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RÉSUMÉ EN FRANÇAIS

Motivations

Les robots, autrefois limités au travail en usine en tant que manipulateurs, étendent leur terri-
toire aux espaces publics et aux maisons privées [Wal08]. S’appuyant sur l’intelligence artificielle,
la théorie du contrôle, la mécatronique, les technologies des capteurs, etc., ils deviennent aptes
à accomplir de plus en plus de tâches. Et même si leur rôle dans nos vies est encore marginal,
certaines prévisions identifient la robotique comme l’une des "huit technologies essentielles" qui
révolutionneront nos sociétés et nos entreprises [Lik20]. Les robots font leur apparition dans
divers lieux intérieurs et extérieurs, où ils partagent le même espace que les êtres humains. Ils
sont développés pour transporter des marchandises et des colis dans les zones urbaines, pour
acheminer des médicaments et d’autres fournitures dans les hôpitaux, ou pour tenir compagnie
aux personnes âgées ou handicapées.

Un coup d’œil aux chiffres révèle que le marché des robots de service et autres dispositifs
de mobilité autonomes connaît une croissance rapide. Selon une étude de marché, le marché
mondial des robots autonomes de livraison du dernier kilomètre devrait être multiplié par sept
au cours des dix prochaines années [PS20]. D’ici là, les véhicules autonomes remplaceront les
véhicules traditionnels et les robotaxis desserviront les zones urbaines peuplées. Selon certaines
prévisions, un véhicule sur dix sera autonome d’ici 2030 [Sta19]. Les fauteuils roulants intelligents
sont également de plus en plus répandus parmi les personnes handicapées, ce qui n’a pas de prix.

Et ce, alors que l’un des plus grands défis à venir pour ces industries est la sécurité humaine.
Tous ces dispositifs de mobilité, qu’ils soient entièrement ou semi-autonomes, doivent être capa-
bles de percevoir, d’analyser et de prédire le comportement des personnes qui les entourent et
d’effectuer des actions qui sont à la fois sûres et socialement acceptables.

Il existe également des scénarios spécifiques et cruciaux dans lesquels le robot doit opérer
dans une foule à forte densité et à proximité immédiate des humains. Comme le risque de contact
augmente dans ces scénarios, des niveaux plus élevés de précision de prédiction sont nécessaires.
Par exemple, on peut imaginer les deux exemples suivants:

(a) un robot de livraison transporte un colis dans une zone commerciale mais se retrouve piégé
dans une foule se déplaçant dans un flux unidirectionnel, car un bâtiment doit être évacué.

(b) un fauteuil roulant semi-autonome transportant une personne handicapée doit naviguer
dans un flux bidirectionnel de piétons se déplaçant dans le couloir d’une gare.

5



L’inefficacité du robot à faire une bonne prédiction du mouvement des personnes peut con-
duire à l’un de ces deux problèmes:

(a) Le robot effectue des actions à haut risque, établit un contact indésirable avec les personnes
ou les met mal à l’aise.

(b) Il prend l’action prudente la plus triviale, qui est ‘aucune action’!

Le second problème est connu sous le nom de ‘problème du robot gelé’ et se produit lorsque le
robot ne peut pas trouver une trajectoire qu’il pense pouvoir exécuter en toute sécurité [TK10].
La présence d’un module humain de prédiction de trajectoire semble alors critique pour le robot.

Énoncé du problème

Dans cette thèse, nous abordons le problème de la prédiction de trajectoire humaine (à
court terme) dans des scénarios de foule: “Étant donné les trajectoires de mouvement d’un ou
plusieurs piétons dans une scène, entourant un robot, celui-ci doit prédire, en temps réel, l’état
spatio-temporel des piétons, et inférer leurs intentions (destinations) à court ou moyen terme.”

Dans certains cas, d’autres informations auxiliaires, telles que la vitesse des piétons ou les
propriétés du contexte de la scène, peuvent être utilisées pour améliorer la qualité de la prédic-
tion. L’horizon de prédiction que nous considérons dans cette thèse est de l’ordre de quelques
secondes (normalement jusqu’à cinq secondes). Un intervalle de temps de trois à cinq secondes
est également utilisé pour capturer les trajectoires historiques des piétons.

La prédiction de la trajectoire est basée sur l’historique de l’emplacement bidimensionnel des
pédales dans le système de coordonnées du monde ou du robot, qui est supposé être fourni par
un système de "perception". Un défi notable dans notre problème est que la perception est faite
à bord du robot, ce qui entraîne un certain nombre de limitations. Tout d’abord, la caméra du
robot, qu’il s’agisse d’une caméra RVB ou d’un capteur de profondeur, est généralement installée
à une hauteur inférieure à la taille humaine moyenne. Par conséquent, une partie des piétons
environnants peut être partiellement ou totalement occultée. De plus, comme le robot est en
mouvement, le calibrage géométrique estimé du robot peut être bruité. En raison de ce bruit,
les estimations de la vitesse des piétons cibles peuvent être affectées de manière significative, et
les trajectoires deviennent saccadées. En outre, en raison de la capacité limitée du processeur
embarqué, la précision de la détection peut parfois être compromise. Par conséquent, le système
de prédiction de trajectoire doit être capable de gérer des trajectoires d’entrée bruyantes, avec
des changements d’identité, ainsi que des trajectoires courtes.

Il est important de noter la différence entre les définitions d’un ‘chemin’ et d’une ‘trajectoire’.
Un chemin est une séquence purement géométrique d’emplacements, tandis qu’une trajectoire
est un chemin paramétré dans le temps avec une séquence d’emplacements horodatés. Le robot
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utilise les trajectoires prédites pour estimer la probabilité d’une collision à un moment donné
et pour planifier une trajectoire sûre et sans collision. Pour arriver à une conclusion sur la
solution de ce problème, nous aimerions examiner la nature du mouvement humain et les défis
du problème de prédiction.

Indices individuels

Le mouvement d’un piéton est influencé par de multiples facteurs physiologiques, tels que
l’âge, le poids, la taille, les handicaps, mais aussi par des caractéristiques non physiques comme
le type de personnalité et l’humeur de la personne. Ces variables peuvent influencer la vitesse
des personnes, leur façon de se déplacer dans une foule et la distance sociale qu’elles gardent
avec les autres.

Certaines études suggèrent que les facteurs culturels ont également un impact important sur
la dynamique des piétons. L’espace personnel, la vitesse de marche, le côté d’évitement (le côté de
dépasser d’autres piétons dans les situations d’évitement de collision) et les formations de groupe
pourraient être différents selon les cultures et les régions [Kam11]. Chattaraj et al. [CSC09]
ont réalisé des expériences en laboratoire dans des pays où les piétons sont plus nombreux.
Inde et l’Allemagne et a trouvé des différences significatives dans les comportements de foule
des personnes testées. L’étude suggère, par exemple, que “les Indiens sont moins sensibles à
l’augmentation de la densité que les Allemands”, et que “l’espace personnel minimum pour le
groupe allemand était supérieur à celui du groupe indien.”

Contexte de la scène (facteurs environnementaux)

Le chemin qu’emprunte un piéton dépend également du contexte de la scène. La présence de
murs, de clôtures et d’autres obstacles peut rendre certaines zones inaccessibles, certaines sur-
faces peuvent ne pas être praticables et il peut même y avoir des préférences pour marcher sur
d’autres types de surfaces, comme le trottoir ou l’herbe. En outre, les conditions météorologiques
et l’éclairage peuvent avoir un impact sur les préférences des piétons. La différence de tempéra-
ture entre une zone ombragée et une zone ensoleillée peut avoir une incidence sur les chemine-
ments. En outre, le type d’environnement peut avoir un impact sur les décisions des piétons.
Une (petite) étude sociologique menée en France [MBG+13] indique que la décision d’un pié-
ton de traverser illégalement une rue dépend de sa perception de l’agrément et de la sécurité
des espaces publics. Par exemple, les piétons ont tendance à se sentir plus en sécurité dans les
centres-villes que dans les campagnes et les banlieues, ce qui peut avoir un impact considérable
sur leur comportement.
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Interactions sociales

Les mouvements des piétons qui partagent un espace commun dépendent d’une série d’interactions
différentes. La prévention des collisions peut être considérée comme le type d’interaction le plus
courant et le plus important entre des humains en mouvement. Mais il existe également d’autres
comportements collectifs qui sont essentiels dans la modélisation des activités de la foule. Le com-
portement de regroupement est très fréquent dans les foules. Une étude (limitée) de Moussaid et
al. [MPG+10] a observé que 70% des piétons dans une rue marchent avec d’autres personnes. Le
comportement de suivi est plus fréquent dans les foules denses ou les passages étroits, où il n’y
a pas de place pour dépasser d’autres piétons. Les flux de foule peuvent également apparaître
dans des situations où le nombre de piétons est élevé.

Cette variété de types d’interactions sociales fait de la prédiction du mouvement un problème
complexe, où chaque type d’interaction peut nécessiter un modèle différent et un ensemble
différent de paramètres, ou peut représenter une dimension différente d’une grande variable
latente.

Incertitude et multi-modalité

Les mouvements humains sont de nature multimodale. Cela signifie que, pour un même
ensemble d’ob servations, il peut y avoir plusieurs chemins plausibles pour chaque piéton. La
multi-modalité peut être liée à l’objectif du piéton. Mais aussi en raison de l’existence d’options
multiples lors de l’interaction avec d’autres personnes. Par exemple, on peut passer du côté
gauche ou droit d’un piéton, ou même, prendre l’une des multiples trajectoires plausibles lors du
passage d’un groupe de personnes. Néanmoins, un système de prédiction de trajectoire bien conçu
devrait faire face à cette multi-modalité et envisager de renvoyer un ensemble de trajectoires
plausibles plutôt qu’une réponse unique.

Formulation mathématique

D’un point de vue mathématique, le problème de la prédiction de la trajectoire humaine peut
être considéré érigé comme un problème de prévision de séquence. En supposant que la variable
de prédiction (généralement, la positiond’un piéton) que l’on désigne par x, la séquence passée
d’observations x−τ :0 est utilisée pour prédire la séquence future x1:T , où [−τ, 0] et [1, T ] sont les
intervalles de temps de la séquence observée (passée) et de la séquence prédite (future).

Il est intéressant de faire une analogie avec d’autres problèmes de prévision de séquences. Un
exemple pertinent peut être la prévision des marchés boursiers à l’aide des méthodes d’analyse
technique [Mur99], où les changements et les modèles des prix récents du marché sont utilisés
pour prévoir les prix futurs. Dans certaines prédictions de séquences, la fonction peut même
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prendre des informations auxiliaires pour améliorer la précision de la prédiction. C’est le cas
de la “prévision de la température de l’air”, où, en plus des valeurs de température passées
(c’est-à-dire x), d’autres variables telles que la latitude du lieu, la vitesse du vent, l’humidité,
etc. sont prises en compte dans le modèle de prévision.

Revenons à notre problème, ici la variable de prédiction est la position des piétons. En plus
de la position passée du piéton d’intérêt (ou POI) xi−τ :0, trois ensembles d’informations peuvent
être donnés à la fonction de prédiction:

1. l’emplacement des autres piétons dans la scène {X¬i−τ :0}, qui peut être utilisé pour calculer
les caractéristiques d’interaction sociale,

2. les attributs personnels du piéton du POI tels que la vitesse, l’orientation de la tête, la
pose du corps ou même l’âge et le sexe estimés de la personne,

3. les propriétés du contexte de la scène telles que la géométrie de l’environnement et les
obstacles ou les informations sémantiques telles que les passages piétons, les trottoirs, les
feux de circulation, etc.

Nous considérons ces deux dernières informations, en général comme des variables auxiliaires
et les désignons par A. Par conséquent, nous formulons le problème de prédiction de la trajectoire
humaine avec la fonction abstraite suivante :

x̂i1:T = f(xi−τ :0,X¬i−τ :0,A−τ :0|θ) (1)

= f(X−τ :0,A−τ :0|θ) (2)

qui renvoie x̂i1:T comme les emplacements prédits du i ème agent pour les T prochains pas de
temps, où θ est les paramètres de la fonction de prédiction. Également une méthode probabiliste,
estime la distribution de x̂i1:T avec la fonction de densité suivante:

p(x̂i1:T |X−τ :0,A−τ :0; θ) (3)

Dans le chapitre suivant, nous passons en revue différentes fonctions déterministes et proba-
bilistes pour la prédiction de la trajectoire humaine.

Applications

La prédiction des mouvements de la trajectoire humaine a de multiples applications. Cela
inclut les exemples que nous avons présentés dans les sections précédentes, mais aussi d’autres
applications critiques qui nécessitent différents niveaux de prédiction des trajectoires humaines.
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Mobilité autonome

Les systèmes mobiles autonomes, de quelque type que ce soit, qui travaillent dans un espace
partagé avec des humains doivent prévoir les mouvements et les trajectoires de ces derniers.

Les robots de service qui travaillent dans les maisons, les restaurants, les centres com-
merciaux, les hôtels, les hôpitaux et les centres de soins doivent être conscients de la présence
des personnes et assurer leur sécurité et leur confort. Pepper [Rob14], un robot semi-humanoïde
développé par Softbank Robotics (anciennement Aldebaran Robotics) est capable d’accueillir
les clients dans les magasins. REEM [Rob05], un robot de service humanoïde à roues, est placé
dans les centres commerciaux et les expositions pour offrir un service et divertir les gens. Un
autre robot de service mobile, LoweBot [Lab16], développé par Lowe’s Innovation Labs et Fel-
low Robots, peut amener les clients à l’endroit où se trouvent les produits demandés dans une
quincaillerie.

Évidemment, selon le type d’environnement, les caractéristiques physiques du robot (poids,
taille, matériau, vitesse, etc.), ainsi que la vitesse, la densité et l’activité des personnes ou de la
foule, la prédiction peut être plus ou moins critique. En raison de la hauteur des capteurs sur
les robots de service et du champ de vision limité, il peut y avoir des occlusions importantes
qui compliquent la détection et la prédiction des personnes. Les robots mobiles ne disposent
généralement pas d’une grande puissance de traitement, ce qui complique encore plus l’exécution
des algorithmes de détection, de prédiction et de navigation en temps réel.

Les fauteuils roulants autonomes, qui sont une version plus avancée des fauteuils roulants
électriques, possèdent un certain niveau d’intelligence et d’autonomie pour aider les personnes
handicapées. Le système de contrôle partagé de ces appareils est chargé d’exécuter les ordres de
l’utilisateur du fauteuil roulant, tout en gérant les tâches de bas niveau telles que l’évitement
des collisions et la fluidité du mouvement. La prédiction des personnes environnantes est alors
nécessaire pour atteindre ces objectifs.

Les véhicules autonomes doivent également prédire le mouvement des usagers vulnérables
de la route (VRU), c’est-à-dire les piétons, les cyclistes, les conducteurs de deux-roues motorisés
et leurs passagers. Étant donné que les véhicules se déplacent à des vitesses plus élevées (par
rapport aux robots de service) et peuvent causer des dommages plus graves aux usagers de la
route, la prédiction de trajectoire joue un rôle encore plus important. Une question essentielle
lorsqu’un véhicule voit dans la rue est la suivante : “Le piéton va-t-il traverser?” [KG14].

La Society of Automotive Engineers (SAE) [int16] a proposé une classification des véhicules
avec six niveaux, du niveau zéro (aucune automatisation) à l’autonomie complète (cinquième
niveau). La prédiction de trajectoire peut être utile à n’importe lequel de ces niveaux, bien qu’au
fur et à mesure que l’autonomie augmente, le système aurait davantage de responsabilités pour
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assurer la sécurité des passagers et des URV, en améliorant sa prédiction de l’environnement.
Récemment, cette technologie a été utilisée dans les motocyclettes également [LC18].

Systèmes de surveillance

Dans les lieux présentant un intérêt pour la sécurité, tels que les aéroports, les gares et les
centres commerciaux, le système de surveillance doit suivre les personnes ou reconnaître les
activités pour l’analyse des ventes ou le contrôle des foules. Le système de suivi peut échouer
à suivre les individus en raison de l’occlusion des piétons, des changements d’éclairage ou de
l’apparence des piétons, des angles morts de plusieurs caméras, etc. Le système de suivi peut
alors tirer parti de la prédiction des mouvements de la foule pour associer les personnes détectées
aux pistes, en particulier lorsque la densité de la foule augmente. Cela peut aider à réduire les
commutations d’identification et à augmenter la précision du suivi. Le système de prédiction peut
également être utilisé pour détecter les comportements anormaux et déclencher des alarmes.

Simulation de foule

La simulation réaliste du mouvement d’une foule humaine est utile dans de nombreux do-
maines, tels que les logiciels de simulation, les jeux vidéo et les expériences de réalité virtuelle
(RV). En général, l’objectif d’un simulateur de foule est de peupler une scène virtuelle avec
une foule qui présente un comportement visuellement convaincant. Un système de prédiction
de trajectoire humaine entraîné avec des données réelles est également capable de simuler le
mouvement d’agents. Nous en discutons en détail dans le chapitre 6.

Notre application cible

Dans cette thèse, nous nous concentrons sur le problème de la navigation des robots dans des
scénarios de moyenne et haute densité de population. Nous nous intéressons principalement aux
robots de service (tels que le robot Pepper) et aux chaises roulantes intelligentes, qui partagent
l’espace avec les humains. Les dispositifs de mobilité de ce type se déplacent à une vitesse proche
de celle de la marche ou du jogging humain. Comme nous l’avons vu précédemment, dans notre
application, en raison du mouvement du robot et de l’occlusion des piétons environnants, les
entrées du système de prédiction peuvent être imparfaites et il doit être capable de traiter des
trajectoires d’entrée bruitées, des changements d’identité et des pistes de courte durée.

Contributions

Les principales contributions scientifiques dans le cadre de la thèse sont couvertes dans cette
section. Ces contributions qui sont publiées dans des conférences et des journaux évalués par
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les pairs sont réalisées par le biais de collaborations avec d’autres chercheurs et co-auteurs qui
sont mentionnés dans chaque chapitre. Cette thèse est axée sur le problème de la prédiction du
mouvement des piétons pour la navigation des robots dans les scènes de foule.

• Évaluation de la complexité des jeux de données de prédiction de trajectoire humaine :
avant de proposer notre modèle de prédiction, nous abordons la question de l’évaluation de la
complexité d’un jeu de données de trajectoire humaine donné par rapport au problème de pré-
diction. Pour évaluer la complexité d’un jeu de données, nous définissons une série d’indicateurs
autour de trois concepts: La prédictibilité de la trajectoire; La régularité de la trajectoire; La
complexité du contexte. Nous comparons les jeux de données les plus courants utilisés dans le
cadre de la HTP à la lumière de ces indicateurs et discutons de ce que cela peut impliquer sur
l’évaluation comparative des algorithmes HTP.

• Un modèle de prédiction de trajectoire humaine multimodale basé sur un réseau adversarial
génératif : nous proposons une nouvelle approche pour prédire la trajectoire des piétons en
interaction avec d’autres personnes. Elle utilise un réseau adversarial génératif (GAN) pour
échantillonner des prédictions plausibles pour tout agent dans la scène. Nous avons conçu un
jeu de données d’exemples de trajectoires qui peut être utilisé pour évaluer les performances des
différentes méthodes en préservant les modes de distribution des prédictions.

• Nous considérons la navigation de robots mobiles dans des environnements encombrés,
pour lesquels la détection embarquée de la foule est typiquement limitée par des occlusions,
et pour cela nous abordons le problème de l’inférence de l’occupation humaine dans l’espace
autour du robot, dans les angles morts, au-delà de la portée de ses capacités de détection. Nous
proposons une solution pour échantillonner les prédictions de présence humaine possible en se
basant sur l’état d’un ensemble réduit de personnes détectées autour du robot ainsi que sur les
observations précédentes de l’activité de la foule.

• Une nouvelle méthode de simulation de foule basée sur des données qui peut imiter le
trafic observé de piétons dans un environnement donné Nous présentons une nouvelle méthode
de simulation de foule basée sur des données qui peut imiter le trafic observé de piétons dans
un environnement donné. Étant donné un ensemble de trajectoires observées, nous utilisons une
forme récente de réseaux neuronaux, les réseaux adversariaux génératifs (GAN), pour apprendre
les propriétés de cet ensemble et générer de nouvelles trajectoires avec des propriétés similaires.
Nous définissons un moyen pour les piétons simulés (agents) de suivre une telle trajectoire tout en
gérant l’évitement des collisions locales. Ainsi, le système peut générer une foule qui se comporte
de manière similaire aux observations, tout en permettant des interactions en temps réel entre
les agents. Par le biais d’expériences avec des données du monde réel, nous montrons que nos
trajectoires simulées préservent les propriétés statistiques de leur entrée.

• Analyse du comportement de la foule en présence d’un robot : nous donnons des explications
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sur une expérience de foule-robot, menée en collaboration avec l’University College London (UK)
pour comprendre si et comment la dynamique de la foule des piétons sera modifiée en présence
d’un robot. Cela peut donner un aperçu de la conception de systèmes de prédiction dans des
scénarios de forte affluence.

Contenu du manuscrit

Cette thèse est structurée comme suit. Dans le chapitre 2 nous étudions l’état de l’art des
solutions proposées pour ce problème. Ceci inclut la proposition d’une taxonomie de modèles
pour mieux voir la relation entre les différentes approches. A travers les chapitres 3 - 7 nous
présentons les contributions énumérées dans la section précédente : Dans le chapitre 3 nous
abordons “l’évaluation de la complexité de la prédiction dans les ensembles de données sur les
trajectoires humaines”. Ce chapitre est désigné sous le nom d’OpenTraj. Dans le chapitre 4,
“Social-Ways: Modèle de prédiction de trajectoire piétonne multimodale basé sur un GAN”,
est présenté. Le chapitre 5 est consacré à la nouvelle approche présentée pour “l’imputation de
structures de foule occultes à partir de la détection de robots”. Ensuite, le chapitre 6 présente
la “simulation de foule basée sur les données du GAN”. Et dans le chapitre 7 nous décrivons
l’expérience foule-robot menée au laboratoire PAMELA de l’UCL ainsi que certaines leçons
apprises qui peuvent être utilisées pour concevoir des systèmes de prédiction dans des scénarios
de foule à haute densité. Enfin, dans le chapitre 8, nous discutons des résultats de cette thèse,
des limites et des travaux futurs. Et, à la fin, nous présentons la conclusion pour résumer les
contributions.
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Chapter 1

INTRODUCTION

1.1 Motivation

Robots that once were limited to work in factories as manipulators are expanding their
territories to public spaces and private homes [Wal08]. Standing on the shoulders of artificial
intelligence, control theory, mechatronics, sensor technologies, and etc., they are becoming qual-
ified for more and more tasks. And even though their role in our lives may still be marginal,
some forecasts identify Robotics as one of the ‘Essential-Eight’ technologies that will revolu-
tionize our societies and businesses [Lik20]. Robots are appearing in various indoor and outdoor
locations, where they share the same space with human beings. They are being developed to
carry goods and parcels in urban areas, to ferry medications and other supplies in hospitals, or
to give company to elderly or disabled people.

A look at the numbers reveals that the market for service robots and other autonomous
mobility devices is growing rapidly. According to a market research report, the global market
for autonomous last-mile delivery robots is expected to grow as much as seven-fold in the next
ten years [PS20]. Until then, autonomous vehicles will replace traditional vehicles and Robo-
taxis will serve populated urban areas. There are predictions that one in every ten vehicles will
be self-driving by 2030 [Sta19]. Smart wheelchairs are also becoming more widespread among
disabled people, which is priceless.

This is while one of the biggest challenges ahead for these industries is human safety. All of
these mobility devices, regardless of being fully- or semi-autonomous, should be able to perceive,
analyze, and predict the behavior of its surrounding people and perform actions that are both
safe and socially-acceptable.

There are also specific crucial scenarios where the robot should operate in a high-density
crowd and closer proximity to humans. As the risk of contact increases in these scenarios, higher
levels of prediction accuracy are required. For example, you can imagine the following two
examples:

(a) a delivery robot is carrying a package in a commercial area but finds itself trapped in a
crowd moving in a unidirectional flow, as a building needs to be evacuated,
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(b) a semi-autonomous wheelchair transporting a person with a disability navigates a bidirec-
tional flow of pedestrians moving in a train station’s corridor.

In both scenarios, the inefficiency of the robot to make a good prediction of the motion of people
may lead to one of these two problems:

(a) The robot performs high-risk actions, makes undesirable contact with people, or makes
them feel uncomfortable,

(b) or it takes the most trivial cautious action, which is ‘no action’!

The second problem is known as the “freezing robot problem” and occurs when the robot cannot
find a trajectory that it believes is safe to execute [TK10]. Thus, to avoid the problem, it is
important to forecast the future trajectories of surrounding pedestrians and to take safe actions.

1.2 Problem Statement

In this thesis, we address the problem of (short-term) human trajectory prediction (HTP)
in crowded scenarios: “Given the motion trajectories of one or multiple pedestrians in a scene,
surrounding a robot, it needs to predict, in real-time, the spatio-temporal state of the pedestrians,
and infer their short or mid-term intentions (destinations)”.

In some cases, other auxiliary information, such as velocity of pedestrians or scene context
properties, can be used to enhance the prediction quality. The prediction horizon that we consider
in this dissertation is in order of few seconds (normally up to five seconds). A three- to five-second
time interval is also used to capture the historical trajectories of pedestrians.

The trajectory prediction is based on the history of the two-dimensional location of pedes-
trians within the world- or robot- coordinate system, which is assumed to be provided by a
‘perception’ system. A notable challenge in our problem is that perception is done on board of
the robot, causing a number of limitations. First of all, the robot’s camera, or image sensor, is
typically installed at a lower height than average human height. As a result, part of surrounding
pedestrians may be partially or fully occluded. Also, since the robot is moving, the estimated
geometric calibration of the robot might be noisy. Due to this noise, estimations of the velocity
of target pedestrians may be affected significantly, and the tracks become jerky. Further, ow-
ing to the limited capacity of the onboard processor, the sensing accuracy can be compromised
sometimes. Therefore, the trajectory prediction system should be able to handle noisy input
trajectories, ID-switchings, and short tracks.

It is important to note the difference between the definitions of a ‘path’ and a ‘trajectory’. A
path is a purely geometric sequence of locations, while a trajectory is a time-parameterized path
with a sequence of time-stamped locations. The robot uses the predicted trajectories to estimate
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the probability of a collision at a certain future time and to plan a safe and collision-free motion
trajectory. To come to a conclusion about the solution to this problem, we would like to look at
the nature of human motion and the challenges in the prediction problem.

1.2.1 Individual Cues

The motion of a pedestrian is impacted by multiple individual cues. They include physio-
logical factors, such as age, weight, height, disabilities. These variables can affect the person’s
speed and how he or she moves in a group as well as the social distance that they keep with
others. Non-physical factors such as personality type, mood, level of consciousness, etc., can
also influence human motion. According to a study by Bera et al., different personality traits of
pedestrians, such as being shy, aggressive, tense, etc., can be associated with different trajectory
patterns in crowds [BRM17].

Some studies suggest that cultural factors also substantially impact pedestrian dynamics.
The personal space, walking speed, avoidance side (the side of passing other pedestrians in situ-
ations of collision avoidance), and group formations might be different among different cultures
and regions [Kam11]. Chattaraj et al. [CSC09] performed some experiments under laboratory
conditions in India and Germany and found meaningful differences in the crowd behaviors of
tested persons. The study suggests, for instance, that “participants India have been less sensitive
to increase in density compared to the German participants” and that “the minimum personal
space for the first group was less than that for the second group.”

1.2.2 Scene Context (Environment Factors)

The path a pedestrian takes also depends on the scene context. The presence of walls, fence
and other obstacles can make some areas inaccessible, some surfaces might not be walkable
and there might even be preferences to walk on other types of surfaces, such as the pavement
versus grass area. Additionally, weather conditions and lighting can impact the preferences of
pedestrians. The temperature difference between a shaded area and a sunny area can affect the
pathways.

Moreover, the type of environment can impact the decisions of pedestrians. A (small) so-
ciological study conducted in France [MBG+13] indicates that the decision of a pedestrian to
illegally crossing a street depends on their perceptions of the pleasantness and safety of public
spaces. For example, the pedestrians tend to feel safer in city center environments rather than
countryside and outskirts, which may substantially impact their behavior.
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1.2.3 Social Interactions

The motions of pedestrians sharing a common space are dependent on a range of different
interactions. Collision avoidance might be considered as the most common and also the most
important type of interaction between moving humans. But there are also other collective be-
haviors that are essential in modeling crowd activities. Grouping behavior is very frequent in
crowds. A (limited) study by Moussaid et al. [MPG+10] observed that 70% of pedestrians in a
street walk with other persons. The Leader-Follower behavior is more common in dense crowds
or narrow passages, where there is no room to overtake other pedestrians. Crowd flows can also
emerge in situations with a large number of pedestrians.

This variety in social interactions makes motion prediction a complex problem. Each type
of interaction may require a different model or set of parameters or may represent a different
dimension of a large latent variable.

1.2.4 Multi-Modality

Human motions are multi-modal in nature. It means that given the same set of observations,
there might be multiple plausible distinct paths for each pedestrian. This multi-modality can be
attributed to interactions with other agents. For example, when two pedestrians walk towards
each other, several modes of behavior develop, such as moving to the left or moving to the right.
Likewise, pedestrians can have many choices of paths at intersections. Thus, a well-designed
trajectory prediction system should cope with this multi-modality and consider returning a set
of plausible paths rather than a single answer.

1.3 Mathematical Formulation

From a mathematical point of view, the human trajectory prediction problem can be consid-
ered as a sequence forecasting problem. Assuming the prediction variable (typically, the position
of a pedestrian) to be denoted by x, the past sequence of observations x−τ :0 is used to predict
the future sequence x1:T , where [−τ, 0] and [1, T ] are the time interval of the observed (past)
sequence and predicted (future) sequence.

It is worth making an analogy to other sequence forecasting problems. A relevant example
can be the prediction of stock markets using Technical Analysis methods [Mur99], where the
changes and patterns in recent market prices are used to predict future prices. In some sequence
predictions, the function can even take Auxiliary Information to enhance the prediction accuracy.
This is the case of ‘air temperature forecasting’, where in addition to the past temperature
values (i.e., x), other variables such as the latitude of the place, wind speed, humidity, etc., are
considered in the prediction model.
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Returning to our problem, here, the prediction variable is the position of pedestrians. In ad-
dition to the past location of the pedestrian of interest (aka POI) xi−τ :0, three sets of information
can be given to the prediction function:

1. location of other pedestrians in the scene {X¬i−τ :0}, that can be used to compute the social
interaction features,

2. personal attributes of the pedestrians such as velocity, head orientation, body pose or even
estimated age and gender of the person,

3. scene context properties such as environment geometry and obstacles or semantic infor-
mation such as crosswalks, sidewalks, traffic lights, and etc.

We consider the two latter information, in general, as auxiliary variables and denote them
by A. Hence we formulate the human trajectory prediction problem with the following abstract
function:

x̂i1:T = f(xi−τ :0,X¬i−τ :0,A−τ :0|θ) (1.1)

= f(X−τ :0,A−τ :0|θ) (1.2)

that returns x̂i1:T as the predicted locations of the ith agent for the next T time-steps, where θ is
the parameters of the prediction function. Also a probabilistic method, estimates the distribution
of x̂i1:T with the following density function:

p(x̂i1:T |X−τ :0,A−τ :0; θ) (1.3)

In the next chapter, we review different deterministic and probabilistic functions for human
trajectory prediction.

1.4 Applications

The prediction of human trajectory motions has multiple applications. This includes the
examples that we have presented in the previous sections and also other critical applications
that need different levels of prediction of human trajectories.

1.4.1 Autonomous Mobility

Mobile autonomous systems of any type that work in a shared space with humans need to
predict people’s motion and trajectories.

Service Robots that work in homes, restaurants, shopping malls, hotels, hospitals, and
healthcare centers, should be aware of the presence of people and ensure their safety and comfort.
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Pepper [Rob14], a semi-humanoid robot developed by Softbank Robotics (formerly Aldebaran
Robotics), is able to welcome customers in shops. REEM [Rob05], a wheeled humanoid service
robot is placed in shopping malls and exhibitions to give service and entertain people. Another
mobile service robot, LoweBot [Lab16], developed by Lowe’s Innovation Labs and Fellow Robots,
can bring customers to the location of requested products in a hardware store. Gita [For20], a
new service robot, is programmed with pedestrian etiquette and is able to pair with and follow
a person (its owner) and carries up to 40 pounds of cargo.

There is no doubt that the prediction can be less or more critical depending on the type of
environment, the robot’s physical characteristics (weight, size, material, speed, etc.), and also the
speed, density, and activity of the surrounding people. Due to the height of the sensors on service
robots, and the limited field-of-view (FoV), there might be significant occlusion that complicates
the detection and prediction of the people. The mobile robots usually do not come with high
processing power, making it even more complicated to perform the detection, prediction and
navigation algorithms in real-time. In this context, more accurate prediction of the near-future
evolution of the environment helps the robot to reduce its re-planning effort [PSS+16].

Autonomous Wheelchairs are smart power wheel-chairs (PWC) with some level of intel-
ligence and autonomy for helping disabled people. The semi-autonomous version comes with a
shared-control system that is responsible for executing the orders of the wheelchair user while
handling low-level tasks such as collision avoidance and the smoothness of motion. The predic-
tion of surrounding people is then needed to ensure the safety of the user and the people around
them.

Self-Driving Vehicles (SDV) also need to predict the motion of Vulnerable Road Users
(VRU), that include pedestrians, cyclists, and riders of motorized two-wheeler and their passen-
gers. Given that the vehicles move at higher speeds (compared to service robots) and can cause
more severe harm to road users, trajectory prediction plays an even more important role. An
essential question when a vehicle sees around the street is: “Will the pedestrian cross?” [KG14]

The Society of Automotive Engineers (SAE) [int16] has proposed a classification of au-
tonomous vehicles with six levels, starting from zero-level: no automation to level five: full
autonomy. The motion prediction system could be useful at different levels of autonomy, and as
autonomy increases, the system would be required to improve its prediction of the surrounding
environment to achieve the safety of passengers and VRUs. Additionally, recent motorcycles
have incorporated motion prediction technology [LC18].

1.4.2 Surveillance systems

In places of security interests, such as airports, train stations, and shopping malls, the surveil-
lance system needs to track people or make activity recognition for retail analytics or crowd
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control. The tracking system might fail to track individuals due to occlusion of pedestrians,
changes in lighting or pedestrian appearance, blind spots of multiple cameras, and etc. Then
the tracking system can leverage the crowd motion prediction to associate detected persons to
the tracks, especially as the crowd density increases. This can help to reduce the ID switches
and increase tracking accuracy. The prediction system can also be used for the detection of
anomalous behaviors and alarming.

1.4.3 Crowd Simulation

The simulation of human crowd motion is useful in multiple domains, such as simulation
software, video games, and virtual reality (VR) experiences. Generally, the goal of a crowd
simulator is to populate a virtual scene with a crowd that exhibits visually convincing behavior.
It is also possible to simulate the realistic motion of agents with a human trajectory prediction
system trained on real data. We discuss this in detail in Chapter 6.

1.4.4 Our Target Application

In this thesis, we focus on the Robot Navigation problem in medium- and high-density
crowded scenarios. We are mainly interested in service robots (such as Pepper, the humanoid
robot) and autonomous wheelchairs, that share space with humans. Mobility devices of this
type move at close speed to human walking or jogging speed. As we discussed before, in our
application, due to the motion of the robot, and the occlusion of surrounding pedestrians, the
inputs of the prediction system can be imperfect and, it should be able to deal with noisy input
trajectories, ID-switchings, and tracks with short duration.

1.5 Contributions

This section summarizes the key scientific contributions of the thesis. These contributions
which are published at peer-reviewed conferences and journals are achieved through collabo-
rations with other researchers and co-authors that are stated in each Chapter. This thesis is
focused on the problem of pedestrian motion prediction for navigation of robots in crowded
scenes.

• Assessing the complexity in Human Trajectory Prediction datasets: before proposing our
prediction model, we address the question of evaluating how complex is a given human trajectory
dataset with respect to the prediction problem. For assessing a dataset complexity, we define
a series of indicators around three concepts: Trajectory predictability, Trajectory regularity,
Context complexity. We compare the most common datasets used in HTP in the light of these
indicators and discuss what this may imply on benchmarking of HTP algorithms.
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• A multi-modal human trajectory prediction model based on Generative Adversarial Net-
works: we propose a novel approach for predicting the trajectory motion of pedestrians interact-
ing with others. It uses a Generative Adversarial Network (GAN) to sample plausible predictions
for any agent in the scene. We have designed a toy example dataset of trajectories that can be
used to assess the performance of different methods in preserving the predictive distribution
modes.

• An approach for imputing occluded crowd structures from robot sensing: we consider
the navigation of mobile robots in crowded environments, for which onboard sensing of the
crowd is typically limited by occlusions, and for that, we address the problem of inferring the
human occupancy in the space around the robot, in blind spots, beyond the range of its sensing
capabilities. We propose a solution to sampling predictions of possible human presence based
on the state of a fewer set of sensed people around the robot as well as previous observations of
the crowd activity.

• A novel data-driven crowd simulation method that can mimic the observed traffic of pedes-
trians in a given environment: we present a novel data-driven crowd simulation method that can
mimic the observed traffic of pedestrians in a given environment. Given a set of observed tra-
jectories, we use a recent form of neural networks, Generative Adversarial Networks (GANs), to
learn the properties of this set and generate new trajectories with similar properties. We define a
way for simulated pedestrians (agents) to follow such a trajectory while handling local collision
avoidance. As such, the system can generate a crowd that behaves similarly to observations
while still enabling real-time interactions between agents. Via experiments with real-world data,
we show that our simulated trajectories preserve the statistical properties of their input.

• Analyzing crowd behavior in the presence of robots: we give explanations about a crowd-
robot experiment conducted in collaboration with University College London (UK) to under-
stand whether and how pedestrian crowd dynamics will be changed in the presence of a robot.
This can give insight into designing prediction systems in high crowded scenarios.

1.6 Thesis Overview

This dissertation is structured as follows:

— In Chapter 2, we study the state-of-art solutions proposed for this problem. This includes
proposing a taxonomy of models to see better the relation between different approaches.

— In Chapter 3, we address “assessing prediction complexity in Human Trajectory datasets”.
The Chapter is short-named as OpenTraj.

— In Chapter 4, ‘Social-Ways’ our GAN-based multi-modal pedestrian trajectory prediction
model is presented.
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— Chapter 5 is dedicated to our novel approach for “imputation of occluded crowd structures
from robot sensing”.

— In Chapter 6, we present our “data-driven crowd simulation algorithm based on Generative
Adversarial Networks.

— In Chapter 7, we describe the crowd-robot experiment conducted at the PAMELA lab of
UCL along with some lessons learned that can be used in designing prediction systems in
high-density crowd scenarios.

— Finally, in Chapter 8, we give a discussion upon the results of this thesis, the limitations
and future work. And, in the end we present the conclusion to summarize the contributions.

Note that, there might be variations between notations used in different chapters.
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Chapter 2

RELATED WORK

2.1 Introduction

This chapter presents the state-of-the-art and the work related to the human motion pre-
diction problem. We propose a taxonomy of methods for better understanding and classifying
different approaches to the problem. In the sections that follow (Sec. 2.3 - 2.7), we try to cover
a wide variety of solutions.

We begin with simple-dynamic models in Section 2.3, such as Constant-Velocity and Kalman
Filtering. Then we review some of the research on crowd models that consider the interactions
among agents for prediction of crowd motion in Section 2.4. We discuss Planning-based al-
gorithms in Section 2.5. Later we review statistical pattern-based models and the family of
approaches that include neural-network and other machine learning algorithms are reviewed in
Section 2.6. In the Section 2.7 we focus on Reinforcement Learning methods and then go on to
multi-modal prediction approaches in Section 2.8. We conclude the chapter through Section 2.9.

2.2 Taxonomy of Approaches

Here we present a taxonomy for human motion prediction models and the illustration of
taxonomy is provided in Fig. 2.1. In the Fig. 2.1 we map various families of models, for better
understanding their relationships. We begin by reviewing major factors considered for catego-
rization for the illustration, and later we discuss other important aspects of prediction models.
We mostly follow the surveys on: “Human Motion Trajectory Prediction” by Rudenko et al.
[RPH+20],“Microscopic Crowd Simulation Algorithms”, by van-Toll and Pettré [vTP21], and
“In-depth Analysis of Deep Learning Models for Human Trajectory Forecasting” by Kothari et
al. [KKA21] for this section.

2.2.1 Knowledge-driven vs. Data-driven

Primary factor in categorizing prediction models depends on the extent of reliance on on the
data. In the Fig. 2.1, this can be seen on the vertical axis with color from blue to green repre-
senting the extent. At the bottom are Knowledge-driven category designed by human experts
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Figure 2.1 – Taxonomy of approaches for modeling and prediction of human motion

and their parameters optimized and adjusted manually. Dynamic models, planning-based mod-
els, and crowd models fall under this category. On the other hand, Data-driven category learn
the patterns in data without much human-intervention. Neural-Networks based and statistical
pattern-based models fall into this category. The prediction classes are more overlapping in na-
ture, and hence no strict boundary line can be imposed among them. For example, while the
neural-network models are designed by experts a more recent AutoML methods aim to make
the process more automated and less dependent on human design [HZC21].

An important approach like Reinforcement Learning (RL) extend to both sides. In the tra-
ditional RL models, the reward function is designed manually, while in inverse RL and imitation
learning models the rewards rely more on data. In a more recent Deep Reinforcement Learning
neural networks are used for RL.

2.2.2 Deterministic vs. Stochastic

An important consideration in categorization in prediction models is the way uncertainty is
handled, based on which the models may be deterministic or stochastic. The horizontal axis of
Fig. 2.1 softly distinguishes between deterministic and stochastic models. The deterministic mod-
els, on the left of the figure, provides a single trajectory for a prediction, for a given observation
input. Majority of crowd models (e.g., [vdBGLM11]) and dynamic models (e.g. constant-velocity
model) are deterministic. Even the neural network based models which returns a single future
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trajectory for the input data is a deterministic model [XPG18].

The Stochastic models, deal with the uncertainties while making predictions. In general,
stochasticity originates from three different sources:

1. Input: here the model is input from a sampled value from a standard probability distribu-
tion (e.g., Gaussian). Even though the model is deterministic, the results will be stochastic
in nature as the input samples are from the predictive distribution. A good example is ap-
proaches based on a deep generative model, such as Social-GAN [GJFF+18]).

2. Internal: here the model and the algorithm may be the source of randomness. For ex-
ample some planning-based models [GSLS11] and some prediction algorithms based on
Reinforcement Learning (RL) [CH10].

3. Output: here the model’s output characterizes a probability distribution. For example,
Alahi’s Social-LSTM [AGR+16] returns the parameters mean, standard deviation and
correlation coefficient of a a Bivariate Gaussian distribution from which one can sample
and get an arbitrary number of predictions.

2.2.3 Uni-Modal vs. Multi-Modal

Prediction systems may be categorized based on whether they are uni-modal or multi-modal.
Situations where the pedestrians follow several paths and/or interacts in multiple ways with other
agents leads to multi-modality. For example, when two pedestrians are walking towards each
other they may move to the left or move to the right. Likewise, they may have many choices of
paths at intersections.

Ignoring this fact, may lead to problematic circumstances. For instance, a wrong uni-modal
prediction can increase the risk of collision between pedestrians and/or vehicles. The determin-
istic and stochastic families can return uni-modal or multi-modal predictions. Examples of uni-
modal deterministic approach includes the Social-Forces crowd model [HM95] and Transformer
networks for trajectory forecasting [BFO20]. A neural network that returns multiple parallel
prediction outputs [DT18], and the multi-hypothesis planning-based algorithm that computes
the homotopy classes [GSLS11] are examples of multi-modal deterministic models.

Stochastic models with uni-modal solutions, usually return their outputs in form of a para-
metric distribution, for example Social-LSTM [AGR+16] and Kalman Filter model [Kal60].
Popular stochastic multi-modal approaches are generative models like Generative Adversarial
Networks, we elaborate on this in Section 2.8. Here the models learn the multi-modal distribution
of predicted trajectories, this is shown at the top right corner of the Fig. 2.1.

Reinforcement Learning, Pattern-based, and Planning-based prediction models include many
unimodal and multimodal models. The Crowd Simulation algorithms are uni-modal and deter-

33



Chapter 2 – Related Work

ministic, since they calculate and provide a single predicted motion for each agent. Likewise the
Dynamic models can also be categorized based on modalities.

2.2.4 Additional Categorization Factors

We can categorize prediction models based on the source of information, in addition to the
three factors mentioned above. Following the notation of prediction function in Eq. (1.2), the
system can take different auxiliary information (A) with the historical trajectories (X) of the
pedestrians: f(X−τ :0,A−τ :0|θ), where θ is the parameter of the prediction function.

• Social Interactions: Following the discussions in the Sec. 1.2 about the importance of
social interactions in modeling human trajectory prediction (HTP) systems, it may be found
that this is handled in number of ways in the literature. The work in [BHHA18, GHCG20]
do not use social interactions at all, while [PESVG09, GJFF+18] considers interactions with
neighboring agents, and some models considers interactions among the groups of agents as in
[YBOB11, BZC18]. Normally, the interactions are defined as a function of the relative position,
relative velocity, or relative orientation between two agents.

• Scene Context: Pedestrian behavior is highly influenced by the context surrounding them,
like the obstacles, walk surface types (eg. sidewalks vs. grass). The scene context information
is used in various ways in the literature. For example the model can be unaware of the static
environment, such as in [SG13, GJFF+18], be aware of obstacles, like in [TK10, BKR+16,
AGR+16], or handle semantic information such as in [SKS+18, DOLT20, SICP20].

• Pedestrians’ Intentions (Goals): Some prediction algorithms need an explicit notion of
the goal or intention of pedestrians, such as [YAJR+21, DOLT20, TLT21]. The goal estimation is
approached in different ways, depending on whether the scene context information is available.
The simplest approach when no scene context information is available is to extrapolate the
pedestrian’s motion and use it as the long-term goal for the prediction.

• Individual Cues: Along with the historical observation of the location of the pedestrian,
the individual cues can also be taken into account in a prediction model. Ma et al. [MHLK17]
used the gender (male or female) and age (young or old) attributes of pedestrians in their
trajectory prediction model. These attributes are populated by a visual classifier. Hasan et al.
[HST+18] found that adding short sequences of head pose estimation improves the trajectory
prediction.

• Discrete vs. Continuous Space: Some models work with real-valued locations of pedes-
trians [XPG18, SKS+18, ZQRX19], while others use discrete representations such as Grid-maps
[WJF15, AGR+16, XHR18]. Sometimes Polar grids are also used to model the surrounding of
agents [PPS+18]. Approaches using discrete maps may suffer from a reduced degree of accuracy
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in their modeling and prediction results.

Using the proposed taxonomy, we can analyze various approaches in the light of the application
needs. In the next six sections, we study these six families of prediction models in detail and
Sec. In 2.9 we summarize them briefly to reach conclusions on suitability of the approach to our
application.

2.3 Dynamic Models

Here we start with one of the simplest target object motion prediction models referred to
as Constant-Velocity (CV) model. CV assumes the pedestrian (or in general, a moving object)
will continue its motion with simple or no extra considerations like interaction between/among
agents, contribution due to the scene or any other. Regarding the prediction function, defined
in Eq. (1.2) we can rewrite the CV model as follows:

f(xi−τ :0,X¬i−τ :0,A) = xi0 + t vi0, (2.1)

where vi0 = dxi0
dt .

Despite being too naive, it is hard to argue that the model is outdated. A recent work, titled
“What the constant velocity model can teach us about pedestrian motion prediction” [SALK19]
made a comparison with some state-of-the-art methods and showed that the CV model can
perform on par and in some cases even outperform many approaches, on various datasets. The
authors also presented following valuable findings about the HTP task:

• the long motion history of a pedestrian is not relevant for making predictions, and

• the interactions between pedestrians are less relevant than commonly believed.

Multi-modal version of the CV model was presented by the authors, by adding zero-mean
Gaussian angular noises (with σ = 25◦) to Eq. 2.1. Constant-Acceleration (CA) model is an
extension of CV model. CA considers the acceleration (a higher order derivative) of the person.
Furthermore, a higher level of granularity can be achieved by taking into account the object
rotations around the z-axis. A model of this type is called Constant Turn Rate and Velocity
(CTRV or simply CT), which is more suitable for prediction of non-holonomic agents.

Using CT model alongwith the physiological constraints of a human [SZ09] one can calculate
the Maximum Pedestrian Movement Area as in [WGD+12] for a time interval of one second and
for different velocities (see Fig. 2.2 (a) and (c)). Intersection of this area with the prediction
area of a moving vehicle is used to estimate the collision risk at a given time-to-collision (TTC)
moment (see Fig. 2.2 - (b)).
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Figure 2.2 – Maximum pedestrian movement area. (a): Probable movement/location area of a
living being [SZ09]. (b): Intersection of predicted areas for pedestrian Ap and vehicle Ac. TTC
stands for time to collision. (c): Maximum pedestrian movement areas for a time interval of 1s.
[WGD+12]

Kalman Filtering (KF) [Kal60] which is the backbone of many tracking and robotics systems
deals with observation noise and inaccuracies, KF can be used together with the dynamic models
for prediction of objects. The algorithm is an implementation of the Bayes filter for a Hidden
Markov Model (HMM) with Gaussian distributions, and proposes two phases to predict and
update the motion state of an object iteratively over time using incoming measurements. For
predicting a trajectory one may use just the predict phase multiple times, while skipping the
update. The covariance matrix of the predicted states captures the uncertainty in the predictions.

Interacting Multiple Models (IMM) assumes the motion of a target to be modeled with
different dynamic models, in different circumstances. It assigns a probability of pi,j for switching
from motion model (i) to (j). The combination of IMM and (CV/CA/CT) models alongwith
Extended Kalman Filter (EKF) is studied in [SG13].
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2.4 Crowd Models

Crowd study focuses on the design and use of algorithms to understand, predict, or simulate
human crowd behavior. This family of algorithms is best suited for modeling interactions between
people (or agents). These models simulate large groups of people, and they may also be used
for prediction applications. Intuitively, the approach can be divided into two categories. One,
agent-based (microscopic) algorithms that models each person in the crowd as an intelligent
agent with its properties and goals; and two, flow-based (macroscopic) methods that model the
crowd as a single entity [TCP06]. The two categories have a different range of applications in
the entertainment industry like movies, animations, video games and in the architecture and
safety industry in designing public places.

Microscopic models are suitable for predicting pedestrian motion in situations with consid-
erable levels of pedestrian interactions. This could be where there is only one pedestrian in the
scene, or when the distance between pedestrians is large, here they act similar to the CV model.

We give an overview of the two large sub-categories for these approaches. With respect to
the categories defined in previous section, the majority of the crowd models, can be classified as
uni-modal knowledge-based models.

2.4.1 Social Forces

The Social-Force Model (SFM), proposed by Helbing and Molnar in 1995 [HM95], is one of
the most influential models in crowd simulation and robotics that inspired many later works.
The general principle is to make the agents navigate according to potential fields caused by
other agents through a repulsive force, which is also referred to as collision avoidance term,
while trying to keep a desired speed and orientation toward the goal through an attractive force.

Later Pellegrini et al. [PESVG09] proposed Linear Trajectory Avoidance (LTA) as an ex-
tension to SFM. The first main contribution was predicting the “Expected Point of Closest
Approach” between a pair of pedestrians and using that point as the driving force for decisions,
instead of modeling the pedestrians as energy potentials at their current locations. Second im-
portant contribution of this work is to make the agents move in the optimal direction instead of
just applying a gradient-dependent force.

SFM, also introduced an attraction force to model the interaction between agents in a group.
Later, Yamaguchi et al. [YBOB11] proposed an extension in which they suggested people in the
same group tend to stay close to each other and walk with similar speeds and in similar directions.
To detect whether two pedestrians belong to the same group, a set of hand-crafted features were
used with a Support Vector Machine (SVM) classifier [CV95].

37



Chapter 2 – Related Work

Figure 2.3 – Expected Point of Closest Approach between two moving agents p1 and p2. In this
example the closest approach has occured at t = 4

2.4.2 Velocity Obstacles

Concept of velocity obstacles was an important step to make the simulated agents smart. It
enhances the predictive ability of the agents by -linearly- extrapolating the location of neighbor-
ing agents. Such methods divide the velocity space of each agent into admissible and inadmissible
subspaces and use a cost function to find optimal admissible velocity for the agent. The idea was
initially proposed by Fiorini and Shiller [FS98]. A velocity-based collision-avoidance algorithm
was introduced in 2007 by Paris et al [PPD07]. This model introduces the inadmissible velocities
induced by each neighboring agent, and it uses a cost function to choose among the admissible
velocities. Later in 2008, van den Berg et al. [vdBLM08] formulated “Reciprocal Velocity Ob-
stacles” (RVO) to resolve the common oscillation problem in VO when applied to multi-agent
navigation. Optimal Reciprocal Collision Avoidance (ORCA) [vdBGLM11], the main successor
of RVO, transforms the mathematical definition of the collision-avoidance problem in order to
compute its optimal velocity analytically by the agent.

PLEdestrian approach, proposed by Guy et al. [GCC+10] has similarities to the ORCA, but
with an emphasis to emulate human behavior. In this approach, the optimal velocity for an
agent is computed analytically using energy minimization via ‘principle of least effort’ (PLE).
The energy function proposed measures the amount of ‘effort’ a pedestrian spends over time.
The effort of the candidate velocity depends on the time to first collision (TTC) and on the
estimated ‘detour length’ for steering the agent back to its goal.

Bayesian RVO (BRVO) [KGL+15] is the first online model using velocity obstacles to model
the trajectory of moving pedestrians in a robot environment to learn their motion parameters
and to predict trajectories via statistical inference techniques.
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Figure 2.4 – Velocity obstacles. Left: the velocity obstacles caused by B1 for A which is called
V OB1 forms a cone shape with its apex at VB1 . Right: The Reciprocal velocity obstacle (RVO)
has the same shape but its apex is located at a point between VB and VA.

2.4.3 Optimizing Model Parameters

With growing number of crowd modeling algorithms two key questions must be addressed:

1: How to optimize the model parameters?
2: How to choose a crowd model among the existing algorithms?

Wolinski et al. [WJGO+14] addressed these by introducing an optimization framework to find
the best set of parameters for a given model and the reference dataset. The framework is designed
with a good level of abstraction to handle different evaluation metrics for instance, microscopic
metrics like average/final displacement error (ADE and FDE), path length, inter-pedestrian
distance, progressive difference, and macroscopic metrics like vorticity and fundamental diagram
metrics that treats the crowd as a continuum entity. The prediction problem is formulated
through a parameterized function f , which takes in agents’ current location xi0, current velocity
vi0, goal zi (for 1 ≤ i ≤ N) and also the simulation parameters θ as it’s inputs and returns the
agents’ next location x̂i1 (sometimes together with next velocity v̂i1) as it’s outputs:

x̂1:N
1 = f(x1:N

0 ,v1:N
0 , z1:N |θ). (2.2)

The type and the number of parameters assigned to each agents by the algoriths can be
different. For example, the SFM assigns radius and comfort speed to each agent. Whereas, RVO
assigns radius, comfort speed, neighbor distance, and a time horizon for the collision between
agents to each agent.

Given the parameterized crowd model of Eq. (2.2), the goal is to find a parameter set θ∗

which leads to the closest match between the model output and the reference data H:

θ∗ = arg min
θ

E(x1:N
0:1 ,v

1:N
0 ,z1:N )∼H[d(x1:N

1 , f(x1:N
0 ,v1:N

0 , z1:N |θ))], (2.3)

where d is a function that measures the dissimilarity between ground truth and generated mo-
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Figure 2.5 – An optimization framework for crowd algorithms [WJGO+14]. The approach op-
timizes parameters (here θ = {pi, pj , pk}) to match the results with the reference data. The
framework has 3 components: an optimization module, a metrics module, and the reference
data (H).

tions. The samples in Eq. (2.3) are consequent frames of the reference data. Experimental results
on multiple scenarios with different metrics show that RVO performs better by a substantial
margin compared to SFM.

In some prediction approaches, such as Pellegrini’s LTR model [PESVG09], the parameters
are shared between the agents, which results in a simpler optimization problem with a much
fewer number of parameters. At the same time, this might compromise the performance of the
prediction.

2.5 Planning-based Models

The planning-based models present two-phase prediction algorithms that first, explicitly
reason about the intention of pedestrians, and then find a trajectory that leads the agent toward
this goal location. The trajectories are usually optimized according to user-defined criteria, such
as path length, smoothness, etc.

The authors of [GSLS11] proposed a multi-hypothesis model for predicting pedestrian trajec-
tories in crowded street scenes. In the first phase, they estimate the pedestrian goals by finding
the intersections of street side lines, with infinity points along the street. Then they generate
a set of plausible long-term motion plans that do not include collisions, redundancies, and un-
necessary loops. This is done by constructing a neighborhood graph, in which each grid point
on the ground not occupied by an obstacle is a vertex, and each pair of neighboring points
are connected by an edge. Edge weights are the costs of moving from one vertex to another.
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The graph vertices and edges are augmented with attributes called winding numbers/angles,
concepts imported from topology that represent different configurations of passing through ob-
stacles [HCGR11]. Finally they use Dijkstra’s shortest paths algorithm [Dij59] to search the
augmented graph. (See 2.6 (b, c))

In [VVS17] the scene is modeled through a set of attractive and repulsive potential fields,
and Points of Interest (POI) are defined as some areas or spots whose attractiveness influences
pedestrian behavior, such as monuments, places of public interest, public transportation, and
etc. in the scene. Then a grid is defined for the observed area where each cell can take a different
attribute such as road, crosswalk, POI, obstacle, etc. A potential field is defined over the grid
map and finally the A∗ search algorithm [HNR68] is used together with a parametrized heuris-
tic function that encodes the path safety and distance. By adjusting this parameter, multiple
predicted trajectories can be obtained.

In [BF15] the agent’s intention are first estimated and then the resulting probability distri-
bution is used to predict the position of the agent in the future. The intention inference phase
employs a Bayesian estimation framework and the trajectory prediction phase extrapolates the
agent’s position recursively, using a Probabilistic Road-Map (PRM) [KSLO96].

In [KAHS16] the goal of an agent is modeled as a 2D region in R2 and is inferred from a finite
set of goals which is known a-priori. The posterior discrete distribution of goals is estimated
using a Rao-Blackwellized Particle Filter (RBPF) [DDFMR13]. The trajectory prediction is
then modeled using a Markov Decision Process (MDP) that abstracts a rational navigation
into a policy function. This function specifies the optimal ‘move direction’ for reaching the
goal as quickly as possible, while satisfying environment constraints and pedestrian’s contextual
preferences. Depending on a hyper-parameter α the policy assigns probabilities to (sub)-optimal
plans. If α → ∞ it will assign nonzero probability only to the optimal plan (shortest path).
On the other hand if α→ 0, the policy becomes uniformly random. It is worth noting that the
shortest path is not necessarily unique. The method uses different cost values for each surface
type (sidewalk, crosswalk, road, grass), and also handles time-dependent information such as
traffic signals.

In [RPA18] the interactions between agents in the scene are also taken into account using
the social forces model. In this work, the previously learned stochastic policy is used to sample
K joint paths.

2.6 Statistical Pattern-based Models

In this section we review another family of models that learns the prediction function from
observed agent trajectories through approximation functions using machine learning algorithms.
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(a) (b) (c)

Figure 2.6 – Planning-based trajectory prediction. (a): Using Probabilistic Road-Maps in [BF15]
for predicting agent positions in the future. (b), (c): Multi-hypothesis motion plans, using ho-
motopy classes in [GSLS11].

These models follow the sense-learn-predict scheme, in contrast to planning-based methods that
follow a sense-reason-predict scheme [RPH+20]. The main motivation is that hand-tailored de-
terministic models may fail to adapt to a wide range of contexts compared to machine learning-
based techniques that benefit from learning using large human motion datasets.

The approaches in this category mostly rely on neural networks. However, we begin by
reviewing pattern-based approaches of machine learning and then dive into the ocean of neural
network models. These approaches allow us to learn, identify patterns and make decisions with
minimal intervention from humans.

2.6.1 (Conventional) Machine Learning Models

In this section we take a look at non-neural network models.

Support Vector Machines (SVM) [CV95] is maximum margin seperator method which is
applied to human trajectory prediction in [XWF15]. SVM approaches classification problem
by finding the hyperplane between two classes that maximizes the margin. The authors use
a modified version of the Edit distance (originally presented for quantifying the dissimilarity
between two strings) to trajectories. They use Edit distance, to estimate a minimum number of
insertions, deletions, and value changes needed to turn one discretized trajectory into another.
Later K-medoid algorithm (a clustering algorithm similar to k-means where instead of the mean
as cluster center uses an element of the cluster as the representative of the cluster) is applied
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(a) Movement prediction for one player (No. 16).
The prediction countours are shown in red.

(b) Movement prediction for all the players of the
two teams.

Figure 2.7 – Movement prediction for soccer players using Kernel Density Estimation [BLM19]

to cluster the, training, trajectories . After this SVM classifier is trained using these trajectory
prototypes, newly observed trajectories are matched and classified to one of the categories and
rest of the prototype used as the predicted motion.

Gaussian Processes (GPs) and its variants are also used for the prediction of human trajec-
tories. A Gaussian Process is a collection of random variables with any subset of them having
a joint Gaussian distribution. The authors of [ESR09] proposed to model changes in pedestrian
positions (the displacements), given their current position, with GPs. The training trajectories
are clustered based on the associated entry point into the scene and then a separate model is
built for each cluster. The conditional distribution over displacements is then estimated given
the current position and the cluster membership.

Interacting Gaussian Processes (IGPs) was introduced in [TK10] by Trautman and Krause.
The model capturing non-Markovian nature of the agent trajectories is used for predicting the
whereabouts of goal-driven social agents in crowds, here the parameters are learned from training
data. The IGP distribution is obtained by coupling the individual GPs and by multiplying them
in an interaction potential which is the product of Gaussian functions of the euclidean distance
between all pair of agents. Vemula et al. [VMO17] developed IGP using real observations to
learn a local interaction model that encodes How agents move based on How populated their
vicinity is.

Kernel Density Estimation (KDE) is a probabilistic tool for predicting agents’ positions.
In [BLM19] Brefeld et al. obtained tables of reachable locations according to different speeds
and time intervals for the soccer players and then proposed to incorporate these tables into a
probabilistic movement model using KDE. An example of a prediction of soccer players after
one second can be found in Fig. 2.7.
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2.6.2 Neural Networks

“The terms (Deep-) Neural-Networks and Deep Learning are used interchangeably in the litera-
ture. They basically refer to a concept of Artificial Neural-Networks dating back to 1940s. The
current term, ‘deep learning’, mostly refers to the larger number of layers compared to shallow
networks used until 3 decades ago.” (Goodfellow et al. [GBC16])

The “Universal Approximation Theorem shows that theoretically a neural network (with at
least one hidden layer, and enough number of hidden units) can approximate any measurable
function, to any desired degree of accuracy” [HSW89]. With the advent of deep neural networks
and in particular, after successful developments of deep learning systems like many domains,
the field of human trajectory prediction has witnessed phenomenal progress in recent years.

Multi-layer perceptrons (MLP) are a type of Feed-Forward Networks applied to a range of
applications like diagnostics, control systems, pattern recognition [DBR09], time series predic-
tion [KLSK96], handwritten character recognition [PS10], speech recognition [BDMFK91], and
natural language processing [Ma02]. Earlier MLPs have been applied to the human trajectory
prediction problem to learn a mapping between the past (observed) and future (predicted) tra-
jectories [GDB+14]. A trajectory with n timesteps is used to learn and to predict m timesteps
of the trajecory.

Recurrent Neural Networks (RNN) and their variants, Long Short Term Memories (LSTM)
[GJ14] and Gated Recurrent Units (GRUs) [CGCB14], have shown promising results in sequence
prediction tasks such as speech recognition [CBCB14] and machine translation [BCB14]. The se-
quential nature of motion has motivated the use of RNNs for the trajectory prediction task. The
Social-LSTM architecture [AGR+16] associates each agent to an LSTM network and a social
pooling aggregates the hidden states of the neighboring agents, to form an interaction feature.
Then, each agent interaction feature is combined with its hidden state to predict positions for
the future frames, with another LSTM network. In [PPS+18], LSTMs are used to capture the
evolution of single trajectories, the interaction history is handled through an LSTM using his-
tograms of closest distances over an angular discretization of the surrounding, the local obstacles
are embedded in an occupancy grid. The system overview of this model is shown in Fig. 2.8.

Even though the recurrent networks provide promising results they have an important prob-
lem of processing input sequence in order, thus making them impossible to handle data in
parallel. This becomes crucial bottleneck, especially when the input sequences become longer.
This issue lead to use of Convolutional Neural Networks (CNNs) instead of RNNs for sequence-
to-sequence mapping problems. WaveNet proposed for generating raw audio waveforms in a
text-to-speech (TTS) system [ODZ+16] is one successful application of this. Taking the cue
from here CNN models were later used in trajectory prediction as well [NM19]. Here a simple
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Figure 2.8 – System overview of Social-LSTM model [AGR+16]

CNN network first embeds the trajectory histories, applies the multi-layer convolutions, and
decodes the hidden representation at the output to generate all the future time-steps at once.
This model doesn’t use any social or scene context. The Convolutional LSTM networks (Con-
vLSTM) which replace the linear operators in LSTMs with convolutional operators, have been
used in [Li17] for human trajectory prediction.

Attention mechanism is another interesting concept used to measure the interdependence
among elements in a system (agents in our case). Attention has been applied in trajectory pre-
diction, and we use it in our proposed system explained in chapter 4. Social-Attention [VMO18]
proposes a prediction model capturing the relative importance of each person while navigating in
the crowd, irrespective of their proximity. The groups of agents are modeled as Spatio-temporal
graphs where spatial and temporal edges are associated with RNNs. Temporal edges capture
the evolution of single humans while spatial edges capture the evolution of agent-to-neighbor
relationships. These features are combined linearly to produce an influence score used in the
temporal network. Another method, Crowd Interaction Deep Neural Network model [XPG18],
proposes to weight the motion features of pedestrians based on their spatial affinity.
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Transformers have an encoder-decoder architecture proposed for sequence-to-sequence prob-
lems without relying on recurrent networks. Transformers leverage the attention mechanism.
Encoder and decoder each consist of a set of layers that sequentially compute the self-attention
among the layer inputs and pass them through a feed-forward layer. The first transformer model
consisted of six encoders and six decoders and outperformed the Google Neural Machine Trans-
lation model on multiple tasks [VSP+17]. The authors of [GHCG20] showed that transformers
can give competitive results in trajectory prediction task as well. The model did not take into
account the social interactions among the agents.

We review “deep generative models” and “deep reinforcement learning” models in the fol-
lowing sections.

2.7 Reinforcement Learning

Reinforcement Learning (RL) [SB98] is a branch of machine learning in which agents learn
from interacting with an environment by trying to maximize a notion of cumulative reward.
The problem is usually formulated as a Markov Decision Process (MDP). The framework allows
the system (e.g. a robot) to directly infer the navigation signals from perceptions, therefore
it does not have an explicit notion of trajectory prediction. Chen et al. [CLEH17] proposed a
Deep RL framework to learn navigating policies in crowded scenarios. They designed a fully
connected neural network to estimate the value function in the RL. A value function, represents
the expected reward of the agent given its state and the policy it followed. The authors of
[CLKA19] proposed an improved framework that jointly models human-robot and human-human
interactions and in [KGM+20] the authors model grouping of behaviors in pedestrian groups
avoid collisions using an RL algorithm.

In contrast to the pure RL framework, other methods have been proposed to imitate and
learn from human (or expert, in general) behavior. The study of Inverse Reinforcement Learn-
ing (IRL) (also called Inverse Optimal Control (IOC)) aims to learn the reward function from
demonstrations by an expert [NR+00]. Chung et al. [CH10] have proposed a framework, to de-
scribe the relationships between pedestrian behaviors and environments. They integrate spatial
effects in the pedestrian model in their IRL formulation to estimate the cost weighting of each
spatial effect. Kitani et al. [KZBH12] have proposed an IRL approach to learn a feature-based
cost function that captures agents’ motion preferences for instance walking on the sidewalk or
keeping distance from the parked cars and so on. In more recent works, the Safe-Critic framework
[vdHNWG19] uses GANs with IRL to generate realistic and safe (or collision-free) trajectories.
The Imitation Learning (IL) tries to directly extract a policy (a mapping from state to action)
from data, unlike in RL which first learns a reward function and then apply the planning to
generate the predictions. Building upon this, Generative Adversarial Imitation Learning (GAIL)
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methods [HE16] take advantage of GANs to form an adversarial training loop between a policy
Generator and a Discriminator. GAIL learns to discern ‘expert’ (or real) actions from that of
‘agent’ (or fake) actions. The Socially-Aware GAIL [ZSSZ18] approach, proposed by Zou et al.
generates multi-modal socially acceptable trajectories via a learned reward function.

2.8 Multi-Modal Prediction

Predictive distribution of human trajectories is not single mode, that is the pedestrian might
take one of the several potential trajectories. Hence, we are interested in models which return
multi-modal predictive probability distribution of trajectories rather than a single prediction.

Multi-modal, here, does not pertain to multiple information modalities (or sensor types) as
used earlier in multi-modal learning. Modality here refers to mode in a probability distribution.
In many situations, the predictive distribution of a pedestrian motion is inherently multi-modal,
e.g., at crossroads. Without proper modeling of multi-modality, a trajectory predictor, given
observed trajectories with multiple possible outcomes may simply average all possible outputs.

Now we turn our attention on to generative machine learning models. A generative model
models How the data is generated, and reflects the underlying causal relationships. In motion
prediction this can be achieved by learning the joint distribution of P (X, X̂), where X and X̂
being the observed and future trajectories, respectively. To further elucidate a generative model
will be able to generate new photos of animals that look like real animals, while a discriminative
model tells a dog from a cat. Mixture models like Gaussian Mixture Models (GMMs), Bayesian
networks, Autoregressive models, Boltzmann machines, Energy-Based Models, and Normalizing
flows are some of the generative machine learning models.

Generative Adversarial Networks [GPAM+14] (are refered as “the most interesting machine
learning idea over the past decade” [AHTZ20]), together with Variational Auto-Encoders [KW13]
it forms one of the two major families of Deep Generative Models, that learn data distributions
and produce new samples using neural networks. Both models and their variations have been
applied in: generating imaginary photographs of human faces [Gau14, KLA19, VK20], image-
to-image translation [IZZE17], improving the resolution of images [LTH+17], photo blending
[WZZH19], generation of new human poses [MJS+17], 3D object generation [WZX+16], video
prediction [VPT16], music generation [RER+18], and so on.

In general, deep generative models, map a standard probability distribution (e.g. a multi-
variate Gaussian distribution) to the manifold of data. The random variables drawn from this
distribution (usually denoted by z) are fed to the model. The models that have other inputs
than the random vector are called conditional. The block diagrams for a normal-GAN and
conditional-GAN are depicted in Fig. 2.9.
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(a) GAN (b) Conditional-GAN

Figure 2.9 – Difference between a Normal GAN (left) and a Conditional-GAN (right)

Conditional-GANs have been applied successfully to the task of human trajectory predic-
tion. Social-GAN is a multi-modal trajectory predictor proposed by Gupta et al. [GJFF+18].
The conditional-GAN samples trajectories by handling the interactions between the observed
pedestrians. This is done by pooling the GAN input random vector with a vector combining the
hidden representations of the other pedestrians trajectories. The block diagram is depicted in
Fig. 2.10.

Figure 2.10 – Block diagram of Social-GAN model [GJFF+18]. The model consists of a Generator
G that takes as input the past trajectories of agents, encodes the history of each person, and a
pooling module is used to model the interaction between the agents. The Decoder in G, takes as
input these encoded trajectories and the encoded social-interactions together with the random
vector z and generates the predicted trajectories. The discriminator D decides whether this
prediction looks real or not and returns a feedback to update the network weights.

Sadeghian et al. [SKS+18] proposed another model based on conditional-GANs, called So-
Phie, that introduces physical attention to be combined with the social attention. This mecha-
nism helps the model to learn where to look in a large scene and extract the most salient parts
of the image relevant to the path. In a follow-up model, called Social-BiGAT [KSMM+19], the
authors proposed to use two discriminators, one that operates at local pedestrian scale, and one
that operates at a global scene-level scale. The latent encoding is done using a technique called
BicycleGAN [ZZP+17], where the latent noise is mapped to an output trajectory, and then this
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q(z|x) z p(x|z)

p(z)

Figure 2.11 – System overview of a variational auto-encoder (VAE) that reconstructs a given
trajectory, using encoder (green) and decoder (blue) networks.

trajectory is mapped back to the original latent space, to make sure it will mirror a normal
distribution. Dendorfer et al. have proposed GoalGAN [DOLT20], a two-stage prediction model
that first predicts the most likely destinations of the agent and then generates a set of plausible
trajectories that route towards this goal.

Variational Auto-Encoders (VAEs) are another family of the deep generative models that
have shown promising results in this problem. They essentially use the auto-encoding architec-
ture (composed of an encoder network q(.) and a decoder network p(.), shown in Fig. 2.11) and
are trained to minimize the reconstruction error between input data and the encoded-decoded
signal. Unlike the standard auto-encoders, in VAEs, the hidden variable z represents a proba-
bility distribution that will be sampled to generate a variety of prediction outputs.

TheDesire architecture [LCV+17] handles this multi-modality using variational auto-encoders.
A Sample Generation Module based on CVAE generates samples of potential outcome trajecto-
ries and the Ranking and Refinement Module evaluates a learned long-term score associated to
the sampled trajectories and refines these trajectories, in an inverse optimal control scheme. The
Trajectron is another CVAE-based model designed by Ivanovic and Pavone [IP19]. The proposed
model, jointly reasons and generates a distribution of future trajectories for each agent in the
form of a GMM with 16 components. In a follow-up work, coined as Trajectron++ [SICP20],
the authors have incorporated the semantic maps and dynamics constraints into the system.
The experimental results did not prove that the dynamical constraints can improve significantly
the prediction accuracy of human trajectories. In a recent work, called BiTraP [YAJR+21], the
authors proposed another CVAE-based model that first estimates the goal of the pedestrians
and then use a bi-directional architecture to decode the predicted trajectories.

Beyond GANs and VAEs, other special types of deep generative models have also been
applied to human trajectory prediction problem. The Variational Recurrent Neural Networks
(VRNNs) [CKD+15] explicitly model the dependencies between latent variable across subsequent
time-steps. The conditional version is used for multi-future trajectory prediction by Bertugli et
al. [BCC+20]. In [SZDZ17], a social-aware LSTM, similar to [AGR+16], embeds the prior from
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the training data as a hidden feature. Motion variability is taken into account by using layered
Gaussian processes acting on the hidden features of the LSTMs. The authors of [LJM+20] have
proposed Multiverse, a multi-future trajectory prediction model based on convolutional RNNs.
In the proposed architecture, the location history of agents, together with the set of video
frames, which are preprocessed by a semantic segmentation model, are fed to a neural network,
to be encoded by a convolutional-RNN. The output of the encoder is fed to a convolutional
RNN decoder for location prediction. The coarse location decoder outputs a heatmap over the
2D grid, and the fine location decoder outputs a vector offset within each grid cell. These are
combined to generate a multimodal distribution over R2 for predicted locations.

2.9 Conclusion

The models reviewed under ‘Dynamic Models’ section (Section 2.3), while being very simple,
can be implemented with few lines of code and can be run on a robot even with very limited
resources. However they do not handle the ‘social interactions’ and ‘scene context’ information
and also do not model the pedestrians’ intention. The crowd simulation algorithms, reviewed
in Section 2.4 propose interesting ideas that explicitly model the social interaction between the
agents, while still, most of them fail to consider the scene-context information or the agent
goal. Their simulation functions are simple enough to be implemented and deployed on a robot
easily. As we explained the process of selecting the right parameters for the model is not straight-
forward. Due to the fact that the optimization function for selecting the parameters is non-convex
and highly non-linear, it needs highly expensive algorithms such as genetic algorithms, which
are not suitable for real-time robotic applications.

On the other hand, planning-based algorithms explicitly infer the pedestrians goal and run an
optimization process to find the ‘best’ path that reaches the agent to this goal. Even though they
might be able to give multiple predictions, still suffer from an important issue: the optimization
criterion that is being solved is not necessarily the one that is followed by real human or crowd.
The hand-crafted criteria, used in these models might be ‘unrealistic’. The standard RL models
also share the same problem, suffering from finding a correct reward function for the agents to
be trained.

The pattern-based models focused on this aspect, and try to ‘learn’ the optimization criteria
implicitly from data. The neural network systems have showed promising results in learning very
complicated functions and the recurrent networks are suitable for prediction of a sequence of
variables.

We discussed that even a very good ‘single-model’ algorithms may sometime fail to return
an accurate path, due to the multi-modality nature of human motion. This can result in tak-
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ing unsafe decisions by robots or autonomous vehicles. Hence we are interested in deploying
multi-modal predictors. Among existing deep generative models we discussed in Section 2.8, the
generative adversarial networks (GANs) provide a propitious framework to learn multi-modal
distributions. Based on this modeling choice, we propose our multi-modal human trajectory
prediction model, in Chapter 4, using GANs, while trying to solve one of their common issues:
‘mode collapse’. Our proposed model, proposes a novel approach in handling the social inter-
action between the agents. We also propose a modified version of the algorithm for realistic
simulation of crowds in Chapter 6.

There have been various new methods that proposed since publishing of our work. We com-
ment about these new methods in the conclusion of the thesis (Chapter 8).
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Chapter 3

OPENTRAJ: ASSESSING PREDICTION

COMPLEXITY IN HUMAN TRAJECTORIES

DATASETS

3.1 Introduction

Efforts have been made towards a proper benchmarking of the existing techniques. This
has led to the creation of pedestrians trajectories datasets for this purpose, or to the re-use of
datasets initially designed for other purposes, such as benchmarking Multiple Object Tracking
algorithms. Most HTP works [YBOB11, AGR+16, GJFF+18, AHP19] report performance on
the sequences of two well-known HTP datasets: the ETH dataset [PESVG09] and the UCY
dataset [LCL07]. The metrics for comparing prediction performance involve the Average Dis-
placement Error (ADE) and the Final Displacement Error (FDE) on standardized prediction
tasks. Other datasets have been used in the same way, but performance comparisons are some-
times subject to controversy, and it remains hard to highlight how significant good performance
on a particular sequence or dataset means about a prediction algorithm. In this chapter, we
address the following questions:

(1) How to measure the complexity or difficulty of a particular dataset for the trajectory
prediction task?

(2) How do the currently used HTP datasets compare to each other?

(3) Can we draw conclusions about the strengths/weaknesses of state of the art algorithms?

Our contributions in this chapter are in two folds:

(1) We propose a series of meaningful and interpretable indicators to assess the complexity
behind an HTP dataset, and

(2) we analyze some of the most common datasets through these indicators.

In Section 3.3, we categorize datasets complexity along three axes, trajectories predictability,
trajectories regularity, and context complexity. In Section 3.4, we define indicators quantifying
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Figure 3.1 – Taxonomy of trajectories datasets for Human Trajectory Prediction.

the complexity factors. In Section 5.4, we apply these indicators on common HTP datasets and
we discuss the results in Section 3.6.

3.2 Related work: HTP datasets

Due to the non-rigid nature of the human body or occlusions, people tracking is a difficult
problem and has attracted notable attention. Many video datasets have been designed as bench-
marking tools for this purpose and used intensively in HTP. Following the recent progress in
autonomous driving, other datasets have emerged, involving more complex scenarios. In this
section, we propose a taxonomy of HTP datasets and review some of the most representative
ones.

3.2.1 The zoo of HTP datasets: A brief taxonomy

Many intertwined factors explain how some trajectories or datasets are harder to predict
than others for HTP algorithms. In Fig. 3.1, we summarize essential factors behind prediction
complexity, as circles; we separate hidden (blue) and controlled (green) factors. Among hidden
factors, we emphasize those related to the acquisition (noisy data), to the environment (multi-
modality), or to crowd-related factors (interactions complexity). Some factors can be controlled,
such as the recording platform or the choice of the location. To illustrate the variety of setups,
snapshots from common HTP datasets are given in Fig. 3.2.

Raw data may be recorded by a single [PESVG09] or multiple [CBL+20] sensors, ranging from
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(a) ETH-Univ (b) ETH-Hotel (c) UCY-Zara (d) UCY-Students

(e) UCY-Arx. (f) SDD (g) Kitti (h) LCas

(i) GCS (j) Bottleneck

Figure 3.2 – Sample snapshots from a few common HTP datasets.

monocular cameras [BKM+19, RSAS16, BR09] to stereo-cameras, RGB-D cameras, LiDAR,
RADARs, or a mix [SKD+19, CBL+20]. Sensors may provide 3D annotations, but most HTP
algorithms run on 2D data (the ground plane), and we focus here on 2D analysis.

Annotation is either manual [PESVG09, LCL07, GLSU13], semi-automatic [YLRO19], or
fully automatic, using detection algorithms [BKM+19]. In most datasets, the annotations provide
the agents’ positions in the image. Annotated positions can be projected from image coordinates
to world coordinates, given homographies or camera projection matrices. For moving sensors
(robots [ELVG07] or cars [GLSU13, CBL+20, SKD+19]), the data are sensor-centered, but
odometry data are provided to get all positions in a common frame.

3.2.2 A short review of common HTP datasets

HTP Datasets from static cameras and drones. The Performance Evaluation of Track-
ing and Surveillance (PETS) workshops have released several datasets for benchmarking Mul-
tiple Object Tracking [LTMR+15] systems. In particular, the 11 sequences of the PETS’2009
dataset [FS09], recorded through 8 monocular cameras, include data from acting pedestrians,
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with different levels of density, and have been used in HTP benchmarking [SKG+18]. The Town-
Centre dataset [BR09] was also released for visual tracking purposes, with annotations of video
footage monitoring a busy town center. It involves around two thousand walking pedestrians with
well structured (motion along a street), natural behaviors. The Wild Track dataset [CBB+18]
was designed for testing person detection in harsh situations (dense crowds) and provides 312
pedestrian trajectories in 400-frame sequences (from 7 views) at 2fps. The EIF dataset [Maj09]
gives ∼90k trajectories of persons in a university courtyard, from an overhead camera. The
BIWI pedestrian dataset [PESVG09] is composed of 2 scenes with hundreds of trajectories of
pedestrians engaged in walking activities. The ATC [BKIM13] dataset contains annotations for
92 days of pedestrian trajectories in a shopping mall, acquired from 49 3D sensors.

The UCY dataset [LCL07] provides three scenes with walking/standing activities. Developed
for crowd simulation, it exhibits different crowd density levels and a clear flow structure. The
Bottleneck dataset [SPS+09] also arose from crowd simulation and involved crowd controlled
experiments (e.g., through bottlenecks).

VIRAT [OHP+11] has been designed for activity recognition. It contains annotated trajec-
tories on 11 distinct scenes, in diverse contexts (parking lot, university campus) and mostly
natural behaviors. It generally involves one or two agents and objects. A particular case of ac-
tivity recognition is the one of sports activities [HLK16], for which many data are available
through players tracking technology.

The Stanford Drone Dataset (SDD) [RSAS16] is a large scale dataset with 60 sequences
in eight scenes, filmed from a still drone. It provides trajectories of ∼19k moving agents in a
university campus, with interactions between pedestrians, cyclists, skateboarders, cars, buses.
DUT and CITR [YLRO19] datasets have also been acquired from hovering drones for evaluating
inter-personal and car-pedestrian interactions. They include, respectively, 1793 and 340 pedes-
trian trajectories. The inD dataset [BKM+19], acquired with a static drone, contains more than
11K trajectories of road users, mostly motorized agents. The scenarios are oriented to urban
mobility, with scenes at roundabouts or road intersections. Ko-PER [SMS+14] pursues a similar
motivation of monitoring spaces shared between cars and non-motorized users. It provides tra-
jectories of pedestrians and vehicles at one road intersection, acquired through laser scans and
videos. Similarly, the VRU dataset [BZH+18] features around 80 cyclists trajectories, recorded
at an urban intersection using cameras and LiDARs. The Forking Paths Dataset [LJM+20] was
created under the Carla 3D simulator, but it uses real trajectories, which are extrapolated by
human annotators to simulate multi-modality with different latent goals.

AV datasets. Some datasets offer data collected for training/benchmarking algorithms for
autonomous vehicles (AV). They may be more difficult because of the mobile data acquisition and
because the trajectories are often shorter. LCAS [YDB17] was acquired from a LiDAR sensor
on a mobile robot. KITTI [GLSU13] has been a popular benchmarking source in computer
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vision and robotics. Its tracking sub-dataset provides 3D annotations (cars/pedestrians) for
∼20 LiDAR and video sequences in urban contexts. AV companies have recently released their
datasets, as Waymo [SKD+19], with hours of high-resolution sensor data or Argo AI with its
Argoverse [CLS+19] dataset, featuring 3D tracking annotations for 11k tracked objects over 113
small sequences. Nutonomy disclosed its nuScenes dataset [CBL+20] with 85 annotated scenes
in the streets of Miami and Pittsburgh.

Benchmarking through meta-datasets. Meta-datasets have been designed for augment-
ing the variety of environments and testing the generalization capacities of HTP systems. Tra-
jNet [SKG+18] includes ETH, UCY, SDD and PETS; in [BHHA18], Becker et al. proposed a
comprehensive study over the TrajNet training set, giving tips for designing a good predictor
and comparing traditional regression baselines vs. neural-network schemes. TrajNet++ [KKA21]
proposes a hierarchy of categorization among trajectories to better understand trajectory distri-
butions within datasets. By mid-2020, over 45 solutions have been submitted on Trajnet, with
advanced prediction techniques [BHHA18, AGR+16, GJFF+18, ESR09, GHCG20], but also
Social-Force-based models [HM95], and variants of linear predictors, that give accuracy levels of
94% of the best model [GHCG20]. In this work, we give tools to get a deeper understanding of
the intrinsic complexities behind these datasets.

3.3 Problem description and formulation of needs in HTP

3.3.1 Notations and problem formulation

A trajectory dataset is referred to as X. We assume that it is made of Na trajectories
of distinct agents. To be as fair as possible in our comparisons, we mainly reason in terms
of absolute time-stamps, even though the acquisition frequency may vary. Within X, the full
trajectory of the i-th agent (i ∈ [1, Na]) is denoted by Ti, its starting time as τ i, its duration
as δi. For t ∈ [τ i, τ i + δi], we refer to the state of agent i at t as xit. We observe xit only for a
finite subset of timestamps (at camera acquisition times). The frames are defined as the set of
observations at those times and are denoted by Ft. Each frame contains Kt agents samples.

The state xit includes the 2D position pit in a Cartesian system in meter. It is often obtained
from images and mapped to a world frame; the velocity vit, in m/s, can be estimated by finite
differences or filtering.

To compare trajectories, following a common practice in HTP, we split all the original tra-
jectories into Nt trajlets with a common duration ∆ = 4.8s. HTP uses trajlets of ∆obs seconds as
observations and the next ∆pred seconds as the prediction targets. Hereafter, the set of distinct
trajectories of duration ∆ obtained this way are referred to as Xk where k ∈ [1, Nt] covers the
trajlets (with potentially repetitions of the same agent). Typically, Nt � Na. Each trajlet may
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be seen as an observed part of a longer trajectory and its corresponding target is referred to as
Xk

+.

In the following, we use functions operating at different levels, with different writing con-
ventions. Trajectory-level functions F (X), with capital letters, act on trajlets X. Sometimes,
we consider the values of F at specific time values t, at we denote the functions as Ft(X).
Frame-level functions F(F) act on frames F.

3.3.2 Datasets complexity

We define three families of indicators over trajectory datasets that allow us to compare them
and identify what makes them more “difficult” than other.

Predictability. A dataset can be analyzed through how easily individual trajectories can
be predicted given the rest of the dataset, independently from the predictor. Low predictability
on the trajlet distribution p(X) makes forecasting systems struggle with multi-modal predictive
distributions, e.g., at crossroads. In that case, stochastic forecasting methods may be better than
deterministic ones, as the latter typically average over the outputs seen in the training data.

Trajectory (ir)regularity. Another dataset characterization is through geometrical and
physical properties of the trajectories, to reflect irregularities or deviations to “simple” models.
We will use speeds, accelerations for that purpose.

Context complexity. Some indicators evaluate the complexity of the context, i.e., external
factors that influence the course of individual trajectories. To give an example, crowd density
has a strong impact on the difficulty of HTP.

These indicators operate at different levels and may be correlated. For example, complex
scenes or high crowdedness levels may lead to geometric irregularities in the trajectories and to
lower predictability levels. Finally, even though it is common to combine datasets, our analysis
is focused on individual datasets.

3.4 Numerical Assessment of a HTP Dataset complexity

Based on the elements from Section 3.3, we propose several indicators for assessing a dataset
difficulty, most of the kind F (Xk), defined at the level of trajlets Xk.

3.4.1 Overall description of the set of trajlets

To explore the distribution p(T) in a dataset, we first consider the distributions of pedestrian
positions at a timestep t. We parametrize each trajlet by fitting a cubic spline pk(t) with t ∈
[0, 4.8]. For t ∈ [0, 4.8], we get 50 time samples S(t) = {pk(t), 1 ≤ k ≤ Nt} and analyze S(t)
through clustering and entropy:
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— Number of Clusters Mt(X): We fit a Gaussian Mixture Model (GMM) to our sample
set using Expectation Maximization and select the number of clusters with the Bayesian
Information Criterion [CH08].

— Entropy Ht(X): We get a kernel density estimation of S(t) (see below in Section 3.4.2)
and use the obtained probabilities to estimate the entropy.

High entropy means that many data points do not occur frequently, while low entropy means
that most data points are “predictable”. Similarly, a large number of clusters would require a
more complex predictive model. Both indicators give us an understanding of how homogeneous
through time are all the trajectories in the dataset.

3.4.2 Evaluating datasets trajlet-wise predictability

To quantify the trajectory predictability, we use the conditional entropy of the predicted
part of the trajectory, given its observed part. Some authors [LWFZ16] have used alternatively
the maximum of the corresponding density. For a trajectory Xk ∪Xk

+, we define the conditional
entropy conditioned to the observed Xk as

H(Xk) = −EX+ [log p(X+|Xk)]. (3.1)

We use kernel density estimation with the whole dataset X (Nt trajectories) to estimate it.
We have Nobs observed points during the first ∆obs seconds (trajlet Xk) and Npred points to
predict during the last ∆pred seconds (trajlet X+

k ). We define a Gaussian kernel Kh over the
sum of Euclidean distances between the consecutive points along two trajectories X and X′ with
N points each (in R2N ):

Kh,N (X,X′) = 1
(2πh2)N exp

(
− 1

2h2 ‖X−X′‖2
)
, (3.2)

where h is a common bandwidth factor for all the dimensions. We get an approximate conditional
density as the ratio of the two kernel density estimates

p(X+|Xk) ≈
1
Nt

∑Nt
l=1Kh,Nobs+Npred(Xk ∪X+,Xl ∪Xl

+)
1
Nt

∑Nt
l=1Kh,Nobs(Xk,Xl)

. (3.3)

Since Kh,Nobs+Npred(Xk ∪X+,Xl∪Xl
+) = Kh,Nobs(Xk,Xl)Kh,Npred(X+,Xl

+), we can express
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the distribution of Eq. 3.3 as the following mixture of Gaussian:

p(X+|Xk) ≈
Nt∑
l=1

ωl(Xk)Kh,Npred(X+,Xl
+)

with ωl(Xk) = Kh,Nobs(Xk,Xl)∑Nt
l=1Kh,Nobs(Xk,Xl)

.

(3.4)

For a trajlet Xk, we estimate H(Xk) by sampling M samples X(i)
+ from Eq. 3.4:

H(Xk) ≈ − 1
M

M∑
m=1

log
(
Nt∑
l=1

ωl(Xk)K(X(m)
+ ,Xl

+)
)
. (3.5)

3.4.3 Evaluating trajectories regularity

In this section, we define geometric and statistical indicators evaluating how regular individ-
ual trajectories Xk in a dataset may be.

(a) Motion properties

A first series of indicators are obtained through speed distributions, where speed is defined
as: s(xt) = ‖vt‖. At the level of a trajectory Xk, we evaluate the mean and the largest deviation
of speeds along the trajectory

Savg(Xk) = average
t∈[τk,τk+δk]

(s(xt)) (3.6)

Srg(Xk) = max
t∈[τk,τk+δk]

(s(xt))− min
t∈[τk,τk+δk]

(s(xt)). (3.7)

The higher the speed, the larger the displacements and the more uncertain the target where-
abouts. Also, speed variations can reflect on high-level properties such as people activity in the
environment or the complexity of this environment.

Regularity is evaluated through accelerations a(xt) ≈ 1
dt [s(xt+dt)− s(xt)]. It can reflect the

interactions of an agent with its environment according to the social-force model [HM95]: agents
typically keep their preferred speed while there is no reason to change it. High accelerations
appear when an agent avoids collision or joins a group. We consider the average and maximal
accelerations along Xk

Aavg(Xk) = average
t∈[τk,τk+δk]

(|a(xt)|); (3.8)
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Amax(Xk) = max
t∈[τk,τk+δk]

(|a(xt)|). (3.9)

(b) Non-linearity of trajectories

Path efficiency is defined as the ratio of the distance between the trajectory endpoints over
the trajectory length:

F (Xk) =
∥∥pτk+δk − pτk

∥∥∫ τk+δk
t=τk dl

. (3.10)

The higher its value, the closer the path is to a straight line, so we would expect that the
prediction task will be “easier” for high values of F (Xk).

Another indicator is the average angular deviation from a linear motion. To estimate it, we
align all trajlets by translating them to the origin of the coordinate system and rotating them
such that the first velocity is aligned with the x axis:

X̂k =
[
R(−]vk0) −pk0

] [Xk

1

]T
. (3.11)

Then the deviation of a trajectory Xk at t and its average value are defined as:

Dt(Xk) = ]X̂k
t and D(Xk) = average

t∈[τk,τk+δk]
(Dt(Xk)). (3.12)

3.4.4 Evaluating the context complexity

The data acquisition context may impact HTP in different ways. It may ease the prediction
by introducing correlations: With groups, it can be easier to predict one’s motion from the other
group members. In general, social interactions result into adjustments that may be generate
non-linearities (and lower predictability).

(a) Collision avoidance

Collision avoidance is one of the most basic types of interaction between two pedestrians.
Higher density can result into more interactions, this aspect is also evaluated by the density
metrics below. However, high-density crowds may even ease the prediction (e.g., laminar flow of
people). To reflect the intensity of collision avoidance-based interactions, we use the distance of
closest approach (DCA) [OMC+13] at t, for a pair of agents (i, j):

dca(t, i, j) =

√√√√‖xit − xjt‖2 − (max(0, (vit − vjt )T (xit − xjt )
‖vit − vjt‖

))2, (3.13)
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and for a trajlet Xk (relative to an agent ik), we consider the overall minimum

C(Xk) = min
t∈[τk,τk+δk]

min
j

dca(t, ik, j). (3.14)

In [KSG14], the authors suggest that time-to-collision (TTC) is strongly correlated with
trajectory adjustments. The TTC for a pair of agents i, j, modeled as disks of radius R, for
which a collision will occur when keeping their velocity, is

τ(t, i, j) = 1
‖vit − vjt‖2

[δijt −
√

(δijt )2 − ‖vit − vjt‖2(‖xit − xjt‖2 − 4R2)] (3.15)

where δijt = (vit−vjt )T (xit−xjt ). In [KSG14], the authors also proposed quantifying the interaction
strength between pedestrians as an energy function of τ :

E(τ) = k

τ2 e
− τ
τ+ , (3.16)

with k a scaling factor and τ+ an upper bound for TTC. Like [KSG14], we estimate the actual
TTC probability density between pedestrians (from Eq. 3.15) over the probability density that
would arise without interaction (using the time-scrambling approach of [KSG14]). Then we
estimate E(τ) with Eq. 3.16. As the range of well-defined values for τ may be small, we group
the data into 0.2s intervals and use t-tests to find out the lower bound τ− when two consecutive
bins are significantly different (p < 0.05). The upper bound τ+ is fixed as 3s. TTC and energy
interaction are extended for trajlets (only if there exists future collision):

T (Xk) = min
t∈[τk,τk+δk]

min
j
τ(t, ik, j) and E(Xk) = E(T (Xk)). (3.17)

(b) Density and Distance measures.

For a frame Ft, the Global Density is defined as the number of agents per unit area D(Ft) =
Kt

A(X) , with Kt the number of agents present at t and A(X) the spatial extent of X, evaluated
from the extreme x, y values. The Local Density measures the density in a neighborhood. Plaue
et al. [PCBS11] infer it with a nearest-neighbour kernel estimator. For a point xt,

ρ(xt) = 1
2π

Kt∑
i=1

1
(λdit)2 exp

{(
−‖x

i
t − xt‖2

2(λdit)2

)}
, (3.18)

with dit = minj 6=i ‖xit − xjt‖ the distance from i to its nearest neighbor and λ > 0 a smoothing
parameter. ρ is used to evaluate a trajlet-wise local density indicator

L(Xk) = max
t∈[τk,τk+δk]

ρ(xikt ). (3.19)
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3.5 Experiments

In this section, we analyze some common HTP datasets in the light of the indicators pre-
sented in the previous section. In Table 3.1, we give statistics (location, number of agents,
duration. . . ) for the datasets we have chosen to evaluate. We gather the most commonly used in
HTP evaluation (ETH, UCY, SDD in particular) and datasets coming from a variety of modal-
ities (static cameras, drones, autonomous vehicles. . . ), to include different species from the zoo
of Section 3.2.1.

For those including very distinct sub-sequences, e.g., ETH, UCY, SDD, inD, and Bottleneck
(also denoted by BN in the figures), we split them into their constituting sequences. Also, note
that we have focused only on pedestrians (no cyclist nor cars). We also ruled out any dataset
containing less than 100 trajectories (e.g., UCY Arxiepiskopi or PETS).

To analyze a dataset X, we apply systematically the following preprocessing

1. projection to world coordinates, when necessary,

2. down-sampling the annotations to a 2-3 fps framerate,

3. application of a Kalman smoothing with a constant acceleration model,

4. splitting of the resulting trajectories into trajlets Xk of length ∆ = 4.8s and filtering out
trajlets shorter than 1m.

3.5.1 Overall description of the set of trajlets

For the indicators of Section 3.4.2, we have chosen h = 0.5m for the Gaussian in the kernel-
based density estimation; the number of samples used to evaluate the entropy is M = 30; the
maximal number of clusters when clustering unconditional or conditional trajectories distribu-
tions is 21. In Fig. 3.3, we plot the distributions of the overall entropy and number of clusters,
at different progression rates along the dataset trajectories. Without surprise, higher entropy
values are observed for the less structured datasets (without main directed flows) such as SDD
or inD. The number of clusters follows a similar trend, indicating possible multi-modality.

3.5.2 Predictability indicators

In Fig. 3.4, we depict the values of H(Xk), with one dot per trajlet Xk. Interestingly, ex-
cepting the Bottleneck sequences, where high density generates randomness, the support for the
entropy distributions are similar among datasets. What probably makes the difference are the
tails in these distributions: large lower tails indicate high proportions of easy-to-predict trajlets,
while large upper tails indicate high proportions of hard-to-predict trajlets.
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Table 3.2 – The list of proposed indicators for benchmarking HTP datasets
Overall descrip-
tion

Entropy Ht(Xk) and clusters Mt(X) (sec-
tion 3.4.1).

Predictability Cond. entropy H(Xk) (Eq. 3.5).
Regularity Speed Savg(Xk), Srg(Xk) (Eq. 3.6).

Acceleration Aavg(Xk), Amax(Xk) (Eq. 3.8).
Efficiency F (Xk) (Eq. 3.10).
Angular deviation D(Xk) (Eq. 3.12).

Context Closest approach C(Xk) (Eq. 3.14).
Time-to-collision T (Xk), energy E(Xk)
(Eq. 3.17).
Local density L(Xk) (Eq. 3.19).
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Figure 3.3 – Entropy Ht(X) and number of clusters Mt(X), as described in Section 3.4.1, at
different progression rates t, for a dataset X. Each dot corresponds to one t.

3.5.3 Regularity indicators

In Fig. 3.5, we depict the distributions of the regularity indicators Savg(Xk), Srg(Xk),
Aavg(Xk), Amax(Xk) from Eqs. 3.6 and 3.8. Speed averages are generally centered around 1
and 1.5m/s. Disparities among datasets appear with speed variations and average accelerations:
ETH or UCY Zara sequences do not exhibit large speed variations, e.g. compared to Wild Track.
In Fig. 3.6a, we depict the path efficiency F (Xk) fro Eq. 3.10, and we observe that ETH, UCY
paths tend to be straighter. More complex paths appear in Bottleneck, due to the interactions
within the crowd, or in SDD-deathCircle, EIF, due to the environment complexity. In Fig. 3.6b,
deviations Dt(Xk) are displayed for different progression rates along the trajectories, and reflect
similar trends.
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Figure 3.5 – Speed and acceleration indicators Savg(Xk), Srg(Xk), Aavg(Xk), Amax(Xk). From
top to bottom: speed means and variations, mean and max. accelerations.

3.5.4 Context complexity indicators

For estimating the TTC in Eq. 3.15, we set R = 0.3m, and for the interaction energy of
Eq. 3.16, we set k = 1. The local density of Eq. 3.19 uses λ = 1. In Fig. 3.7, we display the collision
avoidance-related indicators (TTC, DCA and interaction energy) described in Section 3.4.4,
while in Fig. 3.8, we depict the density-related indicators. Most samples have low interaction
energy, but interesting interaction levels are visible in Zara and InD. The global density for most
datasets stays less than 0.1 p/m2 while in InD(1-2), Edinburgh and SDD (Coupa & Bookstore),
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Figure 3.6 – Regularity indicators: Path efficiency and deviation from linear motion.

it is even less than 0.02. Bottleneck (1d & 2d) are significantly high density scenarios. For this
reason we depict them separately. Most natural trajectory datasets have a local density about
0−4p/m2 while such number is higher (2−4p/m2) in Bottleneck. With both density indicators, a
dataset such as WildTrack has a high global density and low local density, indicating a relatively
sparse occupation. Conversely, low global density and high local density in Ind suggests the
pedestrians are more clustered. This observation is also reflected in the interaction and entropy
indicators as well.
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the bottom, local density (one data point for each trajlet).

3.6 Discussion

Among the findings from the previous Section, Fig. 3.4 shows that the predictability among
most datasets varies in mostly the same ranges. Regarding the motion properties of the datasets
(see Fig. 3.5), another finding is pedestrians’ average speed, which, in most cases, varies from
1.0 to 1.5 m/s. However, this is not the case for Bottleneck dataset, because the high density of
the crowd does not allow the pedestrians to move with a ‘normal’ speed. In the SDD dataset,
we observe multiple pedestrians strolling the campus. As shown in Fig. 3.6b these low-speed
motions are usually associated with high deviation from linear motion, though part of this effect
is related to the complexity of the scene layout.

Also, for most of the datasets, the speed variation of trajlets remains almost below 0.5.
This is not a true hypothesis for LCas and WildTrack. As one would expect, the distribution of
mean/max acceleration of trajlets is highly correlated with speed variations. In Fig. 3.6a we see
that almost all values are bigger than 90%. For Bottleneck we see this phenomenon, where by
increasing the crowd density and decreasing crowd speed, the paths become less efficient.

3.7 Conclusions & Future Work

We have presented in this chapter a series of indicators for gaining insight into the intrinsic
complexity of Human Trajectory Prediction datasets. These indicators cover concepts such as
trajectory predictability and regularity, and complexity in the level of inter-pedestrian interac-
tions. In the light of these indicators, datasets commonly used in HTP exhibit very different
characteristics. In particular, it may explain why predictions techniques that do not use ex-
plicit modeling of social interactions, and consider trajectories as independent processes, may
be rather successful on datasets where e.g., most trajectories have low collision energy; it may
also indicate that some of the more recent datasets with higher levels of density and interac-
tion between agents could provide more reliable information on the quality of the prediction
algorithm. Finally, the trajlet-wise analysis presented here opens the door to some evolution in
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benchmarking processes, as we could evaluate scores by re-weighting the target trajlets in the
function of the presented indicators.
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Chapter 4

SOCIAL WAYS: LEARNING

MULTI-MODAL DISTRIBUTIONS OF

PEDESTRIAN TRAJECTORIES WITH

GANS

4.1 Introduction

In this chapter, we address the problem of learning multi-modal distributions of pedestrian
trajectories, by proposing a new model based on Generative Adversarial Networks (GANs).
The HTP problem is quite a complicated problem to solve. First, because there are many vari-
ables which are strongly relevant for the trajectories of single pedestrians: The nature of the
surrounding obstacles and their spatial distribution, the nature of the ground, the long-term
goal of the pedestrian, his age, his mental state, etc. Then, to make things even more difficult,
the motions of a whole set of agents sharing a common space are dependent, through a whole
range of interactions that can go from avoidance to meeting intention or person following. A
number of interesting studies from neuroscience and bio-mechanics have isolated single factors
or optimization principles governing the human motion in very specific contexts (one-to-one
interactions, well-stated goals. . . ). However, in more general cases, one may rapidly attain the
limits of hand-tailored mathematical models. This has motivated the pursuit of more flexible,
data-driven statistical approaches that can automatically select the most relevant features for
explaining pedestrians walks, and that can benefit from the great efficiency of machine learning
techniques.

The work presented in this chapter belongs to the aforementioned category of data-driven
methods (see Chapter 2) for predicting the motion of pedestrians in the horizon of a few seconds,
given a set of observations of their own past motion and of those of the pedestrians sharing the
same space, as illustrated in Fig. 4.1. It relies on a Generative Adversarial Network (GAN)-
based trajectory sampler to propose plausible future trajectories. It naturally encompasses the
uncertainty and the potential multi-modality of the pedestrian steering decision, which is of
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*

Figure 4.1 – Illustration of the multi-modal trajectory prediction problem. Having the observed
trajectories of a pedestrian of interest, here shown with a star, and the ones of other pedestrians
in the environment, the system should be able to build a predictive distribution of possible
trajectories (here with two modes in dashed yellow lines).

critical importance when using this predictive distribution as a belief in higher level decision-
making processes.

The main contributions of this work are the following:

— An efficient, unsupervised process to train a trajectory prediction GAN architecture based
on Info-GAN [CDH+16], without L2 loss, which gives better results than previous works
[GJFF+18, SKS+18] in preserving the multi-modal nature of the predictive distribution.

— The definition of an attention-based pooling scheme that relies on a few hand-designed
interaction features inspired from the neuroscience/bio-mechanics literature, as a form of
prior; the best way to combine them to assess the interaction is learned by our system.

— The design of a synthetic dataset specifically oriented to the evaluation of the preservation
of multi-modality in trajectories predictive distributions.

Our architecture is described in Fig. 4.2. It adopts a new strategy to produce plausible
samples for an agent from the joint predictive distribution of the set of agents. Our Sampler
(Fig. 4.2 and Section 4.2.2) is trained to generate plausible predictions for a single agent, given
past observations of trajectories for the whole set of the agents.

4.2 Problem statement and system overview

4.2.1 Notations and problem formulation

In the following, we use indices i, j ∈ {1, ..., N} to refer to pedestrians, where N is the total
number of pedestrians; a single observation of pedestrian i in the scene at time t is denoted
by the 4 × 1 vector xit, which itself contains the position pit and velocity vit of the pedestrian:
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Figure 4.2 – Block Diagram of the Social Ways prediction system. The yellow ellipses represent
loss calculations. The dashed arrows show the backpropagation directions. The bold arrows carry
ground truth data.

xit =∆ ((pit)T , (vit)T )T . We assume that we have access to τ + 1 consecutive observed samples
xi−τ :0 of the pedestrians trajectory for each i ∈ {1, ..., N}. We also handle the set of observed
samples of all pedestrians except i with X¬i−τ :0 =∆ {xj−τ :0|j ∈ {1, ..., N}, j 6= i}.

The problem is then to predict the trajectories of each pedestrian for the next T time
steps, i.e. xi1:T . The rationale behind our approach is the following: When deciding his steering
actions, a pedestrian anticipates likely scenarios about the evolution of his surrounding in the
near future. Now, this anticipation may not be always very easy, because of the uncertainties in
the neighbors future motion and intentions. In NN-based motion prediction systems [VMO18,
XPG18, PPS+18], the input is taken as the set of most recent observations of the surrounding
pedestrians. Hence, the mappings from observations to predicted trajectories built through the
networks do not consider explicitly the uncertain and multimodal nature of the neighbors future
trajectories, and, in a way, the network is expected to learn it too, which may be too much to
expect.

4.2.2 GAN-based Individual Trajectory Sampler

Our Social Ways GAN generates independent random trajectory samples that mimic the
distribution of trajectories among our training data, conditioned on observed initial tracklets of
duration τ for all the agents in the scene. This system is depicted in Fig. 4.2. It takes as an
input the observed trajectories of N pedestrians, X−τ :0 and a random vector z sampled from a
fixed distribution pz. It samples a plausible trajectory x̃i,k1:T for agent i for the next T time steps,
where k identifies one generated sample. The network should learn the whereabouts of an agent
altogether with the impact a surrounding crowd has on its trajectory.

A GAN contains two components that act in opposition to each other during the training
phase [GPAM+14]. The Discriminator D is trained to detect fake samples from real ones, while
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the Generator G should produce new samples that fool the Discriminator and confuse its pre-
dictions. In a conditional version, both the Generator and the Discriminator are conditioned on
some given data. Here, our GAN is conditioned on recent observations xi−τ :0, for agent i, and
X¬i−τ :0, for the other agents, and the Generator uses a noise vector z to complete xi−τ :0 into a
full trajectory G(z|xi−τ :0,X¬i−τ :0).

4.2.3 Description of the Generator network

Our system shares a number of characteristics with existing trajectory generation systems
[GJFF+18, SKS+18, KSMM+19] but it also includes critical novelties. The Generator network
uses one LSTM layer (denoted as LSTM-E) to learn the temporal features along trajectories.
The encoding of past trajectories xi−τ :0 for an agent is similar to [GJFF+18]. The LSTM-E cell
encodes the history of the agent i through the recursive application of:

hit = λe(hit−1, µ(xit; Wµ); Wλe), (4.1)

with t ∈ [−τ, 0], µ a linear embedding of the agent state and λe the cell of LSTM-E. hit is the
hidden state vector in LSTM-E at time t. It is depicted at the left part of Fig. 4.2.

For the decoding process and the generation of samples, we apply a similar process through
another LSTM layer (denoted as LSTM-D) with hidden state kit

kit = λd(kit−1,oit−1; Wλd), (4.2)

with t ∈ [1, T ] and λd the decoding LSTM-D layer. The input vector is:

oit = [(hit)T , (
∑
j 6=i

aijhjt )T , (c)T , (z)T ]T . (4.3)

It stacks information from the encoded history of observations of agent i up to t, hit, from the
noise vector z, and from the impact of future trajectories of the neighboring agents j,

∑
j 6=i a

ijhjt .
The construction of this term is described hereafter.

4.2.4 Social Ways: Attention pooling

The influence of the other agents on agent i is evaluated by encoding the vector X¬i1:T ,
through LSTM-E, and by applying an attention weighting process that produces weights ai =∆

[ai1, .., aij , ..., aiN ]T for agent i. They are defined as in [SKS+18], for j 6= i, based on pre-defined
geometric features δij ∈ R3 stacking (1) the Euclidean distance between agents i and j, (2) the
bearing angle of agent j from agent i (i.e. the angle between the velocity vector of agent i and
the vector joining agents i and j), and (3) the distance of closest approach (i.e. the smallest

74



4.2. Problem statement and system overview

distance two agents would reach in the future if both maintain their current velocity) [KSFG14].
An interaction feature vector between agents i and j is defined as an embedding in Rdσ of the

social features δij , through a Fully-Connected (FC) layer f ij = φ(δij ; Wφ). Finally, the attention
weights are obtained with the following scalar products and softmax operations between the
hidden history vectors hk and the interaction feature vectors f ik

σ(f ik,hk) = N − 1√
dσ

< f ik,Wσhk >, (4.4)

aij = exp
(
σ(f ij ,hj)

)∑
k 6=i exp(σ(f ik,hk)) (4.5)

where dσ is the common number of rows of the embedded features f and of the linear mapping
Wσ applied on the hidden features.

4.2.5 Discriminator

The Discriminator is described on the right part of Fig. 4.2. It contains two encoding LSTM
layers, one (applied τ + 1 times) for observations, and one (applied T times) for predictions,
and 2 FC layers to predict the samples labels. It takes as an input either a composite candi-
date trajectories for agent i, [xi−τ :0, x̃

i,k
1:T ], or a ground truth trajectory, [xi−τ :T ], and outputs a

probability for any of them to have been taken as a sample from the data.

4.2.6 Training the GAN

GAN training is known to be hard, as it may not converge, exhibit vanishing gradients
when there is imbalance between the Generator and the Discriminator, or may be subject to
mode collapsing, i.e. sampling of synthetic data without diversity. When predicting pedestrian
motion, it is critical to avoid mode collapsing, as it could result in catastrophic decisions, i.e.
for an autonomous driving agent.

Here, we have introduced two major changes in the GAN training. First, we do not use, as in
other stochastic prediction methods [GJFF+18, SKS+18], an L2 loss term ‖G(z|xi−τ :0,X¬i−τ :0)−
xi−τ :T ‖2 enforcing the generated samples to be close to the true data, because we have observed
negative impact of this term in the diversity of the generated samples.

Also, we have implemented an Info-GAN [CDH+16] architecture, which, as we will see in
the experimental results section, has a very positive impact on avoiding the mode collapsing
problem with respect to other versions of GANs. Info-GAN learns disentangled representations
of the sources of variation among the data, and does so by introducing a new coding variable
c as an input (see Fig. 4.2). The training is performed by adding another term to maximize a
lower bound of the mutual information between the distribution of c and the distribution of the
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generated outputs, which requires training another sub-network Q(c|x1:T ) (with parameters θQ)
which serves as a surrogate to evaluate the likelihoods p(c|x1:T ) over the generated data x1:T .
The training optimization problem is written as:

minθG,θQ maxθD V (θG, θQ, θD) =
Epdata(xi−τ :T )[logD(xi1:T |xi−τ :0; θD)]+
Epz(z)[log

(
1−D(G(z|xi−τ :0,X¬i−τ :0; θG); θD)

)
]−

λEp(c),pz(z)[logQ(c|G(z|xi−τ :0,X¬i−τ :0; θG); θQ)]

(4.6)

where z is the noise input and c the new latent code.

4.3 Experimental results

4.3.1 Implementation details

We implemented our system using the PyTorch framework. First, note that all the internal
FC layers of both the Generator and the Discriminator are associated to LeakyReLU activation
functions, with slope 0.1.

The Generator comprises a first FC linear embedding µ of size 4× 128, over positions and
velocities. The Encoder block in Generator contains one LSTM layer of 128 units (LSTM-E).
Using 2 continuous latent code, noise vector with length of 62, and pooling vectors of size 64,
which totally gives a 256-d vector, the Decoder LSTM (LSTM-D’s) then uses 128 LSTM units
in one layer and 3 FC layers with size of 64, 32, 2 to decode the predictions. Weights are shared
among LSTM layers with the same function.

The Discriminator uses two LSTM blocks (LSTM-OE and LSTM-PE) with hidden layers
of size 128 to process both the observed trajectories (size 4× τ + 4) and the predicted/“future”
trajectories (size 4 × T ); these outputs are processed in parallel with two 64 × 64 FC layers.
Then they are concatenated and fed to two separate FC blocks: soft-classifier (D) [64 × 1] and
latent-code reconstructor [64× 2] (Q). Finally, τ and T are set to 7 and 12 respectively.

In each dataset, we train the GAN network with the following hyper-parameters setting:
mini-batch size 64, learning rate 0.001 for Generator and 0.0001 for Discriminator, momentum
0.9. The GAN is trained for 20000 epochs.

4.3.2 Datasets

For the evaluation of our approach, we use ETH [PESVG09] and UCY [LCL07] (See also
Chapter 3). These datasets consist of real-world human trajectories. They are labeled manually
at a rate of 2.5 fps. The ETH dataset contains 2 experiments (coined as ETH and Hotel) and
the UCY dataset contains 3 experiments (ZARA01, ZARA02 and Univ). In order to evaluate
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the prediction algorithm, each dataset is split into 5 subsets, where we train and validate our
model on 4 sets and test on the remaining set.

4.3.3 Baseline Predictors and Accuracy Metrics

We consider two sets of baselines.

1. Deterministic prediction models, that generate one trajectory for each observation:

— Linear: This is a simple constant velocity predictor.

— S-Force: It uses an energy function based on Social Forces to optimize the next agent
action. The function penalizes jerky movements, high minimum distance to other agents
and so on. We use the version by Yamaguchi et al. [YBOB11], in which a term enforces
the agent to stay close to the group it belongs to.

— S-LSTM [AGR+16]: It associates each pedestrian to one LSTM unit (the Social-LSTM)
and gathers the hidden states of neighboring pedestrians with a so-called social-pooling
mechanism to perform the prediction.

2. Stochastic prediction models, that generate a set of samples from a surrogate of the predictive
distribution:

— Social-GAN: A GAN-based prediction [GJFF+18]. We consider the variants S-GAN-P
and S-GAN, with and without a pooling mechanism, respectively.

— SoPhie [SKS+18] which implements Social and Physical attention mechanism in a GAN
predictor.

Similarly to previous works [GJFF+18, VMO18], we use the following metrics to evaluate the
proposed system over the prediction on one testing data xi−τ :T :

1. Average Displacement Error (ADE), averaging Euclidean distances between ground truth and
predicted positions over all time steps:

ADE(xi−τ :T ) = 1
T

T∑
t=1
‖xit − x̂it‖. (4.7)

2. Final Displacement Error (FDE), i.e. Euclidean distance between the ground truth and pre-
dicted final position:

FDE(xi−τ :T ) = ‖xiT − x̂iT ‖. (4.8)

Then, we evaluate the expectations of these errors over all the samples in our testing datasets.
We observe τ = 8 frames (3.2 seconds) and predict the next T = 12 frames (4.8 seconds). To
evaluate stochastic models (that generate a set of samples), we use the methodology proposed

77



Chapter 4 – Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories with GANs

Table 4.1 – Comparison of prediction error of our proposed method (S-Ways) vs. deterministic
and stochastic baseline methods.

Deterministic Models Stochastic Models
Dataset Linear S-Force S-LSTM S-GAN S-GAN-P SoPhie S-Ways

A
D
E

ETH 0.59 0.67 1.09 0.68 0.77 0.70 0.39
Hotel 0.36 0.52 0.79 0.47 0.44 0.76 0.39
Univ 0.82 0.74 0.67 0.56 0.75 0.54 0.55

ZARA01 0.44 0.40 0.47 0.34 0.35 0.30 0.44
ZARA02 0.43 0.40 0.56 0.31 0.36 0.38 0.51

FD
E

ETH 1.22 1.52 2.35 1.26 1.38 1.43 0.64
Hotel 0.64 1.03 1.76 1.01 0.89 1.67 0.66
Univ 1.68 1.12 1.40 1.18 1.50 1.24 1.31

ZARA01 0.98 0.60 1.00 0.69 0.69 0.63 0.64
ZARA02 0.95 0.68 1.17 0.64 0.72 0.78 0.92

in [GJFF+18]. We generate K samples and take the closest one to Ground truth for evaluation.
Hereafter, we consider K = 20. The modified metrics are called k-ADE and k-FDE in some
related work, but for simplicity we use ADE and FDE.

4.3.4 Evaluation of Prediction Errors

The average prediction errors for both ADE and FDE metrics are shown in Table 4.3.4. As
it can be seen, the use of our approach leads to significantly lower prediction errors for the ETH
and Hotel experiments, but not on the ZARA experiments. We attribute this behavior in that,
in the ZARA experiments, the width of the waypath for pedestrians is significantly smaller than
in the Hotel and ETH scenes. Hence, there is less variance in the trajectories. Our proposed
system intrinsically tends to generate various samples that result in good performance with
more complex scenes and non-linear trajectories.

Among the deterministic models, though Social-LSTM model uses a much more complex
system than its counterparts, it fails to outperform the other baselines and as the authors in
[GJFF+18] mention it, it needs a synthetic dataset as a second source of training to improve
the system accuracy.

In Figure 4.3, we give qualitative examples of the outputs and intermediate elements in our
approach. We generated 128 samples with our method and the predictive distribution are shown
with magenta points. In most of the scenarios (including non-linear actions, collision avoidance
and group behaviors), the distribution has a good coverage of the ground truth trajectories and
also generates what seems to be plausible alternative trajectories.
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Figure 4.3 – Illustration of sample outputs of Social-Ways (in magenta color). The observed
trajectories are shown in blue and ground truth prediction and constant-velocity predictions are
shown in cyan and orange lines, respectively. [Best viewed in color.]

4.3.5 Quality of the Predictive Distributions

As commented in Section 4.2.2, our architecture and its training process are designed to
preserve the modes of the predictive trajectory distribution. However, in all the datasets that
we have tested, there are very few examples of clearly multi-modal predictive trajectory distri-
butions. Hence, we have created a toy example dataset to study the mode collapsing problem
with stochastic predictors.

This toy example is depicted in Fig. 4.4: Given an observed sub-trajectory (blue lines), the
Generator should predict the rest of the trajectory (red lines). Each of the 6 groups represents
one separate condition to the system (xi−τ :0), and each of the 3 sub-groups represents a different
mode in the conditional distribution p(xi1:T |xi−τ :0). Note that the interactions between agents
are not considered here.

In order to compare our approach with other GAN-based techniques, we implemented several
baselines. In all of them, the prediction architecture is the one we proposed without the attention-
pooling; the GAN subsystem changes.

— Vanilla-GAN: This is simplest baseline, where the Generator is just trained with the ad-
versarial loss.

— L2-GAN: In addition to adversarial loss, a L2 loss is added to the Generator optimizer.

— S-GAN-V20: The Variety loss proposed in Social-GAN method [GJFF+18] is added to the
adversarial loss. This L2-loss only penalizes the closest prediction to ground truth among
V = 20 predictions and gives more freedom to choose prediction samples.

— Unrolled10: Vanilla-GAN with the unrolling mechanism proposed in [MPPSD17]. The num-
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Figure 4.4 – The Toy Trajectory Dataset. There are six groups of trajectories, all starting from
one specific point located along a circle (blue dots). When approaching the circle center, they
split into 3 subgroups. Their endpoints are the green dots.

ber of unrolling steps is 10.

For each of the 6 possible observations, we generate 128 samples, which are depicted in
Fig. 4.5. The Info-GAN together with Unrolled-GAN performs the best, with a slight advantage
for Info-GAN, since almost all of the modes are preserved successfully after 90,000 iterations. At
the same time, Vanilla-GAN, L2-GAN and S-GAN-V20 could not preserve the multi-modality of
the predictions. One can see that using L2 loss, the model is converging faster than VanillaGAN
and S-GAN-V20.

For a more quantitative evaluation of generative models, we have used the following two
metrics to assess the set of fake trajectories versus the set of real samples [XHY+18]. Given two
sets of samples Sr = {xir} and Sg = {xjg} with |Sr| = |Sg| and xir ∼ Pr and and xjg ∼ Pg:

1. A 1-Nearest Neighbor classifier, used in two-sample tests to assess whether two distributions
are identical. We compute the leave-one-out accuracy of a 1-NN classifier trained on Sr and
Sg with positive labels for Sr and negative labels for Sg. The classification accuracy for data
from an ideal GAN should be close to 50% when |Sr| = |Sg| is large enough. Values close to
100% mean that the generated samples are not close to real samples enough. Values close to
0% mean that the generated samples are exact copies of real samples, and that there is a lack
of innovation in such system.

2. The Earth Mover’s Distance (EMD) between the two distributions. It is computed as in
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Eq. 4.9:

EMD(Pr, Pg) = min
w∈Rn×m

n∑
i=1

m∑
j=1

wijd(xir, xjg)

s.t. ∀i, j wij ≥ 0,
m∑
k=1

wik = 1
n

,
n∑
k=1

wkj = 1
m
.

(4.9)

where d() is called the ground distance. In our case we use the ADE of Eq. 4.7, between the
future parts of the two trajectories.

We computed both 1-NN and EMD metrics on our toy dataset with |Sr| = |Sg| = 20,
for each of the 6 observed trajectories. The results for different baselines are shown in Figures
4.6. We added evaluations for a few combinations of the aforementioned baselines (e.g., Info-
GAN+unrolling steps or Unrolled+L2). The lower 1-NN accuracy of our approach using Info-
GAN shows its higher performance for matching the target distribution, compared to Vanilla-
GAN and other baselines. It is worth noting that the fluctuations in the accuracies are related to
the small size of the set of samples. As it can be seen, Unrolled10 and Info+Unrolled5 have also
better performances, while it is obvious that by adding L2 loss, the results are getting worse.
The results of the EMD test also proves that both Info-GAN and Unrolled10 offer more stable
predictors with lower distances between the fake and real samples. There is no evidence that the
Variety loss offers better results than a Vanilla-GAN.

Moreover, on real trajectories, we have tested our algorithm on the Stanford Drone Dataset
(SDD) [RSAS16]. In fact, we have used subsets of trajectories from two scenes (Hyang-6 and
Gates-2). As you see in Fig. 4.7, with our system (left column), separate modes of the predictions
appear clearly where the intuition would set them, while the Vanilla-GAN (right column) could
not produce various paths.

4.4 Conclusions and Future Works

This chapter presents a novel approach for the prediction of pedestrians trajectories among
crowds. It uses an Info-GAN to produce samples from the predictive distribution of indi-
vidual trajectories, and integrates a few hand-designed interaction features inspired from the
neuroscience/bio-mechanics literature, as a form of prior over the attention pooling process.
We have shown through extensive evaluations on commonly used datasets that this approach
partly improves the prediction accuracy of state-of-the-art methods on the datasets where the
predictive distributions have the largest variances. We have also proposed a specifically designed

81



Chapter 4 – Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories with GANs
Va

ni
lla

G
A
N

L2
-G

A
N

S-
G
A
N
-V

20
U
nr
ol
le
d1

0
In
fo
G
A
N

Itr=500 Itr=6000 Itr=21000 Itr=90000

Figure 4.5 – Results of learning baselines on Toy Example, for different numbers of iterations.
[Best viewed in color.]
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Figure 4.7 – Multi-modal trajectory predictive distributions on the SDD dataset: Social-Ways
vs. Vanila-GAN. [Best viewed in color.]

dataset and an evaluation benchmark to show that Info-GANs achieve the best results in pre-
serving multi-modality, compared with other variants. Finally, we are aware that is still room
for improving the current generative models in pedestrian motion prediction and, above all, for
exploiting these models in decision making.
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Chapter 5

IMPUTING OCCLUDED CROWD

STRUCTURES FROM ROBOT SENSING

5.1 Introduction

As French economist Frédéric Bastiat pointed out back in the 19th century, to make wise
decisions in the economy, “it is important to consider, in addition to what we see, what we do not
see” (in French: ce qu’on voit et ce qu’on ne voit pas[Bas50]). We believe such an elementary rule
that once has been neglected in some economic decisions, is missing from one of the most critical
tasks of robots: navigation in crowded environments, where the on-board sensing of the crowd
is typically limited by occlusions and can substantially impact the robot’s ability to anticipate
possible collisions with occluded agents.

In the last chapter we addressed the problem of human trajectory prediction. However,
an equally important topic is crowd state imputation (i.e., filling out the missing data in the
occupancy map around the robot) to tackle potentially unobserved surrounding agents and it
has not received the same attention.

In this chapter, we address the problem of crowd state imputation from a mobile robot
perspective. When dealing with this problem from the robot perspective, the input data have
properties that makes the prediction much harder, e.g. as opposed to more classical motion
prediction problem with data coming from a static, bird-view surveillance camera. In particular,
due to the low height of the sensor (e.g. LiDAR) installed on the robot, noticeable parts of the
crowd can be occluded. Moreover, many pedestrians may remain undetected for long sequences
of frames. Depending on the density of the crowd and the characteristics of the robot’s sensor,
the proportion of non-detected people can be negligible or severe.

This can impact the performance of the robot in predicting future collisions and building a
safe and valid motion plan. An example of typical crowd perception from a mobile robot, with
multiple occlusions, is presented in Fig. 5.1 for a simulated mobile robot within a high-density
crowd.

Our proposal is to leverage the statistical patterns extracted from past observations over a
surrounding crowd to estimate the probability of the presence of people in unseen areas, i.e.
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Simulation Env
(Robot Perspective)

Real Crowd Trajectories

Virtual Robot

Detected

Occluded

Figure 5.1 – Occluded crowd: In the top left, a top-view image of a crowd is shown. The pedes-
trians form a bidirectional flow in a narrow corridor. If we simulate a robot through one of the
pedestrians (simulation of robot perspective in the top right image), there would be noticeable
occlusion (gray area at the bottom) where the pedestrians are un-detected (red circles). The
black dots within the blue circles show the detection locations, before filtering. Note: the crowd
activity is recorded in the form of xy trajectories (blue lines).

we perform statistical imputation of the occupancy levels in these areas. Our model takes as
input the stream of range data and the positions of the detected persons and gives as an output
a prediction of the surrounding crowd motion. We state the problem as follows: “Given the
robot observations about the crowd surrounding it and given a query point x (potentially out
of robot’s sight), what is the probability of presence of a person, that is not already detected,
at x?”.

In most related research, if no person is detected/tracked at an unobserved location x, then
no mechanism allows anticipating a potential collision coming from an agent located there.
Addressing this problem is the major contribution in this chapter. To the best of our knowledge,
this is the first effort to use the statistical crowd patterns in order to predict the state of people
around a robot.

This chapter is structured as follows: We review related work in section 5.2. Then we formalize

86



5.2. Related Work

the problem and elaborate the details of the proposed method in section 5.3. In section 5.4, we
present the evaluation methodology and experimental results on real and simulated crowd data.
Finally, we conclude and discuss the future works in section 3.7.

5.2 Related Work

Prediction of static unknown spaces takes inspiration in neuroscience research. Cognitive
psychologists have suggested that humans are able to explore new unknown environments by
making predictions of the occupied space beyond their current line of sight [Buc10]. The authors
of [KPP+19] study the ability to generate future predictions of occupancy maps using a U-Net
style AutoEncoder neural network. Wang et al. [WYW+20] have proposed a neural-network-
based method to predict the occupancy of the unknown space. Their model utilizes contextual
information about the environment and learns from prior knowledge to predict the obstacles
distribution in occluded spaces. The FASTER model [TLEH20] has shown that optimizing the
robot local planner by considering both the known and unknown free spaces, can lead to higher-
speeds and safer maneuvers for UAVs and ground robots.

Crowd Motion Prediction research focuses more on prediction on time domain, and is
becoming a key building block for social robot navigation and self-driving vehicles. Social-
LSTM [AGR+16] predicts the joint motion of dynamic pedestrians in crowded scenes by using
LSTM networks and by pooling hidden states of neighboring agents. Social-GAN [GJFF+18]
and Social-Ways [AHP19] were proposed later to cope with multi-modal predictive distributions
of future trajectories, using Generative Adversarial Networks. In [PPS+18], both static obsta-
cles and surrounding pedestrians are used for trajectory forecasting. In the above works, the
prediction is performed under assumption of a fully-observable environment.

Other works have addressed the trajectory forecasting problem with first-person- (or robot-)
view perception to deal with occlusions. The authors of [BZM+20] have created a simulation
environment using Unity game engine, and have simulated the view of pedestrians in a crowd for
prediction of trajectories. In [PSS+16], an interaction-aware motion model is learned based on
human-human interactions observed by the robot with onboard sensors, but it is experimented
only in very low-density scenarios.

The idea of extracting crowd patterns from collective behaviors has a long history. For ex-
ample, Moussaid et. al [MPG+10] have studied the grouping behavior on crowd videos recorded
in public places and have reported the patterns such as group sizes and the distance and angle
between the group members. In [DTL17], the authors propose a classification of crowd structures
inspired from fluid dynamics. A common mathematical framework to study these crowd struc-
tures is probabilistic graph models, and in particular Conditional Random Fields [PEVG10].
Alahi et. al [ARFF14] have created a huge dataset of human trajectories, recorded in a train
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station, and have proposed Social Affinity Maps (SAM) to capture the spatial position of an
agent’s neighbors by radially binning the positions of his neighboring agents. In fact, they end
up with a 10-bit binary radial histogram which is suggested to be a robust feature, not changing
frequently and significantly over time. This feature improves the re-identification of groups in
consequent tracklets extracted from different cameras in the train station.

5.3 Proposed Method

Suppose that a robot navigates in an environment shared by n pedestrians. Each pedestrian
state is described through its position xi ∈ R2 and instantaneous velocity vi ∈ R2. The robot
uses its sensors to get raw measurements and passes them to a human detection unit that returns
a set of m detections as Z = {z1, ..., zm} (see Fig. 5.2), which are handled as noisy observations
of {x1, ...,xm}. We assume there are u = n − m unobserved pedestrians, either due to errors
by the detector or because the pedestrians are not visible by the sensors, e.g. because of an
occlusion or because they are out of the robot field of view.

Our algorithm leverages the information about geometric relations between the people in
the surrounding crowd, extracted from previously observed trajectories, to infer a probabilistic
occupancy map covering occluded regions and to impute the position of unobserved pedestri-
ans. This way, we can improve the robot knowledge about the environment and build more
reliable motion plans estimate and plan beyond what it can see. Before detailing our imputation
algorithm, we first introduce the concept of Social Tie.

state transitionsocial interaction observation
model

Robot's FOV

H
um

an
 D

et
ec
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n

Figure 5.2 – Graphical representation for Occlusion- and Socially-aware Object Tracking. The
yellow circles show the state of each agent at two consecutive time instants t − 1 and t. The
blue circles are the observations at current time instant t. The dashed green arrows represent
the social interaction between the agents and the blue arrows represent the observation model.
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5.3.1 Social Ties

As a modeling tool to understand the geometrical structure of the flows within crowds, we
introduce the notion of Social Tie. Inspired by ideas from other works [ARFF14], we define a
Social Tie as a displacement vector between a pair of agents, expressed in the local frame of the
first one:

δ(xi,xj) = (Ri)>(xj − xi), (5.1)

where Rt
i is the 2D rotation matrix giving the global orientation angle of agent i at time t.

We further classify the social ties as strong ties and absent ties. The terms are borrowed from
social networks literature [Gra73] to represent, respectively, long-term interactions (e.g. grouping
or leader-follower behaviors) versus instant interactions (e.g. collision avoidance overtaking)
between pair of agents. The motivation behind this modeling choice is that these two categories
(strong/absent) define two distributions of displacements δ, that are better treated dissimilarly.

The classification between the two tie types is based on the history of the distance between
two agents. We keep the history of the distance vector between all pairs of detected agents.
A tie is labeled as strong, if 1) during the last tc time-steps, the two agents are closer than a
threshold distance rmax, 2) in the same time interval, the Euclidean distance between the agents
remains fixed (up to a tolerance threshold εl on distance variations) over the last second, and
3) the agents have similar orientations (within another threshold εθ). If 1) holds but either 2)
or 3) does not, then the link is categorized as absent. While we found these simple rules to be
enough in our setup, more advanced classification rules can also be used. An example is depicted
in Fig. 5.3 to illustrate the classification process.

The above definition implies that a tie (strong or absent) is assigned to any pair of agents
that have a distance lower than rmax during the last tc time-steps. It is worth observing that
the tie definition is symmetric: a strong (absent) tie from xi to xj implies a strong (absent) tie
from xj to xi. However this symmetry property is not directly implied by the definition of social
tie, but by the classification rule, which means that one-way ties may also exist, by using other
classification rules.

Next, we evaluate the distribution of social ties across agents by classifying and accumulating
the observed ties and then taking a polar histogram for each. The two histograms represent the
empirical distribution of the strong and absent ties. They are denoted by p(δ|τ = S,H) and
p(δ|τ = A,H), respectively, where τ is the tie type (strong or absent) and H denotes the
historical observations used for training. Note that these distributions on displacements give us
access to the conditional distribution of the absolute location of a queried position x, conditioned
on seeing a pedestrian at xi, and on the type of social tie τ : p(x|xi, τ,H).

Some examples of p(δ|τ,H) are shown in Fig. 5.4, where one can observe that the different

89
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Figure 5.3 – Classification of Social Ties. The tie between x1 and x2 is classified as a strong
tie at time t, (shown in green). On the other hand, the link between x2 and x3 is absent (red
dashed line) .

collective patterns lead to significantly different social tie patterns in the HERMES-Bottleneck,
SDD, ETH and Zara Datasets. For example, in Zara (upper right), the strong ties are mostly
observed as side-by-side configurations, while in HERMES-Bottleneck (bottom right), the strong
ties come mostly as lines of people (because of the nature of the dataset). We will discuss in
the following how these patterns can help us in estimating the location of people in unseen
(occluded) areas.

5.3.2 Communities (clusters)

We define communities (or groups) as subsets of pedestrians that are connected (directly or
indirectly) by strong ties, i.e., that can be seen as clusters of people moving together as a group,
or as a continuous flow of people moving in one direction (see examples in Fig. 5.5). The m
observed agents are partitioned into K communities: C = {c1, ..., cK}. Note that a community
can be as small as containing only one person. The velocity of a community ck is defined as the
average velocity of its members:

v̄k = 1
|ck|

∑
i∈ck

vi. (5.2)

We also define a territory area for each community, by running a k-nearest neighbor classifier
that assigns, to every location in the plane, a label that represents the nearest community. The
probability of being, at a location x, in the territory of ck is denoted by φk(x). To take the
orientation of each agent into account, the k-nearest neighbor is not implemented with the
Euclidean distance but with a Mahalanobis distance d(x,y) with a 2 × 2 covariance matrix Σ
chosen with its first eigenvector aligned with the agent velocity vi and assigned to an eigenvalue
α‖vi‖+ β while the second one is assigned an eigenvalue β:
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Figure 5.4 – Distributions p(δ|τ = S,H) and p(δ|τ = A,H) of strong (left side) and absent
(right side) social ties for 4 different datasets. The different flow structures lead to very distinct
distributions along the datasets. The graphs emphasize some structural elements of the crowd
flow, such as the communities width (very small in the Hermes-Bottleneck case), the permanent
asymmetries of the absent ties (Zara or Hermes-Bottleneck).

d(x,y) = (x− y)TΣ−1(x− y). (5.3)

5.3.3 Imputing New Pedestrians

We have explained in 5.3.1 that the social ties are extracted from crowd activity observa-
tions. Here we leverage this data to predict plausible positions for the unobserved agents that
might exist in the blind spot areas and beyond the field of view of the sensor. This idea is in-
spired by inpainting technique in Computer Graphics, where Pair Correlation Functions (PCF)
[ENMGC19, NENMC20] are used to detect textures from an image and propagate them to other
areas.

A PCF measures the probability density of the distance between pairs of particles. However,
in our context, considering only the distance between agents is difficult, since the orientation of
the agents is critical in modeling human collective activities [MPG+10]. Hence, we propose an
extension of the concept of PCF with the distribution of social ties.
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Figure 5.5 – Illustratoin of ‘Communities’ and ‘Territories’. Green lines: strong ties, black arrows:
velocity vector of the agents. Left: Bottleneck dataset, a bi-directional flow of pedestrians that
form two communities, Right: A frame of UCY dataset (Zara) with 3 communities moving in
different directions. The territory of each community is shown with different colors on a mesh.

We are interested in finding p(o(x)|Z), the probability of the presence of an unobserved agent
at a query point x ∈ R2, given the m detected agents Z.

By expressing this distribution as a marginalization over the two latent variables v(x) and
c(x) for, respectively, the visibility from the robot at position x and the class indicating the
community at that position, we can write this as (we removed the x for shortening equations,
but be aware that the random variables o, c, v are all defined in a specific x)

p(o|Z) =
∑

w∈{0,1}

∑
k

p(o, c = ck, v = w|Z) (5.4)

= p(v = 0)
∑
k

p(c = ck)p(o|v = 0, c = ck,Z). (5.5)

Using the community-dependent ties distributions, we estimate p(o(x)|v(x) = 0, c(x) =
ck,Z) as follows:

p(o|v = 0, c = ck,Z) ∝
∏

zi∈Z∩ck

∫
xi
p(δ(xi,x)|τ = S,H)p(zi|xi)dxi

×
∏

zj∈Z\ck

∫
xj
p(δ(xj ,x)|τ = A,H)p(zj |xj)dxj

(5.6)

where p(zi|xi) is the sensor error model and p(δ|τ,H) denotes the likelihood of a social tie δ (see
Section 5.3.1). If the sensor model is Gaussian, the integrals above can be evaluated easily by
using pre-filtered versions of the maps p(δ(xi,x)|τ,H). This model factors the joint distribution
through pairs of agents. In practice, we only consider the agents in X within a radius rmax from
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xq. Rewriting Eq. (5.5) using the notation introduced above φk = p(c = ck):

p(o|Z) = p(v = 0)
∑
k

φkp(o|v = 0, c = ck,Z). (5.7)

By interpreting this distribution as a likelihood function q(x) = p(o(x) = 1|Z) over x and
by discretizing the x along a regular grid, we can sample a new agent at location xs. We tested
different sampling strategies, and found out the following sampling to be more effective: we draw
a sample from q(x) and then we search within a small disk rs for the local maximum of q in
this region. After this, a virtual agent is created at this location xs, and assigned to community
arg maxck p(c(xs) = ck), with velocity vk. By iterating the sampling, we create more agents in
the occluded area. After each sampling iteration #i, we add the sample x(i)

s to Z(i−1) (having
Z(0) ≡ Z) and update q(i) using Eq. (5.7). We repeat the process until maxx q

(i)(x) < εs in a
neighborhood of radius rnav around the robot.

5.3.4 Sampling an Imputed Crowd

By repeating the sampling process, explained in the previous section, we obtain an augmented
set Z+ of detected and virtual agents. We repeat this entire process, for H times to get multiple
sets of hypotheses Z+(h) for h = 1...H.

The pseudo-code for our proposed algorithm "Occlusion-Aware Crowd Imputation" can be
found in Algo.1.

5.4 Experimental Results

In this section we first study the feasibility/importance of the proposed method on multiple
trajectory datasets and then we discuss the results.

5.4.1 Implementation Details

We developed our algorithm using Python. For 3D simulation of the crowd motions and
the robot perception, we used the CrowdBot Simulator, which is built on top of Unity game
engine and ROS system. Perceptions are obtained from a simulated 360-degree LiDAR with
a resolution of 0.5o and working range of [0.05m, 8m] installed at a height of 40cm. We use
DR-SPAAM [JHL20], a deep learning-based person detector that detects persons (legs) in 2D
range data sequences. We couple the detector to a Constant-Acceleration Kalman-Filter to track
multiple targets. In our algorithm, the gridmap has a resolution of 8 cells per meter.

The hyper-parameters of the algorithm are chosen as follows: rmax = 5m, tc = 1s, εl = 0.5m
and εθ = 45o for classifying the ties. The polar histogram used for the representation of strong
and absent tie distributions have radial and angular resolution of 25cm ([0 − 5m]) and 10o
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Algorithm 1 Occlusion-Aware Crowd Imputation
Inputs: Z = {z1, ..., zm} . detected persons
Output: Sample sets {Z+(h)}h

1: Compute Ties and Tie types between detections (Eq. 5.1)
2: Find Connected Components (Communities) {c1..cK}
3: Compute Territory of each Community {φ1..φK}
4: Compute Velocity of each Community {v̄1..v̄K}
5: Initialize: ∀x q(x)← p(v(x) = 0)
6: for x do
7: k′ ← c(x)
8: for zi ∈ Z do
9: δ ← RT

i (x− zi)
10: k ← c(zi)
11: if k = k′ then
12: q(o)← q(o) ∗ p(δ|τ = S,H)
13: else
14: q(o)← q(o) ∗ p(δ|τ = Ať,H)
15: end if
16: end for
17: end for
18: for h ∈ 1..H do
19: Z+(h) ← Z
20: while max q(x) > εs do
21: xs ← Sample virtual pedestrian
22: add xs to Z+(h)

23: assign xs to ck = arg maxc p(c(xs) = c)
24: update q(x) for all x (Lines 6:17)
25: end while
26: end for
27: Return {Z+(h)}h
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([−180, 180o]) respectively, with a constant-padding p = 1 for any bin out of this range. Also,
the coefficients α and β used in Eq. (5.3) are set to 0.2 and 0.1 respectively. εs is set to 50% and
rs (the radius of the search disk) is set to 2m.

5.4.2 Real Crowd + Simulated Robot

To evaluate the proposed method and validate the system, it is critical to work with real
datasets. However, to the best of our knowledge, there is no public robot-crowd datasets in which
the ground truth annotations of occluded pedestrians are available. Hence, we use crowd-only
datasets, select one random pedestrian in the crowd and replace it by a simulated robot. The
robot traverses the same trajectory taken by the pedestrian. The motivation for not simulating
the robot navigation is to make the system independent of the navigation algorithm and to be
able to compare the performance against new methods.

5.4.3 Crowd Datasets

We consider multiple Human Trajectory datasets that cover different crowd densities and
crowd structures:

— SDD or Stanford Drone Dataset contains trajectories of moving agents in the campus of
Stanford University, mostly with low crowd densities [RSAS16].

— ETH is a small dataset of pedestrians entering/exiting the entrance of a university building
[PESVG09].

— Zara is a dataset of crowd activity in sidewalk of a shopping street (subset of UCY
[LCL07]).

— Hermes includes multiple high-density crowd controlled experiments (e.g., through Bot-
tlenecks) in Unidirectional or Bidirectional settings [SPS+09].

We use the OpenTraj toolkit [AZC+20] to load and process HTP datasets. We split each
dataset, into a training set (for extracting social patterns and tie distributions p(δ)) and a testing
set, using the 70:30 rule of thumb.

5.4.4 Occlusion Severity in Crowd

We have measure the severity of occlusions for multiple datasets, using the simulation ex-
plained above. This is done by repeating the simulation, each time replacing one pedestrian with
the robot. Then we estimate the percentage of sensing rays that are occluded for each pedestrian.
We have classified occlusion values into to 4 categories: Fully-Visible (0-15%), Partially-Occluded
(15-50%), Largely-Occluded (50-85%) and Fully-Occluded (85-100%). The results are shown in
Fig. 5.6. As expected, the HERMES sequences exhibit severe occlusions, while ETH/Zara do
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not. We will see in the next sections that our crowd imputation algorithm does not improve the
baseline in low/medium-density situations.

Figure 5.6 – Occlusion Severity: ETH / Zara / Hermes (Uni-directional and Bi-directional flows)

5.4.5 Analysis of Tie Patterns

In order to measure the amount of information captured by the tie patterns, we calculate the
entropy of each pattern for each dataset. The equation of normalized entropy for the distribution
is derived by considering different bin sizes in a polar histogram [Wal06]:

H̄(p) = −
∑
r,θ

pr,θ log
(
pr,θ

Ar,θ

)
/Hmax (5.8)

where pr,θ and Ar,θ are the normalized value and the area of the bin (r, θ). The total value is
divided by Hmax = log

(
AR,2π

)
, the maximum entropy of a uniform disk to obtain a normalized

entropy between [0, 1]. In Fig. 5.7, we see the entropy values for different datasets.
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Figure 5.7 – Entropies of Strong/Absent Ties distributions for different datasets. Lower entropy
means the distribution contains more structured patterns.

5.4.6 Baselines

We consider two baselines to compare with our algorithm:

1. Vanilla-MOT: A Multi-object tacking without handling the occluded agents, making no
assumption about possible agents in occluded areas.

2. PCF: A comparable algorithm for analysis and synthesis of point distributions based on
Point Correlation Functions (PCF) [ÖG12]. The algorithm uses a target PCF (or distri-
bution), that is extracted by analyzing the historical data H, and tries to reconstruct a
given set of points (here: the partially occluded crowd) by iteratively sampling new points
and accepting/rejecting them based on matching the source and the target PCF curves.

5.4.7 Performance Evaluation

In order to evaluate the results, we first perform Kernel Density Estimation from the ground
truth distribution of agents location, by using Gaussian kernels centered at the location of each
agent with σ = 0.5m. We denote the result (a probabilistic occcupancy map) by π. The Mean
Squared Error (MSE) is calculated by averaging the squared difference of predicted and ground
truth occupancy grid maps:

MSE = 1
A×H

H∑
h=1

∑
x,y

∥∥∥π − π̂(h)
∥∥∥2

(5.9)

where H is the number of generated samples, and A is the area of the map. The map π̂(h) is
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built similarly to π, based on the sample Z+(h).
We run the simulation, for each of the trajectory #i in the test set, and execute the crowd

prediction algorithm to obtain π̂
(h)
i at each time-step. The prediction errors for Hermes and

ETH datasets are shown in Fig. 5.8. As you can see the proposed algorithm has improved the
Vanilla-MOT baseline on Hermes dataset and also outperforms the PCF baseline. On the other
hand, on ETH dataset the algorithm has not improved the results which means it’s better no
make no prediction in scenarios with few-occlusions. Due to this issue we do not report the
prediction results on other low-occlusion datasets (SDD and Zara).

In Fig. 5.9 some imputation examples are shown for Hermes dataset. The algorithm has
proposed interesting samples in many cases using the social-tie patterns it has learned.

5.5 Conclusion and Future Work

We have proposed a new approach to impute the structure of a crowd in which a robot is
performing navigation with its limited sensing. We leverage several new concepts that we have
introduced to describe crowd patterns around the robot (strong and absent ties, communities
and territories) to form a generative model for crowd patterns and use it to samples of imputed
occupation maps, based on what is observed through the robot perception. We have shown on
real crowd datasets that the proposed indicators reflect the nature of the typical pairwise relation
within crowds, and we have obtained competitive prediction results, in particular on datasets
with well-structured pedestrian flows.
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Figure 5.8 – Prediction (imputation) error (MSE) on Hermes and ETH datasets. Each point on
the plot represents the average error of the predictions for one trajectory, sorted by the average
crowd density around the robot.
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(a) (b)

(c) (d)

Figure 5.9 – Qualitative results of crowd-imputation on the HERMES dataset. In four examples,
we show the ground truth crowd (lower picture), in addition to the imputed crowd and the
detections.
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Chapter 6

DATA-DRIVEN CROWD SIMULATION WITH

GANS

6.1 Introduction

As we discussed in the introduction of the thesis (Chapter 1), realistic simulation of crowd
can be one of the applications of human trajectory prediction. Generally, the goal of a crowd
simulation algorithm is to populate a virtual scene with a crowd that exhibits visually convincing
behavior. The simulation should run in real time to be usable for interactive applications such
as games, training software, and virtual-reality experiences.

Many simulations are agent-based: they model each pedestrian as a separate intelligent agent
with individual properties and goals. To simulate complex behavior, data-driven crowd simula-
tion methods use real-world input data (such as camera footage) to generate matching crowd
motion. Usually, these methods cannot easily generate new behavior that is not literally part of
the input. Also, they are often difficult to use for applications in which agents need to adjust
their motion in real-time, e.g., because the user is part of the crowd.

In this chapter, we present a data-driven crowd simulation method. Our system enables the
real-time simulation of agents that behave similarly to observations, while allowing them to
deviate from their trajectories when needed. More specifically, our method:

1. learns the statistics of input trajectories, and can generate new trajectories from this
probability distribution;

2. embeds these trajectories in a crowd simulation, in which agents follow a trajectory while
allowing for local interactions.

For item 1, we use Generative Adversarial Networks (GANs) [GPAM+14], and for item 2, we
extend the concept of ‘route following’ [JCIG13] to trajectories with a temporal aspect, prescrib-
ing a speed that may change over time. Using a real-world dataset as an example, we will show
that our method generates new trajectories with matching styles. Our system can (for example)
reproduce an existing scenario with additional agents, and it can easily be combined with other
crowd simulation methods.
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6.2 Related Work

Agent-based crowd simulation algorithms model pedestrians as individual intelligent agents.
In this paradigm, many researchers focus on the local interactions between pedestrians (e.g.
collision avoidance) using microscopic algorithms [HM95, vdBLM08]. In environments with ob-
stacles, these need to be combined with global path planning into an overall framework [vTJG15].
A growing research topic lies in measuring the ‘realism’ of a simulation, by measuring the simi-
larity between two fragments of (real or simulated) crowd motion [WOO16].

Complex real-life behavior can hardly be described with simple local rules. This motivates
data-driven simulation methods, which base the crowd motion directly on real-world trajectories,
typically obtained from video footage. One category of such methods stores the input trajecto-
ries in a database, and then pastes the best-matching fragments into the simulation at run-time
[LCL07, LCHL07]. Another technique is to create pre-computed patches with periodically re-
peating crowd motion, which can be copied and pasted throughout an environment [YMPT09].
Such simulations are computationally cheap, but difficult to adapt to interactive situations.

Researchers have also used input trajectories to train the parameters of (microscopic) sim-
ulation models [WJGO+14], so as to adapt the agents’ local behavior parameters to match the
input data. However, this cannot capture any complex (social) rules that are not part of the
used simulation model.

To replicate how agents move through an environment at a higher level, some algorithms
subdivide the environment into cells and learn how pedestrians move between them [PGSVG12,
ZCLZ16]. Our goal is similar (reproducing pedestrian motion at the full trajectory level), but
our approach is different: we learn the spatial and temporal properties of complete trajectories,
generate new trajectories with similar properties, and let agents flexibly follow these trajectories.

Our work uses Generative Adversarial Networks (GANs) [GPAM+14], a machine learning tech-
nique for generating new data. We showed in Chapter 4 how to adopt GANs for short-term
prediction of pedestrian motion. To our knowledge, this is the first time that GANs are applied
in crowd simulation at the full trajectory level.

6.3 Generating Trajectories

In this section, we describe our GAN-based method for generating trajectories that are
similar to the examples in our training data.

As in most crowd-simulation research, we assume a planar environment and we model agents
as disks. We define a trajectory as a mapping π: [0, T ]→ R2 that describes how an agent moves
through an environment during a time period of T seconds. Note that a trajectory encodes speed
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Figure 6.1 – Our GAN architecture for learning and generating pedestrian trajectories.

information: our system should capture when agents speed up, slow down, or stand still. In
practice, we will represent a trajectory π by a sequence of nπ points [pπ0 , . . . ,pπnπ−1] separated
by a fixed time interval ∆t; that is, each pπi has a corresponding timestamp i · ∆t. In our
experiments, we use ∆t = 0.4s because our input data uses this value as well. We will use the
notation pπj:k to denote a sub-trajectory from pπj to pπk .

Given a dataset of trajectories Π = {π0, . . . , πN−1}, our generator should learn to produce
new trajectories with properties similar to those in Π. We assume that all trajectories start and
end on the boundary of a region of interest R, which can have any shape and can be different
for each environment.

6.3.1 Overview of Our System

Figure 6.1 displays an overview of our GAN system, which consists of two components: a
generator G that creates new samples and a discriminator D that judges whether a sample is
real or generated. The generator and discriminator both have two tasks:

— generating or evaluating the entry points of a trajectory π (i.e. the first two points pπ0 and
pπ1 ),

— and generating or evaluating the continuation of a trajectory (i.e. the next point pπk+1
after a sub-trajectory pπ0:k).

For the continuation tasks, we use ‘conditional GANs’ because the generator and discriminator
take extra data as input. We will now describe the system in more detail. Parameter settings
will be mentioned in Section 6.5.

6.3.2 Generator

To generate entry points, the generator G feeds a random vector z to a fully connected (FC)
block of neurons. Its output is a 4D vector that contains the coordinates of pπ0 and pπ1 .

To generate the continuation of a trajectory pπ0:k, the generator G feeds pπ0:k and a noise
vector z to a LSTM layer that should encode the relevant trajectory dynamics.
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The output of this LSTM block is sent to an FC block, which finally produces a 2D vector
with the coordinates of pπk+1. Let g(z|pπ0:k; θG) denote this result. Ideally, this point will be taken
from the (unknown) distribution of likely follow-ups for pπ0:k.

The continuation step is repeated iteratively. If the newly generated point pπk+1 lies outside of
the region of interest R, then the trajectory is considered to be finished. Otherwise, the process
is repeated with inputs pπ0:k+1 and a new noise vector.

6.3.3 Discriminator

The discriminator D takes an entire (real or fake) trajectory π as input. It splits the discrim-
ination into two tasks with a similar structure as in G. For the entry point part, an FC block
evaluates pπ0:1 to a scalar in [0, 1], which we denote by ve(pπ0:1; θD). For the continuation part, an
LSTM+FC block separately evaluates each point pπk (for 2 ≤ k < nπ) given the sub-trajectory
pπ0:k−1. We denote the result for the kth point by vc(pπ0:k; θD).

So, for a full trajectory π of nπ points, the discriminator computes nπ−1 scalars that together
indicate the likelihood of π being real. The training phase uses these numbers in its loss function.

6.3.4 Training

Each training iteration lets G generate a set Π′ of N trajectories for different (sequences of)
noise vectors. We then let D classify all trajectories (both real and fake). The loss function of
our GAN is the sum of two components:

— the log of classification accuracy of discriminating the entry points:

∑
π∈Π

log ve(pπ0:1; θD) +
∑
π∈Π′

log(1− ve(pπ0:1; θD)),

— the log of classification accuracy of discriminating all other points:

∑
π∈Π

nπ−1∑
k=2

log vc(pπ0:k; θD) +
∑
π∈Π′

nπ−1∑
k=2

log(1− vc(pπ0:k; θD)).

To let our GAN train faster, we add a third component. For each real trajectory π ∈ Π, we
take all valid sub-trajectories pπk:k+4 of length 5 and let G generate its own version of pπk+4 given
pπk:k+3. We add to our loss function:

∑
π∈Π

nπ−5∑
k=0
||pπk+4 − g(z|pπ0:k+3; θG)||
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i.e. we sum up the Euclidean distances between real and generated points. We observed that
this additional component leads to much faster convergence and better back-propagation.

To reduce the chance of ‘mode collapse’ (i.e. convergence to a limited range of samples), we
use an ‘unrolled’ GAN [MPPSD17]. This is an extended GAN where each optimization step for
θG uses an improved version of the discriminator that is u steps further ahead (where u is a
parameter).

6.4 Crowd Simulation

Recall that our goal is to use our trajectories in a real-time interactive crowd simulation,
where agents should be free to deviate from their trajectories if needed. This section describes
how we combine our trajectory generator with a crowd simulator.

Our approach fits in the paradigm of multi-level crowd simulation [vTJG15], in which global
planning (i.e. computing trajectories) is detached from the simulation loop. This loop consists
of discrete timesteps. In each step, new agents might be added, and each agent tries to follow
its trajectory while avoiding collisions.

6.4.1 Adding Agents

To determine when a new agent should be added to the simulation, we use an exponential
distribution whose parameter λ denotes the average time between two insertions. This parameter
can be obtained from an input dataset (to produce similar crowdedness), but one may also choose
another value deliberately. Each added agent follows its own trajectory produced by our GAN.

6.4.2 Trajectory Following

In each frame of the simulation loop, each agent should try to proceed along its trajectory π
while avoiding collisions. The main difference with classical ‘route following’ [JCIG13] is that our
trajectories have a temporal component: they prescribe at what speed an agent should move, and
this speed may change over time. Therefore, we present a way to let an agent flexibly follow π

while respecting its spatial and temporal data. Our algorithm computes a preferred velocity vpref

that would send the agent farther along π. This vpref can then be fed to any existing collision-
avoidance algorithm, to compute a velocity that is close to vpref while avoiding collisions with
other agents.

Two parameters define how an agent follows π: the time window w and the maximum speed
smax. An agent always tries to move to a point that lies w seconds ahead along π, taking smax

into account. During the simulation, let t be the time that has passed since the agent’s insertion.
Ideally, the agent should have reached π(t) by now. Our algorithm consists of the following steps:
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1. Compute the attraction point patt = π(tatt), where tatt = min(t + w, T ) and T is the end
time of π. Thus, patt is the point that lies w seconds ahead of π(t), clamped to the end of π
if needed.

2. Compute the preferred velocity vpref as patt−p
tatt−t , where p is the agent’s current position. Thus,

vpref is the velocity that will send the agent to patt, with a speed based on the difference
between t and tatt.

3. If ||vpref|| > smax, scale vpref so that ||vpref|| = smax. This prevents the agent from receiving
a very high speed after it has been blocked for a long time.

6.4.3 Collision Avoidance.

The preferred velocity vpref computed by our algorithm can be used as input for any collision-
avoidance routine. In our implementation, we use the popular ORCA method [vdBLM08]. In
preliminary tests, other methods such as social forces [HM95] proved to be less suitable for our
purpose.

6.5 Experiments and Results

Set-up. We have implemented our GAN using the PyTorch library 1. The input noise vectors
are 3-dimensional and drawn from a uniformly random distribution. In both G and D, the entry-
point FC blocks consist of 3 layers with 128, 64, and 32 hidden neurons, respectively. For the
continuation part, the LSTM blocks consist of 62 cells, and the FC blocks contain 2 layers of
64 and 32 hidden neurons. To save time and memory, the LSTM blocks only consider the last 4
samples of a sub-trajectory.

For training the GAN, all FC layers use Leaky-ReLU activation functions (with slope 0.1),
to let the gradient always back-propagate, which avoids vanishing gradient issues. We train the
GAN for 50,000 iterations, using an unrolling parameter u = 10.

In the crowd simulation, we model agents as disks with a radius of 0.25m, and we use a
simulation loop with a fixed frame length of 0.1s. In each frame, all agents perform our route-
following algorithm (with w = 5 and smax = 2m/s), followed by the ORCA algorithm [vdBLM08]
as implemented by the original authors. We remove an agent when it reaches the end of its
trajectory.

We test our method on the ETH dataset [PESVG09] that contains recorded trajectories
around the entrance of a university building. We have defined the region of interest R as an
axis-aligned bounding box, and we use only the 241 trajectories that both enter and exit R.

1. https://pytorch.org/
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Generated Entry Points Entering Direction ROI Fake dist. Real dist.

Figure 6.2 – The distribution of entry points created by three different methods.

Figure 6.3 – Trajectory heatmaps: the input data, the generated trajectories, and the final
simulated agent motion.

6.5.1 Result 1: Entry Points

To show the performance of our GAN in learning the distribution of entry points, we com-
puted 500 (fake) entry points in the ETH scene, and we calculated the distribution of the samples
over the boundary of R. We also compared these results against two other generative methods:
a Gaussian Mixture Model (GMM) with 3 components, and a ‘vanilla’ GAN variant that does
not use the unrolling mechanism. As shown in Fig. 6.2, the entry points of the unrolled GAN
(right) are closer to the real data than those of the other two methods.

6.5.2 Result 2: Trajectories

Next, we used our system to generate 352 new trajectories, and we used them to simulate a
crowd. The first two heatmaps in Fig. 6.3 show that generated trajectories (middle) are similarly
distributed over the environment as the real data (left).

The third heatmap shows the final motion of the simulated agents with route following and
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collision avoidance. In this scenario, agents are well capable of following their given trajectories.

6.5.3 Computation time

We used CUDA to run our GAN on a NVIDIA Quadro M1200 GPU with 4GB of GDDR5
memory. With this set-up, generating a batch of 1024 trajectories (with a maximum length of 40
points) took 152ms, meaning that the average generation time was 0.15ms per trajectory. Thus,
after training, the system is sufficiently fast for real-time insertions of trajectories into a crowd.

6.6 Conclusions & Future Work

In this chapter, we presented a data-driven crowd simulation method that uses GANs to
learn the properties of input trajectories and then generate new trajectories with similar prop-
erties. Combined with flexible route following that takes temporal information into account, the
trajectories can be used in a real-time crowd simulation. Our system can be used, for example,
to create variants of a scenario with different densities. It can easily be combined with other
simulation methods, and it allows interactive applications.

In the future, we will perform a thorough analysis of the trajectories produced by our system,
and compare them to other algorithms. We will also investigate the exact requirements for
reliable training. Furthermore, our system generates trajectories for individuals, assuming that
agents do not influence each other’s choices. As such, it cannot yet model group behavior, and
it performs worse in high-density scenarios where agents cannot act independently. We would
like to handle these limitations in future work.
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Chapter 7

CROWD-ROBOT INTERACTION:
UNDERSTANDING THE EFFECT OF

ROBOTS ON CROWD MOTION

7.1 Introduction

This chapter presents a collaborative research between Inria and University College London
(UCL) on “whether and how the presence of a robot affects pedestrians and crowd dynamics and
whether this influence varies across different robots?” To answer this question, a crowd-robot
gate-crossing experiment was conducted at the PAMELA facilities in London in August 2019.
The study involved 28 participants and two distinct robot representatives: A smart wheelchair
and a Pepper humanoid robot. Collected data includes video recordings, robot and participant
trajectories, and participants’ responses to post-interaction questionnaires.

A quantitative analysis was performed on the trajectories of the robot and participants.
This analysis suggests that the robot affects crowd dynamics in terms of trajectory regularity
and interaction complexity. Also, qualitative results indicate that pedestrians tend to be more
conservative and follow “social rules” while passing a wheelchair compared to a humanoid robot.
These insights may be useful for the design of social navigation strategies that encourage natural
interaction by taking account of the robot’s effects on the crowd dynamics.

7.2 Contributions

We conducted a crowd-robot gate-crossing experiment with the two aforementioned robots
and measured the effect each robot exerted on the crowds macroscopically (i.e. as one moving
body of people) and on groups of individuals microscopically (i.e. pedestrians in close proximity
and far away from the robot). This study makes the following contributions:

1. The first controlled crowd-robot experiment with recorded pedestrian trajectory dataset
in the presence of a robot, which presents novel results.
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2. An understanding of how pedestrian and crowd dynamics is affected by a robot. More
specifically, we use both local and global metrics to explore further the effect of the robot
motion on participants at the closest proximity of the robot. It will inform the design of a
more natural crowd prediction method and a more realistic crowd simulation scenario.

3. An understanding of how the type of robot affects pedestrian behavior, which highlights
considerations for designing robotic motion planning algorithms that also take into account
the effect of the robot on the crowd.

Specifically, my contribution to this research was two-fold::

1. Collaboration on data collection, including the setup of recording equipment, estimation
of camera calibration parameters, visual tracking of participants, and post-processing of
the tracks.

2. Collaboration in the design of the quantitative metrics and in the analysis of the results
of experiments.

Also the contributions of Bingqing Zhang, the main contributor to this experiment affiliated
with the UCL, was two-fold:

1. Design and set up of the experiment

2. Analyzing and evaluation of the quantitative data (tracks) as well as qualitative data
(questionnaire)

In the following sections, we discuss the detail of the research.

7.3 Related Work

The use of robots within pedestrian spaces is becoming increasingly common. Mobile robots
with various shapes, sizes and functions have been applied in areas such as logistics, trans-
portation and healthcare. For example, humanoid robots such as Pepper have been used to
assist customers in train stations and restaurants, autonomous vehicles have been increasingly
observed on the road and smart wheelchairs have been developed and tested in clinical trials.

In many of these environments, the robot must interact with pedestrians in a safe and po-
tentially social way, requiring an understanding of pedestrian dynamics in response to different
robots. However, state-of-the-art approaches normally model pedestrian dynamics using simu-
lation or data collected in human-only experiments [HM95, HD05]. Few works have explored
pedestrian dynamics in a robot-populated environment and they either studied it with a specific
type of robot or limited number of pedestrians [CJG18, MHM+19, VOS+17]. Although human
perception and interaction with different types of robot have been studied in many areas, it
remains to be explored in a crowd-robot navigation scenario.
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7.3.1 Pedestrian Robot Interaction

The study of Human-robot interaction has been an emerging area over the past few years.
People’s perception and reaction towards a robot is different from that to another human,
and is greatly affected by factors such as demographics [MHB+17], appearance and size of
the robot [BA01], perceived likeability and aggressiveness of the robot [MM11], and personal
experience with pets or robots [TP09]. Despite this wide range of study, human-robot interaction
in navigation is still relatively unexplored.

Recently, a small number of works have been focused on pedestrian-robot interaction and
its effect on pedestrian dynamics. Vassallo et al. conducted a study which investigated a gate
crossing scenario between one pedestrian and one robot: 10 participants and 279 trials were
performed in total [VOS+18], with experimental results indicating that there is no difference in
terms of the crossing order between human-human and the human-robot case, while the experi-
ment in [VOS+17] reported that pedestrians prefer to give way to a passive robot. Marvrogiannis
et al. conducted a within-subjects study to investigate the effect of distinct robot navigation al-
gorithms on pedestrians’ behavior [MHM+19]. Among 105 participants, three of them interacted
with a lab-built robot in each trial. Unlike these studies where the pedestrian dynamics is anal-
ysed on individuals or a small groups of people, Chen et al. studied crowd-robot interaction by
performing a corridor exiting experiment with 11 participants and 1 robot [CJG18]. Six test
cases with different robot or pedestrian speeds have been explored. The result indicated that
pedestrians’ overall speed was affected by the presence of the robot.

Although these experiments demonstrated valuable results in pedestrian-robot interaction,
most of them focused on an individual or small groups of pedestrians, which limits the applicabil-
ity to the crowd-robot navigation scenario. In addition, these works concerned with one specific
type of lab-made robot, which restricts the result from being generalized to other robots. This
leads to a question: Does the existence and the type of the robot affect crowd dynamics, and
what would this effect be?

7.3.2 Crowd Prediction and Robot Navigation

A human is capable of navigating through crowds by predicting the motion trajectories of
surrounding pedestrians and taking them into account when planning his or her own movement.
To achieve safe and human-like navigation for robots, it is crucial to mimic this decision-making
process by taking pedestrians’ trajectories into consideration. Early efforts in this area include
the ‘social force model’ [HM95] which used ‘attractive’ and ‘repulsive’ force to model pedestrian-
obstacles and pedestrian-destination interactions. Several extensions are proposed to this model
[YKS14, KHvBO09]. Yamaguchi et al. (2011) proposed to take the grouping behavior, smooth-
ness of movements and preferred speed of the pedestrian into account [YBOB11]. The main
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concern with these models is that the hand-crafted rules may not perfectly reflect the realistic
behaviors of humans.

Data-driven approaches are then proposed to resolve this problem. They allow the natural
human-human interaction to be captured and learned directly using real-world data. Machine
learning and deep learning methods such as Long Short-Term Memory (LSTM) [AGR+16] have
been applied to predict individual trajectories with the pairwise pedestrian interactions being
learned via a social-pooling layer. Generative Adversarial Networks [GJFF+18, KSMM+19],
Transformer models [GHCG20], etc., have also been proposed for this task. However, the majority
of these models are trained and validated on human trajectory datasets that either only contain
pedestrian trajectories (e.g. ETH dataset [PESVG09], UCY dataset [LCL07], Grand Central
dataset [ZWT12]), or contain other non-robot road-users (e.g. Stanford drone dataset [RSAS16]
that also contains trajectories of bikers, skateboarders, cars, buses, and golf carts, recorded in
a University campus). Moreover, as reported in [AZC+20], many of these datasets only cover
low-to-medium-density crowd activities. A model trained on such data might fail to make correct
predictions in new situations.

State-of-the-art work also presents approaches that incorporate pedestrian trajectory predic-
tion into robot navigation. Kerfs (2017) adopted an improved version of social-LSTM to predict
trajectories distributions and then used a dynamic A* for robot route planning [Ker17]. Simi-
larly, Pradhan et al. (2011) predicted pedestrians’ position and used a potential function based
path planner for robot navigation in crowds [PBB11]. These approaches achieved robot nav-
igation in human populated environments considering the human-human interaction and how
human behavior would affect the robot’s decision, but ignored the potential influence that the
robot would exert on the pedestrians.

In order to consider this mutual effect, some works combined the prediction and planning
process together. Trautman et al. (2013) addressed this mutual interaction by reasoning the
robot and pedestrians’ future trajectories jointly [TMMK13]. Their solution was evaluated on the
ETH pedestrian dataset [PESVG09]. Similarly, Kuderer et al. (2012) also treated the navigation
problem as jointly planning for robot and pedestrians. Differently from [TMMK13], they learned
natural pedestrian behaviours features from their own lab-collected pedestrian data using the
idea of maximum entropy [KKSB12]. However, the data was recorded without the presence of
a robot, and it has been pointed out by the authors that pedestrians may react differently to
robots than to other humans.

While the advances in trajectory prediction and robot navigation are often of great signif-
icance, they inevitably leave a gap in the validation of the suitability of pedestrian trajectory
dataset in robot navigation which requires consideration of the potential effect created by the
robot. This gap boils down to understanding the interaction between the crowd and the robot,
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which we aim to address in this study.

7.4 Proposed Method

In this work, we conducted a preliminary study on crowd-robot interaction focusing on how
two specific type of “robot” (Pepper and a shared-control wheelchair) affect such interaction.
This research aims to explore three main experimental questions:

1. How does the presence of a Pepper/wheelchair influence crowd motion?

2. Does the presence of a Pepper/wheelchair influence crowd-dynamics only at a local level,
or is the effect global?

3. If the robot does influence crowd behavior how does the response vary between Pepper
and the wheelchair?

7.4.1 Gate-Crossing Experiment

In order to answer these questions, we conducted a crowd-robot gate-crossing experiment in
an indoor environment. The experiment took place in an indoor pedestrian accessibility lab. The
lab environment allows us to have significant control over multiple variables. The place consists
of a platform which is constructed by 6 × 10 movable modules, with the size of each module
being 1.2m× 1.2m. We used 6m× 12m of the platform and constructed our gate using movable
panels.

7.4.2 Choice of Robots

While a number of related works investigated pedestrian-robot interaction using a lab-made
fully autonomous robot platform [CJG18, MHM+19], we decided to use one commercial hu-
manoid robot (Pepper) and one shared-control wheelchair as shown in Fig. 7.1. A shared-control
wheelchair is built on a standard powered wheelchair and has a collection of sensors for percep-
tion and navigation purpose. A user can express his or her driving intention through an interface
(eg. Joystick), and the wheelchair’s movement will be the result of a negotiation between the
user input and the motion planner. It provides people who have mobility impairment and are
considered unsafe to drive a traditional wheelchair with a mobility solution.

The reasons for choosing these robots are two-fold. Firstly, there is practical value to inves-
tigate this problem for robots that have been/would potentially be used in the public space.
Secondly, these two types of robot offer us a great range of differences in terms of appearance,
size, and dynamic constraints. The most distinct factor is the presence of a human ‘driver’ on
the shared-control wheelchair. State-of-the-art works that explore human-aware navigation are
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(a) Smart-wheelchair (b) Pepper

Figure 7.1 – Our smart wheelchair and the humanoid robot Pepper

mainly designed for fully autonomous robots, while such navigation strategy remains to be ex-
plored for semi-autonomous robot such as the shared-control wheelchair where a human driver
can be seen by the pedestrians. It is suggested by Bingqing et al. that in contrast to a standalone
fully-autonomous robot, an additional interaction channel between the wheelchair user and the
surrounding pedestrians should be considered for a shared-control wheelchair [ZHCH19]. The
fact that a human driver can be seen would potentially change pedestrians’ perceptions and
behaviors compared to the one with a standalone humanoid robot. Consequently, we include
the shared-control wheelchair and Pepper in our study, and took the first step to collect such
interaction data, with the aim to explore the impact that the system exert on the crowds and
understand how that may differ across robots.

It should be noted that in this study, we do not consider the potential influence on pedes-
trians’ dynamics caused by the different navigation algorithms. In addition, we assume that the
robots are equipped with a human-like navigation strategy. As a result, a Wizard-of-Oz [Rie12]
method was adopted in our experiment – the wheelchair was driven by an expert driver and the
humanoid robot was tele-operated by an experienced operator.

Some may argue that the wheelchair is not actually ‘shared-controlled’ in this case and cannot
be considered as a robot. Indeed, with no navigation algorithm, we may get similar results as
those from the situation where a user is driving a standard powered wheelchair. The reason we
called it ‘shared-control wheelchair’ is to emphasis that such system differs from other types of
mobile robot by involving a human driver who can be seen by the pedestrians in daily use cases,
and also differs from fully-autonomous wheelchair where the users are seen as a passenger from
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the pedestrians’ view. Most importantly, this is used to emphasis that such system would have
a navigation strategy (and thus can be considered as a robot) and this study is used to inform
the design of its navigation strategy. For simplicity, we will call it wheelchair in the rest of the
chapter.

7.4.3 Participants

28 participants (15 females, 13 males) from different age groups (M=33, SD=8.8 years old)
were recruited from UCL university and a participant pool. None had a mobility impairment.
All of them had normal sight and hearing. The participants were given a copy of the information
sheet and time to sign the consent form prior to the experiment. To prevent any potential bias,
the actual purpose of the experiment was not revealed to them during the introduction.

7.4.4 Task

In contrast with previous work which studied interaction between one robot and one pedes-
trian [VOS+17] or small groups of people [MHM+19], we designed a robot-in-crowd gate-crossing
task. The gate-crossing task has been widely used in analyzing crowd dynamics, in situations
such as entering train stations and evacuation [TDLH+12]. During the experiment, each par-
ticipant was asked to wear a colored hat for detection and tracking purposes (see Fig. 7.2).

Figure 7.2 – Overview of the experiment from side and top camera

In each run, 28 people and the robot were randomly given an initial starting position number
which represents one cube on the platform. In addition, we made sure that the starting positions
assigned to the people in proximity to the “robot” were not the same in each run, so as to reduce
the learning effect and potential bias caused by individual behavior. Furthermore, for more valid
comparison, we let the participants keep their starting position across difference scenarios. For
example, the starting position in S2 run 1 is different from S2 run 2 but is the same as S3 run
1. All pedestrians were instructed to walk together from one side of the platform to the other
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side by crossing through a 2.2m wide gate (See Fig. 7.3). A vocal command was used to inform
pedestrians of the start of each trial and the completion was achieved when all the pedestrians
crossed a destination line at the end of the platform.

Figure 7.3 – Overview of the experimental plan

7.4.5 Experimental scenarios

We designed 4 testing scenarios with 3 independent variables, robot occurrence, robot type
and robot speed (see Table 7.1). Due to the inherent differences in speed limit, we set the low
speed around 0.5m/s for the wheelchair and Pepper, while the high speed for the wheelchair
is about 1m/s, which is comparable to normal pedestrian walking speed. Each scenario was
repeated 5 times.

Table 7.1 – Five Experimental Scenarios
Experimental Scenarios

Scene Robot Max Speed
S1 No robot N/A
S2 Wheelchair Low
S3 Wheelchair High
S4 Pepper Low

7.4.6 Data Collection

The experiment was recorded by an overhead fish-eye IP video camera (Axis M3037) at
12.5 frames per second. An additional IP video camera was set up from the side with the
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aim to observe pedestrian behaviors qualitatively. In order to calibrate the camera, we used
the chessboard method. We recorded a video with the camera, while a person was holding the
chessboard toward the camera, moving around and rotating it. We extracted 22 different frames
from this video to cover different positions and rotations of the chessboard in the image. We
used Matlab Camera Calibrator toolbox [SMS06b] for estimating the calibration parameters of
the fish-eye camera. It allowed us to undistort the videos (see Fig. 7.4).

(a) distorted frame (b) undistorted frame

Figure 7.4 – Estimating camera calibration parameters, and un-distorting the recorded videos

We then used a special-purpose software called PeTrack to extract the pedestrian trajectories.
(See Fig. 7.4.6 (a)) With PeTrack we were able to track the colorful helmets of pedestrians and
the robot (or wheel-chair user). We then fixed the problems like ID switches and drifts in the
detections by semi-automatic processes. Finally, we used a linear projection to map the head of
the pedestrian to a point on the ground, which represents the leg of the person. For the humans
we assumed an average height of 170 cm. For Pepper and the wheelchair we used heights of
120cm and 140 cm, respectively (See Fig. 7.4.6 (b)).

In order to filter out the high frequency jerks from the trajectories we applied a Kalman
Filter (KF) with Rauch–Tung–Striebel (RTS) smoothing backward-pass [RTS65]. In total, 20
trials (for four scenarios, five runs each scenario) were performed with valid interactions between
the robot and the crowds. 546 trajectories of pedestrians and the robots were extracted.

7.5 Analysis

To better evaluate the effect of presence of the robot in crowd dynamics in both global
and local levels, we measured macroscopic and microscopic features, and reported the result
quantitatively. Macroscopic features describe high-level crowd characteristics while microscopic
features take individuals’ properties into account. In order to quantify the effect of the presence
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(a) PeTrack Software (b) Refining tracks by user

Figure 7.5 – Tracking pedestrians using PeTrack

of a robot and its effect on pedestrian dynamics, we analyzed the extracted trajectories both
macroscopically and microscopically based on some common metrics have been used in previous
works [MHM+19, VOS+17, PCBS11]. In general, we categorized the applied metrics to measure
‘trajectory regularity’ and ‘interaction complexity’.

7.5.1 Preprocessing

Before applying metrics to the trajectories, we defined the notion of region-of-interests (ROI)
as 2m before the gate and 0.5m after the gate. We observed that this was the region where most
interaction happens. In addition, for more valid comparisons, we splitted all the trajectories
extracted from the ROI into sub-trajectories with each having a fixed time length of 10 frames
(=0.8s).

7.5.2 Trajectory Regularity

We evaluated the geometrical and physical properties of the sub-trajectories in order to
reflect their irregularities and deviations from simple linear trajectory models. For this purpose,
we used three metrics: average speed, average acceleration and path efficiency. Path efficiency
is normally calculated as the ratio of distance between two terminals (~xend and ~xstart) of the
trajectory segment over the actual length of the segment [MHM+19]. However, in our experiment,
the existence of the gate inherently affects pedestrians’ path efficiency. This issue is addressed
by dividing the sub-trajectories which cross the gate into ‘before gate’ and ‘after gate’, with the
sub-goal (~xsub) being introduced as the point on the sub-trajectory at the gate. As a result, path
efficiency η for a sub-trajectory Xk is defined as:

η(Xk) =

∥∥∥xksub − xkstart
∥∥∥+

∥∥∥xkend − xksub
∥∥∥∑

t

∥∥xkt+1 − xkt
∥∥ (7.1)
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where t ranges from start to end.

7.5.3 Interaction Complexity

While the above metrics indicate the trajectory regularity and motion complexity of each
pedestrian, they do not imply the interaction between pedestrian-pedestrian and pedestrian-
robot. Consequently, we applied another three metrics to evaluate the interaction complexity in
each scene. They are evacuation time, local density, and pass order inversion.
Evacuation time has been used to assess pedestrian dynamics in emergency situations. Here it is
defined as the time elapsed from when the first pedestrian passes the gate to the time when the
last pedestrian passes the gate. This quantity is further normalized by the number of pedestrians.
In terms of local density, Helbing et.al proposed a formula based on the idea that each person
occupies a fixed radius of area [HJAA07]. In this work, we adopted the notion proposed by Plaue
et al. where a nearest neighbor Gaussian kernel estimator is used, which allows the difference
of each pedestrian occupied area being taken into account [PCBS11]. For a point xt, the local
density p(xt) is defined as,

p(xt) = 1
2π

Kt∑
i=1

1
(λdit)

2 exp

−
∥∥∥xit − xt

2
∥∥∥

2(λdit)2

 (7.2)

where dit = minj 6=i
∥∥xit − xt

∥∥ is the Euclidean distance from agent i to its nearest neighbor and
λ > 0 is a smoothing parameter.

In the daily life, a human always adapts to others when there is a risk of collision. To analyze
whether such adaption exists in the human-robot navigation scenario and how it differs across
different types of robot, we used a signed definition of the minimum predicted distance (SMPD)
to analyze the adaption behavior [VOS+17]. As detailed in [OMCP12], minimal predicted dis-
tance (MPD) estimates the risk of future collision by calculating the distance to the closest
approach (DCA) between the robot and the pedestrian at each time step, assuming they keep a
constant velocity.

x̂(t, u) = x(t) + (u− t)v(t)

MPD(t) = arg min
u
‖x̂h(t, u)− x̂r(t, u)‖

(7.3)

where u is a future time parameter, and x̂h(t, u) and x̂r(t, u) are future positions of the human
and robot.

By adding a sign to this metric, we can estimate whether the robot or the pedestrian is
predicted to be ahead. In our study, we define tenter as when the robot entered the ROI and
tpass as when either the pedestrian or the robot passed the gate. Consequently, we computed
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SMPD(tenter) and SMPD(tpass) for each pedestrian-robot pair.
Considering the human perception capability, we only considered pedestrians who are behind

the robot at tenter. We define positive SMPD if the robot should pass first and negative SMPD
otherwise. As a result, a change of sign of SMPD means that the future crossing order between
the robot and the participant is switched, and thus implies the adaption in the pass order. In
general, we define four pass order groups based on the sign of SMPD at tenter and tpass, namely:
PosPos, NegNeg, PosNeg and NegPos. We classify ‘PosPos’ and ‘NegNeg’ as pedestrians who
keep their pass order, ‘PosNeg’ represents pedestrians who overtake the robot while ‘NegPos’
implies pedestrians give the way to the robot.

7.6 Statistics

In order to assess the effect generated by the robot and whether it varies with robot type,
detailed comparisons were made within and across scenarios. To guarantee valid data compar-
ison, normality was assessed with the Kolmogorov-Smirnov test. It was indicated by the test
result that statistics have a non-Gaussian distribution for some metrics. As a result, we used
Wilcoxon ranked sum tests to determine differences and significant level. All effects were re-
ported at p < 0.05. All the figures indicate the significant level with ‘*’, where ‘*’ stands for
p < 0.05.

7.7 Experimental Results

7.7.1 Average Speed and Average Acceleration

Overall, our results indicate a significant difference between the human-only case (S1) and
human-robot case (S2, S3, S4) in terms of average pedestrian speed and acceleration.

In order to further investigate the local effects, we grouped all pedestrian trajectories into
two categories based on their spatial relationship to the robot. According to Hall’s personal
space model [Hal09], we evaluated each pedestrian’s distance to the robot at each time stamp.
For a pedestrian sub-trajectory, only those with the median of Euclidean distance less than the
robot’s close social space (< 2.1m) were considered as in proximity with the robot. This gives
us 819 and 1067 pedestrian sub-trajectory segments near and far away from the robot.

Fig. 7.6a depicts the average pedestrian speed categorized by its proximity to the robot.
The average value obtained in S1 is used as a baseline for comparison. It can be observed that
in most scenarios (except S2_farSpeed), the average speed for pedestrians near and far away
from the robot are significantly different from the baseline (S1, no robot case). Additionally,
within the same scenario, pedestrians’ average speed differs greatly based on their proximity to
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the wheelchair (S2, S3) or Pepper (S4). In terms of average pedestrian acceleration, a similar
difference exist between no robot and robot cases, while the local effect is less obvious.

S1 S2N S2F S3N S3F S4N S4F
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Figure 7.6 – Average pedestrian speed categorized by its proximity to the robot. ‘N’ and ‘F’
stand for the speed for pedestrians near the robot and far away from the robot. Pedestrian
speeds in robot scenarios are significantly different from those in the no-robot scenario (S1).
Within the same scenario, pedestrians that are in close proximity with the robot have lower
speed compared to pedestrians far away from the robot.

7.7.2 Path Efficiency

In general, high path efficiency (> 85%) in all scenarios was observed. While comparing the
path efficiency of sub-trajectories categorized by their proximity to the robot within the same
scenario, pedestrians who are in close proximity with the robot in S3 and S4 have slightly lower
path efficiency compared with those who are distinct from the robot.

7.7.3 Evacuation time

Fig. 7.7 shows the evacuation time per person for all four scenes. By comparing S1 (no robot
case) with S2-S4 (robot case), it can be observed that evacuation time significantly increased
(p < 0.05) when a wheelchair or Pepper is involved. In addition, a significant difference is
observed between the wheelchair case and the Pepper case regardless of the robot speed.
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Figure 7.7 – Evacuation time per pedestrian. A significant increase can be observed when a
robot is added to the crowd. Pedestrians need longer evacuation time when walking with Pepper
compared to when walking with a smart wheelchair.

7.7.4 Local density

Average local density for each pedestrian or the robot sub-trajectory is illustrated in Fig.
7.8. Significant difference can be observed between no robot (S1) and robot (S2,S3,S4) cases, as
well as between the wheelchair (S2,S3) and Pepper (S4). When the wheelchair was involved, the
wheelchair speed also showed influence on average pedestrian the local density. In terms of the
robot, local density around Pepper is significantly higher than the one around the wheelchair.

7.7.5 Pass Order

Fig. 7.9 provides a summary plot for the human-robot pass order in all scenarios. We can
observe that about 50% of pedestrians kept their pass order when they walk with a wheelchair
or Pepper. Among the pedestrians who adapt their behaviour, less than 20% of them overtake
the wheelchair while this number is over 80% in the case of Pepper. On the contrary, less than
20% of pedestrians give way to the Pepper while over 80% of them let the wheelchair pass first
regardless of the wheelchair speed setting. This behaviour difference is visualized in Fig. 7.10.
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Figure 7.8 – Local density around the pedestrians (pH) and the robot (pR).When a robot is
added to the crowd, the local density around pedestrians decreases. Higher local density can be
seen around the Pepper robot compared with the smart wheelchair.

7.8 Discussion

We studied how pedestrian dynamics in terms of trajectory regularity and interaction com-
plexity are affected by the occurrence of a wheelchair or a humanoid robot Pepper. In general,
the influence on all pedestrians’ average speed, acceleration and path efficiency is negligible.
However, when we categorized the trajectories based on the spatial relationship to the robot,
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Figure 7.9 – Pass order inversion. In all scenarios, over 50% pedestrians kept their passing order.
Among those who adapted their passing order for Pepper, over 80% overtook while less than
20% gave the way to the robot. The situation is the opposite in the wheelchair case.

we have observed significant differences between the ’near the robot’ and ’far away from the
robot’ group in terms of average speed and path efficiency. Pedestrians who are near the robot
tend to move slower with lower path efficiency compared to those far away from the robot. No
significant evidence has been observed on how the result is affected by the robot speed.

On the other hand, more disparity has been observed across the scenarios in term of the
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Figure 7.10 – Sample robot and pedestrian trajectories. (a): The pedestrian (blue) gave way to
the wheelchair (red). Right: The pedestrian (blue) overtake Pepper (red).

interaction complexity. Temporally, the evacuation time per person has increased significantly
when a wheelchair or Pepper is involved. Besides, the crowds tend to spend more time in evacua-
tion with the Pepper (S4) than with the wheelchair (S2, S3). In addition, a negative relationship
between the robot speed and crowd evacuation time is observed. When looking at individual’s
adaption behavior, most pedestrians make adaption by overtaking Pepper while giving the way
to the wheelchair. A potential explanation for this result is that the pedestrians overtaking deci-
sion is affected when a human (the wheelchair driver) is involved. This finding also suggests that
pedestrians tend to follow ‘social rules’ and being polite by not overtaking other pedestrians,
while this rule is not observed when the overtaking target is replaced by a humanoid robot.

Spatially, a similar value of about 1.5 person/m2 for local density around pedestrians has
been observed for all scenarios. However, this value is significantly lower around the wheelchair
and the Pepper. In addition, wheelchair was surrounded by fewer people compared to Pepper.

These results suggest that the pedestrians’ local adaption behavior and crowds interaction
complexity are affected by the occurrence of a robot, and would vary across the tested two robot
platforms.

Consequently, we draw the following implication from our study:
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1. It would be important to consider the effect the robot exert on the surrounding pedestrians
while planning for its next motion – which means prediction and planning should be
considered together to capture the nature interaction in complex environment.

2. In order to achieve social robot navigation using data driven method, pure pedestrian
data recorded from a no-robot environment may be insufficient, and it is better to obtain
the pedestrian data where the specific robot is involved, as the occurrence and type of
the robot affect pedestrian’s trajectory regularity as well as crowd interaction complexity.
In addition, by modeling the difference in pedestrian dynamics in a crowd simulator, it
is potentially possible to achieve more realistic interaction between pedestrians and the
robot, and thus providing us a more powerful tool to validate the developed navigation
algorithm.

3. The social navigation strategy should potentially be developed differently for the shared-
control wheelchair and the fully autonomous humanoid robot. In this study, we did not
explore the influence of the existence of a human driver on the pedestrian’s behavior, but
rather considered the wheelchair +driver as a whole. However, when it comes to the social
shared-control navigation, the role of the driver and his/her interaction with surrounding
pedestrians would need to be further investigated.

We acknowledge the existence of limitations in our study. Firstly, the result is inherently
limited to the certain scenarios as with any HRI study. Furthermore, the fact that human
interaction with a robot is associated with its perception which may change over time, experience
and environment.

7.9 Conclusion

In this chapter, we presented the first crowd-robot crossing experiment with collected tra-
jectory dataset in the presence of two robot representatives: a smart wheelchair and a Pepper
humanoid robot. Quantitative analysis implies the presence of the wheelchair and the Pepper
affect crowd dynamics both locally and globally. Besides, the influence varies across the robot
type. In general, the effect is reflected in the individual trajectory regularity and the interaction
complexity. Qualitative results further supported the idea that pedestrians tend to behave more
conservatively around the wheelchair compared to the Pepper, potentially due to the perception
of a human driver. These results suggest that the influence of the robot on crowds should be
taken into consideration when designing the pedestrian model in simulation and the navigation
strategy for different kinds of robot.

In the future, this work could be extended to explore the effect of different types of robot on
pedestrian dynamics in bi-directional or even more complex scenarios. In addition, the human
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factors such as age, gender, familiarity with the robot which would potentially affect crowd dy-
namics in social navigation could be further investigated.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

In this thesis, new insights into human motion prediction are highlighted and studied. We
proposed our contributions through Chapters 3 to 7. In this chapter we briefly review those
contributions, comment a few other results we obtained in this thesis and also discuss their
limitations and -some- possible future work.

8.1 Benchmarking Human Trajectories Datasets

8.1.1 Contributions

In Chapter 3 we presented a benchmarking framework for assessing prediction complexity
in human trajectories datasets. We proposed a series of indicators for gaining insight into the
intrinsic complexity of Human Trajectory Prediction datasets. We divided these indicators into
three folds:

— Trajectory Predictability: We proposed to fit a GMM to the samples of a trajectory
dataset and find the number of clusters, which can be an indicator of multi-modality of a
dataset. We also proposed formulations to measure the overall and conditional entropies,
which can reflect the predictability of dataset samples.

— Trajectory Regularity: We considered very basic statistics of motion properties such
as average, maximum or range of speed and acceleration of pedestrians. We also defined
two indicators for measuring the non-linearity of trajectories: path efficiency, and angular
deviation.

— Context Complexity: We defined indicators to quantify the interaction strength between
pedestrians. We also considered global- and local-density to describe trajectory datasets.

We then applied these indicators on a range of different HTP datasets, including very common
datasets such as ETH [PESVG09] and UCY [LCL07] that are massively used in the literature.
We showed that these datasets exhibit different characteristics, in the light of our indicators. In
particular, it may explain why some prediction techniques that do not use explicit modeling of
social interactions, and consider trajectories as independent processes, may be rather successful
on datasets where e.g., most trajectories have low collision energy; it may also indicate that
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some of the more recent datasets with higher levels of density and interaction between agents
could provide more reliable information on the quality of the prediction algorithm.

We also proposed more technical contributions: We defined trajlets: sub-trajectories with
a fixed duration, to decompose each dataset to primitive elements. We created a toolkit con-
taining the indicators, parsers for a variety of trajectory dataset templates, and pre-processing
functionalities. The toolkit is implemented with Python and the source codes are published on
Github 1.

8.1.2 Future Work

The proposed framework, actually comes with a lot of limitations. One major direction to
improve this framework is to design other context-complexity indicators: what is the frequency
of other types of social interactions (grouping behavior, leader-follower behavior, and etc) in
different datasets. Also the semantic information in the map should be studied, to see how the
prediction can be complex around different areas or objects in the map. Moreover, it will be
interesting to find statistical correlation between indicators. This can help to find and remove
redundant indicators reach a smaller combination of them that cover the desired criteria.

More recent datasets need to be considered in the future studies. Bigger datasets such as
Waymo [SKD+19] and NuScenes [CBL+20] are becoming new benchmarks for prediction systems
in self-driving cars. Moreover, these data are being used to train prediction models. Then, it is
more important than ever to study these datasets to ensure that they cover a wide variety of
samples.

8.2 Short-term Motion Prediction using Crowd Models

This section discusses the work we have done on applying crowd modeling algorithms to the
human trajectory prediction problem. In this study, we developed a prediction system, based
on the “Crowd Model Optimization framework” proposed by Wolinski et al. [WJGO+14]. We
re-designed the framework to work in online mode, and be applicable for real-time trajectory
prediction on mobile robots. The experimental results however are not satisfying. The approach
is not successful in achieving good prediction performance, compared to very simple baseline.
Hence, we decided to exclude this work from main body of this thesis, and discuss it in this
concluding chapter.

By Crowd Model we mean “algorithms that model the motion of multiple agents, possibly
many, taking into account the interactions with other agents and with static obstacles in the
environment”. Such algorithm requires the following inputs:

1. github.com/amiryanj/OpenTraj
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(a) environment layout, L including the obstacles and the borders of the environment. This
information should define the walkable/non-walkable areas,

(b) agents and their parameters: including N, the number of agents, and P, the set of algorithm
parameters. Usually P is composed of pi, the parameters corresponding to each agent, with
pi = {pi1 .. pim} (1 ≤ i ≤ N), where m is the number of parameters for one agent. The
parameters depend on the crowd algorithm. Agent radius and preferred speed are two
common parameters, used in most of the algorithms. But generally any continuous or
categoric parameter can be considered in P.

(c) initial locations and velocities and their destinations. The destinations can be given in the
form of a location point/area or a direction vector.

The crowd simulation function can be formulated by the following equation:

[
xk+1

vk+1

]
= f(xk,vk, z,L,P), (8.1)

where x,v and z represent the set of locations, velocities and destinations of the agents, respec-
tively, and L is the layout information. Also, k denotes the time index. The function returns the
next (future) location and velocity vectors of the agents. We used the optimization framework,
proposed by Wolinski et al. [WJGO+14], that finds the set of parameters P of model, such that
it can replicate a given crowd experiment as ‘best’ as possible. Considering reference data as H,
the framework tries to solve the following optimization problem:

P∗ = arg min
P

E(x,v,z)∼H[d(xk+1, f(xk,vk, z,L,P))], (8.2)

where d is a distance function. We then applied the following modifications on this framework. We
formulated the prediction problem as solving Eq. (8.2) for observed trajectories of agents, and use
P∗ to predict the future location of agents. By iteratively applying f on the last observations
(or estimations), we can predict trajectories for each agent. To solve this problem, we also
need to estimate the agents’ destinations z. We considered two different approaches for agents’
destinations: (1) estimation agent’s goal by extrapolating its instant motion vector, (2) using
ground truth goal, for the sake of comparison.

We tested different crowd simulation algorithms: Helbing (Social-Forces) [HM95], PowerLaw
[KSG14], RVO [vdBGLM11], different optimization methods: Greedy, Genetic Algorithm, and
Simulated Annealing (all explained in [WJGO+14]). We predicted the location of agents for
the next 1 sec for three different datasets: ETH-Univ, ETH-Hotel [PESVG09] and high-density
crowd Bottleneck dataset [SPS+09]. In the experiments, we observed lower prediction error for
RVO, compared to Helbing and PowerLaw, and the best optimization results using the Genetic
Algorithm. The normalized prediction errors are shown in Fig. 8.1, only for RVO model:
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Figure 8.1 – Normalized prediction results using RVO crowd model, with and without goal
estimation (red and yellow bars respectively) vs. Constant-Velocity Kalman Filter (blue bar).

As we can see, we almost did not achieve any improved motion predictions using this ap-
proach, compared to the baseline, which is a Constant-Velocity Kalman Filter. Only for Bot-
tleneck dataset, the prediction error was slightly lower than the Kalman Filter baseline. Also
the prediction error when using ground truth goals was lower for ETH-Hotel and Bottleneck
datasets.

We attribute this behavior to the fact that we only used a very narrow window of the observed
trajectories to find the optimum parameters P∗. For instance, in short chunks of ETH datasets,
there is not sufficient amount of interaction between agents, and the parameters are obtained
sub-optimally. On the other hand, in the Bottleneck dataset, which contains high density crowd
activities, the approach has provided slightly better predictions. Further, the goal estimation is
not handled in an intelligent way, in this setup, and there is room to improve this aspect, for
example by using statistical inference.

Our technical contributions include developing the mentioned system in C++, and creat-
ing a Qt-based graphical user interface to run and test crowd simulation algorithms on recorded
datasets. A snapshot of our program is shown in Fig. 8.2.

8.2.1 Future Work

While the experiments in this section, does not show any benefit of using crowd models for
prediction of human trajectories, however the intrinsic properties of this algorithm can still be
useful in the domain of trajectory prediction. This family of algorithms, provide very simple
and interpretable models of interactions between agents, and can be used in combination with

132



Figure 8.2 – Screen-shot of the user interface of the crowd prediction framework. The main
window contains a scene to display the world in 2D, a menu at the top and some control buttons
at the bottom. In the scene, the agents are shown by yellow/green circles and the ground truth
predictions are shown in punch color, the results of Helbing model are shown in red.

pattern-based models. Another direction is to use these models for generating synthetic crowd,
which can improve the training in data-driven models.

8.3 Multi-Modal Pedestrian Trajectory Prediction

In Chapter 4 we presented a novel approach for prediction of pedestrians trajectories. The
proposed model is based on Generative Adversarial Networks.

8.3.1 Contributions

In the proposed architecture we used a few hand-designed interaction features inspired from
the neuroscience/bio-mechanics literature. We used an attention pooling to process the social
features of pedestrians. We also proposed to use the infoGAN approach, to alleviate the common
mode collapsing effect observed in generative models. We showed that the proposed loss function,
can help to better preserve the modes of predictive distributions.

We proposed a specifically designed toy trajectory dataset to use as an evaluation benchmark
for comparing different approaches and baselines. We presented two new metrics to measure the
quality of the prediction distributions:

1. 1-Nearest Neighbor classifier assesses the distinguishability between real and fake
(generated) samples,
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2. Earth-Mover’s Distance estimates the distance between the distributions of real and
fake predicted trajectories.

We showed through evaluations on commonly used datasets that our approach partly improves
the prediction accuracy of state-of-the-art methods on the datasets where the predictive distri-
butions have the largest variances.

We implemented the proposed model, using Pytorch machine learning library and in Python
language. The source codes are published on a Github repository 2.

8.3.2 Discussion and Future Work

We are aware that there is still room for improving the current generative models in pedes-
trian motion prediction and, above all, for exploiting these models in decision making.

Learning disentangled representations: To evaluate the benefits of using the information
loss and the associated latent codes c, we trained a GAN with information loss on a toy dataset
and conducted generation experiments with two continuous latent codes c ∈ R2. Then we studied
qualitatively the generated trajectories when varying c, for a given set of past observations. The
results appear in Fig. 8.3 indicate that the variations in the first component seem to result in
speed change in the trajectory, while the second component seems to control the steering angle
of the trajectory.
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Figure 8.3 – Effect of varying the latent codes on the generated trajectories. The past observations
appear in blue. On the left, variations in the first latent code generate trajectories aiming to the
same direction but with different speed (length); On the right, variations in the second latent
code generate trajectories with approximately the same speed but different steering angles.

We proceeded to test with different numbers of latent codes. However, we did not observe
meaningful changes in the generated trajectories, after the second code. This result is however
derived from a limited test on a small toy dataset, which is itself in a low-dimensional space.

2. github.com/amiryanj/socialways
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Learning disentangled representations for human trajectories on real and large-scale datasets
can be studied, in the future. It is also interesting to see if agents’ interactions can be learned
via disentangled representations.

Very recently, Kothari et al. [KSA21] have addressed the interpretability issues in trajectory
prediction models using Discrete Choice Modelling (DCM). The model which has similarities
with traditional hand-crafted algorithms for human motion prediction [RABC09, YBOB11],
while leveraging neural networks to model complex and possibly subtle social interactions, suc-
cessfully outperforms the state-of-the-art trajectory prediction models on the TrajNet++ bench-
mark [SICP20].

Sequence-to-sequence learning: In the neural-network system we presented in Chapter 4,
we used recurrent networks cells for both encoding and decoding trajectories. This type of
networks, however, suffer from vanishing (or exploding) gradient problem. This issue relates to
back-propagating the training error through a long sequence of inputs (i.e., location of agents).
The derivatives corresponding to consequent inputs are multiplied, hence this last expression
tends to vanish more as the sequence gets larger.

Even though Long-Short Term Memory networks (LSTMs) are proposed to diminish vanish-
ing gradient, the problem however is not completely solved. Therefore the trained network can
be sub-optimal and unable to encode trajectory inputs effectively.

Transformer is an encoder-decoder architecture that is proposed for sequence-to-sequence
problems without using recurrent networks and only by leveraging attention mechanism. The
encoder and decoder each consists of a set of layers that sequentially compute the self-attention
between the layer inputs and pass them through a feed-forward layer. The authors of [GHCG20]
showed surprisingly that transformers can give competitive results in the trajectory prediction
task as well. This model, however has not taken into account the social interactions between the
agents. Then a very interesting research direction is to embed social-features and other auxiliary
information in this model.

Generative models: As we discussed earlier, Generative Adversarial Networks, suffer from few
intrinsic issues:

— Non-convergence: GANs are difficult to train. They are highly sensitive to the hyper-
parameter selections, and small changes in the parameters may upset the equilibrium
between the Generator and Discriminator. This can then cause one adversary (mostly the
Discriminator) to train faster than other one. The result is that the gradient will diminish
substantially and the training will not converge or it leads to over-fitting.
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— Mode-collapse: we addressed this problem in our solution. Using information loss, we
showed that the modes of the predictive distribution will better be preserved, compared
to other baseline GANs, including vanilla-GAN (trained by adversarial loss), variety loss,
and so on. However, maximizing the mutual information between the input and output of
the Generator, solves this problem only partially, and this approach does not guarantee to
learn all the modes of the data. Another problem arises from the sampling process, where
we draw a set of independent Gaussian latent codes and convert them into predicted
trajectories. This independent sampling, however, may fail to provide diverse outputs.

The above problems can be relieved or solved through future work. Some recent work has
already applied better ideas and has shown improved results, while some ideas remain to be
explored. Yuan and Kitani introduced Diversity Latent Flows (DLow) to produce a diverse set of
samples from a pre-trained deep generative model, in the task of human pose prediction [YK20].
Instead of using independent sampling as in GANs, they sample a single random variable and
map it with a set of learnable mapping functions to a set of correlated latent codes. These codes
are then decoded into a set of correlated prediction outputs, which can improve the diversity of
the samples. This concept can also be applied to predicting human trajectories.

Also, other generative models can be applied to the problem of trajectory prediction. Some
recent models, based on conditional VAEs show promising and more stable results. The authors
of Trajectron [IP19] achieved this by training a graph network using Conditional Variational
Auto-Encoding (CVAE). A follow-up work, coined as Trajectron++ [SICP20], obtained better
prediction results compared to GAN-based counterparts such as Social-Ways (our proposed
model), Social-GAN [GJFF+18], Sophie [SKS+18] and Social-BiGAT [KSMM+19].

However, a recent argument was raised by researchers at Leuphana University of Lüneb-
urg that “variational auto-encoding does not contribute statistically significantly to empirical
performance in modeling low-dimensional trajectories [RBD20] of agents.” They performed mul-
tiple ablation tests, between models with/without a variational unit and suggested that the
latter perform on par or better than former systems. They disabled the CVAE component of
the Trajectron to obtain two model variants: one by interchanging the CVAE with a Gaussian
Stochastic Neural Network (GSNN) component [SLY15]. And another by removing the latent
variable component altogether. They showed that there is no significant difference in the model
variants with respect to their log-likelihoods on five tested datasets.

There are also other generative models that explicitly learn the probability density function
of data, such as Flow-based models [DKB14, KD18]. Some attempts are done to use normalizing
flows in trajectory prediction problem. Bhat et al. [BFO20] proposed a model based on Trans-
formers and Normalizing flows for Autonomous driving. Also, Fadel et al. [FMTB21] developed
a movement model for prediction of trajectories of soccer players. Those models do not consider
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the interactions of agents for prediction. Hence, there is room to improve these models and apply
them on social robots.

Evaluation of trajectory prediction models: The metrics we proposed in Chapter 4 are
useful tools for evaluation of multi multi-modal prediction models. However in our work, we
only used them on the toy dataset, where for every observed trajectory we have access to a
set (or probability distribution) of the future trajectories. Both metrics, also need to compare
two sets with equal number of elements. In order to use those metrics on real datasets, some
modifications are required. For example, a clustering mechanism can be used to treat trajectories
whose observed parts are similar, as one set. Also, one can up-sample these clusters to obtain
sets of equal sizes.

It is also important to reconsider the k-ADE and k-FDE metrics when evaluating multimodal
models. Kothari et al. [KKA21] suggest using a small k, like 3 instead of 20 (which we used in
Chapter 4). Because a model that produces uniform-spaced predictions, regardless of the input
observation, can still result in low k-ADE and k-FDE when k is too large.

8.4 Occluded Crowd Prediction from Robot Sensing

8.4.1 Contributions

In Chapter 5 we proposed a new approach to impute the structure of a crowd in which a robot
is performing navigation with its limited sensing. We leverage several new concepts that we have
introduced to describe crowd patterns around the robot (strong and absent ties, communities
and territories) to form a generative model for crowd patterns and use it to samples of imputed
occupation maps, based on what is observed through the robot perception. We have shown on
real crowd datasets that the proposed indicators reflect the nature of the typical pairwise relation
within crowds, and we have obtained competitive prediction results, in particular on datasets
with well-structured pedestrian flows.

8.4.2 Future Work

According to our best knowledge, the prediction of occluded crowds using the inter-pedestrian
patterns has never been studied before. Despite that, it has been shown that the model’s accuracy
is lacking in some environments, particularly in low-density spaces. However, we believe that
this study can open up a lot of interesting questions to the crowd prediction area. There are so
many research questions to be explored further.

Deep Generative Models can be used to learn the more complex interactions between pedes-
trians. These models may be used to handle joint sequences of locations rather than individual
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frames. Further, they can leverage the Kernel trick to transform these interactions to higher
dimensional spaces, which allows for disclosing hidden patterns in data. It is also possible to
improve the concept of social ties. In our study we proposed a binary definition, that classifies
interactions into strong and absent. However, a fuzzy or continuous formulation could be more
natural. Further, we can use a non-interpretable and high-dimensional variable to represent
social interactions.

In the future, domain adaptation techniques can be used to transfer knowledge from one
domain or environment to another. We showed that different distributions of interactions can
be associated with different types of environments or various crowd densities. As such, domain
adaptation can be useful in making more generalized models.

The proposed system can be integrated with a Human Trajectory Prediction module, to
complement each other and make predictions in both time and space domains.

8.5 Data-driven Crowd Simulation

8.5.1 Contributions

In Chapter 6 we presented a data-driven crowd simulation method that uses GANs to learn
the properties of input trajectories and then generate new trajectories with similar properties.
Combined with flexible route following that takes temporal information into account, the tra-
jectories can be used in a real-time crowd simulation. Our system can be used, for example,
to create variants of a scenario with different densities. It can easily be combined with other
simulation methods, and it allows interactive applications.

8.5.2 Future Work

In the future, we will perform a thorough analysis of the trajectories produced by our system,
and compare them to other algorithms. We will also investigate the exact requirements for
reliable training. Furthermore, our system generates trajectories for individuals, assuming that
agents do not influence each other’s choices. As such, it cannot yet model group behavior, and it
performs worse in high-density scenarios where agents cannot act independently. We would like
to handle these limitations in future work. In addition, many of the discussions we made about
the future of the ‘Social-Ways’ work (in Sec. 8.3.2) are applicable for this problem as well.
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8.6 Crowd-Robot Interaction Study

8.6.1 Contributions

In Chapter 7 we presented the first crowd-robot crossing experiment with collected trajectory
dataset in the presence of two robot representatives: a smart wheelchair and a Pepper humanoid
robot. Our quantitative analysis implies that the presence of the wheelchair and the Pepper
affect crowd dynamics both locally and globally. Besides, the influence varies across the robot
type. In general, the effect is reflected in the individual trajectory regularity and the interaction
complexity. Qualitative results further supported the idea that pedestrians tend to behave more
conservatively around the wheelchair compared to the Pepper, potentially due to the perception
of a human driver. These results suggest the influence of the robot on crowds should be taken into
consideration when designing the pedestrian model in simulation and the navigation strategy
for different kinds of robot.

8.6.2 Future Work

In the future, this work could be extended to explore the effect of different types of robot on
pedestrian dynamics in bi-directional or even more complex scenarios. In addition, the human
factors such as age, gender, familiarity with the robot which would potentially affect crowd
dynamics in social navigation could be further investigated.
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Appendix A

APPENDIX

A.1 Data Collection of Crowd-Robot Experiment

A.1.1 Camera Calibration

The experiment was recorded by an overhead fish-eye IP video camera (Axis M3037) at
12.5 frame per second. In order to calibrate the camera, we used the chessboard method. We
recorded a video with the camera, while a person was holding the chessboard toward the camera,
moving around and rotating it. We extracted 22 different frames from this video to cover different
positions and rotations of the chessboard in the image (such as the ones in Fig. A.1)

(a) (b) (c) (d)

Figure A.1 – (a): Chessboard pattern for camera calibration. (b), (c), (d): chessboard in different
positions and orientations

We used a pinhole model to calibrate the camera, in which, the parameters of calibration
can be divided into two groups: the extrinsic and intrinsic parameters. The extrinsic parameters
consist of a rotation, R, and a translation, T . The origin of the camera’s coordinate system is
at its optical center and its x- and y-axis define the image plane. Using a pinhole camera model
we have the following equation:


Xc

Yc

Zc

 = R


Xw

Yw

Zw

+ T (A.1)

where [Xw, Yw, Zw]T is a three-dimensional point in world coordinate, and [Xc, Yc, Zc]T is the
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projected point on the camera plane. For estimating the intrinsic parameters, we used the Scara-
muzza’s Omnidirectional camera model [SMS06a]:


Xc

Yc

Zc

 = λ


u

v

a0 + a2ρ
2 + a3ρ

3 + a4ρ
4

 , (A.2)

where, λ represents a scaling factor, a0, a2, a3, a4 are the polynomial coefficients described by
the Scaramuzza model, with a1 being zero, (u, v) is the ideal image projections of the real-world
points and ρ =

√
u2 + v2, is the distance of this point from the image center.

Finally the relation between the real distorted coordinates (u′′, v′′) and the ideal distorted
coordinates (u, v) can be written as:

[
u′′

v′′

]
=
[
c d

e 1

] [
u

v

]
+
[
c′x

c′y

]
(A.3)

where c, d, e describes a matrix that performs a stretch operation, and [c′xc′y]T is the distor-
tion center. We used Matlab Camera Calibrator toolbox [SMS06b] for estimating the above
coefficients which then allowed us to undistort the videos (see Fig. A.2).

A.1.2 Tracking Participants

We then used a special-purpose software called PeTrack to extract the pedestrian trajectories.
With PeTrack we were able to track the colorful helmets of pedestrians and the robot (or wheel-
chair user). We then fixed the problems like ID switches and drifts in the detections by semi-
automatic processes. Finally, we used a linear projection to map the head of the pedestrian to
a point on the ground, which represents the leg of the person. For the humans we assumed an
average height of 170 cm. For Pepper and the wheelchair we used heights of 120cm and 140 cm,
respectively.

In order to filter out the high frequency jerks from the trajectories we applied a Kalman Filter
(KF) with Rauch–Tung–Striebel (RTS) smoothing backward-pass. Considering the transition
model of the standard KF, without the control input, we can write:

xk = F xk−1 + w

w ∼ N (0,Q),
(A.4)

where F is the state transition matrix and w is a zero-mean Gaussian random variable with
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(a) screenshot of the Matlab Camera Calibrator toolbox

(b) distorted frame (c) undistorted frame

Figure A.2 – Estimating Scaramuzza’s camera calibration parameters, and un-distorting the
recorded videos

covariance matrix Q, called process noise. Also the observation model is:

zk = H xk + v

v ∼ N (0,R),
(A.5)

where H is the observation matrix and v is another zero-mean Gaussian with covariance matrix
R, called observation noise. We use a constant-acceleration model, for x, where the transition
model, for one dimension (x) is given by:
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Fx =


1 dt

1
2dt

2

0 1 dt

0 0 1

 (A.6)

We configured the model with dt = 1
12.5 , Q = 10 I2×2 and also R and H with identity matrices.

In total, 20 trials (for four scenarios, five runs each scenario) were performed with valid inter-
actions between the robot and the crowds. 546 trajectories of pedestrians and the robots were
extracted.
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Titre : Prédiction de la trajectoire du mouvement humain pour la navigation des robots

Mot clés : Prévision de trajectoires, prédiction de mouvements humains, simulation de foules, robotique,

GANs

Résumé : Nos vies sont de plus en plus influen-
cées par les robots. Ils ne se limitent plus à tra-
vailler dans les usines et apparaissent de plus en
plus dans des espaces partagés avec les humains,
pour livrer des biens et des colis, transporter des
médicaments ou tenir compagnie à des personnes
âgées. Par conséquent, ils doivent percevoir, ana-
lyser et prévoir le comportement des personnes
qui les entourent et prendre des mesures sans col-
lision et socialement acceptables des actions sans
collision et socialement acceptables.

Dans cette thèse, nous abordons le problème
de la prédiction de la trajectoire humaine (à court
terme), afin de permettre aux robots mobiles, tels
que Pepper, de naviguer dans des environnements
bondés.

Nous proposons une nouvelle approche socia-
lement consciente pour la prédiction de plusieurs
piétons. Notre modèle est conçu et entraîné sur
la base de réseaux adversariaux génératifs, qui
apprennent la distribution multimodale des prédic-
tions plausibles pour chaque piéton. De plus, nous
utilisons une version modifiée de ce modèle pour
effectuer une simulation de foule basée sur des
données. La prédiction de l’emplacement des pié-
tons occultés est un autre problème abordé dans
cette thèse. Nous avons également réalisé une
étude sur des jeux de données courants de trajec-
toires humaines. Une liste de métriques quantita-
tives est proposée pour évaluer la complexité de la
prédiction dans ces jeux de données.

Title: Human Motion Trajectory Prediction for Robot Navigation

Keywords: Trajectory Forecasting, Human Motion Prediction, Crowd Simulation, Robotics, GANs

Abstract: Our lives are becoming increasingly
influenced by robots. They are no longer limited
to working in factories and increasingly appear in
shared spaces with humans, to deliver goods and
parcels, ferry medications, or give company to el-
derly people. Therefore, they need to perceive, an-
alyze, and predict the behavior of surrounding peo-
ple and take collision-free and socially-acceptable
actions.

In this thesis, we address the problem of (short-
term) human trajectory prediction, to enable mobile
robots, such as Pepper, to navigate crowded envi-
ronments.

We propose a novel socially-aware approach
for prediction of multiple pedestrians. Our model is
designed and trained based on Generative Adver-
sarial Networks, which learn the multi-modal dis-
tribution of plausible predictions for each pedes-
trian. Additionally, we use a modified version of
this model to perform data-driven crowd simula-
tion. Predicting the location of occluded pedestri-
ans is another problem discussed in this disserta-
tion. Also, we carried out a study on common hu-
man trajectory datasets. A list of quantitative met-
rics is suggested to assess prediction complexity
in those datasets.
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