
HAL Id: tel-03127752
https://inria.hal.science/tel-03127752

Submitted on 2 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning to Infer User Behavior in 5G
Autonomic Networks

Illyyne Saffar

To cite this version:
Illyyne Saffar. Machine Learning to Infer User Behavior in 5G Autonomic Networks. Networking and
Internet Architecture [cs.NI]. Université de Rennes 1 (UR1), 2020. English. �NNT : �. �tel-03127752�

https://inria.hal.science/tel-03127752
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1
COMUE UNIVERSITÉ BRETAGNE LOIRE

ÉCOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Illyyne SAFFAR

Machine Learning to Infer User Behavior in 5G Autonomic
Networks

Thèse présentée et soutenue à Rennes, le 10 Novembre 2020
Unité de recherche : Nokia Bell Labs & IRISA Rennes

Rapporteurs avant soutenance :
Ghaya REKAY-BEN OTHMAN Professeur : Telecom Paris et Institut Polytechnique de Paris, France
Thi-Mai-Trang NGUYEN Maître de conférences HDR : LIP6, Sorbonne Université, France

Composition du Jury :
Président : Adlen KSENTINI Professeur, Eurecom, Sophia-Antipolis
Examinateurs : Nathalie MITTON Directrice de Recherche, INRIA Lille-Nord Europe, France

Thi-Mai-Trang NGUYEN Maître de Conférences - HDR, LIP6, Sorbonne Université
Ghaya REKAY-BEN OTHMAN Professeur, Telecom Paris et Institut Polytechnique de Paris
Zwi ALTMAN Ingénieur de recherche, Orange Labs Chatillon

Dir. de thèse : César VIHO Professeur, IRISA-Université de Rennes 1
Co-dir. de thèse : Marie Line ALBERI MOREL Ingénieur de Recherche, Nokia Bell Labs

Kamal Deep SINGH Maître de Conférences, Laboratoire Hubert Curien
Université Jean Monnet Saint- Etienne

Acknowledgement

I would like to extend my sincere thanks to all people who have contributed

to the successfulness of this thesis. Firstly, I wish to express my sincere grati-

tude to my supervisors Marie Line Alberi Morel, Kamal Deep Singh and César

Viho for their guidance, encouragement, insightful thoughts, exceptional pa-

tience and for the stimulating discussions as well as the sleepless nights we

were working together before deadlines. It was my great pleasure to work with

them along these three years. Their guidance helped me in all the time of re-

search and writing of this thesis. I could not have imagined having a better

advisors and mentors for my PhD study.

Besides my advisors, I would like to thank all my colleagues in Nokia Bell

Labs France for all the fun we have had in the last four years, for the board

games, quizzes in breaks, etc. Thanks to them I have never faced Mondaymorn-

ing blues. My work was not just about PhD work and long hours of research

but it was extra fun, yummy food and chocolate, and long gossip sessions too.

Thanks for adding your magic touch to my otherwise boring and dull work-life.

My special acknowledgment to CNTP-A team in ENSA Lab, to CNTP-A manager

Alberto Conte and to CNTP manager Laurent Roullet for their understanding

and for their time.

I would also like to thank, my open space neighbor, senior research engi-

neer, Frederic Faucheux for his continuous help and for his generous support

psychologically as well as technically with the hardware for a major part of the

thesis and his patience for all the mistakes and the clumsiness that I have

committed. Last but not the least, I would like to thank my family: my parents,

iii

my dear husband, my brothers and sisters, my friends, and my cats for provid-

ing me with unfailing support and continuous encouragement throughout my

years of study and through the process of researching and writing this thesis.

This accomplishment would not have been possible without them.

Thank you.

Illyyne Saffar

iv

Table of Contents

Abbreviations xix

Notation xxv

1 Introduction: Context & motivation 1

1.1 Context, motivation and main challenges 2

1.2 Mobile user behavior modelling . 7

1.3 Data and Machine Learning driven detection of user behavior . . . 15

1.4 Real life data: preferred situations, imbalanced and noisy data . . 20

1.5 Summary of Thesis Contributions . 23

1.6 Document structure . 24

1.7 Publications list . 26

1.7.1 International Conferences with review committee 26

1.7.2 International Workshops with review committee 27

2 Machine Learning: Definitions & Generalities 29

2.1 Learning types . 31

2.1.1 Supervised Learning . 32

2.1.2 Unsupervised Learning . 34

2.1.3 Reinforcement Learning . 35

2.1.4 More types . 36

2.2 Machine Learning algorithm families 36

2.2.1 Classical Machine Learning/ Shallow Learning 37

v

TABLE OF CONTENTS

2.2.2 From shallow (Classical Machine Learning) to Deep Learning 43

2.3 Conclusion . 57

3 Machine Learning Workflow Toward User Behavior Characterisation 59

3.1 Methodology in 5 steps . 61

3.2 Methodology for user behavior prediction 67

3.2.1 Identifying the problem and analyzing the needs 68

3.2.2 Data Processing . 70

3.2.3 Algorithm choice and Model designing 71

3.3 Generation of high quality and representative data 81

3.3.1 Data collection modes . 81

3.3.2 Data collection description in our study case 84

3.4 Conclusion . 86

4 User Environment Detection: Where is the mobile user while ex-

periencing a service? 91

4.1 State of the Art . 94

4.2 Data features . 98

4.3 Supervised Learning-based classification: Indoor Outdoor Detec-

tion (IOD) .100

4.3.1 Preliminary study of CQI, mobility and distance impact . . .102

4.3.2 Data collection mode: crowd-sourcing vs. drive-test105

4.3.3 Performances of IOD .110

4.4 Semi-supervised Deep Learning-based classification: IOD112

4.4.1 Cluster-then-Label .114

4.4.2 Co-Training .115

4.4.3 Self-training .116

4.4.4 Performances of IOD .117

4.5 What if more granularity of UED is taken into consideration? . . .118

vi

TABLE OF CONTENTS

4.5.1 Relation between user activity and environment type119

4.5.2 Classification schemes .124

4.5.3 Performances of UED .129

4.6 Labelled data volume vs. unlabelled data volume133

4.7 Conclusion .136

5 Mobility Speed Profiles (MSP) Detection: How is the mobile user

when experiencing a service? Static or Moving? 139

5.1 State of the Art .142

5.2 Data features .144

5.2.1 Description .144

5.2.2 Data cleaning method for labeling144

5.2.3 Data augmentation method for balancing the dataset149

5.3 Preliminary analysis: user activity vs speed category150

5.3.1 Speed category definition .150

5.3.2 Relation between user activity and speed profile152

5.3.3 User activity during daytime per speed category153

5.4 Classification schemes .155

5.5 Supervised Deep Learning-based classification performances . . .158

5.5.1 Architecture and configuration158

5.5.2 Results .160

5.6 Conclusion .164

6 Multi-Task Learning for Joint Detection of User Environment &

Mobility 165

6.1 What’s Multi-Task Learning? .166

6.1.1 Definition .166

6.1.2 Why Multi-Task works? .169

6.1.3 Types of Multi-Task Learning .171

vii

TABLE OF CONTENTS

6.2 Proposed Multi-Task Learning Architecture174

6.3 Data features .176

6.4 Performances: results and discussion177

6.5 Conclusion .184

7 Conclusion & Perspectives 187

7.1 The mobile user environment detection while consuming a service190

7.1.1 Conclusions .190

7.1.2 Perspectives .191

7.2 The user mobility speed profile detection while consuming a service192

7.2.1 Conclusions .192

7.2.2 Perspectives .193

7.3 Joint detection of the user environment and mobility speed profile

while consuming a service .193

7.3.1 Conclusions .193

7.3.2 Perspectives .194

Appendices 195

A Hyperparameter Tuning Methods Comparison 197

A.1 Mobile user Environment Detection .197

A.2 User Mobility Speed Profiling .198

B Hyperparameter Tuning: Tuning one model for many classifica-

tion schemes study 201

C Résumé en Français 205

Bibliography 209

viii

List of Figures

1.1 3 Step System for knowledge extraction in order to anticipate user

needs and optimizing 5G. Step 1: Data Collection. Step 2: Data

processing for user behavior estimation and profiling. Step 3: 5G

optimization. 6

1.2 User Behavior Modelling: Intelligence for anticipating User Prefer-

ences & Needs . 13

1.3 Challenge: One AI-based System to infer the user behavior (Be-

haviors to infer: Environment, Mobility, Application, Connectivity,

Social State, Interest) . 18

2.1 Machine Learning Fields . 30

2.2 Scheme of a supervised learning algorithm 33

2.3 Scheme of an unsupervised learning algorithm 35

2.4 Scheme of an Reinforcement Learning algorithm 36

2.5 Machine Learning Algorithms Modelling according to [50] 38

2.6 Revolution of Neural Network Depth (number of layers) [53]: Eg.

of image classification: Layers Number vs Model error (%) 40

2.7 Neuron characterization: connection, weights, bias, activation func-

tion . 46

2.8 Feedforward Neural Network (FNN) . 48

2.9 Some Examples of Activation Functions: Linear, Sigmoid, tanh,

ReLU . 48

ix

LIST OF FIGURES

2.10Examples of Underfitting and Overfitting inMachine Learning: Re-

gression and classification . 55

3.1 Active smart phone users in the world and per region according

to 2019 Stats (Study carried out by "newzoo" Analytics Platform). 60

3.2 Machine Learning in 5 main Steps . 63

3.3 Machine Learning Steps: Detailed Process 66

3.4 Dropout mechanism in neural networks 78

3.5 The training error and validation error curves during the learning

phase in order to visualize the Early stopping point. 80

3.6 Data collection scheme for training and serving phases 85

3.7 Data collection points in France: multiple places 86

3.8 Machine learning categorization [87]: Different machine learning

types and applications in computer science fields. 89

3.9 Machine Learning Algorithms Mind-Map [50] 90

4.1 IOD classification scheme: in 3 main classes, according to the

state of the art. 95

4.2 Time to cross a cell (s) vs. user speed (km/h) - urban and suburban

Macro-cell and small cell environment cases.100

4.3 Empirical CDFs for measured RSRP . (full) outdoor static and low

speed, (dotted) outdoor variable speed.103

4.4 Cumulated Distribution Function of the mobility indicator vs. En-

vironment - one user .104

4.5 Feature ranking based on cumulative information brought by them105

4.6 Empirical CDF for measured RSRP (left) and CQI (right) in crowd-

sourcing mode: multiple environments and places - Indoor (red)

and Outddor (blue). .106

x

LIST OF FIGURES

4.7 Empirical CDF for measured RSRP (left) and CQI (right) in drive-

test type mode: specific environments and places - Indoor (red)

and Outddor (blue). .107

4.8 The Data collection Points of EPD in drive-test like mode: Paris

and southern suburbs .108

4.9 The Cluster-then-label semi supervised approach model114

4.10The Co-Training (CT) semi supervised approach model115

4.11The Self-taught/Self training semi supervised approach model . .117

4.12User activity per environment .120

4.13User activity per environment during week period vs. weekends.

Considered Environments: Building (Malls and other buildings

type), Home, work, Outdoor(Car, Bus, Train, Pedestrian)122

4.14User activity per environment during week period vs. weekends.

Considered Environments: Indoor (Home, Work, and other build-

ings type), Pedestrian, transport (Car, Bus, Train)123

4.15User activity per environment during day hours. Considered Envi-

ronments: Indoor (Home, Work, and other buildings type), Pedes-

trian, transport (Car, Bus, Train) .124

4.16CDF of RSRP .126

4.17CDF of number of Cell ID changes during 100s127

4.18Multiple class schemes example: “5C_0” and “5C_1”128

4.19Variance of phone activity for the multiple class schemes129

4.20Phone Activity for various classification schemes of environment .130

4.21Data volume Impact: (Blue Line) Scenario 1: Variation of the SUnlabaled

volume. (Red Line) Scenario 2: Variation of SLabeled volume134

5.1 Mobility speed ranges going to 8 speed ranges140

xi

LIST OF FIGURES

5.2 Examples of the collected GPS measurement. Red line depicts the

real collected data (very noisy). Blue line depicts the corrected

trajectory using our proposed Algorithm.147

5.3 Speed Computing between according to path P between two points

A and B during a sliding window TCRmax148

5.4 Speed versus time for two cell radius149

5.5 Environment type distribution vs speed category (real data)151

5.6 User activity per mobility speed profile153

5.7 User activity vs. hour per mobility speed profile154

5.8 Empirical CDF for measured RSRP per speed category156

5.9 Empirical CDF for measured MI per speed category157

5.10Mobility Speed Profiling (MSP) system architecture - Note that

there are several hidden layers and not just two as it may initially

appear. .159

6.1 Different Learning Processes between Traditional Machine Learn-

ing and Transfer Learning according to [116]167

6.2 Hard-parameter sharing for Multi-Task learning in deep neuronal

Network. .171

6.3 Soft-parameter sharing for Multi-Task learning in deep neuronal

Network. .172

6.4 Multi-Task Deep Learning architecture for joint detection of both

the user environment and the user speed range simultaneously .175

6.5 The variation of classes number per task vs the mean F1-score

delivered by the MTL model .182

6.6 The variation of classes number per task vs the mean error (1-F1-

score) delivered by the MTL model .182

6.7 The variation of classes number per task vs the F1-score delivered

by the MTL model for both tasks: MSP & UED183

xii

LIST OF FIGURES

A.1 Impact of optimization methods on the accuracy computing -User

Environment Detection - Classification scheme 4CI_1198

A.2 Impact of optimization methods on the accuracy computing - User

Mobility seed profile detection - classification scheme {0,10,90}

kmph .199

xiii

List of Tables

1.1 Quality-Of-Experience-Influencing Factors of contextual informa-

tion . 14

2.1 Special requirements and problems with some algorithms of CML 44

2.2 The most known loss functions . 53

3.1 Last-layer activation and loss function combinations for training

a first model (for a few common problem). 72

3.2 Non exhaustive hyperparameter list for neuronal networks with

their possible values examples. 74

3.3 Different Types of Learning in Machine Learning derived from the

3 basics ones (Supervised, unsupervised, Reinforcement Learning) 88

4.1 Clustering and Classification performance: training and evalua-

tion on labeled data (EPD) of drive-test like mode109

4.2 Clustering and Classification performance: training on EPD and

evaluation on labeled data of crowd-sourcing mode110

4.3 SVM performance: training and evaluation on labeled data of crowd-

sourcing mode .110

4.4 Clustering and supervised Classification performance: Accuracy

& F1-score vs. Timing Advance & Mobility indicator112

4.5 Semi-Supervised approach (CTL, CT, ST) performances: Accuracy

& F1-score .118

4.6 UED classification schemes .127

xv

LIST OF TABLES

4.7 Deep Learning-based supervised and semi-supervisedmulti-ouput

classification performance: F1-score vs. classification schemes . .131

4.8 Percentage of labeled data saving compared to total volume versus

target F1 − score .136

4.9 Summary of themodels’ hyperparameters: The optimizer, the num-

ber of hidden layers, the dropout ratio, the number of epoch and

the batch size. .138

5.1 Mobility Speed Profiling - MSP classification schemes158

5.2 MSP hyperparameter: The optimizer, the number of hidden layers,

the dropout ratio, the number of epoch and the batch size.160

5.3 Deep Learning-based supervised multi-output classification per-

formance using a Feed Forward Neuronal Network (FNN) with and

without Artificial Data Augmentation (A-DA): F1-score vs. classi-

fication schemes .162

6.1 MTL hyperparameter: The optimizer, the number of hidden layers,

the dropout ratio, the number of epoch and the batch size.177

6.2 Indoor Outdoor detection and mobility speed detection (3 Classes

{0,10,90}) classification schemes when performed as a single task

(Sgt) or using a Multi-Task learning (MTL) architecture.178

6.3 User Environment detection (4 Classes [Home, Buildings, Pedes-

trian, Transport]) andmobility speed detection (3 Classes {0,10,90})

classification schemes when performed as a single task (Sgt) or

using a Multi-Task learning (MTL) architecture.178

6.4 User Environment detection and mobility speed detection clas-

sification schemes when performed using a Multi-Task learning

(MTL) architecture and the mean MTL performance over the two

tasks. .184

xvi

LIST OF TABLES

B.1 Research space of hyperparameters for the 4CI_1 UED (User En-

vironment Detection) classification scheme201

B.2 Best hyperparameter’s set for the 4CI_1 UED (User Environment

Detection) classification scheme. The Hyperparameter’s list is: The

optimizer, the number of hidden layers, the dropout ratio, the

number of epoch and the batch size.202

B.3 Performances of different UED classification schemes with Bayesian

optimisation for each scheme vs using the hyperparameters set

resulting from a Bayesian optimisation run on one classification

scheme (the 4CI_1 UED (User Environment Detection) classifica-

tion scheme). .203

xvii

LIST OF ABBREVIATIONS

1G First Generation of Cellular Network

2G Second Generation of Cellular Network

3G Third Generation of Wireless Mobile Telecommunications Technology

3GPP 3rd Generation Partnership Project

3SS 3 Step System

4G Fourth Generation of Broadband Cellular Network Technology

5G Fifth Generation Technology Standard for Cellular Networks

A-DA Artificial Data Augmentation

ADALINE ADAptative LINear Element

AI Artificial Intelligence

AODE Averaged One-Dependence Estimators

API Application Programming Interface

BBN Bayesian Belief Network

BGM Bayesian Gaussian Mixture

BN Bayesian Network

CART Classification and Regression Tree

CDF Cumulative Distribution Function

CDMA Code Division Multiple Access

CHAID CHi-squared Automatic Interaction Detection

CML Classical Machine Learning

xix

LIST OF TABLES

CNN Convolutional Neural Network

CQI Channel Quality Indicator

CQI Channel Quality Indicator

CT Co-Training

CTL Cluster-Then-Label

CV Computer Vision

D2D Device to Device

DL Deep Learning

DNN Deep Neural Network

EI Expected Improvement

EM Expectation Maximisation

eMBB enhanced Mobile Broadband

eNB evolved Node B

EPD Extracted Portion Data

ETSI ZSM ETSI Zero-touch network and Service Management

FDA Flexible Discriminant Analysis

FNN Feedforward Neural Network

GBM Gradient Boosting Machines

GBRT Gradient Boosted Regression Trees

GNSS Global Navigation Satellite System

GPS Global Position System

GPU Graphical Processing Unit

GSM Global System for Mobile communications

ID3 Iterative Dichotomiser 3

xx

LIST OF TABLES

IOD Indoor Outdoor Detection

IoT Internet of Things

KNN K-Nearest Neighbor

LARS Least-Angle Regression

LASSO Least Absolute Shrinkage and Selection Operator

LDA Linear Discriminant Analysis

LOESS LOcally Estimated Scatterplot Smoothing

LSTM Long Short Term Memory

LTE Long Term Evolution

LVQ Learning Vector Quantization

LWL Locally Weighted Learning

MARS Multivariate Adaptive Regression Splines

MDA Mixture Discriminant Analysis

MDS Multi Dimensional Scaling

MDT Minimization of Drive Tests

MI Mobility Indicator

ML Machine Learning

MRN Multilinear Relationship Network

MSP Mobility Speed Profiling

MTL Multi-Task Learning

NCID Network Clear Indication Delay

NCR Number of Cell Res-selection

NIPS Neural Information Processing Systems

NLP Natural Language Processing

xxi

LIST OF TABLES

NN Neural Network

OLSR Ordinary Least Squares Regression

OneR One Rule

PCA Principal Component Analysis

PCR Principal Component Regression

PLSR Partial Least Squares Regression

QDA Quadratic Discriminant Analysis

QoE Quality of Experience

QoS Quality of Service

ReLU Rectified Linear activation Unit

RIPPER Repeated Incremental Pruning to Produce Error Reduction

RNN Recurrent Neuronal Network

RS Reference Signal

RSRP Reference Signal Receive Power

RSRQ Reference Signal Receive Quality

SGD Stochastic Gradient Descent

SgT Single Task

SMOTE Synthetic Minority Oversampling TEchnique

SOA State of the Art

SOM Self Organizing Map

ST Self Training

SVM Support Vector Machine

TA Time Advance

TCR Time Period

xxii

LIST OF TABLES

TDMA Time Division Multiple Access

TL Transfer Learning

TPE Tree Parzen Estimator

UE User Equipment

UED User Environment Detection

UED User Mobility Detection

URLLC Ultra-Reliable Low LatenCy

VoD Video on Demand

VoIP Voice over Internet Protocol

WLAN Wireless Local Area Network

ZeroR Zero Rule

xxiii

Notation

This section provides a concise reference describing notation used through-

out this document. If you are unfamiliar with any of the corresponding math-

ematical concepts, [1] describes most of these ideas in chapters 2–4.

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

Sets

A A set

R The set of real numbers

{0,1} The set containing 0 and 1

{0,1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

[a, b[The real interval excluding b but including a

xxv

LIST OF TABLES

Indexing

ai Element i of vector a, with indexing starting at 0

Ai,j Element i, j of matrix A

Ai,∶ Row i of matrix A

A∶,i Column i of matrix A

Calculus
dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∫ f(x)dx Definite integral over the entire domain of x

∫
S
f(x)dx Definite integral with respect to x over the set S

Probability and Information Theory

P (a) A probability distribution over variable

a ∼ P Random variable a has distribution P

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

Var(f(x)) Variance of f(x) under P (x)

DKL(P ∥Q) Kullback-Leibler divergence of P and Q

N(x;µ,Σ) Gaussian distribution over x with mean µ and co-

variance Σ

xxvi

LIST OF TABLES

Functions

f ∶ A→ B The function f with domain A and range B

f(x;θ) A function of x parametrized by θ. (Sometimes we

write f(x) and omit the argument θ to lighten no-

tation)

logx Natural logarithm of x

σ(x) Logistic sigmoid, 1
1 + exp(−x)

ζ(x) Softplus, log(1 + exp(x))

∣∣x∣∣p Lp norm of x

∣∣x∣∣ L2 norm of x

Sometimes we use a function f whose argument is a scalar but apply it to

a vector or matrix: f(x) or f(X). This denotes the application of f to the array

element-wise. For example, if C = σ(X), then Ci,j,k = σ(Xi,j,k) for all valid values

of i, j and k.

xxvii

Chapter 1

Introduction: Context &

motivation

During the past four decades, wireless mobile communication networks

have seen four different generations. At the beginning of the 1980s, it began

with the birth of the first generation (1G) of mobile networks. 1G systems used

analog technology and only provided voice services. In the 1990s, the second

generation (2G) of mobile networks emerged. 2G systems differed from the pre-

vious generation in using the digital mobile communication systems, and using

the Time-Division Multiple Access (TDMA) scheme to support more users. 2G

provided voice services and low rate data services (only 14.4 Kbps) [2]. As the

use of 2G phones became more widespread and people began to use mobile

phones in their daily lives, it was clear that the need for data services (such

as access to the internet) became important. Hence, we witnessed the birth of

the third-generation (3G) mobile networks. 3G systems were characterized by

the Code Division Multiple Access (CDMA) technique. 3G was able to support

mobile internet services with data rates up to 14 Mbps [2]. After 3G, we saw the

arrival of 4G. Omnipresent, the 4th generation cellular networks are deployed

all over the world and provide all-IP broadband mobile access and enriched

video-based services to end users. With a rising tide of Internet of Things (IoT),

more and more mobile smart devices are able to access the mobile Internet.

Today, the whole world is witnessing the arrival of the fifth generation (5G) of

1

Introduction: Context & motivation

mobile networks and waiting for beyond 5G. 5G is revolutionizing the wireless

mobile communication networks. The work described in this thesis is about

research on 5G and beyond 5G.

This chapter is an introductory chapter where we detail the research con-

text. We explain the motivations behind the work as well as the challenges to

be overcome. We also list, per section, the problematic and the contributions

made during this thesis. Afterwards, we present the structure of the document

for the next chapters as well as the list of publications. This introductory chap-

ter is organized as follows: Sec. 1.1 provides a description of the global context

and motivates our interest in cognitive autonomic networks for 5G. The prob-

lematic to deal with cognition and "inference" is presented by answering the

question: how to extract cognition and intelligence from user data in order to

anticipate the user needs or preferences so as to positively impact 5G networks

and services? Sec. 1.2 describes the different visions of the user behavior and

its definition in the field of wireless networks, within the literature. The section

also presents our proposed approach to define a model of user behavior. The

proposed model allows to anticipate the needs and preferences of users. Sec.

1.3 is about inferring user behaviour. It describes the problems that need to

be solved, the challenges to overcome as well as our proposed solutions.

1.1 Context, motivation and main challenges

New 5G networks are promising many new services, new technologies and

innovations such as enhanced mobile broadband (eMBB), ultra-reliable low

latency service (URLLC), Internet of things (IoT), autonomous cars, Device to

Device communication (D2D) , etc [3]. Actually, they are designed to ensure

that “Every thing is connected to every thing at any time” by supporting both

human-to-human and machine-to-machine communications, connecting up

2

Introduction: Context & motivation

to trillions of devices and reaching formidable levels of complexity and traffic

volumes.

Such revolution brings a new set of challenges for managing the network

otherwise due to its diversity and big size. So, the coming of 5G triggers a need

for a radical change in terms of end-to-end management and orchestration of

network and services. The direction is towards a full end-to-end automation

for 5G and beyond [4],[5]. Hence, it will be necessary for 5G networks to largely

manage themselves and deal with organisation, configuration, security, and

optimisation issues. That is the goal of the ETSI Zero touch network and Service

Management (ETSI ZSM) standard that addresses 5G as Autonomic Networks.

The idea is to design a thinking part or a brain of mobile networks [6],[7]. It shall

integrate computational systems that are able to manage themselves within

an acceptable period of time with no or minimal human intervention. ETSI

ZSM specifies the service as well as the network management and operations

within flexible management framework that enables complete and autonomous

operations without external intervention (called zero-touch management) [8],

[9], [10].

So, the complexity, flexibility, dynamicity and the diverse prerequisites of

5G networks require that the network must be managed in an autonomic man-

ner. To reach this goal, the automation of 5G targets the areas of end-to-end

network slice management, monitoring, planning. The idea is to make net-

work components capable of autonomous operation and serve their purpose

without external intervention even in case of changes in the network and ra-

dio environment. The autonomous management includes the functions of self-

configuration, self-repair and self-optimization. It brings benefits such as the

simplified management of 5G network and a reduction in its deployment cost.

On the other side, with every advance in the generation from 3G to 4G and

reaching 5G, users (customers) are more and more asking for better services,

3

Introduction: Context & motivation

with the highest possible quality and the lowest cost. It is expected from the

next evolution of mobile networks that they will accommodate the ever-growing

user-demands, services and applications and will guarantee a better Quality

of Experience (QoE). One of the ways that can satisfy the users’ expectation

is by adding in-advance situational awareness to the network. This will make

the network aware of the situations in which mobile users consume, or prefer

to consume, their services and applications. By anticipating user preferences

and needs, the networks will be able to efficiently face the variable consuming

habits of users that impact the network conditions. This will allow the net-

work to optimize every connection for every end-user, or device. Mainly, this

will shift the objectives of network self-management and decision-making pro-

cesses from a network-centric to a more user-centric view. Thus, the use of

external additional knowledge on the mobile users’ behavior that is defined in

terms of habits of service usage will help networks to be more intelligent and

more aware of the environment in which they operate. Indeed by being aware

of user habits, 5G networks will efficiently face the variable consuming habits

of users that impact the network conditions. For this, the cognition based on

user behavior knowledge can be considered as a key to provide intelligent and

suitable networking solutions for 5G networks. That way, they will succeed to

satisfy end-users or consumers when faced with the increasing complexity of

network management combined with numerous new applications and their

heterogeneous requirements.

However, inferring the service consumption habits of users represents a very

complex problem. This is because, inferring has to be done in a composite en-

vironment consisting of multi-services and billions of consumers or end-users.

Automatic inference of mobile user behaviour is particularly challenging. In-

deed, such inference should be done without requiring constant user inter-

action or without using personalized and refined questions. This is to avoid

4

Introduction: Context & motivation

exponential complexity. The first challenge is about system and methods that

extract such cognition requiring minimal human intervention and minimizing

system complexity.

How to automatically extract and process the knowledge of the mobile user

behavior, in order to anticipate the user preferences, and needs, with the

goal to optimize 5G networks?

Problematic 1

The extraction of user-centred knowledge for anticipating the user needs

and preferences to enhance 5G can be done within the global system de-

picted in the figure 1.1. The whole process is described in a 3-step system

(3 Step System or 3SS) that is composed of the following 3 stages: 1) Data

Collection, 2) Data processing for user behavior inference and user profile

building and 3) Information usage for 5G optimization. To automatically

extract the cognition about the user behavior, we propose to use the cur-

rent promising techniques from the domain of Artificial intelligence (AI)

and more precisely Machine Learning (ML) and Deep Learning techniques

(DL). With AI, a machine mimics human minds and “learns” automatically

from the environment, then it solves problems by maximizing the success

probability.

Contribution 1

Let’s have a deeper focus on the 3 Step System:

1. The first step is dedicated to data collection. This step can be consid-

ered as the most delicate one among the 2 others since data is crucial

for artificial intelligence solutions. That is to say, it can be seen as the

5

Introduction: Context & motivation

Figure 1.1 – 3 Step System for knowledge extraction in order to anticipate user
needs and optimizing 5G. Step 1: Data Collection. Step 2: Data processing for
user behavior estimation and profiling. Step 3: 5G optimization.

cornerstone guaranteeing the success of the 2 other steps. A detailed de-

scription of the data features and the collection campaign will be given

in chapter 3, in section 3.2. The data collection step aims to collect data

correlated to the user behavior or the manner in which the user con-

sumes a requested mobile service. As a consequence, we have privileged

a particular data collection mode referred as crowd-sourcing for build-

ing the training dataset. The crowd-sourcing mode consists in collecting

signals measured directly inside the mobile phones. This mode allows

to gather data which closely reflects the real life of a user. Such data

captures all the diverse situations during the real activities of a given

mobile user. Consequently, crowd-sourced data is highly representative

of real conditions and, with machine learning techniques, we can expect

a precise learning of the mobile user behavior in terms of their habits.

2. The collected data from the first step will serve as input to the second

step. This second step aims to estimate the user behavior to build user

profiles, in automatic way with minimal human intervention. For that,

the data will be processed through Machine Learning and Deep Learn-

6

Introduction: Context & motivation

ing approaches. AI techniques target to design intelligent machines and

software that can efficiently and automatically solve complex problems,

without being explicitly programmed to do so.

3. In the final step, the cognition extracted as user profiles will be turned

into actionable knowledge. This in turn will be injected to the 5G auto-

nomic networks to make them smarter and increase their awareness. It

will help 5G networks to face the variable consuming habits of users that

impact the network conditions. At the same time, the demands or needs

of customers will be individually met, thus focusing on user satisfaction.

In this PhD thesis, we focus on step 1 and 2. The step 3 is out of scope

of this study. However to address step 1 and 2, first an appropriate model of

mobile user behavior has to be proposed, which is discussed in the following

sections.

1.2 Mobile user behavior modelling

In literature, there exist a plethora of definitions of mobile user behavior in

different use cases. They differ from one work to another.

Authors in [11] perform an analysis on mobile user data to understand gen-

eral aggregated user behavior based on several parameters. The parameters

are (i) the mobile data usage (ii) user groups (either alone or sharing experi-

ence with others) (iii) geographical regions (USA, Europe) and (iv) different time

frames by studying the impact of special events like holidays or sports events

(soccer game in Europe and Superbowl game in US) on the potential differences

engendered on general trends of the daily user behavior. They analyzed aggre-

gated user data traffic collected from gateways of different operators in different

parts of the world. The investigation shows similarities and differences in dif-

ferent geographic regions, in different time frames and for different operators.

7

Introduction: Context & motivation

The comparative analysis is done on gateways in terms of average data rate

(kbps) per session (user), total number of sessions, and total throughput in

a specific context (Daily Usage (Weekdays and weekend), Special Days, Holi-

days). In works studying social networks, the correlation between the mobility

patterns and the interests in requested content have been showed for users

with social ties. In [12], authors consider the context (radio, resource and QoS

metrics) as the relevant information defining the user behaviour for the inter-

action between the user and the serving Point of Attachment. They propose

an intelligent handover mechanism which takes into account multiple require-

ments and various context information in order to reduce handover delays and

guarantee session continuity. [13] uses the context awareness information to

extract the network situation and reduce the traffic in between fronthaul and

backhaul when subscriber authentication and authorization takes place. Pre-

cisely, authors aim to distinguish the normal from emergency situation using

the user behavior information in order to deliver proactive control facing any

situation. Their context information or user behavior definition is based on 2

features (i) user motion pattern and (ii) backhaul outage probability. They are

extracted or inferred from from real-time information of devices (mobility and

position) and some network information such as (coverage area, traffic model

and backhaul throughput).

The above works demonstrate the positive impact of using cognition of the

user behavior for enhancing network operations. However, in these investiga-

tions, the user behavior is mainly characterized by network metrics such as

traffic data, QoS, resource, outage probability and mobility pattern. They do

not give a direct vision of phone usage habits of users, but rather a vision of

network conditions. There are other studies in literature which investigate the

use context (where, what and when) to characterize the phone usage habits of

users. As discussed in the following text, they evaluate how such characteri-

8

Introduction: Context & motivation

zation can positively impact network operations.

In [14], the authors demonstrate that the content-based caching network is

remarkably more efficient when using the correlations between mobility and

interests than random caching. [15] focuses on profiling the usage patterns of

mobile applications and investigates how, where, and when smartphone ap-

plications are used from spatial, temporal, and user perspectives. Research

in [16] investigated the current dynamics of the Malaysian market for smart-

phone and the usage behaviors of consumers. Furthermore, consumers’ us-

age behaviors such as using a smartphone for email, web browsing, gaming,

and document reading were examined. In [17] the authors describe the user

situation with information of the place derived from location data, time, and

other people surrounding the user. In [18], the context of use is seen as a joint

impact of 4 items (i) smart mobile devices, (ii) mobile applications (iii) used

information and communications services and finally (iv) the user’s environ-

ment. With such description, the potential of context information can be seen

in developing new, more personalized mobile services and applications. Au-

thors in [19] define the context of use as the combination of the time and the

place information (the user environment) in an attempt to put a meaning to a

particular place/environment while consuming a service. In [20] authors show

that knowing the user environment change in the few coming seconds can en-

hance a user’s quality of experience for a video application using optimization

of video data transfer. They accelerate the filling of application layer buffer to

prevent coverage hole. Other researchers [21] show some improvements in user

localization accuracy by using the knowledge on whether a user is indoor or

outdoor. Works in [22] and in [23] show that user mobility states or pattern

can help in the mobility optimization process. Such information is important

for mobility management. Other works have investigated the impact of knowing

the application type per user to enhance either the performance of Enhanced

9

Introduction: Context & motivation

Inter Cell Interference Coordination in interfered environment in [24] or either

QoE in[25].

The above works represent a non exhaustive list of what network operations

can benefit from the knowledge of user behavior. They illustrate the achievable

positive gain. But we observe that only a part of the user situation is con-

sidered by the previous works to build the user behavior model. They mainly

consider and study the impact of one or two features defining the user behavior

separately on different specific network operations. This leads to specific defi-

nitions. To be able to better understand the habits of consumers or end-users,

we need a complete definition of the user behavior. Such definition should en-

compass all the situations experienced by the users linked with the requested

services or applications.

The [ISO 13407:1999] standard [26] highlights the requirements to know

not only the context of use, but also information on users (demographics),

system and applications because the context affects the service/application

usage situation as well as the user and the used technology. The standard

defines the context of use as the whole situation relevant to an application and

its set of users. Therefore, it is given by the characteristics of the users, tasks

and the environment in which the system is used. In [27] the authors define

the context as any information that can be used to characterize the situation

of an entity. An entity is a person, place, or object that is considered relevant

to the interaction between a user and an application, including the user and

applications themselves.

Consequently, the use context defines then the diverse situations where

mobile users experience their services/applications while connected to mobile

networks.

10

Introduction: Context & motivation

Extending the definition of context from [27], we therefore state that the

user behavior model is the direct reflection of all the usage situations of

mobile services, and the users themselves, which provides a picture of

the consuming habits or preferences of users. The model considered shall

be linked to the use context experienced by mobile users and depict all

mobile user situations during which they consume mobile services or use

varied applications.

Definition 1: How we define the user behavior?

The potential value of this definition that links the use context to the user

behavior lies in its possibilities to predict noticeable trends in user behav-

iors/habits related to the different situations experienced by the mobile users,

the given application and the users. However with this definition, inferring the

use context of mobile users become a prerequisite to infer mobile user behavior.

Today, assessing the use context remains a difficult task yet. It is particularly

problematic when the objective is to automatically detect this context, target-

ing the personal usages or preferences prediction, without requiring constant

user interactions through personalized and refined questions. Consequently, a

reliable detection of mobile use context attributes, considering multiple user-

situations without human intervention, is still an open issue and it is fully

addressed in this PhD thesis.

We first propose a model of mobile user behavior that can abstract a large

scope of situations in which a mobile user consumes or uses varied mobile ser-

vices or applications. Then, we will address the challenge of reliable detection

of mobile use context attributes in a non-intrusive way by considering Machine

Learning techniques.

11

Introduction: Context & motivation

How to properly define an appropriate model of the user behavior?

Problematic 2

We propose to model the user behavior as a QoE-influencing features

model. The model is composed of the factors defining the contextual in-

formation that have an impact on QoE and that link the usage situation,

the user and the application

Contribution 2

To define an appropriate model, we take into consideration two major re-

quirements.

— First, the user behavior model will be an abstraction of the diverse usage

situations experienced by mobile users inside the delivery zones of mobile

services. It will also be an abstraction of the users themselves as well as

the application.

— Second, we target to bring a positive impact on Quality-of-Experience (QoE)

with the intelligence extracted from user behavior model linking the us-

age situation and the application, while a user is using his phone. QoE

is a metric that measures the mobile user’s satisfaction depending on

his or her experience of the service.

We propose also to model the user behavior with the factors defining the

contextual information that have an impact on QoE and that link the usage

situation, the user and the application, while a user is using his phone. The

main contextual information is summarized in the table 1.1. It is made of four

main categories of QoE-influencing factors: use context, application, system

and demographics. All have direct link with QoE. The use context includes

the environment, with more refined information like indoor/outdoor location

(instead of only the exact user coordinates), device speed and orientation, the

12

Introduction: Context & motivation

social context, i.e., people around the user and the type of access medium. The

applications used on mobile devices are diverse. They include communication,

web, social network applications, multimedia streaming, TV channels applica-

tions and also mobile apps [28]. The demographics give the human character-

istics as the age or the education level. The system characterizing the codec

and the device features is out of scope of this work.

Figure 1.2 – User Behavior Modelling: Intelligence for anticipating User Prefer-
ences & Needs

In order to define the model taking into account the requirements, we will

address 6 main questions (5W1H) based on Kipling’s method [29]. The Five W’s

and One H Method represents a list of the six universal questions: What? Why?

Who? Where? When? and How?. The essence of the method consists in a con-

sistent formulation of these questions. Detailed, specific and original answers

to these questions provide a more complete analysis of the problem. They open

up additional opportunities and allow to formulate better solutions and deci-

sions. Therefore, the user behavior is then modeled as a multi-attribute entity

where each attribute is directly linked to the service usage and to the answer

13

Introduction: Context & motivation

Use context

Environment Indoor (home, office, café) / Outdoor
(incar, suburban, urban)

Mobility/ Speed Walking, driving, standing, sitting, ect.
Access medium,
radio interface Wired, wireless, 3G/4G/5G, WLAN.

Social Alone, with a person, with a group, ect.
Time/
Periodicity Day time, holidays, special events, ect.

Application
Type

VoIP, live or non live service, Web access,
VoD with short/full movies, on-line
gaming, ect.

Content/Interest Action movie, interview, video-conference
or video call, image, synthesis, ect.

System
codec features

encoding features, quantification
parameter, resolution sampling rate,
frame rate
screen resolution, color depth, user
interface capabilities, screen illumination
and size,

device computational power, memory, battery
life-time, iOS, hardware

Demo-
graphics user occupation, education level, age, gender,

social/task

Table 1.1 – Quality-Of-Experience-Influencing Factors of contextual informa-
tion

of one of 5W1H questions. The model is depicted in Figure 1.2.

The 5W1H questions are defined as follows:

1. Who is the user?
answer
ÐÐÐ→ Demographics or social state (alone/ with a friend/ in a group/

etc.)

2. Where is the user while using his phone?
answer
ÐÐÐ→ Environment (indoor/ outdoor/ etc.)

3. What is he consuming? What type of traffic/application?
answer
ÐÐÐ→ Application (conversational/ video/ gaming/ etc.)

4. When is he using the phone? Mostly at night or at morning

14

Introduction: Context & motivation

answer
ÐÐÐ→ Time and periodicity (Day time/ night/ frequently/ holidays/

special events/ etc.)

5. How is he using it? static or moving?
answer
ÐÐÐ→ Mobility State and Speed (low/ high/ medium/ speed range/

etc.)

6. Why to explain the relationship between all the other questions.
answer
ÐÐÐ→ Interest (news/ sport/ action movies/ etc.)

Hence the model is made of 6 attributes delivering information on prefer-

ences or habits of mobile user when he is connected to mobile network.

Thus, in this PhD thesis a user behavior model is established based on the

rules defined by Kipling [29]. The model can be seen as an abstraction of con-

textual information of a mobile user defined by answering 6 main questions

(Who, Where, What, When, How, Why). Each answer of a question corresponds

to an attribute related to one of QoE-influencing features of mobile contextual

information. In fact, enriching the autonomic networks with knowledge of use

context of mobile service users, which in turn influences QoE, enables the net-

work to make decisions that positively enhance the experience of the connected

user. This is illustrated in [20], [22], [16], [24] and [25].

1.3 Data and Machine Learning driven detection

of user behavior

Detection of context is not a recent challenge [7]. It has been studied since

a decade from now. However, all studies that we presented previously in sec-

tion 1.2 have investigated or evaluated the detection or the impact of only one

or two attributes for one or more purposes. We can clearly imagine that if a

global system is able to detect all the attributes of the user behavior model, at

15

Introduction: Context & motivation

same time, then it can provide a more enriched information to the network. As

a consequence, the autonomic networks become more performing with more

awareness of all user habits and preferences. They will be able to cope bet-

ter with the changes and evolution of the way users consume mobile services.

However, detecting the user behavior requires to answer all the questions at

the same time since all the attributes impact the user behavior and are linked

together. The combination of the 6 answers gives a complete view of the user

behavior. Thus, the challenge is to find an unified system that is able to simul-

taneously deliver the answers to 6 questions, in a synchronous way:

— the social state of the user,

— his environment,

— his speed range or mobility,

— his traffic or application consumption,

— his time of consumption,

— and also his interest in consuming such a content in such environment,

during that time, with that speed range.

However, finding the answers is complex and it is difficult to model them math-

ematically. This corresponds to a multi-objective optimization problem. Fur-

thermore, it shall be done in a non-intrusive way and with a minimal cost. To

find an appropriate solution to this problem the following question has to be

answered.

How to efficiently infer the mobile user behavior reflecting the real life of

user, with minimal human intervention, low-complexity system and min-

imal response time?

Problematic 3

To solve the problem, we fix some constraints and select the appropriated ap-

proaches.

16

Introduction: Context & motivation

We propose to

1. opt for a Multi-Task neural networks architecture for ensuring a

parallel inference of all attributes, in a unified system, considering

a single model,

2. mutualize and minimize the number of data inputs required for si-

multaneous inference,

3. investigate Machine Learning approaches and more precisely Deep

Learning approaches to automatically solve complex problems,

4. collect data using a crowd-sourcing mode to obtain training dataset

having representative data about user behavior.

Contribution 3

To sum up, figure. 1.3 shows our proposed system to achieve our global tar-

get for automatically inferring the mobile user behavior, based on the definition

we proposed in section 1.2, under our imposed constraints. We adopt a Multi-

Task neural network architecture to achieve the parallel inference and investi-

gate the problem solving within a unified system. Such unified system ensures

less complexity than using 6 different and separate systems (one system per

attribute or per question to answer). So, it would reduce the processing / com-

putational complexity, while avoiding redundant computations distributed over

the separated and non optimized systems. In addition with the mutualization

of the data inputs, the number of inputs or attributes per task can be reduced

at the phase of signal selection. We will preferably select signals or data that

can contribute to deliver the answers of more than one question. Consequently

it would limit the complexity of the whole system.

The investigated solution for answering the questions (how and where?) is

based on Machine Learning approaches and more precisely Deep Learning ap-

17

Introduction: Context & motivation

Figure 1.3 – Challenge: One AI-based System to infer the user behavior (Be-
haviors to infer: Environment, Mobility, Application, Connectivity, Social State,
Interest)

proaches. They are indeed good candidates due to their ability to deal with com-

plex problems and to characterize the inherent relationships between the in-

puts and outputs of a system without human involvement. However currently,

Deep Learning (a sub field of Machine Learning) is gaining much popularity

due to its supremacy in terms of accuracy when trained with huge amounts of

data. As per Andrew Ng [30], the chief scientist of China’s major search engine

Baidu and one of the leaders of the Google Brain Project, "The analogy to Deep

Learning is that the rocket engine is the Deep Learning models and the fuel is

the huge amounts of data we can feed to these algorithms". Deep Learning’s

performance continues to improve when more and more data is used for train-

ing. This results in it outperforming the traditional models/algorithms of Ma-

chine Learning [31], [32]. Furthermore, increasing complexity of a given task,

combined with complicated relationships between data, makes Deep Learning

a good candidate. In this work, two learning categories, supervised or semi-

18

Introduction: Context & motivation

supervised, have been investigated and evaluated. In contrast to supervised

learning which needs to know the output/labels as well as the input to build

the model, the semi-supervised method mixes a supervised learning method

with an unsupervised learning method. The latter in turn does not require the

labels or the output. Such method is interesting because it diminishes even

more the need of a human intervention because it requires less data to be

labeled. We focus on inferring the mobile user behavior with Deep Learning

algorithms in these two cases. The performance is also compared to those ob-

tained using classical Machine Learning algorithms.

However, opting for Deep Learning adds another challenge to tackle in terms

of ’Data’. Actually, data is the fuel of any artificial intelligence approach. With-

out relevant data, we can’t even think about Deep Learning. The better the

data is, the better the solution will be. We choose to feed Machine learning

tools with data collected in a crowd-sourcing mode [33]. It is defined as an

online approach for problem solving through involvement of crowd. For crowd-

sourcing approach, we consider that current smartphones are equipped with

enough sensors to get fine grained context information. A set of significant

number of smartphone users includes very large number of users with different

user’s characteristics. Considering the fact that users carry their smartphone

devices with them daily, smartphone devices allow collecting the data about

their owners. Considering the potential to monitor users of the smartphone

devices, number of smartphone sensors and amount of user’s data which can

be collected, we find that smartphone devices present an excellent platform for

collecting data about users.

Therefore, Machine Learning algorithms trained on datasets collected in

crowd-sourcing mode allow to learn very diverse real-world situations.

19

Introduction: Context & motivation

1.4 Real life data: preferred situations, imbalanced

and noisy data

Actually, contrary to traditional TV users who just watch scheduled pro-

grams, mobile service users are free to choose the content they want, at any

point in time and space. During a day, a user can be in different situations,

such as walking outdoor, in a car, at the work office, in a mall, in a café or at

home. As a matter of fact, mobile users’ preferences for certain applications or

contents is linked with the usage situations [34]. Statistical studies show that

mobile phones are mostly used in a building for internet service (80%) and for a

call (70%) [35]. This can be explained by the fact that the different use contexts

pose their own limitations, which in turn impact the potential application us-

ages. In [28], [36], [37], the most commonly mentioned physical environments

of application usage are again indoors (waiting halls or lounges, work, home

and cafes), but also include vehicles, such as public transportation and pri-

vate cars. In motion, audio is the preferred media, whereas, during stationary

reception, text and video are the most pleasant media. For information assim-

ilation, the café environment is preferred, while the bus or car environment is

not that preferred. This is explained by the calm and the pleasant atmosphere

of a café, which is suitable for focusing on viewing. In the bus context, people

may focus their attention to, e.g., watching mobile TV, but a complicated task

while moving generally results in an unpleasant entertainment experience. The

mobile devices are mostly used in indoor or in-car context.

With respect to users’ routines, the requested applications are used at spe-

cific moments during the day, either in morning, or in evening before going to

sleep, in the vehicle, and inside/outside the office. They can also be used all

day depending on age or social status of users. Typically, people do not watch

mobile TV during short journeys and in noisy environments. In such situations

20

Introduction: Context & motivation

they prefer textual information over video. However, some types of users view

mobile TV in different times of day, from morning to late in the evening. With

respect to the social context, the applications were used 80% of the time, on av-

erage, when the user was alone. Motivations for individual viewing are killing

time, fighting loneliness, keeping up-to-date, browsing content and unavail-

ability of other possibilities to watch television. In public locations, mobile TV

also serves to build one’s own space and privacy. Even though screen size and

use of headphones lead to practical limits for watching same content among

multiple viewers, sharing the same device, mobile TV is also used in shared sit-

uations to entertain children, to broadcast a piece of information. Thus, such

application enables both an individual and a shared viewing experience.

As a matter of fact, mobile users’ preferences for certain applications or

contents is linked with the usage situations [28],[34]. People spend most of

their time indoor than in mobility and outdoor. Consequently, outdoor data is

less represented than indoor data when considering phone usage.

Furthermore, the dataset built in crowd-sourcing mode is inherently not

strictly controlled during the data collection. In our case, it suffered mainly

from a problem which is related to the signal recording tool. This anyway serves

an example of the problems that one may face. To automatically record various

cellular signals or data during a given time slot, we employed a mobile appli-

cation. The recorded values are stored in files on the mobile or directly sent to

a data platform. But, during short disconnection events, this often (1) leaves

an empty value in the signal vector to follow or (2) fills it with random or de-

fault values or (3) duplicates the same value several times; this depends on the

signal in question.

So, we also expect that the system has to process imbalanced and noisy

data. Knowing that imbalanced and noisy data presents a big issue for ML

models, different solutions will be investigated to cope with this constraint.

21

Introduction: Context & motivation

How to deal efficiently with real data which is imbalanced and noisy?

Problematic 4

We propose to automatically detect duplicates, anomaly and missing part

in the data or signals recorded. A post-processing of data cleaning after

recording has to be performed to remove or replace false values and im-

balanced data, etc.

Contribution 4

Noisy data implies that we need to do data cleaning. It is important to ob-

tain good performance for the models build using learning to do environment or

mobility state detection. To handle this issue, an analyse of general properties

of the input data (called also features) allows us to efficiently detect missing

data and outliers which, however few they are, considerably degrade the per-

formance of the task asked from the learned models. These have been replaced

by more significant values.

Imbalanced classes is a common issue for ML classification approaches

where the classes are not equally represented. For example, for the anoma-

lies detection use case, we face this issue since the anomalies are scarce as

compared to normal events. In our case, the real data collected using crowd-

sourcing mode requires also to tackle this problem. Sometimes, this imbalance

is also a by-product of data cleaning, which has to be done to overcome the

noise inherent to real data. Actually, different techniques can be found in lit-

erature to solve it [38]. A simple and a common approach, which we adopted

in this thesis, is to artificially over-sample the minority classes (or artificially

under-sample the abundant classes) in the dataset.

22

Introduction: Context & motivation

1.5 Summary of Thesis Contributions

In this thesis, we will present an investigation of user behavior modeling. The

user behavior model considers two QoE-influencing features related to mobile

use context: the user environment and mobility state. The environment and

mobility are important factors regarding QoE since they have a big influence

on QoE. For example, a user who is indoor would experience a very different

service quality as compared to the one who is outdoor, all else being equal.

Actually, the environment and the mobility together set up the conditions in

which a mobile user consumes the requested services and applications. Differ-

ent from the state of art, we answer simultaneously to the following questions,

using Deep-Learning-based models: how and where a mobile user consumes

the mobile services? The detection of user behavior using the proposed model

is done with minimal human intervention. We also consider multiple and var-

ied real situations where users are being connected to cellular networks, while

experiencing a service or using an application. To provide a high-performance

learning model, the model design is done sequentially by first separately con-

sidering the detection of each attribute and then by conjointly inferring them

at the same time. Furthermore the training is done using the data which is

collected directly by smartphones using crowd-sourcing approach. The perfor-

mances obtained with Deep Learning algorithms based on either supervised,

semi-supervised (semi-hybrid systems) or Multi-Task approaches have been

studied and evaluated in case of simultaneous inference of both the environ-

ment and the mobility. They have been also compared to classical Machine

Learning algorithms. All Deep Learning models have been trained and tested

using real radio data that is signal measurements collected within a 4G net-

work. They represent 3GPP defined signals or indicators measured by UE and

sent to eNB via standardized protocols.

23

Introduction: Context & motivation

In the following section, we define the structure of the thesis and subse-

quently highlight the contributions of each chapter.

1.6 Document structure

The thesis report is made of seven chapters including this one. Additionally,

there is also a list of figures, a list of tables, a list of abbreviations, mathemati-

cal notations, bibliography and appendices. In the following, we present a brief

description of the content of each chapter.

� Chapter 2: Machine Learning: Definitions & Generalities

Describes, the basic concepts of Machine Learning and Deep Learning.

Beginning from the learning types then passing by the machine learning

algorithm families that we have categorized into two categories: Classical

Machine Learning algorithms (or shallow algorithms) and deep learning

algorithms.

� Chapter 3: Machine Learning Workflow Toward User Behavior char-

acterisation

hapter discusses the workflow of any Machine Learning based-solution

that includes all the required steps to build the proper machine learn-

ing solution from scratch. We propose a 5-step workflow to fix the basic

points of the process adopted to solve the user behavior modeling: 1)

Identifying the problem and analyzing the needs 2) Collecting and gath-

ering varied data 3) Cleaning and preparing the data 4) Model choice and

training 5) Scaling-up, optimization and evaluation. Then an explanation

on how the data used for our purpose has been generated.

� Chapter 4: User Environment Detection: Where is the mobile user

while experiencing a service?

24

Introduction: Context & motivation

It investigates the environment detection of an active mobile phone user,

using supervised and hybrid/semi-supervised Deep Learning basedmeth-

ods. We will empirically evaluate the effectiveness of the investigated

methods using new real-time radio signals and with complete, as well

as partial, ground truth information. A comparison will be done with

classical ML methods. Data is gathered massively from multiple, typical

and diversified locations (indoor and outdoor) of mobile users. In a fur-

ther investigation, we propose to improve the classification granularity

by detecting more than two classes (Indoor/ Outdoor), which is up to five

classes corresponding to five relevant environment categories. Relevant

multi-class schemes are proposed to efficiently regroup the multiple en-

vironment categories in more than two classes.

� Chapter 5: Mobility Speed Profiles (MSP) Detection: How is the user

when experiencing a service? Static or Moving?

It investigates the mobility speed range detection of an active mobile

phone user using supervised Deep Learning based methods. We em-

pirically evaluate the effectiveness of our approach using real-time and

highly representative radio data that best captures the real daily move-

ments of users. This data includes ground truth information and the

whole dataset has been gathered massively from many diversified mobil-

ity situations. In a further investigation, we will propose to go further in

granularity by detecting more than three classes (Low, Medium or High),

by going up to eight classes corresponding to multiple relevant situa-

tions. Relevant multi-class schemes are proposed to efficiently regroup

the multiple mobility speed range categories.

� Chapter 6: Multi-Task Learning for joint detection of environment

and mobility

25

Introduction: Context & motivation

Deals with the joint detection of the first two user behaviour attributes

which impact QoE. They will be already investigated in previous chap-

ters. In order to simultaneously answer both questions: where is the

user while consuming a service and how is he consuming it, we propose

a Multi-Task based Deep Learning architecture. For such architecture

we use mutual data or inputs to infer the two attributes at the same

time. For performance evaluation, we have used the same dataset used

in investigating both of the mobility speed profiling and the environment

detection. Such real-time radio data has been massively gathered from

multiple diversified situations of mobile users.

� Chapter 7: Conclusion

This chapter draws conclusions and proposes directions for further re-

search

1.7 Publications list

This thesis led to 5 publications that are listed in the following:

1.7.1 International Conferences with review committee

The conferences’ publications list in a chronological order is as follow:

1. Machine Learning with partially labeled Data for Indoor Outdoor De-

tection [39]

—Conference: IEEE Consumer Communications & Networking Confer-

ence (CCNC)

— Location: Las Vegas - USA

— Date: Jan. 2019

2. Semi-supervised Deep Learning-based Methods for Indoor Outdoor

Detection [40]

26

https://ccnc2019.ieee-ccnc.org/

—Conference:IEEE International Conference on Communications (ICC)

— Location: Shanghai - China

— Date: May. 2019

3. Mobile User Environment Detection using Deep Learning basedMulti-

Output Classification [41]

—Conference:IFIPWireless andMobile Networking Conference (IFIP-WMNC)

— Location: Paris - France

— Date: Sep. 2019

4. Deep Learning based Speed Profiling for Mobile Users in 5G Cellular

Networks [42]

—Conference:IEEE Global Communications Conference (GLOBECOM)

— Location: Hawaii - USA

— Date: Dec. 2019

1.7.2 International Workshops with review committee

The workshop papers list in a chronological order is as follow:

1. Multi-task Deep Learning based Environment and Mobility Detec-

tion for User Behavior Modeling [43]

—Conference:The International Symposium on Modeling and Optimiza-

tion in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

— Location: Avignon - France

— Date: Jun. 2019

27

https://icc2019.ieee-icc.org/
https://wmnc.dnac.org/
https://globecom2019.ieee-globecom.org/
http://www.wi-opt.org/

Chapter 2

Machine Learning: Definitions &

Generalities

Social Networks, Videos, Films, Photos, Smartphones, Connected Objects,

etc, make us and our world overwhelmed with data. The amount of data in the

world, in our lives, seems to go on and on increasing and there is no end in

sight. Omnipresent, Mobile Networks also are growing faster every day, reach-

ing formidable levels of performance but also of traffic and data volume and

making the task of managing them as well as analyzing them prodigious. As

matter of fact, the better these data are analyzed, processed and then used, the

smarter and the more powerful the networks will become, and this is essen-

tially due to the ascendance of the artificial intelligence fields nowadays. Data

processing, Information exploiting, Classification, Regression, Clustering, Ma-

chine Learning, Deep Learning, Artificial intelligence they are all a buzz words

that we hear in every day life. These terms are often used too broadly, synony-

mously, or simply incorrectly. Actually, the border distinguishing every field is

so blurry as we can see in figure 2.1. Data processing, Information exploiting,

Classification, Regression, Clustering, Machine Learning, Deep Learning can

all be considered as sub-fields of artificial intelligence in computer science that

give computers the needed autonomy to learn or to make decisions without be-

ing explicitly programmed. While practically useful, these techniques are not

very widely and properly deployed in the wireless networking field compared in

29

Part 2.0, Chapter 2 – Machine Learning: Definitions & Generalities

speech recognition, visual object recognition, object detection and many other

domains such as drug discovery and genomics. Rare are papers that men-

tion Mobile Networking field as a direct application domain of these techniques

[44], [45]. Meanwhile, a number of surveys on machine learning and neural

network applications in wireless networking have emerged lately with 5G re-

searches. However, they are kind of limited in terms of application fields or

in presenting a concrete guidelines on how, when, and where to use different

machine learning tools in the context of wireless networks [46].

Figure 2.1 – Machine Learning Fields

This chapter aims to give, at first, an introduction to machine learning and

Deep Learning in general and then, a description of the methodology adopted to

develop the ML model for inferring the user behavior. It is organized as follows.

Sec. 2.1 provides an overview of Machine Learning with their definitions, the

learning categories and the main families of ML algorithms. In Sec. 2.2 we

detail the existingmachine learning algorithm families that we have categorized

into two categories: shallow or classic algorithms and deep learning algorithms.

30

2.1. Learning types

Section Sec. 2.3 presents the conclusion of this chapter

2.1 Learning types

Machine Learning (ML) is the concept of bringing the digital world closer to

the real world by training systems, computers, machines, in order to become

more intelligent, to make decisions, to estimate the unknown and to predict

the next steps in any ambiguous context. Technically, ML categorize large data

sets by observing their regularities and recognizing their patterns. This can

be done through a number of Machine Learning algorithms which learns from

past and present events and then adapt the environment, regardless of human

interventions.

One question that always arises every time we talk about ML is "When to

Use Machine Learning?". Indeed, there is no “one size fits all” answer to this

question but Machine Learning can be seen as an efficient alternative to the

conventional engineering flow when problems appear to be too complex to be

studied in its full generality or to be modelling mathematically or once we face

many cases to satisfy. Authors in [47] identify a non exhaustive list of criteria

that help distinguish when ML approaches are recommended to be used, for

example we cite:

1. The task involves a function that maps well-defined inputs to well defined

outputs: eg. Classification of spam and non Spam mails

2. Large data sets exist or can be created containing input-output pairs

3. The task provides clear feedback with clearly definable goals and metrics

4. The task does not involve long chains of logic or reasoning that depend

on diverse background knowledge or common sense

5. The task does not require detailed explanations for how the decision was

made

31

Part 2.1, Chapter 2 – Machine Learning: Definitions & Generalities

6. The task has a tolerance for error and no need for provably correct or

optimal solutions

7. The phenomenon or function being learned should not change rapidly

over time

8. No specialized dexterity, physical skills, or mobility is required

Thus, it is important to remember that ML is not a solution for every type of

problem. There are certain cases where robust solutions can be developed with-

out using ML techniques. For example, you don’t need ML if a target value can

be determined by using simple rules, computations, or predetermined steps

that can be programmed without needing any data-driven learning [48]. ML

is mainly used when the studied task is too complex to be modelled mathe-

matically, it is also used to automate tasks. ML is a good candidate to analyse

or predict the user behavior which is a complex task that can not be easily

modelled mathematically. Globally, using ML to infer the user behavior can be

seen as the first step of automating the decision making process of Autonomic

Network.

We can distinguish three different main types of Machine Learning prob-

lems: supervised learning, unsupervised learning and Reinforcement Learning

which are briefly introduced below. In this thesis we are rather interested in su-

pervised and semisupervised learning which is the combination of supervised

and unsupervised learning (mix of tagged and untagged data).

2.1.1 Supervised Learning

When the machine learning is trained using for every input a corresponding

output or label or target or also called tag or class, so it is therefore a supervised

learning. Thus, the supervised Learning is based on on apriori knowledge. The

objective is, using some training data, to deduce a function that makes the

32

2.1. Learning types

best possible mapping between inputs and output (see figure 2.2). The training

data consists of tuples { (xi,yi) ∣ (xi,yi) ∈ X ×Y , i ∈ [1,N]}, where

— X ∈ X is a set of observations composed of a random vectors xi of dimen-

sion p (xi = (xi0 , xi1 , ..., xip)) that predict a certain output yi ∈ Y

— N is the number of observations (samples) taken from X

Figure 2.2 – Scheme of a supervised learning algorithm

The variable to predict y ∈ Y can be a quantitative variable (as in the case

of regression problems) or a qualitative variable (as in the case of classifica-

tion problems). The objective of supervised learning is to find the unknown f

function given some tuples (x,y) = (x, f(x)). The The function f is an element

of some space of possible functions F, usually called the hypothesis space. An

estimate f̂ of the function f is obtained as the function that minimizes the em-

pirical risk on the training set. The function of empirical risk has the following

formula:

Remp(w) =
1
N
∑L(yi, f̂(xi,w))

with

— L a loss function measure how well a function fits the training data. For

training example (xi, yi), the loss of predicting the value ŷi is L(yi, ŷi)

33

Part 2.1, Chapter 2 – Machine Learning: Definitions & Generalities

which measures how different the prediction ŷi from the true label or

output yi.

— w a set of parameters that estimate yi ∈ Y as ŷi = f̂(xi,w) = xiw.

Once the trained model is build, it will be able to provide target/ tag/ out-

put/ class for any new input after sufficient training. So during the learning

phase the learning algorithm seeks a function from inputs to the respective

outputs. There are two main types of supervised learning problems: they are

classification that involves predicting a class label and regression that involves

predicting a numerical value:

1. Classification: When inputs are divided into two or more classes and the

learning algorithm must build a model that assigns new inputs to one of

these classes (or two it depends of the study case).

2. Regression: Estimating relationships between variables.

2.1.2 Unsupervised Learning

Unlike in supervised learning, in this case there is no apriori knowledge.

Here we do not have tuples { (xi,yi) ∣ (xi,yi) ∈ X ×Y , i ∈ [1,N]}, we simply have

(without the target or the output yi):

{ (x0, ..,xi,xN) ∣ (xi) ∈ X , i ∈ [1,N]}

In an unsupervised learning problem, the objective is to model the struc-

tures or the underlying distributions of the data without referring to known or

labeled results (see figure 2.3). It is called unsupervised because, unlike the

supervised one, it tends to be more subjective since it does not have correct

answers. Algorithms serve to discover and present interesting structures in the

data.

There are many types of unsupervised learning, the most known ones are:

34

2.1. Learning types

Figure 2.3 – Scheme of an unsupervised learning algorithm

1. Clustering: Gathering a set of inputs into divided groups. Unlike in clas-

sification, the groups are not known beforehand, making this typically

an unsupervised task.

2. Density Estimation: Looking for the inputs distribution in some space.

3. Dimensionality Reduction: Simplifying the inputs set by projecting them

into a lower-dimensional space.

2.1.3 Reinforcement Learning

In cases of supervised learning, tuples { (xi,yi) ∣ (xi,yi) ∈ X×Y , i ∈ [1,N]} are

available. However, the case of reinforcement learning we have unsupervised

problems that only receive re-feeds or reinforcements (for example, win or lose).

The supervised information y is replaced by information of the action/reaction

type. The goal in reinforcement learning is to learn to map action situations to

maximize a certain reward function. In these problems an agent learns by trial

and error in a dynamic and uncertain environment. In each interaction, the

agent receives as input a current status indicator and selects a certain action

that maximizes a reinforcement or reward function in the long term (see figure

2.4).

35

Part 2.2, Chapter 2 – Machine Learning: Definitions & Generalities

Figure 2.4 – Scheme of an Reinforcement Learning algorithm

2.1.4 More types

Actually, these three Learning types presents the main 3 basic types. How-

ever there are other types that are derived from these 3 (Supervised, unsu-

pervised, Reinforcement Learning). For example, we can find the hybrid learn-

ing which is in general a combination between supervised and unsupervised

Learning. We tried to summarize most of the other types in the table 3.3.

2.2 Machine Learning algorithm families

The idea of creating a "thinking" or "intelligent" machine is at least as old

as modern computing, if not even older. Arthur Samuel first came up with the

phrase “Machine Learning” in 1952. Few years after, the term "artificial intel-

ligence" was born during the Dartmouth Workshop in 1956, which is widely

considered to be the founding event of artificial intelligence as a field [49]. Nowa-

days, Machine Learning (ML) is an important aspect of modern business and

research. It uses algorithms to assist computer systems in progressively im-

proving their performance. Machine Learning algorithms automatically build a

mathematical model using data samples (also known as training data) to make

decisions without being specifically programmed to make those decisions. In

this section, we will present some main families of ML algorithm which can be

summarized with some example and main application fields in the figure 3.8.

36

2.2. Machine Learning algorithm families

2.2.1 Classical Machine Learning/ Shallow Learning

In literature, no verbatim reference has been found for "classical machine

learning" expression, the common annotation is referred in short as "machine

learning". However, with the apparition of the Deep Learning revolutionising

concept in 2006, other machine learning algorithms have been called by ex-

perts as shallow learning algorithm or classical Machine learning. Technically,

all machine learning families/methods mentioned in this chapter even the

Deep Learning belongs indeed to the "machine learning" concept or field (see

figure 3.9). Thus, for clarity and disambiguation reasons, it will be refereed

in this report as "classical machine learning" for old algorithms (before Deep

Learning) and not "machine learning".

Classical Machines Learning (CML) algorithms are often grouped by simi-

larity in terms of their function (how they work). That’s to say they are grouped

according to their abilities to seek the structural patterns in the data in other

words the way the inputs are mapped to the outputs [50], [51]. Actually, the

pattern mapping data to each other can take multiple representations and

structures that CML aims to look for in the model training building phase.

Each one of these representations and structures dictates the kind of tech-

nique that can be used to infer that output structure from data. In fact, there

are many different kinds of simple structure that datasets can exhibit. In one

dataset, there might be a single attribute that does all the work and the oth-

ers may be irrelevant or redundant. In another dataset, the attributes might

contribute independently and equally to the final outcome. A third might have

a simple logical structure, involving just a few attributes that can be captured

by a decision tree. In a fourth, there may be a few independent rules that gov-

ern the assignment of instances to different classes. A fifth might exhibit de-

pendencies among different subsets of attributes. A sixth might involve linear

dependence among numeric attributes, where what matters is a weighted sum

37

Part 2.2, Chapter 2 – Machine Learning: Definitions & Generalities

of attribute values with appropriately chosen weights. In a seventh, classifica-

tions appropriate to particular regions of instance space might be governed by

the distances between the instances themselves. And in an eighth, it might be

that no class values are provided: the learning is unsupervised. Therefore, the

CML Algorithm, more generally the ML algorithm, must be a chosen carefully.

According to [51], [50] and [52], CML main methods are as follow (see figure

2.5):

Figure 2.5 – Machine Learning Algorithms Modelling according to [50]

1. Ensemble: Ensemble algorithms in CML aim to combine the decisions/

prediction from multiple models to improve the overall performance. Ac-

38

2.2. Machine Learning algorithm families

tually, error causes in CML are due to the variance, noise and bias. Thus,

inferring the final decision from many other models helps to minimize

these error factors. These methods are designed to improve the stability

and the accuracy of CML.
Eg.
Ð→Boosting, AdaBoost, Bootstrapped Aggregation (Bagging), Weighted

Average (Blending), Stacked Generalization (Stacking), Gradient Boost-

ingMachines (GBM), Gradient Boosted Regression Trees (GBRT), Ran-

dom Forest (the most commonly used algorithm)

2. Neural Networks: Neural Network concepts are inspired from biologi-

cal neurons in the brain. Neural Networks experiments began as an at-

tempt to mimic the architecture of the human brain to perform tasks

that helps computer to be more intelligent. The main concept behind

Neural Networks is a weighted graph composed of a neurons. These neu-

rons are connected to each other in various patterns, to allow the output

of some neurons to become the input of others. These algorithms are

not recent, they were deployed since the mid of 20th century. However,

they quickly reached their limits since they are greedy in resources.

With technological progress and the appearance of GPUs, Neural Net-

works are more and more exploited with a deeper graphs what gave birth

to Deep Learning concepts (see figure 2.6). Deep-learning networks are

distinguished from the more commonplace single-hidden-layer neural

networks by their depth (horizontally or the number of layer) and width

(vertically or the number of neurons per layer) through which data must

pass in a multistep process of pattern recognition. Neural Network and

more precisely Deep Learning will be properly addressed in section 2.2.2

of this chapter.
Eg.
Ð→ Perception, Back-propagation, Hopfield Network.

3. Regularization: Regularization algorithms or techniques are an exten-

39

Part 2.2, Chapter 2 – Machine Learning: Definitions & Generalities

Figure 2.6 – Revolution of Neural Network Depth (number of layers) [53]: Eg. of
image classification: Layers Number vs Model error (%)

sion added to other algorithm such as neural Networks or regression in

order to attempt to penalize the model (or the overfitting) in a statistical

way.
Eg.
Ð→ Ridge Regression, Least Absolute Shrinkage and Selection Oper-

ator (LASSO), Elastic Net, Least-Angle Regression (LARS).

4. Rule System: Association rule learning algorithms aim to find the rela-

tionships inside a given dataset.It identifies frequent if-then associations

called association rules which consists of an antecedent (if) and a con-

sequent (then). Eg. if milk and coffee then sugar.
Eg.
Ð→ Cubist, One Rule (OneR), Zero Rule (ZeroR), Repeated Incremen-

tal Pruning to Produce Error Reduction (RIPPER), Apriori algorithm,

Eclat algorithm.

5. Regression: Regression is concerned with modeling the relationship be-

tween variables that is iteratively refined using a measure of error in the

predictions made by the model. It is usually used to predict a continu-

ous value (quantitative variable). Predicting prices of a house given the

features of house like size, price etc is one of the most known examples

of Regression.

40

2.2. Machine Learning algorithm families

Eg.
Ð→ Ordinary Least Squares Regression (OLSR), Linear Regression,

Logistic Regression, Stepwise Regression, Multivariate Adaptive Re-

gression Splines (MARS), Locally Estimated Scatterplot Smoothing

(LOESS)

6. Bayesian: Bayesian algorithms are a family of probabilistic classifiers

that explicitly apply Bayes’ theorem with strong naive independence as-

sumptions between the features.
Eg.
Ð→ Naive Bayes, Gaussian Naive Bayes, Multinomial Naive Bayes, Av-

eraged One-Dependence Estimators (AODE), Bayesian Belief Network

(BBN), Bayesian Network (BN).

7. Decision Tree: Decision Trees are a class of very powerful Machine

Learning model cable of achieving high accuracy in many tasks while

being highly interpretable. The main concept behind the decision trees

is to split data continuously according to a certain parameter or value

of features. The tree can be explained by two entities, namely decision

nodes and leaves. The leaves are the decisions or the final outcomes. And

the decision nodes are where the data is split.
Eg.
Ð→ Classification and Regression Tree (CART), Iterative Dichotomiser

3 (ID3), C4.5 and C5.0 (different versions of a powerful approach),

Chi-squared Automatic Interaction Detection (CHAID), Decision Stump,

M5, Conditional Decision Trees.

8. Instance-based learning: Instance-based learning model is a decision

problem with instances or examples of training data that are deemed

important or required to the model. They are typically based on the dis-

tance or similarities inside the data set to determine which member of

the training set is closest to an unknown test instance. Once the nearest

training instance has been located, its class is predicted for the test in-

stance. For this reason, instance-based methods are also called winner-

41

Part 2.2, Chapter 2 – Machine Learning: Definitions & Generalities

take-all methods and memory-based learning.
Eg.
Ð→ K-Nearest Neighbor (KNN), Learning Vector Quantization (LVQ),

Self-Organizing Map (SOM), Locally Weighted Learning (LWL), Sup-

port Vector Machines (SVM).

9. Clustering: Clustering, like regression, describes the class of problem

as well as the class of methods or algorithms. Clustering algorithms aim

mainly to divide data to a number of clusters or groups according to the

existing similarities in data instances. That is to say that data points in

the same groups are more similar to other data points in the same group

and dissimilar to the data points in other groups.
Eg.
Ð→ k-Means, k-Medians, Expectation Maximisation (EM), Hierarchi-

cal Clustering.

10. Dimentionality Reduction: Dimentionality Reduction, like regression

and clustering, describes the class of problem as well as the class of

methods or algorithms. Like clustering methods, dimensionality reduc-

tion seek and exploit the inherent structure in the data, but in this case

in order to summarize or describe data using less information.
Eg.
Ð→ Principal Component Analysis (PCA), Principal Component Re-

gression (PCR), Partial Least Squares Regression (PLSR), Sammon

Mapping, Multidimensional Scaling (MDS), Projection Pursuit, Linear

Discriminant Analysis (LDA), Mixture Discriminant Analysis (MDA),

Quadratic Discriminant Analysis (QDA), Flexible Discriminant Anal-

ysis (FDA).

11. Others: There are many other algorithms that are not covered by this

categorization like algorithm for specialty tasks in the process of machine

learning, or specialized algorithms dedicated to some fields.
Eg.
Ð→ Processing Algorithms: Feature selection algorithms, Accuracy

evaluation algorithms, Performancemeasures, Optimization algorithms

42

2.2. Machine Learning algorithm families

Eg.
Ð→ Specialized algorithms: Computational intelligence (evolution-

ary algorithms, etc.), Computer Vision (CV), Natural Language Pro-

cessing (NLP), Recommender Systems, Reinforcement Learning, Graph-

ical Models, And more. . .

This is a useful grouping of CML algorithms since it gives an idea how the al-

gorithm would deal with data 3.9, but it is not perfect. There are still algorithms

that could just as easily fit into multiple categories like Learning Vector Quan-

tization that is both a neural network inspired method and an instance-based

method. There are also categories that have the same name that describe at

the same time the Learning type and the class of algorithm such as Regression

and Clustering.

Actually, CML outcomes is highly linked to the data distribution as well as

the data nature and the data volume as well as the CML learning behavior

vis-a-vis the data set. Indeed CML have always some conditions to fulfill for an

optimal results which make data mining harder and more complicated regard-

ing the data features at the disposal. Table 2.1 critics some methods according

to [52].

2.2.2 From shallow (Classical Machine Learning) to Deep Learn-

ing

In order to develop intelligent systems able to approximately reproduce hu-

man capabilities and skills, we turned to neuromimetics (a system in which

computational models methods apply underlying concepts of neural processes),

that is to say the possibility of mimicking the brain, which allows man to rea-

son, speak, calculate, compute and learn. This gives birth to two possible ways

of mimicking:

• Mimicking cognitivism: which attempts to reproduce human reasoning

43

Part 2.2, Chapter 2 – Machine Learning: Definitions & Generalities

Method Requirements Problem

Decision Tree Small set of possible values
for each attribute

With a large data set, a
decision Tree becomes
large and illegible

Bayes
The attributes independence
assumption is verified.

It is a bit hard to verify
the value normal
distribution
assumption.

The value normal
distribution assumption for
numerical attributes is
verified.

Distance

Greedy on resources
Long run time execution
Difficult to pick the
right
distance/dissimilarity.
Inability to deal with
the noise

Neural Networks

Well set the architecture :
Layer Numbers, neurons
numbers, network topology

Look for a local
optimum and a non
global one.

Table 2.1 – Special requirements and problems with some algorithms of CML

and intelligence. It will give birth to the discipline of artificial intelligence.

• Mimicking connectionism: which attempts to reproduce the connection

between neurons following the functioning of the nervous system.

Works on neuronal models dates back at least to the 1940s with Mc Culloch

and Pitts [54] trying to model the brain cell network as closely as possible.

They use the Hebb rule (" cells that fire together, wire together") referring to the

synaptic contacts between 2 cells when they are active simultaneously in the

human brain. In 1958, Frank Rosenblatt [55] presents the perceptron. This is

the first model for which a learning process is defined. While the perceptron

operates in a binary mode, Widrow and Hoff [56] propose in 1960 a version

that reacts linearly to the input signals. This version is called ADALINE for

44

2.2. Machine Learning algorithm families

ADAptative LINear Element.

The beginning of the first decade of the 21st century turned out to be a

turning point in the history of ML by the apparition of Deep Learning, and this

is explained by the three simultaneous trends, which together gave a notice-

able synergetic effect. The first is Big Data. There is alot of abundant data tha

can be exploited by the curiosity of scientists. The second is the decrease in

the cost of parallel computing and memory. This trend was discovered in 2004

when Google unveiled its MapReduce technology, followed by its open analogue

Hadoop (2006), and together they gave the opportunity to distribute the pro-

cessing of huge amounts of data between simple processors. At the same time,

Nvidia made a breakthrough in the GPU market for in the gaming purposes,

then it turned out that it can be used for machine learning purposes. In these

condition, A leading trio has emerged: Yann Lecun, Yoshua Bengeio and Ge-

offrey Hinton [32]. Supported by Google and Facebook, they have advanced

research in the field and they have shown a great performance of Deep Learn-

ing in resolving complex problems that was unsolved so far. Statistically, Deep

Learning methods are beating out shallow and classical machine learning ap-

proaches in every single metric [57].

The key concept of Deep Learning is the "neuron" which is the constructive

unit of a deep neural network. So mathematically, an artificial neuron is simple

computational unit which will make a particularly computation function based

on other units which is connected to. More formally a neuron is characterized

by (see figure 2.7):

• The neurons set to which it is connected. This set constitutes its input

neighborhood usually modelized with a vector noted x, x = {x0, ..., xn}

where n is the number of neurons to which it is connected.

• Weights w = w0, ...,wn a weight for every connection.

• Biais b

45

Part 2.2, Chapter 2 – Machine Learning: Definitions & Generalities

• A preactivation score z that is computed by adding the bias added to

the sum of the connected neurons multiplied by their weights as follow:

z = σ(x) = b +∑iwixi = b +wx.

• Activation function g that takes as input the preactivation score g(z) =

g(σ(x)) = b +∑iwixi = b +wx

• Output of activation function : a = g(z) = g(σ(x)) = b +∑iwixi = b +wx)

Figure 2.7 – Neuron characterization: connection, weights, bias, activation
function

Thus, a neural network is a structure made up of stacked multilayer neural.

There are many topologies of the network connections: Hopfield, recurrent, ect.

However we are rather interested in the feedforward neural network topology.

These models are called feedforward because of the information flows through

the function they approximate. This flow starts from x (input data vector) then

passes through the intermediate computations of the hidden layers, and finally

to the output layer describing the output y. There are no feedback connections

in which outputs of the model are fed back into itself. Thus we can consider the

feedforward Neural Network (FNN) as a directed acyclic graph describing how

the functions (layers) are composed together. For example, Let’s consider a FNN

composed of 3 layers so we might have three functions f 3,f 2, and f 1 connected

46

2.2. Machine Learning algorithm families

in a chain, to form f(x) = f 3(f 2(f 1(x))) where f 1 is the first layer of the FNN and

f 2 is the second layer and f l is the lth layer of the FNN. The overall length l of the

graph formed by the FNN gives the depth of the model. Thus, the term Deep

Learning came from this terminology. The first layer receives raw data as input,

it is called the input layer. The intermediate layers, called hidden layers, receive

as inputs the outputs of the neuron of the previous layer. The last layer, being

the output layer, returns the expected result of the algorithm. Each hidden

layer f l of the network is typically vector valued composed of neurons [1] . The

number of these neurons will define the width of the FNN. The output of each

neuron is calculated as follows (see figure 2.8):

al
j = g(z),where z = ∑

k

wl
jka

l−1
k + bl

j

Where:

— al
j: the output of the jth neuron in the layer l.

— bl
j: the bias of the jth neuron in the layer l.

— wl
jk: the weight of the connection of the kth neuron in the layer l−1 to the

jth in the layer l.

Activation Function

In literature there are many potential choices for the activation function of

a neuron g. We can categorize them according to their types: Identity func-

tion, Binary step function, Bipolar step function, Sigmoidal function, Binary

sigmoidal function, Bipolar sigmoidal function, Ramp function. The activation

function choice is made according to the properties and the nature of the data

as well as the target task we aim to resolve. Knowing our data property as well

as the activation function property can drastically help the Neural Network to

convergence. We enumerate bellow some activation functions (see figure 2.9)

47

Part 2.2, Chapter 2 – Machine Learning: Definitions & Generalities

Figure 2.8 – Feedforward Neural Network (FNN)

as well as their properties.

Figure 2.9 – Some Examples of Activation Functions: Linear, Sigmoid, tanh,
ReLU

48

2.2. Machine Learning algorithm families

1. Binary function: A threshold binary function that switches the output

between two values either 0 or 1 if the activation exceed a certain thresh-

old value k.
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

g(z) = 0 if z < k, ∀k ∈ R

g(z) = 1 if z > k, ∀k ∈ R

2. Linear function (or called also identity): the simplest choice is to make

g as a linear function. So in this case we will have g(z) = z (see figure 2.9).

However, this choice does not perform any squashing of the input, that’s

to say it takes the input and reproduces it so it won’t be a bounded ac-

tivation function which makes it not really an interesting choice, since it

doesn’t introduce any non linearity during the computation of the neu-

ron which may be not useful to reproduce a real world complexity tasks.

3. Sigmoid function: A more interesting choice which takes:

g(z) =
1

1 + exp−z

By plotting this function (see figure 2.9) we can easily note that neuron

activation is squashed between [0,1] (all output values are between [0,1]):

the bigger the preactivation is, the more the output tends towards 1 and

the smaller the preactivation is (when it goes to −∞) the more the output

tends towards 0 instead. So this activation function is always positive

(always between [0,1]). It’s also bounded, the result can’t be smaller than

0 or bigger than 1. And it is a strictly increasing function : the bigger the

preactivation is, the higher the output is.

4. Hyperbolic tangent function: Hyperbolic tangent (tanh) activation func-

tion is another popular function (like the previous one the sigmoid acti-

vation function). It is likely more complicated. It also involves some ex-

49

Part 2.2, Chapter 2 – Machine Learning: Definitions & Generalities

ponentials:

g(z) = tanh(z) = expz − exp−z

expz + exp−z
=

exp2Z −1
exp2z +1

By plotting this function (see figure 2.9) we can easily note that neu-

ron activation is squashed between [−1,1] (all output values are between

[−1,1]). So this function output can be either positive or negative. It’s also

bounded and strictly increasing (just like the sigmoid function).

5. Rectified Linear activation function (ReLU): A popular choice, it’s less

complicated than the sigmoid and the hyperbolic tangent activation func-

tion. Simply, it’s the maximum between 0 and the preactivation value z:

g(z) = ReLU(z) =max(0, z)

By plotting this function (see figure 2.9) we can easily note that it’s al-

ways non negative (only bounded below by 0 and not upper bonded in-

deed the greater the preactivation is the higher the output will be). It’s

a monotonically increasing function. In practice this functions tends to

give neurons that have sparse activities that’s to say it tends to get neu-

rons that are often exactly zero. Which is not the case for the sigmoid or

tanh activation function since both of them need to have a preactivation

with exactly a particular value.

6. Softmax activation functions: A final popular choice, mainly used to

handle multiple classes. Simply, it normalizes the outputs for each class

between 0 and 1, and divides by their sum, giving the probability of the

input value being in a specific class

g(z)j =
expzj

∑k expzk
∀j ∈ {1..k} with k the number of classes

Typically Softmax is used only for the output layer, for neural networks

50

2.2. Machine Learning algorithm families

that need to classify inputs into multiple categories or classes.

7. Other activation functions: There are many other activation function

like the swish function a self-gated activation function discovered by

Google researchers [58] and performs better than ReLU with a similar

level of computational efficiency. There are also Leaky ReLU, and Para-

metric ReLU that are both inspired from ReLU function aiming to deal

with the ReLU biggest problem (The Dying ReLU problem when inputs

approach zero, or are negative, the gradient of the function becomes

zero, the network cannot perform backpropagation and cannot learn).

Note that we can also customize our activation function according to the

needed task or according to our data specificity.

Learning Concept & Cost function

Let’s assume that our main goal for using the neuronal network is to come

by the end to detect if a given image is either a dog or a cat. So to properly

work, at first the neural network must receive the image of the dog or the cat

which will be modelized as an input vector that we denoted x (more precisely

xl where l is the layer’s index or the layer’s number). Once it receives the initial

value of the vector x0 (in our case the image), the network proceeds with a set of

computations to produce an output y which will be the response of the network

(either the image is a dog or a cat). This final decision is highly dependent

on the activation functions of the neurons, as well as the weights and the

bias. Obviously, we would like that the neuronal network comes to fulfill this

particular task by providing the correct answer (denoted here ŷ to designate

desired response). It is this desired answer ŷ,that the network should have

given, which makes it possible to know if it made a mistake compared to the

answer y.

51

Part 2.2, Chapter 2 – Machine Learning: Definitions & Generalities

It should be remembered that in order to carry out a learning process, we

must have a set of examples, also known as the learning base or learning

dataset or training dataset. This dataset have to be statistically representative

of the problem to be solved. In general, during the learning phase in a neuronal

network, we aim to minimize the error between the output y and the desired

output ŷ. It is a cost function which finds a set of weights W and the bias b

approximating the calculated outputs y of the desired outputs ŷ. Let θ be the

set of weightsW and the bias b approximating the calculated outputs. Thus, to

achieve successfully the learning phase, a distance measure was set between

the desired answer ŷ and the calculated output y. This measure corresponds

to the error committed by the network which is due to the current values of

θ. The simplest function of this distance is the least squares distance, which

measures the quadratic error between y ans ŷ. We note large J this function

which is called cost function or objective function. This error is therefore the

sum of the errors on each of the examples of the learning base.

J(θ) = ∥ŷ − y∥ = ∑
i

(ŷ − y)2

The training process based on minimizing this average training error is

known as empirical risk minimization. Let P be the some performance mea-

sure minimizing the error between ŷ and y. Typically, the cost function can be

written as an average over the training set [1], such as:

J(θ) = E(x,y)∼P [L(f(x, θ),y)] =
1
N

N

∑
i=1
L(f(xi, θi), yi)

where:

— L is the loss function that computes the distance between ŷ and y. Some

examples of the used loss functions are presented in table 2.2 1.

1. https://keras.io/api/losses/

52

2.2. Machine Learning algorithm families

— f(x, θ) is the predicted output when the input is x (f(x, θ) = ŷ)

— N the number of the training examples.

The goal of the DL algorithm is to reduce the expected generalization error

given by this equation. To find the best parameters θ that minimize the best the

function J, a gradient descent method is used. This requires calculating the

partial derivatives of J with respect to each parameters θ. This calculation is

made possible thanks to the algorithm of the backpropagation of the gradient

that we will describe in the next section.

Classification Regression
Function Formula Function Formula
Binary
Crossentropy

−(ylog(ŷ) + (1 −
y)log(1 − ŷ))

Mean Square
Error (MSE) (ŷ − y)2

Categorical
Crossentropy

−(∑
M
j=0(yjlog(ŷj))),

M the class
number

Mean
Absolute
Error (MAE)

∥ŷ − y∥

Kullback
Leibler
Divergence
Loss

noted DKL(P ∥Q),
ylog(yŷ)

Mean Squared
Logarithmic
Error Loss

(log(y + 1) − log(ŷ +
1))2

Squared
Hinge Loss max(0,1 − y, ŷ)2 Poisson ŷ − ylog(ŷ)

Table 2.2 – The most known loss functions

Backpropagation algorithm: Stochastic Gradient Descent (SGD)

In order to minimize J(θ) = E(x,y)∼P we need to update the weights related to

each neuron. One common approach to do this weight update is via the use of

a a backpropagation approach like the stochastic gradient descent algorithm

[46]. SGD is a stochastic approximation of the gradient descent method for

minimizing an objective function that is written as the sum of differntiable

function [59]. For a given objective function, we can obtain the gradient with

53

Part 2.2, Chapter 2 – Machine Learning: Definitions & Generalities

respect to the model parameters using calculus and applying the chain rule.

To obtain the gradients with respect to the parameter set θ we compute partial

deviates of J(θ) with respect to the parameters θj of each layer j = {0, ..,K − 1}

whith K is the total number of layers. The chain rule allows us to determine

the partial derivatives as:

∂J

∂θk−1
=

∂L

∂θk−1
=
∂L

∂fk

.
∂fk

∂θk−1

∂J

∂θk−2
=
∂L

∂fk

.
∂fk

∂fk−1
.
∂fk−1

∂θk−2

⋮

∂J

∂θj

=
∂L

∂fk

.
∂fk

∂fk−1
. . .

∂fj+2

∂fj+1
.
∂fj+1

∂θj

The first order derivative ∂J/∂θj enables whether the error J is increasing or

decreasing when the values of the parameters (weights and bias) is equal to θj.

Thus, the derivative measures how much the parameter θ needs to change (in

positive or negative direction) to minimize J (for further readings see [1], [59]

and [60]).

To sum up, a FNN steps:

1. Build the Neuronal Network and intialize it.

2. Repeat until a fixed iteration number (epoch):

(a) Calculate the forward phase: ∀(xi,yi) compute ŷi.

(b) Compute the error between ŷi and yi

(c) Calculate the backpropagate phase and adjust θ

54

2.2. Machine Learning algorithm families

Over-fitting & Under-fitting

CML as well as DL mainly aim to find a function f̂ based on input data X

that approximate Y = f(X). Statistically, a fit refers to how well an ML model

approximate a target function. We mean by a good approximation if the ML

model generalizes any new input data from the problem domain (same data

distribution or same P (Y ∣X)) in a proper way. This generalization allows to

make predictions in the future data, that data model has never seen. If the

generalization is not reached, we are then facing either an underfitting or an

overfitting that are modelized in the figure 2.10

Figure 2.10 – Examples of Underfitting and Overfitting in Machine Learning:
Regression and classification

— Underfitting: when the ML model can’t capture the underlying trend of

the data.It usually happens if the ML model is too simple compared to

the task we want to resolve. Techniques to reduce underfitting (that we

will detail in chapter 3):

55

Part 2.2, Chapter 2 – Machine Learning: Definitions & Generalities

— Increase model complexity

— Increase number of features, performing feature engineering

— Remove noise from the data

— Increase the number of epochs or increase the duration of training to

get better results

— overfitting: ML model learns data by heart. Overfitting is often a result of

an excessively complicated model. Techniques to reduce overfitting (that

we will detail in chapter 3):

— Increase training data.

— Reduce model complexity.

— Early stopping during the training phase (have an eye over the loss

over the training period as soon as loss begins to increase stop train-

ing)

— Ridge Regularization and Lasso Regularization

— Use dropout for neural networks to tackle overfitting.

Understanding the issues of overfitting and underfitting takes us right back

to the bias and variance dilemma. The name bias-variance dilemma comes

from two terms in statistics: bias and variance. Let E be the expectation. The

ML error can be decomposed into bias and variance components following this

formula:

E[(f − f̂)2] = E[(y − ŷ)2] = Biais(f̂)2 + V ar(f̂)

The bias term measures the error of estimations, and the variance term de-

scribes how much the estimation ŷ moves around its mean. Thus underfitting

occurs if the model or algorithm shows low variance but high bias. As for the

overfitting, it occurs when the ML model shows low bias but high variance.

Both overfitting and underfitting lead to poor predictions on new datasets. The

best ML model that generalizes and approximate better the data is a tradeoff

56

2.3. Conclusion

between the bias and the variance.

2.3 Conclusion

In this chapter, we have introduced ML basics for both CML (or shallow

learning) and DL with some definitions and generalities. We have presented

ML learning categories (supervised learning, unsupervised learning and rein-

forcement learning) as well as ML algorithm families. We have also presented

DL basics: some history, definition, generalities, and its operation mode.

57

Chapter 3

Machine Learning Workflow

Toward User Behavior

Characterisation

Recent technological breakthroughs have extended the mobile phones’ fea-

tures, functions and capabilities, which are now used for more than just com-

municating or affording applications. Recently, mobile devices are being uti-

lized to know the consuming habits of individuals and communities. For ex-

ample, in [61] authors suggests that understanding how mobile consumers

use smartphones for shopping is important in developing digital shopping plat-

forms fulfilling consumers’ expectations. In [62] investigates news consumption

on mobile devices with the goal of identifying where mobile devices fit into peo-

ple’s media repertoires and how consumption patterns on them are different

from those on other platforms. As for authors in [63] authors study applied the

mobile habit consumption to explain the intentions of Hong Kong consumers

to adopt mobile TV and their interests in its content. Examples are abundant

in the literature where the analysis of the behavior of the mobile user is made

in order to optimize some services or propose customized services according to

the habits.

Considering the fact that users carry their smartphone devices with them

daily (24h/24h and 7d/7d), smartphone devices allow collecting data, mea-

59

Part 3.0, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

sured by phones, in various situations experienced by their owners. According

to some analytics platform 1, the total number of global smartphone users in

the world, in 2019, is around 3.3 billions, where around 521 millions of these

users are located in Europe (Figure 3.1). With the high volumes of smartphones

deployed worldwide, data measured directly inside mobile phones consists of

very huge amount of representative data.

Figure 3.1 – Active smart phone users in the world and per region according
to 2019 Stats (Study carried out by "newzoo" Analytics Platform).

Our goal is to extract knowledge of user behavior based on the real time pro-

cessing of crowd-sourced data and considering a model of two QoE-influencing

attributes of contextual information. We aim to infer user’s environment and

speed range with ML algorithms which model is created via the learning pro-

cess (called also training process). The main goal of learning is to create an

accurate model that correctly provides information most of the time. However,

in order to train a model correctly, there is some methodology to respect. There

is also a requirement to use relevant data depending on what we want to infer.

This chapter describes the methodology used to design an efficient user pro-

1. https://newzoo.com/key-numbers/

60

3.1. Methodology in 5 steps

filing system using ML. It is organized as follows. Sec. 3.1 presents the general

methodology defined in the state of the art (SoA) to build an ML solution with

good performances and details how it is projected in our user behavior prob-

lematic. In section Sec. 3.2 we try to project the user behavior profiling into the

ML workflow described in the previous section. In Sec. 3.3, we describe our

dataset and present how we collected such highly representative data. Finally

conclusion is presented in Sec. 3.4.

3.1 Methodology in 5 steps

ML is the solution towards automating tasks by consuming and under-

standing data smartly. Thus, achieving good results using ML algorithms de-

pends a lot on data among other factors. Bur, once we have this data, how

does it really work under the hood? In section 4.5 of [64] the author outlines a

universal workflow of machine learning, which he describes as a blueprint for

solving machine learning problems. This workflow is composed of 7 steps:

1. Defining the problem and assembling a dataset

2. Choosing a measure of success,

3. Deciding on an evaluation protocol,

4. Preparing your data,

5. Developing a model that does better than a baseline,

6. Scaling up: developing a model that overfits

7. Regularizing your model and tuning your parameters.

Such workflow, is very high level, where we are assuming from the first trial

the model is good and trough the steps we are transforming the model from

good to great model that will be scaled back and then generalized. Another

workflow, a bit different from the previous workflow, presented by Google for

61

Part 3.1, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

AI training sessions [65] seems more concerned with going from zero to good.

This workflow proposes also 7 other steps:

1. Data collection,

2. Data preparation,

3. Choose model,

4. Train model,

5. Evaluate model,

6. Parameter tuning,

7. Make prediction.

In the description of the two workflows, they agree and focus together on par-

ticular points (like hyperparameter tuning, data collection, etc). However, they

do not agree in the order in which the steps are linked in the overall function-

ing of the workflow. Mapping [64] and [65] to the classical workflow presented

in [52] we propose a 5-step process that we have followed for our investigation

and which are as follows (see also figure 3.2):

1. Identifying and analyzing needs.

2. Generating / collecting or retrieving high quality and representative data.

3. Analyzing and reducing data size.

4. Identifying appropriate methods as well as appropriate algorithms.

5. Validating the method’s performance. If this step is reached and the ML

algorithm’s performance is below expectation, then there are a few retro-

back options to follow in order to boost the performances.

(a) If performance is not satisfactory, when we arrive to step 5, in that

case we go back to step 4 and either try to adjust the hyperparameter

of the algorithm or to change the algorithm itself.

62

3.1. Methodology in 5 steps

(b) If we have already looped more than a handful of times between step

5 and step 4, but the performance is still far from our expectation,

then we return to step 2 and try to generate more data.

(c) If even with more data, the performance is still not satisfactory then

we return to step 1.

Figure 3.2 – Machine Learning in 5 main Steps

Now let’s see these steps in more detail.

1) First, we begin by properly identifying and analyzing the needs of the

problem, which we want to solve using ML. In other words, that means to fix

the goal which we want to achieve as well as the expected output. Then, we

define the nature of the learning task: either regression or classification or

could be some other. After that, we define a success criteria that we want to

reach. Usually, in ML this criteria is a performance score that measures how

well the algorithm is performing. Thus, in this first step, we try to answer the

question: "What is it that we want to find out? How will we reach the success

criteria which we set?". Once this is fixed, one of the most important challenges

in this first step, is to find out what are the inputs or features and the expected

63

Part 3.1, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

outputs. In order to define these inputs as well as the outputs, first a set of

questions must be answered:

. What is the main objective? What are we trying to predict or detect?

. What is the target output? What is its nature? (qualitative/ quantitative/

etc)?

. What can be correlated to such output?

. What is the most relevant input data or features to be considered? Is it

feasible to have such an input? Does it describe the task?

. What kind of problem are we facing? Binary classification? Clustering?

. What is the current nature of the target features?

. How will the target feature be measured?

. How can we access the output? Is it possible to collect the output data,

used for training, at the same time while collecting the input data?

It is crucial to keep in mind that ML algorithms are generally used to mem-

orize patterns that are present in the training data. Thus, we can only learn

what we have seen before. In other words when we are using ML approach, we

are making the assumption that the future will mirror the past.

2) Thus, there is the need of the second step which is about data collection.

We can consider the data collection as the first real and themost important step

towards deployment of a ML process. It is a very critical and a sensitive step

that will affect the quality of the model. The more and better quality data that

we can get, the better our model will perform. In fact, data is a cornerstone

for any ML process. If either the quality or quantity of data is not enough,

then it can cause big issues and poor performances. Once our available data

is informative enough to learn the relationship between the inputs and the

outputs, we can move to the third step dealing with data preparation or data

processing.

3) During this step, we aim to transform unstructured to structured data

64

3.1. Methodology in 5 steps

which is ready for the training step. Raw data alone is not very useful. The

data needs to be prepared before starting the next step. As it happens, col-

lected data and especially real data is messy, noisy and has anomalies requir-

ing cleaning. There is no perfect recipe or process to follow for cleaning, since

it depends on data anomalies. Generally, data cleaning covers removing du-

plicates, correcting errors, dealing with missing values, normalization, data

type conversions, removing outliers (Data points that differ significantly from

other observations), etc. The cleaning process is not the only sub-step of data

processing (see figure 3.3). Sometimes the collected data is not enough so that

other forms of adjusting andmanipulation are needed. Feature engineering can

be seen as a kind of such adjusting and manipulation. Through it we make the

appropriate transformations of some features to make them more significant

or creating new input features from the existing ones. In general, data clean-

ing can be considered as the process of reduction and the feature engineering

as a process of addition. Usually, such transformation, data manipulation and

cleaning is conducted after analysis and visualization of features’ behavior, cor-

relation, nature, distribution, etc. Indeed, visualizing data helps a lot to detect

relevant relationships between variables or class imbalances (which presents a

big issue to handle), or perform other exploratory analysis. Once cleaning and

feature engineering are completed, we generally randomize data, and we split

it in 2 sub-datasets (i) training and (ii) testing. As we can see in figure 3.3, from

the step 1 of "problem and needs identifying" to the step 3 of "data processing",

we are dealing only with the data flow in the ML process.

4) and 5) The next step in our workflow is choosing an appropriate algo-

rithm. As we explained, in chapter 3, precisely section 2.2, there are many

algorithm families and many algorithms in each family. The choice of an algo-

rithm depends on the task, the dataset and the needs. It is often valuable to

compare some algorithms and pick the most suitable choice. For the chosen

65

Part 3.1, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

Figure 3.3 – Machine Learning Steps: Detailed Process

algorithm, we proceed with the training phase, where the algorithm tries to

learn the pattern in the dataset. Once training is complete, the performance

of the algorithm is evaluated according to the chosen success criteria on the

testing set. This evaluation on the testing set allows us to test our model when

facing new data which was never shown to the model while training. Here, two

cases can arrive after this evaluation:

1. Case 1: the success criteria is achieved In this case, we assume that

the model is good enough to be deployed and put into production.

2. Case 2: the success criteria is not achieved Rare are the cases where

the performance evaluation achieves the success criteria from the first

try itself. Usually, after a first training, we need to adjust the hyperpa-

rameters of the learnt model in order to optimise the overall performance.

Each model has a variety of parameters that change how it makes deci-

sions. We can adjust these and compare the chosen evaluation metrics

of the different variants to find the most accurate model. In case we con-

tinue looping between training and adjusting the model hyperparameters

66

3.2. Methodology for user behavior prediction

and a significant time is spent without any progress in the overall perfor-

mances: it is necessary to ask the question "Was the right ML algorithm

chosen for this task?" or "Is it a data issue?". In this case we try to change

the algorithm and evaluate the performances. If it is still below expecta-

tion, then it is absolutely necessary to review the data flow: either the

collection phase or the processing phase.

This process is a fairly standard process for evaluating an ML approach.

However, in practice it can be done differently. These steps may not be linear.

For example, feature selection or metric selection for performance evaluation

can also be done after data analysis. This is because the nature of data or

its distribution sometimes imposes some other choices rather than the first

one. Also, in some cases data analysis and data relationship understanding

are more important than knowing the impact of some features and the decor-

relation of others. The important part is to carefully analyze each step in order

to find the best model to deploy.

3.2 Methodology for user behavior prediction

In this section, we intend to apply the same methodology described in the

previous section by projecting our use case of user behavior inference into the

ML process workflow. It should be noted that we are not really detailing the

user behavior detection according to this workflow, but rather fixing some ba-

sic points adopted to solve the challenge during the work. We recall that the

objective is to answer the following questions: 1) where is the user while experi-

encing a mobile service? Is user indoor or outdoor? and 2) How is he consuming

the mobile service? At which mobility speed range?. In this thesis, we investi-

gate these questions one by one, in different chapters, respectively in chapter

4 and 5, then the questions simultaneously in chapter 6.

67

Part 3.2, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

3.2.1 Identifying the problem and analyzing the needs

Inputs, Outputs and Learning task

Our answer to the question "What do we want to find out?" is that we want

to detect simultaneously the user mobility or speed range as well as user en-

vironment while consuming a service. Therefore, the simultaneous user speed

range and user environment detection are our target outputs. As we can notice,

both speed-range and user environment are discrete variables. Thus, we are

dealing with either a classification or clustering task. While collecting data, we

collected the labels or outputs required so we are dealing with a classification

task. An additional constraint is imposed to the data we select. Inputs used

to achieve our goal must be known by the network and shall be correlated to

the user environment and the user mobility speed range. This is important

because we are interested in detection from the network side.

Success criteria and metrics

For the performance evaluation, we will use 2 classical metrics which are

the most commonly used metrics in classification tasks [66], [67] Accuracy and

F1 score. F1 score is more adapted to our use case, especially in the case of

imbalanced data.

— Accuracy (ACC): It is one of the most used metrics to evaluate the perfor-

mance of a ML model. It is presented according to the following formula:

ACC =
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN

68

3.2. Methodology for user behavior prediction

Where:

. TP: True Positive: True positives are data points classified by themodel

as positive that are actually positive (meaning they are correct).

. TN: True Negative: True Negatives are data points classified by the

model as negative that are actually negative (meaning they are cor-

rect).

. FP: False Positive: False positives are data points incorrectly classified

by the model as positive that are actually negative (incorrect).

. Fn: False Negative: False negatives are data points incorrectly classi-

fied by the model as negative that are actually positive (incorrect).

Accuracy refers to the closeness of a prediction model (model classifica-

tion) to the ground truth (the real outputs). However, accuracy can be

misleading for imbalanced data sets. For example, for binary classifica-

tion on data with 95% of class 1 and 5% class 2 values, classifying all

values as class 1 gives 95% accuracy score. In this case, the model is

satisfying the needs (since 95% is a good accuracy score), however it is

not precise at all since is not detecting the class 2 samples at all.

— F1-score: A weighted score of precision (Pr) and recall (Rc) according to

the following formula

F1 − score = 2. P r.Rc
Pr +Rc

where

Pr =
TP

TP + FP
And Rc =

TP

TP + FN

Precision metric shows how precise the model is in terms of predicted

positive results, or how many of them are actually positive. It gives an

answer to the question "What proportion of positive identifications was

actually correct?".

The recall metric quantifies how well the model is able to capture sam-

69

Part 3.2, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

ples predicted as positive. Recall is therefore the metric to use in order to

to select the best model when false negatives are high. It gives an answer

to the question "What proportion of actual positives was identified cor-

rectly?". F1 score is a single metric that combines recall and precision

using the harmonic mean. There are other metrics for combining preci-

sion and recall, such as the Geometric Mean of precision and recall.

We fixed our criteria of success to 95% of F1-score. Thus, we assume an

error margin of 5%. This is inspired from network dimensioning requirement.

Indeed, for mobile networks dimensioning, an error up to 5% is qualified as

an admissible error rate. A further investigation has to be done to guess the

relevant minimal value. But, it is out of scope of this thesis.

3.2.2 Data Processing

The flow of data collection process, mainly in the case of real data (in a

crowd-sourced mode), is often done without a strict control, which leads to

some noise and problems in the dataset like out-of-range values, impossible

data combinations, missing values, etc. ML algorithms trained on data that

has not been carefully processed, for such problems, can produce misleading

results. As explained in next section 3.3, data processing includes: normal-

ization, data cleaning, transformation, extraction and selection of variables,

feature engineering, etc. The details of data analysis and processing will be

discussed in the chapters 4 (User environment detection) and 5 (User speed

range detection) since data processing is different from one use case to an-

other.

70

3.2. Methodology for user behavior prediction

3.2.3 Algorithm choice and Model designing

One way to solve more than one task, in a joint manner, is the use of Multi-

Task Learning. In ML, we use the concept of Multi-Task Learning (MTL), when

a single model is used to solve a series of related tasks (by task we mean: clas-

sification, regression, prediction, etc.). The idea of MTL is inspired from human

learning activities. As humans, we often use the same basics that provide us

with the necessary skills to learn several tasks and master more complex tech-

niques.

The MTL architecture we investigate is based on Deep Learning algorithm

(MTL is detailed in chapiter 6). The DL choice is explained by the fact that we

are dealing with a lot of data. Once deployed this model should deal with thou-

sands or millions of users at the same time. Actually, according to [31], and

[32], Deep Learning’s performance continues to improve when more and more

data is used for training to outperform the traditional models and algorithms

of ML. Furthermore, DL is also appropriate for problems where modeling rela-

tionships between large number of features are not tractable. This is the case

for the problem of detecting simultaneously the user environment and the user

mobility state. Indeed the model has to extract the complexity and variety of

various situations met by mobile users. We also opt for a Feedforward Neural

Network (FNN) which is more appropriate to detect both attributes (environ-

ment and mobility) at same time.

The three key choices to build the model are 1) Last Layer Activation, 2) Loss

Function and 3) Optimization Configuration. Table 3.1 can help for choosing

a last-layer activation and a loss function for a few common problem types.

As for the choice of optimizer (algorithm optimizing the cost function J(θ) and

generally based on gradient descent), for a first try, in most cases, it’s safe to go

with rmsprop and its default learning rate. The learning rate is a hyperparam-

eter that controls how much to change the model in response to the estimated

71

Part 3.2, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

error each time the model weights are updated.

Problem type Last Layer
activation Loss function Examples

Binary
classification sigmoid binary

crossentropy Dog vs cat

Multiclass/
single-label
classification

softmax categorical
crossentropy

MNIST has 10
classes single label
(one prediction is
one digit)

Multiclass/
multilabel
classification

sigmoid binary
crossentropy

News tags
classification, one
blog can have
multiple tags

Regression to
arbitrary values None mse

Predict house
price(an
integer/float point)

Regression to
values between 0
and 1

sigmoid
mse or bina-
rycrossen-
tropy

Engine health
assessment where
0 is broken, 1 is
new

Table 3.1 – Last-layer activation and loss function combinations for training a
first model (for a few common problem).

Scaling-up, Optimization and validation

Once the obtained model has statistical power, the question becomes, is it

sufficiently powerful? Does it have enough layers and parameters to properly

model the problem? Remember that the universal dilemma inmachine learning

is to find the balance between optimization and generalization. That’s to say,

the ideal model is one that stands right at the border between underfitting and

overfitting, between undercapacity and overcapacity. To figure out where this

border lies, first we must build a model that overfits. Then, the next stage is

to start regularizing and tuning the model, to get as close as possible to the

ideal model that neither underfits nor overfits. In the following we enumerate

72

3.2. Methodology for user behavior prediction

the methods that we have used in order to scale up and optimize our models

for the separated tasks (user environment detection and user mobility state

detection) and also the joint detection of both tasks.

Hyperparameters Tuning

The most delicate and also difficult step (time and resources consuming) in DL

application is to select the best hyperparameters set for the model [68]. Hyper-

parameters per definition are the configurations set to provide to the learning

algorithm before a training phase to control the progress of this phase and

define the structure of the algorithm. The hyperparameters, that influence the

final precision of a given neural network, are mainly: the topology of the net-

work (number of layers, and number of neurons per layer), the size of the batch,

the initialization function, backpropagation algorithm, learning step and acti-

vation functions (for more details see table 3.2). The major challenges facing

the selection of hyperparameters are:

1. The evaluation function of a hyperparameters set combination is very

greedy in terms of execution time and allocation of resources, especially

in the case of a complex system such as neural networks.

2. The configuration space is too complex and of big dimensionality.

3. In most cases, the regularity of the evaluation function is unknown,

which makes this task purely experimental and is based on the nature

of the problem and the available dataset.

There are four strategies for tuning hyperparameters [69] that we have tested

during our work. A comparison between these approaches is addressed in ap-

pendix A for the two tasks of the user environment detection as well as the

user speed range detection. These strategies are as follow:

1. Manual Search: it is essentially based on human intuition and experi-

ence. The specialist manually chooses the values to assign to the hyper-

73

Part 3.2, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

Hyperparame-
ter Description Possible valus

Activation
function

Relu, Tanh, Sigmoid,
softmax, Swish (see
section 2.1)

Layers
Number

The number of layers in
the network that
represents its depth

Integer

Neurons
number per
layer

The configuration of the
neurons number per
layer

Integer

Optimizer

Backpropagation
algorithm dealing with
for weights and biases
updating according to
the training error.

RMSprop, Adam,
Stochastic Gradient
Descent, Adagrad,
Nadam, etc.

Initialization
function

The function that
initialize weights and
biases during the
training phase (the
start value).

Normal distribution,
Uniform distribution,
Lecun function, Glorot
fonction, etc.

Epochs

The number times that
the learning algorithm
will work through the
entire training dataset.

Integer

Batch

The number of samples
to work through before
updating the internal
model parameters.

Integer that depends on
the total number of
samples in the dataset

Table 3.2 – Non exhaustive hyperparameter list for neuronal networks with
their possible values examples.

parameters. Then, with each evaluation they adjust values, towards the

direction that optimizes the most the model’s accuracy. They repeat this

process until you they run out of patience or they are satisfied with the

results.

2. Grid Search: It is a basic approach for finding hyperparameters. It con-

sists of going through all the possible combinations of these variables,

74

3.2. Methodology for user behavior prediction

and evaluating the accuracy of the model for each set of values and se-

lecting the one that gives the best result. The major drawback of this

method is the huge execution time it takes to exhaustively evaluate all

of the possibilities, but on the other hand, convergence to the best set of

values is guaranteed.

3. Random Search: Random search has been set to overcome the draw-

backs of the grid search (greediness) [70]. It aims to sample uniformly

from the configuration space without making exhaustive evaluations,

which lightens the search load. It sets up a grid of hyperparameter val-

ues and select random combinations to train the model and score. The

number of search iterations is set based on time/resources.

4. Bayesian Optimization [71]: Unlike other hyperparameter optimization

methods, Bayesian optimization uses knowledge of previous iterations of

the algorithm. With Grid Search or Random Search, each set of values

is chosen independently. But with the Bayesian method, each time you

select and try different hyperparameters, you get closer to perfection.

In most of our experiments and presented results in this thesis, Bayesian

optimization has been considered for tuning the set of hyperparameters. Based

on a probabilistic model of the objective function called the surrogate func-

tion, the Bayesian optimization reduces the frequency of calls to the the ob-

jective function, to the lowest possible. The surrogate model is represented

by the probability of the score knowing a fixed hyperparameters’ set (P (score ∣

hyperparameters)). Actually, the use of a surrogate model enables the algorithm

to select the most promising hyperparameters for the objective function evalua-

tion, so that, the search does not spend a significant amount of time on looping

on bad combination of hyperparameters. That is to say, such optimization leads

to a faster convergence of the Deep Learning based model.

By means of the surrogate model, which is easier to optimize, the algorithm

75

Part 3.2, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

selects the most promising hyperparameters’ set to be evaluated in the objective

function so that the search does not spend a significant time on trying bad sets.

The surrogate model is represented by the probability of the score knowing a

fixed hyperparameters’ set (P (score ∣ hyperparameters)).

The Bayesian optimization algorithm is structured as follows:

1. Build the surrogate model of the objective function.

2. Selecting hyperparameters that give good scores on surrogate model.

3. Calling the objective function on selected hyperparameters.

4. Update the surrogate model including the new results.

5. iterating over 2-4 until the maximum number of evaluation is reached.

There are multiple formalizations of the Bayesian optimization that differ

in their way of building the surrogate model and in the selection criteria of

the next hyperparameters to evaluate. The most used option for the selecting

criteria is "Expected Improvement"(EI). EI is given by the following formula:

EIy∗(x) = ∫
+∞

−∞
max(y∗ − y,0)P (y ∣ x)dy

= ∫

y∗

−∞
(y∗ − y)P (y ∣ x)dy

with :

— y∗ is the threshold value of the objective function.

— x is the proposed set of hyperparameters.

— P (y ∣ x) is the surrogate probability model.

Several choices are presented for building the surrogate model like Gaussian

processes, random forest regressions and tree parzen estimators. Tree parzen

estimator (TPE) is the most used algorithm for modelling the objective function

over ML community, it consists of constructing P (y ∣ x) from P (x ∣ y) given the

76

3.2. Methodology for user behavior prediction

Bayes theorem that links them together:

P (y ∣ x) =
P (x ∣ y)P (y)

P (x)

P (x ∣ y) is computed over the history of pairs of the set of hyperparameters

and the objective function score.

P (x ∣ y) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

l(x) if y < y∗

g(x) if y ≥ y∗

For every iteration, TPE proposes a new x (a set of hyperparameters) by

drawing from l(x) (the distribution that yields lower scores than the threshold

of loss y∗), save it in the history as a pair (x , y) where y is the score, and then

using that up-to-date history it builds the new l(x) and g(x) to come up with

the probability model of the objective function (for further reading see [69]).

Regularization methods

Dropout Layers Adding dropout [72] layers is one of the newest and most ef-

fective regularization techniques for neural networks. This technique, invented

by Google, is inspired by the bagging method 2. Actually, training and evaluat-

ing multiple neural networks, as proposed in the bagging method, are an enor-

mous burden in terms of execution time and memory used for such complex

models. The Dropout provides an approximation less greedy than training and

evaluating an exponential set of neural networks (the case of bagging method).

In other words, dropout is a regularization method that approximates training

2. Bagging is a regularization technique which consists in reducing the effect of overfitting
by taking several predictors of the same type, training them and retrieving the prediction by
making the weighted sum of their outputs or by majority vote.

77

Part 3.2, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

a large number of neural networks with different architectures in parallel. Dur-

ing training, some number of layer outputs are randomly ignored or dropped

out. This has the effect of making the layer look-like and be treated-like a layer

with a different number of nodes and connectivity to the prior layer. In fact,

each update to a layer during training is performed with a different view of the

configured layer. The figure 3.4 better explain the dropout mechanism.

Figure 3.4 – Dropout mechanism in neural networks

Dropout forces a neural network to learn more robust features that are use-

ful in conjunction with many different random subsets of the other neurons. As

a result, models trained with dropout layers have been very successful in mak-

ing these models more robust at low cost. Dropout roughly doubles the number

of iterations required to converge. However, training time for each epoch is less.

78

3.2. Methodology for user behavior prediction

Adding Noise It is a classic and a very basic regularization method. In [73],

the authors have shown that by allowing a little random margin of inaccuracy

in Feed Forward Neural Networks, a model can perform better on both training

and accuracy. Neural Networks are able to model functions that change their

outputs spectacularly in response to just a small input variation. Some noise

is introduced to the neural network model via a Gaussian Noise layer during

the training phase. Noise permits to have some robustness in the output and

smoothed decision borders. Thus, noise helps reduce the chance of over-fitting,

even when training dataset is small, and aids in the generalization of the model.

Thus, we add a Gaussian Noise layer inside our model. It consists in adding

noise to output of the layer before the activation function. The added random

value, εi, follows a normal distribution εi ∼ N(0, Σ), i.e., with a mean equal to

zero and the co-variance matrix of features Σ.

Early Stopping While training a large network, there will be a point during

training when the model will stop generalizing and start learning the statistical

noise in the training dataset. Thus, the challenge is to train the network long

enough that it is capable of learning the mapping from inputs to outputs, but

not training the model so long that it overfits the training data. Therefore, we

have to force stopping the training if this point is reached, but not the epoch’s

number (see figure 3.5). Thus, to obtain the most robust model with the best

accuracy in training as well as in test, it is necessary to record the parameters

learned progressively (in every epoch). With every recording, it’s necessary also

to check that themodel is not to going far in the generalization and to check also

that the model is getting better with every step. Otherwise, if it’s not the case,

it’s necessary to stop the learning since no parameter is improving the best

79

Part 3.3, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

validation error recorded for a certain number of predetermined iterations in

this region. This method called EarlyStopping, is the most intuitive and popular

method in regularization.

Figure 3.5 – The training error and validation error curves during the learning
phase in order to visualize the Early stopping point.

Validation

Once we have built the best optimized model we evaluate it one last time on

the test set. If it turns out that performance on the test set is significantly

worse than the performance measured on the validation data, this may mean

either that the scaling up and optimization procedure were not reliable, or that

you began overfitting to the validation data while tuning the parameters of the

model. In this case, we have to investigate more the validation data set (either

it is not enough, or it is poorly sampled compared to the training set, etc.).

Otherwise, we have to switch to a more reliable evaluation protocol (such as

iterated K-fold validation or adding regularization layers, etc.). If it is still not

working we return to the data step (It’s the cornerstone of the ML).

80

3.3. Generation of high quality and representative data

3.3 Generation of high quality and representative

data

Generally, to use any ML approach, we have to guarantee complexity and

data. Complexity shall be accepted mainly for the training phase. Data is the

most important fact : it shall be representative and good quality. So it does

not matter if you don’t know which algorithm or model of machine learning

you want to use because if you have data then you can choose your algorithm

or your architecture after some preliminary statistics conducted on this data.

Besides, the more data we have, the better model we will have and for more

data we have to accept complexity and heavy computing. Thus, to sum up, we

can say that data is the cornerstone of any machine learning study because

without data we can’t even think about machine learning solutions.

3.3.1 Data collection modes

Currently, there are many modes to collect or gather data. The choice of

collection mode depends on the research themes and objectives (target popu-

lation, sensitive subject and/or sensitive population), methodological and lo-

gistical constraints, budget and time constraints. In telecommunications field,

we can mainly enumerate 3 ways which are widely used to collect data : (i)

simulation, (ii) log reporting, (iii) drive tests and an emerging method largely

used by application providers : (iv) crowd-sourcing :

- Simulation:Using simulation, data is generated via a mathematical or a

stochastic model. With simulation, it is very easy to get abundant amount

of data. Such data can be used to quickly develop or test new ideas or

new algorithms and tools, particularly for never-before-tried applications

or use cases. Instead the real collection of data, simulation tools are

easily customized to allow the collection in the case of new tasks/ envi-

81

Part 3.3, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

ronments/ features/ etc. However, it may take incredibly long time and it

will be incredibly expensive to collect data in real settings each time to be

adapted to a minimal change. On the other hand, since ML aims mainly

to find a mathematical relationship between input and the output thus

using simulated data based on some mathematical models may be prone

to showing bias towards these models. Thus, it is not the best choice to

train a machine learning algorithm that will be deployed in production

settings. Yet since the data is not real, it differs in key ways from real-

istic data, bringing many risks associated with convergence, fine-tuning

algorithms, feature engineering, etc.

- Reporting and logs: This mode is widely used in many fields for an-

alytics like e-commerce, phone applications, servers, cloud infrastruc-

tures, IoT, mobile devices, etc. Logs and reports analytics involve search-

ing, analyzing, and visualizing all the network, all the IT systems and

the infrastructure to gain operational insights. Generally, this mode of

data collection is used in understanding what has happened in a sys-

tem (bugs, problems, etc) and derive useful metrics in monitoring and

performance handling[74]. For example, [75] proposed a ML approach to

prevent malicious calls over telephony networks based on a large-scale

call log database. In [76] network layer traces and logs to help label-

ing their dataset are used in order to classify flows and buffer state for

YouTube’s HTTP adaptive streaming service in mobile networks. [77] used

a big dataset coming from iphone logs to evaluate an anomaly-based

intrusion detection systems for mobile devices using machine learning

classifiers.

- Drive tests: This mode is widely used to collect data in telecommuni-

cation field. It is a mode in which operators often send engineers in the

terrain with a vehicle or some people equipped with sensors moving in

82

3.3. Generation of high quality and representative data

specific places to collect radio measurements, to discover problems such

as coverage holes in the network, user location and to determine whether

certain parameter tuning is needed [78]. Traditional drive tests systemat-

ically obtain measurements using vehicular infrastructure such as roads

which does not necessarily account for the entire situations of user ex-

perience. Conventional drive test is a manual process. To collect network

quality information, an operator often needs to send engineers directly to

the concerning area and obtain radio measurements in a hand-operated

manner. With such measurement vehicle, engineers would perform test

calls in the car and recordmeasurement results along the drive route. For

indoor coverage engineers perform “drive tests” on foot, using specially

developed measurement equipments that can be carried by hand. Drive

test enhancements have been introduced in the 3rd Generation Partner-

ship Project (3GPP) standards for LTE [79]. The concept of Minimization

of Drive Tests (MDT) was introduced in Release 10 which automates the

data gathering enabling the use of network related User Equipment (UE)

data. Moreover, this approach provides measurements of where users are

geographically located during attachment to the base station/network.

However, this controlled mode imposes limits on capturing the reality.

Such data collection campaigns are run for limited hours per day, dur-

ing short periods (couple of weeks) and at some specific places. For user

behavior prediction, using the data collected in drive test mode will not

deliver a general model, since, we will miss big sides of users’ behavior,

for example the case of his night life, etc. A comparison between this

mode and the crowd-sourcing mode performances using ML approach

will be detailed in chapter 4.

- Crowd-sourcing: In the last years, crowd-sourcing approach gained mo-

mentum as a viable strategy for solving very large-scale problems with

83

Part 3.3, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

the help of the masses [80], [33], [81]. It is an emerging measurement

method which relies on user participation in the measurement process.

The task of collection is outsourced to the crowd, thus cost-effective net-

work monitoring can be performed at a societal scale, using a possibly

large number of end users’ devices scattered over a wide geographic area.

In crowd-sourcing the solution is usually provided by distributed and de-

centralized agents running on end-user devices and performing active,

passive or both types of measurements in real time. Largely adopted

big firms like Google and Netflix, the crowd-sourcing mode allows to

gather data more cheaply and in large quantities. This data are stored

and cached in special platforms dedicated to data reporting controlled

and managed by a tenant (e.g. service provider or application provider).

Scalable cost effective approach that captures real end-user experience

crowd-sourcing mode collects measurement data from the end-user side

also allows usage profiling for user behavior monitoring. It enables to

better reflect the users’ behaviors by capturing a huge diversity of their

experiences. A drawback of this method is that the measurement agents

are restricted by the OS APIs. Also, incentivizing the users for contribu-

tion can prove challenging as users should agree and should themselves

install the necessary software. Instead drive-test collection mode that

imposes measurements in limited situations generates data with a poor

representation of a daily life of a mobile user.

3.3.2 Data collection description in our study case

For this work the used dataset has been collected in a crowd-sourcing mode.

Indeed, due to their small size and popularity, the portable phone devices are

almost always with users 24h/24h and 7d/7d during their various activities

while moving or not. The crowd-sourcing mode enables us to build a dataset for

84

3.3. Generation of high quality and representative data

training and evaluation as close as possible to the complexity and the variety

of usage situations, of mobile users and their movement in real world.

Figure 3.6 – Data collection scheme for training and serving phases

As shown in Fig. 3.7 and described in [40], our dataset has been collected:

— at different locations (many cities and places) in France (red dots) and of

course on the roads linking these locations where users are moving with

different speeds

— in various location types (mountain, beach, forest, cafès, streets, mall ...)

— in all weather types (heavy rain, foggy, sunny, snowy, windy ...)

— in diverse cities/places (villages, metropolis ...)

— in various cell deployments (macro, micro, small ...)

The data has been collected during almost 2 years, 24h/7, with an average

of 1 measurement per 15 seconds, when the mobile phone session is active,

and 1 measurement per 2 minutes otherwise.

The recording of data has been done in the mobile terminal using a mobile

application software. For the training phase, the crowd-sourcing mode also in-

cludes in addition to UE-specific 4G radio measurements UE-specific metadata

85

Part 3.4, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

that is required to do the labelling in supervised or semi-supervised mode (Fig.

3.6). Indeed, this metadata permits to label the output used to train the model

in these approaches. For the serving phase (using the model to infer the user

environment or the mobility state) only UE-specific 4G radio measurements is

collected via 3GPP standard process.

Figure 3.7 – Data collection points in France: multiple places

3.4 Conclusion

In this chapter, we have detailed the general workflow of any machine learn-

ing process in general and any Deep Learning process in particular. This work-

flow is composed of 5 main steps 1) Identifying the problem and analyzing the

needs 2) Generating good data 3) Analyzing and cleaning data 4) Identifying the

appropriate algorithm and training 5) Scaling up, optimization and Validation.

We also defined some retroback action in case that for a given step we don’t get

86

3.4. Conclusion

the expected performance. In the rest of the chapter, we tried to project our use

case into this workflow. In this projection we have fixed some basic points to

follow during solving both tasks dealing separately with the user environment

detection and the user speed detection and also the joint detection of these two

user behaviors. Finally, we have presented our dataset obtained from a crowd-

sourcing collection campaign. This dataset will be our cornerstone to resolve,

separately or simultaneously, both tasks of user environment detection and

mobility speed range detection, while consuming a service.

87

Part 3.4, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

T
yp

e
E
xp

la
n
at

io
n

HybridLearning

Se
m
i-

su
pe

rv
is
ed

Le
ar

ni
ng

U
se

d
w
he

n
th

e
tr
ai
ni
ng

da
ta

co
nt

ai
ns

ve
ry

fe
w

la
be

le
d
ex

am
pl
es

an
d
a
la
rg
e
nu

m
be

r
of

u
nl
ab

el
ed

ex
am

pl
es

so
w
e
ca

n
m
ak

e
eff

ec
ti
ve

u
se

of
al
lo

ft
he

av
ai
la
bl
e
da

ta
,n

ot
ju
st

th
e
la
be

lle
d
da

ta
lik

e
in

su
pe

rv
is
ed

le
ar

ni
ng

[1
].
Th

is
Le

ar
ni
ng

Ty
pe

w
ill

be
de

ta
ile

d
in

4
in

se
ct
io
n
4.
4.

Se
lf-

Su
pe

rv
is
ed

Le
ar

ni
ng

C
al
le
d
al
so

se
lf-

su
pe

rv
is
io
n
or

pr
et
ex

t
ta
sk

.I
t
is

a
re
la
ti
ve

ly
re
ce

nt
le
ar

ni
ng

te
ch

ni
qu

e
(in

M
L)

w
he

re
th

e
tr
ai
ni
ng

da
ta

is
au

to
no

m
ou

sl
y
la
be

lle
d
e.
g.

ca
n
be

la
be

lle
d
by

fin
di
ng

an
d
ex

pl
oi
ti
ng

th
e
re
la
ti
on

s
(o
r
co

rr
el
at
io
ns

)b
et
w
ee

n
di
ff
er
en

t
in
pu

t
si
gn

al
s

(c
om

in
g
fr
om

di
ff
er
en

t
se

ns
or

m
od

al
it
ie
s)

[8
2]
.

M
u
lt
i-
In

st
an

ce
Le

ar
ni
ng

It
is

a
fo
rm

of
w
ea

kl
y
su

pe
rv

is
ed

le
ar

ni
ng

w
he

re
tr
ai
ni
ng

in
st
an

ce
s
ar

e
ar

ra
ng

ed
in

se
ts
,c

al
le
d
ba

gs
,a

nd
a
la
be

li
s
pr

ov
id
ed

fo
r
th

e
en

ti
re

ba
g.

It
is

ga
in
in
g
in
te
re
st

as
it

na
tu

ra
lly

fit
s
va

ri
ou

s
pr

ob
le
m
s,

al
lo
w
in
g
to

le
ve

ra
ge

w
ea

kl
y
la
be

le
d
da

ta
[8
3]
.

Others

M
u
lt
i-T

as
k

Le
ar

ni
ng

In
m
ac

hi
ne

le
ar

ni
ng

,w
e
u
se

th
e
co

nc
ep

t
of

M
u
lt
i-T

as
k
Le

ar
ni
ng

(M
TL

),
w
he

n
a
si
ng

le
m
od

el
is

u
se

d
to

so
lv
e
a
se

ri
es

of
re
la
te
d
ta
sk

s
(s
u
ch

as
:r

eg
re
ss

io
n,

pr
ed

ic
ti
on

,e
tc
.).

It
m
ai
nl
y
ai
m
s
to

le
ve

ra
ge

u
se

fu
li
nf
or

m
at
io
n
co

nt
ai
ne

d
in

m
u
lt
ip
le

re
la
te
d
ta
sk

s
to

he
lp

im
pr

ov
e
th

e
ge

ne
ra

liz
at
io
n
pe

rf
or

m
an

ce
of

al
lt

he
ta
sk

s
[8
4]
.T

hi
s
Le

ar
ni
ng

Ty
pe

w
ill

be
de

ta
ile

d
in

6
in

se
ct
io
n
6.
1.

A
ct
iv
e
Le

ar
ni
ng

A
ct
iv
e
Le

ar
ni
ng

is
a
sp

ec
ia
lc

as
e
of

Su
pe

rv
is
ed

M
ac

hi
ne

Le
ar

ni
ng

.T
hi
s
ap

pr
oa

ch
is

u
se

d
to

co
ns

tr
u
ct

a
hi
gh

pe
rf
or

m
an

ce
cl
as

si
fie

r
w
hi
le

ke
ep

in
g
th

e
si
ze

of
th

e
tr
ai
ni
ng

da
ta
se

t
to

a
m
in
im

u
m

by
ac

ti
ve

ly
se

le
ct
in
g
th

e
va

lu
ab

le
da

ta
po

in
ts
.T

he
m
ai
n

hy
po

th
es

is
in

ac
ti
ve

le
ar

ni
ng

is
th

at
if
a
le
ar

ni
ng

al
go

ri
th

m
ca

n
ch

oo
se

th
e
da

ta
it

w
an

ts
to

le
ar

n
fr
om

,i
t
ca

n
pe

rf
or

m
be

tt
er

th
an

tr
ad

it
io
na

lm
et
ho

ds
w
it
h

su
bs

ta
nt

ia
lly

le
ss

da
ta

fo
r
tr
ai
ni
ng

[8
5]
.

O
nl
in
e

Le
ar

ni
ng

O
nl
in
e
le
ar

ni
ng

in
vo

lv
es

u
si
ng

th
e
da

ta
av

ai
la
bl
e
an

d
u
pd

at
in
g
th

e
m
od

el
di
re
ct
ly

be
fo
re

a
pr

ed
ic
ti
on

is
re
qu

ir
ed

or
af
te
r
th

e
la
st

ob
se

rv
at
io
n
w
as

m
ad

e.
O
nl
in
e

le
ar

ni
ng

is
ap

pr
op

ri
at
e
fo
r
th

os
e
pr

ob
le
m
s
w
he

re
ob

se
rv

at
io
ns

ar
e
pr

ov
id
ed

ov
er

ti
m
e

an
d
w
he

re
th

e
pr

ob
ab

ili
ty

di
st
ri
bu

ti
on

of
ob

se
rv

at
io
ns

is
ex

pe
ct
ed

to
al
so

ch
an

ge
ov

er
ti
m
e.

Th
er
ef
or
e,

th
e
m
od

el
is

ex
pe

ct
ed

to
ch

an
ge

ju
st

as
fr
eq

u
en

tl
y
in

or
de

r
to

ca
pt
u
re

an
d
ha

rn
es

s
th

os
e
ch

an
ge

s
[8
6]
.

Tr
an

sf
er

Le
ar

ni
ng

Tr
an

sf
er

le
ar

ni
ng

is
a
ty
pe

of
le
ar

ni
ng

w
he

re
a
m
od

el
is

fir
st

tr
ai
ne

d
on

on
e
ta
sk

,
th

en
so

m
e
or

al
lo

ft
he

m
od

el
is

u
se

d
as

th
e
st
ar

ti
ng

po
in
t
fo
r
a
re
la
te
d
ta
sk

.I
t
is

a
u
se

fu
la

pp
ro
ac

h
on

pr
ob

le
m
s
w
he

re
th

er
e
is

a
ta
sk

re
la
te
d
to

th
e
m
ai
n
ta
sk

of
in
te
re
st

an
d
th

e
re
la
te
d
ta
sk

ha
s
a
la
rg
e
am

ou
nt

of
da

ta
[3
2]
.

Ta
bl
e
3.
3
–
D
iff

er
en

t
Ty

pe
s
of

Le
ar

ni
ng

in
M
ac

hi
ne

Le
ar

ni
ng

de
ri
ve

d
fr
om

th
e
3
ba

si
cs

on
es

(S
u
pe

rv
is
ed

,
u
ns

u
pe

rv
is
ed

,R
ei
nf
or
ce

m
en

t
Le

ar
ni
ng

)

88

3.4. Conclusion

Fi
gu

re
3.
8

–
M
ac

hi
ne

le
ar

ni
ng

ca
te
go

ri
za

ti
on

[8
7]
:
D
iff

er
en

t
m
ac

hi
ne

le
ar

ni
ng

ty
pe

s
an

d
ap

pl
ic
at
io
ns

in
co

m
pu

te
r
sc

ie
nc

e
fie

ld
s.

89

Part 3.4, Chapter 3 – Machine Learning Workflow Toward User Behavior
Characterisation

Fi
gu

re
3.
9
–
M
ac

hi
ne

Le
ar

ni
ng

A
lg
or

it
hm

s
M
in
d-

M
ap

[5
0]

90

Chapter 4

User Environment Detection:

Where is the mobile user while

experiencing a service?

As a first step towards the unified AI-based model for a joint detection of all

attributes of a user behavior, we tackle the detection of first behavior attribute

in this chapter. This attribute deals with the user environment. In this study,

we aim to answer the question "Where is the mobile user while experiencing a

service?". The investigation of this behavior is studied progressively going from

detecting just 2 types of environments, i.e., Indoor Outdoor Detection (IOD), to

multiple environments detection (eight environments). We call this multiple en-

vironment detection as user environment detection (UED). On the other hand,

IOD refers to the estimation of 2 types of mobile users’ environments, that is

to infer whether a user is Indoor or Outdoor. UED is a more general case of

IOD, where we aim to investigate the environment with more granularity (with

more than 2 classes: Indoor and Outdoor). IOD, and more generally UED, is a

cornerstone of the user behavior contextualization, which in turn can be used

for adapting mobile network resources, or improve the user location etc [20],

[88]. The idea is to have more information on the user by knowing his or her

environment type. The situations where mobile users request service are more

complex than being described by two types of environment. The two classifica-

91

Part 4.0, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

tion states (Indoor or Outdoor) don’t reveal the complexity of the daily activity of

mobile users. Let’s take an indoor environment for example. The user behavior

can be affected by the type of indoor environment. As a matter of fact, a user at

work does not consume the same type of services as another user at home or

a user in a cafe. These categories work, home, as well as café, are indoor envi-

ronments, but the user behavior, in terms of consumption of mobile services,

differs from one environment to another. Hence, there is a need to investigate

the user environment in more detail and granularity. Besides knowing more

precisely the environment type can help to enhance the prediction of the type

of the preferred application consumed and enable enhanced QoS in resource

management and optimization.

Our hypothesis is that IOD or UED can be performed accurately, automat-

ically and in real time using machine learning techniques. However, this in

turn needs data for learning. As explained in chapter 3, data collection is the

first step of designing IOD or more generally an UED solution based on ma-

chine learning. In this chapter, we compare the impact of data collection, using

drive test mode vs using the crowd-sourcing mode, on the ML performances.

The crowd-sourcing-sourcing approach is becoming popular for collecting and

analyzing real and large network measurement datasets coming from mobile

phones or any other connected devices. Data obtained from smartphones also

contains the natural mobility vector of people carrying them. This ensures

cost-effective, continual and spatio-temporal monitoring.

To the best to our knowledge, the user environment detection (UED) issue

has not been studied extensively in the literature. So far, what has been care-

fully studied in literature, is UED as a binary classification or detection prob-

lem, with only indoor and outdoor as classes (what we are referring to as IOD).

In the state of the art, most of IOD works mainly use the received signal power

RSRP and the received signal quality RSRQ as input for the IOD model. Actu-

92

ally, both of these signals are highly correlated to user environments. However,

using only them for IOD is not sufficient to guarantee IOD’s good performance.

Alone, they are not enough to reach our target success criteria, especially while

facing ambiguous measurement points in mobile environments or in ambigu-

ous user locations relative to eNB. Hence, there is a need to vertically expand

the dataset used to solve the IOD issue by adding other signals. In other words,

one should look for additional signals to solve the IOD issue and not rely solely

on signal power or quality. Therefore, we propose to use new input signals

which are related to the radio signal quality, the user location and mobility.

For this purpose, we use the following signals: IOD uses Reference Signal Re-

ceived Power (RSRP), Channel Quality Indicator (CQI), Timing Advance (TA)

and Cell Id (Cell Identifier). They represent 3GPP defined signals or indicators.

RSRP and CQI are measured by the phone device and sent to eNB via stan-

dardized protocols. TA and Cell Id are derived inside the network when a user

is connected.

Note that IOD or UED, performed in the network, should perform automat-

ically and consider the constraint of minimal human intervention. For this, we

propose to study supervised and also semi-supervised Deep Learning-based

classification methods for training automatically IOD or UED classifiers. Both

methods require labeled data for the training phase. However, the labeled data,

used for ML training, is either tagged manually or automatically. Manual data

tagging can be expensive and complex and even unfeasible for certain mobile

operators, if they have to tag all the collected data. But, semi-supervised meth-

ods are amix of supervised and unsupervised approaches which can learn from

partially labeled dataset. Suchmethod reduces human intervention to the min-

imum possible. We investigate therefore three semi-supervised methods that

1) learn from both labeled and unlabeled data and 2) make use of information

on received signal power, signal quality, distance and mobility. The promise of

93

Part 4.1, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

semi-supervised learning is that we can get our ML algorithm to learn from

"unlabeled" data, which in turn is easier to obtain. An unlabeled example is

mostly less informative than a labeled example. Nevertheless, we can get tons

of such less informative examples, by collecting huge crowd-sourced unlabeled

signals. Now, if our algorithms can exploit most of the unlabeled data effec-

tively, then it will enable us to learn more possible environment types related

to the user behavior. That way the data will closely reflect the users’ habits.

This reminds us that today, in the domain of ML, Deep Learning surpasses all

classical ML algorithms [31],[32]. It is said in [89]:“The more data we have, the

wider the Neural Network is, the better the performances are.”

This Chapter is organized as follows: Sec. 4.1 describes the main IOD and

UED works in literature. Sec. 4.2 details the inputs or features used for IOD or

UED. Sec. 4.3 provides first a preliminary data analytics, then compares the

two data collection modes crowd-sourcing and drive-test and finally shows the

impact of replacing RSRQ by CQI and adding new features of mobility or dis-

tance indicators on IOD performances with supervised ML. Sec. 4.4 presents

results of IOD with semi-supervised learning approaches. Sec. 4.5 deals with

environment detection considering more than 2 classes (UED). In Sec. 4.6 we

investigate the impact of labeled data and the unlabeled data volume on the

performances of the semisupervised approach for the user environment detec-

tion. Finally conclusion is presented in Sec. 4.7.

4.1 State of the Art

As mentioned before, the user environment detection (UED) issue has not

been largely studied. So far, what has been carefully studied in literature, is

IOD. Proposed solutions for IOD are usually divided into two categories [90].

IOD is either considered as a statistical issue where a weighted score or a

94

4.1. State of the Art

threshold is defined to determine the mobile environment, or as a classifica-

tion problem sorting mobile users between multiple classes. In most of these

works, only two classes are considered (Indoor/Outdoor), but in some works,

three classes are selected (e.g. Indoor/Semi-Outdoor/Outdoor). The Fig. 4.1

illustrates the classes used.

Figure 4.1 – IOD classification scheme: in 3 main classes, according to the
state of the art.

In addition to such categorization, the IOD problem can also be distin-

guished based on the location where IOD is performed, either at the mobile

terminal side (that’s to say using phone sensors data) or at the mobile network

side (that’s to say using only the data known by the mobile network). In the fol-

lowing, we highlight some of the works dealing with the IOD issue, presenting

them according to this classification: whether data is known by the network or

not.

In first category, which is based on signals coming from the mobile phone

sensors, [91] authors propose to use a threshold of a signals set collected from

some phone sensors related to: radio signals, cell signal strength, light inten-

sity as well as the magnetic sensor to infer whether the mobile user is indoor or

outdoor. Like [91], [88] also addressed IOD using the same set of sensors com-

bined with some more like the sound intensity, battery temperature and the

95

Part 4.1, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

proximity sensor. The investigated IOD solution is based on ML algorithms and

more precisely a semi-supervised ML approach. Their solution, implemented

on different android devices shows a 92.33% of accuracy and provides the high-

est detection performance in comparison with existing methods including su-

pervised classifier. This solution shows the interest of using semi-supervised

ML approaches for IOD. Thus, this motivates us to try similar solutions on the

network side.

In the second category, which is based on signals known at the network

side, in [21], authors have considered IOD at network side as a classification

issue. Once the indoor or outdoor location of a user is detected, it is combined

with other signals to localize the mobile user by estimating its longitude and

latitude in a more accurate way. For the IOD classification task, they used

RSRP and RSRQ signals and tested many algorithms: Support Vector Machine

(SVM), logistic regression and random forest. SVM was the solution retained

since it performed best. However using only RSRP and RSRQ signals for IOD

is insufficient since these two signals are correlated to each others. Besides

RSRQ is not frequently sent to the eNB which can cause problems in real-time

inference of IOD. That is why, in our works, we propose to replace the RSRQ

which is a quality signal by another quality signal CQI.

In [92], the authors optimize the use of radio measurements in wireless

networks. They use radio signal measurements collected in different situations

of mobility, with varying speed (low, medium, high). They dynamically estimate

the signal attenuation. This in turn helps them to efficiently classify the mobile

user environment (pedestrian, in-car or non-moving) and it finally improves the

handover process. This confirms that a user’s mobility is strongly correlated

to his or her environment. The authors assume that once the signal power

attenuation is estimated correctly, we can easily classify whether the mobile

user is pedestrian, in-car or unmoving. This is because the measured power

96

4.1. State of the Art

signal for an unmoving user does not show too many variations unlike the in-

car or pedestrian cases. Nevertheless, this proposition is still at an early stage

and it has not been thoroughly developed yet.

As for works in [20], they use a combination of phone sensors as well as the

signals coming from the network. Authors use a Bayesian detector that com-

bines the signals measured from the cellular (RSRP provided by the cellular

modem) and GNSS receiver (the confidence radius of the location, provided

by the active localization sensor). This information provided by both measure-

ments is combined with a joint posteriori probability based on the distributions

of RSRP and GPS measurements to perform Indoor/Outdoor detection.

Among the signals, which we are using in our work, we propose to add

another feature that is correlated with the user mobility. Many works in lit-

erature have addressed the estimation of user mobility. In [93], authors use

RSRP measurements to capture the signal’s speed dependent and shadowing

induced time variations in order to compute the UE speed. They propose two

methods: one based on a spectral analysis and another based on a time-based

spectrum spreading. For bothmethods, the variation is compared to a reference

curve or a look-up table (database) and the difference is analysed to compute

the UE speed. In [94], authors propose a method for estimating the UE mo-

bility, that relies on UE’s history information about the UE cell sojourn time.

The neighbouring eNBs exchange among them the learned network topology as

well as the UE sojourn time history. Using such information, the eNBs classify

the speed to one of the three mobility classes defined by 3GPP. Both methods

for mobility estimation in [93] and [94] have shown good results, however they

estimate the speed of UEs only in some specific use cases. In addition, they

are complex to setup.

For us, the issue in this chapter is not to study the mobility itself (a de-

tailed state of the art dealing with the mobility is addressed in chapter 5), but

97

Part 4.2, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

rather to exploit a simplified mobility indicator in order to improve the IOD

performance. For this reason, we employ the standardized 3GPP procedure of

mobility estimation. Actually, this low complexity approach is advantageously

simple. But, according to literature, the 3GPP procedure is not precise enough

for an accurate mobile speed estimation [94]. However, in our study, we aim

to evaluate whether the mobility indicator, as an additional input, can bring

enough rich information to improve the performance of IOD system.

In [95], [96], the user mobility is estimated and classified to one of the three

categories (Normal, Medium, High). This estimation using standard 3GPP pro-

cedures is done as follows:

— 1- Compute the number of handovers or cell re-selections (denoted by

NCR) during a sliding time window (denoted by TCRmax).

— 2- If a UE’s NCR count is smaller than a threshold NCRmedium, then

the UE’s mobility state is determined as "Normal". If the UE’s NCR is

greater than NCRmedium, but less than NCRhigh, the state is determined

as "Medium". Finally, if the UE’s NCR is greater than NCRhigh, then the

state is determined as "High".

4.2 Data features

In this section, we detail the data (signals) that we use to solve the IOD and

UED issue.

In machine learning domain, data collection is the first main step for build-

ing the desired knowledge about the user environment. For this goal, we opt

for a dataset composed of radio signals (RSRP , CQI), temporal features (TA,

Time), a Mobility Indicator (MI), and finally the environment label. Thus, our

data-set is composed of a vector of following 6 features:

— Time: recording time of signal or burst data arrival (ms), the time of mea-

98

4.2. Data features

surement will help us to optimize the ML training mainly in the case of

semi-supervised Learning.

— RSRP : the average received power of the Reference Signal (RS). TheRSRP

value lies between -140 dBm to -44 dBm [97].

— RSRQ: the ratio between RSRP and RSSI (Received Signal Strength In-

dicator) which lies between -19.5dB and -3dB [97], that represents the

total power of the received signal (including the transmitted signal, the

noise and the interference). RSRQ is not a feature used in our AI model,

but we will use it for fair comparison between our proposal and the state

of the art. Instead of RSRQ, we use another quality signal CQI, which is

frequently sent to the eNB.

— CQI: Channel Quality Indicator is used to indicate the most appropriate

transmission modulation and coding scheme to be used [98].

— TA: Timing Advance is used to control UL signal transmission timing

[99].

— MI: The number of the Cell ID changes (NCID) in a sliding window of a

given duration (TCRmax) [95] [96].

— Label: Indoor or Outdoor label in case it exists.

To estimate the value of mobility indicator, we use a sliding window of du-

ration TCRmax. In urban environments, considering macro-cells, we assume

a typical separation distance of around 900m between two base stations. As-

suming this distance, we estimate that a mobile user with a typical average

speed of 30km/h will move to another cell, at least once in 100s, excepting a few

rare cases. Consequently, TCRmax = 100s of history on visited cells (UE History

Information) is sufficient for starting to observe cell ID changes.

However, this is valid only for urban environments. Figure 4.2 plots the

time to cross a cell vs. typical user speed for three environment types - urban

macro-cell, suburban macro-cell and small cell - assuming a trajectory model

99

Part 4.3, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

Figure 4.2 – Time to cross a cell (s) vs. user speed (km/h) - urban and suburban
Macro-cell and small cell environment cases.

where a user follows a straight line. We assume a distance of 1.5 km as a typical

separation distance between two base stations for suburban environments and

350 m for small cell deployments. As expected, we observe that the crossing

time is a function of the environment. For a speed of 30km/h, TCRmax value is

around 100s. TCRmax has a lower value in the case of small cell deployments

because such cell-types have smaller radius.

4.3 Supervised Learning-based classification: In-

door Outdoor Detection (IOD)

So far, works on Indoor-Outdoor Detection (IOD) which use machine learn-

ing have used two signals to detect the user environment: a signal power mea-

surement RSRP and a signal quality measurement RSRQ.

In this section, we evaluate the impact of replacing the used quality indica-

tor in literature RSRQ by another popular quality indicator CQI. We motivate

this choice by the fact that CQI is regularly measured by the device and natively

100

4.3. Supervised Learning-based classification: Indoor Outdoor Detection (IOD)

reported to the mobile network, whereas RSRQ reporting needs to be triggered

by a specific 3GPP procedure. Thus, using CQI doesn’t need to implement ad-

ditional signaling. We also investigate the impact of adding two additional input

features referred to as MI and TA for the IOD task. MI and TA represent re-

spectively the mobility type and the distance between user and the base station

(eNB). We expect that these additional metrics can efficiently help to overcome

ambiguous classification points.

For the performance evaluation, as explained in chapter 3, we use the ac-

curacy metric which is the ratio of correctly classified instances divided by the

total number of instances. We also use the metric F1-score that is by definition

the weighted average of Precision and Recall. At the time of experiment, we had

collected around 2M lines of data per user. This number is still growing on as

of today. In this part dealing with IOD, we have used 250K lines of data which

is specific to LTE networks. This dataset is made of around 30% of labeled data

(exactly 72k of data volume) and around 70% of unlabeled data (178k of data

volume).

We consider IOD as a supervised learning problem. That is to say, the

dataset has been restricted to using only the labeled part: only 72k is used.

For our experiments, we divided our dataset as follows: 70% for training, 30%

for validation and test. In other words, the model is trained and evaluated on

data which is split into two subsets composed of 70% of data for training and

30% of data for tests and validation.

To allow for fair evaluation, we compare the performance with the classical

ML algorithms. Thus, we compare the performances of the following: Support

Vector Machine (SVM) used in [21], Logistical Regression, RandomForest, a

clustering algorithm (k-means) and Neural Network/ a supervised Deep Learn-

ing. The Deep Learning architecture and hyperparameters were set according

to a hyperparameter optimization process that was detailed in Chapter 3. These

101

Part 4.3, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

results were presented in our papers [39] and [40].

4.3.1 Preliminary study of CQI, mobility and distance im-

pact

RSRP and CQI are radio metrics directly linked to the mobile user envi-

ronment as they represent the extent of environment attenuation. But, just

using them is not enough to correctly classify some measurement points that

are referred as ambiguous points. These points are relatively difficult to clas-

sify. The ambiguous points belong to multiple situations of user daily activity.

Such situations are due to the nature of real life that a user is living in his

daily life. For example, consider a mobile user travelling in train. The user is

considered as outdoor meanwhile the received signal strength is bad because

of not only the high speed of the train (Doppler effect), but also because of

the surrounding structures. Indeed, the metal windows and carriages of train

cause a significant attenuation of radio signal power. For example, in 2 GHz

frequency band, the penetration losses from train carriages are usually in the

range of 20 to 35 dB [100]. In crowd-sourcing data, we have many ambiguous

situations that need to be handled by ML. As we will see in next sections, the

performance of tested ML algorithms does not meet our satisfactory criteria,

when not considering additional data features as compared to SOA.

Figure 4.3 shows the indoor and outdoor Cumulative Distribution Func-

tions (CDFs) derived from the crowd-sourced data. The blue curve with full-

line represents the data taken in normal speed: corresponding to only from

static locations (various types of building crossed) and low speed points. The

blue dotted curve depicts the data collected from all mobile locations (normal,

medium, high speeds). We note that the dotted line is closer to the indoor CDF.

This leads to superimposed points located at the beginning of the tails of both

the CDFs. These overlapped points are coming mainly from either deep indoor

102

4.3. Supervised Learning-based classification: Indoor Outdoor Detection (IOD)

positions or high or medium speed mobile positions, thus, creating ambiguity.

Figure 4.3 – Empirical CDFs for measured RSRP . (full) outdoor static and low
speed, (dotted) outdoor variable speed.

Figure 4.4 shows the CDF of mobility indicator values for different envi-

ronments (car, pedestrian, buildings, train, mall, bus) for TCRmax = 100s. As

expected, the curves imply that the number of cell ID changes (NCID) is cor-

related with the environment type. Indeed, the indoor user (e.g. in buildings)

either doesn’t change cells or changes only a very few times when he is located

at borders of multiple cells. However, when he moves outdoor (e.g in trans-

portation), the number of handovers increases as he covers large distances.

Note that the figure implies that NCID is smaller in pedestrian case than in

mall case. One reason is that in some cases relatively longer walks occur in

malls.

Consequently, the addition of TA andMI features should eliminate the am-

biguities as they provide additional information that is relevant to the IOD sys-

tem. Indeed, with them the IOD system exploits information on the distance

of mobile users from the base station and is aware of their mobility type, re-

spectively. On one hand, TA would help to classify the ambiguous points which

103

Part 4.3, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

Figure 4.4 – Cumulated Distribution Function of the mobility indicator vs. En-
vironment - one user

correspond to, for e.g., measurement points with low RSRP , but near to eNB.

On the other hand, the user mobility highly correlated to the user environment

will ease the classification of outdoor measurement points with low RSRP , for

example, while inside a high speed train. The indoor user moves slowly as com-

pared to outdoor where he can move more quickly. Therefore, using both the

additional signals can help to classify the ambiguous measurement points and

would improve the overall performance of the supervised classifier. However,

how much does each parameter contribute to IOD performance?

Figure 4.5 depicts the relative optimal ordering of the four input features re-

lated to their relevance for IOD. The cumulative information brought by these

features is equal to 100% (presented by the red line in the figure 4.5). The or-

der of these features is obtained using "Extra-Trees-Classifier" algorithm. It

reveals that RSRP will contribute most to the IOD performance. Alone, RSRP

brought around 43% of information to the classifier. The ranking scores of TA

and MI are close, bringing both around 25% of information to the classifier.

104

4.3. Supervised Learning-based classification: Indoor Outdoor Detection (IOD)

They thus impact the IOD performance almost identically. Furthermore, both

signals together will contribute a little higher than RSRP and CQI combined.

Thus, an improvement in IOD performance is expected by introducing these

two additional parameters.

Figure 4.5 – Feature ranking based on cumulative information brought by them

4.3.2 Data collection mode: crowd-sourcing vs. drive-test

The dataset described in the previous chapter 3.3 has been collected using

the crowd-sourcing mode. This mode is rarely used by operators. In crowd-

sourcing mode, the collected data consists of signals measured by the mobile

phone and sent to the eNB. It enables to better reflect the users’ behaviors

by capturing a huge diversity of their experiences, unlike drive test collection

mode which imposes measurements in limited situations, generates data with

a poor representation of a daily life of a mobile user.

Figure 4.6 shows the empirical cumulative distribution functions (CDFs) of

RSRP and CQI obtained with the dataset in the indoor and outdoor cases.

105

Part 4.3, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

The significant offset between the indoor and the outdoor curves, results from

substantial difference and attenuation variation in radio signal propagation. It

is mainly due to reflection, diffraction, dispersion and attenuation experienced

in indoor environment. However, we note that there is some overlap between

the ranges of RSRP and CQI values. Also the extreme values seen in the two

indoor and outdoor CDFs (located in tails) get similar and the division between

the two gets blurred. The behaviour at the juncture of extreme values can be

explained by the ambiguous characteristics of the environment when a user is

at high speed (Train, car, etc.) or when he is in a semi indoor environments (like

balconies, semi-open building, near a window, etc). We argue that these points

are ambiguous and will pose a good challenge for supervised classification,

since they can be indifferently classed indoor or outdoor at the same time.

Figure 4.6 – Empirical CDF for measured RSRP (left) and CQI (right) in crowd-
sourcing mode: multiple environments and places - Indoor (red) and Outddor
(blue).

An alternate data collection mode, which is widely used by operators to col-

lect data, is known as the drive-test mode. However, this mode imposes limits

on capturing the reality through the data collected. Such data collection cam-

paigns are run for limited hours per day during short periods (couple of weeks)

and at some specific places. To model this way of collecting data, we extracted

a portion of data (EPD) from the whole dataset. By this way to select EPD data,

we aimed to be as close as possible to the type of places where some drive-tests

106

4.3. Supervised Learning-based classification: Indoor Outdoor Detection (IOD)

Figure 4.7 – Empirical CDF for measured RSRP (left) and CQI (right) in drive-
test type mode: specific environments and places - Indoor (red) and Outddor
(blue).

were performed by one of the top 3 American operators in New York City in [21].

Therefore, to build EPD we only considered data captured in metropolis (Paris

and southern suburbs see figure 4.8). Indeed, Paris as metropolis, has a dense

and a specific architecture which allows better comparison with NYC. Concern-

ing indoor data, we selected instances where the user was strictly indoor and,

thus, not in “semi-indoor” positions like semi-open building or balconies, etc.

For outdoor data, we chose the instances where the user was either pedestrian

or in vehicle in different city streets (limited speed). Thus, to mimic drive-tests,

we consequently ignored data coming from environments like subway, country-

side, forest, beaches, mountains, etc. We did this to enable a fair comparison

between the two modes.

Figure 4.7 shows well separated RSRP empirical cdfs between the indoor

and outdoor classes. Note that the superimposed points of both the cdfs that

we previously judged as conflicting have disappeared. The overlap between both

the cdfs, which previously led to ambiguity, has disappeared. This is due to the

significant distance between the indoor and the outdoor curves. If we draw a

vertical line at −100 dB in both RSRP CDFs, in the case of EPD (Fig 4.7) we can

easily notice that there are almost no outdoor measurements below −100 dB.

However in the case of crowd-sourcing data (figure 4.6) there are around 30%

107

Part 4.3, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

of measurements below −100 dB. Similar phenomenon is noticed in the case

of CQI cdfs. This analysis allows us to argue that supervised classification

will run better on labeled dataset collected in drive-test mode as compared

to obtained through crowd-sourcing mode because there are some thresholds

that will help to map the features to the desired output (IOD).

Figure 4.8 – The Data collection Points of EPD in drive-test like mode: Paris
and southern suburbs

The evaluation of both input pairs (RSRP , RSRQ), which is the reference

input for IOD in the literature, is conducted in three specific cases, that enable

to make a comparison between drive-test mode and crowd-sourcing mode:

— Training and evaluation on labeled EPD collected in drive-test like mode

(see Tab. 4.1),

— Training on labeled EPD from dive-test mode and evaluation on labeled

data collected in crowd-sourcing mode (see Tab. 4.2) and,

— Training and evaluation on labeled data collected in crowd-sourcingmode

(see Tab. 4.3)

As shown in table 4.1, running either classification (SVM, Random Forest,

Neural Network) or clustering (k-means), algorithms on labeled EPD, obtained

from drive-test like mode, shows good performance with an F1 − score of more

than 99%, which is the reference result found in literature [21]. However, af-

108

4.3. Supervised Learning-based classification: Indoor Outdoor Detection (IOD)

ter training the module using labeled EPD, when we use it to perform IOD

classification on crowd-sourced data then it leads to a dramatic performance

deterioration, as shown in table 4.2. F1 − score drops to 36.13% with SVM. The

best performing algorithm is RandomForest, which gives an F1−score of 61.99%.

But, this is not an acceptable performance for IOD. The performance of a super-

vised classifier, in the third case, with training as well as evaluation performed

on the crowd-sourced labeled data, is shown only for the case of SVM, which

is the best among the tested algorithms if IOD is done with the pairs of data

input (RSRP , CQI). Table 4.3 shows an noticeable enhancement of F1 − score

to 83.66%.

Algorithm RSRP-RSRQ RSRP-CQI
Accuracy F1-Score Accuracy F1-score

k−means 99,68% 99.48% 99.67% 99.47%
SVM 99.75% 99.59% 99.76% 99.60%
NeuronalNetwork 99.50% 99.18% 99.57% 99.28%
RandomForest 99.83% 99.72% 99.77% 99.62%

Table 4.1 – Clustering and Classification performance: training and evaluation
on labeled data (EPD) of drive-test like mode

As we guessed before, the performance of IOD classification when trained

only on EPD and then tested on the crowd-sourced data drops in terms of

F1-score and accuracy. This drop in performance is due to the presence of am-

biguous points, combined with unknown environments frequented crossed by

users in real life, which are not included in the drive-test data. Even when we

know indoor or outdoor labels and the exact location of the mobile user, the

knowledge obtained from EPD is not sufficient for a satisfactory supervised

training as well as for classifying ambiguous points. Learning the user envi-

ronment, only based on drive-test data, is thus not enough to learn the com-

plexities of users’ real life. Furthermore, in addition to the issue of ambiguous

points, another problem surfaced when we closely observed our crowd-sourced

109

Part 4.3, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

data. Indeed, we are facing the problem of imbalanced classes with more users

indoor (around 70% in our case) than outdoor, which corresponds to the real

user behaviour that the users are more likely to be indoor than outdoor, in

their daily habits. This behavior also increases the challenge to do supervised

training because of the imbalanced nature of the data.

Algorithm RSRP-RSRQ RSRP-CQI
Accuracy F1-Score Accuracy F1-score

k−means 61.41% 60.07% 59.64% 57.77%
SVM 56.56% 36.13% 62.69% 61.71%
NeuronalNetwork 50.90% 44.58% 62.55% 61.54%
RandomForest 62.93% 61.99% 62.63% 61.59%

Table 4.2 – Clustering and Classification performance: training on EPD and
evaluation on labeled data of crowd-sourcing mode

Algorithm RSRP-RSRQ RSRP-CQI
Accuracy F1-Score Accuracy F1-score

SVM 85.48% 83.66% 85.54% 83.71%

Table 4.3 – SVM performance: training and evaluation on labeled data of crowd-
sourcing mode

4.3.3 Performances of IOD

Architecture and configuration

As described in the table 4.9 the used DL with (RSRP,CQI,TA,MI) mod-

ule is a feed forward neuronal network (fully connected) with 8 hidden Layers

using tanh as the activation function. Actually, tanh (see chapter 3) is one of

the widely used activation function while designing neural networks today. It

is used mainly in classification tasks which will lead to faster training process

and convergence. As for the last layer (the output layer), we used a sigmoid ac-

tivation function to smooth the results since we look for a binary classification

110

4.3. Supervised Learning-based classification: Indoor Outdoor Detection (IOD)

either 0 or 1 (for indoor/ outdoor environments). Recall, the labeled data is 72k

is. The labeled dataset is split into two subsets as follows: 70% for training, 30%

for validation and test.

Results

Table 4.5 presents the performance results of a supervised multi-output

classification for IOD given in 4.4.

In this section, we study the impact of adding CQI and two additional input

features referred to as MI and TA to existing RSRP and on IOD performance.

MI and TA represent respectively the mobility type and the distance between

user and eNB.

The comparison of both input pairs (RSRP , RSRQ), which is the reference

input for IOD in the literature, vs. (RSRP , CQI), has been conducted in three

cases described in 4.3.2. As shown in tables 4.1, 4.2 and 4.3, running either

classification (SVM, Random Forest, Neural Network) or clustering (k-means)

algorithms shows good performance with higher F1−score in most of the cases

when learning model is trained with input data (RSRP , CQI). Comparing both

tables, Table 4.1 and Table 4.3, shows that using (RSRP , CQI) as input provides

similar results to the case when the pair (RSRP , RSRQ) is used for classifying

crowd-sourcing data. The results are even slightly better in case of table 4.2

with (RSRP , CQI). The best algorithm among the tested algorithms is SVM,

which gives the highest F1− score and Accuracy. Table 4.3 shows an noticeable

enhancement of F1 − score to 83.71% when using (RSRP , CQI) with SVM. How-

ever, F1 − score of 83.71% is a moderately acceptable performance for IOD task

that targets to help autonomic networks in their self-management. We are still

far from the reference in the literature. This can be explained by the fact that

we are dealing with different datasets collected in different modes. In what fol-

111

Part 4.4, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

lows, we will work on improving this score to reach 95% of F1-score. As pointed

out in chapter 3, the margin of tolerated error that we fix is of the order of 5%

for network optimization purpose.

For the evaluation of TA and MI impact on performance of IOD, the com-

parison is done in three cases where different structures of learning datasets

are examined, see table 4.4. The first one contains only RSRP and CQI, the

second one includes in addition the timing advance, but not the mobility indi-

cator and the third one includes all data. As shown in the table 4.4, TA andMI

added to RSRP and CQI have enhanced the classical machine learning perfor-

mance with up to 8% of gain, approximately. We also note that Deep Learning

(DL) outperforms the other classical machine learning algorithms. This exper-

imentation performed using the SLabeled data, provides a DL model with 95.30%

of F1-score.

Algo RSRP-CQI RSRP-CQI-TA RSRP-CQI-TA-MI
Acc. F1-Sc. Acc. F1-Sc. Acc. F1-Sc.

kMeans 78.73% 75.81% 66.61% 45.93% 75.83% 67.38%
Logis. 84.63% 82.26% 87.59% 85.93% 89.67% 88.44%
Regress.
SVM 85.54% 83.71% 90.17% 89.11% 92.32% 91.44%
DL 85.60% 83.66% 93.45% 92.77% 95.72% 95.30%

Table 4.4 – Clustering and supervised Classification performance: Accuracy &
F1-score vs. Timing Advance & Mobility indicator

4.4 Semi-supervised Deep Learning-based classi-

fication: IOD

First lets also talk about the quantity of the data. Assuming that we have

a sufficiently powerful learning algorithm, then one of the most reliable ways

112

4.4. Semi-supervised Deep Learning-based classification: IOD

to get better performance is to feed the algorithm with more data. Indeed, the

quality of the model is generally constrained by the quality and the volume of

the training data. Deep Learning (DL) and other modern nonlinear machine

learning techniques get better with more data. Thus, there is a need to look for

a way to enlarge volume of the training data. The idea is then to use unlabeled

data, which is easy to obtain, and mix it with available labeled data, which is

costly to obtain, for classifier training. Hybrid and semi-supervised approaches

are the best candidates for this.

In this section, we compare and discuss the IOD performance using semi-

supervised IOD approaches. As investigated in [101], [102], [103], [104] and

[88], we consider the following 3 classic approaches of hybrid learning that

make use of both the labeled and the unlabeled data:

1. Cluster-then-label: a clustering method is used to label the unlabeled

data.

2. Co-training: multiple supervised classifiers learn from each other’s out-

puts.

3. Self-training: a supervised classifier trained on a small labeled dataset

learns iteratively from its own classification of additional unlabeled data.

We evaluate the above 3 methods of learning using our dataset. Let ST otal be

the total dataset made of:

ST otal = SLabeled ∪ SUnlabeled

where SLabeled ∈ R6 is the subset of the labeled data and SUnlabeled ∈ R5 is the subset

of the unlabeled data. Note that Card (SUnlabeled) ≈ 3 × Card (SLabeled) in case

of our collected data. For the performance evaluation on new environments

unknown to the classifier we use ST est ∈ R6, where ST est /⊂ ST otal and Card (ST est) ≈

3 ×Card (SLabeled).

113

Part 4.4, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

4.4.1 Cluster-then-Label

Our proposed system of Cluster Then Label (CTL) approach is composed

of two main modules described in Figure 4.9. The first module handles the

unlabeled data by applying a clustering algorithm on ST otal to make emerge 2

clusters: indoor and outdoor. We use labels of SLabeled, as well as the apriori

information that users are much more indoor than outdoor, to associate labels

to SUnlabeled. Then an optimizer is used to correct the wrong labels, as much

as it can, during the clustering phase. For correction, we use the idea that

a user can not change his environment twice in 30 seconds. The idea can be

explained from the following example. Imagine that we have three consecutive

points in the dataset which are very near in time. If, for example, the first point

is mapped as indoor, the second is mapped as outdoor and the next point, very

near in time, is again mapped as indoor, then we assume that there is an error

in mapping. This is because a user cannot change its environment two times so

quickly. The second module uses SLabeled and also newly labeled data of SUnlabeled

to train a supervised classifier.

Figure 4.9 – The Cluster-then-label semi supervised approach model

We evaluate the CTL method with different clustering algorithms (K-Means,

Expectation Maximization, Hierarchical Clustering, Bayesian Gaussian Mix-

ture (BGM)). BGM showed better performance and was retained. Deep feed

forward neural Network (DL) was used as the supervised classifier.

114

4.4. Semi-supervised Deep Learning-based classification: IOD

4.4.2 Co-Training

In general, the Co-training (CT) approach explores the results of two or more

classifiers at the same time. There are many implementations of the CT accord-

ing to the needs and the use cases. However, the most common one splits the

dataset vertically according to features (signals in our case) and thus forming

feature-based sub-datasets. As shown in Figure 4.10, two DL classifiers are

trained on SLabeled data. Then each data instance in SUnlabeled is classified by the

two classifiers and the intersection result with high classification probability

is used to retrain and improve a final DL model. The assumption is that the

classifiers working with different sets of features are able to complement each

other. The main issue of CT is how to split data vertically to form the subsets

that have the same amount of information. The idea is that if there are 2 pri-

mary features and 2 other secondary ones, then we will build subsets in a way

that each subset has a primary feature and a secondary one. This guarantees

that each subset and the associated classifier has its fair share of effective

features to attain good performance.

Figure 4.10 – The Co-Training (CT) semi supervised approach model

We analyzed the features in consideration with different machine learning

techniques. According to Figure 4.5, we divided the whole dataset vertically

115

Part 4.4, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

into two subsets composed of (1) [RSRP,CQI,Class] and (2) [TA,MI,Class]. This

vertical division ensures the same information weight (≃ 50%), so we offer a fair

opportunity of equal learning to both the DL classifiers. After the training phase

of these two classifiers, we apply the same vertical division on the SUnlabeled set

in order to predict their labels. Each data instance is classified by the two

different classifiers. For the final step, only the intersection between resulting

labels of two classifiers is kept. The classified part of SUnlabeled, which is kept, is

then added to Slabeled. This new data set is then used to train and improve the

final DL module.

4.4.3 Self-training

The Self-Training (ST) approach is one of the semi-supervised learningmeth-

ods that alternatively repeats classifier training and labeling unlabeled data in

training set. The main issue with ST approach is the amplification of error

while labeling the unlabeled data. That means if the current trained classifier

makes errors while classifying the unlabeled data then the wrong label of the

unlabeled data will provide an inaccurate information for the classifier of the

next step [105]. By iterating these two steps, the overall error of the final clas-

sifier will become larger. To remedy this error amplification phenomenon and

to have a generic classifier, we propose a data selection system between the two

phases (Figure 4.11). To eliminate the wrongly labeled data, we again apply the

assumption that a user can not change his environment twice in 30 seconds. A

label is therefore considered wrong if in 30s the user goes from environment 1

to environment 2 and then from environment 2 to environment 1 again. Thus,

we eliminate this labeling error. We also delete data that was classified with a

low classification probability. That means, we eliminate data that was classified

with a classification probability lower than 65%. This threshold of 65% was fixed

after a statistical study to avoid both risks of over-fitting or error amplification.

116

4.4. Semi-supervised Deep Learning-based classification: IOD

Figure 4.11 – The Self-taught/Self training semi supervised approach model

4.4.4 Performances of IOD

Architecture and configuration

For the semi-supervised study, we have used the whole dataset at our dis-

posal at the time of the experiment. That is to say 250kmeasurements with 30%

labeled and 70% unlabeled points. The used DL module by the 3 hybrid learn-

ing systems (CTL, CT and ST) is depicted in the section dedicated to evaluate

the performance obtained with supervised learning 4.3.3. It is a feed forward

neural network (fully connected) that has the same configuration as the model

DL (RSRP,CQI,TA,MI) described in the table 4.9. The experimentation per-

formed on the SLabeled data, provides a F1 − score of 95.30%. This model is saved

and will serve as an initialization for the next training steps.

Results

Table 4.5 presents the performance results of a semi-supervised multi-

output classification for IOD.

The 3 learning approaches - CTL, CT and ST - are evaluated on ST otal by

computing each-time the F1-score and the accuracy of each approach. The

performance evaluation is carried out on both ST est and SLabeled data. As shown

117

Part 4.5, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

in table 4.5, CTL has the lowest F1-score compared to CT and ST. This is ex-

plained by the fact that more the unlabeled data volume increases, the more

the performance of the supervised DL gets limited to the clustering perfor-

mance and errors. In our case, the BGM cluster used has a F1-score of 79.71%,

which gives a low F1-score of CTL. CT and ST show close performances with

slightly better performance of the latter since both the DL classifiers trained

with their own tagged data subsets provide the same F1-score, with an average

of 85%. However, CT is very complex and greedy in resource use. CT takes lot

of training time as it deals with 3 neural networks. Therefore, ST is the best

choice for IOD system, since, on the first phase (trained only on labeled data)

as well as the last phase (trained on both labeled and unlabeled data), it has

shown the best performances reaching an F1 − score of 96.18%.

CTL CT ST
Accuracy F1-Score Accuracy F1-Score Accuracy F1-score

83.05% 79.89% 95.77% 95.34% 96.50% 96.18%

Table 4.5 – Semi-Supervised approach (CTL, CT, ST) performances: Accuracy
& F1-score

4.5 What if more granularity of UED is taken into

consideration?

In this section, we investigate the user environment detection (UED) consid-

ering more than two types of environments. Indeed an environment described

with a more thinner granularity reflects more the complexity of a user’s daily

life and captures better the variety of his movements in real world. However,

increasing the number of classes, that is required to describe the diversity

of the environment, generates groups of data instances that are distributed

118

4.5. What if more granularity of UED is taken into consideration?

unequally between the different categories. The unequal distribution of data

constitutes an issue for ML.

A model is required to classify a user’s environment to what granular-

ity level? Which classification scheme can tackle the issue of imbalanced

data? Can we classify the user environment with detailed classes, with

good performance?

Problematic 5

In the following, a comparative analysis of classification between schemes

of three, four and five classes will show that using four classes with rel-

evant labels enables a good trade-off between balancing the dataset and

more granularity.

Contribution 5

We investigate eight classes of environments that are typical of the environ-

ments frequented by the user during his or her daily life: Work, Home, Build-

ing, Bus, Car, Mall, Pedestrian, Train. The detection is done using a supervised

as well as a semi-supervised, multi-output, classification techniques. Multi-

output refers to the detection of multiple types of environments. We shall look

for a best trade-off between more granularity and performances, namely for

the highest number of classes available and an F1− score higher or equal than

95%.

4.5.1 Relation between user activity and environment type

UED task is performed using the same data described in section 4.2 of this

chapter. That is to say, we are using our dataset composed of radio signals

(RSRP , CQI), temporal features (TA, Time), a Mobility Indicator (MI) derived

119

Part 4.5, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

from Cell ID changes NCID, and finally the environment. The only difference

is that the time value will also be exploited for more than optimization purpose

since there is a high correlation between the time and the user environment.

Obviously, the environment class is no more just binary (Indoor/ Outdoor).

We consider the following categories of environment: [Work, Home, Building,

Bus, Car, Mall, Pedestrian, Train]. They have been chosen for labelling the data

since they are the common places most frequented by the users in our dataset.

In other word, they are highly representative of the locations where data has

been collected. These eight environment categories were selected in order to

reflect the complexity of a user’s daily life and capture the variety of his move-

ments in real world. As explained and detailed in chapter 1, people spend most

of their time indoor than in mobility and outdoor. Consequently, outdoor labels

are less represented than indoor labels in phone usage data.

Figure 4.12 – User activity per environment

To analyse the user behavior, using the collected labeled data, we fix the

definition of the ‘phone usage’ state. The ‘phone usage’ state is defined as the

state when the user uses his phone or equivalently the screen is on, unlocked,

120

4.5. What if more granularity of UED is taken into consideration?

and there is data exchanged. In order to track this state, following additional

data features are also collected during the campaign. These features are the

instance index or timestamp, the screen state and the label of environment

type. Analysing this data gives us a clear picture of mobile phone usage in

different environments.

Figure 4.12 depicts the user activity by plotting the phone usage ratio for

different environment categories. User activity is measured as the ratio be-

tween the number of instances the user has been using his phone effectively

and the total number of instances. This figure illustrates the percentage of to-

tal time the user is connected to 4G network and exchanges data with it. We

observe that most of the activity is spent indoor (70%), mainly at home and at

work, as compared to being outdoor. It highlights the user activity trends that

we observed after statistical analysis on mobile user behavior in literature.

Figure 4.12 illustrates the multiple diversity of indoor and outdoor situations

experienced by the users of mobile phone. These situations are [Work, Home,

Building, Bus, Car, Mall, Pedestrian, Train]. Consequently, it is preferable to

consider the user environment detection task as a multi-output classification

problem.

We also observe in Figure 4.12 that the data instances are distributed un-

equally between the different categories. It shows that the data proportion in

groups of label “Train”, “Bus”, “Mall”, “Building” or “Pedestrian” is very low

compared to the other groups. This imbalanced nature of data remains a chal-

lenge for Machine Learning algorithms. This nature of data is in fact inherent

to the user behavior: people are mostly in static conditions than in high speed.

Moreover, as soon as the user speed increases, the network quality deteriorates

and consequently the user switches to 3G or even to GSM (sometimes).

Another factor that also deeply affects the consumption of a mobile service

in a given environment is the time. Figure Fig.4.13 shows the phone usage over

121

Part 4.5, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

Figure 4.13 – User activity per environment during week period vs. weekends.
Considered Environments: Building (Malls and other buildings type), Home,
work, Outdoor(Car, Bus, Train, Pedestrian)

the period of a week and puts the emphasis on differences between weekdays

and weekends. We see that indoor environments are a major stage for most

of the users’ phone activity, on weekend as well as the during week days. Al-

though, regardless of the point in time during the week, indoor class always

keeps its importance in terms of mobile use, there are variations between dif-

ferent indoor environments when the period of the week is different. The work

environment is totally absent on weekend, but has nearly the same weight as

the home one.

By observing figure 4.14 the pedestrian, transport and mall environments,

it is noted that user mobility becomes more important on weekends. These

statistics also show the rise of the percentage of mobile use in outdoors, dur-

ing weekend, which is justified by the fact that distraction activities reach their

peaks on weekends. It is also to note that the weekend period holds a lot of

surprises in terms of mobile use, because this period is subject to all kinds

of human preferences which makes it very diverse. Analysis over the day (see

figure 4.15) also shows that time is an important factor linked to user activity

and user environment. In the example here, a normal user activity begins ap-

122

4.5. What if more granularity of UED is taken into consideration?

Figure 4.14 – User activity per environment during week period vs. weekends.
Considered Environments: Indoor (Home, Work, and other buildings type),
Pedestrian, transport (Car, Bus, Train)

proximately between 6 a.m. and 8 a.m. at indoors (the user is at home). Then,

we have a peak between 9 a.m and 11 a.m of phone use at outdoors which

can be explained by service consumption during transit to daily user’s activity

places: work, high school, university or other. A second peak of mobile activ-

ity in transport environments also occurs between 12 a.m and 2 p.m, which

corresponds to lunch time, as it is normal for people to take transport to eat

somewhere. As for the phone usage in mall environment, we can see, it usually

starts in the afternoon from 3 p.m on wards because people generally prefer to

go to the shopping centers in the afternoon and after work. The period between

2 a.m and 4 a.m is a hollow period where the phone use activity is almost zero

because most people are sleeping.

As we can see, the time is deeply linked to the user activity in different

environments. Thus, for the user environment detection, we also include time

in our features for training. The dataset is composed of 6-feature samples as

follows: Time, RSRP , CQI, TA,MI and the Environment (this label corresponds

to the environment traversed by user during the measurement campaign). We

123

Part 4.5, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

Figure 4.15 – User activity per environment during day hours. Considered En-
vironments: Indoor (Home, Work, and other buildings type), Pedestrian, trans-
port (Car, Bus, Train)

consider the following categories of environment: [Work, Home, Building, Bus,

Car, Mall, Pedestrian, Train]. They have been chosen for labelling the data. This

is because they are highly representative of the locations where data has been

collected. The environment labeling was processed using GPS coordinates for

users who allowed us to collect them.

4.5.2 Classification schemes

Distinguishing between specific outdoor environments or indoor ones that

are rarely visited is a hard task for any ML algorithm because of the lack of

data corresponding to them. Some environments are not often visited by in-

dividuals and not even periodically visited, what makes the classification task

difficult for such type of environments. Aggregating rare environments, with

thick relationships among them, into significant groups helps to resolve that

issue. This is because combining them results into more consistent and recog-

nizable groups. The only factor on which such grouping depends is the logical

closeness between environments. We seek thus a compromise between a simple

124

4.5. What if more granularity of UED is taken into consideration?

binary classification problem that was efficiently performed in previous section

of this chapter, and a complicated classification task that holds detailed infor-

mation about the user’s profile, but cannot be successfully accomplished given

the available data on occasional environments.

Thus, we aim to define relevant classification schemes with multiple classes

by smartly regrouping the various environment categories: [Work, Home, Build-

ing, Bus, Car, Mall, Pedestrian, Train]. Recall that the issue of imbalanced data

is inherently, due to the nature of real human activities. As a consequence, in

order to ensure an efficient scheme of environment classification for real user

activity, we have to find a trade-off to limit this inherent data bias for differ-

ent classes. We aim to design a classification scheme that detects the detailed

environment types of mobile users, with a fine granularity and a low decision

error.

We focus on studying the relevant trade-offs in our case of multi-output

classification. We consider different possibilities ranging from a simple binary

classification problem to a more complex classification task of detecting de-

tailed information about a user’s environment. To ensure this, we decide to re-

group the environment categories {Work,Home, Building,Mall, Bus, Car, Pedes-

trian, Train}. Furthermore, these categories have thick inter-relationships and

we can merge them into bigger consistent and recognizable groups. The cre-

ated merged groups shall also include data with similar statistical properties

in order to optimize the classification results. This is obtained by observing the

cumulative distribution curves of the collected data {RSRP ,CQI,TA,MI} as well

as the variance σ2 of the phone activity for each proposed multi-class schemes.

The variance represents the percentage of total instances linked to this en-

vironment and is written as:

σ2 =
∑(Xi − X̄)2

N

125

Part 4.5, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

where Xi is the number of instance in the class i and N the number of

classes. The variance is an appropriate metric to measure the degree of im-

balance by quantifying the variance of the percentage of total instances per

environment category from its average.

Figures 4.16 and 4.17 depict the cumulative distribution curves of RSRP

and MI, respectively. We observed in Figure 4.16 that three groups of similar

curves can be extracted: a set with only Home, a set regrouping {Work, Building,

Mall } and another set assembling {Bus, Car, Pedestrian, Train}. This results into

a further split of indoor and outdoor classes. Furthermore, the environment

“Home” is detached from the set of other indoor situations.

Figure 4.16 – CDF of RSRP

Analysing Figure 4.17, we also note a similar separation between indoor

and outdoor curves. Moreover, CDF curves of MI highlight a clear separation

between “pedestrian” and the remaining set of outdoor labels as well as between

“Mall” and the others indoor situations. Clearly these two environment types

are associated to users moving very slowly (walking) as compared to others that

are either static or high speed.

Based on these observations, we propose to group the eight environments

126

4.5. What if more granularity of UED is taken into consideration?

Figure 4.17 – CDF of number of Cell ID changes during 100s

as shown in Table 4.6. The label “Indoor” refers to “Home”, “Work”, “Mall”

and “Buildings”. The label “Outdoor” contains the environments “Pedestrian”,

“Car”, “Bus” and “Train”. “Transport” includes “Bus”, “Train” and “Car”. “Build-

ings” contains remaining indoor locations and various “Buildings”. Thus, UED

classification schemes investigated are given in Table 4.6:

UED scheme Environment
2C Outdoor, Indoor

3C0 Outdoor, Buildings, Work
3C1 Outdoor, Buildings, Home

4CO0 Outdoor, Buildings, Work, Mall
4CO1 Outdoor, Buildings, Home, Mall

4CI0 Pedestrian, Transport, Buildings, Mall
4CI1 Pedestrian, Transport, Buildings, Home

5C0 Pedestrian, Transport, Buildings, Work, Mall
5C1 Pedestrian, Transport, Buildings, Home, Mall

8C Home, Work, Buildings, Mall, Pedestrian, Bus, Train, Car

Table 4.6 – UED classification schemes
127

Part 4.5, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

For illustration, the examples of schemes “5C_0” and “5C_1” are provided

in Figure 4.18.

Figure 4.19 shows the variance of data size versus each class schemes when

the data is divided according to the above schemes. This is to quantify the bal-

ance or imbalance of data between different classes. When the variance is high,

the dispersion, in terms of data size in different classes, is important and, thus,

the scheme is very imbalanced. As shown in Figure 4.19, the schemes “3C_0”

and “3C_1” have the smallest variance. They are followed by “4CO_1”, “4CI_1”

and “5C_1”. Indeed, the scheme 3C results in the most balanced data among

different classes. This scheme regroups the instances coming from outdoor

labels and splits the indoor label instances.

All the schemes are illustrated in Figure 4.20. The figures represents themo-

bile phone activity according the environment type for the 8 proposed schemes.

Precisely, the figure indicates the percentage of time a user is active on his or

her mobile phone. Precisely, the figure indicates the percentage of time a user

is active in his or her phone.

Figure 4.18 – Multiple class schemes example: “5C_0” and “5C_1”

128

4.5. What if more granularity of UED is taken into consideration?

Figure 4.19 – Variance of phone activity for the multiple class schemes

4.5.3 Performances of UED

Architecture and configuration

For this experiment, we have used 270K lines of data collected only in

France and corresponding to LTE network. The dataset is made of 50% of la-

beled data (for the eight environments) and 50% of unlabelled data. The training

is done using the labeled part of our dataset. For training, we used (70%) of the

labeled data and we used the (30%) remaining for evaluating the model’s per-

formance.

The set of hyperparameters (e.g. the number of hidden layers, batch size,

epoch size, the weights) have been tuned using Bayesian optimization. The

implementation is done under python and using Keras with Tensorflow as a

back-end (we summarize them in the table 4.9).

For our supervised multi-output classification problem, we used a Feed For-

ward Neural Network architecture with a total of 7 hidden layers. To evaluate

the impact of adding more data during the training phase, we used a semi-

supervised Self-Training training model, (figure 4.11) detailed in section 4.4,

129

Part 4.5, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

Figure 4.20 – Phone Activity for various classification schemes of environment

130

4.5. What if more granularity of UED is taken into consideration?

2 Classes 3 Classes
2C 3C0 3C1

Acc. F1-Sc. Acc. F1-Sc. Acc. F1-Sc.

Sp. 95.80% 95.76% 91.89% 91.84% 92.06% 92.04%

S.Sp. 96.51% 96.45% 94.20% 94.19% 94.14% 94.13%

4 Classes
4CO0 4CO1 4CI0 4CI1

Acc. F1-Sc. Acc. F1-Sc. Acc. F1-Sc. Acc. F1-Sc.
Sp. 91.58% 91.53% 91.42% 91.38% 93.18% 93.11% 94.31% 94.28%
S.Sp. 94.24% 94.24% 94.18% 94.17% 94.92% 94.92% 94.53% 94.55%

5 Classes
5C0 5C1

Acc. F1-Sc. Acc. F1-Sc.
Sp. 90.70% 90.69% 90.79% 90.72%
S.Sp. 93.42% 93.38% 93.66% 93.63%

Table 4.7 – Deep Learning-based supervised and semi-supervised multi-ouput
classification performance: F1-score vs. classification schemes

since it showed the best performances among the 3 tested approaches. We

presented these results in [41].

Results

Table 4.7 presents the performance results of both a supervised and a semi-

supervised multi-output classification given in table 4.6 and with the set of

hyperparameters of the table 4.9.

They have been obtained for the 8 multi-output classification schemes as

well as the two-class scheme (IOD). They are evaluated in terms of F1−score and

then compared with the classical IOD binary classification. We observe that

all schemes deliver F1 − scores higher than 90% that correspond to acceptable

performance in terms of classification. However, among all the schemes, the

two-class scheme and the four-class schemes “4CI_1” and “4CI_0” give the best

performance.

131

Part 4.6, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

As shown in Table 4.7, the F1-score of scheme “2C” is equal to 95.76%, when

supervised training is used. The F1-scores of “4CI_1” and “4CI_0” obtained in

supervised case are equal to 94.28% and 93.11%, respectively. We notice a slight

improvement of F1-score using the two-class scheme as compared to the F1-

score obtained under same conditions in [40]. Indeed, this enhancement is

due to the fact that now our algorithms process two times more real radio data

collected in real conditions of crowd-sourcing. Consequently, it impacts the

performance in a favorable way. Using the semi-supervised method for multi-

output detection is furthermore positive. It still enhances the scores thanks to

the addition of unlabelled data in the training phase. F1-scores for the three

schemes are equal to 96.45%, 94.55% and 94.92%, respectively. In both methods,

we also observe a maximum loss of around 6% when using a five-class scheme

as compared to the binary classification. The loss is reduced to around 2%

when using a 4-class scheme.

Thus, we show that a detailed learning of the environment can be achieved

with a veryminimal loss of performance. This is obtained using a smart division

of the groups “indoor” and “outdoor” into different sub-groups. We observe

that the coarse learning, of the environment, benefits more from the diversity

brought by the introduction of labels “pedestrian” and “in transport” than by

the split of the group “indoor”. Furthermore, we also note that the level of

imbalance in data has an influence on the F1-score. The most imbalanced

scheme delivers small F1-scores. The two best schemes (outside the two-class

scheme) offer relatively balanced classes.

132

4.6. Labelled data volume vs. unlabelled data volume

4.6 Labelled data volume vs. unlabelled data vol-

ume

In this section, we investigate the impact of the volume of labeled data or

unlabeled data used on F1 − score of IOD.

Semi-supervised learning has be shown in preceding section as an efficient

solution to handle the tagging data issue while guaranteeing better perfor-

mance for UED or IOD. However we can also envisage semi-supervised learning

as a solution to minimize the amount of tagging data issue while guarantee-

ing satisfactory performance for the task of environment detection. Indeed, as

shown in table 4.5, with Self-Training system for IOD, we obtain a F1− score of

96.18% by processing 72,7% of unlabeled points and 27,3% of labeled data. We

observe that the attained F1 − score is 1% more than the target threshold, we

imposed, to qualify a satisfactory performance of a task targeting to contribute

positively to network optimization.

So, here, we address an important question: howmuch percentage of labeled

data is needed to target a satisfactory performance for the task of environment

detection system? Such an answer is of interest to operators. This is because,

during online labeling phase, limiting the amount of data to label alleviates

network overload by limiting the amount of UL signalling (all labels) sent to eNB.

Additionally, it reduces the complexity and the required time for tagging data.

Thus, the idea is to use the available labeled data, which is costly to obtain, and

combine it with unlabeled data, which is easy to obtain, for classifier training.

The answer to this question highly depends on the dataset and is specific to

the use case. It is not a generic answer that can be generalized to other studies.

To answer this question, a study is conducted in the case of semi-supervised

classification of IOD using the hybrid Self-Training (ST) system. For this, F1 −

score is assessed while varying either the volume of labeled data or either the

133

Part 4.6, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

volume of unlabeled data during the model training. For this, F1−score is eval-

uated for various SUnlabeled and SLabeled. Recall that ST otal represents the total

dataset made of:

ST otal = SLabeled ∪ SUnlabeled

where SLabeled ∈ R6 is the subset of the labeled data and SUnlabeled ∈ R5 is the subset

of the unlabeled data. So, F1 − score is investigated leading to two scenarios:

— Scenario 1: SLabeled is fixed and the volume of SUnlabeled is varied. The ST

training performance is evaluated progressively according to the percent-

age of unlabeled data which reaches a maximum of 72.69%.

— Scenario 2: SUnlabeled is fixed and the volume of the SLabeled is varied. The

ST training performance is evaluated progressively according to the per-

centage of labeled data which reaches a maximum of 27.31%.

Figure 4.21 – Data volume Impact: (Blue Line) Scenario 1: Variation of the
SUnlabaled volume. (Red Line) Scenario 2: Variation of SLabeled volume

Results of both scenarios are shown in Figure 4.21. The figure plots the F1-

134

4.6. Labelled data volume vs. unlabelled data volume

score values of ST versus the size ratio between SLabeled or SUnlabeled and ST otal.

The double X-axis refers then to the percentage of labeled data (the bottom

X-axis) or unlabeled data (the top X-axis). The percentage is calculated from

the total volume of data.

As expected, the addition of unlabeled data improves the IOD system perfor-

mances. In scenario 1, ST uses all the labeled data and a variable part of un-

labeled data. F1-score increases with the size of SUnlabeled data. However, there

is only moderate improvement. By using all of the labeled data ST starts al-

ready at 95% to converge toward 96,18% with a distribution of 27.31% and 72.69%

of labeled and unlabeled data respectively. This state corresponds to the case

where all the unlabeled data is used. The information brought by all SLabeled

data is sufficiently rich.

This is unlike the scenario II, where the F1-score augmentation is more

pronounced. Availability of less SLabeled is realistic assumption as collecting la-

beled data is expensive. In any case the labeled data contains more relevant

information. If the mobile operator targets an error percentage of 5% for IOD

(namely F1 − score = 95%), the red curve indicates that a distribution of 19%

and 81% of labeled and unlabeled data respectively is sufficient for the training

phase. Consequently, the mobile network operators wanting to implement IOD

inside their network may use similar percentages of labeled and unlabeled data

during the updating phase of IOD learning model. They may need to manually

label only 19% of collected data.

If 1% reduction of F1 − score is accepted to reach 95%, it enables operators

to gain 30% of signalling load for labeling. The table 4.8 provides for a target

performance comprises between 90% and 95% the saved signaling load versus

the target F1 − score.

135

Part 4.7, Chapter 4 – User Environment Detection: Where is the mobile user while
experiencing a service?

Target F1 − score 91% 92% 93% 94% 95%
Saved signaling percentage 85% 74% 67% 52% 30%

Table 4.8 – Percentage of labeled data saving compared to total volume versus
target F1 − score

4.7 Conclusion

In the first part of this chapter we have studied the first attribute for the user

behavior detection which deals with the user environment. As a first step, we

have considered it as a binary classification problem, referred as IOD: Indoor

Outdoor Detection. It is conducted from the network side (based on signals

known by the Network). IOD task has been solved using a ML approach (based

on Deep Learning) using 3GPP signals as features. So far, in the state of the

art, works dealing with IOD using a ML approaches used RSRP and RSRQ as

inputs. Whereas, the features that we used are: RSRP , CQI, TA, MI. We first

showed the importance of this judicious choice of inputs. Replacing RSRQ by

CQI and adding both TA and MI to the (RSRP,CQI) couple has shown an

improvement of 10% in the overall performance of IOD. A diversified partially

labeled dataset collected using a crowd-sourcing mode was used for evaluation.

Such dataset allows to be as close as possible to the real behaviors of mobile

users in daily life. Secondly, in order to also exploit the unlabeled data, we stud-

ied three semi-supervised machine learning approaches: Cluster-Then-Label,

Co-Training, and Self-Training. A comparative study of these approaches was

conducted. It showed that Self-Training (ST) approach is the best one for IOD.

The ST training model obtained with a sharing of (19%,81%) between labeled

and unlabeled data, and on a total volume of 250K of data, provides a F1−score

of 95%. We observe that if operators accept to reduce more than 1% the tar-

get F1 − score a saving of signaling load more than 30% is achievable. Such an

evaluation - namely the required sharing between labeled and unlabeled data

136

4.7. Conclusion

for a target IOD performance - could be of interest to operators. Avoiding to

tag all data strongly reduces the labeling efforts and constraints for the oper-

ators wanting to implement IOD algorithm. ST can thus perform well without

requiring a complete labeling of data.

In the second part of this chapter, we showed that the mobile network can

detect the user environment using a multi-class classifier trained on real data.

This classifier uses standardised mobile network signals as input. We studied

how to divide the initial indoor/outdoor classes further into more detailed en-

vironment types. However, training based on real data poses the problem that

the data corresponding to different classes can be highly imbalanced. This im-

balance is not due to the way with which we collected data collection, but is

strongly related to the inherent user behavior and his preferences to services

consumption. Knowing that this data imbalance can be a problem for machine

learning, we tried to find a compromise between the data instances per class

and the granularity degree by varying the number of environment classes.

Thus, we studied different combinations of splitting the environment into dif-

ferent classes and compared their performance. The performance peaked for 2

class classifier as it is the easiest and for 4 class classifier which offers more

detailed environment classification than just indoor and outdoor.

Results of the first attribute study answering the question "Where is the user

while consuming a service" are very encouraging for further investigation. The

next chapter will therefore deal with the second attribute related to the question

"How is the user when experiencing a service? Static or Moving?".

137

Model Optim. layer Drop. Valid. Epoch Batch Act.

IOD
DL (RSRP ,
CQI, TA) Nadam 8 NaN 30% 200 200 ReLu

DL (RSRP ,
CQI, TA,

MI)
Nadam 8 NaN 10% 300 200 tanh

UED
2C RMSProp 7 0,4 20% 70 200 tanh
3C0 RMSProp 7 0,2 20% 70 200 tanh
3C1 Adam 7 0,3 20% 70 200 tanh

4CO0 RMSProp 7 0,2 20% 70 200 tanh
4CO1 Nadam 7 0,2 20% 70 200 tanh
4CI0 RMSProp 7 0,2 20% 70 200 tanh
4CI1 Adam 7 0,2 20% 70 200 tanh
5C0 Nadam 7 0,2 20% 70 200 tanh
5C1 RMSProp 7 0,2 20% 70 200 tanh

Table 4.9 – Summary of the models’ hyperparameters: The optimizer, the num-
ber of hidden layers, the dropout ratio, the number of epoch and the batch
size.

Chapter 5

Mobility Speed Profiles (MSP)

Detection: How is the mobile

user when experiencing a

service? Static or Moving?

As a second step towards the unified AI-based model, for a joint detection of

the two QoE-influencing user behavior (environment and mobility), we tackle

the detection of second behavior attribute in this chapter. This attribute deals

with the detection of mobility speed profile (MSP). In this study, we aim to

answer the question "How is the user when experiencing a service? Is he static

or dynamic?". The investigation of this behavior is studied progressively by

going from detecting just 3 speed ranges, i.e., Low, Medium and High, to multi

mobility speed ranges detection going to 8 speed ranges as described in figure

5.1.

In everyday life, average users are always moving and changing locations

around three, four or much more times per day. Thus, there are different mo-

bility speed profiles of mobile users. Analyzing and estimating them is of in-

terest for the network. This helps in correct estimation of user speed giving

important information linked to the consumption of network resources by user

and his mobility. The cognition of speed will then help the network operator

139

Part 5.0, Chapter 5 – Mobility Speed Profiles (MSP) Detection: How is the mobile user
when experiencing a service? Static or Moving?

Figure 5.1 – Mobility speed ranges going to 8 speed ranges

to perform online network resource allocation and handover optimization ac-

cording to users’ speed profiles. Of course, it would be more precise if we are

able to predict the user speed itself rather than detecting just his speed range.

Nevertheless, from handover and resource optimization point of view, knowing

the speed range instead of the speed itself can be sufficient. Thus, this chapter

proposes Mobile Speed Profiling (MSP) investigation. We mean MSP to be speed

profiling by detecting speed range of an active user, in real time. MSP model

is learned using real data by classifying the user speeds to multiple mobility

states, during connection. For MSP, we show that we can achieve a good per-

formance even with a low and variable data collection frequency. Whereas, for

speed regression, we will require more data for training, with higher and con-

stant frequency, which will increase the network overload for collecting enough

user-specific real data.

In literature, the issue of mobility state detection has been studied mainly

considering 3 states: Low/ Medium/ High [95], [93]. However, mobile user

speed profiling is more complex than considering only three states when tar-

geting to infer the mobile user behavior. Actually, user’s mobility conditions

and thus the speed deeply affects the way he interacts with his mobile phone.

140

He usually tends to have different attitudes at home or at café than in trans-

port, during the working week than during the week-end [34], etc. In chapter

1, we explained that this phenomenon is inherent to the mobile user behavior,

which is about the preference to use their mobile phone in specific situations

[35]. Therefore, user’s behavior and experience in terms of service consump-

tion varies according to his environment and mobility conditions. These two

factors are thus important parts of user profile. Estimating the mobility profile

in terms of only three states (Low, Medium, High) can be seen as a first level

of analysis. However, it does not reveal the complexity of the situation. Thus,

a more granular classification is desired in order to detect/predict at which

speed profile a mobile user uses or prefers which mobile applications.

First, we tackle the MSP detection task for detecting 3-states mobility pro-

files, i.e, Low, Medium, High. Then, we expand our study by investigating the

user mobility and speed profile detection using a supervised Deep Learning al-

gorithm, based on a multi-output classification. This refers to the detection of

multiple mobility or speed profiles using multi-class schemes. A class stands

for a set of N (we target to have N ≥ 3) successive speed categories bounded by

minimal and maximal values. However the question is: to what level and detail

the multi-class model requires to classify a user’s speed? Can we classify the

user’s speed profile with more granular classes and with good performance?

In the following, we provide a comparative analysis between various classifi-

cation schemes of multiple classes. This will highlight the sets of classes with

relevant labels. We will also show the trade-off between performance and more

granularity.

This chapter is organized as follow: Sec. 5.1 describes the main MSP works

in literature. In Sec. 5.2, we study MSP as a 3 state profile which are the

same profiles as proposed in literature and then we present some preliminary

statistics. Sec. 5.3, analyzes user behavior and defines speed borders related

141

Part 5.1, Chapter 5 – Mobility Speed Profiles (MSP) Detection: How is the mobile user
when experiencing a service? Static or Moving?

to his behavior. In Sec. 5.4, we propose the MSP schemes to study based on

the preliminary analysis done in the previous section. In Sec. 5.5, we present

the results of different MSP schemes. Finally conclusion is presented in Sec.

5.6.

5.1 State of the Art

In this section, we provide an overview of the prior research relevant to MSP

detection in mobile networks. In 3GPP standards [95],[96], MSP is detected in

a very simple way: i) Compute the number of handovers or cell re-selections

during a sliding time window. ii) If this number is smaller than a threshold

called “Medium”, then the UE’s mobility state is determined as “Normal”. If

this number is greater than “Medium” but less than a threshold called “High”,

the state is determined as “Medium”. iii) Finally, if this number is greater than

“High”, then the state is determined as “High”. The advantage of such MSP

detection approach is that it is simple, easy to set up and less greedy in terms

of resources and computing time. However, it is neither reliable nor accurate

mainly with the massive deployment of pico and femto cells. Heterogeneous

cell sizes complicate the relation between handovers and user speed.

In literature, many works have addressed the user mobility issue, mainly

for handover management as well as for resource and energy optimisation rea-

sons. To the best of our knowledge, only a very few works have studied user

mobility from a context-awareness point of view. Some works like [93] and [94]

have studied the mobility speed profiling by determining the speed category

of a mobile user.In [93], authors propose to use RSRP measurements to com-

pute speed because signal fading over time is correlated with user speed. They

propose two methods: one based on spectral analysis and other based on time-

based spectrum spreading. For both methods, the signal variation is compared

142

5.1. State of the Art

to a reference curve or a look-up table (database) and a mapping is used to

compute the UE speed. Authors in [94], propose a method for UE mobility es-

timation, relying on UE history of cell sojourn times. The neighbouring eNBs

exchange among them the learned network topology as well as the history of UE

sojourn times. Using such information, the eNB classifies the speed to one of

the three mobility classes defined by 3GPP. Such solutions are interesting and

show good performances, but they are rather complex and resource-intensive

(checking a reference database each time or exchanging information between

eNBs).

Other works in literature have also addressed the mobility issue, but they

have rather proposed solutions for estimating the future position or the future

cell of a user. They also compute the speed using this information. In [106],

authors use the knowledge extracted from simple features such as cell ID and

sojourn time in previously visited cells, to predict the user mobility and his

future location. The prediction of the future position of the mobile user is com-

puted using Machine Learning, more precisely using SVM which in turn is a

classic machine learning tool. The work in [107] proposes a Markov chain based

prediction technique to predict the next user position as well as his speed. An-

other work [108] uses a LSTM based system to learn the user mobility pattern

from historical trajectories and to predict future movement trends of the user.

According to the prediction results of the next user position, both [108] and

[107] propose an algorithm to optimize the handover management. Another in-

teresting work [109] evaluates the user mobility in 5G networks as a function

of his behavior and his preferences. For evaluating mobility performance, they

studied the user pause probability, user arrival, and departure probabilities.

According the QoE-influencing model of the user behavior (see chapter 1),

guessing the user pattern of next cell, is out of scope of the 6 QoE-influencing

attributes. However, solutions proposed in these works, especially the ones

143

Part 5.2, Chapter 5 – Mobility Speed Profiles (MSP) Detection: How is the mobile user
when experiencing a service? Static or Moving?

using Machine Learning to detect mobility, are interesting in the context of our

work. Besides, considering information like pause probability or user arrival

or departure probabilities does not fit the assumption that we made in chapter

3: where the data features used for learning should be known to the network.

Thus, the signals respecting our constraints are 1) RSRP signal used by [93]

and [94] and 2) the cell ID as well as 3) the sojourn time used by [106].

5.2 Data features

5.2.1 Description

We apply the same workflow described in chapter 3 on the MSP detection.

Our requirement is to be able to detect MSP with a good accuracy and an F1-

score greater than 95%. Next comes the second step of data collection. Thus, in

our case for MSP study, the collected data comes from the same large crowd-

sourced campaign (described in chapter 3). The data used for MSP is same as

that used for IOD or UED (RSRP , CQI,MI, TA, Time), added to other features:

— ST : Sojourn Time in a cell.

— Extra Signals (feature engineered): signals derived from RSRP and TA.

— GPS: Global positioning system measurements serve to automatically

label the data used for Deep Learning training.

As a third step, we cleaned the data by replacing the null values by sig-

nificant values and by eliminating the outliers. On the other hand, we also

generate new features from TA and RSRP .

5.2.2 Data cleaning method for labeling

GPS measurements are collected at same time than the other data in order

to automatically label the data used for Deep Learning training. In the case of

144

5.2. Data features

MSP detection, they contribute to build the ground truth or the labels needed

for supervised learning.

Noisy labels: They determine the position of a user or device using the sig-

nals which are transmitted from up to 24 satellites. GPS works anywhere within

the reaches of satellites, and it is much more robust than other location tech-

nologies. GPS positioning eventually found its way into the lives of millions (if

not billions) of users with the development of Global Navigation Satellite Sys-

tem (GNSS) enabled car navigation devices and smartphones. The meter-level

accuracy provided by GNSS receivers in smartphones enabled a wide range of

location-based services including social networking, vehicle tracking, weather

services and also for the purpose of many other applications like allowing the

automatic detection of the critical aspects (mode of transport, purpose, etc.) of

people’s trips or like analyzing in real time the traffic networks, or the traffic

speed and the huge number of traffic participants, etc [110]. One application

field of GPS service and measurements that is of interest to us is: context

awareness. Actually, such measurements are often used in the context-aware

characterization since, they give a good information about the user location at

a time t.

To collect this data coming from GPS measurements, the Android operat-

ing system allows us to access raw GNSS (Global Navigation Satellite System)

measurements from smartphones or tablets through various APIs [111]. Mak-

ing this data available opens up a world of possibilities to developers for the

creation of new applications. However, in our case, we noticed that the collec-

tion via this API was very noisy and without continuous measurements. Some

examples are presented in figure 5.2 (Red line). In fact, one of the biggest chal-

lenges for smartphone manufacturers is to increase battery life. Since contin-

uous use of the smartphone’s GNSS receiver would quickly drain the battery,

the smartphone optimization process (developed by manufacturers), by brand,

145

Part 5.2, Chapter 5 – Mobility Speed Profiles (MSP) Detection: How is the mobile user
when experiencing a service? Static or Moving?

employs a process known as duty cycling that aims to turn off the GNSS sig-

nals [110], [111]. As a consequence, it causes problem with reference since in

phase of duty cycling GPS measurements done are at most of time false. Noise

in GPS measurements will give rise to the issue of noisy labels. Recall that from

Machine Learning point of view, label noise refers to examples that belong to

one class that are assigned to another class. For example, in the figure 5.2,

the case of a moving user at the left, is a pedestrian with a real speed not ex-

ceeding 3kmph, but what has been erroneously detected with the collected GPS

measurements is a speed between 15kmph and 30kmph. This problem of noisy

labels gets even worse, with dramatic effects, when facing imbalanced classes.

Given that, examples in the few populated classes are so few, losing some to

noise reduces the amount of information available about the minority class.

Additionally, having examples from the majority class incorrectly marked as

belonging to the minority class can cause a disjoint or fragmentation of the

minority class which was already sparse because of the lack of observations.

Hence the need is to correct these measurement errors as much as possible.

As we use real data, the GPS measurements are noisy, namely some data are

erroneous. For this reason, GPS data should be cleaned in order to ignore mea-

surements that we detect as erroneous.

Label computation: The user speed, for labeling, is calculated based on

these measurements and time values. In order to automatically label, a typi-

cal approach is to transform the series of measurements that record position

points (latitude and longitude) at regular time intervals in coordinates (x, y) in

km. To derive the average mobile user speed v, we use a succession of N coor-

dinates (x, y) derived from GPS information. Note that this is only done during

data labeling phase and GPS information is not assumed to be available dur-

ing classification phase. Imagine that the mobile user moves along a path P

from point A to point B (see figure 5.3). To link these two extreme points, the

146

5.2. Data features

Figure 5.2 – Examples of the collected GPS measurement. Red line depicts the
real collected data (very noisy). Blue line depicts the corrected trajectory using
our proposed Algorithm.

user goes through N − 2 intermediate points belonging to S = {ai}i≤N−1 at time

{t2}i≤N−1.

Let TCRmax be the elapsed time to go from A to B and L the total distance.

Let δti the elapsed time and li the distance between {ai−1, ai}. The point ai has

the following coordinates (x(ti), y(ti)). li =
√

(x(ti) − x(ti−1))2 + (y(ti) − y(ti−1))2 and

δti = ti − ti−1.

The average speed v̂, is approximated as:

v̂ =
1

N − 1
N

∑
i=1

li
δti

=
1

N − 1
N

∑
i=1
v̂i

with tN − t0 = TCRmax

A step of labeled data cleaning is primordial since it ensures the integrity of

147

Part 5.2, Chapter 5 – Mobility Speed Profiles (MSP) Detection: How is the mobile user
when experiencing a service? Static or Moving?

Figure 5.3 – Speed Computing between according to path P between two points
A and B during a sliding window TCRmax

the ground truth used for labeling. For this, let σ be the threshold that sets a

confidence interval. At ti, if li ∈ [L ± σ] then ai ∈ S otherwise ai ∉ S. The distance

li between 2 successive points should be bounded by L to be used for the aver-

age speed derivation. Otherwise the measurement at time ti is considered as

an outlier and is excluded. The computing of labels is detailed in Algo. 1.

Algorithm 1 LABEL COMPUTING
1: (x, y) ← transform(lat,long,TCRmax)
2: LAB ←

√

(xB − xA)
2
+ (yB − yA)

2

3: Initialize σ, Index← 0 And v ← 0
4: for i in [0, TCRmax − 1]) do
5: li ←

√

(xi+1 − xIndex)
2
+ (yi+1 − yIndex)

2

6: if li in [LAB ± σ] then
7: v ← v + li

ti+1−tIndex
And Index ← Index + 1

8: else
9: Consider Measure i as an outlier and skip it
10: end if
11: end for
12: VT CRmax ←Ð

v
Index+1

13: Label Coding according to vT CRmax

Once the speed is computed, the instance can be associated to the right

label. Now, the question is: what is the most appropriate value of TCRmax (width

of the sliding window) to compute the speed? Considering micro-cells, mostly

148

5.2. Data features

represented in urban environments, we assume typical cell radius distances

between 0.2km and 2km. For both values, curves of mobile user speed versus

cell crossing time is plotted in Fig. 5.4. They enable us to fix TCRmax at 10 kmph

where there is a clear separation between CDFs of MI. So, the duration TCRmax

for calculating the speed is empirically set to 300 seconds.

Figure 5.4 – Speed versus time for two cell radius

5.2.3 Data augmentation method for balancing the dataset

We observe in figure 5.6 of section that higher number of classes reduces

the number of instances of data in each class which leads to a problem of im-

balanced classes. Imbalanced classes can pose particularly a problem during

the training phase of any ML algorithm and not only for neural networks [66].

The challenge of working with imbalanced datasets is that most machine learn-

ing techniques will ignore, and in turn have poor performance on the minority

class. Although typically it is performance on the minority class that is most

important. One approach to address imbalanced datasets is to over-sample the

149

Part 5.3, Chapter 5 – Mobility Speed Profiles (MSP) Detection: How is the mobile user
when experiencing a service? Static or Moving?

minority class. The simplest approach involves duplicating examples in the mi-

nority class, although these examples don’t add any new information to the

model. Instead, new examples can be synthesized from the existing examples.

Creating or oversampling data in minority classes is called data augmentation.

Data augmentation is a technique to artificially create new training data from

existing training data. This is done by applying domain-specific techniques to

examples from the training data that create new and different training exam-

ples.

To resolve the imbalanced class issue, we focus on the Artificial Data Aug-

mentation (A-DA). A-DA learns the distribution of a stratified sample from our

dataset and then generates data with similar statistical properties. This type of

data augmentation is used for the minority class and is referred to as the Syn-

thetic Minority Oversampling Technique, or SMOTE for short. SMOTE works by

selecting examples that are close in the feature space, drawing a line between

the examples in the feature space and drawing a new sample at a point along

that line [112], [113].

5.3 Preliminary analysis: user activity vs speed

category

5.3.1 Speed category definition

A speed category is defined by a minimal and maximal speed value. Speed

categories are highly influenced by many factors including the environment

type as well as the time of day, which complicates the detection task. The

boundaries of categories are extracted from the following set denoted as B:

— B = {0,1,2,3,10,30,40,90,∞} (in kmph).

They were selected in order to reflect the complexity of a user’s daily life and

150

5.3. Preliminary analysis: user activity vs speed category

capture the variety of his movements in real world. They represent the typical

speeds given in [114], corresponding to various environments met by mobile

users (urban, rural, highways, road, pedestrian, bus, car and train).

The figure 5.5 shows the environment type distribution versus the speed

category. Note that the borders shown are chosen from B. We observe that some

boundaries are relatively much more visible between some speed categories

according to the type of environment. We notice such prominent boundaries at

10 kmph and 40 kmph.

Figure 5.5 – Environment type distribution vs speed category (real data)

The 10 kmph boundary makes the split between indoor and outdoor that

are two distinct environment types with different physical characteristics. The

points below this boundary represent more than 60% (up to 80%) of total points.

They belong to [0,1[kmph, [1,2[kmph, [2,3[kmph speed profiles measurement

points collected inside buildings. Whereas, the instances above 10 kmph have

been mostly collected outdoor: between 10 and 40 kmph in cities and above

40 kmph on highways. We also notice in figure 5.5 that there are some errors

151

Part 5.3, Chapter 5 – Mobility Speed Profiles (MSP) Detection: How is the mobile user
when experiencing a service? Static or Moving?

as this is real data. For example, we note some point of measurements where

the user is really indoor, but the speed is higher than 40 kmph which is logi-

cally impossible. This is addressed by data cleaning algorithms for the labeling

process.

5.3.2 Relation between user activity and speed profile

Figure 5.6 depicts the user activity by plotting the phone usage ratio for

different speed categories derived from the boundaries in B. Note that a user’s

activity is characterized by his phone usage. The ‘phone usage’ state is defined

as the state when the user uses his phone or equivalently the screen is on

as well as unlocked and there is data exchanged. User activity per category

is then measured as the ratio between the number of instances per category,

when the user has been using his phone effectively, and the total number of

activity instances. In fact, figure 5.6 illustrates the percentage of total time the

user is connected to 4G network and is exchanging data. We observe that most

of the user activity occurs when the user moves at a speed lower than 1 kmph

(75% of activity), which is mainly when the user is indoor or is walking as a

pedestrian.

Figure 5.6 highlights the user activity trends that we observed after statis-

tical analysis on mobile user behavior in literature.

During daytime, a user experiences different situations, such as walking

outdoor, in a car, at work, in a mall, in transport or at home. Actually, mo-

bile users’ preferences for certain applications or contents are linked with his

current usage situation [34]. In literature, some statistical studies show that

mobile phones are mostly used for internet service (80% of data calls) as well

as for calls (70% of voice calls) [35] when a user is inside a building. This can

be explained by the fact that different use contexts pose their own limitations

and, thus, impact the potential application usages. In [28], [36], the most com-

152

5.3. Preliminary analysis: user activity vs speed category

Figure 5.6 – User activity per mobility speed profile

monly mentioned physical environments, for application usage, are indoor, but

they also include vehicles, such as public transportation and private cars. The

home environment is mostly preferred by users. Moreover, as soon as the user

speed increases, the network quality deteriorates and consequently the user

may switch from 4G to 3G or even to 2G (rarely). Consequently, there exists

more data in the lowest speed category as compared to other categories, in

terms of phone usage. We also observed in Fig. 5.6 that the data instances are

distributed unequally between different categories. Thus, designing a speed

classification scheme can face the problem of unequal classes in terms of data

distribution.

5.3.3 User activity during daytime per speed category

We analyze the ranges of mobility at various time slots in a day: during

the working days, weekends and finally in different periods of day (Morning,

Afternoon, Evening, Night). Figure 5.7 shows the evolution of user activity by

plotting the phone usage ratio versus the hour of day for various speed cate-

gories. We notice again that most of the activity is done more at lowest speed,

but at certain time slots of the day. Actually, the lowest speed corresponds to

153

Part 5.3, Chapter 5 – Mobility Speed Profiles (MSP) Detection: How is the mobile user
when experiencing a service? Static or Moving?

Figure 5.7 – User activity vs. hour per mobility speed profile

the static or almost-static state of a user. This is the user’s preferred situa-

tion to request mobile services. We also observe a certain reproducibility of the

phone usage for all categories during a day. Effectively, during the night most

of people are static. They start to be active when moving during the day. The

activity is very high for the lowest speeds between 8a.m. and 11p.m and is punc-

tually high at certain time slots that corresponds particularly to the transport

instant between work and home or other locations.

To sum up, so far, preliminary analysis, of the user activity vs. the MSP

over time, and across different environment, have pointed out three points to

be investigated in order to make the MSP detection more accurate. These points

are as follow:

— Border Investigation: 40 kmph and 90 kmph are not necessarily the best

borders of the user speed profiles. We have noted for example, the impor-

tance of the 10 kmph as border since it’s kind of a separation between

the two environments: indoor and outdoor.

— Noise in labels: Label noise refers to examples that belong to one class,

but are erroneously assigned to another class, which are many in our

case. Two types of noise are distinguished in the literature: feature (or

attribute) and class noise. Class noise is generally assumed to be more

harmful than attribute noise in ML [67]. Actually, it makes determining

154

5.4. Classification schemes

the class boundary in feature space problematic for most machine learn-

ing algorithms, and this difficulty typically increases in proportion to the

percentage of noise in the labels.

— Imbalanced dataset: Until today, this imbalanced nature of classes still

remains a challenge for ML algorithms. In general, the more the imbal-

ance is important the more the classification result will be dramatic. For

the UED detection task, we have also noted the imbalanced dataset issue.

However, it is much more present in the MSP. In our case, our dataset

has very skewed class distribution with 80% of instances in one class and

the remaining 20% distributed, roughly equally, in the other 7 classes. As

a matter of fact, this is not related to the data collection constraints, but

it is rather, inherently, due to the nature of real human activities. As a

consequence, in order to ensure an efficient scheme of classification for

real user activity, we have to find a trade-off to limit this inherent data

bias for different classes.

In the rest of this chapter, we will investigate these points and evaluate MSP

performance in order to reach our objective of MSP detection with an F1-score

of around 95%.

5.4 Classification schemes

The objective of this section is to define the relevant classification schemes

by smartly regrouping various speed categories chosen from the set B. In order

to ensure an efficient scheme of classification for real user activity, we have to

find a trade-off to limit this inherent data bias for different classes. We aim

to design a classification scheme that detects detailed speed profiles of mobile

users, with a fine granularity and a low decision error margin.

155

Part 5.4, Chapter 5 – Mobility Speed Profiles (MSP) Detection: How is the mobile user
when experiencing a service? Static or Moving?

What are the best speed profile borders for the MSP detection task?

Problematic 6

We propose to fix the speed profile borders that impact the user activity

most while ensuring a trade-off between the number of classes and the

imbalance issue.

Contribution 6

We then consider different possibilities, ranging from a simple 3-state clas-

sification problem to a more detailed classification of a user’s speed. For that,

we decide to regroup the speed categories based on the similarity between the

cumulative distribution curves of the collected data {RSRP , MI}. These 2 fea-

tures were identified to be contributing the most after we ranked them using

Principal Component Analysis method. Thus, we based our analysis mainly on

these features.

Figure 5.8 – Empirical CDF for measured RSRP per speed category

The created merged groups shall also include data with similar statistical

156

5.4. Classification schemes

properties in order to optimize the classification results. Figures 5.8 and 5.9

depict the cumulative distribution curves vs. RSRP and MI, respectively. We

observed from these curves that 4 groups of similar curves can be extracted:

a set with only [0,1[kmph, a set regrouping {[1,2[and [2,3[} kmph, a set alone

with [3,10[kmph, and another assembling {[10,30[, [30,40[, [40,90[and [90,∞[}

kmph. This results into a clear split in 2 groups: one associated to users mov-

ing very slowly (walking or static) and the others moving at high speed. This

separation is more noticeable in the CDF of MI.

Figure 5.9 – Empirical CDF for measured MI per speed category

Based on these observations, we propose to investigate ten schemes of 3,

4, 5 and 8 classes (3C, 4C, 5C and 8C). A class corresponds to a set of speed

categories. Thus a class is defined by minimal and maximal boundaries of the

associated speed categories. Let a multi-class scheme i be composed by a set

of classes denoted as Ci = {Ci
1,C

i
2, ...C

i
n...}n≤Ni

with Ni the number of classes.

Let Bi the set of boundaries coming from the speed categories selected. If,

Bi = {Bi
1,B

i
2, ...B

i
j...}j≤Ni+1

157

Part 5.5, Chapter 5 – Mobility Speed Profiles (MSP) Detection: How is the mobile user
when experiencing a service? Static or Moving?

with Bj the speed value in kmph. Then, the class n of the scheme i is written

as:

Ci
n = [Bi

n,B
i
n+1[∀ n ≤ Ni

with Cn corresponding to speed values in the interval [Bn,Bn+1[.

A plurality of speed categories, containing different combinations, are then

investigated to better model the diversity of speed situations, thus defined by

the optimal boundaries of the categories:

Scheme Boundaries
kmph Speed range kmph

3C {0,10,90} [0,10[, [10,90[, [90,∞[

{0,40,90} [0,40[, [40,90[, [90,∞[

{0,3,90} [0,10[, [10,90[, [90,∞[

{0,3,30} [0,3[, [3,30[, [30,∞[

4C {0,1,10,90} [0,1[, [1,10[, [10,90[, [90,∞[

{0,1,3,30} [0,1[, [1,3[, [3,30[, [30,∞[

{0,1,3,90} [0,1[, [1,3[, [3,90[, [90,∞[

5C {0,1,3,10,90} [0,1[, [1,3[, [3,10[, [10,90[, [90,∞[

{0,1,10,40,90} [0,1[, [1,10[, [10,40[, [40,90[, [90,∞[

8C {0,1,2,3,10 [0,1[, [1,2[, [2,3[, [3,10[
30,40,90} [10,30[, [30,40[, [40,90[, [90,∞[

Table 5.1 – Mobility Speed Profiling - MSP classification schemes

5.5 Supervised Deep Learning-based classification

performances

5.5.1 Architecture and configuration

For our supervised multi-output classification problem, we propose to in-

vestigate DL-based model for MSP. The FNN model is built with around 300k

158

5.5. Supervised Deep Learning-based classification performances

instances of LTE data collected only in France. Note that our data size increased

over time. It has been trained using 70% and tested on the remaining 30%.

The system architecture is shown in figure 5.10. It is a Feed Forward Neu-

ronal Network (FNN) composed of 3 main parts:

— Input: A first input layer is fed with 10-features described in section 5.2

that are 4G collected data.

— Core: Containing 5 hidden layers as well as a dropout layer to regularize

and minimize the over-fitting.

— Output: An output layer with either 3, 4, 5 or 8 classes (Depending on

the classification scheme).

Figure 5.10 – Mobility Speed Profiling (MSP) system architecture - Note that
there are several hidden layers and not just two as it may initially appear.

The MSP is implemented with both Scikitlearn and Keras, using Tensorflow

as the back-end engine, for the computation and development of the DLmodels.

Recall that, a crucial step of any neural networks implementation is to opti-

mize the hyperparameters set for the model, i.e., the number of hidden layers,

batch size, epoch size, the weights, the activation function, the loss function,

the learning rate etc. The challenge with these hyperparameters is that there

159

Part 5.5, Chapter 5 – Mobility Speed Profiles (MSP) Detection: How is the mobile user
when experiencing a service? Static or Moving?

Optim. layers Dropout Valid. Epoch Batch Act.

Nadam 5 0,1 30% 200 80 tanh

Table 5.2 – MSP hyperparameter: The optimizer, the number of hidden layers,
the dropout ratio, the number of epoch and the batch size.

is no magic combination that always works. The best combination of hyper-

parameters depends on each task and also on each data set. Recently, a new

approach using Bayesian optimization for tuning hyperparameters has been

considered (see chapter 3). As compared to other approaches, the Bayesian

method has the property to rapidly reach the optimal set of hyperparameters.

For this study, the hyperparameters of the DL solution have been tuned us-

ing the Bayesian optimization (see Appendix A for hyperparameter methods

comparison).

As proved experimentally in appendix B, tuning the hyperparameters for

one scheme and use the set of the resulting hyperparameters for the other

schemes (instead of running an optimization per scheme) allows to save com-

putational time. The performance losses between these 2 scenarios are min-

imal (around 0.2% of decrease in F1-score) compared to the gain in terms of

calculation time. Thus, in this chapter we will optimize the hyperparameters

for one classification scheme. And the resulting hyperparameters set will be

used for other classification schemes. The hyperparameter set that has been

used is described in the table 5.2. The hyperparameter optimization was con-

ducted on the classification scheme {0,10,90}. We set out success-criteria to

95% of F1-score.

5.5.2 Results

Table 5.3 presents the performance results of the multi-output classifica-

tion schemes given in 5.1 and with hyperparameters given table 5.2.

160

5.5. Supervised Deep Learning-based classification performances

As a first step, we created the mobility tags from GPS coordinates to create

3 labels: low, medium and high like in [94] and [93]. The low label corresponds

to a speed range between [0,40[kmph, the medium and the high labels cor-

respond respectively to the speed ranges [40,90[kmph and [90,∞[kmph. No

data label cleaning has been applied. For training, we used the same data vol-

ume as used in chapter 4, in section 4.2, which is equal to 72k measurement

points. Alternating between step 4 of learning and step 5 of optimization (see

ML workflow in chapter 3), the best model has delivered an F1-score of 78.30%

[43]. Such a score, is far away from our success criteria fixed to 95% of F1-score

hence the need for a retro-back action which brings us back to step 3 with the

following questions:

— Are the borders 40 kmph and 90 kmph limiting the 3 profiles low, medium

and high the right ones?

— Should we only consider 3 speed profiles?

— What borders best reflect the user activity?

— Is the labeling step by transforming the GPS coordinates into a speed

profile been done properly?

As a matter of fact, a better MSP detection can be achieved when analysing

the user’s activity according to the speed profile and the user environment over

time. Clearly, analysing our data gives us a clear picture of a user’s activity in

different profiles of speed. Thus, we can fix the suitable mobility speed pro-

files’ borders in order to optimize the detection and reach our success criteria.

Furthermore the performance can be improved when label data is cleaned.

Simulations are done for all the MSP classification schemes. The results

shown in Table 5.3 presents the accuracy and F1-score metrics for MSP. First,

in order to quantify the added value of correcting labels, we compare the results

of MSP based 3 profiles obtained with no label cleaning, to the same classifi-

161

Part 5.5, Chapter 5 – Mobility Speed Profiles (MSP) Detection: How is the mobile user
when experiencing a service? Static or Moving?

3 Classes
[0,10,90] [0,40,90] [0,3,90] [0,3,30]

Acc. F1-S. Acc. F1-S. Acc. F1-S. Acc. F1-S.

FNN 98.367% 94.256% 98.222% 93.861% 97.226% 93.570% 96.956% 93.038%
FNN
+

A-DA 98.096% 96.012%

4 Classes
[0,1,10,90] [0,1,3,30] [0,1,3,90]

Acc. F1-S. Acc. F1-S. Acc. F1-S.

FNN 95.365% 91.167% 95.004% 89.917% 95.517% 90.447%

FNN
+

A-DA 95.968% 93.559%

5 Classes 8 Classes
[0,1,2,10,90] [0,1,10,40,90] [0,1,2,3,10,30,40,90]

Acc. F1-S. Acc. F1-S. Acc. F1-S.

FNN 94.484% 87.285% 94.913% 89.066% 93.321% 81.108%
FNN
+

A-DA 94.283% 92.092% 93.933% 85.484%

Table 5.3 – Deep Learning-based supervised multi-output classification perfor-
mance using a Feed Forward Neuronal Network (FNN) with and without Artifi-
cial Data Augmentation (A-DA): F1-score vs. classification schemes

cation scheme after label cleaning. We compare both schemes of {0,40,90} with

and without correcting labels on the scheme. Results show a gain of around

15% (from 78.3% to 93.8% of F1-score), while using the label correction algorithm

1. Indeed, the better the learning data is (the same for input and labels), the

better the performance is.

We observe that we have an overall good performance. All the considered

classification schemes show an accuracy higher than 93% and an average F1-

score of 90%. However, as we expected, we also observe that the higher the

number of classes is, the lower the performance is. This can be explained as

162

5.5. Supervised Deep Learning-based classification performances

follows: increasing the number of classes reduces the number of instances

of data in each class which worsens the problem of imbalanced classes. The

effect of imbalanced classes increases if the boundaries between classes are

very similar, which is the case for us.

To resolve the imbalanced class issue for the MSP task, we employed the

Artificial Data Augmentation (A-DA) technique, which is referred to as the Syn-

thetic Minority Oversampling Technique, or SMOTE for short. SMOTE works by

selecting examples that are near in the feature space. It draws a line between

the examples in the feature space and creates a new sample at a point along

that line. To be more specific, first a random example from the minority class

is chosen. Then k of the nearest neighbors for that example are found (typically

k = 5). A randomly selected neighbor is then chosen and a synthetic example is

created at a randomly selected point between the two examples in feature space

[112]. For our use of A-DA, we limited the generation of the artificial data to

65k in order to stay close to the original data and to avoid additional noise.

The impact of artificial data augmentation (A-DA) on the best 3 classification

schemes, with FNN (cases in bold), shows an improvement of around 3.0% in

terms of F1-score. This is explained by the fact that FNN is greedy: more data

results in better performance, as argued in [31] and [32].

We observe that certain boundaries are common in schemes with higher

MSP performance. The best schemes per class (in bold) are those which fix

the boundaries to 1, 10, 40 and 90kmph. Indeed, the 10kmph boundary splits

the points between indoor and outdoor. Therefore, the classes on both sides of

the 10kmph boundary are well detected because they are differentiated by the

environment of the location where the data was collected. Furthermore, [10,30[,

[30,90[and [90,∞[present various high speed profile environments (cities and

highways, in urban as well sub-urban environments). Moreover, introducing

a 1kmph boundary brings enhancement. Indeed, instances in the [0,1[class

163

Part 5.6, Chapter 5 – Mobility Speed Profiles (MSP) Detection: How is the mobile user
when experiencing a service? Static or Moving?

are very well detected since this class is the most populated class. But, the

smallest classes [1,2[, [2,3[, [3,10[are detected with lesser accuracy since they

mostly present similar physical properties and are confused with [0,1[. Thus,

we show using real data that a granular learning of the user mobility speed

profiles can be achieved with good performance.

5.6 Conclusion

In this chapter, we have investigated the mobility speed profiling (MSP) of

the user while consuming a service. We have proposed an intelligent system

for MSP detection linked with user activity preference. We used a FNN network

to learn the user mobility profile when a given user is active and using his

phone. Based on crowd-sourced user-specific data, we achieved above 94.5% of

detection in terms of F1-score in existing deployed 4G Heterogeneous Networks

(HetNets). We mean by HetNet the diverse and multiple types of cells: macro-

cells, picocells, femtocells, etc. We worked with real data using GPS coordinates

as labels. They must be cleaned because of inherent noise. This noise can im-

pact the overall performance of any ML algorithm. We observed that the speed

profiling is influenced by the user environment. This is because signals used

for MSP are impacted by the environment of the data collection location. Thus,

for learning more details, it is necessary to pay attention to the environment

type in order to fix the boundaries for the MSP task. Furthermore, we noted

that the level of imbalance in data influences the F1-score. We found that one

way to overcome this issue is to collect more data or slightly re-balance the

data artificially.

164

Chapter 6

Multi-Task Learning for Joint

Detection of User Environment &

Mobility

So far in this thesis, we have investigated both the environment and the

mobility speed range of mobile users while they are consuming services. Ac-

tually, both user’s environment and mobility situation are important factors

since they have a big influence on QoE. For example, a user who is indoor

would experience a very different service quality as compared to users who are

outdoor, all else being equal. The environment and themobility make the condi-

tions in which a mobile user consumes the requested services/applications. In

practice, in order to estimate the environment or mobility, we have to answer

the following questions: how and where a mobile user consumes the mobile

services? Also, these questions have to be answered at the same time (simul-

taneously) to detect and then predict the user behavior. Thus, we investigate a

joint detection scheme by association of both user environment detection (bi-

nary/ multi-environment detection) and the mobility speed profiling detection

(MSP).

One way to detect these two attributes simultaneously is to use the transfer

learning approach and more precisely the Multi-Task learning (MTL) which is

a subcategory of transfer learning. Using MTL allows to solve multiple learning

165

Part 6.1, Chapter 6 – Multi-Task Learning for Joint Detection of User Environment &
Mobility

tasks at the same time, while exploiting commonalities and differences across

tasks. Such approach, is the best solution for our problem because it allows

to answer multiple questions simultaneously. Besides, learning multiple tasks

jointly improves the generalization on other tasks and brings a mutual benefit

[115].

In this chapter, we investigate a Multi-Task Deep Learning solution to jointly

detect a user’s environment andmobility profile. The empirical evaluation based

on real-time and highly representative radio data shows the effectiveness of our

approach. This data includes ground truth information and the whole dataset

has been massively gathered from many diverse mobility situations and many

environment types. The results also prove that the simultaneous detection of

the environment as well as the mobility state estimation can be achieved with

high accuracy.

This chapter is organized as follow: Sec. 6.1 presents the basics of Multi-

Task learning approach: beginning from the definition, to the motivation and

coming to the Multi-Task existing types. In Sec. 6.2, we present our adopted

architecture to jointly solve the user environment and the user mobility range

while consuming a service. Sec. 6.3 enumerates the inputs used for the MTL.

In Sec. 6.4, we present and discuss the performance of the MTL approach to

jointly detect the two users attributes. Finally, conclusion is presented in Sec.

6.5.

6.1 What’s Multi-Task Learning?

6.1.1 Definition

Generally, people have an inherent ability to transfer knowledge across tasks.

What they learn or acquire for solving one task, they use it in the same way

to solve one or many other tasks that are relatively linked directly or indirectly

166

6.1. What’s Multi-Task Learning?

with the first acquired one. The more related the tasks, the easier it is for us

to transfer, or cross-utilize our knowledge. For example, we use the algorith-

mic and the theoretic knowledge, which serves as a base acquired at school.

It server us further to learn different programming languages. As humans, we

often use the same basics that provide us with the necessary skills to learn

several tasks and master more complex techniques. In other words, we don’t

learn everything from scratch when we attempt to learn new aspects or topics.

We transfer and leverage our knowledge from what we have learnt in the past.

Figure 6.1 – Different Learning Processes between Traditional Machine Learn-
ing and Transfer Learning according to [116]

Conventional machine learning and Deep Learning algorithms, so far, have

been traditionally designed to work in isolation. These algorithms are trained

to solve specific tasks. The models have to be rebuilt from scratch once the

feature-space distribution changes. Inspired from the human nature and abil-

ities, Transfer Learning (TL) is an idea of overcoming isolated learning systems

and use knowledge acquired for one task to solve the other related ones [116].

In fact, TL paradigm has aroused the curiosity of scientists for a while: its first

appearance was in 1995 in the Neural Information Processing Systems (NIPS)

workshop [117]. With DL emergence, TL again became an active research issue

167

Part 6.1, Chapter 6 – Multi-Task Learning for Joint Detection of User Environment &
Mobility

around the 2010s. It has been considered in literature as a means of transfer-

ring knowledge from a source domain to a target domain (see figure 6.1. Unlike

traditional machine learning and semi-supervised algorithms, transfer learn-

ing considers that the domains of the training data and the test data may be

different [118].

Given a source domain DS and learning task TS, a target domain DT and

learning task TT , transfer learning aims to help improve the learning of

the target predictive function fT () in DT using the knowledge in DS and

TS, where DS ≠DT , or TS ≠ TT .

Where:

- A domain D consists of two components: a feature space X and a

marginal probability distribution P (X), where X = {x1, ..., xn} ∈X.

- Given a specific domain, D = {X,P (X)}, a task consists of two com-

ponents: a label space Y and an objective predictive function f() (denoted

by T = {Y, f()}), which is not observed but can be learned from the training

data, which consist of pairs {xi, yi}, where xi ∈ X and yi ∈ Y . The function

f() can be used to predict the corresponding label, f(x), of a new instance

x. From a probabilistic viewpoint, f(x) can be written as P (y∣x).

Definition 2: Transfer Learning

According to the above definition, transfer learning techniques can be di-

vided into many categories (for further information see references [116] and

[118]). Let’s assume in our case that the source domain is the environment

study and the target domain is the mobility study. We consider the environment

as the source domain since the environment labels are more accurate than the

mobility labels. Thus, in our case, DS = DT and TS ≠ TT (YS ≠ YT) and both YS

and YT are available which leads us to the Multi-Task (MLT) subcategory of TL.

168

6.1. What’s Multi-Task Learning?

In other words, MLT learning aims to transfer knowledge between two tasks

while learning both of the source and target tasks jointly and efficiently.

6.1.2 Why Multi-Task works?

Learning tasks jointly is very beneficial to get a final model that will be

capable of exploiting the relatedness of the tasks to improve its generalisation

accuracy. This is can be explained by:

1. Statistical data augmentation/ Implicit data augmentation [119]: In gen-

eral, the used data for any task is always noisy (the noise level differs

from one dataset to another and from one task to another). While ap-

plying a machine learning approach on a given dataset, we are opting

to learn the best ML model that learns a good representation per task

ignoring the data-dependent noise and generalizing well. We mean by

generalizing well that the learnt ML Model has a good abilities to adapt

properly facing new data that was not seen before (during the training).

Knowing that the noise pattern is different from one task to another, so

learning multiple tasks simultaneously helps to increase the ML model

generalization capacity. Indeed, the joint learning average the noise be-

tween the different learnt tasks. Thus, in return, reduces the over-fitting

risk.

2. Attention focusing [119]: For ML approaches, generalization from a high

dimensional feature space and low dimensional dataset is very hard since

the data volume is not enough to properly learn how to map the output

space to the input space. Usually, facing this issue, some dimensionality

reduction approaches are studied to compact or reduce the feature space

losing by that some information that can help increasing the ML perfor-

mance. However, learning Multi-Task jointly can be beneficial to this is-

sue. Actually, the knowledge brought from other tasks can help themodel

169

Part 6.1, Chapter 6 – Multi-Task Learning for Joint Detection of User Environment &
Mobility

to differentiate between relevant and irrelevant features. Thus, MTL can

help the model to focus its attention on those features that actually mat-

ter as other tasks will provide additional evidence for the relevance or

irrelevance of those features.

3. Eavesdropping [120]: Let us assume that there is one feature from the

features set that is useful for two tasks. This feature is learnt easily from

the first task, but the second task uses it in a more complex fashion. In

that case, the second task will eavesdrop on the internal representation

from the first task to learn that feature better.

4. Feature selection double check [115]: The principle is somewhat similar

to that described in "Attention focusing". In the case of "attention focus-

ing" MTL will focus its attention on relevant features to use and for "the

feature selection double check" the MTL will help in feature selection.

Actually, With a small amount of data and/or significant noise, MTL will

be able to better select the relevant feature (inputs) by selecting those

that are most significant for all the tasks. That is to say, if one feature is

important for more than just one task, then most probably this feature

is indeed very important and representative of the data.

5. Representation bias[121]: This is also to help the model generalizes bet-

ter. Indeed, training MTL for many tasks simultaneously means that we

are optimizing 2 loss functions at the same time. That’s to say, if the

two losses function optimization converge to the same minima, the MTL

model will also converge to same minima which might help in reaching

better paths.

6. Regularization [115]: With either Statistical data augmentation, Repre-

sentation bias we are better generalizing the model. Thus we are minimiz-

ing the over-fitting risk. We can then consider the MTL as a regulariser

since it introducing an inductive bias.

170

6.1. What’s Multi-Task Learning?

6.1.3 Types of Multi-Task Learning

There are two classical ways to performMulti-Task learning with deep neural

networks: 1) Hard-parameter sharing and 2) Soft-parameter sharing. The main

difference between both of them consists in the way the weights are shared

inside the neural network architecture [119].

— Hard-parameter Sharing: It is the most commonly used for MTL. It con-

sists in sharing some of the first hidden layers between tasks while keep-

ing several last layers exclusive for different tasks (see figure 6.2).

Figure 6.2 – Hard-parameter sharing for Multi-Task learning in deep neuronal
Network.

— Soft-parameter Sharing: In soft-parameter Sharing, each task has his

own model with its own parameters and setting. This means that there

is no physical layer that is shared between the different tasks, but rather

171

Part 6.1, Chapter 6 – Multi-Task Learning for Joint Detection of User Environment &
Mobility

it is an intermediate set of parameters/ or units that is shared. In this

case, sharing parameters/ units acts as a weight regulariser [119]. For

the sake of explanation, let’s assume that we have an MTL problem with

two tasks A and B on the same input. A and B are two DL networks

that have been trained separately for these tasks. Thus, soft-parameter

sharing proposes new units which combine these two networks into a

Multi-Task network. This is done in a way such that the tasks supervise

how much sharing is needed, as illustrated in Figure 6.3.

Figure 6.3 – Soft-parameter sharing for Multi-Task learning in deep neuronal
Network.

With the success of DL in these last years, many recent works have studied

the use of Multi-Task learning with Deep Learning. They proposed many new

architectures based on neural networks. Their proposed architectures mainly

aim to answer the key questions: What to share and how to learn what has to be

shared across tasks? [122] [84]. Although there have been many new proposed

architectures to answer what to share and how to share, they all remain based

172

6.1. What’s Multi-Task Learning?

on classical ones: they all employ the two approaches, we introduced earlier,

hard and soft parameter sharing [123].

For soft-parameter sharing, [124] proposed a new architecture called Cross-

stitch networks. For their architecture, authors proposed to share features

among tasks, by using a linear combination of the activation’s found in multi-

ple single task networks. Their model starts with two separate models then a

cross-stitch unit is used in order to help the model determine the way, the task-

specific networks leverage the knowledge of the other task, by learning a linear

combination of the output of the previous layers. Based on works proposed in

[124], [125] extended the cross-stitch model and proposed a new architecture

called Sluice networks. In [125] and [126], authors propose an architecture

that learns what layers and sub-spaces should be shared, as well as at what

layers the network has learned the best representations of the input sequences.

The hard-parameter sharing architecture is still the most used and it is the

popular one with DL. Hard parameter sharing has been successful in image

classification [127], object detection [128],[129], semantic segmentation [130],

and facial analysis [128]. Thus, classical architecture that goes back to [115]

has been adopted and applied in several fields. It has shown very good perfor-

mance. Both [131] and [132] present an efficient, real-time, implementation of

MTL with hard-parameter sharing architecture that solves three autonomous

driving related tasks at once. Their approach builds a branched architecture

with a shared encoder, but different decoder branches for each of the three

tasks. Like [131] and [132], [133] and [134] have used a MTL architecture with

a shared encoder, followed by task-specific decoder networks. Additionally, they

both proposed some optimizations to better learn the model. [135] proposes a

new architecture called Multi-linear Relationship Network (MRN) for Multi-Task

learning, which discovers the task relationships based onmultiple task-specific

layers of deep convolutional neural networks. That is to say they extend the

173

Part 6.2, Chapter 6 – Multi-Task Learning for Joint Detection of User Environment &
Mobility

classic architecture by placing tensor normal priors on the parameter set of

the fully connected layers. In [136], authors propose a dynamic task prioriti-

zation for the MTL architecture. They propose to dynamically adjust task-level

loss coefficients to continually prioritize difficult tasks. [123] propose a novel

approach to decide on the degree of layer sharing between tasks in order to

eliminate the need for manual exploration.

6.2 Proposed Multi-Task Learning Architecture

Using MTL to share knowledge among tasks is very useful. However, MTL

assumes that the tasks are very similar. If this assumption is not verified then

MTL can cause negative transfer and hurt the overall performances. Task re-

latedness is an open and active research issue [137], [138] [139]. In spite of

these early theoretical advances in understanding task relatedness, there isn’t

much recent progress towards this goal [119], [118]. We still do not have a

good notion of when two tasks should be considered similar or related. The

classic definition presented in [115] defines two tasks to be similar if they use

the same features set or some common features set to make a decision. Based

on this definition as well as our prior knowledge, we find that both the tasks

of detecting user environment and the user speed range, while consuming a

service, are two correlated tasks (as explained in chapter 1), we consider that

the assumption of the similarity between our 2 tasks is guaranteed (It will also

be proven experimentally).

In general, MTL networks using soft-parameter sharing are limited in terms

of scalability, as the size of the network tends to grow linearly with the number

of tasks (for N tasks we will have N different Neural Networks). Besides, since

we are also constrained by the fact of delivering an answer to the 2 tasks at the

same time to limit the synchronization time in the networks (When answers

174

6.2. Proposed Multi-Task Learning Architecture

are delivered in offset) so we opt for a hard-parameter sharing architecture.

Figure 6.4 – Multi-Task Deep Learning architecture for joint detection of both
the user environment and the user speed range simultaneously

Our MTL architecture is based on Deep Learning algorithm (see figure 6.4).

The DL choice is explained by the fact that we are dealing with a lot of data.

Once deployed this model should deal with thousands or millions of users at

the same time. Furthermore, DL is also appropriate for problems where mod-

eling relationships between large number of features are not tractable. This

is the case of user behavior detection and more precisely giving a joint and si-

multaneous answers to both of the user environment and the user speed range

while consuming a service. Indeed the model has to extract the complexity and

variety of different situations met by mobile users.

175

Part 6.4, Chapter 6 – Multi-Task Learning for Joint Detection of User Environment &
Mobility

6.3 Data features

Based on the definition of [115], which considers two tasks to be similar if

they use the same features to make a decision, we note that we use the same

features (or inputs) for both the tasks (user environment and user mobility

speed range detection). Thus, our feature set is a vector composed of the whole

dataset:

— Time: Recording time of signal or burst data arrival (ms).

— RSRP: Average received power of the Reference Signal (RS). The RSRP

value lies between -140 dBm to -44 dBm.

— CQI: Channel Quality Indicator that is used to indicate the most appro-

priate transmission modulation and coding scheme to be used.

— TA: Timing Advance is used to control UL signal transmission timing

— MI: The number of the Cell ID changes (NCID) in a sliding window of a

given duration (TCRmax).

— ST: Sojourn time in a cell.

— Extra Signals (feature engineered): signals derived from RSRP and TA.

— Environment Labels: for 8 environments: Home, Work, Mall, Pedestrian,

Car, Train, Bus.

— Mobility Labels: for 8 speed categories.

— GPS measurements: they serve to automatically label the data used for

Deep Learning training.

This collected data comes from the same large crowd-sourced campaign

(described in both chapters 1 and 3).

176

6.4. Performances: results and discussion

6.4 Performances: results and discussion

Architecture and configuration

The dataset volume used to empirically test the MTL performance is set to

77k. This data volume presents SUED−−labeled ∩ S∗MSP−−labeled where S∗MSP−−labeled is

extracted from the SMSP−−labeled from chapter 5 after data cleaning. In this case

the data cleaning consists on dropping instances where the error probability

is high. To quantify the error probability of one measurement we use a new

metric "GPS-on" to check at first if the measurement was reported with the

GPS turned on. Thus the training is done using a part of the labeled data of

our dataset. For training, we used (70%) of the labeled data and we used the

(30%) remaining for the model performance evaluation.

Hyperparameter optimization was conducted via the Bayesian approach.

The set of these hyperparameters is summarized in the table 6.1. We have

optimized the model with the best model of UED and MSP in single task. That is

to say that for the user environment detection task, we fix our output according

to the scheme “4CI_1” (4 Classes [Home, Buildings, Pedestrian, Transport]) (see

chapter 4). For the mobility speed profiling task, we fix our output according

to the classification scheme [0,10[, [10,90[, [90,∞[(see chapter 5).

Optim. layers Drop. Valid. Epoch Batch Act.
Adamax 4 shared 0,2 30% 100 100 tanh

Table 6.1 – MTL hyperparameter: The optimizer, the number of hidden layers,
the dropout ratio, the number of epoch and the batch size.

As proved experimentally in appendix B, tuning the hyperparameters for

one scheme and using the set of the resulting hyperparameters for the other

schemes (instead of running an optimization per scheme) allows to save compu-

tational time. The performance losses between these 2 scenarios are minimal

(around 0.2% of decrease in F1-score) compared to the gain in terms of calcu-

177

Part 6.4, Chapter 6 – Multi-Task Learning for Joint Detection of User Environment &
Mobility

lation time. Thus, in this chapter we will optimize the hyperparameters for one

classification scheme. Then, the obtained hyperparameter set will be used to

test other schemes.

Results

Tables 6.2 and 6.3 present performance results obtained respectively for the

two classification schemes and for the four classification schemes, performed

using a single task (Sgt) and a Multi-Task learning (MTL) architecture.

We run experiments on best models for the user environment presented in

chapter 4 and user mobility speed range presented in chapter 5.

IOD SgT MSP Sgt IOD MTL MSP MTL
Acc. F1-S. Acc. F1-S. Acc. F1-s. Acc. F1-s.

95.80% 95.76% 98.36% 94.25% 99.12% 99.03% 97.85% 95.25%

Table 6.2 – Indoor Outdoor detection and mobility speed detection (3 Classes
{0,10,90}) classification schemes when performed as a single task (Sgt) or using
a Multi-Task learning (MTL) architecture.

UED SgT MSP Sgt UED MTL MSP MTL
Acc. F1-S. Acc. F1-S. Acc. F1-s. Acc. F1-s.

94.31% 94.28% 98.36% 94.25% 99.22% 98.23% 98.17% 96.17%

Table 6.3 – User Environment detection (4 Classes [Home, Buildings, Pedes-
trian, Transport]) and mobility speed detection (3 Classes {0,10,90}) classifi-
cation schemes when performed as a single task (Sgt) or using a Multi-Task
learning (MTL) architecture.

As we can see in Table 6.2 and 6.3, UED and MSP detection performance

increases with the Multi-Task architecture. We observe also that the perfor-

mance gain for UED and MSP tasks, respectively, is approximately 3.5% and

1% of F1-score in case of UED with 2 classes. And the gain increases with

approximately 4% and 2% of F1-score in case of UED with 4 classes.

178

6.4. Performances: results and discussion

The joint learning in a hard-parameter architecture turns out beneficial for

both tasks. This is because with such structure they have shared data inputs

which brought meaningful additional information to each others. For example,

a user can’t be indoor with medium or high speed. This performance increase

from SgT to MTL also proves experimentally that the 2 tasks that we are trying

to solve are similar and correlated. Thus, we have experimentally proven tasks’

relatedness (we are referring to UED and MSP tasks).

WithMTL, we have reached our success criteria set to 95% of F1-score and we

also managed to simultaneously detect two user attributes: the environment as

well as the mobility. Comparing these results with our reference case with UED

as a binary classification (IOD: Indoor Outdoor Detection) and the same MSP

scheme ({0,10,90}), we notice that more granularity in the environment classes

information has helped MSP. With MTL based 4 UED classes, MSP detection

has improved with 1%. With such promising results, we therefore investigate

the performance with more granularity. For MSP SgT, classification schemes

that showed best results are (see chapter 5):

— 3C: {0,10,90} kmph Ð→ [0,10[, [10,90[, [90,∞[

— 4C: {0,1,10,90} kmph Ð→ [0,1[, [1,10[, [10,90[, [90,∞[

— 5C: {0,1,10,40,90} kmph Ð→ [0,1[, [1,10[, [10,40[, [40,90[, [90,∞[

— 8C: {0,1,2,3,10,30,40,90} kmphÐ→ [0,1[, [1,2[, [2,3[, [3,10[, [10,30[, [30,40[,

[40,90[, [90,∞[

As for the UED SgT, classification schemes that showed best results are (see

chapter 4) 2C, 4CI0 and 4CI1. Since we are looking for more granularity, we have

decided to study up to 8 classes. Thus, UED classification scheme that we are

considering in this chapter are as follows:

— 4CI1: two 4 classes schemes have been tested in 4: 4CI0, 4CI1. Since 4CI1

was better than 4CI0, we keep it as the UED classification scheme for 4

classes.

179

Part 6.4, Chapter 6 – Multi-Task Learning for Joint Detection of User Environment &
Mobility

— 5C1: [“Home”, “Building”, “Mall”, “Pedestrian”, “Transport”]: in “buildings”

namely contains “Work” and various “Buildings" and “Transport” include

“Bus”, “Train” and “Car”.

— 8C: [“Home”, “Work”, “Building”, “Mall”, “Pedestrian”, “Bus”, “Train”, “Car”].

Scheme combination of UED SgT and MSP SgT leads us to the following

classification schemes for our MTL model:

1. MSP3C −UED4CI1:

— MSP: {0,10,90} kmph

— UED: [“Home”, “Building”, “Pedestrian”, “Transport”]

2. MSP3C −UED5C1:

— MSP: {0,10,90} kmph

— UED: [“Home”, “Building”, “Mall”, “Pedestrian”, “Transport”]

3. MSP3C −UED8C:

— MSP: {0,10,90} kmph

— UED: [“Home”, “Work”, “Building”, “Mall”, “Pedestrian”, “Bus”, “Train”,

“Car”]

4. MSP4C −UED4CI1:

— MSP: {0,1,10,90} kmph

— UED: [“Home”, “Building”, “Pedestrian”, “Transport”]

5. MSP4C −UED5C1:

— MSP: {0,1,10,90} kmph

— UED: [“Home”, “Building”, “Mall”, “Pedestrian”, “Transport”]

6. MSP4C −UED8C:

— MSP: {0,1,10,90} kmph

— UED: [“Home”, “Work”, “Building”, “Mall”, “Pedestrian”, “Bus”, “Train”,

“Car”]

7. MSP5C −UED4CI1:

180

6.4. Performances: results and discussion

— MSP: {0,1,10,40,90} kmph

— UED: [“Home”, “Building”, “Pedestrian”, “Transport”]

8. MSP5C −UED5C1:

— MSP: {0,1,10,40,90} kmph

— UED: [“Home”, “Building”, “Mall”, “Pedestrian”, “Transport”]

9. MSP5C −UED8C:

— MSP: {0,1,10,40,90} kmph

— UED: [“Home”, “Work”, “Building”, “Mall”, “Pedestrian”, “Bus”, “Train”,

“Car”]

10. MSP8C −UED4CI1:

— MSP: {0,1,2,3,10,30,40,90} kmph

— UED: [“Home”, “Building”, “Pedestrian”, “Transport”]

11. MSP8C −UED5C1:

— MSP: {0,1,2,3,10,30,40,90} kmph

— UED: [“Home”, “Building”, “Mall”, “Pedestrian”, “Transport”]

12. MSP8C −UED8C:

— MSP: {0,1,2,3,10,30,40,90} kmph

— UED: [“Home”, “Work”, “Building”, “Mall”, “Pedestrian”, “Bus”, “Train”,

“Car”]

The detailed results of these MTL schemes are presented in table 6.4. These

results have been obtained with the same set of hyperparameters which we

got when we ran Bayesian search to tune the hyperparameters in table 6.3.

Table 6.4 presents the accuracy and F1-score metrics for both UED-MTL and

MSP-MTL. To better analyse the results, we also introduce a metric which is

the mean of both the accuracy and F1-score for UED-MTL and MSP-MTL. MTL

is beneficial for both tasks: as we notice in the figure 6.7 F1-score for both UED

and MSP is higher with MTL architecture (dotted line) than when detected as

a single task (continuous line).

181

Part 6.4, Chapter 6 – Multi-Task Learning for Joint Detection of User Environment &
Mobility

Figure 6.5 – The variation of classes number per task vs the mean F1-score
delivered by the MTL model

Figure 6.6 – The variation of classes number per task vs the mean error (1-F1-
score) delivered by the MTL model

The error analysis (1 - F1-score) obtained with respect to the number of

classes for UED and MSP tasks (see table 6.4 and figures 6.5 and 6.6)), shows

at first that the overall performance of MTL is promising. Most of the studied

schemes show a mean F1-score around or higher than 95%. Increasing the

number of UED classes does not affect that much the overall performance of

182

6.4. Performances: results and discussion

the system. For example when we set the MSP classification scheme at 3C,

we notice an error variance in UED of 0.3% of F1score. The worst UED-MTL

performance, for the classification scheme MSP8C − UED8C, shows 97.37% as

F1-score which satisfies our success criteria. On the other hand, the increase

in MSP classes’ number negatively affects the overall performance. The more

the number of classes is increased, the more the performance decreases (see

figure 6.7). In fact, increasing granularity in MSP increases the probability of

the label noise in the data which is very harmful to the classification task.

The 2 best scenarios delivering the best performance are: 1)MSP3C−UED4CI1

(MSP: {0,10,90} kmph and UED: “Home”, “Building”, “Pedestrian”, “Transport”])

and 2)MSP3C−UED8C (MSP: {0,10,90} kmph and UED: [“Home”, “Work”, “Build-

ing”, “Mall”, “Pedestrian”, “Bus”, “Train”, “Car”]). For these two we note a mean

F1-score 97.20% and 97.14%, respectively.

Figure 6.7 – The variation of classes number per task vs the F1-score delivered
by the MTL model for both tasks: MSP & UED

183

Part 6.5, Chapter 6 – Multi-Task Learning for Joint Detection of User Environment &
Mobility

MSP3C −UED4CI1 MSP3C −UED5C1 MSP3C −UED8C MSP4C −UED4CI1

Acc. F1-S. Acc. F1-S. Acc. F1-S. Acc. F1-S.
UED
MTL 99.22% 98.23% 98.92% 97.97% 98.85% 97.90% 98.90% 97.75%

MSP
MTL 98.17% 96.17% 97.93% 95.60% 98.23% 96.39% 95.19% 92.93%

Mean
MTL
perf.

98.69% 97.20% 98.42% 96.78% 98.54% 97.14% 97.04% 95.34%

MSP4C −UED5C1 MSP4C −UED8C MSP5C −UED4CI1 MSP5C −UED5C1

Acc. F1-S. Acc. F1-S. Acc. F1-S. Acc. F1-S.
UED
MTL 98.96% 97.84% 98.74% 97.44% 98.88% 97.68% 98.90% 97.90%

MSP
MTL 95.35% 93.22% 95.10% 92.72% 94.93% 92.27% 94.51% 91.72%

Mean
MTL
perf.

97.15% 95.53% 96.92% 95.08% 96.90% 94.97% 96.70% 94.81%

MSP5C −UED8C MSP8C −UED4CI1 MSP8C −UED5C1 MSP8C −UED8C

Acc. F1-S. Acc. F1-S. Acc. F1-S. Acc. F1-S.
UED
MTL 98.74% 97.54% 98.85% 97.61% 98.86% 97.82% 98.66% 97.37%

MSP
MTL 94.44% 91.46% 92.21% 81.85% 92.37% 81.64% 92.60% 82.87%

Mean
MTL
perf.

96.59% 94.50% 95.53% 89.73% 95.61% 89.73% 95.63% 90.12%

Table 6.4 – User Environment detection and mobility speed detection classifica-
tion schemes when performed using a Multi-Task learning (MTL) architecture
and the mean MTL performance over the two tasks.

6.5 Conclusion

In this chapter, we have presented the basics of the Multi-Task Learning

(MTL) which is a subcategory of transfer Learning (TL). One of the advantages

of MTL is the benefit obtained by sharing the knowledge between two or more

184

6.5. Conclusion

tasks while learning them simultaneously. Thus, we have investigated MTL to

jointly learn both the user environment detection (UED) and mobility speed

profiling (MSP), while consuming a service. We have proposed an intelligent

system for MSP detection linked with user activity preference. We used hard-

parameter sharing between the layers of the neural networks where the first

layers are commonly shared between the two tasks followed by some task spe-

cific layers. Based on crowd-sourced user-specific data, we achieved more than

97% of overall F1-score performance. This result satisfies our success criteria

of at least obtaining 95% of F1-score which is very encouraging to investigate

the user behavior.

185

Chapter 7

Conclusion & Perspectives

With all the innovations and the new services brought by 5G such as Inter-

net of Things (IoT), autonomous cars, Device to device (D2D) communications,

etc., many new challenges are raised for a better management and orchestra-

tion of network and services. To face these challenges, a fully end-to-end au-

tomation is desired for 5G networks and beyond to largely manage themselves

and deal with organisation, configuration, security, and optimisation issues.

Such automation will allow different components of the mobile network to op-

erate autonomously without external intervention. From the user side, who is

always seeking for a better service, it is expected from the future generation

networks (5G networks and beyond) to better accommodate the ever-growing

user-demands, services and applications and will guarantee a better Quality of

Experience (QoE) (QoE is a metric that measures the mobile user’s satisfaction

depending on his or her experience of a mobile service). One way to guarantee

this is by adding in-advance network context-awareness capabilities. Thus the

networks can be aware of the user preferences or habits while consuming a

service (or using their phones). The use of this external knowledge based on

the user habits will make the networks efficiently face the variable consuming

habits of users that impact the network conditions. It will make them more

intelligent and more aware of the environment in which they operate. However,

inferring the user behavior based on his preferences, remains a complex prob-

lem since we are dealing with multi composite environments, many services

187

and billions of users.

In this dissertation, our first contribution was to propose a 3-step system

that automatically extracts the knowledge of the mobile user behavior in order

to anticipate the user preferences, and needs, with the final goal to optimize

5G networks. The 3-step system was based on machine learning and artificial

intelligence approaches. The first step deals with data collection, the second

tackles the data processing for user behavior inference and user profile building

and the third and final step is the use of information for 5G network optimiza-

tion. Artificial Intelligence (AI) can be seen as an efficient solution to bring the

required intelligence to 5G networks by helping them to be aware of the con-

suming habits or preferences of users and then to help them anticipating users’

actions or needs. For this, in this thesis, we investigated Machine Learning and

Deep Learning techniques and data analysis in order to infer the mobile user

behavior.

The second contribution of this thesis was to model the user behavior. We

defined a user behavior model based on the abstraction of contextual infor-

mation of a mobile user, which was defined by answering 6 main questions

(Who, Where, What, When, How, Why). The contextual information was made

of four parts covering the use context, the application, demographics and the

device. Each answer to a question above corresponded to an attribute related

to mobile user’s contextual information. These attributes were also Quality-

of-Experience(QoE)-influencing features. Then, we presented an investigation

of user behavior modeling with two of the QoE-influencing features related

to mobile use context of contextual information: the environment and the user

mobility speed range. The user’s environment and mobility have a big influence

on QoE. For example, a user who is indoor would experience a very different

service quality as compared to the one who is outdoor, all else being equal.

Actually, the environment and the mobility together set up the conditions in

188

which a mobile user consumes the requested services/applications. In prac-

tice, in order to estimate the environment or mobility, we had to answer the fol-

lowing questions: how and where a mobile user consumes the mobile services?

Besides, these questions had to be answered at the same time (simultaneously)

to detect and then predict the user behavior.

Providing a mathematical model to answer these questions simultaneously

(how and where) is a way too complex due to huge number of users and the

variety of different situations met by mobile users. Our third contribution was

thus to infer the mobile user behavior reflecting the real life of user (the environ-

ment as well as the mobility range of the user), with minimal human interven-

tion, low-complexity system and minimal response time. Thus, our proposed

solution was based on Machine learning approaches and more precisely Deep

Learning approaches. The Multi-Task based Deep Learning architecture was

adopted to provide a joint answer to these two questions simultaneously. At

first, we investigated the two tasks separately. Then, we investigated the Multi-

Task architecture for joint detection.

For every machine learning or Deep Learning approach, data can be seen as

the fuel or the corner stone for the success of these approaches. Without rele-

vant and a representative data, the machine learning approaches are limited.

We proposed in our work to collect data based on a crowd-sourcing mode. In

this mode, we involved the crowd in the collection process which provided data

reflecting better the users’ behaviors. Machine Learning algorithms trained on

datasets collected in crowd-sourcingmode allow to learn very diverse real-world

situations. However, this collection mode generates noisy data, since it is not

strictly controlled during the data collection. This noise added to the imbal-

anced data, inherited from the user behavior who prefers to use his phone in

some situations than in others, remains a challenge to deal with. Thus, as an-

other contribution in this thesis, we proposed some methods and algorithms

189

to deal with such noisy and imbalanced datasets.

7.1 The mobile user environment detection while

consuming a service

7.1.1 Conclusions

The first work of this thesis was to study the first attribute for the user be-

havior detection which deals with the user environment. To simplify, the user

environment had been considered as a binary classification problem, referred

as IOD: Indoor Outdoor Detection. It was inferred using a ML approach based

on 3GPP input data known at the network side: {Time,RSRP,CQI,MI,TA}.

Compared to the state of the art, adding both of the mobility indicator MI

and the timing advance TA, and replacing the quality signal RSRQ by an

other quality signal CQI, had shown better results than using only the couple

(RSRP,RSRQ). For a further investigation, we focused on detecting the user

environment with more granularity than just two classes: Indoor/ Outdoor.

That is to say with more detailed classes of the user environment (going up to

5 classes). The choice of the number of classes was based on the preliminary

analysis of the signals {Time,RSRP,CQI,MI,TA} vs. the user behavior. We

studied how to divide the initial indoor/outdoor classes further into more de-

tailed environment types respecting a trade-off between the data instances per

class and the granularity degree by varying the number of environment classes.

Thus, we studied different combinations of splitting the environment into dif-

ferent classes and compared their performance. The best performance for the

multi-class detection was delivered by the 4-classes classification scheme split-

ting the class indoor in two classes "Home" and other "Buildings" and splitting

the class outdoor in two classes "Pedestrian" and "Transport".

190

Secondly, in order to also exploit the unlabeled data, a comparative study of

semi-supervised approaches was conducted. We began by a comparative study

of three semi-supervised approaches for the case of 2-classes detection (Indoor

or Outdoor). These three semi-supervised approaches were: 1) cluster then

label 2) co-training and 3) self-training. Results showed that the best approach

was the self-training since it is less greedy in resources and also delivering

better accuracy than the two others. Thus, we also studied the self-training

for the multi-class user environment detection. Results showed that, using the

unlabeled data with the self-training enhanced the overall performances by

2% on average, whether for the first case (for indoor outdoor detection) or the

second (for the multi-class detection).

The study of semi-supervised approaches raised our curiosity to investigate

the minimum ratio of labeled data compared to unlabeled data, while guar-

anteeing a good performance. Thus, we investigated the impact of the volume

of labeled data or unlabeled data used on the overall performances for the in-

door/ outdoor detection. While maintaining same target performance, we could

reduce up to 30% the amount of labeled data. Such an evaluation - namely the

required ratio between labeled and unlabeled data for a target IOD performance

- could be of interest to operators. Avoiding to tag all data, reduces the labeling

efforts and constraints for the operators wanting to implement indoor outdoor

algorithm. Self-Training can thus perform well without requiring a complete

labeling of data.

7.1.2 Perspectives

To go further, the work can be extended by exploring the user activity and

time correlation since time is directly linked to user behavior. The time corre-

lation can be investigated via Long short-term memory (LSTM) Deep Learning

architecture, or via recurrent neural network (RNN) Deep Learning. These two

191

architectures can enhance the overall performance of the user environment

detection. However a comparative study for a tradeoff between performance

and time should be conducted since LSTM and RNN are more complex and re-

source greedy than FNN. Another future idea is to study the transfer learning

approaches in order to quickly adapt the learnt model from our data in case of

new coming data.

7.2 The usermobility speed profile detection while

consuming a service

7.2.1 Conclusions

The second work in this thesis was to investigate the second attribute of the

user behavior: mobility speed profile detection while consuming a service. So

far, in the state of the art, the user mobility speed profile detection had been

considered as three speed profiles (Low, Medium, High). For these 3 states the

speed borders were set as [0,40[kmph, [40,90[kmph and [90,∞[kmph, as it is

advised in literature. An analysis on the dataset collected showed that these

borders were not the best reflecting the behavior of user studied, while con-

suming a service when jointly considering the environment and speed. Indeed

the borders closely depend on the real life activity of users. Thus we expanded

our study by investigating the user mobility and speed profile detection using

a supervised Deep Learning algorithm, based on a multi-output classification.

The main issues that we faced with the mobility investigations were: the

noise in the labels and the imbalanced classes. Actually, in order to compute

the label (the ground truth) for the mobility detection, we used GPS coordinates

which were very noisy. To overcome this issue we proposed solutions to clean

these labels. As for the imbalanced class issue, we employed the Artificial Data

192

Augmentation technique.

7.2.2 Perspectives

In future, we would like to more investigate the noise in the labels of the

mobility detection task. During this work, some solutions were proposed to

solve this issue. Despite the gain brought by these solutions, they remain lim-

ited. The noise in the labels is much more important to be covered by these

solutions. That’s why we propose to investigate new solutions to overcome this

issue. For example, to use totally unsupervised methods or to use the transfer

learning to transfer the knowledge between the first attribute to the second

attribute. An other idea also to optimize the mobility detection performances

is to explore the time correlation since time is directly linked to user mobility.

7.3 Joint detection of the user environment and

mobility speed profile while consuming a ser-

vice

7.3.1 Conclusions

Our last contribution in this thesis, was to investigate the joint detection

of both attributes of user behavior: the user environment and the user mo-

bility speed range while consuming a service. The simultaneous detection of

both attributes was achieved with good accuracy thanks to a Multi-Task Deep

Learning architecture. One of the advantages of such architecture is the benefit

obtained by sharing the knowledge between two or more tasks while learning

them simultaneously. The architecture we proposed is based on sharing the

first layers of neural networks between the two attributes and then to setting

193

up of some specific layers for each task.

At first, we investigated the Multi-Task detection for two simple cases: 1) case

one: the environment detection task as 2 classes indoor or outdoor, and the

mobility detection task as a 3 classes detection {0,10,90} 2) case two: the envi-

ronment detection task as 4 classes: Home, Buildings, Pedestrian, In-Transport

and the mobility detection task as a 3 classes detection {0,10,90}. Results for

these two cases were very promising. For a further investigation, we focused on

user behavior Multi-Task detection with more granularity going up to 8 classes

for both of the user environment detection as well as the user mobility speed

profile detection.

7.3.2 Perspectives

In future, we would like to explore the integration of the other attributes

modeling the user behavior in the Multi-Task architecture. Furthermore, we

would like to quantify the impact of the user behavior detection on the quality

of experience (QoE).

194

Appendices

195

Appendix A

Hyperparameter Tuning Methods

Comparison

To experimentally prove what we have discussed theoretically in chapter

3, we propose in this section to experimentally study the performance of 3

hyperparameter optimization methods: i) manual search, ii) Grid search and

iii) Bayesian search.

A.1 Mobile user Environment Detection

To quantify the impact of the optimization method, we fix the classification

scheme to be 4CI_1. Now, if we fix the number of the hidden layers to 7, the

training step of the neural network takes in average 130.86 second. The chal-

lenge is to find the best combination of the hyperparameters that can learn

the best UED classifier. For optimization, we consider 7 hyperparameters: the

epoch size, the batch size, the activation function, the initialization, the learn-

ing rate, the dropout rate, the optimizer, and the number of neurons per layer.

Different values of these hyperparameters and their combinations are very

large. This means that the convergence time to train the best model is also very

high. Let us assume that we loop among 5 possibilities or values of the epoch

size, 5 possibilities of the batch size, 3 possibilities of the activation function,

3 possibilities of the initialization, 3 possibilities of the learning rate, 5 possi-

197

bilities of the dropout rate, 5 possibilities of the optimizer, and 4 possibilities of

the number of neurons per layer. This leads us to test 472500 neural networks

and it would take around 472500 ∗ 130.86 seconds for them to train. To limit the

run time, we investigated 3 methods: manual search, grid search and Bayesian

search as shown in figure A.1. We set a threshold of 50 iterations for both the

Bayesian optimization and the grid search (an iteration = one combination of

hyperparameter for training a model). As expected the manual search is the

fastest one since it is conducted by a human (10 runs at most). As shown in

figure A.1 and supported by analysis before, the Grid search is too slow and the

computation time is high. In the worst case, the best model is delivered after

looping on all combinations of hyperparameters. Whereas, Bayesian method

finds the right range and parameters space from the first iterations.

Figure A.1 – Impact of optimization methods on the accuracy computing -User
Environment Detection - Classification scheme 4CI_1

A.2 User Mobility Speed Profiling

Like what has been described in the the previous section, we fix the clas-

sification scheme {0,10,90} kmph (the one that has delivered the best perfor-

198

mances). Figure A.2 confirms that again the Bayesian optimisation for neuronal

networks outperforms both of the two other tested approaches: grid search and

manual search.

Figure A.2 – Impact of optimization methods on the accuracy computing - User
Mobility seed profile detection - classification scheme {0,10,90} kmph

199

Appendix B

Hyperparameter Tuning: Tuning

one model for many

classification schemes study

The research space for the hyperparameter’s setting is infinite. An expert

knowledge is needed in order to fix a finite space that optimization methods

will use to find the best hyperparameters for a given task. The biggest this

space is the longer the computing time will be for the different optimizations

methods.

In this appendix we try to quantify the impact of optimizing one classifi-

cation scheme and to use the set of the best hyperparameters to study other

classification schemes. For this we fix the classification scheme to be 4CI_1

of the UED (User environment detection task. We run a Bayesian optimization

over this scheme and the resulting hyperparameters are used to evaluate other

classification schemes.

Hyperparameter Possibilities
Activation [tanh,ReLu]
Optimizer [nadam, rmsprop, adam,adagrad]
Dropout Rate [0.2,0.3,0.4]

Table B.1 – Research space of hyperparameters for the 4CI_1 UED (User Envi-
ronment Detection) classification scheme

The finite research space that we have fixed for the scheme 4CI_1 is de-

201

scribed in table B.1. For such a research space, the running time to get optimal

hyperparameters is 16680.3531611s (≈ 04 ∶ 38 ∶ 01 in HH ∶ MM ∶ SS) using a 2.3

GHz 8-Core Intel Core i9 as a CPU and 32 GB of memory. This running time

could have been much larger if we increased the search space (knowing that

we fixed the number of epoch and the number of batch to respectively 70 and

200). The best hyperparameters set resulting from the Bayesian optimisation

search is described in the table B.2.

Optim. lay-
ers Dropout Valid. Epoch Batch Act.

Adam 7 0,2 20% 70 200 tanh

Table B.2 – Best hyperparameter’s set for the 4CI_1 UED (User Environment
Detection) classification scheme. The Hyperparameter’s list is: The optimizer,
the number of hidden layers, the dropout ratio, the number of epoch and the
batch size.

Now, we try to quantify the performances of some different UED classifi-

cation schemes while using the same hyperparameters set found in the table

B.3 for the 4CI_1 UED (User Environment Detection) classification scheme. We

choose 2 schemes with less class numbers (3C0 and 3C1) and 2 schemes with a

higher class number (5C0 and 5C1) and one scheme with the same class num-

ber (4CO0). Such choice is made in order to quantify the model behavior in case

of less complex problem (3 classes), a more complex problem (5 classes) and a

problem presenting the same complexity (4 classes). As we can notice using the

hyperparameter set of the scheme 4CI_1 does not hurt drastically the F1-score.

We note an average of 0.112 F1- score decrease.

The gain obtained by optimizing each model for each classification scheme

compared to the computing time for the hyperparamleters search is insignif-

icant. Thus in case of many classification schemes, it’s better to run an opti-

mization search over one model and then use the resulting hyperparameters

set for other schemes.

202

Classification
scheme Performances with Optim Performances without Optim

Acc. F1-Sc. Acc. F1-Sc.
3C0 91.89% 91.84% 91.85% 91.81%
3C1 92.06% 92.04% 92.00% 92,02%

4CO0 91.58% 91.53% 91.42% 91.42%
5C0 90.70% 90.69% 90.67% 90.60%
5C1 90.79% 90.72% 90.49% 90.41%

Table B.3 – Performances of different UED classification schemes with Bayesian
optimisation for each scheme vs using the hyperparameters set resulting from
a Bayesian optimisation run on one classification scheme (the 4CI_1 UED (User
Environment Detection) classification scheme).

Appendix C

Résumé en Français

Apprentissage Automatique Pour

Déduire le Comportement des

Utilisateurs Dans les Réseaux

Autonomes 5G

Au cours des quatre dernières décennies, les réseaux mobiles ont connu

quatre générations différentes. Avec chaque génération de nouvelle technolo-

gies, des améliorations, des nouveautés ou de nouveaux services sont apparus

[2]. Aujourd’hui, la nouvelle cinquième génération (5G) des réseaux mobiles

suscite beaucoup d’intérêt. En effet, cette génération a promis de révolution-

ner les réseaux de communication mobile. Parmi les nouveautés que propose

la 5G on peut citer l’Internet des Objets (IoT), les véhicules autonomes, la com-

munication Device to Device (D2D) et pleins d’autres. Toutes ces nouveautés

obligent à une meilleure gestion et orchestration des réseaux 5G et de ses ser-

vices. Pour relever ces défis, une automatisation de bout en bout est préconisée

205

pour les réseaux 5G afin de gérer les problèmes d’organisation, de configura-

tion, de sécurité et d’optimisation. Une telle optimisation permettera alors aux

différents composants du réseau mobile d’opérer d’un manière autonome sans

l’intervention extérieure de quoi ou de qui que ce soit.

D’un point de vue utilisateur mobile, qui est toujours à la recherche de la

meilleure qualité de service et à moindre coût, cette nouvelle génération doit

donc satisfaire ses besoins et lui garantir une meilleure qualité d’experience

(QoE). La QoE est unemétrique qui mesure le niveau de satisfaction de l’utilisateur

mobile en fonction de son expérience d’un service mobile. Une manière de

guarantir la satisfaction de l’utilisateur est d’injecter une connaissance suplé-

mentaire basée sur le comportement de l’utilisateur dans les réseaux 5G. En

effet, les réseaux mobiles enrichis avec cette connaissance suplémentaire peu-

vent être conscients des préférences ou des habitudes des utilisateurs quand

ils consomment un service (ou quand ils utilisent leurs téléphones mobiles).

Cette connaissance des préférences des utilisateurs permettera aux réseaux de

faire face aux habitudes de consommation variables des utilisateurs qui ont un

impact sur les conditions du réseau. Ce qui engendrera des réseaux plus in-

telligents qui peuvent se gérer en grande partie et gérer de façon automatique

les problèmes d’organisation, de configuration, de sécurité et d’optimisation.

Cependant, inférer le comportement d’utilisateur est consideré comme un prob-

lème complexe compte tenu desmultiples environements dans lesquels le réseau

opère et le grand nombre d’utilisateurs (de l’ordre de billions).

Dans cette thèse, on propose un système à trois étapes afin de permettre

l’extraction des informations liées au comportement de l’utilisateur et de les in-

jecter dans les réseaux mobiles. Ce système est basé sur des technologies et des

méthodes d’intelligence artificielle. Ces 3 étapes sont : 1) la collecte des données

2) le traitement des données pour l’inférence du comportement des utilisateurs

et la construction des profils des utilisateurs et finalement 3) l’utilisation de

206

cette information pour l’optimisation. Cette thèse traite principalement des 2

premières étapes. On s’est basés sur des approches d’intelligence artificielle

et plus spécifiquement sur l’apprentissage automatique et l’apprentissage pro-

fond (Deep Learning). En effet, ces approches peuvent être considérées comme

des solutions efficaces pour apporter l’intelligence requise aux réseaux 5G et

pour les aider à connaitre les habitudes de consommation ou les préférences

des utilisateurs, pour prédire leurs besoins et anticiper les actions à mettre en

oeuvre pour offrir la QoE souhaitée tout en minimisant les ressources. Elles

sont aussi très efficaces pour la modélisation mathématique d’un problème

complexe, ce qui est le cas de l’inférence du comportement des utilisateurs.

Plusieurs modélisations du comportement des utilisateurs ont été etudiées

dans la littérature, mais la plupart de ces études ont consideré une seule com-

posante ou un seul attribut du comportement d’utilisateur. Or en réalité, le

comportement d’utilisateur est plus complexe et ne peut être considéré que

via un seul attribut. Dans cette thèse, on modélise le comportement comme

une abstraction d’un large nombre de situations dans lesquelles un utilisateur

mobile consomme ou utilise des services (ou des applications mobiles variés)

et ayant un impact sur la QoE. Afin de définir le modèle du comportement

de l’utilisateur en tenant compte de ces exigences, on définit ce modèle en

répondant à 6 questions basées sur la méthode de Kipling [29]. Ces questions

sont (qui, où, quoi, quand, comment, pourquoi) et leurs réponses détaillées

et spécifiques vont permettre une analyse complète du problème. En outre,

chaque réponse à une question correspond à un attribut lié aux informations

contextuelles des mobiles qui sont des fonctionnalités influençant la qualité

d’expérience (QoE).

On présente ensuite une étude investigant la modélisation du comporte-

ment des utilisateurs avec deux des fonctionnalités influençant le plus la QoE

: l’environnement de l’utilisateur mobile quand il consomme un service et la

207

nature (ou le type) de mobilité matérialisée par sa vitesse de déplacement.

L’environnement et la mobilité de l’utilisateur ont une grande influence sur

la QoE. Par exemple, un utilisateur qui est à l’intérieur (indoor) connaîtrait

une qualité de service différente de celle qu’il peut avoir s’il est à l’extérieur

(outdoor). En effet, l’environnement et la mobilité définissent ensemble les con-

ditions dans lesquelles un utilisateur mobile consomme les services / applica-

tions souhaités. Par rapport à notremodélisation du comportement d’utilisateur,

l’estimation de l’environnement ou de la mobilité, répond aux questions suiv-

antes : comment et où un utilisateur mobile consomme les services mobiles?

En outre, ces questions doivent être répondues simultanément pour détecter

puis prédire le comportement de l’utilisateur.

Pour inférer le comportement de l’utilisateur mobile (l’environnement ainsi

que la l’intervalle de sa mobilité), avec le minimum d’intervention humaine et

avec un système de faible complexité, on propose dans cette thèse une solution

basée sur un aprenstissage profondmulti-tâches. L’architecture d’apprentissage

profond basée sur le multi-tâches a été adoptée pour fournir une réponse con-

jointe à ces deux questions et simultanément. Dans un premier temps, on a

étudié les deux tâches séparément. Ensuite, on a étudié l’architecture multi-

tâches pour la détection conjointe.

Les résultats pour les deux solutions proposées (la detection de l’environement

et la detection de l’intervalle de vitesse) ainsi que la détection conjointe des

deux tâches simultanément sont très prometteurs. Ce qui nous amène à croire

à l’intérêt de l’utilisation de la cognition sur le comportement de l’utilisateur

dans les réseaux mobiles. Cette cognition aidera les réseaux 5G à faire face aux

habitudes de consommation variables des utilisateurs qui ont un impact sur

les conditions du réseau. En même temps, les demandes ou les besoins des

clients seront satisfaits individuellement.

208

Bibliography

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016.

[2] F. Long, N. Li, and Y. Wang, « Autonomic mobile networks: The use of

artificial intelligence in wireless communications », in 2017 2nd Interna-

tional Conference on Advanced Robotics and Mechatronics (ICARM), Aug.

2017, pp. 582–586. doi: 10.1109/ICARM.2017.8273227.

[3] B. Bangerter, S. Talwar, R. Arefi, and K. Stewart, « Networks and devices

for the 5G era », IEEE Communications Magazine, vol. 52, 2, pp. 90–96,

2014.

[4] S. S. Mwanje and C. Mannweiler, « Towards Cognitive Autonomous Net-

works in 5G », in 2018 ITU Kaleidoscope: Machine Learning for a 5G

Future (ITU K), IEEE, 2018, pp. 1–8.

[5] S. van der Meer, J. Keeney, and L. Fallon, « 5G networks must be auto-

nomic! », in NOMS 2018-2018 IEEE/IFIP Network Operations and Man-

agement Symposium, IEEE, 2018, pp. 1–5.

[6] Z. Movahedi, M. Ayari, R. Langar, and G. Pujolle, « A survey of autonomic

network architectures and evaluation criteria », IEEE Communications

Surveys & Tutorials, vol. 14, 2, pp. 464–490, 2011.

[7] G. Pujolle, Les réseaux. Editions Eyrolles, 2014.

[8] N. Chairmen of ISG ENI MEC and ZSM, « ETSI White Paper No. 32:

Network Transformation; (Orchestration, Network and Service Manage-

ment Framework) », Tech. Rep., Oct. 2019. [Online]. Available: https://

209

https://doi.org/10.1109/ICARM.2017.8273227
https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_White_Paper_Network_Transformation_2019_N32.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_White_Paper_Network_Transformation_2019_N32.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_White_Paper_Network_Transformation_2019_N32.pdf

www.etsi.org/images/files/ETSIWhitePapers/ETSI_White_Paper_Network_

Transformation_2019_N32.pdf.

[9] C. Benzaid and T. Taleb, « AI-driven Zero Touch Network and Service

Management in 5G and Beyond: Challenges and Research Directions »,

IEEE Network, vol. 34, 2, pp. 186–194, 2020.

[10] « Zero-touch network and Service Management (ZSM); Reference Archi-

tecture », Tech. Rep., Aug. 2019. [Online]. Available: https://www.etsi.

org/deliver/etsi_gs/ZSM/001_099/002/01.01.01_60/gs_ZSM002v010101p.

pdf.

[11] E. Bulut and B. K. Szymanski, « Understanding user behavior via mobile

data analysis », in 2015 IEEE International Conference on Communica-

tion Workshop (ICCW), IEEE, 2015, pp. 1563–1568.

[12] S. Maaloul, M. Afif, and S. Tabbane, A new vertical handover decision

based context awareness for ubiquitous access, IEEE, 2012.

[13] B. Han, S. Wong, C. Mannweiler, M. R. Crippa, and H. D. Schotten,

« Context-awareness enhances 5G multi-access edge computing relia-

bility », IEEE Access, vol. 7, pp. 21290–21299, 2019.

[14] B. O. Holzbauer, B. K. Szymanski, and E. Bulut, « Impact of socially

based demand on the efficiency of caching strategy », in 2014 IEEE Inter-

national Conference on Pervasive Computing and Communication Work-

shops (PERCOM WORKSHOPS), IEEE, 2014, pp. 401–406.

[15] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman,

« Identifying diverse usage behaviors of smartphone apps », in Proceed-

ings of the 2011 ACM SIGCOMM conference on Internet measurement con-

ference, ACM, 2011, pp. 329–344.

210

https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_White_Paper_Network_Transformation_2019_N32.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_White_Paper_Network_Transformation_2019_N32.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_White_Paper_Network_Transformation_2019_N32.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_White_Paper_Network_Transformation_2019_N32.pdf
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/002/01.01.01_60/gs_ZSM002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/002/01.01.01_60/gs_ZSM002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/002/01.01.01_60/gs_ZSM002v010101p.pdf

[16] D. Wu, Q. Wu, Y. Xu, J. Jing, and Z. Qin, « QoE-based distributed multi-

channel allocation in 5G heterogeneous cellular networks: A matching-

coalitional game solution », IEEE Access, vol. 5, pp. 61–71, 2016.

[17] T. Soikkeli, « The effect of context on smartphone usage sessions », Aalto

University School of Science, 2011.

[18] D. Peraković, I. Forenbacher, I. Jovović, et al., « IDENTIFICATION AND

PREDICTION OF USER BEHAVIOR DEPENDING ON THE CONTEXT OF

THE USE OF SMARTMOBILE DEVICES. », Annals of DAAAM& Proceed-

ings, vol. 26, 1, 2015.

[19] T. Soikkeli, J. Karikoski, and H. Hammainen, « Diversity and end user

context in smartphone usage sessions », in 2011 Fifth International Con-

ference on Next Generation Mobile Applications, Services and Technolo-

gies, IEEE, 2011, pp. 7–12.

[20] S. Mekki, T. Karagkioules, and S. Valentin, « HTTP adaptive streaming

with indoors-outdoors detection in mobile networks », in 2017 IEEE Con-

ference on Computer Communications Workshops (INFOCOM WKSHPS),

IEEE, 2017, pp. 671–676.

[21] A. Ray, S. Deb, and P. Monogioudis, « Localization of LTE measurement

records withmissing information », in IEEE INFOCOM2016-The 35th An-

nual IEEE International Conference on Computer Communications, IEEE,

2016, pp. 1–9.

[22] A. Ulvan, M. Ulvan, and R. Bestak, « The enhancement of handover

strategy by mobility prediction in broadband wireless access », in Pro-

ceedings of the networking and electronic commerce research conference

(NAEC 2009), American Telecommunications Systems Management As-

sociation Inc., 2009, pp. 266–276.

211

[23] C. Wang, Z. Zhao, Q. Sun, and H. Zhang, « Deep Learning-based Intelli-

gent Dual Connectivity for Mobility Management in Dense Network », in

2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), IEEE, 2018,

pp. 1–5.

[24] M.-L. A. Morel and S. Randriamasy, « Quality of experience-aware en-

hanced inter-cell interference coordination for self organized HetNet »,

in 2017 10th IFIP Wireless and Mobile Networking Conference (WMNC),

IEEE, 2017, pp. 1–8.

[25] S. Cicalo, N. Changuel, V. Tralli, B. Sayadi, F. Faucheux, and S. Ker-

boeuf, « Improving QoE and fairness in HTTP adaptive streaming over

LTE network », IEEE Transactions on Circuits and Systems for Video Tech-

nology, vol. 26, 12, pp. 2284–2298, 2015.

[26] S. ISO, « 13407: 1999 », Human-centred design processes for interactive

systems, 1999.

[27] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles,

« Towards a better understanding of context and context-awareness », in

International symposium on handheld and ubiquitous computing, Springer,

1999, pp. 304–307.

[28] V. A. Siris, K. Balampekos, and M. K. Marina, « Mobile quality of experi-

ence: Recent advances and challenges », in 2014 IEEE International Con-

ference on Pervasive Computing and Communication Workshops (PER-

COM WORKSHOPS), IEEE, 2014, pp. 425–430.

[29] N. Javaid, A. Sher, H. Nasir, and N. Guizani, « Intelligence in IoT-based

5G networks: Opportunities and challenges », IEEECommunicationsMag-

azine, vol. 56, 10, pp. 94–100, 2018.

[30] S. Liu, J. Mcgree, Z. Ge, and Y. Xie, Computational and statistical meth-

ods for analysing big data with applications. Academic Press, 2015.

212

[31] C. Zhang, P. Patras, and H. Haddadi, « Deep learning in mobile and wire-

less networking: A survey », IEEE Communications Surveys & Tutorials,

vol. 21, 3, pp. 2224–2287, 2019.

[32] Y. LeCun, Y. Bengio, and G. Hinton, « Deep learning », Nature, vol. 521,

7553, pp. 436–444, 2015.

[33] M. K. Marina, V. Radu, and K. Balampekos, « Impact of indoor-outdoor

context on crowdsourcing based mobile coverage analysis », in Proceed-

ings of the 5th Workshop on All Things Cellular: Operations, Applications

and Challenges, 2015, pp. 45–50.

[34] S. Ickin, K. Wac, M. Fiedler, L. Janowski, J.-H. Hong, and A. K. Dey,

« Factors influencing quality of experience of commonly used mobile

applications », IEEE Communications Magazine, vol. 50, 4, pp. 48–56,

2012.

[35] D. Lodder, B. Bregen, D. Braunschweig, J. Allen-Smith, and T. Ford.

(2015). « Understanding the Right Mobile Mix for Your Venue », [Online].

Available: https://www.hetnetforum.com/resources/send/2-resources/

36-venueconnect-2015-hetnet-forum-presentation.

[36] T. Soikkeli, J. Karikoski, and H. Hammainen, « Diversity and end user

context in smartphone usage sessions », in 2011 Fifth International Con-

ference on Next Generation Mobile Applications, Services and Technolo-

gies, IEEE, 2011, pp. 7–12.

[37] E. Kaasinen, User acceptance of mobile services: Value, ease of use, trust

and ease of adoption, 2005.

[38] P. Branco, L. Torgo, and R. Ribeiro, « A survey of predictive modelling un-

der imbalanced distributions », arXiv preprint arXiv:1505.01658, 2015.

213

https://www.hetnetforum.com/resources/send/2-resources/36-venueconnect-2015-hetnet-forum-presentation
https://www.hetnetforum.com/resources/send/2-resources/36-venueconnect-2015-hetnet-forum-presentation

[39] I. Saffar, M. L. A. Morel, K. D. Singh, and C. Viho, « Machine Learn-

ing with partially labeled Data for Indoor Outdoor Detection », in 2019

16th IEEE Annual Consumer Communications & Networking Conference

(CCNC), IEEE, 2019, pp. 1–8.

[40] I. Saffar, M. L. A. Morel, K. D. Singh, and C. Viho, « Semi-supervised

Deep Learning-based Methods for Indoor Outdoor Detection », in ICC

2019-2019 IEEE International Conference on Communications (ICC), IEEE,

2019, pp. 1–7.

[41] I. Saffar, M. L. A. Morel, M. Amara, K. D. Singh, and C. Viho, « Mobile

User Environment Detection using Deep Learning based Multi-Output

Classification », in 2019 12th IFIP Wireless and Mobile Networking Con-

ference (WMNC), IEEE, 2019, pp. 16–23.

[42] I. Saffar, M. L. A. Morel, K. D. Singh, and C. Viho, « Deep Learning Based

Speed Profiling for Mobile Users in 5G Cellular Networks », in 2019 IEEE

Global Communications Conference (GLOBECOM), IEEE, 2019, pp. 1–7.

[43] M.-L. Alberi-Morel, I. Saffar, K. Singh, and C. Viho, « Multi-task Deep

Learning based Environment and Mobility Detection for User Behavior

Modeling », 2019.

[44] I. Arel, D. C. Rose, and T. P. Karnowski, « DeepMachine Learning - A New

Frontier in Artificial Intelligence Research [Research Frontier] », IEEE

Computational Intelligence Magazine, vol. 5, 4, pp. 13–18, Nov. 2010,

issn: 1556-603X. doi: 10.1109/MCI.2010.938364.

[45] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, « Machine

Learning Paradigms for Next-GenerationWireless Networks », IEEEWire-

less Communications, 2016.

214

https://doi.org/10.1109/MCI.2010.938364

[46] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, « Machine learn-

ing for wireless networks with artificial intelligence: A tutorial on neural

networks », arXiv preprint arXiv:1710.02913, vol. 9, 2017.

[47] E. Brynjolfsson and T. Mitchell, « What can machine learning do? Work-

force implications », Science, vol. 358, 6370, pp. 1530–1534, 2017.

[48] A. M. Learning, « Developer Guide », Amazon Web Services, 2018.

[49] J. Alzubi, A. Nayyar, and A. Kumar, « Machine learning from theory

to algorithms: an overview », in Journal of physics: conference series,

vol. 1142, 2018, p. 012012.

[50] J. Brownlee, Master Machine Learning Algorithms: discover how they

work and implement them from scratch. Machine LearningMastery, 2016.

[51] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical

machine learning tools and techniques. Morgan Kaufmann, 2016.

[52] P. Preux, « Fouille de données, notes de cours », Disponible sur internet,

2007.

[53] K. He, X. Zhang, S. Ren, and J. Sun, « Deep residual learning for image

recognition », in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778.

[54] W. S. McCulloch and W. Pitts, « A logical calculus of the ideas immanent

in nervous activity », The bulletin of mathematical biophysics, vol. 5, 4,

pp. 115–133, 1943.

[55] F. Rosenblatt, « The perceptron: A probabilistic model for information

storage and organization in the brain. », Psychological review, vol. 65, 6,

p. 386, 1958.

[56] B. Widrow and M. E. Hoff, « Adaptive switching circuits », STANFORD

UNIV CA STANFORD ELECTRONICS LABS, Tech. Rep., 1960.

215

[57] L. Deng, « A tutorial survey of architectures, algorithms, and applica-

tions for deep learning », APSIPA Transactions on Signal and Information

Processing, vol. 3, e2, 2014.

[58] P. Ramachandran, B. Zoph, and Q. V. Le, « Swish: a self-gated activation

function », arXiv preprint arXiv: 1710.05941, vol. 7, 2017.

[59] M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for machine

learning. Cambridge University Press, 2020.

[60] E. Charniak, Introduction to deep learning. The MIT Press, 2019.

[61] Z. Tupikovskaja-Omovie and D. Tyler, « Mobile consumer shopping jour-

ney in fashion retail: eye tracking mobile apps and websites », in Pro-

ceedings of the 2018 ACM Symposium on Eye Tracking Research & Ap-

plications, 2018, pp. 1–3.

[62] L. Molyneux, « Mobile news consumption: A habit of snacking », Digital

Journalism, vol. 6, 5, pp. 634–650, 2018.

[63] L. Leung and C. Chen, « Extending the theory of planned behavior: A

study of lifestyles, contextual factors, mobile viewing habits, TV content

interest, and intention to adopt mobile TV », Telematics and Informatics,

vol. 34, 8, pp. 1638–1649, 2017.

[64] F. Chollet,Deep Learningwith Python. Manning, Nov. 2017, isbn: 978161

7294433.

[65] G. C. M. solution overview. (). « Workflow demachine learning », [Online].

Available: https://cloud.google.com/ml- engine/docs/ml- solutions-

overview.

[66] H. He and Y. Ma, Imbalanced learning: foundations, algorithms, and ap-

plications. John Wiley & Sons, 2013.

216

https://cloud.google.com/ml-engine/docs/ml-solutions-overview
https://cloud.google.com/ml-engine/docs/ml-solutions-overview

[67] A. Fernández, S. Garcıa, M. Galar, R. C. Prati, B. Krawczyk, and F. Her-

rera, Learning from imbalanced data sets. Springer, 2018.

[68] M. Claesen and B. De Moor, « Hyperparameter search in machine learn-

ing », arXiv preprint arXiv: 1502.02127, 2015.

[69] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, « Algorithms for

hyper-parameter optimization », in Advances in neural information pro-

cessing systems, 2011, pp. 2546–2554.

[70] J. Bergstra and Y. Bengio, « Random search for hyper-parameter opti-

mization », Journal of machine learning research, vol. 13, Feb, pp. 281–

305, 2012.

[71] J. Bergstra, D. Yamins, and D. D. Cox, « Hyperopt: A python library

for optimizing the hyperparameters of machine learning algorithms »,

in Proceedings of the 12th Python in science conference, Citeseer, 2013,

pp. 13–20.

[72] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, « Dropout: a simple way to prevent neural networks from over-

fitting », The journal of machine learning research, vol. 15, 1, pp. 1929–

1958, 2014.

[73] J. Sietsma and R. J. Dow, « Creating artificial neural networks that gen-

eralize », Neural networks, vol. 4, 1, pp. 67–79, 1991.

[74] K. Zheng, Z. Yang, K. Zhang, P. Chatzimisios, K. Yang, and W. Xiang,

« Big data-driven optimization for mobile networks toward 5G », IEEE

network, vol. 30, 1, pp. 44–51, 2016.

[75] H. Li, X. Xu, C. Liu, T. Ren, K. Wu, X. Cao, W. Zhang, Y. Yu, and D. Song,

« A machine learning approach to prevent malicious calls over telephony

networks », in 2018 IEEE Symposium on Security and Privacy (SP), IEEE,

2018, pp. 53–69.

217

[76] D. Tsilimantos, T. Karagkioules, and S. Valentin, « Classifying flows and

buffer state for youtube’s HTTP adaptive streaming service in mobile

networks », in Proceedings of the 9th ACM Multimedia Systems Confer-

ence, 2018, pp. 138–149.

[77] D. Damopoulos, S. A. Menesidou, G. Kambourakis, M. Papadaki, N.

Clarke, and S. Gritzalis, « Evaluation of anomaly-based IDS for mobile

devices using machine learning classifiers », Security and Communica-

tion Networks, vol. 5, 1, pp. 3–14, 2012.

[78] W. A. Hapsari, A. Umesh, M. Iwamura, M. Tomala, B. Gyula, and B.

Sebire, « Minimization of drive tests solution in 3GPP », IEEE Communi-

cations Magazine, vol. 50, 6, pp. 28–36, 2012.

[79] U. T. R. Access, « and Evolved Universal Terrestrial Radio Access (E-

UTRA); Radiomeasurement collection for Minimaztion of Drive Test (MDT),

3GPP », Technical Specification, Technical report TS 37.320, Tech. Rep.,

2014.

[80] A. Faggiani, E. Gregori, L. Lenzini, V. Luconi, and A. Vecchio, « Smartphone-

based crowdsourcing for networkmonitoring: opportunities, challenges,

and a case study », IEEE Communications Magazine, vol. 52, 1, pp. 106–

113, 2014.

[81] J. Cainey, B. Gill, S. Johnston, J. Robinson, and S. Westwood, « Mod-

elling download throughput of LTE networks », in 39th Annual IEEE Con-

ference on Local Computer Networks Workshops, IEEE, 2014, pp. 623–

628.

[82] I. Misra and L. van der Maaten, « Self-supervised learning of pretext-

invariant representations », arXiv preprint arXiv: 1912.01991, 2019.

218

[83] M.-A. Carbonneau, V. Cheplygina, E. Granger, and G. Gagnon, « Multi-

ple instance learning: A survey of problem characteristics and applica-

tions », Pattern Recognition, vol. 77, pp. 329–353, 2018.

[84] Y. Zhang and Q. Yang, « A survey on multi-task learning », arXiv preprint

arXiv: 1707.08114, 2017.

[85] K. Konyushkova, R. Sznitman, and P. Fua, « Learning Active Learning

from Data », in Advances in Neural Information Processing Systems 30,

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, Eds., Curran Associates, Inc., 2017, pp. 4225–

4235. [Online]. Available: http://papers.nips.cc/paper/7010-learning-

active-learning-from-data.pdf.

[86] S. C. Hoi, D. Sahoo, J. Lu, and P. Zhao, « Online learning: A compre-

hensive survey », arXiv preprint arXiv: 1802.02871, 2018.

[87] N. Kato, Z. M. Fadlullah, B. Mao, F. Tang, O. Akashi, T. Inoue, and K.

Mizutani, « The Deep Learning Vision for Heterogeneous Network Traffic

Control: Proposal, Challenges, and Future Perspective », IEEE Wireless

Communications, vol. PP, 99, pp. 2–9, 2017, issn: 1536-1284. doi: 10.

1109/MWC.2016.1600317WC.

[88] V. Radu, P. Katsikouli, R. Sarkar, and M. K. Marina, « A semi-supervised

learning approach for robust indoor-outdoor detection with smartphones »,

in Proceedings of the 12th ACMConference on Embedded Network Sensor

Systems, 2014, pp. 280–294.

[89] A. Ng, « Nuts and bolts of building AI applications using Deep Learning »,

NIPS Keynote Talk, 2016.

[90] S. Edelev, S. N. Prasad, H. Karnal, and D. Hogrefe, « Knowledge-assisted

location-adaptive technique for indoor-outdoor detection in e-learning »,

219

http://papers.nips.cc/paper/7010-learning-active-learning-from-data.pdf
http://papers.nips.cc/paper/7010-learning-active-learning-from-data.pdf
https://doi.org/10.1109/MWC.2016.1600317WC
https://doi.org/10.1109/MWC.2016.1600317WC

in 2015 IEEE International Conference on Pervasive Computing and Com-

munication Workshops (PerCom Workshops), IEEE, 2015, pp. 8–13.

[91] P. Zhou, Y. Zheng, Z. Li, M. Li, and G. Shen, « Iodetector: A generic

service for indoor outdoor detection », in Proceedings of the 10th acm

conference on embedded network sensor systems, 2012, pp. 113–126.

[92] A. B. H. Alaya-Feki, A. Le Cornec, and E. Moulines, « Optimization of

Radio Measurements Exploitation in Wireless Mobile Networks. », JCM,

vol. 2, 7, pp. 59–67, 2007.

[93] M. Haddad, D. G. Herculea, E. Altman, N. B. Rached, V. Capdevielle,

C. S. Chen, and F. Ratovelomanana, « Mobility state estimation in LTE »,

in 2016 IEEEWireless Communications andNetworking Conference, IEEE,

2016, pp. 1–6.

[94] D. Herculea, C. S. Chen, M. Haddad, and V. Capdevielle, « Straight:

Stochastic geometry and user history basedmobility estimation », in Pro-

ceedings of the 8th ACM International Workshop on Hot Topics in Planet-

scale mObile computing and online Social neTworking, 2016, pp. 1–6.

[95] Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

procedures in idle mode, Standard, 2018.

[96] Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Con-

trol (RRC); Protocol specification, Standard, 2018.

[97] Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for

support of radio resource management, Standard, 2018.

[98] Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer pro-

cedures, Standard, 2018.

[99] Evolved Universal Terrestrial Radio Access (E-UTRA); MediumAccess Con-

trol (MAC) protocol specification, Standard, 2018.

220

[100] A. O. Laiyemo, « High speed moving networks in future wireless sys-

tems. », Ph.D. dissertation, University of Oulu, Finland, 2018.

[101] X. Zhu and A. B. Goldberg, « Introduction to semi-supervised learn-

ing (synthesis lectures on artificial intelligence and machine learning) »,

Morgan and Claypool Publishers, vol. 14, 2009.

[102] X. J. Zhu, « Semi-supervised learning literature survey », University of

Wisconsin-Madison Department of Computer Sciences, Tech. Rep., 2005.

[103] Z.-H. Zhou and M. Li, « Tri-training: Exploiting unlabeled data using

three classifiers », IEEE Transactions on knowledge and Data Engineer-

ing, vol. 17, 11, pp. 1529–1541, 2005.

[104] X. Zhu, J. Lafferty, and R. Rosenfeld, « Semi-supervised learning with

graphs », Ph.D. dissertation, Carnegie Mellon University, language tech-

nologies institute, school of . . ., 2005.

[105] H.-W. Lee, N.-r. Kim, and J.-H. Lee, « Deep neural network self-training

based on unsupervised learning and dropout », International Journal of

Fuzzy Logic and Intelligent Systems, vol. 17, 1, pp. 1–9, 2017.

[106] S. Michaelis, Balancing high-load scenarios with next cell predictions and

mobility pattern recognition. Citeseer, 2012.

[107] A. Ulvan, M. Ulvan, and R. Bestak, « The enhancement of handover

strategy by mobility prediction in broadband wireless access », in Pro-

ceedings of the networking and electronic commerce research conference

(NAEC 2009), American Telecommunications Systems Management As-

sociation Inc., 2009, pp. 266–276.

[108] C. Wang, Z. Zhao, Q. Sun, and H. Zhang, « Deep Learning-based Intelli-

gent Dual Connectivity for Mobility Management in Dense Network », in

2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), IEEE, 2018,

pp. 1–5.

221

[109] X. Ge, J. Ye, Y. Yang, and Q. Li, « User mobility evaluation for 5G small

cell networks based on individual mobility model », IEEE Journal on Se-

lected Areas in Communications, vol. 34, 3, pp. 528–541, 2016.

[110] S. Banville and F. V. Diggelen. (Nov. 2016). « Innovation: Precise po-

sitioning using raw GPS measurements from Android smartphones »,

[Online]. Available: https : / / www . gpsworld . com / innovation - precise -

positioning-using-raw-gps-measurements-from-android-smartphones/.

[111] G. Developers. (2019). « Optimize location for battery », [Online]. Avail-

able: https://developer.android.com/guide/topics/location/battery.

[112] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, « SMOTE:

synthetic minority over-sampling technique », Journal of artificial intelli-

gence research, vol. 16, pp. 321–357, 2002.

[113] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, « Under-

standing data augmentation for classification: when to warp? », in 2016

international conference on digital image computing: techniques and ap-

plications (DICTA), IEEE, 2016, pp. 1–6.

[114] Study on scenarios and requirements for next generation access technolo-

gies, Standard, 2019.

[115] R. Caruana, « Multitask Learning: A Knowledge-Based Source of Induc-

tive Bias ICML », Google Scholar Google Scholar Digital Library Digital

Library, 1993.

[116] S. J. Pan and Q. Yang, « A survey on transfer learning », IEEE Transac-

tions on knowledge and data engineering, vol. 22, 10, pp. 1345–1359,

2009.

[117] J. Baxter, R. Caruana, T. Mitchell, L. Y. Pratt, D. L. Silver, and S. Thrun,

NIPS 1995 workshop on learning to learn: Knowledge consolidation and

transfer in inductive systems.

222

https://www.gpsworld.com/innovation-precise-positioning-using-raw-gps-measurements-from-android-smartphones/
https://www.gpsworld.com/innovation-precise-positioning-using-raw-gps-measurements-from-android-smartphones/
https://developer.android.com/guide/topics/location/battery

[118] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G. Zhang, « Transfer

learning using computational intelligence: A survey », Knowledge-Based

Systems, vol. 80, pp. 14–23, 2015.

[119] S. Ruder, « An overview of multi-task learning in deep neural networks »,

arXiv preprint arXiv: 1706.05098, 2017.

[120] Y. S. Abu-Mostafa, « Learning from hints in neural networks », Journal

of complexity, vol. 6, 2, pp. 192–198, 1990.

[121] J. Baxter, « A Bayesian/information theoretic model of learning to learn

via multiple task sampling », Machine learning, vol. 28, 1, pp. 7–39,

1997.

[122] E. Meyerson and R. Miikkulainen, « Beyond shared hierarchies: Deep

multitask learning through soft layer ordering », arXiv preprint arXiv:

1711.00108, 2017.

[123] S. Vandenhende, S. Georgoulis, B. De Brabandere, and L. Van Gool,

« Branched multi-task networks: deciding what layers to share », arXiv

preprint arXiv: 1 904.02920, 2019.

[124] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, « Cross-stitch net-

works for multi-task learning », in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2016, pp. 3994–4003.

[125] S. Ruder, J. Bingel, I. Augenstein, and A. Søgaard, « Latent multi-task

architecture learning », in Proceedings of the AAAI Conference on Artifi-

cial Intelligence, vol. 33, 2019, pp. 4822–4829.

[126] S. Liu, E. Johns, and A. J. Davison, « End-to-end multi-task learning

with attention », in Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, 2019, pp. 1871–1880.

223

[127] H. Bilen and A. Vedaldi, « Integrated perception with recurrent multi-

task neural networks », in Advances in neural information processing

systems, 2016, pp. 235–243.

[128] R. Ranjan, V. M. Patel, and R. Chellappa, « Hyperface: A deep multi-task

learning framework for face detection, landmark localization, pose esti-

mation, and gender recognition », IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 41, 1, pp. 121–135, 2017.

[129] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, « Focal loss for dense

object detection », in Proceedings of the IEEE international conference on

computer vision, 2017, pp. 2980–2988.

[130] K. He, G. Gkioxari, P. Dollár, and R. Girshick, « Mask r-cnn », in Pro-

ceedings of the IEEE international conference on computer vision, 2017,

pp. 2961–2969.

[131] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and L. Van

Gool, « Fast scene understanding for autonomous driving », arXiv preprint

arXiv: 1708. 02550, 2017.

[132] A. Kendall, Y. Gal, and R. Cipolla, « Multi-task learning using uncer-

tainty to weigh losses for scene geometry and semantics », in Proceed-

ings of the IEEE conference on computer vision and pattern recognition,

2018, pp. 7482–7491.

[133] O. Sener and V. Koltun, « Multi-task learning as multi-objective opti-

mization », in Advances in Neural Information Processing Systems, 2018,

pp. 527–538.

[134] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, « Gradnorm:

Gradient normalization for adaptive loss balancing in deep multitask

networks », arXiv preprint arXiv: 1711.02257, 2017.

224

[135] M. Long, Z. Cao, J. Wang, and S. Y. Philip, « Learning multiple tasks with

multilinear relationship networks », in Advances in neural information

processing systems, 2017, pp. 1594–1603.

[136] M. Guo, A. Haque, D.-A. Huang, S. Yeung, and L. Fei-Fei, « Dynamic task

prioritization for multitask learning », in Proceedings of the European

Conference on Computer Vision (ECCV), 2018, pp. 270–287.

[137] C. Shui, M. Abbasi, L.-É. Robitaille, B. Wang, and C. Gagné, « A princi-

pled approach for learning task similarity in multitask learning », arXiv

preprint arXiv: 1903.09109, 2019.

[138] G. Strezoski, N. van Noord, and M. Worring, « Learning task relatedness

in multi-task learning for images in context », in Proceedings of the 2019

on International Conference on Multimedia Retrieval, 2019, pp. 78–86.

[139] S. Wu, H. R. Zhang, and C. Ré, « Understanding and Improving Informa-

tion Transfer in Multi-Task Learning », arXiv preprint arXiv: 2005.00944,

2020.

225

Titre : Apprentissage automatique pour déduire le comportement des utilisateurs dans

Réseaux autonomes 5G

Mot clés : LTE, 5G, Deep learning, Indoor/Outdoor detection (IOD), Mobility Speed Profile

(MSP) Detection

Résumé : L’idée développée dans cette thèse
est d’utiliser le Machine Learning/Deep Lear-
ning et l’analyse de données radio 3GPP pour
estimer et prédire le comportement d’un uti-
lisateur, en termes d’habitudes et de préfé-
rence d’usage des services mobiles d’un ré-
seau 5G. Le caractère multidimensionnel du
comportement de l’utilisateur rend son es-
timation complexe et reste actuellement un
défi. On a donc étudié son estimation sous
une approche innovante au regard de l’état
de l’art. On a proposé de la réaliser au sein
d’un système unifié qui estime en parallèle
chaque dimension du comportement. En uti-
lisant des méthodes basées sur l’apprentis-
sage approfondi (deep-learning) supervisé et
hybride/semi-supervisé, on propose une so-

lution pour la détection de l’environnement
(Indoor/Outdoor Detection (IOD)) et jusqu’à
8 classes d’environnement d’un utilisateur
de téléphone portable. Nous proposons en-
suite une solution permettant de détecter
la catégorie de mobilité (Mobility Speed Pro-
file (MSP) Detection) jusqu’à 8 profils de vi-
tesses. Enfin, une solution innovante basée
sur des algorithmes d’apprentissage profond
dans une architecture multitâches permet
d’estimer conjointement à la fois l’environne-
ment et le profil de mobilité. La comparaison
avec l’état de l’art a montré l’efficacité des
méthodes proposées. Ce qui permet d’envi-
sager leur utilisation par des opérateurs mo-
biles au sein de leurs futurs.

Title: Machine Learning to Infer User Behavior in 5G autonomic networks

Keywords: LTE, 5G, Deep learning, Indoor/Outdoor detection (IOD), Mobility Speed Profile

(MSP) Detection

Abstract: The main idea of this thesis is
to use machine learning/deep learning tech-
niques to estimate and predict user behavior
by analyzing 3GPP radio signals. The user
behavior is defined in terms of habits and
preferences while consuming 5G services.
The estimation of user behavior is complex
and remains a challenge due to its multidi-
mensional nature. We therefore studied an
innovative approach for the user behavior
estimation: we use a unified system which
jointly as well as parallelly estimates each di-
mension of behavior. Using methods based
on supervised and hybrid / semi-supervised

deep-learning, we propose a solution for the
detection of the user environment (from In-
door / Outdoor Detection (IOD) to up to 8
classes). We then propose a solution to de-
tect the mobility categories (Mobility Speed
Profile (MSP) Detection) up to 8 speed pro-
files. Finally, an innovative solution jointly
estimates both the environment and the mo-
bility profile using deep learning algorithms
and a multitasking architecture. The com-
parison with the state of the art shows the
effectiveness of the proposed methods. This
allows to consider its deployment by opera-
tors in future.

	Abbreviations
	Notation
	Introduction: Context & motivation
	Context, motivation and main challenges
	Mobile user behavior modelling
	Data and Machine Learning driven detection of user behavior
	Real life data: preferred situations, imbalanced and noisy data
	Summary of Thesis Contributions
	Document structure
	Publications list
	International Conferences with review committee
	International Workshops with review committee

	Machine Learning: Definitions & Generalities
	Learning types
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning
	More types

	Machine Learning algorithm families
	Classical Machine Learning/ Shallow Learning
	From shallow (Classical Machine Learning) to Deep Learning

	Conclusion

	Machine Learning Workflow Toward User Behavior Characterisation
	Methodology in 5 steps
	Methodology for user behavior prediction
	Identifying the problem and analyzing the needs
	Data Processing
	Algorithm choice and Model designing

	Generation of high quality and representative data
	Data collection modes
	Data collection description in our study case

	Conclusion

	User Environment Detection: Where is the mobile user while experiencing a service?
	State of the Art
	Data features
	Supervised Learning-based classification: Indoor Outdoor Detection (IOD)
	Preliminary study of CQI, mobility and distance impact
	Data collection mode: crowd-sourcing vs. drive-test
	Performances of IOD

	Semi-supervised Deep Learning-based classification: IOD
	Cluster-then-Label
	Co-Training
	Self-training
	Performances of IOD

	 What if more granularity of UED is taken into consideration?
	Relation between user activity and environment type
	Classification schemes
	Performances of UED

	Labelled data volume vs. unlabelled data volume
	Conclusion

	Mobility Speed Profiles (MSP) Detection: How is the mobile user when experiencing a service? Static or Moving?
	State of the Art
	Data features
	Description
	Data cleaning method for labeling
	Data augmentation method for balancing the dataset

	Preliminary analysis: user activity vs speed category
	Speed category definition
	Relation between user activity and speed profile
	User activity during daytime per speed category

	Classification schemes
	Supervised Deep Learning-based classification performances
	Architecture and configuration
	Results

	Conclusion

	Multi-Task Learning for Joint Detection of User Environment & Mobility
	What's Multi-Task Learning?
	Definition
	Why Multi-Task works?
	Types of Multi-Task Learning

	Proposed Multi-Task Learning Architecture
	Data features
	Performances: results and discussion
	Conclusion

	Conclusion & Perspectives
	The mobile user environment detection while consuming a service
	Conclusions
	Perspectives

	The user mobility speed profile detection while consuming a service
	Conclusions
	Perspectives

	Joint detection of the user environment and mobility speed profile while consuming a service
	Conclusions
	Perspectives

	Appendices
	Hyperparameter Tuning Methods Comparison
	Mobile user Environment Detection
	User Mobility Speed Profiling

	Hyperparameter Tuning: Tuning one model for many classification schemes study
	Résumé en Français
	Bibliography

