 approximately.

To process one time step, the encoder activates a succession of three fully connected layers

with output of dimension 256, 192 and 128 respectively, with the leaky ReLU activation function.

Then, a LSTM layer with an output of dimension n = 32 is applied to get the representation of

the whole trajectory.

The decoder reconstructs the trajectory from code c 2 R n , which is the code obtained when

the trajectory has been fully processed by the encoder. A second LSTM network takes as input

the code c concatenated with the position at time t � 1, and produces a vector of 64 components.

The decoder is only expected to expand the information compressed in the code. The predicted

position for the current time instant is obtained through two fully connected layers, followed by

the leaky ReLU non linearity, whose respective output dimensions are 64 and 32, and one �nal

fully-connected layer of output dimension 2 representing the displacement. The position is given

by the sum of the displacement and of the previous position. Indeed, preliminary experiments

showed that predicting the displacement is more robust than predicting the position directly. Let

us mention that, for the reconstruction of a trajectory, we assume that its length is known. In

practice, it is a metadata associated to each trajectory. The number of parameters for the whole

network is 127970.
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To train the auto-encoder, we adopt the reconstruction loss L r , de�ned as follows :

L r =
X

Ti 2B

t f inalX

t= t init

(x i
t � x̂ i

t )
2 + ( yi

t � ŷi
t )

2; (5.1)

with t init and t f inal the initial and �nal time instants of the trajectory Ti , (x i
t ; yi

t ) its position at

time t, (x̂ i
t ; ŷi

t ) the predicted position and B a batch of trajectories. A batch can be composed of

trajectories taken from several scenarios as illustrated in Figure 5.3. It is a standard practice to

train auto-encoders with the reconstruction error as loss function [Yao+17 ; RLL18]. Since the

positions entirely de�ne the trajectory, the loss L r involves only positions.

Once trained, the auto-encoder is ready to provide a code representing any trajectory at

test time. However, there is so far no guarantee that two similar trajectories will be represented

with close codes. This is an important issue since we will exploit the codes to predict saliency.

It motivates us to introduce a second loss term for code estimation.

5.2.2 Additional consistency constraint

FIGURE 5.4 – Training scheme of the recurrent auto-encoder with the two associated losses.

Our objective is to represent similar trajectories with close codes and dissimilar trajectories

with distant codes to make saliency prediction easier, taking inspiration from the paradigm of

deep metric learning. We want to ensure the best possible consistency in the representation of

normal trajectories, while drastically minimising, or even discarding, manual annotation. To this

end, we complement our auto-encoder network with a consistency constraint. The consistency

constraint takes the form of a second loss term, expressing our knowledge of the problem to

solve. Figure 5.4 summarises our overall training scheme.
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Let us recall that we address the problem of detecting salient trajectories that are supposed

to be rare within a group of normal trajectories. The normal trajectories follow a consistent

motion pattern. We then de�ne the following consistency loss term L c applied independently to

each scenario Sk present in the batch B :

L c =
X

Sk . B

X

Ti 2S k \B

jj ci � eck jj2; (5.2)

with ci the code of the trajectory Ti estimated by the network, and eck the median code for the

trajectories of the batch issued from the scenario Sk . By using the . operator, we mean the

scenarios which contribute to the batch.

Applying the consistency loss to all the trajectories of the scenario means obviously that

salient trajectories might be involved as well if there are any. On one hand, this setting may

seem contradictory to our objective. However, let us point out again that salient trajectories are

rare by de�nition. Therefore, they are unlikely to affect the value of the median code. In addition,

the use of the L2 norm instead of the square of it in the consistency loss function (5.2) further

limits the impact of the consistency constraint on the salient trajectories.

The full loss will add the quadratic loss term L r de�ned in equation ( 5.1) to the consistency

constraint of eq. (5.2). One of the roles of L r is to mitigate the effect of L c on salient trajecto-

ries, by preserving a correct enough reconstruction for salient trajectories, and consequently

distinct enough codes. Then, the large imbalance between salient and normal elements is not

an issue, unlike for supervised classi�cation. On the contrary, it becomes an advantage for the

correct training of our network by limiting the impact of salient trajectories on the consistency

assumption. Finally, let us recall that, as mentioned in Section 2.2 of Chapter 2, previous work

concluded that deep networks can reach good performance, even when a high proportion of

the training data is mislabelled [Rol+17]. This shows the robustness of deep networks to a noisy

learning signal, and it supports the idea of de�ning a loss with two terms that may be occasio-

nally con�icting. More importantly, this setting has the great advantage of being unsupervised.

The �nal expression of the loss taking into account reconstruction and consistency terms is

given by :

L = L r + � L c; (5.3)

where � is a weighting parameter to balance the impact of the two loss terms. In practice,

samples of several scenarios could be included in the same batch, to increase the diversity of

the trajectories at each training iteration as illustrated in Figure 5.3. This point will be speci�ed

for each experiment that we will carry out.

We have de�ned a method to estimate a latent code to represent trajectories. It is speci-

�cally designed to obtain close codes for similar trajectories and distant codes for potentially

salient trajectories.
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5.3 Trajectory saliency detection

Once trained, the recurrent auto-encoder provides us with codes of input trajectories. Most

trajectories are supposed to be normal, i.e., appertaining to the same type of movement. Now,

we have to de�ne an algorithm to detect salient trajectories against normal ones. More speci�-

cally, we consider a scenario S of the test dataset, containing normal and possibly salient trajec-

tories, S = fT i g. The trajectories are represented by their respective latent codes f ci ; ci 2 R ng.

The scenario S will be further de�ned when reporting each experiment. For clarity, this section

will describe exclusively the �nal version of our algorithm. A more detailed discussion of the

advantages of this version compared to several alternatives will be presented in Section 5.7.

5.3.1 Distance between codes

First, for comparison purpose, we need to characterise the normal class by a generic code.

It will be used to classify trajectories into normal and salient ones. Due to the possible presence

of salient trajectories in S, the generic code will be given by the median of codes over S, denoted

by ec. Since we deal with a n-component code, we compute the component-wise median code.

Each component of ec is the median value of the corresponding components of the codes ci

over S.

The classi�cation of a trajectory Ti , as normal or salient, will leverage the distance di bet-

ween its code ci and the median code ec :

di = jjci � ecjj2: (5.4)

The distances related to normal trajectories are expected to be smaller than the ones related

to salient trajectories. To make the comparison invariant to the distance range, the empirical

average of the distances di , noted �d, and the standard deviation of the di , noted � , are computed

over scenario S. The normalised distance qi is then computed for each trajectory :

qi =
jdi � �dj

�
: (5.5)

With this de�nition, qi 2 R+ , with values ideally close to zero for normal trajectories. The

status of each trajectory will be inferred from the normalised distance qi , as described below.

5.3.2 Saliency test

Coef�cients qi introduced in Section 5.3.1 account for the (possibly progressive) deviation

from the normal motion of the scenarios for each trajectory Ti . Accordingly, a natural way to
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predict saliency is to assume that trajectories with a distance qi greater than a given threshold

� are salient.

Before describing the procedure we selected to set � , let us list some properties that the

qi coef�cients are expected to follow. First, these coef�cients are derived from codes estima-

ted from a learned network. Depending on the �nal state of the network after learning, and

especially if the training settings were modi�ed (very different data domain or different hyperpa-

rameters for instance), the code distribution in the latent space is expected to change. Another

point, that will be discussed in more detail in Section 5.7.1, is that the coef�cients qi will vary

with the presence of salient trajectories.

To set an appropriate � for a speci�c network, the safest way is then to probe a range of

values on a dedicated validation set. This approach is the one we adopt in practice. We consider

candidates values of � in [0,5] sampled with a step of 0.05, and we select the best one for the

validation set. The value of � = 5 corresponds to 5 standard deviation with the de�nition of the

qi coef�cients. It is then expected to correspond to very salient elements and to be a relevant

upper bound. We refer to Section 5.7.2 for a discussion on an alternative, but that we did not

select in the end.

5.4 Datasets

In this section, we present the datasets we used to train and evaluate our method. We have

built a synthetic dataset of trajectories called STMS (Synthetic Trajectories for Motion Saliency

estimation), and we have used the dataset made available by [ARF14], comprising pedestrian

trajectories acquired in a railway station with a set of cameras over a long time period, that we

will denote RS.

5.4.1 STMS dataset

Our synthetic trajectory dataset for motion saliency (STMS), contains three trajectory classes :

straight lines, trajectories with sharp turns and circular trajectories. A noise of small magnitude

is added to increase the variability of the trajectories.

Each scenario is composed of trajectories of the same kind (e.g., straight line) and with

similar parameters (velocity, initial motion direction, etc.). The number of positions is comprised

between 20 and 60 for each trajectory. The trajectories have a velocity that varies numerically

in [5; 20] for different scenarios. The initial direction can vary in [0; 2� ] radians. For circular

trajectories, the angular velocity is a constant comprised in [� 0:10; 0:10] radians per time step.

For trajectories with sharp turns, rotations angles are comprised in [� �
2 ; � �

6 ] [ [ �
6 ; �

2 ] radians

for the turn. The initial position of the trajectories is set to the origin (0,0). With the turning time
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for trajectories with sharp turns, these parameters fully de�ne the backbone trajectory Tb. For

a given scenario, normal trajectories should all be similar, so only small variations around a

constant value is allowed for these parameters. Still, to avoid having too uniform trajectories, a

random noise Tn is added to each backbone trajectory. The position (xn (t); yn (t)) of Tn at time

t depends on (xn (t � 1); yn (t � 1)) to ensure that Tn remains smooth. The �nal expression of

the trajectories is then : (
x = xb + xn

y = yb + yn
; (5.6)

with (x; y) the position for the �nal trajectory T and (xb; yb) the position for the backbone trajec-

tory Tb.

To come up with a dif�cult enough task, salient trajectories are of the same class as nor-

mal trajectories. The difference will lie in the parametrisation of Tb for salient trajectories. The

parameters are chosen so that the salient trajectory should be not too different from normal

trajectories, but still distinct enough to prevent any visual ambiguity about its salient nature. An

illustration is given in Figure 5.5.

a) Sharp turn b) Straight line c) Circular

FIGURE 5.5 – Samples of synthetic trajectories for the three classes, starting from the same
origin. Salient trajectories are drawn in red, normal trajectories in green to blue.

The trajectories for training are generated on the �y. We generate scenarios composed of

10 normal trajectories. An additional salient trajectory may be added with a probability of 0.5.

Accordingly, we build batches made of 6 scenarios each, for a total of 60 to 66 trajectories.

The validation set and the test set are composed of 500 scenarios each. For these two sets,

each scenario is composed of 20 normal trajectories. An additional salient trajectory is included

with a probability of 0.5. We did that to end up with a rate of salient trajectories of about 2.5%.
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5.4.2 RS dataset

We now describe the RS dataset of real trajectories. We start with a general description of

the dataset, before presenting the training procedure we applied to it.

5.4.2.1 Description of the dataset

The second dataset is constituted of real pedestrian trajectories, computed with a tracking

system installed in a train station [ARF14]. The tracking system takes videos supplied by a

network of cameras. The videos were processed to extract trajectories, which are projected on

the 2D ground plane of the train station. More speci�cally, the trajectories at our disposal were

extracted from two underground corridors, with gates on their sides and their extremities (one

corridor is displayed in Figure 5.7). The acquisition was made during 13 days in February 2013,

and resulted in a total of 115245 trajectories.

In this section, we will present the variants that we retained for the training on the RS

dataset. These choices come from comparative experiments, that we will further detail at the

end of this chapter in Section 5.8.4.

Compared to the STMS dataset, the trajectories of the RS dataset are longer, and the mean

displacement between two points is larger (the mean numerical value of this displacements is

12.4 for STMS trajectories and 111 for RS trajectories, these values being obtained for vali-

dation subsets). Very long trajectories are challenging for recurrent networks such as the one

we employ (its architecture was presented in Figure 5.1). To overcome it, we subsampled RS

trajectories by keeping one every �ve points (consequently multiplying the observed displace-

ment magnitude by a factor �ve). We also divided the coordinates by 100 to get displacement

magnitudes closer to the synthetic case. The full trajectories are recovered by re-identi�cation.

This means that a given trajectory may be interrupted for some time, before being continued

at a different point. To avoid these irregularities, we pre-processed the trajectories by splitting

them when unexpectedly large displacements are observed.

For a better stability of the training, we found helpful to make all the trajectories start at the

same origin (x0; y0). It can be viewed as a translation invariance requirement with respect to

the location of the trajectory in the 2D-space. Accordingly, before any processing, we translate

all the trajectories, so that their �rst point corresponds to the same given origin.

5.4.2.2 Training procedure

We pre-trained our network with the synthetic trajectories. We then considered two training

procedures.

For the �rst training procedure, we leverage the available data to get a relevant consistency

constraint. Indeed, the RS dataset involves many different motion patterns. We then build sce-
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narios composed of normal trajectories sharing the same entrance and exit. It may happen

that between a given entrance and exit, people take different paths. They can for instance go

straight from the entrance to the exit, or they can make a detour to a given location in the train

station as displayed in Figure 5.6. Moreover, we have no guarantee about the repartition of the

trajectories between the different paths. It could for instance be possible to observe two different

patterns represented by an equal number of trajectories, in which case none of these patterns

would be salient, and the consistency constraint would not be applicable. To be as close as

possible to a setting with only one normal motion pattern, we proceed as follows. We compute

the median length of trajectories associated to a given entrance/exit pair. Only trajectories with

a length deviating from less than 10% of the median length are kept. We build scenarios of

8 trajectories by following this procedure. Then, we draw 8 trajectories of the remaining set

to form an elementary scenario. We group 8 elementary scenarios from several entrance/exit

pairs to get the training batches. It improves the diversity of data at each iteration.

We consider three levels of consistency, respectively with � = 105, � = 103, and � = 0

(that is, no consistency applied). The values � = 105 and � = 103 correspond to settings

for which the consistency and reconstruction constraint have both an impact on the training

of the network. � = 105 corresponds to a strong consistency and � = 103 to a moderate

consistency. The network variants trained with the procedure described above and with these

consistency levels will be denoted respectively V � 5, V � 3 and V � 0 in the sequel. For this �rst

training procedure, 43079 trajectories from the corridor PIW are included in the training set.

Trajectories from the second corridor PIE were not included. Also, the algorithm used to get

consistent batches discarded additional trajectories, such as the ones starting in the middle of

the corridor, or the ones following rare paths. We have designed a second training procedure

that leverages all the 95458 trajectories of the training set. For this procedure, we did not use

the consistency constraint. It allowed us to build batches by selecting at random trajectories,

thus increasing the diversity at each iteration. The batch size is set to 64 trajectories. We will

denote this variant V� . This procedures allows us to evaluate how a network trained with more

data and more diverse batches behaves, compared to a network trained with the consistency

constraint and fewer data.

For both training procedures, training data come from the 11 �rst days of acquisition. We

use the trajectories of the last two days of acquisition for validation and test.

The RS dataset was built for crowd analysis. There is no pre-de�ned saliency ground truth.

Consequently, we have de�ned our own saliency experiments from the available data. We have

exploited the organisation of the RS dataset into corridors. Let us stress that our goal is sim-

ply to be able to evaluate our method on real trajectory data. In particular, our point is not to

investigate the RS dataset. It is then on purpose that we evaluate our method with evaluation

settings, that will be for some of them constructed automatically from the available data. For
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these particular settings, we obviously do not expect to get additional information on the trajec-

tories through the application of our method. We will describe these settings in Section 5.5.1.

5.5 Experimental setting

5.5.1 Evaluation settings for the RS dataset

We have designed three evaluation settings for the RS dataset that we will denote RSE-A,

RSE-B and RSE-C, as described below.

5.5.1.1 Evaluation setting RSE-A

For the evaluation setting RSE-A, normal trajectories are those starting from the same given

entrance and ending at the same given exit. To ensure that normal trajectories follow a similar

motion pattern, we resort to the same pre-processing step as the above mentioned one used

for the training stage and described in Section 5.4.2. In practice, it is suf�cient to clean up

the data, as illustrated in Figure 5.6. Salient trajectories have either a different entrance or a

different exit, or both.

By following this procedure, we build a test set comprising 2275 normal trajectories. They

are divided into 45 scenarios, corresponding to 45 different entrance/exit pairs. In each scena-

rio, salient trajectories are trajectories corresponding to a different entrance/exit pair. To draw

the salient trajectories from the available data, we considered three cases, from the easiest to

the most dif�cult one :

— In the easiest case, salient trajectories are randomly drawn from entrance/exit pairs

different than the one of the normal trajectories. Furthermore, only entrances/exit pairs

leading to distinct motion pattern are allowed. For instance, if normal trajectories go

from gates 7 to 8, salient trajectories cannot go from gates 9 to 10 since the trajectories

would be parallel and of same motion pattern once translated to the same origin (see

Figure 5.6).

— In the medium case, salient trajectories share either the entrance or the exit with normal

trajectories. The other gate of salient trajectories is chosen two positions after or before

the other gate of normal trajectories. For instance, if a normal trajectory goes from gates

12 to 9, a salient trajectory may go from gates 12 to 5, gate 5 being two positions after

gate 9.

— The most dif�cult case is built similarly as the medium case. The difference is that the

gate of a salient trajectory that differs from the gate of normal trajectories is only one

position apart. For instance, for a normal trajectory going from gates 12 to 9, a salient

trajectory may go from gates 12 to 7.
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In the following, these cases will be designated with their degree of saliency respectively

quali�ed as high, middle and low.

FIGURE 5.6 – Illustration of the RS dataset (corridor PIW, numbers correspond to gates) and
of the pre-processing step used to get homogeneous motion patterns. On the left, trajectories
that have not been checked yet are displayed. On the right, trajectories that are kept after the
pre-processing step are displayed. The trajectories that do not directly go from the entrance to
the exit but that make a detour are a minority for these three settings. The post-processing step
discards such trajectories.

In addition to the saliency degree, we will consider different ratios of salient versus normal

trajectories. Ratios of 5%, 10%, 15% and 20% will be tested.

5.5.1.2 Evaluation setting RSE-B

The second evaluation setting RSE-B is built for comparison with existing methods. Some

of these methods need to be trained on normal data exclusively, and a training set is required

for every scenario. The setting RSE-B involves only two entrance/exit pairs, instead of 45 for

the RSE-A setting. The normal trajectories are checked by hand to make sure they all follow a

consistent motion pattern. This requirement explains that only two types of entrances/exit pairs

are included. Salient trajectories are associated to different entrance/exit pairs taken at random

as in the easiest case of RSE-A.

200 normal trajectories are selected coming from gate 12 and going to gate 7. We name

them as the G12-7 subset. 200 other trajectories are selected coming from gate 12 and going

to gate 8. They are designated as the G12-8 subset. Samples are depicted in Figure 5.7.

Then, a group of 100 salient trajectories, relatively to both the G12-7 and G12-8 subsets, is

constructed. The G12-7 and G12-8 sets are each divided into a training set of 100 trajectories,

and a test set of 100 trajectories. We will call these sets respectively TrG and TeG. The training

set TrG is only used for a few methods of the literature [RB18 ; RB19] in the comparative expe-
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riments. To get saliency ratios of 5%, the 100 salient trajectories are split into 20 groups of 5

trajectories each. For each G12-7 and G12-8 test subsets, 20 scenarios are built by adding in

turn the 20 groups of salient trajectories to the 100 normal trajectories.

FIGURE 5.7 – From top to bottom : 25 trajectories from the G12-7 subset, 25 trajectories from
the G12-8 subset, and 25 salient trajectories with different entrance/exit pairs corresponding to
the evaluation setting RSE-B.

5.5.1.3 Evaluation setting RSE-C

Finally, the evaluation setting RSE-C leverages the presence of different motion patterns for

a given entrance/exit pair. More speci�cally, the trajectories that go straight from the entrance

to the exit will correspond to the normal trajectories, and all the other ones will correspond to
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the salient trajectories (see Figure 5.8 for an illustration). To be sure that all trajectories are

properly assigned to the normal or salient class in the ground truth, the labelling is performed

by hand for this setting. RSE-C will include a total of 155 trajectories going from gate 12 to gate

7, and among them, 137 are normal and 18 are salient.

FIGURE 5.8 – A normal trajectory (top) and a salient trajectory (bottom) for the RSE-C evalua-
tion setting.

5.5.2 Network setting

The network was implemented with the PyTorch framework [Pas+19]. For training, we used

the Adam algorithm [KB14]. We set the learning rate by training the auto-encoder network

on the STMS dataset without adding the consistency constraint in the loss. This was done to

�nd a relevant value for the learning rate that would ensure both a stable training and a good

convergence. Indeed, a too high learning rate tends to make the learning unstable, and a too

low learning rate tends to make the convergence slow. We did not include the consistency

constraint at this stage because, by imposing a second term in the loss potentially con�icting

with the reconstruction term, it might a priori make the training harder, thus making more dif�cult

to �nd a relevant value for the learning rate. A learning rate of 10� 4 provided a good compromise

between speed and convergence and was then retained.

After having set the learning rate, the parameter � of the loss function (eq.5.3), that de�nes

the balance between the reconstruction and consistency constraints, was set as follows. On
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one hand, a too low value of � would make the consistency constraint negligible, and only the

trajectory reconstruction part of the network would survive. On the other hand, a too high value

of � would prevent the auto-encoder from correctly reconstructing trajectories. In practice, we

set � = 105 for the experiments on the STMS dataset. For the RS dataset, we considered

values of � = 105, � = 103 and � = 0 , as mentioned in Section 5.4.2.

Regarding the computation time, the forward pass takes 0.1 second and the backward pass

0.5 second, for a batch of 10 trajectories comprising 40 positions, on a machine with 4 CPU

cores of 2.3 GHz. We let each network variant train for around three weeks. We note that we

implemented our method (both the network and the loss) by relying heavily on the fact that any

valid Python code is a valid PyTorch code, which is possible due to the way backpropagation is

handled in this framework. This allows us to reduce the time needed to code the methods, at

the expense of the training time. This seemed a priori a relevant choice given the relatively low

complexity of trajectories compared to image data. Still, a more carefully optimised code would

be desirable. We leave this as an open perspective.

5.6 Experimental results

In this section, we report the experiments we carried out on the synthetic STMS dataset

and the train station RS dataset.

5.6.1 Synthetic dataset and ablation study

We �rst evaluate our trajectory saliency method on the STMS synthetic dataset presented

in Section 5.4.1. Our �rst goal is to assess the quality of the trajectory reconstruction by the

auto-encoder. The quality score r will be de�ned as the average reconstruction error �e, divided

by the average displacement over the whole dataset �vn :

r =
�e
�vn

: (5.7)

r is de�ned this way to be dimensionless and comparable between different settings.

Our network is trained on the STMS dataset with the procedure described in Section 5.5.

For this dataset, we consider only one variant with � set to 105. We got a score r = 0 :62 for this

dataset. We also visualise samples of reconstructed trajectories. They were accurate enough,

as plotted in Figure 5.9.

The second goal is to assess the trajectory saliency detection performance. We computed
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FIGURE 5.9 – Nine examples of synthetic trajectories (in green) and their reconstructed counter-
part superimposed (in blue) for the three classes of trajectories. They nicely �t, demonstrating
an accurate reconstruction.

precision, recall and F-measure. The latter is the harmonic mean of the two former quantities :

F-measure = 2 �
precision � recall
precision + recall

(5.8)

The STMS dataset was constructed so that there is on average one salient trajectory every

40 normal trajectories. As shown in Table 5.1, we reached a F-measure equal to 0.89 for this

dataset. It proves that we were able to correctly �nd even subtle trajectory saliency.

To highlight the contribution of the consistency constraint, we conducted an ablation study of

our method. More speci�cally, the consistency constraint is removed, letting the auto-encoder

reconstruction constraint drive the latent code estimation. The reconstruction score is r = 0 :58,

and as expected it is slightly better than the one r = 0 :62 obtained with the additional consis-

tency constraint. However, the F-measure collapses to 0.26 as shown in Table 5.1. This clearly

demonstrates the importance of the consistency constraint. Our intuition is that without the

consistency constraint, the network employs all the available degrees of freedom to encode

the trajectory pattern including any small random noise. With the consistency constraint, the

network is more focused on correctly representing the overall motion pattern of each trajectory,

which allows us to better distinguish normal and salient trajectories.
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Precision Recall F-measure �
Our full method 0.91 0.87 0.89 3.1

Without consistency 0.22 0.31 0.26 2

TABLE 5.1 – Performance of our method evaluated on the STMS dataset, with and without the
consistency constraint. We also indicate the decision threshold � .

5.6.2 Comparative results on the RS dataset

We will now present results on the three settings RSE-A, RSE-B and RSE-C involving real

pedestrian trajectories of the train station RS dataset.

5.6.2.1 Results on the evaluation setting RSE-A

Results on the RSE-A setting are collected in Table 5.2, for the four variants of our method,

V � 5, V � 3, V � 0 and V� , described in more details in Section 5.4.2. Here, let us simply recall that

V � 5, V � 3 and V � 0 are the variants for which the parameter on the consistency constraint is

respectively 105, 103 and 0. V� is a variant with no consistency constraint, but with more diverse

training data. For all these experiments, we set the threshold � to a given value (� = 2 ) once

and for all. First of all, we observe as expected that the more salient trajectories depart from

normal ones, the better the saliency estimation results are. Among V � 5, V � 3 and V � 0, the best

method for a given degree of saliency is V � 5 by a clear margin, which con�rms the interest of

the consistency constraint. Nevertheless, the V� variant offers better performance than V � 0 by a

large margin, and it is somewhat on par with V � 5. It demonstrates that signi�cant performance

improvements can be obtained with a larger dataset and more diverse batches for training.

We now report a second experiment, which consists in varying the ratio of saliency in the

test dataset (de�ned as the ratio between the number of salient and normal trajectories). Let

us recall that for the procedure described in Section 5.3.2 to set � , we built a validation dataset

with the same saliency ratio than the test set. Results are collected in Table 5.3 for the best two

variants V � 5 and V� . We observe that the overall performance evaluated with the F-measure

does not vary much when the ratio of saliency increases, which demonstrates that our method

is applicable for different saliency regimes.

5.6.2.2 Results on the evaluation setting RSE-B

We use the saliency evaluation setup presented in Section 5.5.1.2 to compare our method

with several existing methods : DAE [RB18], ALREC [RB19] and DRL [Yao+17]. Our method

variants are trained as described in Section 5.4.2. The decision threshold � is set as for the

evaluation setting RSE-A, over a validation set with low saliency degree and saliency ratio of

5%.
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Method Saliency Precision Recall F-measure
variant degree

V � 5 Low 0.65 0.73 0.69
V � 3 Low 0.49 0.56 0.52
V � 0 Low 0.53 0.59 0.56
V� Low 0.67 0.75 0.71

V � 5 Medium 0.88 0.99 0.93
V � 3 Medium 0.73 0.89 0.80
V � 0 Medium 0.82 0.89 0.85
V� Medium 0.88 0.99 0.93

V � 5 High 1.0 1.0 1.0
V � 3 High 0.97 0.99 0.98
V � 0 High 0.95 1.0 0.97
V� High 0.97 1.0 0.98

TABLE 5.2 – Evaluation setting RSE-A of our four method variants for a saliency ratio of 5%.
Threshold � was set to 2 for all the experiments. For each saliency degree, the best perfor-
mance is in bold, the second best is underlined. The highest the saliency degree, the easiest
the case.

Method Saliency Saliency Precision Recall F-measure
variant degree ratio

V � 5 Low 5% 0.65 0.73 0.69
V� Low 5% 0.67 0.75 0.71

V � 5 Low 10% 0.85 0.61 0.71
V� Low 10% 0.81 0.58 0.68

V � 5 Low 15% 0.91 0.51 0.66
V� Low 15% 0.89 0.50 0.64

V � 5 Medium 5% 0.88 0.99 0.93
V� Medium 5% 0.88 0.99 0.93

V � 5 Medium 10% 0.96 0.96 0.96
V� Medium 10% 0.97 0.97 0.97

V � 5 Medium 15% 1.0 0.89 0.94
V� Medium 15% 0.99 0.88 0.93

V � 5 High 5% 1.0 1.0 1.0
V� High 5% 0.97 1.0 0.98

V � 5 High 10% 1.0 0.99 1.0
V� High 10% 1.0 0.99 0.99

V � 5 High 15% 1.0 0.91 0.96
V� High 15% 1.0 0.93 0.97

TABLE 5.3 – Evaluation setting RSE-A, with different saliency ratios for the best two performing
variants of our method. Threshold � was set to 2 for all the experiments.
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DAE and ALREC methods estimate saliency by training an auto-encoder on normal data

only, and by considering that trajectories poorly reconstructed are salient. Then, for a fair com-

parison, we trained each of the two networks on the training subset G12-7 and on the training

subset G12-8 respectively according to the experiment conducted. We then estimated trajec-

tory saliency �rst on the G12-7 subset and then on the G12-8 test subset. The training subsets

include 100 trajectories per scenario, which is more than the 16 to 31 trajectories per scenario

that the authors considered in their own work. Due to the higher number of trajectories, we did

not include data augmentation.

The DRL method represents trajectories with a constant-length code. This representation

is obtained directly by training a network on the test trajectories. DRL was designed to produce

input to clustering algorithms. To apply DRL to the trajectory saliency detection task, we consi-

dered two cases. The �rst option consists in using the k-means clustering algorithm with two

classes. We then state that the class with fewer elements is the salient class. However, there is

a risk that the large imbalance between the normal and salient classes makes this �rst option

unstable. It motivates the following alternative. The second option exploits a similar decision

procedure than ours but applied to the code produced by DRL. We took 101 values of � regu-

larly sampled in [0; 5], and we selected the one that provided the best performance for DRL on

the test set.

Results on the two test subsets are given in Table 5.4. We can observe that our method

yields the best performance as expressed by the F-measure for both the G12-8 and G12-7

datasets. It even provides the best precision and recall scores in all cases.

RS subset G12-7 G12-8
Method P R FM P R FM

DAE [RB18] 0.83 0.32 0.46 0.81 0.32 0.46
ALREC [RB19] 0.72 0.43 0.54 0.71 0.45 0.55

DRL-
KMean [Yao+17] 0.05 0.54 0.10 0.08 0.53 0.14
DRL-C [Yao+17] 0.72 0.24 0.36 0.54 0.52 0.53

Ours V � 5 1.0 0.98 0.99 1.0 0.89 0.94
Ours V � 3 1.0 0.98 0.99 1.0 0.98 0.99
Ours V � 0 1.0 0.99 0.99 1.0 0.99 0.99
Ours V� 1.0 0.95 0.97 1.0 0.93 0.96

TABLE 5.4 – Comparative results for the RSE-B evaluation setting, on the G12-8 and G12-7 test
subsets. P, R and FM denote respectively the precision, recall and F-measure. Best results are
in bold.

In addition to this objective experimental comparison, we now discuss inherent differences

between our method and methods such as DAE and ALREC. DAE and ALREC methods build

a model to represent the normal data, and then, expect that this model will fail for anomalous
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elements. The failure level of the model is interpreted as the trajectory saliency indicator. A

major limitation of this paradigm is its low generalisation capability. Indeed, for a new con�gu-

ration, the normal and abnormal trajectories are likely to change, requiring to train again the

network. For a deployment to many different scenarios, this can quickly become unpractical.

More fundamentally, the point is that these approaches are by design unable to handle relative

saliency. Relative saliency refers to situations where an element is salient only because it is

different from its local context. If the context changes the same element may be non salient.

In contrast to this family of methods, our approach is able to handle relative saliency, as

illustrated by the experiments presented in Sections 5.6.1 and 5.6.2. Indeed, for these expe-

riments, a trajectory appears as salient in a given context, while in a different one the same

trajectory may be non salient. Furthermore, we do not rely on the assumption that a salient tra-

jectory is not present in the training set. In fact, if salient trajectories are included in the training

set, we expect they will be properly reconstructed and encoded, thus facilitating the decision. It

enables us to train the network only once for each dataset, whatever the scenario considered.

5.6.2.3 Results on the evaluation setting RSE-C

We report results on the RSE-C described in Section 5.5.1.3. The decision threshold � is

set as for the evaluation setting RSE-A, more precisely the case with low saliency degree and

a saliency ratio of 15% since more salient trajectories are expected. Results are collected in

Table 5.5 for our method variants V � 5, V � 3, V � 0 and V� .

We observe that a higher consistency constraint is here not desirable. In fact, this setting

has speci�c characteristics. The salient trajectories are visually different, but they still have

the same entrance and exit than normal trajectories. Accordingly, a compromise between the

reconstruction and consistency constraint is likely to restrict the representation of salient trajec-

tories to a more direct path between the entrance and the exit, which is precisely the normal

case.

Finally, we observe that for RSE-C, V� performance is behind V � 0 and V � 3 ones. It suggests

that for this particular experimental setting, the batches built for the training stage should not

include too diverse trajectories.

5.7 Comparison with possible alternatives

In this section, we further analyse two choices that we made in the de�nition of our method

by comparing them to alternatives. First, we investigate other types of descriptor of the degree

of saliency. Then, we discuss an alternative approach to set the decision threshold � .
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Method Precision Recall F-measure �
variant

V � 5 0.11 0.06 0.07 1.6
V � 3 0.86 0.67 0.75 1.5
V � 0 0.82 0.78 0.80 1.4
V� 0.68 0.72 0.70 1.3

TABLE 5.5 – Evaluation setting RSE-C. The best performance is in bold, the second best is
underlined.

5.7.1 Other trajectory saliency descriptors

Our trajectory saliency detection relies on the normalized distance between each trajectory

code and the median one (as de�ned in Equation 5.5). It can be viewed as a descriptor of

the degree of saliency. In this section, we introduce �ve descriptors, before comparing them

experimentally.

In all cases, normality is represented by the median code ec computed for each scenario.

The simplest way to measure the difference between a trajectory code ci and ec is to compute

the Euclidean distance di between them. From di several descriptors can be de�ned.

First, di itself can be taken as descriptor.

Normal trajectories are expected to be close to the median trajectory, but they are also

expected to include minor deviations to it. This means that the di coef�cients will differ from

zero in practice. To mitigate this, a �rst option consists in subtracting the typical distance to di

observed in the scenario. This leads to the two following descriptors r i and si :

r i = jdi � edj (5.9)

si = jdi � �dj (5.10)

where ed is the empirical median of distances di and �d the empirical average of distances di . ed

and �d are computed for each scenario. The difference between these two descriptors is that,

with the median, the resulting descriptor is less affected by the presence of salient elements.

Before proposing further re�nements, let us note that the codes are output of a LSTM layer.

The last operation of this layer is a product between a term that has been processed by a

sigmoid, and between a term that has been processed by a hyperbolic tangent, which implies

that code values lie in [� 1; 1]. Although this range is limited, there is no strict guarantee that for

two different scenarios, the range of normal codes will be identical. A solution is then to divide

the descriptor by the expected variation. This leads to the de�nition of two new descriptors pi

and qi . qi is the one used so far as de�ned in Section 5.3.1. It is recalled here for convenience.

126



5.7. Comparison with possible alternatives

We have :

pi =
jdi � edj
MAD

(5.11)

qi =
jdi � �dj

�
(5.12)

where � the standard deviation of the di of the scenario, and MAD the median absolute devia-

tion of the di of the scenario. The median absolute deviation is de�ned as MAD = median(jdi �
edi j). Similarly as for r i and si , pi is expected to be more robust to the presence of outliers

compared to qi , due to its median-based de�nition.

Now that the di , r i , si , pi and qi descriptors have been de�ned, we compare them experi-

mentally on the STMS dataset. For this, we apply the saliency detection algorithm presented in

Section 5.3.2, except that we replace the qi coef�cient by each alternative. Results are given in

Table 5.6. First, we observe that all kinds of normalisation improve the results compared to des-

criptor di . We also observe that both centering and dividing by the expected variation provide

improvements.

Surprisingly the mean is more bene�cial than the median. This is more obvious when divi-

ding by the expected deviation, either � or MAD. The median is by construction more robust to

the presence of outliers compared to the mean. These results demonstrate that for this com-

ponent of our saliency detection method, it is not desirable to be robust to the presence of

outliers. In fact, there is a simple explanation to this. When the standard deviation is used to

normalise the descriptor, the presence of salient elements in the scenario will lead to a larger

� . This will in turn lower the descriptor value for normal elements, which is �nally the desired

behaviour. This effect is clearly visible in Figure 5.10. On the other hand, when using the MAD

for the normalisation, there is no such effect to facilitate the decision in presence of salient

elements.

FIGURE 5.10 – Histogram of the non salient qi coef�cients in non salient scenarios (left), his-
togram of the non salient qi coef�cients in salient scenarios (middle), histogram of the salient
qi coef�cients (right). The 500 scenarios of the STMS validation are represented. We can see
that in presence of saliency, the qi associated to non salient trajectories have lower values. This
helps distinguishing between salient and normal elements.
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These results con�rm that the qi descriptor is more relevant, since it outperforms the four

other descriptors by a large margin. This justi�es its adoption.

Descriptor Normalisation Precision Recall F-measure
di None 0.66 0.69 0.67
r i Median-based 0.78 0.69 0.73
si Mean-based 0.78 0.77 0.77
pi Median-based 0.79 0.81 0.77
qi Mean-based 0.90 0.88 0.89

TABLE 5.6 – Comparison of �ve descriptors to estimate trajectory saliency, on the STMS test
set. Best results are in bold.

5.7.2 Alternative method to set the decision threshold �

In addition to the procedure described in Section 5.3.2 to set the threshold � , we considered

an alternative based on the p-value scheme. In this section, we �rst describe this approach,

before discussing experimental observations.

5.7.2.1 Description of the approach

The p-value scheme aims to statistically control the number of false detections and enables

to automatically set � . We assume that the qi descriptors for normal trajectories follow a known

probability distribution. We then need to estimate its parameters to �t the empirical distribution

of the qi values of a representative set of normal trajectories. In order to identify candidate dis-

tributions, we looked at several histograms of qi descriptors and observed that their distribution

is skewed. We then identi�ed three relevant candidates that we tested on our data. The tested

probability distributions were the Weibull distribution, the Dagum distribution in the standardi-

zed form and the Dagum distribution in the general form. The expression of each law is the

following :

1. Weibull distribution :

f (x) =
c


�
x


� c� 1

exp
�

�
�

x


� c�
(5.13)

with c > 0 the shape parameter and  > 0 the scale parameter of the law.

2. Dagum distribution, standardised form :

f (x) =
kxk� 1

(1 + xs)1+ k
s

(5.14)

with k > 0 and s > 0 the shape parameters of the law and x 2 R+ .
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3. Dagum distribution, general form :

f (x) =
k


�
x


� k� 1

�
1 +

�
x


� s� 1+ k
s

(5.15)

with k > 0 and s > 0 the shape parameters of the law,  > 0 the scale parameters of the

law and x 2 R+ .

The empirical and estimated probability distributions are plotted in Figure 5.11 for the STMS

validation dataset. With this dataset, 10000qi corresponding to normal trajectories are compu-

ted. The laws are �tted with the maximum likelihood estimate method. The estimated values

of their respective parameters are c = 1 :19 and  = 0 :62 for the Weibull distribution, k = 0 :94,

s = 3 :54 for the standardised form of the Dagum distribution, and k = 1 :04, s = 3 :14 and

 = 0 :87 for the general form of the Dagum distribution.

Visually, the best �t is obtained with the general form of the Dagum distribution. In addition,

to get a quantitative measure of the �tting error, we use the criterion F de�ned as follows :

F =
X

b

jG(b) � H (b)j (5.16)

with b a bin, G(b) the area under the curve of the �tted probability law for the bin b, and H(b)

the observed proportion of elements falling into the bin b. In practice, we use 101 bins regularly

sampled between 0 and 5.

The �tting errors are 0.05, 0.10 and 0.08 respectively for the Dagum distribution with the

general from, the Dagum distribution with the standardised form and the Weibull distribution

respectively as indicated in Table 5.7. This con�rms the visual evaluation. Consequently, we

adopt the Dagum distribution with the general form to model the data.

Law Weibull Dagum standardised Dagum general
Fitting error 0.08 0.10 0.05

TABLE 5.7 – Fitting errors for the three distributions.

Once the three parameters of the general Dagum distribution are estimated, we can �x the

p-value and then get the threshold value � . The p-value is supposed to control the proportion

of false positives. In an ideal case, the estimated distribution should correspond also to the test

data. At this point, let us emphasize that we have no guarantee that this is the case. Indeed, the

qi descriptors depend on the presence of outliers, that is, salient trajectories, through the nor-

malisation with �d and � the computed mean and standard deviation. In particular, the standard

deviation � may be noticeably in�uenced by salient trajectories, despite their rarity. The experi-

ments reported in Section 5.7.1 demonstrated that the qi descriptors were the best choice for
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FIGURE 5.11 – Plots of the empirical distribution of the qi descriptors and the �tted distributions.
They are computed from the 10000 normal trajectories of the STMS validation dataset. Each
scenario is processed separately to compute the qi descriptors.
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trajectory saliency detection. However, it also means that the �tted probability law may become

inappropriate in presence of outliers. Still, since the normalisation with � tends to make the qi

smaller, it means that fewer qi will be above the threshold � compared to the same scenario

with no saliency. The p-value does not correspond any more to the proportion of false positive,

but provides an upper bound for this quantity. If this upper bound is not too large, the p-value

scheme could prove useful.

5.7.2.2 Experimental observations

To test the p-value scheme, we take the evaluation setting RSE-A with the most dif�cult

saliency setting. Because this setting is the most dif�cult, it is expected to better show the

behaviour of the method, where it succeeds and where it fails. To �t the distribution, we need

a dataset with only normal trajectories. The TrG dataset has been built manually to meet this

criterion, and we use it to �t the law. We consider the V� variant of the network, which performed

best on the RSE-A setting. Results are given in Table 5.8 for saliency ratios from 0.05 to 0.20.

The chosen p-value and the False Positive Rate (FPR), which corresponds to the ratio between

the number of false positives and the number of normal trajectories, are given. The precision,

recall and F-measure are also evaluated.

Before commenting the results, let us recall the goal of the p-value approach. The p-value

approach converts the problem of setting the value of � into the problem of choosing the propor-

tion of false positive in the prediction. � is not directly interpretable, contrarily to the proportion

of false positive, which makes the choice of a relevant value easier with the p-value scheme.

However, the results con�rm that the empirical probability law changes in presence of outliers

for the qi coef�cients. We can see it because the p-value and the FPR, which should normally

have similar values (the FPR can be viewed as the empirical p-value), differ largely in prac-

tice. Then, the p-value scheme no longer provides a way to set the threshold � by setting an

interpretable value, consequently loosing its interest.

A way to solve this dif�culty would be to de�ne alternatives to the qi coef�cients that would

not depend on the presence of saliency. This is what was done in Section 5.7.1. The experi-

ments explicitly showed that the variants investigated which removed this dependency were not

able to discriminate as well normal and salient trajectories, so we did not retain them. Another

possibility would be to retain the qi coef�cients, but to compute �d and � once and for all for

normal trajectories, obtained on a validation set for each scenario. This way, the dependence

on the presence of saliency at test time disappears. However, tests we conducted on the RS

dataset in this direction showed the results obtained this way are not as good as the ones ob-

tained with the standard qi . Similarly to what happened in Section 5.7.1, a possibility is that

removing the dependency on the presence of salient elements lowered the results. There is a

second possibility that cannot be ruled out. In order to get the normal trajectories on the RS
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dataset for each scenario, we resorted to the pre-processing step we used previously to en-

sure all trajectories of a pack are similar. This pre-processing step keeps the trajectories whose

length is similar to the median length. However, we have no guarantee that the trajectories of

the validation will be identical to the trajectories of the test for a given scenario. For instance,

most trajectories in the test may go directly from the entrance to the exit, while most trajectories

in the validation may make a detour. In such a case, the descriptors computed for the validation

would no longer correspond to the test scenario, possibly deteriorating the results. Anyway, this

shows that the requirement of this approach may not be easy to validate in practice. In the end,

we then did not retain this approach.

Saliency p-value � FPR Precision Recall F-measure
ratio

5% 0.025 2.4 0.011 0.73 0.67 0.70
5% 0.05 1.9 0.018 0.64 0.76 0.70

10% 0.05 1.9 0.012 0.82 0.61 0.70
10% 0.10 1.5 0.026 0.72 0.74 0.73
15% 0.075 1.7 0.014 0.86 0.61 0.72
15% 0.15 1.3 0.036 0.75 0.76 0.75
20% 0.10 1.5 0.015 0.87 0.54 0.67
20% 0.20 1.2 0.050 0.72 0.68 0.70

TABLE 5.8 – Evaluation setting RSE-A, and � set with the p-value scheme. FPR denotes the
False Positive Rate.

5.8 Additional experiments and visualisations

In this section, we present additional experiments to better understand the behaviour of our

method, and to provide more details on a few speci�c issues.

5.8.1 Sensibility to the choice of �

To assess the in�uence of the threshold value on the method performance, the trajectory sa-

liency detection was conducted on the STMS validation set with a regular sampling of � (every

0.05) in the interval [0; 5]. The corresponding precision, recall and F-measures are plotted in

Figure 5.12. It shows that in this case there is a plateau around � = 3 , which means that perfor-

mance is robust to variations of the decision threshold. This observation is consistent with the

results reported in Tables 5.2 and 5.3 on the real dataset RTS, where the same threshold value

was used for all the experiments. The threshold value is of course dependent on the dataset

and the nature of the trajectories.
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FIGURE 5.12 – Precision, recall and F-measure quantifying the trajectory saliency detection
performance for different values of � on the STMS validation set. � values are sampled every
0.05 within [0,5].
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5.8.2 Initial state of the LSTMs

The network designed for trajectory representation includes LSTM layers in the encoder

and the decoder. In a recurrent network, the value predicted for the next time step is estimated

with the help of a hidden state that keeps memory of past information. However, there is no

past information for the �rst time step. In practice, there are several ways to initialise the hidden

LSTM state (see for instance [ZTG12]). The simplest solution consists in setting the initial state

to a constant value, by default to 0. Slightly more sophisticated possibilities consist in setting

it randomly or in learning it. If the initial value is randomly chosen, it is a way to introduce

data augmentation, since the network faces more diverse con�gurations for the same training

dataset. It may consequently help to improve performance. Learning the initial state can be

done by including the initial state as a variable in the backpropagation algorithm. In preliminary

experiments, we did not �nd any signi�cant difference between these different initialisations

in the network performance. We then decided to adopt a random initialisation, by drawing the

initial state from a normal distribution. This way, we get a data augmentation step at no extra

cost, which may be bene�cial.

With a random initialisation of the hidden state, the resulting parametrization of the network

is of course not strictly deterministic. Still, the network delivers consistent predictions when the

same trajectory is given as input several times. This is illustrated in Figure 5.13 displaying seve-

ral reconstructions of the same trajectory for several random initialisations. Apart from a hardly

visible variation near the starting position of the trajectory (bottom-right), the reconstructions

are almost identical.

5.8.3 Evolution of the model during training

Our method builds constrained latent codes to represent trajectories, and the codes are

exploited to detect trajectory saliency. Our decision framework takes bene�t from the location

of codes in the latent space. It is somewhat inspired by deep metric learning. For the successful

training of a method of this family, we have to be aware of a possible behaviour described below.

Figure 5.14 displays the evolution of the trajectory reconstruction error and the F-measure

related to saliency detection on the STMS validation set along the training iterations. Each ite-

ration corresponds to a batch of 60 to 66 trajectories, depending on the random inclusion of

salient trajectories. When looking �rst at the reconstruction performance, we observe that, after

an initial phase with large improvements, the gain in performance becomes slower and slower.

There is a noticeable improvement around iteration 200000, even if the �nal gain remains li-

mited. On the other hand, regarding saliency detection, performance reaches a plateau in a

few iterations, and even deteriorates a little for a while. Only after more than 100000 iterations,

performance improves again relatively quickly, before reaching another plateau.
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FIGURE 5.13 – One trajectory reconstructed several times by a network with different initiali-
sations of the hidden state of the LSTM. The reconstructed trajectory is drawn in red and the
ground truth trajectory is drawn in green. The initial state of the LSTM is random, but the impact
on the reconstructed trajectory is minimal.
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A similar behaviour is observed for deep metric learning [HBL17]. Indeed, codes are ex-

pected to evolve in the latent space during learning, in order to correctly represent different

elements into separate clusters. However, while the clusters are not clearly distinguishable,

the saliency detection algorithm cannot work well. As a consequence, it is bene�cial to let the

training go on, even if performance apparently stagnates.

FIGURE 5.14 – Evolution of the trajectory reconstruction error (left) and of the F-measure re-
lated to trajectory saliency detection (right) on the validation set of the STMS dataset during
training. Each iteration corresponds to a batch of 60 to 66 trajectories (depending on the ran-
dom inclusion of salient trajectories).

5.8.4 Alternatives investigated for the RS dataset

The trajectories of the RS dataset are more irregular and more challenging to reconstruct

compared to the STMS dataset. Reaching a suf�cient precision for the trajectory reconstruction

task is a pre-requisite for the trajectory saliency detection method. We present variants we

investigated to try to improve the performance of the auto-encoder. They correspond to some

options or hyperparameters of the network and its training.

The �rst option concerns the training modality of the network : from scratch on the RS

dataset, or pre-training �rst on the STMS dataset. Although the two datasets are not similar,

pre-training the network may allow it to learn useful features.

Data pre-processing is another common step to improve performance. As explained in Sec-

tion 5.4.2, we noticed that the trajectories of the RS dataset are often long in term of number

of points involved. They also exhibit higher motion magnitude than STMS trajectories. We then
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tried to subsample them by taking one every �ve points. We also considered normalizing the

motion-step magnitude, with the objective to make them more similar to the trajectories of the

STMS dataset.

Another idea was to remove the (x,y) positions from the input of the encoder, to keep only

velocities. This was done to test how the network would behave when fed with less redundant

input.

Finally, we attempted to adapt the magnitude of the consistency constraint. The weights

tested were � = 105 (same as for STMS), � = 103 and � = 0 . The latter obviously means

no consistency constraint. We expect that lowering the consistency constraint will make the re-

construction �t easier, but it will also decrease the enforcement of the consistency on the codes.

It means that, looking at the reconstruction accuracy alone will not be suf�cient to assess the

�nal impact, it will also be necessary to perform an evaluation of trajectory saliency detection.

We refer to Section 5.6 for this. Let us note that the experiments reported below were carried

out with an early version of the training protocol regarding the consistency constraint. More

speci�cally, the consistency constraint was applied to batches of trajectories taken at random.

The role of the consistency was then limited to a rougher and more generic regularisation of

the codes. Nevertheless, the experiments with this earlier version of the consistency constraint

allowed us to explore and �nd relevant ways to train the network. Conducting these experiments

again with the most recent version of the consistency would be of limited interest. Therefore,

we present the original experiments here.

Given the number of hyperparameters and the time needed to train the network, we were

not able to investigate all the possible combinations. Instead, we only tested the most relevant

ones. Our objective was rather to �nd a good set of hyperparameters allowing us to properly

reconstruct the trajectories while being a good setting for trajectory saliency detection.

Table 5.9 collects the reconstruction errors for several combinations of the hyperparame-

ters introduced above, along with the reconstruction error obtained on the STMS dataset. The

reconstruction error r is de�ned as the average reconstruction error divided by the average dis-

placement, both computed for the whole dataset, as de�ned in Section 5.6.1 in equation 5.7.

Subsampling and re-scaling of trajectories are operations that modify the average displacement

for the whole dataset, which is taken into account in the computation of r .

The table demonstrates that �ne-tuning the network, along with subsampling and rescaling

the data, lead to improvements compared to the baseline. On the other hand, removing the

position in the input decreases performance, and then was abandoned. Finally, we can observe

that lowering the consistency slightly improves the reconstruction performance. However, the

reconstruction error is acceptable for the different values of the consistency parameter, and it is

of the same order as the reconstruction error obtained for the more regular STMS trajectories.
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Con�guration Reconstruction error r
STMS 0.52
RS c5 104
RS c3 104
RS c0 105
RS c5 + ft 108
RS c5 + np 106
RS c5 + sb 19.6
RS c5 + dv 69
RS dv + c3 80
RS c5 + dv + sb 9.4
RS c5 + dv + sb + np 12.4
RS c5 + dv + sb + ft + np 15.1
RS dv + sb + c3 10.6
RS dv + sb + ft + c5 5.8
RS dv + sb + ft + c3 3.5
RS dv + sb + ft + c0 3.2

TABLE 5.9 – Reconstruction errors for several combinations of hyperparameters for the railway
station (RS) dataset. “ft” designates the use of �ne-tuning, “sb” the use of subsampling, “dv” the
normalisation of the trajectory length, “np” the use of only the velocity in the input vector of the
encoder. c5, c3 and c0 denote respectively the use of the consistency constraint with coef�cient
� = 105, � = 103, and � = 0 (i.e, without the consistency constraint). The reconstruction is
also given for the STMS dataset as a reference (this method was trained with a consistency
parameter of � = 105).
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5.8.5 Additional experiments on a biological trajectory dataset

FIGURE 5.15 – 2D light microscopy image of proteins in a cell. 2D Total Internal Re�ection
Fluorescence (TIRF) microscopy has been used to obtain this image. The acquisition has been
made by UMR 144 CNRS, Institut Curie, PICT IBiSA. The tracking of the proteins of interest in
the image sequence supplies their trajectories.

We have applied our trajectory saliency detection method on a very different set of trajec-

tories. In this section, we present additional experiments on a dataset of biological trajectories.

They have been extracted by tracking proteins in a cell in 2D Total Internal Re�ection Fluores-

cence (TIRF) microscopy image sequences 1. The multiple hypothesis tracking method descri-

bed in [CBO13] with default parameters was used for trajectory computation. A sample image

is given in Figure 5.15. The molecules may follow one of three kinds of motion, namely, con�-

ned, Brownian or directed (see Figure 5.16 for an illustration). The con�ned particles remain in

a con�ned area of the cell, and the particles undergoing Brownian motion evolve erratically in a

given area of the cell. On the other hand, particles exhibiting directed motions constantly move

in a given direction, leading to longer tracks from the initial location of the particle. The dataset

at our disposal contains a small number of directed motions. As a consequence, we consider

that directed motions correspond to salient motions in this experiment.

To assign trajectories to con�ned, Brownian and directed classes, we rely on the prediction

yielded by the method developed in [Bri+19 ; Bri+20], and we take it as the ground truth. Our

objective is to test how our method behaves for this kind of biological trajectories, which are

far more irregular than the trajectories of the STMS and even the RS dataset. We divide the

data into a training set of 1640 trajectories and a test set of 1169 trajectories. In the test set,

20 trajectories are salient. We pre-train our method on the STMS dataset, and we �ne-tune it

on the biological trajectories. We consider three levels of the consistency constraint for training,

1. Images are provided by UMR 144 CNRS, Institut Curie, PICT IBiSA.
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FIGURE 5.16 – Examples of a directed motion (left), two con�ned motions (middle) and two
Brownian motions (right).

respectively � = 105, � = 103 and � = 0 . The other settings for the �ne-tuning step are identical

to the ones adopted for the network training on the STMS dataset.

The amount of available data is limited. In order to set � , we rely on the experiments conduc-

ted on the RS dataset. A value of � = 2 seemed relevant for most cases (as seen in Table 5.2),

and we take it for this experiment. The biological trajectories are erratic for the con�ned and

Brownian motions. It is dif�cult for the auto-encoder to represent con�ned or Brownian trajecto-

ries without collapsing to almost a point (see Figure 5.17). The variant that correctly �nd at least

part of the salient trajectories is the one with the intermediate consistency level as summarised

in Table 5.10. A too high consistency prevented the learning of relevant codes. No consistency

at all does not help. Clearly, the trajectory saliency prediction does not work as well for this

biological dataset as for the STMS or the RS datasets.

Perspectives for this type of dataset include searching for a better reconstruction and a more

discriminative latent code.

FIGURE 5.17 – Reconstruction of con�ned (left) and Brownian (right) motions. The ground truth
is in green, the reconstruction is in blue.

5.8.6 Code distribution

The consistency constraint was designed to make codes representing similar elements clo-

ser. To better understand the effects of this constraint, we computed the empirical distribution
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Method Precision Recall F-measure FPR �
Variant
� = 103 0.4 0.5 0.4 0.01 2

TABLE 5.10 – Evaluation of the trajectory saliency detection method on the dataset of biological
trajectories.

of the learned codes with and without the consistency constraint on the STMS validation data-

set. The components of each code are plotted as histograms in Figure 5.18. The components

corresponding to a training without consistency are denoted f i , and those with consistency are

denoted gi . Their values lie in [� 1; 1].

Without the consistency constraint, all the code components vary largely. Two main patterns

stand out. Either the code values are spread in [-1,1], or the code values are restricted to

positive or negative ones. When the consistency constraint is applied, the variability is far lower.

In almost all cases, the difference between the smallest and largest values is smaller than 0.5,

and for several components, the predicted value is practically constant.

The consistency constraint has then a clear impact on the codes. Without it, the network

tends to take pro�t of all the possible values to reconstruct the trajectories with high precision.

When enforcing the constraint, we end up with far smaller variations and only the main signi-

�cant information is stored. Local variations inherent to each trajectory are more likely to be

discarded.

5.9 Conclusion

We have de�ned a new framework for trajectory saliency detection based on a recurrent

auto-encoder. With a careful design of the training loss including a consistency constraint, the

framework remains weakly supervised, while still being able to �nd saliency even when the

difference with normality is moderate. By construction, our method is able to handle relative

saliency. A trajectory is declared as salient, not because it has never been seen in the training

data, but because it departs from its local context. This allows for an easier generalisation to

new con�gurations.

A limitation of the method in its current form is a scenario in which the camera is in motion, or

has an inclination that generates perspective in the scene. In this case, the perceived motions

will be impacted. The way the consistency is applied may then need to be adapted to remain

relevant to the motions that are observed. Similarly, the decision procedure should probably be

adapted as well to take into account the modi�cations of the observed motions.
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f 0 f 1 f 2 f 3 g0 g1 g2 g3

f 4 f 5 f 6 f 7 g4 g5 g6 g7

f 8 f 9 f 10 f 11 g8 g9 g10 g11

f 12 f 13 f 14 f 15 g12 g13 g14 g15

f 16 f 17 f 18 f 19 g16 g17 g18 g19

f 20 f 21 f 22 f 23 g20 g21 g22 g23

f 24 f 25 f 26 f 27 g24 g25 g26 g27

f 28 f 29 f 30 f 31 g28 g29 g30 g31

FIGURE 5.18 – Histograms of the computed components of the trajectory codes, after training
on STMS dataset. The f i components on the left correspond to a training without the consis-
tency constraint, and the gi on the right correspond to a training with the consistency constraint.
The dispersion of the components is far more limited with the consistency constraint as expec-
ted.
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CHAPTER 6

CONCLUSION

6.1 Contributions

In this thesis, we have investigated three complementary aspects of motion saliency, na-

mely, motion saliency detection, motion saliency map estimation, and trajectory saliency esti-

mation. We have designed and evaluated methods to handle these three issues.

6.1.1 Motion saliency detection

First, we have considered the task of temporal motion saliency detection. This problem

consists in predicting for each frame of a video if motion saliency is present. It amounts to a pre-

attention mechanism to trigger further processing or actions, only when it is necessary. To our

knowledge, this has not been investigated so far. Existing methods for saliency map estimation

simply assume that saliency is present. To solve this problem of motion saliency detection,

we have de�ned a method based on two main steps. First, the dominant camera motion is

compensated. Then, the classi�cation is done with a convolutional neural network. Among the

variants tested, the best performing one, denoted RFS-Motion2D, relies on optical �ow. The

compensation of the dominant motion is done by subtracting the dominant �ow to the optical

�ow, which produces the residual �ow used as input to the classi�cation network. Experimental

results show that our method is able to properly detect motion saliency, even for scenes in

which static object present a strong apparent motion due to their location in the foreground of

the scene and camera motion. We reach an accuracy of 87.5% on our real dataset, and even

93.3% on the DAVIS2016 dataset.

6.1.2 Motion saliency map estimation

Second, we have addressed the problem of motion saliency map estimation, which enables

to locate motion saliency in each video frame. To this end, we have designed an original method

based on optical �ow inpainting. The �rst step of this method consists in extracting salient region

candidates. This is achieved by extracting motion boundaries from the computed optical �ow,

and by processing and re�ning them. Then, the optical �ow in these regions is inpainted from

143



Chapter 6 – Conclusion

the surrounding �ow. The idea is that a high difference between the reconstructed �ow and the

�ow computed originally indicates the presence of motion saliency. The saliency map is �nally

computed based on this residual �ow. The experiments have shown that our method compares

favourably with existing methods.

6.1.3 Trajectory saliency

Third, we have considered the problem of trajectory saliency estimation. Trajectories natu-

rally allow one to handle motion saliency that may appear progressively over long time instants.

Our method �rst estimates an adequate latent representation of trajectories. This representa-

tion is obtained with a recurrent auto-encoder network. The loss consists of a combination of

two elements that are the classical reconstruction loss of the auto-encoder and a consistency

constraint. We have added this second constraint to express that normal trajectories are ex-

pected to be similar, and should then be represented with similar codes. The overall setting

is almost unsupervised. We just need to check �rst that most trajectories of the training da-

taset are normal, that is, follow a similar motion pattern, to apply the consistency constraint.

The classi�cation into salient and non-salient trajectories is based on the comparison of the

latent codes to the median code in the embedding space. Saliency is characterised by singu-

lar codes that are distant from codes representing normal samples. Experiments on synthetic

and real datasets show that our method yields good performance. In particular, the consistency

constraint allows us to get signi�cant improvements. This is more obvious when the difference

between saliency and normality is less pronounced.

6.2 Perspectives

Several ideas and research directions can be explored to improve and extend the work

presented in this thesis. A brief discussion around these directions is proposed below.

6.2.1 Possible improvements of the motion saliency detection method

Our method for temporal motion saliency detection includes a step whose role is to com-

pensate the dominant motion due to the camera displacement. To achieve this, the dominant

motion is approximated with an af�ne model. This proved to be suf�cient to get good classi�ca-

tion results, but it is well known that an af�ne model is not able to estimate well all the kinds of

motions that may be encountered in practice, in particular for complex scenes. One perspective

would then be to investigate more sophisticated approaches to estimate the dominant motion.

We could for instance adopt a piece-wise estimation of the parametric model, or we could build

a learning-based framework to estimate a better representation of the dominant motion.
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Our method uses only two video frames. A way to improve the classi�cation would be to

introduce temporal regularisation as a way to smooth the estimation over time. More generally,

taking into account longer time intervals would allow us to gain more information, and could

lead to still improved results.

6.2.2 Distinguishing depth saliency in the motion saliency map estimation

For the estimation of motion saliency maps, our method based on optical �ow makes no

distinction between “depth saliency” and “true” motion saliency. Depth saliency is due to static

objects located in the foreground of the scene and likely to exhibit larger motion than the rest of

the static scene when the camera is moving. If the goal is to get true motion saliency exclusively,

a �rst solution is to �rst apply the temporal motion saliency detection method, and to compute

motion saliency maps only when motion saliency is indeed present. However, this is not fully

satisfying, as depth saliency and true motion saliency might be jointly present in the same

video frame, in which case this solution will fail. Then, an alternative would be to investigate

a learning-based mechanism to separate motion and depth saliency, which should a priori be

supervised.

We could even revisit the overall framework of motion saliency map computation using

recent deep learning methods, both for the mask candidate generation and the �ow inpainting.

One possibility would be to resort to unsupervised adversarial networks as done in [Yan+19]

for the detection of independently moving objects in videos. However, this method does not

address the depth saliency issue.

6.2.3 Possible improvements of our trajectory saliency estimation framework

Our framework for trajectory saliency detection could be improved, in particular regarding

the neural network estimating the trajectory embedding. Modifying the number of layers, their

dimension and connectivity may help improve performance.

Another extension would be to handle situations with a moving camera. The way consis-

tency is formulated may need modi�cations, since the background will also provide trajectories.

The decision scheme could be improved too.

6.2.4 Generalisation of our framework for trajectory saliency to other saliency
or anomaly detection tasks

Our method for trajectory saliency detection has been designed to extract useful represen-

tations of trajectories from low supervision. We have achieved this by combining a consistency
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constraint to the classical reconstruction constraint of an auto-encoder. The underlying assump-

tion for the consistency constraint can be valid for other saliency or anomaly estimation tasks,

not necessarily linked to motion. Defect detection in textures or anomaly detection of manufac-

tured pieces provide examples of such situations in which most elements in a pack are similar,

and in which saliency corresponds to dissimilar elements compared to the majority of normal

elements. It would then be straightforward to transpose our framework to such problems, by

de�ning an adequate auto-encoder and by complementing it with a consistency constraint.

6.2.5 Adopting a low-supervision learning paradigm for moving object segmen-
tation

Finally, various problems could be solved by learning and leveraging relevant representa-

tions or embeddings. In addition to saliency estimation, other tasks could comprise clustering

or classi�cation. Solving these tasks involve ensuring similar elements get a similar represen-

tation in the embedding space, and dissimilar elements get a different representation. Instead

of considering supervision to learn a relevant representation, which is usually time consuming,

it could be more interesting to �rst analyse data and problems at hand to determine whether a

weak supervision can be envisaged. To cite one possible application, a motion that is pronoun-

ced enough can be segmented with a relatively good con�dence. When an object is moving

and well identi�ed, it would be easy to de�ne a loss to constrain the embedding of the pixels of

the object to be consistent, and clearly distinct from the embedding of the remaining pixels in

the image. It could allow us to extend the method presented in annex to real data. In addition,

such an approach would be more easily scalable to handle new classes of objects, by removing

the requirement to manually annotate huge amount of data.
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APPENDIX A

INVESTIGATION OF RELATIVE MOTION

SALIENCY ESTIMATION WITH A 3D VIDEO

SALIENCY DATASET

In this appendix, we describe preliminary attempts carried out during the thesis that some-

how echo the perspectives outlined in the general conclusion of the manuscript.

In a scene containing mostly static objects, any element with a pronounced motion will be

perceived as dynamically salient. Similarly, if the whole scene is perceived as moving with a

coherent motion, either due to the camera motion or because the scene is constituted of a

very dense �ow of elements, any other element with a different motion will be perceived as

salient. The problems investigated in Chapters 3 and 4 correspond to these con�gurations. A

more complex variant of motion saliency is relative motion saliency. It consists in identifying

in a scene including distinct moving objects the ones whose motion departs from the normal

one. The normal motion could be the one shared by the large majority of objects or a reference

motion. Salient objects can for instance correspond to objects going in a different direction than

the main �ow. Chapter 5 precisely considered relative motion saliency, but the method proposed

is built for trajectory data and not directly for videos. The relative motion saliency estimation for

video has then not been fully addressed.

A prerequisite is the construction of an adequate evaluation setup, with annotated videos

displaying relative motion saliency. Additionally, the de�nition of learning-based methods is pos-

sible only if a large enough training dataset is available. As discussed in Chapter 2, deep lear-

ning has largely improved performance of computer vision tasks as diverse as object classi�-

cation, optical �ow or generic saliency estimation. This family of methods is likely to be ef�cient

for relative motion saliency estimation as well.

To our knowledge there are no video datasets speci�cally dedicated to relative motion sa-

liency estimation. A �rst possibility would be to acquire and manually annotate such a dataset.

However, this process would be extremely time consuming, so we did not consider it. A se-

cond option consists in generating a dataset of 3D synthetic videos, inspired by works such

as [But+12 ; May+16]. The advantage of this approach is that a large amount of data can be
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automatically generated and annotated.

The generation of this dataset is described in Section A.1. We then leveraged this dataset

to assess the relevance of two methods for relative motion saliency estimation. The �rst me-

thod is based on optical �ow and is described in Section A.2. The second method relies on a

preliminary segmentation of the scene to extract object trajectories, that are then processed to

estimate relative saliency. This method is described in Section A.3.

A.1 Construction of a 3D dataset for relative motion saliency

For the task of optical �ow estimation, the synthetic datasets MPI-Sintel [ But+12] and Flying-

Things3D [May+16] are important assets to evaluate and train methods. They are based on 3D

models of the scene and/or of the moving objects. These datasets contributed to the emergence

in this �eld of deep learning-based state-of-the-art methods.

We were inspired by this approach to generate a 3D video dataset for relative motion sa-

liency. To build the MPI-Sintel dataset, the authors relied on an open-source 3D animated movie

from which they computed the 2D optical �ow. The advantage is that a good realism can be

achieved for the video frames, while the ground-truth is exhaustive and accurate. For relative

motion saliency estimation, requirements are more constrained. In particular, the video should

contain a main �ow of objects following the said normal motion, with a few additional objects

undergoing salient motion. Consequently, existing open source movies such as Sintel cannot

be easily leveraged to generate a dataset for our objective.

Our approach is then closer to the one adopted in [May+16] to generate FlyingThings3D.

In this work, the authors used 3D models of objects to which they assigned random motion. It

allowed them to fully automatically generate a very large amount of data, the counterpart being

a limited realism. Still, motion is well handled for the optical �ow estimation task. We similarly

exploit 3D models of objects that we randomly draw from the ShapeNet dataset [Cha+15] that

contains a total of 63300 models. The large number of models ensures a high diversity of the

generated videos. Randomly drawing objects does not ensure semantic relevance of the gene-

ral scene content. However, it can be viewed as an advantage to guarantee that saliency is only

due to motion. To further increase diversity, we may replace textures provided with the objects

by procedural textures adapted from [Tor]. We used the open-source software Blender [Ble] to

render videos with these models and textures.

In contrast to FlyingThings3D, motions must be “interpretable”, in the sense that human

observers must be able to immediately identify salient elements when viewing the video. This

implies that objects cannot arbitrarily �y as for FlyingThings3D. Instead, we de�ned a ground

plane on which we materialised a road. The objects are moving on the road, and the normal

objects have a similar motion direction and magnitude. The salient objects either go faster
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(approximately twice as fast) or go in the opposite direction to the main �ow. Salient objects

are randomly included. On average, one object out of twenty is salient. In practice, this means

that a salient object is not necessarily present in every frame. The video is �lmed from a static

camera placed on the side of the road or above the road (see Figure A.1 for an illustration).

The camera is slightly inclined to generate perspective in the scene. The direction of the main

motion and its magnitude randomly vary from one video to the other. We generated 399 training

videos and 40 test videos of 240 frames each, for a total of 105360 frames. The resolution of

these videos is 960x540. A computing grid with several GPU devices was used to produce

these videos.

FIGURE A.1 – Samples from the 3D synthetic video dataset for relative motion saliency. Each
video depicts a �ow of objects, and most of them undergo a similar normal motion. The �eld of
view of the camera allows us to encompass a suf�ciently large area, and the apparent size of
the objects in the image is limited.

A.2 Approach based on optical �ow

The �rst approach we investigate to estimate relative motion saliency is based on optical

�ow. We start by describing it in Section A.2.1, before reporting experimental results in Sec-

tion A.2.2.

A.2.1 Optical �ow-based CNN method

Optical �ow has proven to be useful for generic saliency estimation, as we have seen in

Chapter 2, but also more speci�cally for motion saliency estimation, as demonstrated in Chap-

ters 3 and 4. Our �rst approach for relative motion saliency estimation from video sequences is

again based on optical �ow. Compared to the motion saliency problem addressed in Chapter 4,

relative motion saliency with three groups (background, normal independent motion, salient in-

dependent motion) is expected to be harder to handle. As a consequence, we prefer to resort

to a deep network.
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A.2.1.1 Network architecture

Similarly as in Chapters 3 and 4, we are interested in motion saliency only. As a conse-

quence, we do not include an appearance stream in our network. Instead, the prediction will

be made from a unique stream that takes as input optical �ow. The optical �ow itself will of

course be estimated from a pair of images. However, optical �ow is a dense �eld representing

by nature the full motion information, and it does not reveal any appearance cues.

The exact speci�cation of the network is provided in Figure A.2. The input optical �ow is

again computed with FlowNet 2.0 [Ilg+17]. Our network aims to produce a prediction of the

same resolution as the input image. Then, we adopt design principles from the U-net archi-

tecture [RFB15]. More precisely, apart from a few details, our network architecture is almost

identical to the one proposed in [TAS17]. In this paper, the authors attempt to segment moving

objects from optical �ow, which is related to relative motion saliency estimation. To limit the

computational burden, the 960x540 images of our dataset are rescaled to a 480x270 resolution

to be fed to the network. A �nal upsampling step is used to reach the same resolution for the

output map as for the input image.

FIGURE A.2 – Network we use for relative motion saliency map estimation. The input is the
2-channel optical �ow. The �rst �ve convolutional layers are followed by batch normalisation,
ReLU and max pooling. The arrows linking the encoding and the decoding part of the network
denote the concatenation of the feature maps. The layers denoted by “upconv” are transposed
convolutions with a stride of 2. They are followed by batch normalisation and ReLU, except
for the last one. A succession of ReLU and hyperbolic tangent is used instead to predict the
saliency map.

A.2.1.2 Network training

For training the network, we have de�ned two loss functions. The �rst one is simply the mean

squared error between the predicted relative motion saliency map and the (binary) ground truth

map. In the ground truth, a value of 0 indicates non salient pixels, and a value of 1 indicates
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salient pixels. This loss denoted MSE writes as follows :

MSE =
1

j
 j

X

p2 


(g(p) � gGT (p))2; (A.1)

with p a pixel of the image domain 
 , g the predicted saliency map and gGT the ground truth

saliency map. The videos from our dataset are synthetically generated, so the ground truth gGT

is available for each frame.

The second loss is inspired by the focal loss proposed in [Lin+17]. Pixels belonging to

moving objects are comparatively rare compared to background pixels, and salient objects

among moving objects are themselves rare. The MSE loss function puts much more importance

on non-salient elements than on salient elements, due to the large imbalance between the two

classes. The goal of the focal loss is to ensure that misclassi�ed elements yield an overall larger

gradient than elements that are properly classi�ed. The resulting loss denoted F  is de�ned by :

F  =
1

j
 j

X

p2 


jg(p) � gGT (p)j  : (A.2)

In practice, we set  = 5 . In addition, only frames containing salient elements are taken into

account for the backpropagation with F  .

The Adam algorithm [KB14] is used for optimisation with default parameters and with a

learning rate of 10� 3. Regarding training, data augmentation is used, with random cropping,

resizing, color jitter, and random �ipping of input images.

A.2.2 Experimental results

When training is conducted with the MSE loss, the network supplies null saliency maps, by

predicting saliency values of practically zero for all pixels. The very large unbalance between

the salient and normal classes is a convincing explanation for this behaviour.

The loss function F  was speci�cally designed to make in�uence of locations with incorrect

prediction larger. Indeed, the relative saliency values estimated by the network was no more

zero everywhere, as illustrated in Figure A.3. However, most moving objects are highlighted in

the motion saliency map, instead of only the truly salient objects. On one hand, we can conclude

that the contribution of salient elements was reinforced with F  compared to MSE. On the other

hand, the network remains unable to really separate non-salient motions from salient motions,

and then to correctly estimate relative motion saliency maps.

Estimating relative motion saliency from optical �ow is then not as easy as it was expected.

First of all, moving elements, including salient ones, are small objects in our dataset. A more

problematic issue is the nature of the motion saliency here. Speed and direction of normal mo-

tion vary from video to video. Moreover, the inclination of the camera generates perspective
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FIGURE A.3 – From top to bottom for each column : input color image, optical �ow estimated
with FlowNet 2.0, relative motion saliency ground truth, relative motion saliency map estimated
with our network based on optical �ow. Practically, all moving objects are highlighted in the
saliency map, instead of only the salient moving objects.
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in the images. Although it poses no problem for human observers to correctly identify the sa-

lient moving element, simply processing optical �ow with a convolutional neural network is not

suf�cient. Indeed, the network is expected to compare all motions present in the video and to

highlight the singular ones, while being robust to noise present in the estimated optical �ow

�eld. This is more complex than predicting the same score for the same pattern, which is ty-

pically done for classi�cation. A moving object is salient compared to its surrounding moving

objects, not on its own.

Leveraging optical �ow did not lead to convincing results for relative motion saliency esti-

mation. This suggested to search for a different approach to solve this problem.

A.3 Approach based on full scene segmentation and trajectories

We will present our second approach for relative motion saliency estimation in Section A.3.1,

and report experimental results in Section A.3.2.

A.3.1 Segmentation-based method

The �rst method was not able to estimate relative motion saliency because it did not suc-

ceed in comparing ef�ciently different motions to �nd salient ones. The second method will

attempt to list all the motions present in the video. To this end, we will �rst segment the scene

into objects. By tracking the position of the objects throughout the video, we will get a list of

trajectories used as motion categorization to extract motion saliency.

A.3.1.1 Non-semantic scene segmentation

For relative motion saliency, the notion of object is relevant, since it allows us to group and

compare motions. Yet, our objective is to deal with the most generic form of relative motion

saliency. Therefore, we do not want to rely on appearance cues to indicate which objects are

dynamically salient and which are not. It is common for object trackers to be specialised into

a given class of objects to track, for instance pedestrians or cars (see for instance the survey

[Cia+20]). This is clearly not compatible with our objective. Instead, the deep metric learning

paradigm will inspire us to perform non-semantic scene segmentation and object tracking.

More speci�cally, our objective will be to estimate with a deep network an embedding

c(p) 2 Rn for each pixel p, such that pixels belonging to the same object are represented by a

close embedding, and pixels belonging to a different object are represented by a distinct em-

bedding. If we achieve this, the segmentation into different objects should be easy to get with an

adequate clustering algorithm. To get a better intuition of why the estimation of an embedding

map with these properties should be possible, let us consider the two following points. First,
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deep networks can be considered as universal function approximators from their input space to

their output space [HSW+89]. The function to be approximated should verify some properties

of regularity, but this is generally the case for functions considered in practice. Second, human

observers are able to segment natural scenes into objects. Then, it seems reasonable to make

the hypothesis that there exists a function mapping natural images to an embedding space, that

would enable to separate the different objects. If we take another perspective, we can consi-

der the embedding space to be a feature space with n different features. Even in the case of

binary descriptors (value of 0 or 1 for each feature), we can see that n features would allow

us to represent up to 2n different objects. It yields for instance a total of about 3:1038 actual ID

possibilities for n = 128. The embedding space quickly becomes vast enough with increasing

values to represent all the objects that can be observed in practice. Above all, it will be easier

for the network to assign distinct enough IDs to every object from an embedding lying in Rn

rather than in R.

FIGURE A.4 – Network we use for scene segmentation. The input is a RGB image. The �rst �ve
convolutional layers are followed by batch normalisation, ReLU and max pooling. The arrows
linking the encoding and the decoding part of the network denote the concatenation of the
feature maps. The layers denoted by “upconv” are transposed convolutions with a stride of
2. They are followed by batch normalisation and ReLU, except for the last one which directly
provides the embedding map.

For non-semantic scene segmentation, we leverage a network similar to the one used in

Section A.2. This network is displayed in Figure A.4. There are few minor differences between

the two frameworks. The input is no longer the 2-channel optical �ow but the RGB color image

instead. Also, we replace the �nal 1-dimensional saliency map by a n-dimensional map that will

be used to represent objects. In the experiments, we set n = 128. We chose this value, as pre-

liminary experiments showed that it could handle a large diversity of objects with a reasonable

computational load. In this case, we also want to supply an output map of the same resolution

as the input image.

Pixels belonging to the same object should be affected close embeddings, and pixels be-
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longing to different objects with distinct embeddings in Rn . For the network training, we de�ne

a loss function composed of two terms, respectively to account for consistency and separation.

We build batches of unrelated frames for our supervised training procedure. We use index i to

denote an object Oi in the set O of all objects. The term “object” must be taken in a general

sense no semantic is involved. The set O is known since we are dealing with a synthetic training

set. During the generation of the videos, the location of all objects is registered, and it allows

us to get the precise locations of the objects.

The �rst term of the loss is de�ned as follows. First, we de�ne for each object Oi the func-

tion :

L Ci =
X

p2 Oi

d( �ci ; c(p))2; (A.3)

where d is the L 2 distance, p a pixel, c(p) the embedding predicted for pixel p and �ci the average

embedding over Oi :

�ci =
1

jOi j

X

p2 Oi

c(p): (A.4)

Initially, the embeddings will probably be unrelated. However, a state of lower energy can be

reached during training by making the embeddings of the pixels of Oi closer to a common value.

Finally, the full consistency loss writes, with N the number of pixels in the image :

L C =
1
N

X

Oi 2O

L Ci : (A.5)

The second term of the loss whose role is to enforce the separation between the different

objects is de�ned as follows. First, we introduce for each pair (Oi ; Oj ) 2 O 2, with Oi 6= Oj :

Si;j = max(0 ; � � d( �ci ; �cj )) ; (A.6)

with � the distance value over which two embeddings would not belong to the same object, and

�ci and �cj the respective means over objects Oi and Oj . We set � = 10 in practice.

The separation loss is then :

L S =
1

jOj � 1

X

(Oi ;Oj )2P (O)

Si;j ; (A.7)

with P(O) all pairs of distinct elements of O. The denominator jOj � 1 is intended to reduce

the dependency of L S in the number of objects. If we had n = 1 , we could possibly assume

that the embeddings would sequentially lie along the real line, with two neighbours for each

object, excepted for the �rst and last one with respectively the lowest and highest embeddings.
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Then, there would be jOj � 1 pairs of objects for which Si;j is non-zero. For higher values of n,

it is not clear how L S will depend on jOj during training. We then made the choice to keep this

normalisation by assuming a linear dependency in jOj .

The �nal expression of the loss is then :

L =
X

B

(L C + L S) ; (A.8)

where B designates a batch of images.

A.3.1.2 Tracking algorithm

From the embedding map with values lying in Rn , we build an object map along time. It

amounts to tracking the objects present along time. This is achieved in three main steps.

— The �rst step performs the clustering of the embeddings c(p) to get the segmented

objects. First, the object segmentation is realised for a given frame. We have experi-

mentally observed that the background is represented with embeddings close to zero,

and that embeddings of objects lie close to the sphere whose centre is the origin and

whose radius is � = 10, the value used for the separation loss L S. Let us mention that

the background is included in the object list but no speci�c treatment is dedicated to it.

The representation of the background with an embedding close to zero is only driven

by the loss. We then consider that pixels p represented with an embedding c(p) such as

jjc(p)jj2 < r belong to the background (r is set to 8). All the remaining pixels are proces-

sed the following way. The pixel whose embedding ch has the highest norm, serves as

a seed. All pixels p with embeddings c(p) such that :

ch � c(p)
jjch jj2 � jj c(p)jj2

> m; (A.9)

with m = 0 :8 are stated as belonging to the same object. This criterion is preferred

to a L 2 distance due to the disposition of the embeddings on a sphere. This process

is reiterated until all pixels are classi�ed. In the successive iterations, the remaining

unclassi�ed pixel whose embedding has the highest norm is taken as seed. Finally, each

cluster, that is, the segmented object in the test set, is represented by �ci , the average

embedding computed in this cluster. The segmented object is denoted by 
 i .

— Once the segmentation of frame M t is achieved, a �rst re-identi�cation step is conduc-

ted. The role of the re-identi�cation is to associate objects between successive instants.

Despite trained on single images, the embeddings estimated are quite stable over time.

Each object 
 i is compared with all the objects extracted from M t � 1. More precisely, the

mean code �ci representing 
 i is compared to all the mean codes �cj of the past objects.
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Tracking Frame Segmentation Segmentation
step at time t � 1 at time t � 1 at time t

Step 2

Step 3

FIGURE A.5 – Illustration of the re-identi�cation algorithm. Each color represents a different
object (the background is black). The step 2 that only relies on the embeddings, re-identi�es
all the objects between t � 1 and t, except for the middle one in this sample. Additionally, we
observe that different objects are represented by different colors (including the green ones), so
that no objects are merged. The step 3 that takes into account the spatial location, successfully
re-identi�ed the object in the middle of the image.

If there exists a code �cj such that :

�cj maximises
�ci � �cj

jj �ci jj2 � jj �cj jj2
; provided

�ci � �cj

jj �ci jj2 � jj �cj jj2
> �; (A.10)

Then, the object 
 i is re-identi�ed with the past object 
 j . In practice, we set � = 0 :8.

If the criterion A.10 fails, then we consider that 
 i is a new object. In all cases, the

object is still represented by �ci in M t . Retaining the current embedding allows for a

smooth evolution of the embedding across time to represent a given object. The resulting

segmentation is quite stable as can be seen in Figure A.5, but it can be further improved.

Indeed, the clustering step does not guarantee that every object 
 i is connected. In

addition, it may happen that sometimes a given object code changes from one frame to

the next one.

— The last step consists in taking into account spatial information to re�ne the segmenta-

tion over time. First, we restart the re-identi�cation for each connected part of an object


 i (that may not consist of one single connected part) separately. However, we now add

a constraint on the location closeness (in practice within a radius of 30 pixels). Then, a

still non-reidenti�ed object 
 i is identi�ed to the closest object of time t � 1 (within a ra-

dius of 30 pixels). The rationale is that the object speed is limited, so that objects are less

likely to go out of the image than to be represented with a slightly shifted embedding.

Finally, all objects that were not re-identi�ed are declared new objects.
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A.3.1.3 Estimation of relative motion saliency maps

The relative motion saliency estimation is based on the trajectories deduced from the suc-

cessive scene segmentations. More speci�cally, each object is represented by the trajectory

formed by the successive locations of its centroid. To avoid border effects, the trajectory is in-

terrupted when an object reaches the image border. The limited size and speed of the objects

make most of the trajectories be preserved. The segmentation is applied to the whole scene,

which includes the static background. Then, a �rst step consists in removing the static elements.

Elements which do not escape a sphere of radius of 60 pixels (in 960x540 images) during the

whole video are considered as static. For a better stability, the successive displacements along

the trajectories are computed every three frames, that is, between times t and t + 3 instead of

t and t + 1 .

Compared to Chapter 5, the scope of the trajectory processing is here more limited. To

estimate saliency, we will build a model of normal motions and compare the trajectories to this

model. The displacement is decomposed into magnitude and direction components at each

time instant. The direction is given by the unit displacement vector, in order to avoid singu-

larities. We assume that the normal motion over the whole image is regular enough to be

approximated by three af�ne functions, representing respectively the magnitude and the two

components of the unit displacement. For a given video, we consider that the three af�ne maps

are stationary over time, and we estimate them with a robust regression method that uses all

the computed trajectories as data points. Obviously, the two af�ne functions accounting for the

direction of displacement cannot supply unit vectors everywhere. We simply assume that they

can estimate reasonably well the displacement direction everywhere in the image.

Once the three af�ne maps have been computed, motion saliency is estimated for magni-

tude and direction separately. A trajectory will be stated as salient for motion magnitude at time

instant t, if :
jj v(t; p)jj

vm (p)
> � m ; (A.11)

where vm (p) is the displacement magnitude provided by the corresponding af�ne function at

location p of the trajectory at time t, that is, the centroid of the tracked object at time t, v(t; p) is

its displacement vector at time t and � m is set to 1.5.

Similarly, a trajectory will be stated as salient for motion direction at time t if :

v(t; p) � vd(p)
jjv(t; p)jj � jj vd(p)jj

< � d; (A.12)

where vd(p) is the vector indicating the direction of the motion at point p, supplied by the cor-

responding estimated af�ne functions. � d is set to 0.5.

A trajectory is �nally labelled as salient for motion magnitude if it was stated so for a majority
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of instants throughout the video. Similarly, the trajectory is labelled as salient for displacement

direction if it was stated as salient at a majority of time instants. The trajectory is �nally consi-

dered as salient if it is salient for either motion magnitude or direction.

A.3.2 Experimental results

We will now detail the metrics we used to evaluate the method, before presenting the expe-

rimental results.

A.3.2.1 Test protocol

Two groups of metrics are used for the objective evaluation of the method. The �rst group

evaluates motion saliency estimation at the frame level. A frame is considered salient if it

contains a salient object. More speci�cally, we measure the rate of correct classi�cation for

salient and non salient frames.

The second group of metrics evaluates the accuracy of the estimated location of salient

objects in every image of the video. We compute precision, recall and F-measure at the object

level. We consider that true positives are salient objects of the ground truth which intersect

salient objects of the prediction, and that false negatives are salient objects of the prediction

which do not intersect salient objects of the ground truth. These metrics have been preferred to

pixel-level metrics since in our dataset, objects are small and saliency is a rare event. Precision,

recall and F-measure based on the pixel-level prediction would then be highly penalised by

imprecision in location of object boundaries. In contrast, the object-level metrics allow us to

know whether salient objects are found in the proper area in the image, while being tolerant

to small imprecisions. Let us stress that the shapes of the segmented objects are close to

the shapes of the original objects, as can be seen in Figure A.6. It also demonstrates that we

escape from trivial solutions. For instance, a trivial solution could be to predict salient moving

objects covering more than half of the image. This would mechanically ensure a high proportion

of true positives and a low proportion of false negative with the metrics selected, but would

obviously be of very limited interest.

A.3.2.2 Results

The quantitative evaluation for the frame-level and object-level metrics is summarised in

Table A.1. It was obtained on the test set that contains 1883 frames with salient moving objects

and 7677 frames without any saliency. First, we observe that the classi�cation of salient frames

produces almost no false positives, while still allowing to �nd 83% of the salient frames. The

object-level precision, recall and F-measure show that the identi�ed salient moving objects are
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Metric Score

Classi�cation accuracy of non-salient frames 99.8%
Classi�cation accuracy of salient frames 83.0%

Object-level precision 0.98
Object-level recall 0.81

Object-level F-measure 0.88

TABLE A.1 – Results of relative motion saliency estimation on the test subset of our 3D synthetic
video dataset.

FIGURE A.6 – Samples of qualitative results for relative motion saliency estimation. From top to
bottom in each column : video frame, predicted segmentation map (the background is in black),
ground-truth saliency map and predicted saliency map. Note that in all cases, the segmentation
step manages to �nd and separate well the objects, even if they occupy small parts of the image.
For the �rst two samples (left and middle), the salient elements are properly identi�ed. The
third sample (right) represents a failure case, for which the salient object was not successfully
tracked.
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generally localised at the correct location in the images. The recall score indicates that 81%

of the salient objects are found. A more stable tracking, in particular close to the border of the

image, could be a way to improve it. Additionally, Figure A.6 provides a qualitative evaluation,

which shows that the location of salient moving objects is correctly delimited. Overall, we ob-

serve that this approach yields satisfying results for relative motion saliency estimation for our

proposed dataset.

A.4 Conclusion

We have built a 3D synthetic video dataset for relative motion saliency, and we have deve-

loped two methods to solve this task. The �rst approach takes optical �ow as input of a deep

network. Despite a loss function able to mitigate class imbalance, this approach did not suc-

ceed in estimating relative motion saliency. In contrast, the second approach supplied satisfying

results on our synthetic dataset. It involves object segmentation of the scene that subsequently

allows us to extract object trajectories, and consequently estimate relative motion saliency. The

notion of objects that compose the scene was �nally bene�cial. It facilitates the motion identi�-

cation and comparison.

These experiments raise several questions. First of all, the scene segmentation network

that we trained on our synthetic dataset and that was not �ne-tuned on real data, provides so

far unusable results when applied to natural videos such as the ones of DAVIS. More speci�-

cally, most of the scene tends to be considered as the background, with embeddings that are

not easily distinguishable. The gap in appearance between our synthetic videos and real videos

is too big for an easy generalisation. Yet, works such as [Che+18c ; Voi+19] showed that semi-

supervised object segmentation across time with similar approaches can be achieved on real

videos. An open issue is whether such segmentations across time can be applied to the whole

scene. Furthermore, the segmentation must extract most normal objects to correctly identify

the non-salient motion. It must also extract all the salient objects, that otherwise would not be

considered during the saliency estimation process. In particular, it remains unclear whether it

will be necessary to dispose of exhaustive scene segmentations ground truth or if alternative

methods can be developed. The second issue concerns trajectory saliency estimation. The

method used in this appendix is hand-crafted and is not expected to be adapted to more subtle

kinds of saliency. It could be relevant to combine this segmentation-based approach with the

trajectory saliency detection developed in Chapter 5. As a matter of fact, the latter was conduc-

ted after the former. The combination of the two is left for future work.
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Titre : Saillance visuelle dynamique dans des séquences d'images

Mot clés : Saillance du mouvement, Analyse de vidéos, Réseaux de neurones profonds,

Inpainting du �ot optique, Analyse de trajectoires

Resumé : Les travaux de la thèse portent

sur l'estimation de la saillance du mouvement

dans des séquences d'images. Dans une pre-

mière partie, nous avons traité un sujet très

peu abordé : la détection des images présen-

tant un mouvement saillant. Pour cela, nous

nous appuyons sur un réseau de neurones

convolutif et sur la compensation du mouve-

ment de la caméra. Dans une seconde partie,

nous avons conçu une méthode originale d'es-

timation de cartes de saillance du mouvement.

Cette méthode ne requiert pas d'apprentis-

sage. L'indice de saillance est obtenu par une

étape d'inpainting du �ot optique, suivie d'une

comparaison avec le �ot initial. Dans un troi-

sième temps, nous nous sommes intéressés à

l'estimation de la saillance de trajectoires pour

appréhender une saillance progressive. Nous

construisons une méthode faiblement supervi-

sée s'appuyant sur un réseau auto-encodeur

récurrent, qui représente chaque trajectoire

avec un code latent. Toutes ces méthodes ont

été validées sur des données de vidéo réelles.

Title : Dynamic visual saliency in image sequences

Keywords : Motion saliency, Video analysis, Deep neural networks, Optical �ow inpainting,

Trajectory analysis

Abstract : Our thesis research is concerned

with the estimation of motion saliency in image

sequences. First, we have de�ned an original

method to detect frames in which a salient mo-

tion is present. For this, we propose a frame-

work relying on a deep neural network, and on

the compensation of the dominant camera mo-

tion. Second, we have designed a method for

estimating motion saliency maps. This method

requires no learning. The motion saliency cue

is obtained by an optical �ow inpainting step,

followed by a comparison with the initial �ow.

Third, we consider the problem of trajectory

saliency estimation to handle progressive sa-

liency over time. We have built a weakly super-

vised framework based on a recurrent auto-

encoder that represents trajectories with latent

codes. Performance of the three methods was

experimentally assessed on real video data-

sets.
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