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Abstract

Mobility in telecommunication networks is often seen as a hassle that

needs to be dealt with: a mobile wireless device has to adapt is trans-

mission parameters in order to remain connected to its counterpart(s),

as the channel evolves with the device’s movements. Drones, which are

unmanned aerial vehicles in the context of this thesis, are no exception.

Because of their freedom of movement, their three-dimensional mobility

in numerous and varied environments, their limited payload and their

energy constraints, and because of the wide range of their real-world

applications, drones represent new exciting study objects whose mobility

is a challenge. Yet, mobility can also be a chance for drone networks,

especially when we can control it. In this thesis, we explore how con-

trolled mobility can be used to increase the performance of a drone

network, with a focus on IEEE 802.11 networks and small multi-rotor

drones. We first describe how mobility is dealt with in 802.11 networks,

that is to say using rate adaptation mechanisms, and reverse engineer

the rate adaptation algorithm used in the Wi-Fi chipset of the Intel Aero

Drone. The study of this rate adaptation algorithm, both experimental

and through simulation, through its implementation in the network sim-

ulator NS-3, allows its comparison against other well-known algorithms.

This highlights how big the impact of such algorithms are for drone

networks, with regard to their mobility, and how different the resulting

behaviors of each node can be. Therefore, a controlled mobility solution

aiming to improve network performances cannot assume much about

the behavior of the rate adaptation algorithms. In addition to that, drone

applications are diverse, and imposing mobility constraints without

crippling a complete pan of these applications is difficult. We therefore

propose a controlled mobility solution which leverages the antenna

radiation pattern of the drones. This algorithm is evaluated thanks to

a customized simulation framework for antenna and drone simulation,

based on NS-3. This solution, which works with any rate adaptation

algorithm, is distributed, and do not require a global coordination that

would be costly. It also does not require a full and complete control of the

drone mobility as existing controlled mobility solutions require, which

makes this solution compatible with various applications.
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Telecommunication networks make it possible, in a sense, to free oneself

from distance. The electric charges in a conductor and electromagnetic

waves both travel at speeds that few other physical objects can reach,

all the more compared to things one actually handles, such as postal

mail. The beginning of the 20th century saw a revolution in the field of

telecommunications, namely wireless radio communications. With the

miniaturization of the radio devices achieved over the past century, it has

become possible to free oneself from distance while remaining mobile.

Unsurprisingly, switching from a bounded transmission media such as

copper wires to an unbounded one creates a few challenges, and mobility

comes at a price. But it also enables a wide new range of applications

and uses, which is at the heart of the development of the mobile Internet,

and the personal Internet.

This year, 2020, has been a special year for telecommunication networks,

both globally and locally. Worldwide, telecommunications networks in

general, and Internet in particular, made it possible to communicate with

family, friends and colleagues, all during a global pandemic and without

many difficulties. Often described as de-sociabilizing, smartphones and

the Internet became, for a few months, the center of our social life, at

least with people with whomwe do not share our home. Without reliable

and resilient networks, it would have been impossible for hundreds of

millions of people to work remotely. And, we are well-placed to know, it

would have been impossible for tens of millions of students to be able to

continue taking courses remotely. In this regard, working on networks

seemed more meaningful and important to me during 2020 than during

the previous year of my thesis.

At the same time, unprecedented movements of opposition to new

telecommunications technologies, whether founded or not, have emerged.

The next broadband cellular standard of the members of the 3rd Genera-

tion Partnership Project (3GPP), 5G, is being described by its opponents

as an energy- and resource-wasting headlong rush, in a global context

of growing environmental concerns. The new frequency bands that can

be used by 5G also fueled many questions about its health impact, and

many conspiracy theories about 5G were relayed online, on the web, in

an ironic twist of fate as mobile traffic accounts for around 50% of the

global web traffic. Starlink, a project whose goal is to provide internet

access through a low earth orbit constellation of tens of thousands of

satellites, drew criticisim from astronomer worldwide for the created

light pollution and the increased number of space debris they would

create once their lifespan has ended. As of 2020, a total of 12, 000 satellites

have been authorized by the Federal Communications Commission (FCC)

to be deployed over the spectrum, and filings have been submitted to

the International Telecommunication Union (ITU) for 30, 000 additional

satellites. More than 800 satellites have already been launched. In 2020,

less than 60% of the world population has access to the Internet, but this



4 1 Introduction

Monaco

Nice

Saint-Martin-Vésubie

Figure 1.1: Out of order cellular sites of

the Orange telecommunications operator,

after the storm “Alex”, on the 3 October

2020, as reported on the ARCEP website.

[27]: Fédération Française des Télécoms

(2020), Tempête Alex | Comment les opéra-

teurs se sont mobilisés pour réparer les réseaux

fixes et mobiles ?

[61]: Moschetta et al. (2017), ‘Introduction

to UAV Systems’

[18]: Chaumette (2017), ‘Collaboration Be-

tween Autonomous Drones and Swarm-

ing’

number is steadily increasing every year.

Evidence suggest the human-caused global warning is increasing the

number of extreme climate events, including storms, hurricanes, floods

or large-scale wildfires. Large-scale natural disasters often destroy trans-

port, communications and telecommunication infrastructures, which are

nonetheless necessary for the organization of the disaster response. In

the wake of storm Alex, which killed at least 8 people at the beginning of

October 2020 in France, optical fiber networks were destroyed, including

the one serving cellular antennas Figure 1.1. Disaster response included

deploying Wi-Fi hotspots connected to the Internet using satellite links,

and satellite phones [27]. The deployment of emergency communica-

tions’ infrastructure is often a prerequisite for the organization of search

and rescue operations and humanitarian responses. The importance

of telecommunications networks is never more apparent than where

they become off-line. Designing resilient networks which can be rapidly

deployed is one of the envisioned application of drone networks.

Drones

Drones, also known as Unmanned Aerial Vehicles (UAVs), are aircraft

without humans on board. Previously mainly reserved for military use,

the past decade have seen the development of many types of smaller

drones [61], which have been used in civilian applications such as aerial

photography, agriculture, surveillance, disaster management, network

deployment, search-and-rescue missions, or transport. Embedded with

several types of sensors and processing power, drones can be remote-

controlled by a human operator, in which case (wireless) connectivity

between the pilot and the drone is more than desirable, or they can

be autonomous. The degrees of drone autonomy vary, ranging from

following precomputed trajectories defined by waypoints, to having

complete freedom of movement in order to carry out their missions.

Most of the time, communication between the drone and the ground

is necessary, be it for legal reasons or to exchange control, feedback or

mission data.

Fleets of drones which can coordinate themselves can achieve tasks

that would be otherwise impossible to achieve by a single drone, or

realize tasks more quickly, more efficiently or with more flexibility [18].

For this cooperation to be possible, connectivity between the drones is

necessary, whether it is provided by a cellular network, in amobile ad-hoc

network scheme, or even by satellite. The resulting drone networks are

subject to specific challenges, as their components are power and weight

constrained, are highly mobile in three dimensions, and evolve in an

environment that is in turns highly dynamic and mission dependent.

Mobility in Networks

Mobility in networks is often seen as a hassle that needs to be dealt with.

Indeed, a mobile wireless device, and a drone in particular, face many

challenges. It has to adapt is transmission parameters in order to remain

connected to its counterpart, as the channel evolves with the device’s

position. A non-autonomous drone that wanders outside the range of
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its remote controller is guaranteed to crash if no preventive measures

are taken. Yet, mobility is often a key feature of network applications.

Without mobility, it would be impossible to the participants of a low

density network like the one envisioned by the Serval network, intended

for resilient communications during crisis situations, to communicate

[34].Mobility of the first responders in thewake of a natural catastrophe is

not an adjustement variable, it is a strong prerequisite to their missions.

While mobility is always subject to external constraints one cannot avoid,

such as the laws of physics, and therefore can never be completely

controlled, we can still introduce the concept of controlled mobility.

Controlled mobility, for a given entity, could be defined as any mobility

on which there exists some degrees of freedom, for example in the

acceleration, speed or position of the entity, mobility that can be acted on

by this very same entity. Such controlled mobility can also be a chance for

communication networks. A well-known trope of controlled mobility, as

portrayed in many movies, is trying to move a cellphone to get a better

signal. Mobility can be exploited in conjunction with store-and-forward

mechanisms to deliver messages to otherwise isolated network segments.

While an automated controlled mobility for devices like a smartphone

or a laptop is more of a wishful thinking, when it comes to autonomous

vehicles, robots, or drones, it is a reality.

Thesis Statement

Creating a drone networks is a matter of connecting drones together,

which can be done through the use of different networking technologies.

In this thesis, we chose to focus on Wi-Fi, defined in the IEEE 802.11 set

of standards, and in turns on Wi-Fi-based drone networks. This choice

can be mainly explained by the (apparent) simplicity of deploying Wi-Fi

networks, which operate in licence-free bands and are supported by

many end-user devices, including ours. Wi-Fi devices are also cheap,

available, off-the-shelf, and can accommodate a wide range of application

requirements, from the IOT low-frequency and lightweight requirements,

to real-time video orVoice over IP, throughmore classicweb browsing. For

critical applications, being able to test such networks in real conditions

before they are actually needed is also an advantage, which would

be harder with for example cellular networks where the regulator’s

agreement is required to transmit.

The use of Wi-Fi to create drone networks is not a new idea, and has been

studied, mainly in the past ten years, in many scientific works [7, 8, 42,

44, 69, 85, 86, 94, 95, 98]. In the experimental studies from this literature,

Wi-Fi is described as under-performing, because of the peculiarity of the

airborne channel on the one side, and the inability of Wi-Fi to cope with

the specific mobility of the drones, both because of the use of unsuitable

antennas and because of inefficiencies in Wi-Fi’s rate adaptation. In the

context of Wi-Fi networks, rate adaptation is the process of choosing

suitable transmission parameters (Wi-Fi has many of them) to cope with

changes in the communication channel and maintain a quality of service.

Controlled mobility in the context of robot and drone networks is more

confidential but a few solutions have also been proposed [19, 38, 53,

59, 73]. Still, the intersection on Wi-Fi networks, drone networks, and

controlled mobility is limited.
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The goal of this thesis is to study the underlying mechanisms of Wi-

Fi networks in order to improve controlled mobility in the context of

networks of autonomous drones. In particular, we focus on the impact

of the Rate Adaptation Algorithms (RAAs) on such networks. Those

algorithms are in charge of finding suitable transmission parameters for

the nodes participating in Wi-Fi-based drone networks, and are thus

closely linked to the network performances, whether good or bad. While,

in our opinion, RAAs are at the heart of the performance evaluation of

modern Wi-Fi networks, this subject has been mostly swept under the

rug in the context of robotics networks, where using static and fixed

transmission parameters is often the norm.

Thesis Organization

The rest of this manuscript is organized into six chapters (not counting

the conclusion).

In Chapter 2, we present the general context of this thesis, with a focus

on the IEEE 802.11 set of standards, drones and drone networks. Indeed,

from its introduction more than two decades ago to the new amendment,

802.11ax, that will be adopted in the coming weeks, Wi-Fi evolved well

beyond its original form and must be correctly introduced.

We then present in Chapter 3 a state of the art of experimental evaluation

and controlled mobility of Wi-Fi based drone networks. We also present

the tools, both simulators and testbeds, one can use to evaluate such

networks.

In Chapter 4, we then describe and analyze the rate adaptation algorithm

used by Intel Wi-Fi cards, which is the way Wi-Fi networks cope with

mobility. Such analysis is necessary to understand the performances

of mobile Wi-Fi networks, which we focus on in Chapter 5. In this

chapter, we therefore compare the performances in simulation ofmultiple

rate adaptation algorithms, including the Intel one, in the context of

drone networks. The Intel RAA, while being used by tens of millions of

device worldwide, had never been described before, nor implemented

in a network simulator to study its performances differently than in

experiments. The developed simulation implementation, for the ns–3

network simulator, is still at a prototype stage, but has been released as

an open-source contribution. We hope to integrate it to the upstream ns–3

source code in the coming months.

Finally, in Chapter 6, we propose a controlled mobility solution relying

on the antenna radiation patterns of drones, which allow to enhance

the performances of a fleet of drones. Such a solution is interesting

because it does not require a full control over the drone positions, which

allows this solution to interface more easily with varied drone network

applications. To study its performances, and to overcome the limits of

the used network simulator, ns–3, a custom framework was developed to

allow the simulation of the considered simulation scenarios.
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In this chapter, we present the general context of this thesis. We first

focus on Wi-Fi networks and the evolution they have undergone since

their introduction, 21 years ago. After a brief history of Wi-Fi networks,

we present the basic principles behind Wi-Fi Networks, that is to say the

Medium Access Control Layer and the Physical Layer of the protocols.

Then, we focus on drones, their characteristics, their applications and

their architectures. We first present drones and their history, then we

focus on the applications of drones. Finally, we focus on drone networks,

trying to illustrate their architecture, requirements, and we finish by

looking at the adequacy of Wi-Fi for drone networks.

2.1 A Brief History of 802.11 Networks

The IEEE 802.11 set of standards, better known to the general public under

the denomination “Wi-Fi”, is a bit over 21 years old at the time of writing.

While the general principle of theprotocol, namelyCarrier Sense,Multiple

AccesswithCollisionAvoidance (CSMA/CA), didn’t changemuch in that

period, numerous additions and refinements transformed the original

protocol, 802.11-1997, which falls short of providing throughput of 2

Mbit/s, into its current state, which achieves throughput a thousand

times higher. Both Wi-Fi and Bluetooth, another wireless protocol of

a comparable age, were launched to operate at frequencies comprised

between 2.4 GHz and 2.5 GHz, reserved for Industrial, Scientific and

Medical applications, parts of the so-called ISM radio bands. In 1985,

the Federal Communications Commission (FCC), agency of the United

States government in charge of regulating telecommunications, allowed

spread-spectrum communication systems whose power output didn’t

exceed 1 watt on the ISM bands. No license are generally needed to

operate on these frequencies, which had been used by microwave oven

for decades (and still are), and thus probably considered at the time too

polluted for any serious business. The absence of a licensing requirement

also explains the success of WiFi networks.

While both using spread-spectrum techniques, and using packets (called

frames) to transmit data, and even if they share the same band and

some of their usages, the Bluetooth and Wi-Fi protocols grew apart,

with Bluetooth being mainly used as a form of "wireless wire" [35], as

a Wireless Personal Area Network (WPAN) connecting personal devices

together, such as a smartphone and a headset, whileWi-Fi becamemainly

used as a Wireless Local Area Network (WLAN), connecting any local

devices with each other or to a gateway to the internet, as an Ethernet

network would do it. Wi-Fi became the de facto standard for WLAN, so

much so that WLAN and Wi-Fi are synonyms in some languages such

as German. However, Wi-Fi Networks are not limited to power WLAN,

as (hopefully) illustrated by this thesis. When looking at the history of
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[32]: Forecast (2019), ‘Cisco visual network-
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[56]: McCann (2020), Official IEEE 802.11

Working Group Project Timelines

Table 2.1: Main 802.11 standards and

amendments

Name Year Document

802.11ax 2020 Amendement †
802.11 2016 Standard

802.11ac 2013 Amendment *

802.11 2012 Standard *

802.11n 2009 Amendment *

802.11 2007 Standard *

802.11g 2003 Amendment *

802.11b 1999 Amendment *

802.11a 1999 Amendment *

802.11 1999 Standard *

802.11 1997 Standard *

†: Draft

* : Superseded

[28]: Wi-Fi Alliance (2018), Wi-Fi Alliance®
introduces Wi-Fi 6

Wi-Fi, two technologies often come up: ALOHAnet and Ethernet (also

known as IEEE 802.3). While Wi-Fi was designed to be fully compatible

with Ethernet networks, which are wired networks introduced in 1983

mainly used to power Local Area Network (LAN), it shares a lot with

ALOHAnet, invented in 1971, precursor to Ethernet networks, although

wireless and based on a slightly different medium access method.

The development of Wi-Fi networks can be linked to the development

and democratization of the personal computer, and, in a sense, of the

Internet. If someone asks you for the Wi-Fi password, they probably are

not looking for a WLAN but for an Internet access. It is estimated by

Cisco that globally, by 2022, the Wi-Fi traffic will represent more than

half of the total IP traffic [32]. Wi-Fi networks are now in laptops, phones,

oven, toothbrush, whether we like it or not, as it became a way to market

products as being smart.

Standard(s) and Naming Conventions

Countless amendments to the standard have been produced by the

IEEE 802.11 Working Group throughout the years, either introducing

new functionalities, security features [56], but only five versions of the

standard have been published so far, as shown in Table 2.1.

Only one version of the standard exists at a given time, as older versions

are superseded by the latest published version. Marketed terms generally

refer to specific amendments, such as 802.11a, 802.11b, or 802.11n, as

they generally introduce better performances in terms of latency or

throughput which are well understood by the general public. Multiple

other amendments can be considered as important waypoint in the

context of this thesis, such as IEEE 802.11p, published in 2010 and also

known as WAVE, providing wireless access in vehicular environments,

or 802.11s, published in 2011, which introduces mesh networking in

the standard, but we can focus on the standards as these amendments

end up being integrated into them. In October 2018, the Wi-Fi Alliance

introduced a new numerical naming system for Wi-Fi amendments:

devices that support the 802.11n, 802.11ac and 802.11ax amendments are

to be respectively calledWi-Fi 4,Wi-Fi 5 andWi-Fi 6 devices [28]. Previous

amendments such as 802.11a, 802.11b or 802.11g didn’t receive a new

name. This further blurs the line between standards and amendments,

but makes it easier for the general public to understand the evolution of

Wi-Fi.

The 802.11ax amendment, the next “big” amendment for Wi-Fi networks,

is expected to be approved and published by the end of the 2020 year. It

introduces profound changes in the way Wi-Fi networks are operated,

but is out of scope of this thesis for practical reasons such as the lack of

readily available compatible hardware. In this thesis, we therefore focus

on the 802.11-2016 standard, latest published standard of the 802.11 family,

which will be referred to as 802.11ac for simplicity, even if erroneous. The

term Wi-Fi will also be used as a way to designate 802.11 networks in

general, when the exact version of the standard is not important for the

discussion.
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2.2 Basic principles of Wi-Fi Networks

Wi-Fi networks are composed of two layers, the Physical Layer (PHY),

dictating how data should be encoded over the spectrum, and the

Medium Access Control Layer (MAC), defining how a participant in

the network, hereafter called Station (STA), should access the shared

electromagnetic spectrum. Both the Wi-Fi PHY and MAC, were widely

transformed during their existence, with the PHY supporting more and

more complex transmission techniques, and the MAC introducing new

access mechanisms, in order to obtain higher throughout and increase

robustness.

The Wi-Fi Medium Access Control Layer

As Ethernet, Wi-Fi is based on the Carrier Sense, Multiple Access (CSMA)

mechanism, which means the carrier, here the electromagnetic spectrum,

is sensed before transmissions to avoid creating collisions on the shared

medium.Unlike Ethernet, which uses Carrier Sense,Multiple Accesswith

Collision Detection (CSMA/CD) and detects collisions as they happen

on the medium, which is made possible by the imposed bounds on the

physical size of the networks and the fact one can sense the medium

while sending, Wi-Fi uses Carrier Sense, Multiple Access with Collision

Avoidance (CSMA/CA). The CSMA/CA mechanism relies on sensing

the medium prior to transmitting, and waiting for it to be idle for at least a

given amount of time, before the start of the transmission. If the medium

is found to be busy, because another node is transmitting for example, a

random gap period of backoff is used before attempting to transmit again,

which avoids synchronized transmission attempts of multiple STAswhen

the medium becomes free again. By defining multiple values for the gap

durations, known as Inter Frame Space (IFS), such as the Short Inter

Frame Space (SIFS) or the Distributed Inter Frame Space (DIFS), “priority

classes” for frames are created. As wireless transmissions are inherently

lossy, some Quality Of Service (QOS) mechanism is needed. In Wi-Fi

networks, as in ALOHAnet, it takes the form of short Acknowledgement

(ACK) messages, which use the highest priority class, based on the

smallest gap, the SIFS. Thus, ACK messages take precedence over any

othermessages, whichmakes it easy to detect whether theywere received

or not. The ACKmessages are used by a receiver to acknowledge that data

has been correctly received. In the case of a collision, or when reception

fails, or if the acknowledgment sent from the receiver to the original

transmitting node is not correctly received, the node retransmits the

non-acknowledged frames under certain conditions [16], mainly to avoid

infinite chains of retransmissions when the receiver is not able to receive

frames anymore.

In Wi-Fi Networks, STAs are organized in Basic Service Sets (BSSs),

which can be thought of as groups in which communication over the

PHY is possible. BSSs can be of different types, such as the Independant

Basic Service Sets (IBSSs) (also known as Ad-Hoc mode), the Mesh Basic

Service Sets (MBSSs) (also known asMeshmode), or the more classical

infrastructure BSS (also known as infrastructuremode). In infrastructure

mode, special STAs called the Access Points (APs) are used to connect

STAs together, even if they are not in range with each other. APs act as
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centralizing entities, while in MBSSs or IBSSs, no such central entities

exist. MBSSs were introduced in the 802.11-2012 standard, as a part of

the 802.11s amendment, while IBSSs are present in the standard since

802.11-1997. Thus, the 802.11 mesh mode is more advanced than the

ad-hoc mode, by integrating with Distribution System (DS) which allows

it to operate in conjunction with the infrastructure mode, or by being

equipped with a default mandatory routing protocol, Hybrid Wireless

Mesh Protocol (HWMP).

The Wi-Fi Physical Layer

The 802.11-2016 [46] standard describes theWi-Fi PHY as “fundamentally

different” from the PHY used in wired media, such as Ethernet. In short,

Wi-Fi networks use an unreliable medium, shared with other signals

(Wi-Fi or not), medium which exhibits time-varying and asymmetric

propagation properties. STAs canmove, and the STAs connectivity graph,

as well as the graph of interfering STAs, which are different, are neither

complete nor static, are directed, and are not known in advance or easily

measurable. While some problems that arise from these features can be

handled in practice at the MAC layer, such as the hidden node problem,

dealt with by the Request to Send, Clear to Send (RTS/CTS) mechanism,

some are managed by the PHY layer of 802.11.

From the start, Wi-Fi came with different methods to send and encode

data over-the-air, which deals with the shortcomings of the PHY. The

802.11-1997 standard used Frequency-Hopping Spread Spectrum (FHSS),

with Gaussian Frequency-Shift Keying (GFSK) with two and four levels,

and Direct-Sequence Spread Spectrum (DSSS), with Differential Binary

Phase-Shift Keying (DBPSK) and Differential Quadrature Phase-Shift

Keying (DQPSK), to provide transmission rates of 1.0 and 2.0 Mbit/s.

Barker code were used to transform single bits into fixed 11-bits long

Pseudonoise (PN) code words, introducing redundancy. All four variants

must fail to prevent communication between STAs, which introduces

robustness against various radio environment. The 802.11b amendment

introduced High-Rate Direct-Sequence Spread Spectrum (HR/DSSS)
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and transmission rates up to 11.0 Mbit/s using Complementary Code

Keying (CCK), reducing the size of the PN code words to 8 bits, encoding

groups of 4 and 8 bits with each code word. The new modulations didn’t

replace the older ones, as they required better channel conditions or

better hardware, but they increased transmission rates, and introduced

more transmission possibilities, and in turns, increased robustness.

The PHY was deeply changed by the 802.11a amendment which in-

troduced a new modulation scheme, Orthogonal Frequency-Division

Multiplexing (OFDM), a new operating frequency band located in the

Unlicensed National Information Infrastructure (U-NII) bands (which

overlaps with the 5 GHz ISM band), and new modulations based on

Quadrature Amplitude Modulation (QAM). The OFDM modulation

makes use of multiple orthogonal subcarriers to transmit the data stream

concurrently, at a lower data rate than if it was sequentially transmitted,

which reduces the relative impact of the channel multiple paths [64]

especially present in indoor environments such as offices. The width

of the OFDM signals used in 802.11a was chosen to be 20MHz, which

allows for 25 non overlapping channels to coexist in the U-NII bands,

while supporting transmission rates up to 54 Mbit/s when combined

with the new 16-QAM and 64-QAMmodulations.

The OFDM introduced new knobs, such as the Guard Interval (GI)

size, a pause between subsequent transmissions preventing them to

interfere with each other, either 800 ns or 400 ns long, or the coding

rate, parameter specifying the number of bits of data transmitted per

bit of code word of the forward error-correcting code used in OFDM,

which trades throughput for robustness. Antenna diversity started being

used at the sender and receiver to combat fast fading, by combining the

signals with more than one antenna, for example using Space-Time Block

Codes (STBCs) or Maximum Ratio Combining (MRC). OFDM was later

extended to the 2.4 GHZ band in 802.11g, and Multiple Input, Multiple

Output (MIMO) was introduced, which allowed multiple independent

streams of the data to be transmitted at the same time. Instead of using

one channel at a time, 802.11n introduces channel bonding, which allows

using two adjacent channels at the same time, that is to say transmitting

and receiving on 40MHz (later extended to 80 MHz and 160 MHz by

802.11ac). Overall, the maximum transmission rates increased with the

complexity of the standards, as shown on Figure 2.1.

2.3 Drones

History

Depending on the definition of what a Drone is, e.g. an unmanned

aerial vehicle, their invention can be traced back to Asia, thousands of

years ago, under the form of kites which are unmanned aerial vehicles,

although tethered. Noteworthy examples of drones include the Austrian

incendiary balloons used to bomb Venice (or try to) in 1849, depicted

on Figure 2.3, or Alphonse Pénaud’s balloons, illustrated on Figure 2.4,

which include a small airplane model with automatic rudder powered

by a twisted rubber, popularized as a toy. The British “Queen Bee” radio-

controlled plane, used as targets to train anti-aircraft gunners in the
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1920s, is thought to be the origin of the Drone term (the term “drone”

refers to the male bee). Until recently, the main users of drones were

either the military, either serious hobbyists engaged in aircraft modelling.

In the last few decades, the use of drones has been trivialized. On the

civilian side, multicopters, which are rotorcraft withmore than two rotors

have entered the entertainment landscape for the general public in 2010.

Quadcopters, with their simple design and their capacity to fly in any

direction, are particularly popular among amateur pilots. Around half a

million units of the ParrotAR.Dronewere sold in the three years following

its launch in 2010. The AR.Drone, now discontinued, was probably the

first quadcopter marketed to the general public, and was equipped with

Wi-Fi connectivity used to control the drone from a smartphone and

receive aerial pictures and videos from the two on-board cameras. On the

military side, weaponized drones have been routinely used by the United

States in the 2001 Afghanistan conflict, the 2003 Iraqi conflict, as well as

in Pakistan in the so-called “drone war” [90]. In the Operation Barkhane,

an ongoing counter-terrorism operation led by France and taking place in

the Sahel region in Africa, “reaper” drones are regularly used to conduct

airstrikes or provide intelligence [11]. This same model of drone, albeit

unarmed, have been used by the Customs and Border Protection US

agency in Minneapolis during the May 2020 George Floyd protests [51].

While military drones are used for civilian missions, civilian drones are

also used in military conflicts. It has for example been reported that small

commercial drones have been used by the terrorist organization ISIS in

Iraq [78] to create improvised explosive devices. The same type of drones,

quadcopters from the DJI company, have also been used by the Israel

Defense Force to deploy tear gas around the Gaza strip [89].

Flight Styles

Multiple classifications for drones exist. One way to classify drones is to

look at how they fly. Most drones are either aircraft with fixed-wings,

like modern days airplanes and gliders, or rotorcrafts, like helicopters.

But more confidential drone designs also exist, such as flapping wings

drones, also called ornithopter, lighter-than-air drones, like Google’s

Project Loon (pictured in the chapter cover), or drones using combinations

of designs, for example switching from rotorcrafts to fixed-wings after

lift-off. These flight styles affect the freedom of movement of the drones,

and their autonomy in terms of flight distance and duration. While a

multicopter can hover at a specific position x, y and z, a fixed-wing drone

needs thrust and thus a minimum flight speed in order to be able to

compensate gravity with the lift and stay in the air, which is incompatible

with maintaining a specific position. Yet, while all the energy of the

multicopter is used to fight gravity by rotating propellers which push

air downward, directly generating lift, a fixed-wing drone can glide. As

such, the autonomy of fixed-wing drones greatly exceeds the autonomy

of rotary-wings drones, which explains why most large drones, such as

military drones, are fixed-wing, trading freedom of mobility for range.
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Table 2.2: Comparison of different drones displaying different flight styles

Name:

Flight Style:

Max Payload:

Total Weight:

Flight Duration:

Applications:

Max Speed:

Flight Range:

Size:

First Introduced:

Power Source:

MQ-9 Reaper 

1 700 kg

30 - 40 hours

Fixed-Wing

Surveillance, Combat

335 km/h

1850 km (radius)

4 800 - 5 300 kg

Source: U.S. Air Force
Public Domain

20 m (wingspan)

2001

Fuel

DJI Agras T16

16 kg

10 - 18 minutes

Multirotor

Agriculture

36 km/h

3 - 5km

42 kg

2.5m (width)

Source: Pixabay
Pixabay License

2019

Batteries

Zipline

1.5 - 2 kg

90 minutes

Fixed-Wing

Delivery

100 km/h

80 km (radius)

~20-22 kg

Source: ZipLine Website

3.7 m (wingspan)

2016

Batteries

DJI Mavic Mini

30 g

30 minutes

Multirotor

Photo, Video, Hobby

15-30 km/h

2km

249 - 279g

15 cm (width)

Source: Pixabay
Pixabay License

2019

Batteries

Loon

20 kg

125 days (average)

Lighter-than-air balloon

Telecommunications

100 km/h

?

Source: Flicker User iLicker
CC-BY-2.0

-

15 m  (diameter)

2013

Solar panels, gas, batteries

According to ISO 8373:2012, which speci-

fies the vocabulary used in relation with

robots and robotic devices, autonomy is

the “ability to perform intended tasks

based on current state and sensing, with-

out human intervention” [83].

[31]: Floreano et al. (2015), ‘Science, tech-

nology and the future of small au-

tonomous drones’

Autonomy

While all the drones need a certain amount of automation to fly, for

example to maintain engine speed in the presence of small control

imperfections, not all drones are considered autonomous. A simple

question to ask to decide whether a drone is autonomous or not could

be “Can the drone carry out its mission independently of other entities,

whether human or not ?”. As for humans, the answer to this question

is almost surely “no”, which does not help in measuring the Level Of

Autonomy (LOA) of drones.

Overall, drone autonomy is a continuum between no autonomy at all,

or “operator does it all”, and complete and full autonomy, or “drone

does it all”. With most drones being in the middle of the continuum,

multiple authors have tried to split this continuum into sub-categories

to ease reasoning about the drone autonomy. For example, three levels

of increasing control autonomy are described in [31]. The first level,

sensory-motor autonomy, describes drones which can “translate high-level

human commands [. . . ] into combinations of platform-dependent control

signals”, e.g. follow pre-programmed trajectory, but still require human

supervision. The second level, reactive autonomy, describes drones which

can react to their environment and external perturbations while maintain-

ing their states, and require little human supervision. The third and last,

cognitive autonomy, describes drones which understand their environment

through the use of computer vision and perception techniques like SLAM,

act accordingly, and require no human supervision.

As the autonomous operation of drones cover many orthogonal aspects

like obstacle and collision avoidance, energy autonomy or scene under-

standing, trying to quantify drones LOAs on a single scale seems futile. In

the rest of this section, we focus on a few examples to illustrate different

overall degree of autonomy, while retaining to give a general framework

to classify the LOAs.

Energy As illustrated by Table 2.2, existing drones may use different

source of power, with different energy density, which results in difference

in their flight duration. Depending on its energy autonomy and energy

source, a dronemayneed to pause itsmission to renew its energy supplies,
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[81]: Skydio (2019), Introducing Skydio 2

operation that can be manual or automated. Small to medium drones are

most commonly powered by electricity, and use batteries as their power

source. Such batteries need to be swapped out by an human operator

when they are empty, resulting in a low autonomy regarding energy.

Higher autonomy can be achieved by using automated charging pads,

where the drones automatically land to be recharged by the main grid

when they need to. This operation does not involve humans, but is often

slower than just swapping the battery with a full one. Larger drones,

especiallyMedium-Altitude Long Endurance (MALE) andHigh-Altitude

Long Endurance (HALE), most commonly rely on fuel cell for their

energy source. Such energy sources allow for longer period of flight

than batteries, and automated aerial refueling has been demonstrated.

High-Altitude Platform Station (HAPS) drones, which evolve at altitudes

comprised between 20 to 50km, are probably the type of drone that

display the bigger energy autonomy, as they rely on solar energy and

evolve at altitude higher than the jet stream, allowing them to remain

airborne for weeks without losing much energy fighting strong winds.

Flight Most drones can be remotely controlled by a human pilot, which

takes full control in the position and movements of the device. This

mode of operation is mandatory in many countries, including France,

where the drone operator has to be able to directly control the drone

at any time, for example to land immediately if a manned aircraft is in

the drone vicinity. If the link between the pilot and the drone is severed,

autonomy is needed to avoid a crash and safely land the drone; such a

drone is therefore not considered as an autonomous drone as it does not

operate independently of its operator. Greater flight autonomy can be

reached by using global positioning systems such as Global Navigation

Satellite Systems (GNSSs), or local ones based for example on the Ultra

Wide Band (UWB) or 802.11mc technologies. Drones equipped with such

positioning systems know their global or local positions, and can follow

trajectories based on way-points or cover a certain area, autonomously.

GNSSs are often included in the general public drones, as it allows drone

manufacturers to enforce no-fly zones around sensitive areas such as

airports, nuclear power plants or presidential palaces, and to complywith

the regulations of the local authorities. It also enables functionalities like

“return-to-home”, allowing a drone to autonomously land at a specific

position, most of the time set to its launch point, for example in case of

failure of the link between the remote control and the drone.

Obstacle Avoidance Way-points and trajectories can be pre-computed

offline, before the flight, transmitted to the drones while it flies, but they

can also be computed on-the-fly, by the drones themselves. In this case,

the drones needs to sense their environment, to avoid obstacles and to

decide what will be their next way-point. This can be done through the

use of techniques like Simultaneous Location And Mapping (SLAM),

and the use of sensors like cameras, radar or lidar, or more generally any

distance measuring sensor. Simple obstacle avoidance in multicopters

based on ultrasound sensors has been there for nearly a decade (with

“autonomous” landing being a simple obstacle detection located below

the drones). As of 2020, more complex techniques have been integrated

into general public drones since like the Skydio 2 [81] drone which
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[67]: Nex et al. (2014), ‘UAV for 3D map-

ping applications: a review’

Figure 2.5: A ZipLine fixed-wing drone

used to deliver medical materials and

blood, using a parachuted package.

can follow a target autonomously in an environment such as a forest,

avoiding obstacles, thanks to its 6 camera and embedded GPU. Flying

near large body of calm water is still a challenge for the Skydio 2, as “it

can resemble a reflective, mirror-like surface that can confuse the drone’s

visual obstacle avoidance systems”.

Applications

In this section, we try to give a general overview of drone applications,

civil or military, and try to regroup them according to their main char-

acteristics. Indeed, another way to classify drones is to look at their

applications and fields of applications. Focusing only on the civilian

applications or on the military applications seems futile, as the line

between the two is blurry and the same platform can be used to do both.

Many drone applications are mainly “sensing” applications, that is to say

the drones’ main purposes are to measure or detect changes and events

in their environment, and report them back to the operator. Drones can

also be used as actuators, with applications whose primary goal is to

interact with the environment. These two modes of operations can be

combined, as the drones becomes a sensor and an actuator.

3D Mapping Drones embarking localization sensors, cameras and

distances sensors such as lidar can be used for mapping applications

and 3D modelling, a sensing application. Fields of applications include

archaeology, to search and discover new archaeological sites or model

them, as well as cultural heritage preservation. Drones yield higher

quality images at a cheaper price when compared to satellite images, and

their maneuverability allows them to map otherwise unattainable areas.

Such mapping can also be used for geological and mining surveys, post-

disaster assessment, andmilitary applications such as reconnaissance and

surveillance [67]. As these applications require many overlapping passes,

they are mostly automated with the drones following a pre-computed

flight plan, and the generated data are stored on-board and uploaded

from the drone after the flights.

Aerial Videography and Photography Similar yet different fields of

applications are the aerial videography and photography applications.

They do not require localization sensors or distance sensors per se, but

they might help for the flights. Drones, used as remote cameras, shoot

videos and pictures for works of art, sports event, scientific applications,

journalism or commercials. Themode of flying ismost of the timemanual,

and requires a real-time video feedback from the drone to the operator

in order for the video operator and flight operator (which sometimes

are the same person) to correctly frame the images, and pilot the drone.

Recent small commercial drones include tracking based on computer

vision, allowing the drone to autonomously follow someone moving, e.g.

during a sport activity.

Real-time Surveillance, Detection and Data Collection As in the 3D

mapping applications, the requirements are to cover areas or volumes

and report the sensed data originating from the sensors, which can be
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Figure 2.6: Generic architecture of a small multicopter drone.
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mization of UAV-Mounted Mobile Base

Stations’

cameras, chemical sensors or other physical sensors. Their operation is

also mostly automated, but the data need to be available as it is collected,

in real-time, which implies some network connection. Search and Rescue

(SAR) applications fall within this category, as well as wildfire detection

or border surveillance. In the law enforcement field, drones have for

example been used to detect offenders and deliver officials instructions

using embedded loudspeakers, in the city of Nice, France, during the

2020 COVID-19 related lock-down [76].

PayloadDelivery This broad term covers applications where the drone

acts as an actuator to move or deliver materials. This covers the delivery

of goods, whether pizzas, parcel deliveries or for more serious matters

like medical material deliveries or blood packs. Such deliveries are for

example being experimented by ZipLine in Rwanda, a country whose

road infrastructure does not permit efficient and fast delivery [1]. It can

be also used in precision agriculture, where the payload can be pesticides

to be sprayed over fields or grains to be planted. This also covers military

combat drones, whose payload are ammunition or missiles, as well as

law enforcement drones who have been used to deliver tear gas [89].

Network Applications Drones, with their ability to move quickly in a

predominantly barrier-free environment (given sufficient altitude) are

of interest for network applications. They have been proposed to create

relay networks for Wireless Sensor Networks (WSNs), combating sensor

nodes isolation by creating paths of communication to a base station [22].

They also have been envisioned as aerial mobile base stations, whose

position can be optimized to deploy communication networks without

the need of a fixed infrastructure for a set of ground terminals [54].

Architecture of a small multicopters

While each drone model is different, we describe the typical architecture

of a small multicopter on Figure 2.6. The system energy is provided by

batteries, and the power is distributed thanks to a power management

board which also monitors the batteries’ level. The drone flight capabili-

ties are assured by the flight controller, in charge of computing which
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[71]: Quigley et al. (2009), ‘ROS: an open-

source Robot Operating System’

[92]: Yanmaz et al. (2017), ‘Aerial Wi-Fi

Networks’

commands are sent to the electronic speed controller, itself in charge of

directly controlling the engines. The flight controllermost of the time runs

a real-time operating system, which is required, given the low processing

time requirements needed for the flight. The flight controllers directly

receives orders from the remote control radio, and hosts the automation

needed to maintain a global position using the GNSS and IMU sensors,

as well as moving from one waypoint to another. The electronic speed

controller is a low level component, the flight controller a medium level

component, while the companion computer is a high-level component.

Indeed, the companion computer is in charge of the intensive computing

tasks, as well as the operation ofmission dependent sensors and actuators

that are not needed for the flight. Such tasks may include perception,

network connectivity in the case of network applications, or managing

video and photography surveys. Unlike the flight controller, the compan-

ion computer has no requirement for a real-time operating system. In

Robot Operating System (ROS), a popular operating system for robots

and drones, the position, speed, attitude or battery level information may

be exchanged between the flight controller and the companion computer

using software and hardware buses [71]. Such data can also be sent

over the telemetry radio, the electronic signalling radio, and, when the

footprint allows it, to the remote control radio.

2.4 Drone Networks

Many applications can profit from using multiple drones instead of one.

Obviously, having multiple drones at hands allows them to carry out

several unrelated tasks in parallel. But even for a single task or application,

different drones can cooperate in order to speed up the achievement of

the task, or simply to make it possible to carry out the task. For example,

different drones can provide different angles of a scene at the same time,

cooperating drones can lift more weight and thus deliver bigger payloads,

and while the communication range of a network-providing drone might

not be enough to serve as a relay between distant terminals, chaining

multiple drones might allow to establish a communication.

In order to cooperate, drones in such applications create drone net-

works. Drone networks are not limited to drones cooperating on specific

applications: even drones carrying out unrelated tasks might want to

establish drone networks if they evolve in the same airspace, for example

to exchange data making it easier to avoid collisions.

Network Requirements

The requirements of a drone network vary according to many parameters,

starting with the considered applications. Such requirements for example

differ according to the level of autonomy of the network participants: a

manual drone needs to be able to receive control data at all time, while

for a partially automated drone this control data is limited to emergency

situations.

In [92], the authors give quantitative communication requirements for

drone applications and classify these requirements according to the
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The world is divided into three Interna-

tional Telecommunication Union (ITU) re-

gions: Region 1 is composed of Europe,

Africa, the former Soviet Union, and the

Middle East without Iran, Region 2 cov-

ers the Americas and some pacific islands,

and Region 3 is composed of the remaining

countries, including most of Oceania.

drone autonomy degree. The traffic is divided into two main families,

traffic for the device autonomy and traffic for the mission autonomy.

Device autonomy traffic relates to the control of the drones, while mission

autonomy traffic relates to the coordination between the drones. Each of

these families is itself divided into multiple categories:

1. Control traffic, which relates to the remote control data exchange

needed to actually operate the drones;

2. Telemetry traffic, which includes IMU and GNSS data information

and could be seen as monitoring traffic;

3. Coordination traffic, which is any data exchanged to coordinate

the entities of the network;

4. Sensed Data traffic, which encompasses any data generated by the

on-board drone sensors about their physical environment.

Control Traffic Standard remote control for drones may use different

communication protocols, both analog and digital. The SBUS protocol,

a popular serial-type digital protocol used to transmit data between

the flight controller and the remote control radio, uses a baud-rate of

100 000 and a 8-E-2 configuration, which translates to a capacity for the

throughput of at most 66.7 kb/s. It relies on 25 bytes long messages,

allowing a remote to control 16 “servo” channels (each with a 11 bits

resolution), and 2 binary digital channels. The messages are transmitted

every 9 ms, putting the effective control throughput at 19.8 kb/s.

Such data is most of the time transmitted in the 433 MHz, the 915 MHz or

the 2.4 GHz ISM band. Wi-Fi is not widespread (excepts for smartphone

controlled toys), and simpler custom spread spectrum protocols are

being used in its place. While Wi-Fi can accommodate the throughput

of control traffic, the association, retransmissions and rate adaptation

mechanisms of the Wi-Fi are typically not wanted features as they may

introduce latency spikes and increase overall delay.

Telemetry Traffic While a standard GNSSmodule is expected to report

its position at a 10Hz frequency, and an IMU is expected to report the

linear acceleration and the rotational state at a frequency on the order of

a hundred of Hz, telemetry data is often capped at a few Hz by sending

filtered data. The standard baud-rate of the serial connection between

the PX4 flight controller and its telemetry radio module is 57 600, which

translates to a capacity of at most 46.1 kb/s of throughput in the standard

8-N-1 serial configuration, which allows to accommodate the 24 kb/s

figure for the telemetry advanced in [92].

Like control traffic, telemetry traffic is often transmitted in the 433 MHz

(for the ITU Region 1) or 915 MHz ISM (for the ITU Region 2) bands,

as they both are unlicensed bands with restrictions compatible with

this application (for example, the 433 MHz has a duty cycle limit of

10%, which is sufficient to transmit telemetry data). Such data is also

sometimes transmitted in the 2.4GHz ISM band, using Wi-Fi, as it allows

ground station which already has a Wi-Fi WNIC, such as laptop or

phones, to directly receive the data without the need of an additional

radio.
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Coordination Traffic Coordination traffic is loosely defined in [92] as

any data which is used to coordinate the entities among the network.

This can therefore overlap with telemetry data, or even sensed data.

In France, the law mandates that all drones weighing more than 800

grams are required to signal themselves using electronic or numeric

signals, as well as light signals, if they’re not tethered, not military or law

enforcement drones, used outside or not used in special aero-modelling

activity zones [58]. The signal format is defined in [57]: the messages are

sent using 802.11 frames emitted on the channel 6 at least every 3 seconds

or 30 meters apart, and contain the type of drone, the latitude, longitude,

altitude, the horizontal speed, the lift-off position, as well as a unique

registration number identifying the drone, which must be registered

online on a government website. Each message containing 416 bits of

payload, the minimum throughput needed by this system is 139 b/s (one

message transmitted every three seconds). The Autonomous Dependent

Surveillance-Broadcast (ADS-B) technology, transmitting at 1090 MHz

using Pulse-Position Modulation (PPM) transmitted at 1Mb/s, which is

already used in aircraft to broadcast their positions, identifier and speed,

is also becoming widespread in drones. The drone manufacturer DJI

announced in 2019 that all of its drones weighing more than 250 grams

will receive an ADS-B receiver (but not a transmitter, to avoid “congesting

the airwaves”), and transceivers are routinely used on bigger drones,

which allows to detect them and follow their movements on specialized

websites such as [3, 30].

While such coordination traffic can be considered as not being network

traffic, as it lacks routing, message, circuit or packet switching, such

simple coordination traffic can enable flocking and formation flight. In

[88], drones exchanging in a broadcast manner using the XBee protocol

their ID, position, velocity, attitude and status info (which is essentially

what the lawmandates [58]) are creating a self-organized flock using a de-

centralized control algorithm analogous to Reynolds’ Boids, a swarming

control algorithm based on the use of virtual forces [75].

Routing Algorithms In drone networks which rely on ad-hoc routing

protocols, coordination traffic may include the maintenance data of the

routing protocol. Whether proactive, reactive or hybrid, the overhead

these protocols introduce in order to discover, establish and maintain

routes is largely dependent on the number of participating nodes, the

network topology and the application running in this network. In [66],

three proactive mesh routing protocols are compared in emulation, in the

context of a wireless community network, the BMX6, OLSR, and Babel

protocols. For the three protocols, the network overhead increases with

the number of participating nodes, and is comprised between 1.2 kb/s

and 3.2 kb/s for 60 nodes. In [15], the overhead for an indoor 8 nodes

multi-hop network with OLSR and AODV are compared. The OLSR

overhead falls in 1.6 kb/s - 9.6 kb/s range, while the AODV overhead

falls in the 1.6 kb/s - 3.2 kb/s range. In [62], the OLSR, the BATMAN L2

and L3 protocols, and the Babel mesh routing protocols are compared

experimentally with N nodes. The overhead appears to widely exceed

the previous values, as OLSR overhead is reported to be 86.528 kb/s,

BATMAN L2 and L3 overheads are reported to be respectively 30.360
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Figure 2.7: Synoptic view of the different entities that may compose a drone network, with lines representing a communication link between
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Figure 2.8: Close-up on the dish used for

satellite communication in aNOAA-NASA

MALEReaper drone . The dish ismounted

on a steerable mount, pointing upwards,

allowing to aim specific satellites.

kb/s and 31.616 kb/s, while Babel overhead is reported to be 3.576

kb/s.

Network Architecture

Drone Networks also vary according to the type of network architecture

used, in particular its topology and its governance. Drones in a network

may be connected to each other, but they also may be connected to

non-drone entities. Such entities might be ground-based, for example

a residential Wi-Fi access point, a cellular base station located on a

communication tower or a vehicle, they can be air-based, like planes or

helicopters or even space-based, like telecommunication satellites. In

[33], the authors identify four main communication architectures which

can be used for networks of small drone: satellite, cellular, direct link, and

mesh networking. Overall, we can additionally classify communication

links composing the networks into three categories:

I Air-to-Air, e.g. between drones, drones and aircraft;

I Ground-to-Air andAir-to-Ground, e.g. between drones and ground

stations, drones and vehicles, drones and fixed cellular infrastruc-

ture;

I Air-to-Space and Space-to-Air, e.g. between drones and satellites;

A synoptic overview of a drone network is shown on Figure 2.7. MALE,

HALE and HAPS are mainly controlled through satellites, which can

cover large area and cover the high speed mobility of these drones using

a line-of-sight channel. Given the altitudes of such drones, obstacle avoid-

ance is limited to other objects evolving in the air such as airplanes, which

broadcast their positions, and does not need a low-latency connection

as a drone evolving in an urban area would. Such drones also rely on

satellites for their positioning, too, through the use of protocols such

as Galileo, GPS, Beidou or Glonass. The membership in such networks

is closed, with entities participating having very specific roles: most of
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the data flows between the ground station and the drone, with satellites

serving as relays. This is illustrated by Figure 2.8, on which the steerable

communication antenna is oriented upwards, pointing to satellites. The

network architecture is therefore highly hierarchical.

Drones evolving at lower altitudes may connect to cellular networks such

as LTE or 5G networks, which are also hierarchical networks. However,

in [25], the authors point out that drones connected to LTE networks

are expected to experience five handovers per minute when evolving at

an altitude of 150 meters, compared to only one for a ground user. The

higher rate of handover is being blamed on the high altitude (related

to pedestrians) of drones which makes them prefer remote antennas

as the drone evolve in their side lobes, whereas the main lobes of

the antennas have been optimized for the ground. Handover between

different technologies (namely 4Gand 5G) are described in [63],where the

authors observe more handovers as the height of the drone increases.

Low altitudes drones may also be directly controlled from the ground,

using direct links. Such links may use specialized protocols, which is

the case for most of the hobbyist remote control. For example, the FrSky

Taranis Q X7, which was used during the thesis, the transmission pro-

tocol is a Frequency-Hopping Spread Spectrum (FHSS) protocol using

a 2-FSK modulation with 47 channels, according to its FCC report. The

direct links can also use WLAN protocols, such as Wi-Fi, Bluetooth, or

Wi-Fi-like protocols: in the 2018 application for the Japan market of the

“DJI Smart Controller” [12], we can note it embarks a 802.11ac compatible

Wi-Fi chipset, a Bluetooth chipset, and a Software Defined Radio (SDR)

using OFDM, as the recent versions of the 802.11 standard. In [95], the

authors analyze the network performances of a Wi-Fi network between a

ground station and a small quadcopter drone, as well as between two

flying quadcopter drones. The drones are equipped with 802.11a/b/g/n

compatible cards, and communicate with a 802.11a compatible Access

Point (AP), which serves as a ground station. The use of the 5GHz

frequency band for the Wi-Fi prevents interferences from the 2.4GHz

operating remote control. Specific attention has to be put into the number

of antennas used by the AP and drone, as well as their orientation: the

authors introduce an antenna setup composed of three dipole antennas

organized in a horizontal triangular manner, and compare its perfor-

mances with a single vertical dipole antenna: the three-antenna setup can

offer up to 15dB of gain compared to the single antenna setup, especially

at elevation degree close to 90°, but this comes with a higher fluctuation

in the elevation plane.

For certain applications, for example enabling emergency communica-

tions in the wake of a natural disaster, low altitude drone mesh networks

are envisioned [24]. Their self-organization, scalability and resiliency

properties are of interest when dealing with entities such as drones that

are highly mobile as well as highly energy constrained, which lead to

network whose topology changes regularly, and whose membership is

not hierarchical nor static: nodes may come and go according to their

own constraints. As most of the drone mesh networks are based on Wi-Fi

networks, this network architecture will be covered in the next section.
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Wi-Fi for Drone Networks

Wi-Fi has many characteristics that makes it a good candidate for small

drone networks, and especially drone mesh networks.

Indeed, as of 2020,Wi-Fi hardware is available off-the-shelf, is inexpensive,

and is mature. It is therefore easier for researchers to experiment with

Wi-Fi for drone networks than experimenting with technologies like 5G,

satellites networks, or even Long Term Evolution (LTE) networks, whose

entry cost can be prohibitive.

No license is needed to operate a Wi-Fi access point or Wi-Fi devices,

whereas deploying an LTE eNodeB can only be done in a controlled

environment (e.g. in an anechoic chamber) or with the endorsement

of the regulator and of the telecommunications’ operator owning the

concerned frequencies (at least, on the paper).

From a purely operational point of view, Wi-Fi hardware is available

from many vendors, and any hardware should be interoperable with

the other types of hardware to get the Wi-Fi Alliance Certification.

This heterogeneity prevents vendor lock-in, allows not to rely on a

single design, which, from a security and availability point of view, is

important.

Wi-Fi is compatible with most of the end-user devices currently in

use to access the Internet, which are smartphones and laptops, and its

connectionmechanism is well understood by the general public. Whether

for direct control of the drones, or to use a network access provided by

drones, Wi-Fi appears as a jack of all trades.

In addition to the different modes available such as infrastructure, ad-

hoc or mesh, modern Wi-Fi networks support hundreds of different

combinations of transmission parameters, leading to more than one

hundred different attainable physical throughput, ranging from 6.5
Mb/s to 6933.3 Mb/s in the 2.4 and 5 GHz bands. All of these tweakable

parameters allowWi-Fi networks to operate in a wide range of conditions:

if the channel is good, high throughputs are attainable, if the channel is

degraded,Wi-Fi networks are still able to provide connectivity usingmore

robust transmission parameters, although with lower throughputs.
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In this thesis, we focus on the use of Wi-Fi networks in drone networks,

and our main goal is to find mechanisms that would increase the per-

formances of Wi-Fi-based drone networks. In order to understand what

are the challenges of such networks, we first give a state of the art con-

cerning the experimental evaluation of Wi-Fi drone networks. Overall,

this state-of-the-art underlines poor performances from Wi-Fi drone

networks, which are in particular far from the expected performances

of Wi-Fi networks in terms of attained throughput. Key parameters

include the positioning and the general mobility of drones, which could

be leveraged to improve the network performances. Therefore, we then

focus on controlledmobility for drone networks, with a state on the art on

controlled mobility. We finish with a panel describing the tools available

for the performance evaluation of Wi-Fi-based drone networks, in partic-

ular simulators and testbeds, which allow reproducible and repeatable

approaches in the development and evaluation of such solutions.

3.1 State of the Art of Experimental Evaluation
of Wi-Fi-based Drone Networks

Deploying real drone networks is time-consuming and may have serious

side-effects in case of engine or communication failure. We could argue

experiments involving drone networks and Wi-Fi networks only reflect

the reality in which they are carried out, that experiments are hard to

design, set up correctly, and most of the time not fully controlled. But

given the complexity of the considered systems, experiments remain, in

my opinion, the best way to try to understand their behaviors and get

things out of them. In this section, we present a state of the art on the

experimental evaluation of drone networks and Wi-Fi drone networks,

organized primarily in chronological order, with some exceptions for

closely linked works.

In [20], the authors study the performance of “802.11a” air-to-ground

wireless links, using a fixed-wing drone. The drone flies at heights of

approximately 45 m at speeds of 65 km/h, over 4 ground nodes. Each

drone is equipped with two wireless adapters with two antennas each,

and ground nodes are equipped with two wireless adapters with one

antenna each. Two types of antenna are used, one retail dipole antenna

and one custom antenna. Both have omnidirectional radiation patterns in

the E-plane, but the custom antenna has an overall much narrower beam

in theH-plane. No association between the drone and the ground stations

is needed, as the drone broadcasts frames, with the ground stations being

simple listeners not acknowledging the received frames. The authors

conclude that for the best performances in terms of throughput, the

antenna should be horizontal both on the drone and on the ground

stations. The authors study the relation between the Received Signal
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Strength (RSS) and distance, and, using a log-distance propagation loss

model Equation 3.1, determine the path loss exponent to be α � 1.80,

resulting in better (in terms of range) performances than in free space.

These results are believed to be due to the bias introduced by the inability

to take into account frames with too little RSS. Indeed, frames with lower

RSS cannot be decoded, and are not taken into account by the setup of

the authors which only accounts for decoded frames, resulting in biased

measurements and model. In a “flyover” scenario, the authors note

the achieved throughput ranges from 11.1% to 42.1% of the maximum

possible throughput, depending on the antenna configuration.

In [94], the authors evaluate the channel between an airborne quadcopter

drone and a ground station with two antennas, for 802.11a links, using

RSS and throughput measurements, and using two different simple

antenna orientations. In [95], the same authors look at similar metrics,

also for a 802.11a link, but this time with a more complex antenna setup

on the ground station which is equipped with three antennas. Fitting

the data they obtain to a log-distance propagation loss model Equation

3.1, they obtain values for α of 2.01 and 2.03, which are very close to

the value α0 � 2.0 which corresponds to a free-space path loss. When

α > α0, this corresponds to situations where the signal does not travel as

easy as in a free-space such as vacuum or air, e.g. in a city, while α < α0

corresponds to situations where the signal travels more easily, e.g. when

travelling in waveguides. The obtained UDP throughput varies greatly

depending on the yaw of the drone, and the antenna orientation, and

drops are observed during the mobility phases of the drone.

PL(d) � PL(d0) + 10α log
10
( d
d0

) (3.1)

with:

PL: Path Loss between the receiver and the transmitter, in dB

d: Distance between the receiver and the transmitter, in m

d0: Reference distance, in m

PL(d0): Path Loss between the receiver and the transmitter at the refer-

ence distance d � d0, in dB

α: Path Loss Exponent, dimensionless

In [37], the authors evaluate the gap between simulation, software-

in-the-loop, hardware-in-the-loop and experiments, for a single hop

air-to-ground and ground-to-air 802.11n and 802.11s network between

a base station and a single quadcopter drone. While the authors do not

perform any modeling of the channel, they observe a match between

the “general trend of the RSS” and a Friis channel model, that is to say a

free-space propagation loss model, or a log-distance propagation loss

model with α � 2.0. By artificially reducing the transmission power of

the Wi-Fi cards to simulate a Non Line Of Sight (NLOS) channel and

compare it to a Line Of Sight (LOS) channel, the authors illustrate the

use of the RSS as a metric to guide mobility, but do not infer much from

the experiment, which serves as an example of their approach. No higher

level metrics, such as throughput, are studied.

In [7, 8], the authors evaluate the performance of a 802.11n link between

two airborne drones flying according to waypoints which allow to have
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a wide range of relative speeds between the drones. They study how

application throughput is related with the distance between the drones,

or their relative speeds, with different fixed Modulation and Coding

Scheme (MCS), which are integers representing the type of modulation

and coding rate used by the WiFi transmitter. They also look at the

performances of the Rate Adaptation Algorithm (RAA), in charge of

automatically setting physical layer parameters, like the MCS, for the

transmissions. While they get a reference throughput of the order of 176

Mb/s in an indoor environment, they obtain throughput of the order of

19 Mb/s during their drone-to-drone experiment. Their conclusion is

that the RAA of the Ralink 3572 chipset they use is not adapted to the

high mobility of the drones, as setting the MCS to the value with the

lowest associated throughput allows for a better throughput than the

one obtained with the rate adaptation mechanism enabled. The lack of

spatial diversity for the airborne channel is also advanced as a potential

problem.

In [44], the authors evaluate the performance of 802.11n and 802.11ac links

in single and two-hop air-to-air and air-to-ground tests using the AP and

mesh network architecture. This work is an extension of the work in [93]

which looked at 802.11a networks with the same approaches. Initial tests

performed indoor show saturating UDP throughput (respectively TCP)

can reach up to 350 Mb/s (respectively 260Mb/s) for the 802.11n link, and

480 Mb/s (respectively 345 Mb/s) for the 802.11ac link. For a single-hop

static air-to-ground scenario, the reached throughput for 802.11n reaches

150 Mb/s for UDP, and 100Mb/s for TCP for small distances up to

between 50m and 100m, but significant losses in the attained throughput

are observed for bigger distances. Significant drops are also observed,

with the throughput going from 80Mb/s at a 110m distance between the

ground station and theUAV to 40Mb/s at a 120mdistance. Dronemobility

is observed to significantly decrease the obtained throughput. Outdoor

scenarios do not underline a big advantage of 802.11ac over 802.11n

(except, maybe, at short distances). The ath10k driver, used for 802.11ac,

is blamed, as better performance are obtained in 802.11n (compared to

802.11ac) using the same hardware when using another driver, the ath9k

driver.

In [98], the authors compare the performances of ZigBee and 802.11a in

single hop air-to-ground and air-to-air scenarios, as well as in a two-hop

scenario involving the two types of channel. Compared to ZigBee, the

Wi-Fi link is characterized by a high latency of 230 ms for the air-to-air

scenario, 380 ms for the air-to-ground scenario, and 840 ms for the two-

hop scenario (whereas the ZigBee latency is respectively 25 ms, 42 ms

and 106 ms). UDP throughput of 19 Mb/s, 13 Mb/s and 5 Mb/s are

obtained for respectively the air-to-air, the air-to-ground and the two hop

scenarios. The air-to-air link is observed to have a better throughput and

latency than the air-to-ground link, which is explained by the authors to

be due to the line of sight propagation.

In [69], the authors propose an emergency communication network based

on multiple drones connected using 802.11n and 802.11ac Wi-Fi networks.

Although they achieve promising performances in terms of throughput

with regard to distance using both 802.11n and 802.11ac communication

links, those results are not obtained with flying drones but only using

WNIC located on the ground, in static positions.
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In [42], the authors study the performance of a IEEE 802.11g airborne link

between two drones equipped with directional antennas. Comparing

ground experiments with airborne experiments using a 10m altitude, for

three distances between the drones (150, 300 and 1000m), they observe a

decrease in the throughput of up to 49% when hovering compared to the

experiments done on the ground (UDP). The standard deviation of the

obtained throughput also increase of up to 100% for the hovering drones.

The obtained throughput IEEE 802.11g are however close to the limit of

the standard, as it reach an average of 36.2 Mb/s for a maximum of 54

Mb/s for the 802.11g amendment.

In [86] and [85], the authors evaluate the performances of a two-hop

802.11n network composed of two ground nodes communicating through

an airborne drone mounted AP. Even with small distances between the

nodes, as the drone is located at altitudes of 10, 15 or 20m, with ground

distances of less than 8m with the ground nodes, which caps the global

distances at 22m, the obtained throughput range between 10 and 30

Mb/s while the maximum supported transmission rate is 144.4 Mb/s

for the 20 MHz, 2 spatial streams setup they are using.

Overall, the performances for the 802.11 links for drone networks are a

bit disappointing, even for a few nodes or a few hops. The antenna types

and orientations need to be well-adapted for airborne communications,

as the relative position of the drones are not comparable to those of more

traditional, ground-based devices. While the drone-to-drone channel is

mostly line of sight, performances are oftenworse than in a classicalWi-Fi

office environment where the channels are often not line of sight. Some

possible explanation for those poor performances is the lack of spatial

diversity, preventing from taking advantage of multiple spatial streams.

When looking at the global evolution of the performances with regard

to distances between drone network entities, we can observe different

trends which are not always easy to quantify. Assuming moving nodes

farther will result in worse performances and moving nodes closer will

result in better performances might be true on a large scale, but on a small

scale this might not be. Less related to drones, but still interesting: the

use of a newer standard does not guarantee overall better performances

(even with the same hardware) as it implies changes in the software

components part of the WNIC.

3.2 State of the Art of Controlled Mobility for
Drone Networks

Controlled mobility for Wi-Fi drone networks could be used to increase

the performances of such networks. For example, it could take advantage

of the discontinuities in the evolution of the performances with regard

to distance we mentioned in the previous section, or ensure that the

antenna orientations between the different entities are maintained to

“good” positions. In this section, we present a state of the art on the

controlled mobility for Wi-Fi-based drone networks. We also present a

few works that do not qualify completely as controlled mobility, but are

still of interest for our study settings, as they have a lot in commons with

Wi-Fi-based drone networks.
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In [53], the authors describe a strategy to exploit multipath fading for

patrolling robots networking based on the IEEE 802.15.4 communication

technology. Such robots, which are expected to be able to precisely stop

their movement, would be able to detect high SNR positions and pause

periodically its movement to take advantage of those better than average

positions, spending more time in them. The authors do not experiment

the complete system, but using real SNR fluctuation traces, they simulate

a simple scenario underlining some gain in the capacity of the obtained

channel can be expected. Such mobility patterns can hardly be expected

from drones that are subject to atmospheric disturbances, but this work

was probably one of the first to introduce a notion of “mobility diversity”.

In [82], the authors use an SDR to generate a 802.11/OFDM-likewaveform

and study the evolution of fading with regard to the position of some

ground robot mounted receiver. They arrive at the same conclusions as

in [53], describing multiple strategies available to the robot to find hot

spots by moving around its position.

In [38], the authors explore how robotic wireless networks based on Wi-Fi

can be of interest because of their ability of the nodes to move. They do

not experiment with drones, but with roomba-mounted laptops using

802.11n Intel WNIC, and the experiments are performed indoors. It is

observed thatmany high-gain locations exist that could be used to improve

the general performances of the network with an AP moving to such

locations. They confirm mobility provides more diversity in the channel

by observing an increase in the number of different throughputs they

obtain, compared to a static AP. Their experiments underline that high

gains (up to 65% for downlink and 90% for uplink) are attainable. Still,

they rely on a centimeter scale mobility which drones maintaining their

position based on GNSS measurements cannot easily achieve, and the

applicability of their findings is unknown in an outdoor scenario. This

work could be seen as a realistic test of the conclusions of [53] and [82].

In [43, 74], the authors describe amobility solution based on virtual forces

for the positioning of drones in a drone network. The communication

between the drones is done using the 802.11b/g amendments, and it is

assumed drones have access to their global position, for example using a

Global Navigation Satellite System (GNSS) system, they exchange with

neighboring nodes to be able to compute the virtual forces characteristics.

Two types of force are considered, which encompasses three different

behaviors. First, a force whose goal is to attract drones which are too far

from each other, i.e. at a distance d > d1, and to repel themwhen they are

too close, i.e. for distances d < d0, with d0 < d1. Then, another force, a

friction force, whose goal is to slow down the movement of drones whose

position is considered to be correct, i.e. for distances d0 <� d <� d1.

Multiple scenarios, involvingmulti-hops communications, are considered

and studied in simulation. The OLSR routing protocol is used. The

transmission rate considered for the simulations is constant, at 11 Mb/s.

The number of transmission rates to be considered would be small in any

way, as the considered standards are 17 years old.

In [19], the authors propose an antenna heading control system for

drones equipped with directional antenna, and test the system using two

drones. The system is mainly based on GNSS information (GPS), but also

on the RSS when GPS data are not available. The AirMax proprietary

protocol, a Time-division Multiple Access (TDMA) protocol, is used for
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the drone to drone communication, while Wi-Fi is used for air-to-ground

communication, and synchronization between the drones is provided

using the XBee communication protocol. The same authors study the

same problem in [52] but use a reinforcement learning approach instead

of the simpler algorithm presented in [19]. The main takeaways from

those works are that it is possible to do online antenna orientation on

drones to enable long-range communication links: the authors achieve

an end-to-end capacity of 800 kb/s at a communication distance of 5 km,

but this is mainly thanks to the AirMax protocol, and it is unclear if such

results would hold using Wi-Fi. We will develop this approach for Wi-Fi

networks and fleet of drones later in this thesis.

In [59, 73], the authors propose a positioning algorithm to deploy a node

(which is depicted as a ground robot) acting as a relay between a source

and a sink in a two-hop 802.11b mesh network. The algorithm tries to

equalize some metric for the first link (source to relay) and second link

(relay to sink), metric which can be the RSS, the RTT, the transmission

rate, or a hybrid metric. This algorithm is studied in the ns–2 simulator.

While themovement of the relay depends on the usedmetric, the attained

throughput seems to converge in all the different scenarios to 2Mb/s.

In [60], ns–2 simulations involving more complex network topologies,

with multiple relays or multiple sources, are studied. Depending on the

channel model used, low level metrics such as the SNR or the RSS might

need thresholds to avoid useless movements.

Controlled mobility has been explored both in simulation and in small

scales experiments for robot networks, and in particular for drone net-

works. Yet, the precision needed by some mobility solutions is not

compatible with the expected mobility of drone networks, which means

what can be done on the ground is not directly applicable to airborne net-

works. Moreover, many solutions have not been evaluated in conjunction

with Wi-Fi networks, but with other types of networks such as AirMax or

SDR based networks. When Wi-Fi is used, it is only with older versions

of the standards, relying on now deprecated simulators, whose behavior,

while probably similar with the current state-of-the-art, is less relevant

nowadays.

3.3 Tools for the performance evaluation of
drone networks

In this section, we focus on the tools andmethods available to conduct the

performance evaluation of Wi-Fi-based drone networks, which include

models, simulations, testbeds and experiments related to Wi-Fi networks

and drone networks. This serve as a state of the art of performance

evaluation of drone networks, and introduces tools that have been used

throughout the thesis. Wemainly focus on free and open-source software,

when applicable, and freely usable testbeds. While we are not exhaustive,

we try to cover the most important tools available.
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Figure 3.1: Two Intel Aero UAV and one

Crazyflie drones simulated in Gazebo.

Courtesy of Vincent Le Doze.

Simulators

Broadly speaking, we can identify two types of simulators that are of

interest for the study of Wi-Fi drone networks: network simulators and

robot simulators. Network simulators focus on the simulation accuracy of

networks: they re-implement networking stacks, from the physical layer

up to the application layers, with different accuracy degrees for each

layer. It is often possible to simulate robots in a network simulator, but the

accuracy of their movement, their dynamics and the interactions of the

drones with their environment are limited to basic functionalities. Robot

simulators, at the opposite, focus on the simulation accuracy of robots, in

particular their movement, dynamics and physics, their interactions with

their environments and their sensors. Networks can also be simulated

in certain robot simulators, but only using coarse models or simple

approximations. Recent software development tried combining classical

network simulators with classical robot simulators. Such simulators,

which we will call hybrid simulators, act as glue between networking and

robotic simulators. Unfortunately, they are often one-shot projects which

end up unmaintained and unusable over the long term.

Drone and Robot Oriented Simulators

Gazebo Gazebo is a robot simulator written in C++ developed by

Open Robotics (previously known as the Open Source Robotics Founda-

tion). The same group also develops the Robot Operating System (ROS)

middleware, which provides APIs abstracting robotic hardware and

provides standardized communication interfaces between the different

components that compose a robot such as a drone. Gazebo and ROS

are compatible with each other, which means some implementation of a

robot or drone controller in Gazebo can be with little or no modifications

on a ROS-based system. Gazebo allows for a very-detailed simulation

in a 3D environment of certain individual components of a drone such

as sensors, engines or flight controllers, as long as one develops them.

A library of common components and sensors such as a magnetometer,

an altimeter, an IMU or a camera exists, but network components are, at

best, lacking. Indeed, only two wireless network sensors exist, namely

the Wireless Transmitter and the Wireless Receiver, and they only model

a basic protocol which only broadcasts fixed-payload beacons. Beacons

are transmitted at a specific rate and at a specific frequency, and can be

received by any node in range if its receiving frequency range includes

the transmitter frequency. To determine if two nodes are in range with

each other, the simulator performs a link-budget calculation using a cus-

tom path log-distance loss model described in Equation 3.2, incorrectly

labelled “Okumura–Hata model” in the source code of the simulator. If

the received power Pr exceeds a sensitivity threshold of −90.0 dBm, the

transmitted message is correctly received, else it is discarded.

Pr � Pt +Gt +Gr −20 log
10
(4π)+20 log

10
(λ)−10n log

10
(d)− |Xσ | (3.2)

with:

Pr : Received Power, in dBm
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Figure 3.2: Fl-AIR simulation environ-

ment screenshot, with a quadcopter drone

(middle of the image) flying in an urban

environment. Extracted from the project

website.

[80]: Shah et al. (2017), ‘AirSim: High-

Fidelity Visual and Physical Simulation

for Autonomous Vehicles’

Figure 3.3: AirSim simulation environ-

ment screenshot, with a quadcopter drone

(middle of the image) flying in an urban

environment. Extracted from the project

website.

Pt : Transmitted Power, in dBm (default: 14.5 dBm)

Gt : Transmitter Antenna Gain, in dBi (default: 2.6 dBi)

Gr : Receiver Antenna Gain, in dBi (default: 2.5 dBi)

λ: Wavelength, in m (default frequency: 2442 MHz)

d: Distance between the receiver and transmitter, in m

Xσ: NormalRandomVariablewith standarddeviation of σ, in dB (default

for σ: 6.0 dB)

n: Path Loss Exponent, dimensionless (12.0 if there is at least one obstacle
between the transmitter and the receiver, 6.0 otherwise)

The fixed transmission rate and payload and the fact multiple nodes can

transmit at the same time on the same frequency without any contention

make this sensor unsuitable for drone network simulation.

Fl-AIR Fl-AIR, which stands for Framework Libre AIR is a simulation

framework mainly aimed at drone simulations, developed in the Heudi-

asyc Laboratory. It is written in C++, and relies on the Irrlicht 3D engine

[36] for the physics simulation. The goal of Fl-AIR is to have simulations

and real drones running the same codebase [79]. By running the exact

same code as actual hardware, the simulator is expected to find imple-

mentations bugs without resorting to potentially costly and dangerous

experiments, while lowering the costs of maintaining two different code-

bases. However, this increases the complexity of the simulation code

that is expected to be able to drive real drones. A library of multiple

sensors and actuators is provided in the project source code, but no

network components are available in Fl-AIR, which makes it unsuitable

to simulate drone networks “as is”. The CUSCUS simulator, described in

a few paragraphs, aims to fix this aspect. The community around Fl-AIR

is limited to a few people which means its momentum is far smaller

Gazebo’s, for example, and its development is slower.

AirSim AirSim, which stands for Aerial Informatics and Robotics Simula-

tion, is an open-source robot simulator developed by Microsoft aimed at

drones and autonomous vehicles research. Launched in 2017, it relies on

the Unreal Engine 4 (source available) or Unity (experimental support,

open-source) game engines for the physics simulation. It is compatible

with ROS and supports hardware-in-the-loop controllers like the PX4 one

[80]. AirSim focuses on the computer vision aspects of robot simulation,

leveraging the Unreal engine to simulate rich and realist environments,

supporting for example weather effects. It supports multiple sensors,

such as lidar or camera sensors that can be used to develop algorithms

such as SLAM algorithms: because of its “realism”, AirSim is also being

used to generate training data for deep learning applications. While the

simulator has a few sensors and actuators, it does not have any built-in

networking component or networking simulation (aside relying on the

one from ROS). Compared to Fl-AIR, AirSim community is bigger, and

the simulator seems more actively developed.

Network Oriented Simulators

ns-3 The ns-2 simulator had been the simulation tool of choice for years

and the de facto standard for academic research in networks when the
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[77]: Riley et al. (2010), ‘The ns-3 network

simulator’

Figure 3.4: ns-3 NetAnim component,

which can be used as an offlineGUI for ns-3

simulations, replaying traces collecteddur-

ing simulation. Extracted from the project

wiki.

[87]: Varga et al. (2008), ‘An overview of

the OMNeT++ simulation environment’

ns-3 project was announced in 2006. Developed in C++ with Python

bindings, while ns-2 was developed using a mix of Tcl and C++, ns-3

included parts of ns-2 in its code base (and still does). Overall, ns-3 is a

monolithic network simulator organized in modules, and is to be used

using its Command Line Interface (CLI), and even if there is a Graphical

User Interface (GUI), its uses are limited to simple visualization purposes.

Ns-3 has been created in order to “improve the realism of the models”

used in network simulation, according to its authors [77], and it quickly

took the place of ns-2 as the new standard for network simulation in

research. Ns-3 is a discrete event simulator, which means the simulated

system is modeled as a series of discrete events which change the state

of the system, as opposed to a simulator that would change the system

state smoothly and continuously with regard to time.

Ns-3 abstracts physical devices such as smartphones, computers or

in our case, drones, as network nodes. Such network nodes in turn

host network devices representing the networking cards such as Wi-

Fi, cellular or Ethernet networking cards. Each networking protocol

comes with its own communication channel models, often based on

the field literature. Focusing on Wi-Fi networks, the PHY and the MAC

layers are modeled in ns-3, up to the 802.11ax amendment, including the

infrastructure, the ad-hoc and themeshmodes. Higher layer protocols are

also modeled, such as ARP, routing protocols like OLSR or the IPv4 and

IPv6 protocols, as well as TCP. As Gazebo, link-budget calculations are

made to determine the signal power levels at each node of a simulation,

but ns-3 supports multiple standard path lossmodels, which are correctly

labelled, while Gazebo supports only one. The ns-3 physical layer is also

beyond comparison with Gazebo.

Ns-3 supports different mobility models for its network nodes, which

are massless point-like entities. Such models include simple waypoint

models, random walk in two and three dimensions, constant position

or acceleration models. As point-like objects, nodes have no size and no

notion of orientation. Because the mass of the nodes is not modeled, and

ns-3 has no notion of physical forces, node movements are limited to the

ones where the acceleration is a piecewise constant function. Nodes can

change direction instantly, without inertia, and no differential equation

solver is needed in the simulation. From a physical point of view, this

translates into a loss of realism when it comes to simulating drones or

robots, and using ns-3 is therefore not recommended when you need a

high physical accuracy (such as when developing a flight controller).

OMNeT++ OMNeT++ is more of a framework to create network sim-

ulators than a full featured simulator. Composed of multiple modules,

it is written in C++ and has been available since 1997 [87]. As ns-3,

it is a discrete event simulator but is less monolithic than ns-3: it is

more a collection of libraries compatible with each other than a network

simulator.

OMNeT++ comes with a dedicated model library called the INET Frame-

work which can be used to simulate network protocols, agents and their

mobility using OMNeT++. This library contains models for Wi-Fi net-

works up to the 802.11-2016 standard and higher level internet protocols

including IPv4, IPv6, TCP, UDP, and routing protocols such as AODV. It
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Figure 3.5: OMNeT++ and INET Frame-

work GUI example, extracted from the

Handover Example Animation from the

OMNeT++ Website.

[55]:Marconato et al. (2017), ‘Avens-a novel

flying ad hoc network simulator with au-

tomatic code generation for unmanned

aircraft system’

[97]: Zema et al. (2017), ‘CUSCUS: An in-

tegrated simulation architecture for dis-

tributed networked control systems’

[96]: Zema et al. (2018), ‘The CUSCUS sim-

ulator for distributed networked control

systems: Architecture and use-cases’

[6]: Ardupilot Dev Team (2016), SITL Sim-

ulator (Software in the Loop)

[9]: Baidya et al. (2018), ‘FlyNetSim: An

Open Source Synchronized UAV Network

Simulator based on ns-3 and Ardupilot’

also contains nodemobilitymodelswhich can be stationary, deterministic,

trace-based, stochastic or hybrid models.

The INET framework mobility models are similar to the one of ns-3, but

nodes have an orientation in addition to a euclidean three-dimensional

position, allowing the simulator to model phenomenons such as antenna

orientations. Path loss models widely overlap with the path loss models

available in ns-3, with the exception that obstacles are better supported

by the INET framework. OMNeT++ also comes with a powerful GUI

which can be used to follow the mobility of nodes, display obstacles,

configure simulations graphically and debug them.

Hybrid Simulators

AVENS AVENS, which stands for Aerial VEhicle Network Simulator, is a

hybrid simulator written in C++ based on OMNeT++ for the networking

part, and on the proprietary X-Plane Flight Simulator for the flight

simulation part [55]. The integration between OMNeT++ and X-Plane is

realized through the development of two custom plugins, one for each,

which exchange information during the simulation using an XML file.

Released in 2017, the simulator is single platform (Windows 8) and has

not been updated since.

CUSCUS CUSCUS,which stands forCommUnicationS-Control distribUted

Simulator, is a hybrid simulator written in C++ and based on ns-3 for

its networking part, and Fl-AIR for its drone simulation and GUI part

[97]. One of its peculiarity resides in its use of LXC containers and its

use of ns-3 tap bridge network devices. Tap devices, which are virtual

network devices in Linux, are used to connect Fl-AIR processes running

in containers with simulated network devices in ns-3. Ns-3 is then in

charge of simulating the rest of the network stack and the physical chan-

nels, connecting drones together. A module allows the simulator to use

OpenStreetMap data to create environment and proposing a custom loss

model taking into account buildings is presented in [96], but its source

code has not been made available. Released in 2018, the simulator has

not been updated since.

FlyNetSim FlyNetSim is a hybrid simulator written in python and C++

which relies on ns-3 for the networking part, and on SITL [6], a drone

simulator based on the Ardupilot flight controller. The two simulators

are connected through the use of a custom middleware using ZeroMq, a

message-passing framework [9]. As SITL is a real-time simulator, while ns-

3 is a discrete event-driven simulator, the clock synchronization between

the two simulators is not possible. The real-time scheduler of ns-3 is

used to reduce clock disparities between the two simulators, but heavy

computational simulations for ns-3 may lead to situations where ns-3

“falls behind”. To dealwith such situations, the authors propose a pausing

mechanism for SITL, but it has not been implemented. By relying on

SITL, it is possible to use its emulation mode, which allows the Ardupilot

controller running on a real drone to communicate with the simulator.

Released in 2018, the simulator only supports ns-3 version 3.27, and has
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[72]: (2017), R2lab: An open testbed for repro-

ducible networking research

[26]: (2017), Fed4Fire+: Federation for Future

Internet Research and Experimentation+

[21]: (2018), CityLab: The City of Things

Smart Cities FIRE Testbed

not been updated since except to add the option to run the simulator

without using ns-3 or network simulation.

Testbeds

Testbeds can be used to conduct experimentswith a twist: the experiments

can be repeated, replicated (theoretically), andmore easily parameterized

that more classic field experiments. Looking at testbeds that can be of

interest for drones andWi-Fi networks, we first identify testbeds focusing

on Wi-Fi networks. Drone testbeds exist, but they’re not as easy to use as

network testbeds. Indeed, because of the permanent human presence they

require replacing batteries, move drones and because how easy it is to

crash and break drones, they are mostly aimed at on-site experimentation

and are not freely accessible.

R2lab R2lab is a wireless testbed located in INRIA Sophia-Antipolis,

France [72]. It is part of the Fed4FIRE+ project, a federation of testbeds

providing “open, accessible and reliable facilities” for scientists across

Europe [26]. R2lab hosts 37 static computing nodes in an anechoic

chamber, which can be equipped with USRP or LimeSDR Software

DefinedRadio (SDR), Bluetooth, BLE, orLTEnetwork interface controllers.

All the nodes are equipped with two Wi-Fi cards, each with 3 antennas,

which are an Intel 5300 and an Atheros 93xx card. The nodes can be

remotely reserved using a web interface, and controlled using ssh and

a set of specific scripts which allow booting specific operating system

images or reboot the nodes. The Wi-Fi amendments supported by the

cards are the a/b/g versions for the Intel one, and the a/b/g/n versions

for the Atheros one. In particular, the 802.11ac amendment, on which we

focused on during the thesis, is not supported.

CityLab CityLab is a “City of Things” testbed located in Antwerp,

Belgium. It is also part of the Fed4FIRE+ project. Contrary to R2lab,

CityLab is a non isolated outdoor testbeds, which hosts 32 static nodes in

the Antwerp City in an area of approximately 500m by 500m located on

the City Campus of the University of Antwerp [21]. Similarly to R2lab,

each node can be reserved and remotely controlled. Nodes are equipped

with two Wi-Fi cards, which can be Intel or Atheros cards, supporting

either amendments up to 802.11n or 802.11ac, and with IEEE 802.15.4,

Dash 7 or LoRa network interface controllers, which are IOT oriented

protocols. Because of its proximity with the university campus, no traffic-

generating Wi-Fi tests are allowed during the day, at least, when the

impact can be significant, such as throughput tests. The CityLab nodes

are based on PC Engines APU, which are single-board x86_64 computers

aimed at network applications. The same kind of hardware was used

throughout the thesis, in conjunction with the WalT software stack.

WalT WalT is not a testbed, but a software collection that can be

used to create and manage network experiments testbeds. Developed

in the Drakkar team in Grenoble, France, WalT allows researchers to

deploy customized operating system images on nodes which can be fully

controlled remotely. The OS images are currently packaged and shared
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The Association for Computing Machin-

ery (ACM) defines repeatability as one team

reliably getting the same results from its

experiments (“same team, same experi-

mental setup”), reproducibility as adifferent

team being able to obtain the same results

using the same experimental setup (“dif-

ferent team, same experimental setup”),

and replicability as a different team being

able to obtain the same results using a

different experimental setup (“different

team, different experimental setup”) [2]

[4]: (2020), AERPAW: Aerial Experimen-

tation and Research Platform for Advanced

Wireless

through Docker and the Docker hub, which allows different WalT based

testbeds to execute the same network experiments, and, hopefully, to

reproduce and replicate the results. Whereas testbeds such as R2Lab

and CityLab are repeatable in the sense the same experiment executed

twice on the same testbed should produce similar results, their highly

specialized hardware management platform and costly deployments,

e.g. in an anechoic chamber or in situ, makes it hard to reproduce the

results elsewhere. WalT aims for cheaper deployments and reproducibility

across real environments. WalT is organized around a client/server

model, with the server hosting Linux images that will be booted using

the network on the nodes, which can be x86_64, such as PC Engines APU

or classical laptops and desktops computers, or ARM based machines,

such as Raspberry Pi.

AERPAW Aerial Experimentation and Research Platform for Advanced

Wireless (AERPAW) is an ongoing project aimed at creating a testbed for

drone networks research. AERPAW is expected to be ready to host first

experiments by January 2021, and be completely operational by January

2023 [4]. Multiple networking technologies will be supported, with SDR,

LoRa and 5G chipsets being deployed, and the possibility to bring your

own devices is also planned. Perhaps the most interesting point about

AERPAW is not the testbed in itself, but the eleven experimental scenarios

that constitute the core of the project, 6 of which involve drones:

I Scenario 3, or Fixed to Aerial Mobile: A single drone is connected

to a fixed communication infrastructure, located on a tower. The

drone is semi-static, and may change its 3D position in a limited

manner. This scenario may be used to evaluate the 3D coverage of

the fixed antenna, or produce propagation models.

I Scenario 7, or Fixed to Aerial Mobile with Predefined Trajectory: Similar

to scenario 3 but the drone is mobile and follows waypoints in

the flight area. Such waypoints can be set by the experimenter, or

chose from a library of pre-configured trajectories. This scenario

may be used to study data collection of a ground wireless sensor

network using the drone as a sink, or to studymobilitymanagement

mechanisms on the drone.

I Scenario 8, or Fixed to Aerial Mobile with Autonomous Trajectory: As in

the scenario 7, but the waypoints are not predefined anymore but

computed by an autonomous navigation algorithm, on-the-fly. The

scenario is mainly a controlled mobility, with the drones “learning”

the best trajectory tomaximize networkmetrics such as connectivity

or throughput.

I Scenario 9, or Multiple Fixed Single Mobile: Drones move in an area

covered by multiple fixed nodes located on towers. This scenario

is aimed at studying handover mechanisms for drones and drone

tracking by the multiple antennas, and in the case of multiple

drones, study resource allocation, interferences, or frequency reuse

patterns.

I Scenario 10, or Single-Fixed Multiple-Mobile: Multiple drones evolve

in an area covered by the same fixed node, located on a tower. This

scenario can be used to study ad-hoc and mesh networks, as well

as studying drones interferences.
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I Scenario 11, or Multiple-Fixed Multiple-Mobile: Multiple drones

evolve in an area covered bymultiple fixed nodes located on towers.

This scenario, the last of the AERPAW project, merges all the

previous scenarios, and aims at studying multi-hop connectivity

and long-distance millimeter-wave links.

While promising, this project cannot currently be used, but might be

in the coming years. The experimental scenarios may constitute a good

basis for common evaluation scenarios in the future.

Conclusion

Field studies of drone networks and Wi-Fi networks reflect the reality in

which they are carried out, and expecting the same level of realism in

a computer simulation would be foolish. Yet, in a non fully controlled

experimental study, the result obtained are specific to the environment

where the study was conducted, and hardware (which is especially true

for Wi-Fi networks). Even if some parameters can be controlled, for

example the distance between two communicating entities, parameters

like the weather or the overall layout of the environment can hardly be

freely controlled. Simulations, on the other hand, are more flexible and,

in theory, can be fully controlled and reproduced. Most of the time, it’s

easier and faster to set up, launch, and get the results of a simulation than

to set up, conduct and get the results of an experiment, and tweaking

the parameters to iterate over some proposed algorithm or parameters

is easier simulated than actually implemented. Of course, simulations

may be only distantly related to the reality they ought to represent, and

their accuracy heavily relies on the models and assumptions made in

developing them. Testbeds, which are automated experimental platforms,

represent a middle ground between simulation and field studies. They

allow researchers to conduct parts of experimental campaigns with the

ease of simulations, leading in greater reproducibility and flexibility for

tests. Yet, the applicability to the real world of the results obtained when

the testbeds are running in a controlled environment such as an anechoic

chamber, is unclear. And when testbeds are not running in controlled

environments, they are facing the same shortcomings as the experimental

field studies.

Focusing on drone networks, available simulators do not provide the

necessary precision, either for the simulation of the networks (for robot

oriented simulators), either for the simulation of robots (for network

oriented simulators). Glue projects trying to bridge both classes of

simulators exist, but are not really maintained up-to-date. Wi-Fi testbeds

are mostly running old hardware, and are most of the time limited to

static experiments. In any case, they seem to be not well-suited for drone

networks research requiring actually flying drones. But drone networks

experiments require particular attention to safety and legal aspects, and

are hard to set up, which is why we quickly focused on the simulation

of the components of a drone networks, as we will present in the next

chapter.
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One of the requirements of the IEEE 802.11 standard is the ability to

handle portable and mobile stations, which are respectively stations that

can move but are not communicating when moving, and stations that

can move and communicate while moving. For this purpose, the IEEE

802.11 physical layer (PHY) defines many transmission features that can

be chosen and combined in order to ensure the good receipt of data,

notwithstanding changes in the transmission channel caused by mobility

or propagation effects. In order to choose which transmission features to

use, Rate Adaptation Algorithms (RAAs) are used. In this chapter, we

focus on the “Intel” RAA (whose technical name is iwl-mvm-rs) because

it is the RAA used on all the recent Intel chipsets at the beginning of

this thesis. Nowadays, “recent” means Wi-Fi 6 and the general landscape

has evolved, especially with the introduction of OFDMA. Focusing on

the Intel hardware was not some random decision: the drones we had at

our disposal were Intel Aero Ready To Fly drones, pictured in Figure 4.1,

which are equipped with a computing board which, unsurprisingly, uses

an Intel Wi-Fi controller. My own laptop contains an Intel chipset, and

a look at the distribution of active Wi-Fi stations in the lab (excluding

access points) gives us a percentage of 30% of Intel hardware, just after

Apple which sits at 31% (for a total of 135 collected MAC addresses

and assuming most of the devices exchanging data use their real MAC

addresses). While highly skewed by the fact most of these machines

are located in a university and therefore have been purchased through

the same public procurement, we still believe understanding the inner

working of these chipsets is of general interest.

In this chapter, we first describe rate adaptation mechanisms available

in Wi-Fi networks, and in particular which rate adaptation algorithms

are implemented in the ns-3 and OMNeT++ / INET network simulators.

We then focus on how rate adaptation algorithms are implemented

in practice, especially in the context of the Linux operating system.

General documentation about the organization of the Wi-Fi stack for

Linux is scarce and dated, which is why we present an overview of this

organization in this chapter. We then focus on the Intel Rate Adaptation

algorithm, by explaining how it was reverse engineered and simulated

into the network simulator ns–3. This process was first approached

through experimentation, which then evolved to the observation of the

behavior of the Linux kernel module in charge of this rate adaptation,

through modification and instrumentation of its source code.

4.1 Rate Adaptation Algorithms in Wi-Fi
networks

Since its launch, Wi-Fi supports different “transmission rates”. Those

transmission rates are the result of the combination of multiple physical
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Infrared communication is covered by the

802.11-1997 and 802.11-1999 standards, but

is described as obsolete since the 802.11-

2007 standard, and therefore will not be

covered. We generally focus on the classi-

cal PHY, compatible with the 2.4GHz and

5GHz bands, and we will not cover exotic

PHY, for example the Directional Multi-

Gigabit (DMG), also known as Very High

Throughput (VHT) in the 60 GHz Band,

or the Television Very High Throughput

(TVHT) introduced in the 802.11-2016 stan-

dard.

1: This number of combinations can be

obtained by adding the number of combi-

nation for the OFDM, the HR/DSSS and

DSSS PHY, as it builds upon them: its

“radio portion [[...]] implements allmanda-

tory modes ” of the aforementioned PHY,

“except it uses the 2.4GHz frequencyband”

and a specific “channelization plan”.

layer transmission parameters, and they correspond to the rate at which

some parts of the transmitted frames, containing upper layer data, are

sent over the spectrum. Still, as this data is encapsulated in various

headers and undergoes various operations such as padding or forward

error correction operations, the transmission rate should only be seen as

an unreachable upper bound on the actual rate at which actual data is

transmitted over the PHY. The increase in the capacity (that is to say the

maximum transmission rate) of Wi-Fi networks, illustrated on Figure 2.1,

is mainly explained by the complexification of the physical layer of Wi-Fi,

which is illustrated by the increasing number of pages in the versions of

the standard.

While the first two versions of 802.11 supported three different PHYs,

the number of supported PHY increased for each subsequent version,

with the 802.11-2016 version supporting eight different PHY, as shown in

Table 4.1. Of course, each different PHY supports different transmission

parameters. For example, the 802.11-1997 and 802.11-1999 standards’ FHSS

and DSSS PHY each supports two different radio transmission rates, 1

Mb/s and 2 Mb/s, which can be obtained by using a two level or four

level Gaussian Frequency-Shift Keying (GFSK) modulation. In total, four

different combinations for two transmission rates are available for the

radio transmissions of 802.11-1997 or 802.11-1999.

Limiting ourselves at PHYs which only concern the 2.4 GHz and 5 GHz

bands, the OFDM, HR/DSSS and ERP PHY, introduced in 802.11-2007

(but modified since) respectively provide 24, 7 and 33
1
different combi-

nations of parameters, resulting in 20 different transmission rates. For

the HR/DSSS PHY, which operates in the 2.4 GHz band, the differences

between the different transmission rates lie in the use of the DBPSK

or the DQPSK modulation, with some optional short header. For the

OFDM PHY, which operates in the 5GHz band, the differences between

the different transmission rates lie across multiple parameters: first, the

bandwidth, or channel spacing, which can be 5 MHz, 10 MHz or 20 MHz,

second, the modulation, which can be the BPSK, the QPSK, the 16-QAM

or the 64-QAM modulations, and third, the coding rate, which takes

values in the {1/2, 2/3, 3/4} set. The ERP PHY, finally, draws from the

OFDM PHY and applies the same modulation technique, OFDM, but

this time in the 2.4 GHz band. It also relies on the DSSS and HR/DSSS

PHY.

The HT PHY, introduced in the 802.11-2012 standard, supports at least

306 combinations for 86 different transmission rates. It is based on the

OFDM PHY, but supports up to four spatial streams (with at least 4

antennas), and operates in bandwidth of 20 and 40 MHz. In order to

differentiate some parameter combinations, the PHY uses an integer

named the VHT Modulation and Coding Scheme (MCS) index which

encodes the used modulation, the coding rate, and the number of spatial

streams. The VHTMCS index range from 0 to 76, with the values ranging

from 0 to 32 encoding transmissions where the same modulation is

used on all the spatial streams (32 being only available for single stream

and 40 MHz operation), and values ranging from 33 to 76 encoding

transmissions where different modulations are used for different spatial

streams. In addition to the VHT MCS index, another parameter changes

the transmission rate: the guard interval duration, which can be short

(400 ns) or long (800 ns).
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Table 4.1: Name of the PHY supported by each 802.11 standard.

Wi-Fi Standard Modulation Classes (PHY)

1997 FHSS, DSSS, Infrared*

1999 FHSS, DSSS, Infrared*

2007 FHSS, DSSS, OFDM, HR/DSSS, ERP, Infrared* (deprecated)

2012 DSSS, HR/DSSS, OFDM, ERP, HT, Infrared* (deprecated), FHSS (deprecated)

2016 DSSS, HR/DSSS, OFDM, ERP, HT, DMG*, VHT, TVHT*

*: PHY not concerning the 2.4 or the 5 GHz bands.

VHT HT

ERP

HR/DSSS

OFDM

DSSS

Figure 4.2: Overview of the different PHYs up to the 802.11-2016 standard and their relations with each other.

Table 4.2: Correspondence between the

VHT MCS index and the modulation and

coding rate.

VHT
MCS Modulation Coding

Rate

0 BPSK 1/2

1 QPSK 1/2

2 QPSK 3/4

3 16-QAM 1/2

4 16-QAM 3/4

5 64-QAM 2/3

6 64-QAM 3/4

7 64-QAM 5/6

8 256-QAM 3/4

9 256-QAM 5/6

Finally, the VHT PHY, introduced in the 802.11-2016 standard, supports

at least 620 combinations for 218 different transmission rates. As with HT

PHY and its relation towards the OFDM PHY, the VHT PHY can itself

be seen as an HT PHY on steroids. It may support 80 MHz, 160 MHz or

80 + 80 MHz bandwidth, a new modulation is supported (256-QAM)

and the maximum number of spatial streams can go up to eight. A new

MCS index definition is introduced: the VHT MCS, which this time only

covers the modulation and coding rate, and not the number of spatial

streams, as shown in Table 4.2. In the following, we will adopt the VHT

MCS terminology (as opposed to the HT MCS one).

Let us note that newest PHYs do not mean the removal of the support

for the older PHYs, as it is mandatory for newer PHYs to implement the

older PHYs as illustrated on Figure 4.2.

While not all the combinations are mandatory for hardware vendors to

implement, because for example it does not make much sense to require a

smartphone to have 8 antennas to be able to support 8 spatial streams, at

least a few hundred transmission parameters are supported by a classical

laptop or smartphone Wi-Fi chipset, equipped with 2 or 3 antennas. In

what follows, for the sake of simplicity, we will refer to choosing a set of

transmission parameters as choosing a transmission rate, even if it is a little

erroneous as multiple transmission parameters can result in the same

transmission rate.

Choosing which transmission rate to use is important. Indeed, as a

general rule, the higher the transmission rate, the quicker it will be to

transmit data over the spectrum, so, thehigher the application throughput.

But the lower the MCS that is to say the lower the transmission rate,

all other things being equal, the bigger the transmission range. To

obtain the same Bit Error Rate (BER), and the same frame success rate,
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Figure 4.3: Frame Success Rate with regard to the SNR and the transmission rate using the NIST error model. Extracted from the ns–3

documentation.

[70]: Pei et al. (2011), Validation of OFDM

model in ns-3

[91]: Wong et al. (2006), ‘Robust rate adap-

tation for 802.11 wireless networks’

[45]: Heusse et al. (2003), ‘Performance

anomaly of 802.11b’

“The algorithm for performing rate switching is

beyond the scope of this standard, but in order

to provide coexistence and interoperability on

multirate-capable PHYs, this standard defines

a set of rules to be followed by all STAs.” [46]

[49]: Kamerman et al. (1997), ‘WaveLAN

II: a high-performance wireless LAN for

the unlicensed band’

higher MCS needs higher Signal-To-Noise (SNR) levels, as illustrated

on Figure 4.3, which has been obtained using the ns–3 simulator and

its “NistErrorRateModel” which models Additive White Gaussian Noise

(AWGN) channels according to various theoretical and experimental

works [70]. Because the IEEE 802.11 standard requires to support mobile

andmoving stations, and because the channel characteristics are dynamic,

the transmission rate needs to be dynamic as well to be able to maintain

connections in spite of mobility and channel evolutions. Of course, if one

wishes to privilege the transmission range, one can fix the transmission

rate to the lowest transmission rate supported by the considered PHY, but

this means losing the ability to useWi-Fi for higher application data rates,

and not being able to scale to more than a few stations. Indeed, lower

transmission ratesmean longer transmission time,more contention on the

wireless medium, more collisions, and worse performances [91]. Because

Wi-Fi relies on CSMA/CA, which provides an “equal long term channel

access probability” to all the STAs, choosing a lower than necessary

transmission rate will also reduce the throughput of all the other STAs

in a multiple STA network, as highlighted in [45]. And choosing a

transmission rate that is too high will only result in the inability to

efficiently communicate over the medium, as the transmitted frames will

not be able to be correctly received by the STA we are communicating

with.

Transmission rate selection, called rate switching in the standard, is done

by what is called a Rate Adaptation Algorithm (RAA), sometimes called

rate selection or link adaptation algorithm. The IEEE 802.11 standard

defines which combinations of transmission features are allowed and

forbidden, but it does not enforce any behavior regarding how these

features should be chosen, letting each Station (STA) (and ultimately,

each hardware vendor) in charge of deciding its own transmission rates.

The first RAA for Wi-Fi was probably the Automatic Rate Fallback (ARF)

algorithm, designed for the 802.11-1997 compatible controller “WaveLAN–

II” [49]. ARFmust choose between two different rates, 1Mb/s and 2Mb/s,

which both are using the DSSS technology. By default, the RAA transmits
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[49]: Kamerman et al. (1997), ‘WaveLAN

II: a high-performance wireless LAN for

the unlicensed band’

[23]: Derek (2005), Minstrel

[29]: Fietkau (2010),Minstrel HT: New rate

control module for 802.11n

2: Firmware are pieces of software embed-

ded in the controllers, running on their

internal processing units. They can often

be updated by the OS, but may need to be

cryptographically signed by the hardware

vendor, and reverse engineered as they are

mostly distributed as binaries.

[50]: Knapp (2015),Clearing the Air onWi-Fi

Software Updates

at 2Mb/s, and in case of the reception failure of the Acknowledgement

(ACK), it first retransmits the frame using a 2Mb/s transmission rate. In

case this transmission fails once again, ARF retransmits the frame at 1

Mb/s and uses a 1 Mb/s transmission rate for the subsequent frames.

ARF maintains a timer and a counter to allow itself to start using the

2Mb/s transmission rate again, which is triggered after 10 consequent

successful transmissions at 1 Mb/s, or a time-based counter whose

duration is not specified.

With every new version of the standard, and new PHYs, new rate

adaptation algorithms need to be developed to take advantage of the new

features. Thus, nearly two decades of changes in the 802.11 standards

have led to dozens of RAA proposals, sometimes generic, sometimes

tackling specific aspects of 802.11 networks such as energy consumption

or dealing with multiple antenna systems. In the Table 4.3, we list and

compare some RAAs and their characteristics. In particular, all the RAAs

implemented in the network simulators ns–3 and OMNeT++/INET are

present. However, the majority of the algorithms implemented in these

simulators are obsolete in the sense that they do not support the PHY from

recent versions of the standards, such as the HT and VHT PHYs. While

some listed algorithms have been implemented and are actually being

used in real hardware, such as ARF [49], Minstrel [23] or Minstrel-Ht [29],

most of these algorithms are either not used in commercial hardware,

or used without us knowing so. Indeed, hardware vendors generally do

not communicate on the RAA they use and leave little opportunity to

change the behavior of their devices, which are not open hardware, and

heavily rely on closed-source firmware
2
for their operation.

Reasons behind vendors refusing to provide open source firmwares

and locking down their hardware, preventing modification, are various.

One explanation is that the Federal Communications Commission (FCC)

requires hardware vendors to secure their devices “against third party

software modifications that would take [their devices] out of [their] RF

compliance” [50], which can only be realistically met by locking firmware

updates. Thus, trying to figure out what is the rate adaptation used

in some commercial controller is hard, and coming with a new RAA

algorithm and actually implementing it in real hardware is harder when

you are not partnering with the vendor.

Before going into details over the Intel Rate Adaptation Algorithm and

its “reverse engineering”, we will try to explain why, in some cases, it’s

still reasonably easy to determine what is the rate adaptation used in some

commercial controller.
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Table 4.3: Comparison of various Rate Adaptation Algorithm (RAA).

Paper
Year Algorithm Name Abbreviation Ha

rd
wa
re
Su
pp
or
t

NS
-3
OM

Ne
T+
+ I
NE

T

80
2.1
1n

80
2.1
1a
c

1997 Automatic Rate Fallback ARF ? 3 3 7 7

2001 Receiver Based Auto Rate RBAR ? 7 7 ? ?
2003 Received Signal Strength Link Adaptation RSSLA ? 7 7 ? ?
2004 Adaptive Automatic Rate Fallback AARF ? 3 3 7 7

2004 Adaptive Multi Rate Retry AMRR ? 3 7 7 7

2005 Opportunistic Auto Rate OAR ? 7 7 ? ?
2005 Full Auto Rate FAR ? 7 7 ? ?
2005 Onoe Onoe ? 3 3 7 7

2005 SampleRate SampleRate ? 7 7 ? ?
2005 Power-controlled Auto Rate Fallback PARF ? 3 7 7 7

2005 Dynamic data rate and transmit power adjustment APARF ? 3 7 7 7

2006 Robust Rate Adaptation Algorithms RRAA ? 3 7 7 7

2006 Collision Aware Rate Adaptation CARA ? 3 7 7 7

2007 Beacon Auto Rate Adaptation BARA ? 7 7 ? ?
2007 Minstrel Minstrel 3 3 7 7 7

2008 Collision Detection for Auto Rate Fallback Algorithm AARF-CD ? 3 7 7 7

2009 Minstrel-HT Minstrel-HT 3 3 7 3 3

2011 Rate Adaptation for Multi Antenna Systems RAMAS ? 7 7 ? ?
2011 Rate Adaptation using Coherence Time REACT ? 7 7 ? ?
2013 Agile Rate Adaptation for MIMO Systems ARAMIS ? 7 7 ? ?

? IdealWifi IdealWifi 7 3 7 3 3

? ConstantRate ConstantRate 3 3 3 3 3

2019 Intel Rate Adaptation Algorithm IntelRate 3 3 7 3 3

[14]: Bloessl et al. (2018), ‘Performance As-

sessment of IEEE 802.11p with an Open

Source SDR-Based Prototype’

[48]: Jiao et al. (2020), ‘openwifi: a free and

open-source IEEE802.11 SDR implementa-

tion on SoC’

4.2 Methods for in situ study of Rate
Adaptation Algorithms

Given someWi-Fi controllers for whichwe do not know the RAA, the first

thing one can try to understand the algorithm is observing its behavior.

To this end, we present multiple possible options:

I We can listen to the controller transmitted frames over-the-air, as a

third-party monitor:

• Using aWi-Fi controller, with its interface set up in themonitor

mode,which allows it to listen to all the frames one can receive,

not only the frame for which we are the designated receiver.

Such interface mode is not supported by all the controllers,

and putting the card into a monitor mode means you are

unable to use it to transmit. On Linux, this can be achieved

using the “iw dev <devname> set type monitor” command.

• Using a Software Defined Radio (SDR) in combination with

a Wi-Fi software receiver, such as the Gnuradio based “gr-

ieee802-11” [14] or the “openwifi” projects, which is based on

Field Programmable Gate Arrays (FPGA) [48].

I If we are the designated receiver of the frames, one we can lis-

ten to the received frames and their characteristics, which will

illustrate how the RAA of the sender works. Indeed, transmis-

https://doi.org/10.1002/bltj.2069
https://doi.org/10.1145/381677.381700
https://doi.org/10.1109/ICC.2003.1204534
https://doi.org/10.1145/1023663.1023687
https://doi.org/10.1145/1023663.1023687
https://doi.org/10.1007/s11276-004-4745-x
https://doi.org/10.1049/ip-com:20041022
https://sourceforge.net/p/madwifi/svn/HEAD/tree/madwifi/trunk/ath_rate/onoe/
https://www.cse.iitb.ac.in/~mythili/teaching/cs653_spring2014/references/samplerate.pdf
https://www.cs.cmu.edu/~aditya/papers/chaotic.pdf
https://doi.org/10.1007/s10776-005-0006-x
https://doi.org/10.1145/1161089.1161107
https://doi.org/10.1109/INFOCOM.2006.316
https://doi.org/10.1145/1233341.1233374
http://madwifi-project.org/browser/madwifi/trunk/ath_rate/minstrel/minstrel.txt
https://doi.org/10.1109/ISCC.2008.4625769
https://lwn.net/Articles/376765/
https://doi.org/10.1109/ICNP.2011.6089072
https://doi.org/10.1016/j.comcom.2011.01.011
https://doi.org/10.1109/SAHCN.2013.6644975
https://doi.org/10.1145/3345768.3355921
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3: Drivers are software components

which interface the hardware to the rest

of the OS, in particular to the Linux ker-

nel. They abstract hardware differences by

offering a generic API to the rest of the

Linux kernel.

sion parameters are often available to tools such as tcpdump or

wireshark, as long as one adds a virtual monitor interface to

the controller, e.g. using the “iw phy <phyname> interface add

mon0 type monitor” command on Linux. Again, this might not be

supported by all the Wi-Fi controllers.

I If we are the sender, we might try to access the decisions of the

RAA algorithm as they are made, instrumenting functions of the

driver
3
or using debug interfaces of the controller.

Each method has weak and strong points. Listening frames over the

air as a “monitor” means one is subject to the communication channel

and its imperfections: one might not be able to receive or decode all the

frames, especially since the RAA is not trying to adapt its transmission

parameters for us but for the receiver. This could mean an incomplete

or wrong picture when looking at the RAA. Using a Wi-Fi controller

to do so is cheaper than using a SDR, but this means one are bound to

the supported features of the controller, whereas we could theoretically

implement the needed feature in software in a SDR. But using an SDR

is more expensive, and requires way more work on the protocol, as no

fully featured receiver exists for VHT or even HT PHYs. Listening to

transmitted frames as the designated receiver means we only get to see

the good decisions from the RAA, or the conservative decisions: one will

only see the transmission parameters that one can decode, and not the too

complex to be received transmission parameters. Accessing the decisions of

the RAA as they are decided by the controller is probably the jack-of-all-

trade, but this means we trust the controller’s radio to actually use what

the controller decides, and accessing the interfaces of the controller might

not be an option for all the devices, as it assumes having some control

over the operating system. In any way, just listening to the transmission

parameters of a controller does not explain why it made the decision to

use these transmission parameters. This may, however, help to identify

patterns that are already known in the literature.

Although incomplete, we still present some experimental tests that led

to the study of the Intel Rate Adaptation algorithm. We started with a

simple question: how are throughput and distance related, for a single

STA connected to an AP ? To do so, we used the setup shown in Figure

4.4, with a laptop (Dell Precision 5520) using an Intel Wireless-AC 8260

WNIC running ArchLinux (Linux kernel version 4.20.7) acting as the STA

and a TP-Link TL-WR802Nv4 using a Mediatek MT7603 WNIC running

OpenWrt (Linux kernel version 4.9.73). The choice of the TL-WR802Nv4

as an access point was made because it was available (as in “one can buy

it online”) and its small form factor made it possible to embed it in a

drone. Yet, its default OS was not open enough one could install network

tools such as iPerf3 on it, which is why we had to first port the OpenWrt

operating system on the device, which involved a bit of soldering andwas

made possible thanks to the precious help of the OpenWrt community

through its online forum. Another drawback of this hardware is that it

only supports amendments up to the 802.11n one, which is why we then

stopped using it. A 20 MHz channel width was used, in the 2.4 GHz

channel band (channel 11), with an HT PHY, in a setup which allowed

up to two spatial streams to be used.

Using the iPerf3 traffic generator, we saturated the link from the laptop

to the AP using UDP, and observed the relationship between distance,
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Figure 4.4: Setup of the test

Figure 4.5: Path loss for the two ray inter-

ference and free space models. The reflec-

tion coefficient is an arbitrary R � −0.70,

the frequency is f � 2462MHz and the el-

evation of the two antennas are ht � hr �

1m, mimicking the experiment in Figure

4.4.

average transmission rate, average RSS and application throughput. The

distance was changed from 1m to 20m, in steps of 50 cm below 10 m,

and 1 m above. For each distance, 5 measurements of 30 seconds were

conducted, each measurement being separated by 5 seconds. To record

the transmission rate, we used a CSL AC1200 USB WNIC, based on

the Realtek RTL8812AU chipset, plugged into the laptop: because the

relative position of the monitoring node and the laptop do not change,

the considered RSS is therefore the one on the link from the AP to the

STA, while data is going from the STA to the AP. Given the principle of

reversibility of light, we still believe it is a good indicator of the path loss;

it also has this good property that acknowledgments are sent with overall

constant transmission rates, which makes it possible not to have to take

into account modulation dependent transmission power and sensitivity

thresholds of the hardware.

The results in terms of RSS and throughput with regard to distance are

shown in Figure 4.6. We can identify a general trend, which is the greater

the distance, the less the RSS and the obtained throughput, which is

expected. We can observe some wells and peaks in the RSS which can be

explained by the fact the direct ground reflection between the emitter and

the transmitter will interfere constructively and destructively with the

direct, line of sight ray. In Figure 4.5, we illustrate the resulting power due

to a two ray ground reflection model with reflection coefficient chosen

arbitrarily of R � 0.7 and other parameters mimicking the experiment.

We can observe some similarities with the model and the experiment,

but the comparison was not pursued further.

Looking at the throughput, the same general trend can be observed,

but the relation between the throughput and the RSS, plotted on the

left of Figure 4.7, is not as clear as we could expect. For example, for

average RSS values around −74dBm, the average throughput can vary

between around 20 Mb/s and 50 Mb/s. As the throughput is related

to the transmission rate, the relation between the average throughput

and average transmission rate is plotted on the right of Figure 4.7, as



4.2 Methods for in situ study of Rate Adaptation Algorithms 47

70

0

10

20

30

40

50

60

Figure 4.6: Evolution of the average RSS and the iPerf3 UDP reported throughput according to distance for the experiment described in

Figure 4.4.

well as the y � x line. Each point represents a single measurement of

30s and its average throughput and average transmission rate. Most

of the experiment are above the y � x line, which means they have a

higher transmission rate than throughput, which is normal. For high

throughputs, above 55Mb/s, the points are closer to this line, and for one

experiment, the average transmission rate is lower than the throughput.

This is due to the fact the monitoring device is missing some frames with

a high transmission rate (which are harder to decode), which creates some

bias in the observed transmission rate, whereas the throughput is always

reported correctly by iPerf3. Nevertheless, the average transmission

rate looks like a good predictor of the performances of this single hop

communication link, or, at least, seems more suitable than the reported

RSS.

As both the laptop and the AP supported up to two spatial streams, we

expected better performances in this simple case: even at short distances,

the average transmission rate is well below the theoretical maximum

for such hardware, which is 144.4Mb/s for a 20 MHz wide channel.

Looking at the distribution of the used MCS, which play a big role in the

transmission rate value, we observe not a single distance use HT MCS

bigger than 10, and most of the frames are sent using a HT MCS smaller

than 7, which means the use of a single spatial stream. This explains the

poor performances we observe, as using a single spatial stream effectively

caps the maximum transmission rate to 72.2 Mb/s. We illustrate those

distributions in Figure 4.8 for three distances. We can observe that only a

few MCS values are used to transmit most of the frames during the tests,

compared to the set of 16 different possible HT MCS values. This leads

us to wonder all the more about how these values, and ultimately the

transmission rates, are chosen.

After trying to pursue the “over-the-air” options for the Intel hardware

we had at hand, both using Wi-Fi cards and SDR, we ultimately started

to the study of the RAA by looking at the decision of the controller as

they are made. To explain how this was done, a bit of context on the
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Figure 4.7: Evolution of the average RSS and the iPerf3 UDP reported throughput according to distance for the experiment described in

Figure 4.4.

architecture of Wi-Fi controllers and their interactions with the Linux

operating system is needed.
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Figure 4.8: Distribution of the used HT MCS for three different distances (3.0, 9.0 and 15.0m) for the experiment described in Figure 4.4.

[5]: Anguelkov (2019), Reverse-engineering

Broadcom wireless chipsets

[68]: Nychis et al. (2009), ‘Enabling MAC

Protocol Implementations on Software-

Defined Radios.’

[14]: Bloessl et al. (2018), ‘Performance As-

sessment of IEEE 802.11p with an Open

Source SDR-Based Prototype’

4.3 Architecture of Wi-Fi Networks Controllers

Wi-Fi controllers can be considered as small computers of their own. In

[5], the authors reverse engineer Broadcom wireless controllers from the

bcm43 family, and underline their internal structures: they contain ARM

Cortex M3 or M4 chipsets, which are RISC processors, as well as Read

Only Memory (ROM) and Random Access Memory (RAM) chipsets.

Some specialized processors for signal processing and time critical opera-

tions, such as the D11 core, are also included. Given that some operations

are time critical in Wi-Fi networks, it’s expected to have specialized cores

in charge of most of the PHY covering much of the PHY Sublayer Man-

agement Entity (PLME). For example, in the Distributed Coordination

Function (DCF) procedure, the acknowledgment must be sent after a

Short Inter Frame Space (SIFS) whose duration is 16 µs in the VHT PHY,

which is not compatible with a non realtime operating system like Linux

[14, 68]. But the 802.11 standards also cover less time-critical functions,

like the functions residing in the MAC Sublayer Management Entity

(MLME), which include the association, de-association, re-association

and authentication of the STAs, and beaconing, or the functions residing

in the Station Management Entity (SME), entity in charge of controlling

and interacting with both theMLME and the PLME. For financial reasons

(from the hardware vendor point of view), it makes sense to cover these

functions in the operating system as this means smaller needed RAM

and ROM in the Wi-Fi controller, and, ultimately, smaller costs.

Thus, it is possible to differentiate two families for the architecture ofWi-Fi

controllers: SoftMAC and FullMAC (also known as HardMAC) controllers.

FullMAC controllers implement the MLME and SME in the controllers,

providing high level APIs to the OS, while SoftMAC controllers let the

OS implement these functions, providing lower level APIs. This also

allows a single implementation, the OS one, to drive multiple controllers

from various hardware vendors, which often brings more flexibility: it

is for example easier to update Linux source code than to update the

firmware of each the controllers supported by Linux. SoftMAC devices,

on the downside, are probably less energy efficient and some of their

functions have a higher latency, as they imply a communication between

the controller and the operating system.

To complicate the situation, hybrid SoftMAC and FullMAC controllers
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SDIO

Wireless Controller

NetworkManager, wpa_supplicant, iw, hostapd, …

nl80211 (API)

cfg80211
 (module)

mac80211
(module)

FullMAC Driver
(module)

SoftMAC Driver
(module)

ieee80211_alloc_hw
(…, ieee80211_ops)

ieee80211_rate_control_register
(rate_control_ops)

wiphy_new
(cfg80211_ops, …)

wiphy_new
(cfg80211_ops, …)

Kernel-Land

User-Land

pci_register_driver
(pci_driver)

module_usb_driver
(usb_driver)

(…)

register_netdevice
(net_device)

register_netdevice
(net_device)

RAM ROM CPU Radio

Control Paths
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SoftMAC drivers.
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PCI drivers.
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rate_control_ops = {
    .name: "Name of the RAA"
    .tx_status_ext: "Transmission Status Callback"
    .get_rate: "Get Transmission Rate for Frame"
    […]
}

Figure 4.9: Overview of the organisation of the Wi-Fi Linux stack for the control path.

exist, relying for some functions on the OS and for some other functions

on their own implementations, and some controllers can work both as

SoftMAC controllers or FullMAC controllers, depending on the used

driver or firmware. The general organization of the Wi-Fi Linux stack is

shown on Figure 4.9, with the nl80211 public API at the top, available to

userspace tools, kernel modules running in kernelland below, and the

specific controller API at the bottom.

The MAC implementation of the Linux kernel for SoftMAC devices

is called “mac80211”, and provides two RAA implementation which

can be used by SoftMAC controllers: Minstrel and Minstrel-Ht. There

source codes are available in the ./net/mac80211/rc80211_{minstrel,

minstrel_ht}.c files. To determine if a Wi-Fi controller compatible

with Linux uses Minstrel or Minstrel-Ht, we must first determine if

the controller is SoftMAC, and if it is, determine if it actually uses the

provided RAA (which it might decide to not to). To do so, it is possible to

read the controller driver source codes, available, unlike firmware source

codes, in the ./drivers/net/wireless/ path in the Linux source tree.

Such drivers take the form of Linux modules which can be compiled

into the Linux kernel, or dynamically loaded when the corresponding

hardware is detected.
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4: Most of the Linux kernel is written in

C and assembly, but partial support for a

new programming languages, Rust, might

be added in late 2020.

4.4 Reverse Engineering of the Intel Rate
Adaptation Algorithm

Looking at the Intel hardware drivers, available in the Linux source

tree in the path ./drivers/net/wireless/intel/, we can observe that

the corresponding drivers, namely ipw2x00, iwlegacy and iwlwifi, are all

SoftMAC drivers. Focusing on IwlWiFi, which powers recent Intel Wi-Fi

controllers, one can observe that it does not rely on the mac80211 RAAs,

but instead comes with its own algorithms: Iwl-Agn-Rs and Iwl-Mvm-

Rs, the former being un-maintained, and limited to HT PHY, and the

latter being maintained and used with the VHT PHY “Mvm” hardware.

Fortunately, the RAAs are implemented in the driver, which means one

can read their source codes and try to understand them.

In the task of understanding the inner workings of the Iwl-Mvm-Rs, two

files and their headers are of interest
4
:

I The ./mvm/rs.c and ./mvm/rs.h files, which contain the actual

implementation of the RAA (or “rate scaling”, hence the filenames).

According to the SLOCCount tools, these files contain around 3500

source lines of code. They also implement debug functions, which

can be used through the Linux debugfs, a special RAM based file

system usually mounted at the /sys/kernel/debug/mountpoint

which allows users to interact with low level functions of the Linux

kernel.

I The ./iwl-debug.h header, which lists the debug options one can

use when loading the iwlwifi module, which can for example

cover the tracing of some parameters in the system log.

Accessing the RAA decisions

In order to access the RAA decisions as they are made, one can load the

iwlwifimodule with the debug option IWL_DL_RATE, corresponding to

a debug mask of 0x00100000 according to the aforementioned file, which

enables the debug output in the system log, which can be accessed using

the dmesg command:

1 # modprobe iwlwifi debug=0x00100000

2 # dmesg | tail

3 [...] I __iwl_mvm_rs_tx_status Tx idle for too long. reinit rs

4 [...] I rs_rate_scale_clear_tbl_windows Clearing up window stats

5 [...] I rs_drv_rate_init LQ: *** rate scale station global init

for station 0 ***
6 [...] I rs_drv_rate_init LEGACY=FFF SISO=1FD0 MIMO2=1FD0 VHT=0

LDPC=0 STBC=0 BFER=0

7 [...] I rs_drv_rate_init MAX RATE: LEGACY=11 SISO=12 MIMO2=12

8 [...] I rs_get_initial_rate Best ANT: A Best RSSI: -47

Reading the ./mvm/rs.c file should theoretically be enough to under-

standhow theRAAworks, but nohigh level description or documentation

on the RAA existed. Thanks to a combination of tracing, in part by mod-

ifying the source code of the driver, and over-the-air monitoring, and

reading the source code, we managed to understand the Iwl-Mvm-Rs

RAA, which is now presented.
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5: The driver source code mentions the

HE_SISO and HE_MIMO mode for HE

PHY (introduced in the 802.11ax amend-

ment), but the RAA for this mode is actu-

ally done in the firmware

Transmission parameters managed by Iwl-Mvm-Rs

The Iwl-Mvm-Rs Rate Adaptation Algorithm (RAA) takes care of manag-

ingmultiple transmission parameters. It is aimed at hardware supporting

up to 2 antennas, supporting up to 2 spatial streams, but we believe the

same techniques could be applied for hardware with more antennas or

more spatial streams.

Transmission Mode First, Iwl-Mvm-Rs decides which transmission

“mode” to use. These modes represent the combination of a specific PHY

family (legacy or not legacy) and the number of supported spatial streams

when applicable
5
:

I the LEGACY mode, which corresponds to a OFDM PHY (when

operating in the 5GHz band) or a ERP PHY (when operating in the

2.4 GHz band);

I the SISO mode, which corresponds to a single spatial stream HT

or VHT PHY;

I the MIMO2 mode, which corresponds to a two spatial stream HT

or VHT PHY;

More generally, Iwl-Mvm-Rs has to decide which PHY to use for its

transmissions, which can be the ERP or the HT PHY in the 2.4 GHz, and

the OFDM, the HT or the VHT PHY in the 5 GHz band. In practice, Iwl-

Mvm-Rs chooses the best PHY available: if the VHT PHY is supported by

the STA, it uses it, else, it uses the HT PHY. If both the HT and VHT PHY

are unsupported, it uses the ERP PHY or the OFDM PHY depending on

the band.

Transmission Rate or MCS index For legacy modes, Iwl-Mvm-Rs

chooses which transmission rate to use, which differ depending on the

used band:

I For the 5 GHz band, it supports the 6, 9, 12, 18, 24, 36, 48 and 54

Mb/s transmission rates (OFDM PHY);

I For the 2.4 GHz band, it additionally supports the 1, 2, 5.5, and 11

Mb/s (ERP-DSSS and ERP-CCK PHY);

For non-legacy modes, Iwl-Mvm-Rs chooses which MCS index to use for

the transmissions (we use the VHT MCS definition, as the driver does,

which means they are comprised between 0 and 9).

Antenna Configuration For single spatial stream modes, Iwl-Mvm-Rs

chooses which antenna to use, identified by the letters A, B as it is suited

for hardware using up to two antennas. For two spatial stream modes,

it does not choose for any antenna configuration as it implies using the

two available antennas.

Channel Width Iwl-Mvm-Rs chooses which channel width, or band-

width, to use when communicating, which is 20 MHz for the legacy

modes, or 20, 40, 80 or 160MHz for the non legacymodes.When transmit-

ting in a non legacy mode, it uses the maximum bandwidth supported

by the recipient.
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6: For legacy transmission modes, the

guard interval duration is fixed.

Guard IntervalDuration Iwl-Mvm-Rs chooseswhether to use an Short

Guard Interval (SGI) or an Long Guard Interval (LGI) when the mode is

not a legacy mode.

LDPCandSTBC Iwl-Mvm-Rs enablesLow-DensityParity-CheckCodes

(LDPC) and Space-Time Block Code (STBC) if the recipient STA support

them, which assumes it is a HT or VHT STA.

Transmission Power Control In some very specific cases, Iwl-Mvm-Rs

performs transmission power control, or adaptation, trying to reduce its

default transmission power.

A-MSDU and A-MPDU Iwl-Mvm-Rs decides whether to enable Ag-

gregation of Service Data Unit (A-MSDU) and Aggregation of MPDU

(A-MPDU).

Algorithm Description

Iwl-Mvm-Rs has two main components:

I MCS Scalingwhich changes the MCS index, trying to maximize

the “throughput” (or changing the Transmission Rate, in case of

legacy modes).

I ColumnScaling,which changes the column,which is a combination

of transmission mode, guard interval duration when applicable
6
, and

antenna configuration parameters.

The Iwl-Mvm-Rs RAA interleaves MCS Scaling phases and Column

Scaling phases, forming what is called a “search cycle”, as illustrated

on the left part of Figure 4.10. The algorithm starts with the lowest

transmission rate, which has the best reliability, which corresponds to

a 1 Mb/s rate in both the 2.4 GHz and 5 GHz bands, but with different

PHY.

No data is generated in order to perform rate adaptation: only frames

that are received from the upper layers are transmitted, which means the

rate adaptation algorithm makes progress only when data is transmitted.

When a frame needs to be transmitted, it is transmitted according to

the set of transmission parameters currently chose by Iwl-Mvm-Rs, but

Iwl-Mvm-Rs is not actively involved in the transmission. Rather, Iwl-

Mvm-Rs receives the results of the transmissions from the lower layer,

the transmission status, e.g. “transmission with the set of parameters S
succeeded, after N retries” or “transmission with the set of parameters

S′ failed”, and makes its decision based on those statuses.

Thus, the MCS scaling and column scaling are only executed when some

transmission status has been received.

Column Scaling starts when theMCS Scaling phase chooses not to change

MCS (or transmission rate) after the reception of a transmission status.

The alternation of MCS Scaling and Column Scaling continues until all

the columns have been tried, which means the end of the search cycle
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Figure 4.10: Flowchart of the different states of Iwl-Mvm-Rs (left) and example of sequence of decisions made by the Iwl-Mvm-Rs (right).

and the MCS scaling phase runs until the beginning of a new search

cycle.

Depending on the band (2.4 or 5 GHz) used for the communications,

which is not something the RAA chooses (for example, some APs are

only using a single band), not all the PHY can be used. If the band is

2.4 GHz, then the VHT PHY cannot be used, and if the band is 5 GHz,

then the ERP PHY cannot either. As the guard interval duration is not

tunable for the legacy transmission modes, the number of valid columns

is further reduced.

MCS Scaling The MCS index (or transmission rate, in the case of a

legacy mode) is the only parameter that can be changed by the MCS

Scaling component. Given a specific column c which is currently in use

for the transmissions, the MCS scaling component can take one of the

following decisions: lowering the MCS index, raising the MCS index, or

keep using the currentMCS index. The decision ismade in a deterministic

manner, according to the MCS scaling internal data structures values,

which are illustrated in Table 4.4.

The MCS Scaling internal data structure include, for each MCS index i
(in column c):

I Tmax[i , c], the maximum theoretical throughput for MCS index i
in column c;

I Nsuccess[i , c], the number of frames successfully transmitted at the

MCS index i in column c;
I Nfailure[i , c], the number of frames unsuccessfully transmitted at

the MCS index i in column c;
I SR[i , c], the success ratio of the transmitted frames for the MCS

index i in column c, defined by:

SR[i , c] �
Nsuccess[i , c]

Nsuccess[i , c] + Nfailure[i , c]
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I Tmeasured[i , c], the “measured throughput” for the MCS index i in
column c, defined by:

Tmeasured[i , c] � SR[i , c] ∗ Tmax[i , c]

Those data structures are updated whenever a new transmission status

is received. Multiple cases can be distinguished, depending on whether

the frame was aggregated or not:

I If the frame was not aggregated: the Nsuccess of the successful

transmissions and the Nfailure of the unsuccessful transmissions

are updated with the exact number of times they were used for the

transmission.

I If the frame was aggregated using A-MPDU:

• If a block acknowledgment was received, increase the Nsuccess

by the number of correctly received MPDU and increase

Nfailure by the number of incorrectly received MPDU;

• If no block acknowledgment was received, increase Nfailure

only by one, to avoid penalizing too much the MCS for a

single missed block acknowledgment.

The values for the maximum theoretical throughput for the MCS indexes,

Tmax, are hard-coded into tables for each MCS index i, each bandwidth

bw (20, 40, 80 or 160 MHz), each number of spatial streams (1 or 2), for

the two possible guard interval durations (SGI or LGI) and for the two

possible state of A-MPDU aggregation (A-MPDU enabled or disabled).

The “measured” throughputTmeasured[i , c] for aMCS index i is computed

by multiplying the success ratio SR[i , c] of up to the last 62 frame

transmissions at the MCS index i, with the theoretical throughput

Tmax[i , c] for this MCS index. At least 8 successful transmissions or

3 failed transmissions are required to compute the success ratio: if

either Nfailure[i , c] < 3 or Nsuccess[i , c] < 8, SR[i] and Tmeasured[i , c] are
undefined (None).

The definition of Tmeasured means it is not exactly a measured throughput,

as it does not take into account the size of the transmitted frames, but

more of an equivalent, in terms of throughput, of a frame success ratio.

In the implementation of Iwl-Mvm-Rs, all the computations are done

in fixed point: throughput are computed using integers between 0 and

12800, as well as percentage. The null (0 Mb/s) throughput is mapped

onto 0, while the maximum supported throughput is mapped onto 12800.

The correspondence is not a one-to-one correspondence with the values

present in the standard, and we observed multiple commits (in the Linux

source tree) updating some hard-coded Tmax values. This means the Tmax

values might actually represent the real performances of Intel hardware,

and not the values from the standard.

If we assume the current used MCS index is i, in column c, the decisions
made by MCS Scaling are the following:

1. if SR[i , c] < 15%, or Tmeasured[i , c] � 0, then i ← i − 1

2. else:

a) if Tmeasured[i − 1, c] � None and Tmeasured[i + 1, c] � None

b) or ifTmeasured[i−1, c] ≤ Tmeasured[i , c] andTmeasured[i+1, c] �
None
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Table 4.4: Illustration of the internal data structure of the MCS Scaling algorithm (c � 2 or c � 3, bw � 20MHz, LGI, i � 4)

MCS index i Tmax[i , c] Nfailure[i , c] Nsuccess[i , c] SR[i] Tmeasured[i , c]
8 216 0 0 None None

7 202 0 0 None None

6 193 0 0 None None

5 183 0 0 None None

4 159 0 6 None None

3 124 3 7 70% 87

2 102 0 8 100% 102

1 76 1 8 88.8% 67

0 42 0 8 100% 42

c) or if Tmeasured[i + 1, c] ≥ Tmeasured[i , c]
then i ← i + 1

3. else, if Tmeasured[i − 1, c] ≤ Tmeasured[i , c] and Tmeasured[i + 1, c] ≤
Tmeasured[i , c], then i ← i

4. else, if SR[i , c] ≤ 85% and Tmax[i − 1, c] ≥ Tmeasured[i , c] and:
a) Tmeasured[i − 1, c] ≥ Tmeasured[i , c]
b) or Tmeasured[i − 1, c] � None

then i ← i − 1

5. else, i ← i

which can be reformulated as:

1. if the success ratio is too small (< 15%) or themeasured throughput

is zero, decrease the MCS index;

2. else:

a) if the measured throughputs with the lower and higher adja-

cent MCS indexes are unknown;

b) or the measured throughput with the lower adjacent MCS

index is worse and the measured throughput with the higher

adjacent MCS index is unknown;

c) or the measured throughput with the higher adjacent MCS

index is better;

increase the MCS index;

3. else, if the measured throughputs with the lower and higher

adjacent MCS indexes are worse,maintain the MCS index;

4. else, if the success ratio is lower than 85% and the lower adjacent

MCS index throughput can theoretically beat the current measured

throughput, and:

a) if the measured throughput with the lower adjacent MCS

index is better;

b) or the measured throughput with the lower adjacent MCS

index is unknown;

decrease the MCS index;

5. else, maintain the MCS index.

Column Scaling The column scaling component is in charge of manag-

ing the column,which is a combination of transmissionmode, guard inter-

val duration, and antenna configuration parameters. Available columns

are listed in the Table 4.5. During each search cycle, the column scaling
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Table 4.5: Columns used by the column scaling component in the Intel Iwl-Mvm-Rs.

Column Index c Column Name Antenna Configuration Guard Interval Next Columns colnext(c)
0 LEGACY_ANT_A A LGI [1, 2, 6]

1 LEGACY_ANT_B B LGI [0, 3, 6]

2 SISO_ANT_A A LGI [3, 6, 4, 0, 1]

3 SISO_ANT_B B LGI [2, 6, 5, 0, 1]

4 SISO_ANT_A_SGI A SGI [5, 7, 2, 0, 1]

5 SISO_ANT_B_SGI B SGI [4, 7, 3, 0, 1]

6 MIMO2 AB LGI [2, 7, 0, 1]

7 MIMO2_SGI AB SGI [4, 6, 0, 1]

component will try to find the best column, and will maintain a set

colvisited of the visited column indices.

Iwl-Mvm-Rs starts in the column with the lower possible column index,

which is most of the time the LEGACY_ANT_A column, i.e. c � 0 (but

legacy modes might be disabled by some STAs), and starts executing

the MCS Scaling phase. At this point, colvisited � {0} (or the index of the

starting column). When the MCS Scaling phase converges, that is to say

the MCS index i is kept constant, the column scaling starts searching for

a new column.

To knowwhich columns to try, each column c has a list of “next columns”

colnext(c) that will be tried in the order of the list. For example, the next

columns for the column c � 0 are the columns 1, 2 and 6, as shown on

Table 4.5.

A column c′ ∈ colnext(c) is tried when:

I All the columns c′′ ∈ colnext(c) such that c′′ < c′ have already been

tried;

I c′ has not been visited during the current search cycle:

c′ < colvisited

I c′ can theoretically beat the currentmeasured throughputTmeasured[i , c]
(otherwise it is skipped and added to colvisited):

max

i′
(Tmax[i′, c′]) > Tmeasured[i , c]

Trying a new column c′ means switching to this column and trying a

specific MCS index in the column, and adding c′ to the colvisited set. The

initial starting MCS i′ index in the new column c′ is chosen according to

the success ratio:

I if it is high enough, i.e. SR[i , c] ≥ 85%, i′ is the smaller MCS index

whose theoretical throughput Tmax[i′, c′] is higher than the current

theoretical throughput Tmax[i , c],
I otherwise, i′ is the smaller MCS index whose theoretical through-

put Tmax[i′, c′] is higher than the current measured throughput

Tmeasured[i , c].

If Tmeasured[i′, c′] ≥ Tmeasured[i , c], the column scaling algorithm stops

(which means c′ keeps being used) and the MCS scaling component

starts again in the new column, using the data already gathered, which

is illustrated by the green arrow on Figure 4.10. Otherwise, the column
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scaling component switches back to the old column c and executes the

MCS scaling component again, as illustrated by the red arrow on Figure

4.10. In any case, the statistics of the MCS scaling of the column that

was not chosen are reset, that is to say the statistics of the old column if

the tried column is better, or the statistics of the tried column if the old

column is better.

New Search Cycle At some point, all the columns have been tried and

one “final” column has been found, which marks the end of the search

cycle. MCS Scaling runs in this final column until the start of a new search

cycle, at which point the set of visited columns colvisited is re-initialized,

marking only this final column as visited.

A new search cycle is triggered when:

I too many frames have failed (160 in legacy, 400 otherwise) since

the beginning of the previous cycle;

I too many frames have succeeded (400 in legacy, 4500 otherwise)

since the beginning of the previous cycle;

I too much time has been spent after the end of the previous search

cycle. The maximum time between two consecutive cycles is set to

5 seconds.

Aggregation A-MSDU, which wraps multiple MSDUs in a single

MPDU and therefore in a single Wi-Fi frame, is only available for non-

legacy modes. It is enabled or disabled by the MCS scaling algorithm

when it makes a decision about the MCS index. To be enabled, the MCS

index has to be greater or equal to 5, and the MCS scaling decision has to

be either maintaining the MCS index, or increasing the MCS index. In all

the other cases, A-MSDU is disabled. A-MPDU, which wraps multiple

MPDUs in a single PPDU and therefore in a singleWi-Fi frame, is enabled

on a per-hardware queue basis, when the number of frame per second

exceeds 10 and depending on the traffic identifier of the data: real-time

data, such as voice over IP, will not be aggregated using A-MPDU if its

traffic identifier identifies it correctly.

Retry Chain When frames are not acknowledged, and not using A-

MPDU, they are retransmitted. Depending on the original set of trans-

mission parameters, Iwl-Mvm-Rs tries to retransmit frames failing to be

acknowledged with different transmission rates in order to increase the

delivery probability. The “retry chain” allows frames to be retransmitted

up to 14 times, for a total of at most 15 transmission tries for a single

frame. The first re-transmission uses the same transmissions parameters

as the original frame, the next 4 re-transmissions use the lower two MCS

indexes in the same column, and the ones after change the used column

and use decreasing MCS indexes and alternating antennas.

Conclusion Iwl-Mvm-Rs tackles rate adaptation by moving continu-

ously over the MCS ladder, which is in contrast with the behavior of

e.g. Minstrel which samples arbitrary rates. While other RAA may rely

on randomness for their decisions, the Intel RAA makes deterministic

choices based on a few thresholds. Its behavior can be easily predicted,
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within the limits of what can be predicted about the channel, whereas

performances for RAA relying on randomness are more difficult to pre-

dict. Many thresholds or counters seems to be chosen arbitrarily. Indeed,

their values seem too round to have been chosen in another way. Given

the difficulty to completely change one RAA for another, in modern

hardware, there is room for improvement in the choice of such constants

which could be tinkered without much effort, and studied in situ or in

simulation. Given the complexity of such algorithm, our first reflex is to

try to study it in simulation, and observe its behaviors in a controlled

environment.

4.5 Simulation of the Intel Rate Adaptation
Algorithm

The algorithm has been implemented as a Very High Throughput (VHT)

low-latency WifiManager in the ns–3 simulator. The choice of the ns–3

simulator for this work is driven by multiple reasons:

I ns–3 is currently the network simulator supporting the most RAA,

as illustrated by the comparison in Table 4.3.

I ns–3 is the de facto standard for the simulation of Wi-Fi networks:

implementing this RAA in ns–3 means this work can be reused by

many (hopefully).

I The use of a network simulator as ns–3 allows us to better illustrate

the relations between the whole protocol stack, including TCP/IP,

and the RAA, which might not be easily done when developing an

ad-hoc simulator in for example Matlab or Python.

As the language used to implement the manager algorithms in ns–3 is

C++, one could have blindly translated the rate adaptation algorithm of

the driver code from C to C++ and simulate the behavior of Iwl-Mvm-Rs.

Still, many parts of the driver code have only housekeeping functions

for the underlying hardware, such as catching unexpected bugs or re-

synchronizing the state of the rate adaptation algorithm that runs in the

kernel with the state of the WNIC hardware.

As these behaviors should not happen in a simulator, the RAA in the

simulator has been re-implemented using the skeleton of the RAA in

the Intel driver, but is not a one-to-one correspondence. The number

of source lines of code of the simulated RAA is thus cut by more than

two-thirdswith regard to the driver code: according to the sloccount utility,

the number of line of code of our implementation is 834, to compare to

the 3204 lines of the original.

The simulation covers most of the algorithm but ignores some part of the

original RAA for the sake of simplicity. First, it blindly enables A-MPDU

aggregation when possible, as we assume no real-time traffic will be

sent, and that the number of frames per second exceeds 10. Then, the

retry chain does not use decreasing transmission rates but instead uses

the current transmission rate. As re-transmissions of lost MPDUs in a

A-MPDU frame are not made using this retry chain because missing

MPDUs are resent as a part of the next A-MPDU, and as the first re-

transmission rate used in the retry chain is the original transmission rate,
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we believe this simplification introduces no major changes in the results

of our simulations.

The algorithm is also only suited for WNIC with at most two antennas

that support at most two spatial streams, as this is the only hardware

supported by the Intel IwlWifi/Mvm driver. Thus, integrating this RAA

as is to the ns–3 upstream repository is not currently desirable, as it would

not be usable in all simulations. From this point of view, proposing a

more generic algorithm based on the same principles could be useful,

but it remains to be done.

Validation In order to validate the behavior of the simulated code, we

have compared the decisions of the rate adaptation algorithm with the

decisions of a real piece of hardware, the Intel Corporation Wireless 8260

WNIC, in different situations. To get easy access to the decisions made by

theRAAon aLinux system, one can load the IwlWifiLinux kernelmodule

with the option ’debug=0x00100000’, which enables debug messages

about the rate adaptation process inside the kernel log (accessible using

the ’dmesg’ command). Multiple patterns observed over-the-air are

correctly reproduced in the simulator.

On Figure 4.11, we compare two ns-3 simulator traces with two Over-The-

Air (OTA) captures made using a device in monitoring mode. The left

graph is constructed by tracing the transmission rates at the start of a

simulation, and by extracting the transmission rates of a capture made

after an inactivity period longer than 5 seconds. It presents a specific

pattern of the Iwl-Mvm-Rs algorithm, which is to transmit frames in

legacy rates in steps of approximately 8 frames: 6Mb/s, then 9Mb/s,

12Mb/s, etc. To create the right graph, the computer equipped with the

Intel WNIC saturated the card with a UDP stream generated by the

iPerf3 tool, and a UDP generator was used in NS-3. One can observe

regular patterns that are spaced by more than 4500 frames, which is

the number of successful frames needed by the algorithm to trigger a

new search cycle. In these situations, the search is not successful as the

algorithms (both in simulation and in the hardware) finally come back to

the previous transmission rate. The differences in the radio environment

leads Iwl-Mvm-Rs to an apparent different behavior when compared to

the simulator trace, but this is only due to the simplifying assumptions

made to construct the simulation environment. While these simple

comparisons are by no mean a proof that the algorithm implemented in

ns-3 is the exact same algorithm than the one implemented in the Linux

kernel, it allows us to underline its realism.
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Figure 4.11: Comparison of the behavior of the simulated RAA and the RAA running on real hardware. Left graph is taken at the start of

the algorithm, while right graph is taken when saturating the link.

4.6 Conclusion

In this chapter, we explained howwe reverse engineered the RAA used in

most Intel devices, and in particular in Intel Aero drones and presented

the algorithm for the first time. If we were to argue to correctly model

or simulate Wi-Fi networks in general, you need to correctly model or

simulate each of their components, then describing this algorithm in a

high level language is a step in the good direction. Stepping back, we can

make a few comments about Iwl-Mvm-Rs.

First, and the reading of the previous parts should have convinced you,

Rate Adaptation Algorithm are complex pieces of software that inherit

of the complexity of the 802.11 standards. New features are regularly

added to the 802.11 standard, but few to none old or unused features are

removed. The upside is that it is still possible to use a fifteen-year-old

Wi-Fi device in 2020, the downside is that this complexity has to be

managed, and represents, in my opinion, a technical debt that could be

ditched.

Having tens of parameters taking a few values each means the search

space for the best transmission parameters cannot be covered exhaustively

in a reasonable amount of time, so smarter solutions are needed. While

the Iwl-Mvm-Rs RAA seems to be reasonably efficient at this task – after

all, it’s used by at least tens of millions of devices worldwide – its global

structure and inner working looks a bit simplistic. Many thresholds seem

to be chosen arbitrarily, e.g. success ratios of 15% or 85%, and only a few

minor changes were made to the algorithm in the past years, while there

is probably room for improvement.

Before our work of the algorithm, Iwl-Mvm-Rs was not described in the

scientific literature, while still being used in real hardware.

In the next chapter, we will describe two well known rate adaptation

algorithms, Minstrel-Ht and IdealWifi, and compare their performances

in simulation in the context of drone networks.
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Having described the Intel RAA, Iwl-Mvm-Rs, we wanted to study

its performances in scenarios related to drone networks. Would it be

suitable for drone-to-drone airborne communications ? Would it be fast

enough to react to changes in the channel and maintain connectivity

? Having implemented the RAA in the ns–3 simulator, we can easily

compare it to other RAAs in simulation. In this chapter, we therefore

use the network simulator ns–3 in order to evaluate and compare the

performances of three different rate adaptation algorithms, namely Iwl-

Mvm-Rs, Minstrel-HT and IdealWifi. After describing the IdealWifi

and Minstrel-HT algorithms, we compare the performances of the three

algorithms using three different simulation scenarios which illustrate the

behavior of such algorithms. In particular, tomeasure the adaptability and

the responsiveness of these algorithmswe design one simulation scenario

involvingnodemobility or sudden changes in the communication channel

characteristics, one scenario where the transmission conditions do not

change, acting as a baseline simulation, and one scenario involving a two

hop communication link.

5.1 Minstrel-HT and IdealWifi

The network simulator ns–3 supports multiple RAAs, as already stated

in Chapter 4 and illustrated by Table 4.3, but only a few are compatible

with the latest published standard and support VHT PHY features,

for example. They are ConstantRate, which uses constant transmission

parameters, IdealWifi and Minstrel-HT, which we will describe in a few

paragraphs.

While ConstantRate and IdealWifi can be understood pretty quickly, for

example by reading the source code of the implementation in the ns–3

source code, literature refers to Minstrel-HT by linking to the original

commit [29] introducing it in the Linux Kernel source code for HT PHY,

as it is one of the two algorithm (with Minstrel) implemented in the

mac80211 component. This is problematic, as the algorithm has since

evolved to support VHT PHY in the Linux kernel, as well as in ns–3,

which means this citation is not really up-to-date with neither simulation

nor the state of the actual algorithm. While it is true Minstrel (which

has been extensively studied) and Minstrel-HT share a lot, they still

behave differently and Minstrel-HT deserves to be described. Originally

disjoint algorithms, more and more functions of Minstrel and Minstrel-

HT have beenmutualized in the previous decade, mainly to simplify code

maintenance. As a result, even Minstrel behavior has been changed.
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Table 5.1: Organization of the different

transmission groups used by Minstrel-HT.

The groups are sorted by bandwidth, then

by the guard interval duration, then by

the number of streams.

Group

Index

PHY Bandwidth

Guard

Interval

# Spatial

Streams

0

HT

20 MHz

LGI

1

1 2

2 3

3 4

4

SGI

1

5 2

6 . . .

7 40 MHz

. . .

15 HT 40 MHz SGI 4

16 CCK

17

VHT 20 MHz LGI

1

18 2

. . .

40 VHT 80 MHz SGI 4

Minstrel-HT

For stations not supporting the HT or VHT PHYs, Minstrel-HT falls back

to the classical Minstrel algorithm. In any other case, Minstrel-HT has its

own behavior (when compared toMinstrel), but some data structures and

functions are still shared with Minstrel, at least in the Linux source code.

For the description of Minstrel-HT in this chapter, we focus on hardware

supporting multi-rate retries, which means a failed frame can be sent

with other rates, but the Minstrel-HT RAA also supports hardware not

supporting multi-rate retries.

In Minstrel-HT, the transmission parameters are organized into groups

which are a combination of number of streams, bandwidth, and guard

interval duration (SGI or LGI), as depicted in Table 5.1, with each group

containing multiple VHT MCS values. In order to choose which trans-

mission parameters to use, Minstrel-HT maintains a statistics tables

which contain data about the number of transmission attempts, and

transmission successes for each VHTMCS in each group. Those statistics

are updated for every new transmission status coming from the lower

layer, that is to say every time an acknowledgment has been received

correctly, or not received in a timely manner.

The RAA also maintains other statistics, which are not recomputed or

updated for every transmission status received from the lower layer, but

only when more than 50 ms have elapsed since the previous update.

One of the reason behind this is that the computations involve divisions,

which is too computationally expensive to be done for every received

transmission status. Such statistics are the average number of MPDU

in the transmitted A-MPDU, named avg_ampdu_len, and the success

probabilities for each VHT MCS in each group. Whenever 50 ms have

elapsed since the last transmission status reception, a special function,

called update_stats, is in charge of updating those statistics.

In the literature, we can read that the duration between two calls of

update_stats is 100 ms (as it was effectively the case for Minstrel), and

the behavior of ns–3 has also been to use a 100 ms duration, consistently,

since the introduction of theMinstrel-HT RAA in its source code. Yet, this
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Updated whenever a
transmission status is received

Updated only when the
update_stats function is called
(at most every 50ms or 25ms)

avg_ampdu_len

max_prob_rate

max_tp_rate[0]

max_tp_rate[1]

MCS 0

MCS 1

MCS 2

…

MCS 8

Probability of
Success

Group 0

Transmission
Successes

… … …

… … …

… … …

… … …

… … …

Transmission
attempts

Figure 5.1: Overview of statistics maintained by the Minstrel-Ht RAA.

is in contradiction with what is actually implemented in the Linux kernel,

and therefore used in real hardware. We discovered this behavior during

the writing of this thesis, and it has now been corrected in the upstream

source code of ns–3.
∗
This duration is also only a minimum on the

duration between the update of the statistics: indeed, statistics are only

updated when a transmission status has been received from the lower

layers, which means they are only recomputed when a transmission has

been made. If no transmissions are made, the statistics are not updated.

An overview of the stats maintained by the RAA is shown on Figure

5.1.

As Minstrel, Minstrel-HT uses a sampling approach, using the best

transmission parameters found yet for most of the frames (using normal

frames), according to its statistics table,while sampling other transmission

parameters regularly to try to find better transmission parameters (using

sampling frames). Let us note than both normal and sampling frames are

data frames that would need to be transmitted; no specific transmission is

made by the RAA for its operation. The best transmission parameters are

updated by the update_stats function, executed whenever a transmission

status is received from the lower layers andmore than 50 ms have elapsed

since its last call. The best transmission rates are of two types:

I max_prob_rate is the transmission rate providing the highest

probability of transmission success;

I max_tp_rate[0] and max_tp_rate[1] are the best and second-best

transmission rates in terms of throughput.

AsMinstrel, Minstrel-HT also uses retry chains to send frames: the frames

are initially sent using their initial expected transmission parameters,

but in case they are not acknowledged, they are sent with different

transmission parameters which increases the probability of reception.

Both normal frames and sampling frames have the same retry chain, and

∗ https://gitlab.com/nsnam/ns--3-dev/-/merge_requests/462

https://gitlab.com/nsnam/ns--3-dev/-/merge_requests/462
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Table 5.2: Organization of the transmission rates in the Minstrel-HT retry chains.

Normal Frame Sample Frame

Transmission

Best Throughput

( max_tp_rate[0] )

Random Rate

First Retransmission

Second to Best Throughput

( max_tp_rate[1] )

Second-best Throughput

( max_tp_rate[1] )

Second Retransmission

Best Success Probability

( max_prob_rate )

Best Success Probability

( max_prob_rate )

only differ by the use of different initial transmission parameters.Whereas

Minstrel records the top four transmission parameters offering the highest

throughput, Minstrel-HT only uses the top two transmission parameters,

max_tp_rate[0] (best) and max_tp_rate[1] (second-best). Another special

transmission parameter, max_prob_rate, is the transmission parameter

using a single transmission stream that offers the highest probability of

delivery according to the statistics table. Normal frames, are opposed

to sampling frames, are sent using max_tp_rate[0]. The retry chain,

common to normal and sampling frames, is composed of max_tp_rate[1]

and max_prob_rate.

When a frame needs to be sent, we can therefore distinguish two cases:

either it will be a sampling frame, either it will be a normal frame.

When frames are sent, Minstrel-HT decides if they should be sampling

frames or not based on three counters, sample_wait, sample_tries and

sample_count. The first counter, sample_wait, is a decreasing counter

allowing sample frames to be sent when it is equal to zero, which is also

its initial value. It is used to avoid sampling too much, by preventing

sampling. The second counter, sample_tries, is the number of frames that

can be sampled consecutively, and its initial value is 4, but will always

be set at 1 after the first sampling. Finally, sample_count is the number

of frames that can be sampled between each statistics update (which

are separated by 50 ms), and its initial value is 16. At the start of the

algorithm, as sample_wait is equal 0, then 16 (sample_count) frames can

be used for sampling before the next update of the statistics, with at most

4 (sample_tries) consecutive frames used for sampling.

Whenever a sampling frame is actually sent, sample_tries is decreased

by one, and this counter ultimately reaches zero. At this point, both

sample_wait and sample_tries are equal to zero, which means it is now

only possible to send normal frames (as opposed to a sampling frame).

The values for the counters are reset whenever a transmission status is

received, at the same time transmission attempts and successes counters

are updated. When a transmission status is received, if sample_count is

bigger than zero, which means the quota of frame sampling for a single

statistics update duration has not been completely used, then sample_-

count is decreased by one, sample_tries is set to 1, and sample_wait

is set to 16 + 2 ∗ avg_ampdu_len with avg_ampdu_len representing the

average number of MPDU in a A-MPDU. This means at least 16 + 2 ∗
avg_ampdu_len normal frames must be sent before a single sampling

frame will be able to be sent. When the statistics are updated, in the

update_stats function, the sample_count counter is reset at a value

covering all the possible transmission parameters, that is to say the

number of groupsmultiplied by the 8 possibleMCS values. This behavior

is one key difference with Minstrel, as Minstrel uses 10% of the sent
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sample_wait --

Use a normal rate

sample_wait > 0 ?

sample_tries == 0 ?

yes

no

yes

no

Select a random
sample rate

sample rate is
admissible

sample_tries --

yes

no

Use the sample
rate

Init

Figure 5.2: Overview of the transmission process for the Minstrel-Ht RAA, executed whenever a frame needs to be transmitted.

frames for sampling purposes, while this means Minstrel-HT uses at

most around 5.3% of the sent frames for sampling purposes (assuming

avg_ampdu_len � 1).

If the frame to send should be a sampling frame, then Minstrel-HT will

try to find an admissible set of parameters to use for sampling. Yet, it

might not find one, in which case it will not send a sampling frame

but a normal frame. To do so, Minstrel-HT randomly selects a MCS in

the sample group, and checks if it is appropriate to use as sampling

parameters. Initially, the sample group is the group used for the first

transmissions, but for every sampling attempt, it is increased in the

order described in Table 5.1, in a round-robin manner. If we denote by

tp_rate1 and tp_rate2 the rates in {max_tp_rate[0], max_tp_rate[1]} with

respectively the smaller and bigger transmission durations, then the

transmission parameter is deemed inappropriate if at least one of the

following condition is true:

I it is not supported by the remote station;

I it is max_tp_rate[0] or max_tp_rate[1];

I the current average success probability is higher than 95%;

I its transmission duration is bigger than 3 times the one from

max_prob_rate;

I its transmission duration is bigger than the one from tp_rate1 and

it has already been tried once since the last update of the statistics;



68 5 Performance Comparison of Rate Adaptation Algorithms

sample_wait := 16 + 2 * avg_ampdu_len
sample_tries := 1
sample_count --

sample_wait == 0 and
sample_tries == 0 and
sample count > 0 ?

yes

no

Update the success and
attempts counts for the 

used rates

Should fast
decisions be made ?

yes
Forcibly downgrade max_tp_rate[0] or
max_tp_rate[1] to the best throughput in
a lower group.

Enough time has
passed since the last

statistics update ?
yes Update the stats

no

no

Init

Exit

Figure 5.3: Overview of the process happening whenever Minstrel-HT receives a transmission status.

I its transmission duration is bigger than the one from tp_rate2 and

either:

• its number of spatial streams is strictly smaller than the

number of spatial streams used for the tp_rate1;

• its transmission duration is bigger than the one from max_-

prob_rate;

and it has not been skipped for 20 statistics update duration already

(2 seconds) or it has already been tried twice since the last update

of the statistics.

An overview of what happens when a frame needs to be transmitted is

depicted on Figure 5.2.

The average number of MPDUs in the A-MPDUs and the probability of

success for each VHTMCS in each groupwere originally computed using

an ExponentialWeightMoving Average (EWMA)whenever update_stats

was called, every 50 ms, as described in Equation 5.1. The emphasis is

being put on the previous values as they account for 75% of the new value.

In the equation, y[n] represents the new computed smoothed value,

y[n − 1] represents the previous smoothed value, and x[n] represents
the new observed value since the previous update. The use of such a

moving average is an attempt to smooth the rate success probability and

the avg_ampdu_len and avoid reacting to every small temporary change

in the channel, such as noise.

y[n] � 0.75 ∗ y[n − 1] + 0.25x[n] (5.1)
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[17]: Chamberlin (1985), Musical Applica-

tions of Microprocessor

Figure 5.4:Duration between each statistic

update call of Minstrel-Ht in a ping flood

scenario.

Yet, the use of 50ms windows and an EWMA introduce some lags when

actual, important changes occur in the channel. A first mechanism to

deal with such situations is executed whenever transmissions status

are received, and transmissions counters are updated, which allows for

a faster response than updating the statistics only every 50 ms. This

mechanism, we call the fast decision mechanism, checks whether the

current probability of success with max_tp_rate[0] and max_tp_rate[1] is

less than 25% if at least 30 transmissions attempts have been made with

such transmission rates. If so, the best throughput in a groupwhose index

is smaller than the group of max_tp_rate[0] (respectively max_tp_rate[1])

is chosen, effectively making the transmissions more robust.

An overview of what happens when a transmission status is received by

Minstrel-HT is depicted on Figure 5.3.

Another changes have been made in the Linux Minstrel-HT implementa-

tion in October 2019 to fight the latency introduced by the EWMA and

a 50ms window. First, a new smoothing low-pass filter was introduced

for the computation of the probability of success for the transmission

parameters, in place of the EWMA. This filter appears to have originated

from the Figure 14-8 from [17], and its expression is given in Equation

5.2. For Minstrel-HT, Q � 1 and F �

√
2

16
. As the filter is used to compute

a percentage, values below 0.0 and above 1.0 are respectively set to 0.0
and 1.0. Then, a smaller statistics update periods of 25 ms is used, in

place of the previous 50ms period, always modulo the inaccuracy of

the Linux software clock (which is not a real time operating system). A

trace of the duration between the statistics update periods for a Archer

T2U, equipped with a MT7610U chipset, using Minstrel-Ht, is shown on

figure Figure 5.4. It has been obtained by patching the mac80211 module

to print a message in dmesg for each update of the statistic table and

then flooding the WNIC using a ping flood. The timers have then been

extracted from the dmesg output for this plot. For this specific scenario, the

minimum time between two statistics update is 25.97 ms, the maximum

time between two call is 80.74 ms, and the average is 44.17 ms.

y[n] � Ay[n − 1] − By[n − 1] + Cx[n]with

A � 2 cos(2πF) exp

(
−πF

Q

)
,

B � exp

(
−2πF

Q

)
,

and C � 1 − A + B

(5.2)

A comparison of the frequency responses of the EWMA and the new

filter used in Minstrel-HT is given in Figure 5.5

It is unclear how those two changes are changing the overall behavior of

Minstrel-HT, as the used filter is little-used. Moreover, those two changes

have not been implemented in the ns–3 implementation of Minstrel-HT.

As a result, the ns–3 behavior is not on par with the Linux kernel behavior

for kernel versions newer than the introduction of those changes.

Of course, what we presented is also a simplification of the actual

implementedMinstrel-HTRAA, butmost of the behavior of the algorithm
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The Chamberlin Low Pass filter increases the
importance of frequencies below       and decreases
the importance of frequencies above      .

Compared to the old Minstrel-Ht filter, EWMA based,
frequencies between      and       are less filtered
while frequencies above       are more filtered.

Frequencies above the nyquist frequency
are not considered.

Figure 5.5: Comparison of the frequency response of the old and new method for success probability averaging in Minstrel-HT.

has been described here, which to the best of our knowledge is the first

detailed description.

IdealWifi

The ns–3 IdealWifi RAA is a theoretical RAA in that it relies on a perfect

out-of-band mechanism to transmit the Signal-To-Noise (SNR) of each

frame, as seen by the receiver, back to the sender. This algorithm is said

to be based on Receiver-Based AutoRate (RBAR), in which the receiver is

in charge of choosing the transmission rate of the sender. In IdealWifi,

the sender uses the SNR to then choose the transmission parameters

which provide a Bit Error Rate (BER) below 10
−5

and which maximize

throughput.

IdealWifi, despite its name, is far frombeing ideal, and does not represent

an optimum. The first reason is that it uses the SNR of the previous

frames to choose its transmission rate: if we assume some kind of magical

channel whose capacity alternates between low and high for every frame,

then IdealWifi will try to use a high transmission rate when the capacity

of the channel is low, resulting in a transmission failure, and will then

use a low transmission rate while the channel capacity is high, resulting

in poor performances. For such a channel, transmitting with any fixed set

of transmission parameters would be better. The second reason behind

the fact IdealWifi is not ideal is that it relies on maintaining the Bit Error

Rate (BER) below a certain threshold, while maximizing throughput.
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This threshold is fixed, which means some transmission rates that would

ultimately provide higher throughput are not used because their BER is

too high.

Simulation Environment and Parameters

The simulationswewill describe use the ns–3 simulator in its 3.29 version.

All the devices use 2 antennas supporting 2 spatial streams in transmis-

sion and reception (so-called "2x2:2" devices) using a 20MHz bandwidth,

in the channel 42 (5210MHz). Simulations #1 and #2 involve two stations

(STA), both running the same RAA, one acting as UDP traffic generator

and the other one acting as a sink, and the simulation #3 introduces a

relay STA. At t � 1s, the traffic generator sends UDP datagrams of size

1420 bytes to the sink (receiver), until the end of the simulation, either

at the specified application data rate, either in saturation, which means

an application data rate bigger than the maximum theoretical transmis-

sion rate achieved by the device in its configuration. The simulations

parameters are summarized in Table 5.3.

Simulation Parameter Value
ns–3 Version 3.29

Simulation Duration

Scenario #1: 30s

Scenario #2: variable

Scenario #3: 60s

Wi-Fi Standard 802.11 ac

Wi-Fi MAC type Sta (source) / Ap (relay and sink)

Rate adaptation algorithm Minstrel-HT, Ideal or Intel

Spatial Streams 2x2:2

Channel Width

Scenario #1: 20MHz

Scenario #2: 20MHz

Scenario #3: 20MHz

Propagation Loss Model Log Distance and optionally Nakagami

Routing Static

Application OnOff (constant bitrate, UDP)

Table 5.3: ns–3 simulation parameters

used in the three scenarios of Chapter

5.

In the following,we look a three different simulation scenarios illustrating

the performances of the RAA in a context of drone networks. The first

scenario acts as a base, or reference scenario, to study the performances

of the three different RAAs. We expect the three RAA to have the same

overall behavior, as the characteristics of the channel, including the

characteristics of the fast-fading when it is used, do not change during

the simulation. Failure to behave nicely over this simulation scenario

would be the sign of a broken RAA. The second scenario involvesmobility

of one node and a changing channel. The goal of the second scenario is

to check how RAAs react to sudden changes in the channel, as we can

expect to find in mobile and urban scenarios for drone networks. The

third and last simulation scenario involves a two-hop communication

link. Multi-hop links are of interest in the context of drone networks

because of their prominence in mesh networks, but RAAs are often not

designed with such applications in mind, but for more classical one-hop

Client/Access Point architectures.
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5.2 Scenario #1 - Fixed distance

In this scenario, the two STAs are static and are separated by a fixed

distance. Simulations last 30 seconds and each result is the mean of 5

simulations. The distance is increased with a step of 1 m. The simulation

uses the log-distance path loss model, described in Equation (5.3), which

models the path loss Pl as a function of the distance d and of γ, an
environment-dependent constant called the loss exponent, and the power

Pl0 at distance d � d0.

Pl(d) � Pl0 + 10γ log
10
( d
d0

) (5.3)

We optionally add aNakagami-m fast fading lossmodel to account for the

changes in power due to the presence of multiple paths. The expression

of the added loss, denoted Pn, at distance d and when incoming power

is equal to P is given in Equation. (5.4).

Pn(d , P) � X(m , P/m) (5.4)

with X a realization of the X Erlang random variable whose density

function is:

f (x; k , µ) � xk−1e−
x
µ

µk(k − 1)!
for x , µ ≥ 0

The parameter m is chosen to be 1.5 for distances smaller than 80 m and

0.75 for distances bigger than 80 m, which are the default parameters

used in the ns–3 model.

The mean throughput (measured at the application level of the sink) with

regard to distance is depicted on Figure 5.6, without fast-fading (left) and

with fast-fading (right). Without fast-fading, as no time-varying fading is

present, the reception power of the frames remains constant during each

simulation.WhileMinstrel-HT and Iwl-Mvm-Rs have overall comparable

performances, IdealWifi performs significantly worse at distance larger

than 15 meters because it does not use transmission rates that would

result in a BER bigger than 10
−5
. By doing so, it does not use transmission

parameters that would result in a better throughput. With Nakagami-m
fading, overall, Minstrel-HT performs best, and Iwl-Mvm-Rs performs

worst. For example, at distance d � 45 m, the throughput is divided by

a factor 2.2 for Iwl-Mvm-Rs compared to the case without fast-fading,

while it is only divided by a factor 1.7 for Minstrel-HT and a factor 1.1
for IdealWifi.

We now comment on the reasons behind the loss of throughput for the

Iwl-Mvm-Rs algorithm. The Nakagami-m fading is a time varying fading.

It means that the reception power for each frame may vary a lot while the

position or the mobility of the STAs remains the same, with periods of

destructive fading and constructive fading. Looking at the transmission

rates used by Iwl-Mvm-Rs, we can observe that overall, the average

transmission rate of Iwl-Mvm-Rs is lower than the ones of Minstrel-HT

and IdealWifi. The reasons behind this behavior are present in the two

phases of the Iwl-Mvm-Rs algorithm, the MCS scaling phase and the
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Figure 5.6: Scenario #1: Throughput as a function of the distance between the source and the sink in the first scenario, without fast-fading

(left) and with fast-fading (right). Shaded regions represent the standard deviation.
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Figure 5.7: Comparison of the reception

power of 150 frames when a Nakagami-m
fading is absent or present, without any

other change in the channel.

Column scaling phase. First, in the MCS scaling phase, the algorithmwill

make its decisions based on at least 3 failed transmissions or 8 successful

transmissions. The randomness introduced by the fading may result,

locally, in bad performances when these decisions are made, leading the

algorithm to stop its exploration and choose a smaller transmission rate

instead of climbing the MCS ladder and finding a transmission rate that

would result in a better throughput over the long term. At the heart of this

behavior is the asymmetry between the number of failed transmissions

and the number of successful transmissions needed to take a decision, as

well as the low number of frames required to take a decision. A bigger

test window would result in more robust estimations of the potential

throughput associated with a given MCS. Then, in the column scaling

phase, only a singleMCS (corresponding to the smallerMCS indexwhose

theoretical throughput is higher than the current theoretical throughput

or the current measured throughput, depending on the success ratio) is

tested to decidewhether amore in-depth exploration (i.e. amMCS scaling

phase) should be done in the tested column. As previously, this single

test can be very short and coincide with a period of destructive fading,

resulting in the whole column being wrongly marked as unsuitable.

Figure 5.8 confirms the results from Figure 5.6. It represents, for each

manager, the distribution on the transmission rates used by the source to

send its frames when the distance between the source and the destination

is 45 m. Without fading, IdealWifi uses a lower transmission rate for

numerous frames compared to Iwl-Mvm-Rs and Minstrel-HT. These

latter two mainly use the same transmission rate, but Iwl-Mvm-Rs sends

more frames and sometimes use a higher transmission rate. Table 5.4

gives the associatedmean transmission rate and the success ratio. It shows

that without fading Iwl-Mvm-Rs achieves a good trade-off between the

mean transmission rate and the success ratio, leading to the highest

throughput with this distance. Conversely, Figure 5.8 shows that, with

fading, Iwl-Mvm-Rs mainly uses smaller transmission rates than the

other solutions. Minstrel-HT uses the higher transmission rates for most
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Figure 5.8: Scenario #1: Distribution of the

used transmission rates for the frame sent

by the source, without or with fading and

for a distance of 45 m. Top to bottom: Iwl-

Mvm-Rs, Minstrel-HT, IdealWifi. Transmission rate (Mb/s)
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of the sent frames and thus has the higher mean transmission rate. Table

5.4 shows that the transmission rates used by Minstrel-HT also lead to

frames losses since its achieved success ratio is around 71%. However,

the trade-off achieved by this manager is good enough to transmit data

with the highest throughput.
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Without fading With fading
Mean Mean

Solution transmission Success transmission Success

rate (Mb/s) ratio rate (Mb/s) ratio

Iwl-Mvm-Rs 86.1 97.5% 38.3 88.5%

Minstrel-HT 80.7 98.1% 74.0 71.5%

IdealWifi 57.0 99.9% 56.4 83.2%

Table 5.4: Scenario #1: Mean transmission

rate and success ratio for a distance of 45

m.

5.3 Scenario #2 - Circular Alternating Walls

Shadow of the wall

Wall

Client trajectory
Source STA

Sink STA

θ

x

y

dw

ds

Figure 5.9: Scenario #2: Top view of the

"Circular Alternating Walls" simulation.

Walls create shadows leading to sudden

changes in the channel between the source

and the sink.

In this scenario, the source moves in circle around the static sink, at

constant speed. The overall distance ds � 30m between the two STAs

does not change during the simulation, but walls are present at distance

dw � 15m for angles θ ranging in [π/4; π/2], [3π/4; π], [−3π/4;−π/2]
and [−π/4; 0], as shown on Figure 5.9. In the "shadows" of the walls, a

fixed loss of 5 dBm is added to account for the presence of an obstacle. A

log-distance path lossmodel is used, as well as an optional fast Nakagami-

m fading. Each simulation lasts five laps and each result is the mean of 5

simulations.

The goal of the Circular Alternating Walls scenario is to test the respon-

siveness of the RAAs. By making sudden changes in the channel, we can

illustrate howwell a RAA can react to the presence of a wall or a building,

which is important in an urban context. The quicker the RAAs adapt,

the best, as they can use the full capacity of the channel. This scenario

was designed by imagining a drone flying in an urban environment,

where various obstacles, such as buildings, can cause the quality of

the channel to vary very quickly. Figure 5.10 presents the evolution of

the transmission rate in this scenario, for a source throughput of 125

Mb/s and a speed of 5 m/s. Without fading, one can observes that the

Minstrel-HT algorithm is not switching rate when walls are present

while Iwl-Mvm-Rs and IdealWifi react to the presence of walls, which
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Figure 5.10: Scenario #2: Evolution of the transmission rate in the Alternating Wall Scenario for a source throughput of 125 Mb/s and a

speed of 5 m/s, and a bandwidth of 40MHz (only used in this example). Throughput are averaged over periods of 100 ms. Left is without

Nakagami-m fading, right is with Nakagami-m fading.

illustrates the fact that a RAA might not adapt at all to the presence

of walls. When Nakagami-m fading is added, Iwl-Mvm-Rs still adapts

to the channel, but its rate of transmission rate changes is higher than

Minstrel-Ht’s one. Overall, Minstrel-Ht maintains a transmission rate

close to 90Mb/s, which remains stable, while Iwl-Mvm-Rs oscillates

between 27 Mb/s (the lowest transmission rate in a 40MHz channel for a

2x2:2 device, at MCS0), and sometimes reach 270Mb/s (MCS7). As in

the scenario #1, Nakagami-m fading is more detrimental to Iwl-Mvm-Rs

than to Minstrel-Ht, and even leads the Intel RAA to try transmission

rates it would not try when no Nakagami-m fading is present. In this

scenario, IdealWiFi is probably the RAA performing the best, as it adapts

to presence of walls, which both Minstrel-Ht and Iwl-Mvm-Rs fails to.
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Figure 5.11: Scenario #2: Evolution of the

throughput with regard to the speed and

the throughput of the source. Left:without

fading, Right: with Nakagami-m fading.

The vertical bars represent the standard

deviation.

Figure 5.11 shows the evolution of the throughput with regard to speed

for the three managers, with and without fading. One observes that

above a certain source throughput, the sink throughput measured at the

application level decreases as the speed of themoving source increases for

both Minstrel-HT and Iwl-Mvm-Rs. For source throughput of 10Mb/s

and 20Mb/s, the impact of the source speed is limited as the same

transmission rate is used whether the source is in the shadows or not,

because it can accommodate the needs in throughput. At higher source

throughput, such as 75Mb/s and above, a small but steady decrease

of the throughput with the speed of the source can be observed for

Minstrel-HT. The big differences in performances between Minstrel-HT

and Iwl-Mvm-Rs are explained by the fact the former does not do any

adaptation (as shown on Fig. 5.10) while the latter does.
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Figure 5.12: Two Hop Scenario in Chapter

5. The sink and the source are fixed at

x � 0 and x � 130 m respectively, and the

relay position can be changed.
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Figure 5.13: Scenario #3: Evolution of the end-to-end throughput with regard to the relay position. The source is located at d=0 m and the

sink is located at d=130 m. Left is without Nakagami-m fading, right is with Nakagami-m fading.

5.4 Scenario #3 - Two-hop Flow with Relay

In this scenario, one considers three static STAs communicating in a

two-hop fashion, as illustrated on Figure 5.12. The source sends packets to

the sink (receiver), packets which are forwarded by the relay. The source

is positioned at x � 0 m and the sink is positioned at x � 130 m, while

the relay position changes depending on the scenario. As in the Fixed

distance scenario (Scenario #1), the source saturates its communication

link with UDP datagrams at t � 1s until the end of the simulation that

lasts 30s. The results in terms of throughput (measured at the application

level of the sink) depending on the position of the relay are displayed on

Figure 5.13. We observe a central symmetry in the throughput results

when no fast fading is present, centered on x � 65 m, which is expected

due to the topology of the simulation. When the relay is far from one

of the endpoint (source or sink), then the obtained throughput is low

since one of the links is of bad quality. As a result, the sink throughput is

capped by the throughput of the low quality link.

We could think the best throughput would be obtained when the relay

is equidistant from the source and the sink. Indeed, the throughput is

capped by the throughput of the worst link, so having the relay in the

middle ensure both links have similar capacity and should ensure the

maximum throughput. Still, this is not the case. With all three RAAs,

we get the best performance when the relay is not equidistant from the

source and the sink. This is explained by threshold effects, as the quality

of the channel does not change linearly with the distance, but in steps.

Reusing the left figure from Figure 5.6, we explain in Figure 5.14 this

behavior for the IdealWifi RAA. Because the position d � 65 m (vertical

red dashed line) is not strictly located in the middle of a stepwhere the



5.4 Scenario #3 - Two-hop Flow with Relay 79

0 20 40 60 80 100
Distance (m)

0

20

40

60

80

100

120

140

160
T

hr
ou

gh
pu

t (
M

b/
s)

IdealWifi

middle position
for the relay:
d = 65m

Moving the relay closer to the source
allows for a higher capacity on the
source → relay link while not decreasing
the capacity on the relay → sink link.

distance between
the relay and the sink

distance between
the source and the relay

Figure 5.14: Scenario #3: Focus on the ef-

fect of moving the relay for the IdealWifi

RAA on the link capacity.

capacity is constant, a capacity change can be observed by decreasing the

x-axis by a certain value (left red cross marker), while no capacity change

in the link happens when increasing the x-axis by this same value (right

red cross marker). In particular, for IdealWifi, at x � 65 m, the capacity

of both links (source→ relay and relay→ sink) are equal, around 28

Mb/s. For x � 58 m, the source→ relay link has an increased capacity

of 40 Mb/s, whereas the relay→ sink link, which has now a length of

130 − 58 � 72 m, still has the same capacity of 28 Mb/s. What is gained

on some link is not necessarily lost on the other link, and this remains

true for Minstrel-Ht and Iwl-Mvm-Rs, even if the curves are shifted due

to the internal workings of the algorithms.

Focusing on Iwl-Mvm-Rs, and without fast fading, when the relay is

located at x � 45 m and x � 78m between the source and the relay,

translating to distances of respectively 85 m and 52 m between the relay

and the sink, we can observe wells in the throughput for the Iwl-Mvm-

Rs RAA. Moving the relay left or right result in better throughput. To

explain this behavior, we focus on one simulation with the Iwl-Mvm-Rs

RAA. Looking at the average transmission rate of the relay → sink

link, when x � 78 m we observe an average transmission rate of 59.9
Mb/s, for a resulting throughput of less than 5 Mb/s, whereas when

x � 70m we observe an average transmission rate of 43.1 Mb/s, for a

resulting throughput of 17 Mb/s. For x � 45 m, we observe an average

transmission rate of 35.5 Mb/s, for a resulting throughput of around 1

Mb/s, whereas for x � 40 m, we observe an average transmission rate of

14.0 Mb/s, for a resulting throughput of close to 9 Mb/s. For x � 45 m

(respectively x � 78 m), the average transmission rate used for the relay

→ sink link is therefore higher than for x � 60 m (respectively x � 90

m), whereas the average transmission rate used for the source→ relay

link remains the same. Looking at frames emitted by the source, we can

observe they are mostly correctly received by the relay, and the frames

emitted by the relay are mostly correctly received by the sink, which

means the RAA decisions are correct. We identify the main problem: at

x � 78 m (for example), the relay is only transmitting during 6 seconds,
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Table 5.5: Scenario #3: Mean transmission

rate and success ratio.

d � 65 m d � 82 m

Mean Mean

RAA transmission Success transmission Success

rate (Mb/s) ratio rate (Mb/s) ratio

Iwl-Mvm-Rs

source - relay 42.6 94.5% 42.7 94.5%

relay - sink 43 99.5% 64.3 97.5%

Minstrel-HT

source - relay 43.7 92.1% 41.5 91.9%

relay - sink 38.9 92.1% 85.6 98.6%

that is to say for 10% of the simulation duration, whereas at x � 70 m, it

transmits for 26 seconds, accounting for 43% of the simulation duration.

By tracing the decisions made by each node, we find the reason for this

behavior: the sink (receiver) is sending acknowledgment (under the form

of block acknowledgment) using awrong transmission rate, whichmeans

they are not correctly received by the relay. According to the standard,

block acknowledgments frames are to be sent using “the highest rate in

the BSSBasicRateSet parameter that is less than or equal to the rate [. . . ] of the

previous frame.”, which in our case means using a transmission rate of 24

Mb/s, themaximum rate in the Set of Basic Rate of the BSS, as data frames

are sent using a VHTMCS of 4, which translates to a transmission rate of

78 Mb/s (long guard interval, 2 spatial streams). So why are frames sent

at 24 Mb/s lost but not the data frames sent at 78 Mb/s ? This is due to the

fact the block acknowledgments are transmitted using only one antenna,

whereas data is sent using two antennas which results in a better SNR for

the data than for the acknowledgments, as calculated by the ns–3 3.29

InterferenceHelper model. The ns–3 3.31 version has changed the way

gains due to the antenna diversity or MIMO are computed, which might

change or remove this behavior.

With fast fading, we observe an asymmetry on Figure 5.13 regarding

the position of the relay. Indeed, attained throughput where the relay is

located at x � 55 m are less than half of the attained throughput when

the relay is located at x � 75 m. This behavior can be explained by the

fact that the source→ relay link and the relay→ sink link do not have the

same importance with regard to throughput. Indeed, the performance

hit due to the loss of a frame on the source→ relay link is smaller than

the performance hit due to the loss of a frame on the relay→ source link,

as for any frame transmitted on the latter link, the channel has already

been used at least once for the transmission on the former link. Therefore,

it is better to have the relay closer to the sink to ensure frame for which

some transmission cost has already been paid between the source and

the relay are correctly delivered. This asymmetry can also be observed

when no fast fading is present, but is more subtle.

In Table 5.5, one compares the mean transmission rate and the success

ratio for the source-relay and the relay-sink links, when the relay is

located at 65 m and 82 m from the source, and for the Minstrel-HT and

Iwl-Mvm-Rs RAA which exhibit the same overall behavior with regard

to distance.

One observes that when the distance between the source and the relay

is 82 m, the transmission rate and the success ratio are similar to the

ones obtained when the distance is 65 m. However, the second link has a
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better quality which results in higher transmission rates. This increase of

transmission rate has also an impact on the medium occupancy. Indeed,

even if the number of sent frames on the second link is higher with a

distance of 82 m than with 65 m, the radio medium is less used by the

relay when d � 82. This results in more radio accesses for the source that

can send more frames when d � 82 compared to d � 65 although the

radio conditions are similar on the first link. For instance, the source with

Iwl-Mvm-Rs sends 61900 frames when d � 82 whereas it sends 53535

frames when d � 65. As a result, the end-to-end throughput at the sink

is higher when d � 82 m.

5.5 Conclusion

Before looking at the performance of the Iwl-Mvm-Rs rate adaptation

algorithm in ns–3, we expected the results to be strongly in favor of

Minstrel-Ht. Indeed, the empiricism behind much of Iwl-Mvm-Rs inner

working lead us to believe Minstrel-Ht, as the venerable successor of

Minstrel, which had been studied extensively and been the subject of

many papers, would always work better than Iwl-Mvm-Rs. Surprisingly,

this is not the case, at least when comparing our implementation of

Iwl-Mvm-Rs and the ns–3 implementation of Minstrel-Ht.

Without fading andnodemobility,Minstrel-HT and Iwl-Mvm-Rs perform

similarly. Indeed, the asymmetry in the number of lost frames or frames

in success taken into account in the test window of Iwl-Mvm-Rs does

not really disadvantage the RAA. Yet, the rate adaptation mechanisms

are different, and they do not lead to the same used transmission rates

and success ratio. IdealWifi obtains limited performance due to its

conservative and rigid behavior.

Without fading and with mobility, Iwl-Mvm-Rs shows good results, com-

pared to Minstrel-HT and IdealWifi, specifically when the throughput

of the source is high. Iwl-Mvm-Rs is able to quickly adapt its transmission

rate to the change in the channels, which looks not to be the case for

Minstrel-Ht.

With fading and whatever the mobility, the use of Iwl-Mvm-Rs gives

lower performance than with Minstrel-HT and IdealWifi. The algorithm

has difficulties to deal with the randomness introduced by the fading,

due in parts to the small test windows on which it bases its decisions,

as well as the asymmetry in the number of lost frames or successful

frames needed to make its decisions. A few “bad” frames, in terms of

transmission power, will have a far greater influence than the same

number of “good” frames.

Looking at the Linux kernel Minstrel-Ht implementation, we discovered

a few important differences with the ns–3 implementation, leading to

some disparities between the behavior of the simulator and the behavior

of real hardware.As our simulationswere conductedbefore those changes

were taken into account into ns–3, our results should be takenwith caution

if one was to try to apply them directly to a non-simulated environment.

But looking seriously at Minstrel-Ht, we can confidently say it is also

far from perfect. As with Iwl-Mvm-Rs, many operational thresholds

look arbitrarily chosen, and could probably be set more intelligently. In
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Figure 5.15: Venn diagram representing

the articulation of the academic state of

the art, simulation implementations and

hardware implementations regarding rate

adaptation algorithms.
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Implementation

Simulation
Implementation

Iwl-Mvm-Rs ?

particular, recent changes for the computation of the success probability

in Minstrel-Ht have been made without much justification, and the

science behind this change seems very thin. Those observations lead us

to wonder whether the intersection of the rate adaptation algorithms

implemented in network simulators, with the rate adaptation algorithms

used in real hardware and the rate adaptation algorithms described in

the academic literature is an empty set or not. While the Linux kernel

evolves, papers describing the rate adaptation algorithms are somehow

frozen, and the network simulators often base their implementation on

those papers. Our description of the Intel rate adaptation algorithm,

Iwl-Mvm-Rs, and its implementation, although imperfect, are a step in

the right direction to fill this intersection Figure 5.15.

Now that we better understand the relationship between those three

rate adaptation algorithms, mobility, and the performance one can get,

we focus the next chapter on how using mobility to try to obtain better

network performances, namely, controlled mobility.
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We just illustrated in the previous chapter how important RateAdaptation

Algorithms (RAAs) are when considering the performances of Wi-Fi

networks. The close relationship between nodes positioning, and node

mobility in particular, and the different performances shapes one can

expect with different RAA, leads us to search a RAA-agnostic mobility

solution for improving Wi-Fi drone network performances. Relying on a

specific RAA and modifying it might lead to better overall performances,

but this means sticking to specific hardware vendors, and this requires

being actually able to access and modify the RAA for testing purposes.

This, unfortunately, seems not to be the current fashion as RAA are slowly

leaving the operating system realm to relocate in chipsets silicon, which

is of course not helped by the complexification of the Wi-Fi PHY.

Beside being independent of the used RAA, we didn’t want the proposed

controlled mobility solution to be linked to a specific application. While

the distance between nodes of a drone network is an important parameter

for the performances, being able to assume control over the position

of drones means to interface with the considered application. Some

middle ground between changing the position of the drone and not being

to control the mobility at all, is to focus on the attitude of the drone,

specifically its orientation. Indeed, when considering small multicopters,

their orientation can be set independently of their position and their

path, which is not the case for fixed-wings drones. For patrolling and

coverage applications in particular, the orientation of the drone can be

decoupled from the rest of the application as most sensors are either

omnidirectional, e.g. chemical sensors, sound sensors, or are usually

already mounted on gimbals, as this is the case for photography, video

and imaging purposes for example.

In this chapter, we design a controlled mobility solution for Wi-Fi based

drone networks relying solely on the orientation of the drones. The

solution does not require any a priori knowledge on the antenna radiation

patterns, and is completely distributed and decentralized. To study the

solution, a custom framework based on ns–3 was developed to study

the effects of non-isotropic antennas. We first describe the considered

problem and its modeling, then we detail our proposed solution. We

then present the evaluation framework we developed, and study our

algorithm in different simulation setups, allowing us to underline its

performances.

6.1 Controlled Antenna Orientation and
Antenna Effects

In this section, we first introduce the studied problem, and we then

describe the proposed solution for the antenna orientation. We consider



84 6 Controlled Mobility: Antenna Orientation

a set of UAVs (also named as agents or nodes hereafter), each equipped

with a wireless network interface controller using Wi-Fi and a directional

antenna whose radiation pattern (also named the antenna gain pattern)

is unknown. All the agents use the same Wi-Fi channel to communicate.

The studied problem is the following: given a UAV fleet configuration,

can each agent optimize its local antenna orientation in order to enhance

the communication performance, such as throughput?We focus onmulti-

rotorUAVsbecause their three-dimensional positions andorientations can

be fully controlled and maintained through time by the flight controller,

while, for example, fixed-wing UAVs cannot hover at a given position.

We also limit this study to UAVs whose 3D positions are static, but

whose orientations in their horizontal plane, around the normal axis,

named yaw, can be changed. Indeed, as the 3D UAVs positions are often

application dependent, we focus on parameters that can be modified

without interactions with the applications, for the sake of generality.

These requirements cover, in particular, the class of coverage applications,

such as surveillance, continuous monitoring or network coverage. As

changing the roll (orientation along the longitudinal axis) or the pitch

(orientation along the transverse axis) of a multi-rotor changes its 3D

position when it is not subject to external forces apart from gravity, we

assume those two quantities are also fixed.

ProblemModeling

Let G � {V, E} be an undirected graph representing a set of N networked

agents, where V � {A1 ,A2 , . . . ,AN } and E ⊂ V ×V denote respectively

the set of vertices and the set of edges. We denote by Ad � (ai , j)(i , j)∈N×N
the adjacency matrix of the graph: ai , j � 1 if (i , j) ∈ E meaning that

agents Ai wants to communicate with agent A j , and ai , j � 0 if (i , j) < E
meaning that agent Ai does not wish to communicate with agent A j .

Each agent is equipped with a directional antenna. The antenna radiation

pattern is represented by a function g. As g can be different from one

agent to another, we use gi representing the antenna radiation pattern

of agent Ai . It is expressed in decibels and in the spherical system of

coordinates described in [10, Chapter 2.2]. Figure 6.2 gives an example

of three antenna gain patterns in a plane (two directional antennas and

one omnidirectional antenna). Depending on the antenna orientation

between two neighbor agents (there exists a link between these 2 agents

in G), these two agents may be able to communicate or not. When they

are able to communicate, this orientation has also an impact on the power

of the received signal. The higher the received power, the more likely the

communication will be of good quality and will use a high transmission

rate.

The objective of the agents is then to cooperatively solve the following

optimization problem:

max

φ∈[0;360[N
f (φ) :�

∑
i∈{1,...,N}

∑
j∈{1,...,N}

j,i

ai , j ∗ Si , j
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Figure 6.1: Left: Bird view of two agents Ai , and A j with yaw φi and φ j . The angles α � φi , j − φi and β � φi , j + π − θj are the azimuthal

angles at which the radiation patterns are considered. Radiation patterns are represented as checker boarded areas. Right: 3D View of the

same agents.

with

Si , j � e j + g j(π − θi , j , φi , j + π − φ j) + gi(θi , j , φi , j − φi) − Ci , j

if Si , j ≥ Th

� 0 otherwise

Si , j represents the received power, at agent Ai , of the signal sent by agent

A j and φ is the yaw orientation vector giving the yaw orientation of each

agent (φi is the yaw orientation of agent Ai). The scalar e j represents the

transmission power of agent A j in dBm and the scalar Ci , j represents the

loss induced by the channel between agents A j and Ai , in dB. The antenna
gains used during the communication between agent Ai and agent A j
depend on their position and their relative orientation. Assuming agent

Ai is located at (xi , yi , zi) and agent A j is located at (x j , y j , z j), we have

θi , j � atan2(
√
(x j − xi)2 + (y j − yi)2 , z j − zi)

and

φi , j � atan2(y j − yi , x j − xi)

which represent respectively the relative polar and the relative azimuth

angles between agents Ai and A j . These quantities are represented on

Figure 6.1. Si , j is a non-null value if Si , j is higher than a given threshold

Th representing the minimal signal-to-noise ratio required to receive and

decode data.

Finding a solution to this optimization problem involves determining

the different agent antenna orientations to optimize the sum of the

powers of the received signals in the network. In the next section, we

propose a distributed solution inwhich each agent determines its antenna

orientation based on local measurements, without knowing its antenna

gain pattern nor the ones of the other agents, or their positions.
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Figure 6.2: Radiation pattern of the an-

tennas used during the simulations for

θ � 90
◦
(horizontal plane), in dBi (decibel

relative to the isotropic antenna).
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As the explicit expression of g is unknown from the agents, the proposed

solution will be based on measurements that each agent can carry out.

More precisely, agent Ai can measure Si , j(t) at time t if the following

conditions are met: agent A j is transmitting at time t, ai , j � 1 and Si , j(t)
is bigger than the given threshold Th (for the SNR). When agent Ai
carries out such a measurement, it knows its yaw orientation φi(t). These
measurements will be stored in a measurement vector M: each agent Ai
maintains Mi , j � [mi , j,0 ,mi , j,1 , . . . ,mi , j,359] for each agent A j such that

(i , j) ∈ E. The scalar components mi , j,k corresponds to the measurement

of the mean received power, at agent Ai , of the signals sent by agent A j
when Ai has a yaw orientation equals to k. Because we are not requiring

the knowledge of G and E from the agent Ai , Mi , j is created “on the fly”

when the connection between Ai and A j is first established. It is then

initialized to Mi , j :� [None, . . . ,None].

Each agent executes its own algorithm without being synchronized with

its neighbors. The proposed algorithm consists of an infinite loop. In

each passage in the loop, each agent realizes different steps. First, the

agent fetches the frames it has received since the last loop execution,

in its network interface queue, and updates its measurement vectors.

Then, if the agent lacks some data in its measurement vector with at

least one neighbor, it seeks which orientation to move to, to get this

measurement. Finally, if its measurement vectors are complete, it tries

to optimize its orientation based on their values. Each agent runs the

algorithm while it changes its orientation according to online results and

while it communicates with its neighbors if required by the data traffic.
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Algorithm 1: Antenna Orientation Optimization (agent Ai)

1 Window ← 360

2 Count ← 0

3 Goal ← None
4 while true do
5 %Measurement updates

6 if mi , j,bφi (t)c �� None then
7 mi , j,bφi (t)c ← Si , j(t)
8 else
9 mi , j,bφi (t)c ← mean

(
mi , j,bφi (t)c ; Si , j(t)

)
10 % New orientations to explore

11 if there exists k such that there exists j such that mi , j,k � None then
12 find the k minimizing | bφi(t)c − k |
13 Goal ← k
14 if k �� φi(t) then
15 Count ← Count + 1

16 else
17 Count ← 0

18 if Count ≥ 10 then
19 Count ← 0

20 mi , j,k ← −100 for any j such that mi , j,k �� None

21 % Orientation optimization

22 if there exists no j or k such that mi , j,k � None and (Goal is None or Goal �� bφi(t)c) then
23 Find l in [bφi(t)c −Window/2; bφi(t)c + Window/2]maximizing:∑

j∈[1;N]
ai , j ∗ mi , j,l

24 Goal ← l
25 Window ←Window/2
26 % Change of orientation

27 Set di to reach Goal
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The proposed algorithm is based on the hill climbing approach [84]. We

have chosen hill climbing for two reasons: 1) it is an anytime algorithm

(it can find better and better solutions as long as it keeps running) and

2) even if it does not guarantee convergence towards a global optimum,

it provides an efficient way to find a good solution in a decentralized

multi-agent problem. Algorithm 1 describes the algorithm executed by

each agent.

Description of the Algorithm As the orientation φi(t) and the power

measurement Si , j(t) of the received signal depend on the instant at which

these 2 parameters are considered, they are expressed in function of the

time t. The Window variable represents the search space. Initially, the

search space includes all the possible orientations ([0; 360[). In order to

speedup the algorithmconvergence, the size of the space search is divided

by2 as soon as amaximal solution is found in the current space search (line

18 of Algorithm 1). The Count variable represents the maximum number

of loop passages during which the agent stays in the same orientation. If

the agent stays in a given orientation for too long while trying to fill its

measurement vector, the agent considers that it is not a good orientation

and sets a very low value to the corresponding measurement element

(line 13 of Algorithm 1). The Goal variable represents the orientation

the agent is currently trying to reach. In the first loop passages, Goal
corresponds to unexplored orientations for which no measurement value

has been collected.

Once measurements have been collected for all the orientations and

neighbors (line 22), then an optimal orientation (in respect to the defined

objective function) can be computed (line 23). Then, the parameter di ,

representing the direction to follow (i.e. right, left, or do not move), is

updated in order to reach the orientation Goal (line 27). Note that finding

an optimal orientation does not mean the end of the algorithm. The

search continues with new possible measurements and on a reduced

search space (line 25). A new optimal solution can thus be found.

Evaluating this algorithm is a difficult task because the algorithm is

distributed and executed in parallel by all the agents in an asynchronous

way, but also because it depends on the data traffic, the medium access,

the used transmission rates, the channel quality and the agent controller.

Moreover, we are interested in the network performance. A dedicated

simulation framework has therefore been developed to evaluate the

proposed antenna orientation solution in a realistic context.

6.2 Simulation Framework

To simulate antennas and UAVs and to evaluate our proposition, we

chose to develop a framework based on the ns–3 network simulator.

This development is necessary as existing simulation frameworks do

not offer the possibility to both easily simulate UAV controllers and the

UAV communications using directional antennas. While ns–3 has some

support for antenna modelling, this support is only compatible with

Long-Term Evolution networks and not with Wi-Fi networks. Nodes,

which represent the physical objects in ns–3, are point-like objects with
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Cartesian coordinates, but no orientation coordinates are provided. These

two facts togethermake it difficult to simulate spinning nodes embedding

non-isotropic antennas for Wi-Fi networks, at least without rewriting

much of the ns–3models. UAV simulators based on ns–3 such as CUSCUS

[96] or FlyNetSim [9] are focused on hardware-in-the-loop, software-in-

the-loop or real-time simulations, and do not model the antennas. The

developed simulation framework is available as an open source project

at GitHub
∗
.

Architecture

The architecture of our framework, as depicted in Figure 6.3, is divided

into two main components. The first component is the network simulator

ns–3, including theuser simulation script orprogram (bottom left), backed

by a custom ns–3 module implementing a propagation loss model and a

mobility model (bottom right). The second component is the discrete-event

antenna and UAV simulator, called Phi (top). A third optional component,

the visualization front-end, can be plugged into the Phi simulator in

order to follow the state of the simulations in “real” (simulated) time.

The goal of Phi is to simulate the behavior and dynamics of multiple

UAVs equipped with non-isotropic antennas. Phi provides, according to

the antenna orientation, the power gains to use in the ns–3 simulator,

simulator that will in turn simulate the UAV network and the networking

stack. The controllers and the sensors of the UAVs are therefore modelled

by Phi. The simulator has been implemented in C++, which is also the

language used by ns–3, but as the interface between Phi and ns–3 relies

on message passing, the language could easily be changed.

Communications The two components (ns–3 and Phi) exchange Pro-

tocol Buffers messages, used to serialize and deserialize structures, and

communicate using the ZeroMQ asynchronous messaging library. Inter-

actions between ns–3 and Phi take the form of two types of messages:

Meta messages that are used to set up and control the simulations’ life

cycle, and Meso messages that concern the simulation itself. The socket

connecting the two components uses the ZeroMQ request-reply pattern,

ensuring their synchronization, and currently uses a local inter-process

communication transport. A third type of message, called Viz, serves as

a way to serialize the state of the simulation in order to send it to the

visualization front-end.

Simulation Life Cycle When a simulation is set up in ns–3, a Meta

message 1 containing the number of agents and their types are sent

to Phi’s simulation manager component, which will instantiate the

simulation, and reply with a simulation ID 2 . This simulation ID is

included in every subsequentMeta orMesomessages exchanged between

the two components and allows a single instance of Phi to be used by

concurrent ns–3 simulations. When the simulation ends in ns–3, a Meta

message is sent to the Phi’s simulation manager to end the simulation

and release the resources.

∗ Phi codebase: https://github.com/rgrunbla/Phi.
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Figure 6.3: High level overview of the simulation framework architecture: main components and control and data paths.

Mobility Model and Physics Engine In ns–3, mobility models are in

charge of tracking and changing nodes’ positions, speeds and accelera-

tions. These quantities are used by the propagation loss and delaymodels

to compute a loss depending on the distance between nodes, and to

compute the delay between the transmission and reception of the frames.

A custom ns–3 mobility model has been developed, allowing to set the

position in Phi from the ns–3 simulation 3 , for example at the beginning

of a scenario, as well as querying node positions 4 , e.g. to calculate

propagation delays. As the simulator was developed for scenarios where

the UAVs have a static position and dynamic orientation, we chose to only

consider constant rotation speeds for the UAVs. This allows to model

their movements and rotations with simple multiplication operations

without having to go through the use of a differential equation solver.

This approach is also used by ns–3, which only supports constant speed

or constant acceleration mobility models.

Propagation Loss and Delay Model In ns–3, propagation loss models

and propagation delay models are used to model the propagation of the

signal between any two nodes, by respectively calculating the signal

power and the signal delay. These models can be chained, for example

adding a model of Nakagami fading to a free space path loss model

leading to a link budget calculation performed by the channel model.

The custom module implements a propagation loss model which queries

Phi 5 about the gains brought by the antennas of the agents, gains

which are sent back to ns–3 6 . Phi does not model any other effect such
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as the free space loss as one can use the ns–3 models directly. No custom

propagation delay model is needed, as this calculation can be done by

ns-3 directly by using the positions set by the custom mobility model.

Clock Synchronization The clock state of a ns–3 simulation is included

into every Meso message sent to Phi, for example in a propagation loss

query, or a position query. The onlyway for a simulation in Phi to advance

through time is to receive a Meso message and synchronize its clock

with the value it contains. Before the clock update, all the events in the

event queue of Phi that are scheduled to occur before the new clock

value are executed, with each event being preceded by an update of the

environment and agents states.

Agent Simulation and Environment Each agent simulated by Phi is

specifiedbya type and the associatedblueprint located in theAgent Library

component. This blueprint contains the implementation of the controller,

of the sensors and the actuators. These components are functions executed

at their own frequency using events, e.g. 100 Hz for the controller or 10

Hz for a magnetometer. The controller is only capable of interacting with

its environment through the use of a shared memory with sensors and

actuators, in an asynchronous way. Messages originating from the ns–3

simulation intended for a specific agent are called Network Events 7

and are placed in a queue in the shared memory. Such messages are for

example sent by ns–3 when a frame is received, and contain the frame

characteristics, such as the reception power, or the MAC address of the

transmitter if applicable.

6.3 Evaluation of the proposed antenna
orientation solution

In this section, we present different scenarios used to evaluate the

performance of our approach (Algorithm 1). The different scenarios share

some parameters, described in Table 6.1, but differ in the number of

nodes and their positions. We use the ns–3 Friis propagation loss model,

also known as the free-space path loss model, which accurately models

the path loss of air-to-air communications between UAVs [95]. All the

simulations rely either on an isotropic antenna or a directional antenna

whose orientation is regulated by Algorithm 1. The directional antenna

represents the Ubiquiti UAP-AC-Mesh Antenna, also named as mesh

antenna hereafter, whose radiation pattern is shown on Figure 6.2. The

radiation pattern is provided by the constructor on its website [65] as

an ant file type, covering the horizontal plane with a granularity of 1
◦
.

This antenna has been chosen for its small size and weight, making it

compatible with airborne applications, as well as its balanced radiation

pattern suitable for mesh applications. Two such antennas will be tested:

one with a maximal gain of 4 dBi and one with a maximal gain of 3

dBi. Considering a link with two agents equipped with the directional

antenna with a 4 dBi gain, 63% of all the possible orientations between

the two agents yield a higher gain than a link with two isotropic antennas.

On the other hand, if the directional antenna has a 3 dBi maximum gain,
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Table 6.1: ns–3 simulation parameters Simulation Parameter Value
ns-3 Version Dev Version (June 2020)

Simulation Duration 100s

Wi-Fi Standard 802.11 ac

Wi-Fi MAC type Ad-Hoc

Rate adaptation algorithm Minstrel-HT, Ideal or Intel

Spatial Streams 2x2:2

Channel Width 20 MHz

Antennas

Isotropic or

Ubiquiti UAP-AC-Mesh

Propagation Loss Model Friis

Routing Static

Application OnOff (constant bitrate, UDP)

UAV Rotation Speed 0 rad/s, ±0.50 rad/s

Controller Frequency 100 Hz

Magnetometer Frequency 10 Hz

only 38% of the possible orientations between the two agents result in

a higher gain, compared with two isotropic antennas. While the high

gain will obviously result in higher network performance than with the

isotropic antenna, as long as the φ � 0
◦
or φ � 180

◦
positions are not

used, we believe the results are still of interest in order to study the

dynamics of the algorithm 1 and to illustrate the gains such a system

can provide. We also want to check that our proposed solution does

not converge to orientations leading to worse performance than with

omnidirectional antennas.

As in the previous chapters, three rate adaptations algorithms, named

Minstrel-HT, Intel and Ideal, have been considered. Our evaluation will

thus also study the impact of these three algorithms on the performance

of our solution.

We present the obtained results with the 4dBi antenna in the next three

subsections, and we then present the results obtained with the 3dBi

antenna. The initial orientations of the nodes are distributed uniformly

over [0; 2π], and each simulation is repeated 20 timeswith different initial

orientations. Several results are reported with the box plot representation.

In this case, the lower side of the rectangle represents the first quartile, Q1,

the upper side represents the third quartile, Q3, the plain line represents

the median, Q2, while the dotted line represents the mean value. The

extreme lines (outside the rectangle) represents the lower and upper

fences, computed as 1.5 times the inter-quartile range below Q1 and

above Q3. Any value outside the range [4 ∗Q1 − 3 ∗Q3; 4 ∗Q3 − 3 ∗Q1]
is considered as an outlier, and represented as a point.

Scenario #1: Simple

Figure 6.4: Simple Scenario: The source

and the sink are separated by a fixed dis-

tance, and their position does not change

during a simulation (but their orientation

might).

SourceSink

In this scenario, two nodes are separated by a fixed distance, with one

node acting as a source and one node acting as a sink (receiver), as

shown on Figure 6.4. The two nodes are either both equipped with



6.3 Evaluation of the proposed antenna orientation solution 93

80M

100M

120M

20 40 60 80 100

Time (s)

Th
ro

ug
hp

ut
 (b

ps
)

Isotropic Antenna, Ideal
Mesh Antenna, Ideal

Isotropic Antenna, Intel
Mesh Antenna, Intel

Isotropic Antenna, MinstrelHt
Mesh Antenna, MinstrelHt

Figure 6.5: Evolution of the application

throughput in function of time for Sce-

nario #1, with 2 nodes 100 m apart and

a saturating UDP application rate of 180

Mb/s.

omnidirectional antennas, in which case Algorithm 1 is not used, or

both equipped with directional antennas using our antenna orientation

algorithm. The throughput of the source is set to 180 Mb/s, which

exceeds the maximum physical throughput for the Wi-Fi physical layer

parameters used in the simulation, which is 173.3 Mb/s. The received

throughput at the sink is plotted on Figure 6.5 as a function of time,

rate adaptation algorithm, and the used antenna, for a single simulation

and when the distance between the two nodes is 100m. We can observe

that the three rate adaptation algorithms are almost the same when an

omnidirectional antenna is used, and the received throughput remains

stable throughout the simulation (with some variations with Minstrel-

HT). When the directional antenna is used, we observe two main phases.

The first phase, where the throughput varies a lot corresponds to the

execution of the antenna orientation algorithm: as the channel between

the two nodes changes, the rate adaptation algorithms react and change

the transmission rates, affecting the received throughput. The second

phase starts after the antenna orientation algorithm has converged to

its best solution in terms of received power. The received throughput

remains fairly stable during this phase as the only source of change is the

RAA decisions. We can however observe that when Minstrel-HT is used,

it takes more time to reach the stabilized received throughput, which is

consistent with our previous observations about the algorithm.

The convergence time for the antenna orientation algorithm and the

convergence time on the received throughput for the simulations using

the directional antenna are plotted on Figure 6.6 (with the box plot repre-

sentation). The convergence time for the antenna orientation algorithm

is the elapsed time between the start of the algorithm and the time when

the last agent stops to change its orientation. The convergence time on the

received throughput is the elapsed time between the start of the algorithm

and the time when the received throughput on the sink is different to at

most 5% of the final achieved received throughput. We can note that the

convergence time of our algorithm is always smaller than 20s in Scenario

#1. The convergence time on the received throughput is also smaller than

20s for Ideal and Intel, and it is never larger than 40s with Minstrel-HT.

We can observe a strong correlation between the two quantities for the

Ideal and the Intel RAAs, which underlines those algorithms are fast

to react to changes in the channel, while the throughput convergence

time of Minstrel-HT illustrates the inertia of the algorithm, which can be

linked to its sampling approach. Using physical layers metrics, such as
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signal strength, and not application layer metrics, such as the received

throughput, appears therefore justified for such an algorithm, as higher

layer metrics may introduce important delay with certain RAA.

Figure 6.6: Comparison of the conver-

gence time for the antenna orientation

algorithm and application throughput for

Scenario #1 at d � 100m. Rate Adaptation Algorithm
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Figure 6.7 shows the distribution of the achieved throughput for Scenario

#1 when the two nodes are 100m away. The achieved throughput is

measured when the antenna orientation has converged. The obtained

results show that our antenna orientation solution improves the achieved

throughput whatever the used RAA. For instance, with the Ideal RAA,

the mean achieved throughput is 144.2 Mb/s with directional antennas

compared to 116.8 Mb/s with omnidirectional antennas, whereas it is

136.9 Mb/s with directional antennas compared to 113.2 Mb/s with

isotropic antennas for the Intel RAA. For Minstrel-HT the use of di-

rectional antenna with our orientation algorithm leads to 137.4 Mb/s

compared to 111.5 Mb/s with omnidirectional antennas. We analyzed

the antenna orientations obtained when our algorithm has converged

for the different simulation repetitions and for the different RAAs. The

values obtained on the antenna orientations vary but are mainly scattered

on good positions as 95% of the achieved orientations lead to a better link

budget than with isotropic antennas. These orientations lead to better

link qualities which also lead to a use of higher transmission rates, which,

at the end, results in higher achieved throughputs. Finally, one can note

that the obtained values on the throughput are more dispersed with

directional antennas than with isotropic antennas. This is explained by

the fact that the obtained orientations vary, which results in different

link budgets implying more various throughputs, though these latter are,

most of the time, better than the ones obtained with isotropic antennas.

Scenario #2: Sink

In this scenario, one node serves as a sink while other nodes serve as

sources. The sources are located on a circle with a fixed radius r, while

the sink is located at the center of the circle, as shown on Figure 6.8.

The sink can be seen as a UAV receiving video feeds from the sources,

and sending them to the ground using another network component

not studied here. The sink is equipped with an isotropic antenna. We
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Figure 6.8: Sink Scenario

have observed, on the different simulations, that the antenna orientation

algorithm converges in less than 30 s. The distribution of the average

received throughput per link, at the sink, for a radius of 100 m, for 4

sources, and for different application rates at the source, is shown on

Figure 6.9. One can observe an increase in the obtained throughput when

using the directional antenna, nomatter which RAA is used. The increase

is more limited with Minstrel-HT. As 100% of the simulations obtain

a better link budget than with an omnidirectional antenna, this more

limited improvement can be explained by the larger time needed for

Minstrel-HT to converge towards the final throughput when the antenna

orientation has ended, leading to a smaller throughput than with Ideal

and Intel. When the application rate is low enough, e.g. 10 Mb/s, it can

be fulfilled by both the isotropic and the directional antennas in any

direction, leading to very similar obtained throughput.

We have measured whether the different sources are receiving a fair

“share” of the received throughput at the sink or not with the Jain’s

fairness index [47]. The Jain’s fairness index can be used to measure

whether the different sources are receiving a fair “share” of the received

throughput at the sink or not. If we denote by t1 , . . . , tn the throughput

received at the sink from the agents A1, . . . , An , then the index can be

defined as:

J(t1 , . . . , tn) �
( ∑

i∈{1,...,n}
ti)2

n · ∑
i∈{1,·,n}

t2

i

This index takes values between 1/n, the worst case representing an
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Figure 6.9: Comparison of the average re-

ceived throughput per link for Scenario

#2 with r � 100 m and 5 nodes.
Rate Adaptation Algorithm
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unfair share of the resources, and 1, the best case, representing a fair

share of the resources. The results for r � 100m and n � 3, 5, 10, and

an application throughput of 50Mb/s are shown on figure Table 6.2.

The results obtained for r � 100m and n � 3, 5, 10, and an application

throughput of 50 Mb/s show that the use of the mesh antenna does not

decrease the fairness between the nodes with rather a slight increase

of the Jain’s index values (between 0.94 to 1 for directional antennas

compared to 0.92 to 1 with isotropic antennas). Overall, the use of the

mesh antenna does not decrease the fairness between the nodes.

Scenario #3: Chain

In this scenario, one node serves as a source, one node serves as a sink,

and the other nodes serve as relays between the source and the sink as

depicted on Figure 6.11. The source and the sink are separated by a fixed

distance d, and the relays are equidistantly placed between them.

We plot the distribution of the received throughput at the sink on Figure

6.12, for a distance between the source and the sink of d � 1000 m, and for

5 and 10 nodes in total, that is to say for respectively 3 and 8 relays, for an

application throughput of 50Mb/s.While for a chain of 5 nodes, the use of

the directional antenna with the antenna orientation algorithm improves

the overall throughput, for any RAA, no improvement is observed for a

chain of 10 nodes with the Intel and Minstrel-HT RAAs.

We observe that with 5 nodes, while the percentage of failed MAC

transmissions at the source is higher with the directional antenna, the

frame transmission rate also increases, leading to lower air-time per

frame, allowing more frames to be exchanged, as shown in Table 6.3.

This property is also verified on the different links of the chain. This

results in higher throughput with directional antennas than with omni-

directional ones. On the other hand, with 10 nodes, a too high number of

retransmissions has been observed whatever the used antenna, leading

to low throughput in both cases. One can also note that Intel exhibits

poor performance, in this scenario, compared to Ideal and Minstrel-HT.
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Number
of nodes

Wi-Fi
Manager

Antenna
Type Mean Standard

Deviation

3

Ideal Isotropic 1.00 0.00

Mesh 1.00 0.00

Intel Isotropic 1.00 0.00

Mesh 1.00 0.00

Minstrel-HT Isotropic 1.00 0.00

Mesh 1.00 0.00

5

Ideal Isotropic 0.92 0.06

Mesh 0.94 0.07

Intel Isotropic 0.93 0.06

Mesh 0.94 0.07

Minstrel-HT Isotropic 0.94 0.04

Mesh 0.94 0.05

10

Ideal Isotropic 0.93 0.07

Mesh 0.95 0.04

Intel Isotropic 0.95 0.03

Mesh 0.96 0.03

Minstrel-HT Isotropic 0.92 0.05

Mesh 0.95 0.04

Table 6.2: Jain Index mean and standard

deviation for the scenario #2, with an ap-

plication throughput of 50Mb/s and at

distance d=100 m, across 20 experiments.

Antenna
Type

Rate Adaptation
Algorithm

Transmission
Failure

Transmission
Number

Isotropic

Ideal 16.3% 203.1k

Intel 21.2% 180.3k

Minstrel-HT 21.0% 187.7k

Mesh

Ideal 24.5% 311.6k

Intel 19.0% 230.0k

Minstrel-HT 25.7% 278.8k

Table 6.3: Comparison of the number

of MAC transmission and percentage of

transmission failure at the source in Sce-

nario #2, with 5 nodes and 50Mb/s of

application rate.

It can be explained by the conservative behavior of the Intel RAA when

too many retransmissions are triggered.

Results with a 3 dBi antenna

All the previous results were obtained with an antenna whose maximum

gain was 4 dBi. We also evaluated our solution with the same pattern

radiation but with a maximal gain reduced to 3dBi (see Figure 6.2). With

such an antenna, only 38% of the possible antenna orientations between

two agents will result in higher network performance than with the

isotropic antenna.

Figure 6.13 reports the distribution of the achieved throughput between

two nodes (Scenario #1) separated of 100 m andwhen the source through-

put is 180 Mb/s for 20 repetitions of the simulation with different initial

orientations. The results show that even if the achieved throughputs

are smaller than the ones obtained with a 4dBi antenna, the antenna

orientation algorithm is able to find good orientations resulting in better

performance than with omnidirectional antennas. The reduction of the

performance gain, when switching from a 4dBi antenna to a 3 dBi antenna

is more pronounced for Intel and Ideal than for Minstrel-HT.

Figure 6.14 reports the distribution of the average achieved throughput

per link for Scenario #2 with 5 nodes and each source transmitting

with an application rate of 50 Mb/s. The results show that the achieved
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Figure 6.10: Distribution of the Jain’s fair-

ness index for r � 300 m, 5 nodes, and 20

random initial position and orientations.
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throughputs are not so different from the ones obtained with a 4dBi

antenna, even if the results with Minstrel-HT are a bit smaller than with

the 4 dBi antenna.

Figure 6.15 reports the distribution of the average achieved throughput

per link for Scenario #3 with 5 nodes on a chain whose source and sink

are separated by 1000 m. The source transmits with an application rate

of 50 Mb/s. The results show that the achieved throughputs are reduced

compared to the ones obtained with a 4dBi antenna. Intel is the less

impacted by this reduction in the performance gain, even if the mean

achieved throughput is smaller with Intel than with Ideal and Minstrel-

HT. We can also note that the obtained results are more scattered with

Ideal and Minstrel-HT than with Intel. This dispersion is very important

for Minstrel-HT, leading to smaller results than with an omnidirectional

antenna for a set of simulation repetitions.
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Figure 6.15: Comparison of the average

received throughput at the sink for Sce-

nario #3 with d � 1000 m, 5 nodes, and 20

random initial orientations with the 3 dBi

directional antenna.
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6.4 Conclusion

The antenna radiation pattern is clearly an important factor when look-

ing at the performances of a communication network. While Wi-Fi

simulations in ns–3 only support isotropic antennas, in reality, perfect

isotropic or even omnidirectional antennas do not exist, which means

some progress can bemade in this regard in the simulator. Is it possible to

take advantage of the non isotropism of the antenna radiation pattern, for

drone networks ? By taking into account the antenna radiation patterns

in ns–3, thanks to a customized simulation framework, we illustrated

that it is possible for a Wi-Fi based drone network to exhibit some gain

in performance, in a few simulation setups, with a relatively simple

optimization algorithm. We believe this algorithm can be used for many

drone applications, as it does not imply changing the position of the

drones, does not need any synchronization or centralization. Indeed, the

relative orientation of the drones (for multicopters) can be controlled

without modifying their 3D position, and by only changing their own

orientation. a priori knowledge of the radiation pattern of the antennas

is not needed, nor knowledge of the peers positions. While we observed

improvements in terms of performances for the drone networks, it de-

pends on the underlying rate adaptation algorithms used by the WNIC,

as well as the radiation patterns of the antennas. While this conclusion is

limited to the studied simulation scenarios and the considered simulation

environment, we believe that, given small modifications of the orientation

algorithm, the conclusions would translate well in the real world.
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The initial goal of this thesis was to explore controlled mobility for Wi-Fi

based drone networks. Retrospectively, most of the three years have been

focused on sub-problems of controlled mobility one could consider as

side problems, but are, in our opinion, prerequisites. Indeed, how can

one claim to try to take advantage of mobility when its effects are not well

understood, and when the simulations do not take into account certain

aspects related to this mobility? New results bring new problems, and

we feel many doors were opened while only a few were closed.

The contributions of this thesis can be summarized into several main

axes:

1. We improved the understanding of rate adaptation algorithms

used in many real-world devices, by looking at the behavior of Intel

devices and reverse engineering their rate adaptation algorithm,

as well as implementing it in the popular network simulator ns–3.

2. We studied the relationship between performances in terms of

throughput, rate adaptation algorithms, and the nodes’ mobilities,

speeds and positioning. The different overall behavior of Minstrel-

Ht and Iwl-Mvm-Rs, two rate adaptation algorithms used in real

devices, was illustrated, which underlines that studying those

algorithms is important when dealing with mobile nodes, such as

drones.

3. We illustrated how drone mobility can help to improve network

performances by looking at the effect of drones antenna radia-

tion patterns in ns–3 and devising a mobility algorithm to take

advantage of the non isotropism of the antennas.

Initially, our approach of the thesis topicwas an experimental one. During

the first months of the thesis, after some initial state of the art, our main

goal became to experiment using drones andWi-Fi networks to be rooted

in the reality on the ground. First tests were conducted using a Parrot

Bebop recreational quadcopter that we had to equip with an embedded

system supportingWi-Fi, small and light enough it could be retrofitted on

the recreational drone. This task was complicated by the fact we wanted

the hardware to use moderately recent amendments, e.g. 802.11ac, and

possess at least 2 antennas for transmission and reception. Finding

hardware open enough one can install and run an operating system

like Linux was the first main difficulty in this thesis, and remained

so thereafter. The lack of open, hackable hardware is in this regard

detrimental to academia and experimentation with Wi-Fi networks. We

then moved very quickly to another drone model, Intel Aero, equipped

with an onboard computing board itself equipped with a suitable Wi-Fi

card.

Our initial results were disconcerting. Focusing on the application

throughput obtained between a laptop, the source, and the drone-

mounted access point, the sink, throughput values seemed to change
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randomly, with performance spikes and troughs, even without much

movement, on the ground. This was quickly linked to spikes and troughs

in the transmission rates used by the laptop, which used an Intel card,

like the new Intel Aero drones we were going to be experimenting with

in the following months. The second main difficulty was therefore to

understand the operation of Intel’s rate adaptation algorithm, which

led to a big part of the work done during this thesis. Implementing the

algorithm in the ns-3 simulator also started a shift towards simulation

for the rest of this thesis. This implementation allowed us to highlight

how important are rate adaptation algorithms in the context of drone

mobility, and allowed us to better understand the ns–3 simulator, which,

although state of the art in Wi-Fi network simulation at our academic

level, can be improved in many ways.

Understanding how ns–3 works, and understanding its results, could

be considered as the third main difficulty we tackled during this thesis.

While widely used, ns–3 is plagued with many bugs which can be hard

to discover. This is in part due to the design of the simulator which

tends to break silently, which means the reason behind pretty much any

simulation results need to be thoroughly understood. Doubting any ns–3

simulation result still seems to be the best attitude to adopt, and while

bugs still exist in the simulator, we can hope their number is lower now

than in the past.

Last, but not least, conducting real experiments, whether they involve

a few Wi-Fi devices in a corridor or flying objects that weigh about a

kilogram is not an easy task. We expected to start experimenting again

using real drones, outside, during the first part of 2020. Difficulties in the

control of the drone at our disposal had been reduced, andwe expected to

start airborne measurement campaigns of the state of theWi-Fi spectrum,

as well as other experiments. A few test flights had even been carried out.

The course of this year will have decided otherwise. While it is already

easy to shoot yourself in the foot in simulation, it is somehow easier

with experimentation, which is also more time-consuming. This is still

necessary, and while our controlled mobility solution seems promising

in simulation, without an experiment to actually test it in real conditions,

it is not possible to verify if this is indeed the case. Our developed

framework to study the effect of the antennas’ radiation patterns does not

claim to be a long-term solution for the study of this class of problems,

but more of a demonstrator.

Perspectives

Intel RAA Regarding Iwl-Mvm-Rs, we can identify a few extensions to

our work that would be welcome:

I Currently, the Intel rate adaptation algorithm is only suitable to

very specific hardware, namely the hardware sold by Intel. Its

general applicability is therefore limited. Re-using the techniques

employed in the original algorithm and designing a more generic

RAA to be used primarily in simulation would allow to make it

suitable as an alternative for Minstrel-Ht, which is currently the

only other RAA used both in simulations (in ns–3) and in the real

world supporting recent standards.
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I As a living algorithm, which undergoes regular changes, the Iwl-

Mvm-Rs ns–3 implementation needs to be maintained in sync with

the kernel implementation. In a perfect world, its implementation

in simulation would also be verified against the “hardware” im-

plementation. Whereas this was possible until recently to do so

by just reading the Linux kernel source code or instrumenting it,

since the 802.11ax / Wi-Fi 6 amendment, the algorithm has moved

from the Linux kernel to the Intel chipsets closed source firmware,

which makes those tasks harder. The best way to achieve this goal

is probably to compare simulator and hardware traces, received

over-the-air, to verify they agree with each other. This assumes it

is possible to study the behavior of the hardware in a sufficiently

controlled environment to avoid outside interferences to create

behaviors hard to recreate in simulation.

This latest point can also be made for other RAA, such as Minstrel-Ht,

whose implementation in ns–3 has been found to be wrong during

the writing of this thesis, and this since its first introduction in the

simulator.

Simulations Setups The simulation setups in which we studied our

controlled mobility solution and the performance of the different RAAs

were all custom setupswe chose because they seemed interesting.Whereas

in many fields, benchmarks exist, allowing to quickly evaluate the per-

formance of some proposed solution, Wi-Fi networks research mostly

rely on specific and custom simulation scenarios. While one could say

such scenarios are simple enough they can be recreated at will in this

or that simulator, it is, in our opinion, a waste of time and the progress

made by each new work is difficult to quantify. A library of well-defined

benchmarks, with common implementations in simulators like ns–3 or

OMNeT++ / INET, would allow researchers to compare their worksmore

easily, and better evaluate their results. In particular when dealing with

mobility, where dozens of mobility models parametrized by continuous

parameters exist, common scenarios deemed important forWi-Fi research

(and wireless research in general) should be made easier to use.

Such scenarios could also be used to gauge the quality of network simu-

lators, compare them with each other, identify the impact of the global

evolutions they undergo, and find bugs more quickly. In particular, we

found many bugs in ns–3 during this thesis, without even actively trying

to find them, just by simulating some moderately complex scenarios, and

observing weird behaviors. We believe more extensive testings would

catch many behaviors we observed, andmore generally, more verification

and validation are needed for such projects on which much depend.

Controlled Mobility and Robot Networks Today, the simulation of

robot networks, including drone networks, is in a gray area. Network

simulators seem pretty good at simulating network protocols and part of

the networking stacks of modern operating systems. Robotic simulators

seem pretty good at simulating the mobility, dynamics, control of the

robots. Some hybrid simulators exist, trying to rely on both robotic and

network simulators, but they are the subject of even less “technical at-

tention” from the community than the components they bridge. Several
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attempts have been made to create these kinds of bridges, which under-

line their importance, but without a continuous technical support and

development they tend to become slowly unusable. Looking specifically

at ns–3, we believe a few key changes in the simulator couldmake it easier

to interface with robotic simulators. Such changes include transitioning

to better models for the nodes, which are currently only modeled as

dimension-less, point-like objects. Such changes are also of interest for

the simulation of antennas, another weak point on ns–3.

Our proposition of controlled mobility to take advantage of the antenna’s

radiation patterns needs more evaluation, in more diverse scenarios, in

particular including global mobility for the nodes. Other approaches

at the distributed optimization of the antennas’ orientation should also

be explored, e.g. machine learning techniques, as some works already

proposed in the context of drone networks. This, of course, depends on

correctly simulating mobility in the chosen network simulator.

Concluding Remarks

The complexity of Wi-Fi networks leads us to believe that studying Wi-Fi

networks has to be rooted in some level of experimentation. Relying

only on the IEEE 802.11 standards as they are written and on simulation

based on them is not enough as the standard does not cover many

important aspects, such as rate adaptation. Between the state of what is

implemented in simulation, what is implemented in the Linux kernel,

what is implemented in Wi-Fi network interface controllers, and what

is described in the academic literature, gaps exist. We are not certain

they are narrowing. This is not made better by the inability of hardware

vendors to respect a standard a few thousands page long changing every

5 years or so, whether they are responsible for it.

Of course, experimentation is not enough. The hardware on which we

experimentedduring this thesiswas closedhardware, and the conclusions

of pretty much any experimentation involving closed hardware whose

behavior is, in some part, not understandable, are limited. Simulators

like ns–3 aim to abstract this hardware layer, but they are of course

imperfect. In particular, we feel that ns–3, which to us is the best shot at

the simulation of Wi-Fi networks, lacks the workforce to stay relevant

and up-to-date with the current “hardware state-of-the-art”.

There is, however, room for hope. More and more experimentation

platforms lower the entry cost in terms of complexity for hardware

platforms, and allow for greater reproducibility of Wi-Fi experiments.

Open Wi-Fi transceiver based on software defined radios, like OpenWiFi,

are also in development. Thismay openup the possibility for academics to

change low levels parameters, currently reserved to hardware vendors.
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