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Résumé

Dans cette thèse, on s’intéresse à étudier la capacité de l’approche de la théorie
des jeux à traiter certains problèmes inverses ‘mal posé’, gouvernés par les équations de
Stokes ou quasi-Stokes. La première partie concerne la détection d’un ou plusieurs objets
(Chapitre 2), et l’identification de sources ponctuelles dans un écoulement (Chapitre 3),
en utilisant des données du type Cauchy qui seront ainsi fournies seulement sur une par-
tie frontière de l’écoulement. Ce type de problème est mal posé au sens d’Hadamard du
fait de l’absence de solution si les données ne sont pas compatibles mais surtout du fait
de son extrême sensibilité aux données bruitées, dans le sens où une légère perturbation
des données entraine une grande perturbation de la solution. Cette difficulté de stabilité
fournit aux chercheurs un défi intéressant pour la mise au point de méthodes numé-
riques permettant d’approcher de la solution du problème inverse original. L’approche
développée ici est différente de celles existantes, elle a traité simultanément la question
de la reconstruction des données manquantes avec celle de l’identification des inclusions
ou de sources ponctuelles dans un fluide visqueux, incompressible et stationnaire. En
considérant une méthode de type minimisation de critères, la solution est réinterprétée
en termes d’équilibre de Nash entre les deux problèmes complétion/identification. Des
nouveaux algorithmes originaux dédiés au calcul d’équilibre de Nash sont présenté et
implémenté avec FreeFem ++. Une extension pour le problème d’identification de petits
objets de l’approche proposée de jeu de Nash a été réalisé (Chapitre 4). La deuxième
partie est consacrée à la résolution des problèmes inverses non linéaires dans le cadre des
écoulements de fluide quasi-newtonien (Chapitre 5). La viscosité est supposée une fonc-
tion non linéaire, varie en fonction du tenseur des déformations. Un problème inverse
non linéaire du type Cauchy est reformulé comme un problème du contrôle optimal,
puis comme un jeu de Nash à deux joueurs. Deux algorithmes ont été utilisés et com-
parés afin de résoudre les problèmes aux limites non linéaires : un algorithme classique
de point fixe et un nouveau schéma proposé ‘one-shots’. Enfin, on applique la théo-
rie des jeux pour la résolution du problème de couplage de complétion des données et
identification des inclusions pour le modèle de quasi-Stokes.

Mots-clés : Complétion des données, système de Stokes, méthode level-set, détection
des sources, calcul des variations, sensibilité topologique, Jeux de Nash, problème in-
verse géométrique, écoulements quasi-Newtoniens.
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Abstract

This thesis aims to study the ability of theoretic game approaches to deal with
ill-posed problems. The first part of the thesis is dedicated to the Stokes system’s
linear problem, with the goal of detecting unknown geometric inclusions or pointwise
sources in a stationary viscous fluid, using a single compatible pair of Dirichlet and
Neumann data, available only on a partially accessible part of the boundary. Inverse
geometric-or-source identification for the Cauchy-Stokes problem is severely ill-posed
(in the sense of Hadamard) for both the inclusions or sources and the missing data
reconstructions, and designing stable and efficient algorithms is challenging. To solve the
joint completion/detection problem, we reformulate it as a three players Nash game. The
two first players aim at recovering the missing data (Dirichlet and Neumann conditions
prescribed over the inaccessible boundary), while the third player seeks to identify the
shape and locations of the inclusions (in Chapter 2) or determine the source term
(in Chapter 3). We then introduce new algorithms dedicated to the Nash equilibria,
which is expected to approximate the original coupled problems’ solutions. We present
different numerical experiments to illustrate the efficiency and robustness of our 3-
player Nash game strategy. The extension of this work to another situation, such as
identifying small objects, has been carried out (in Chapter 4). The second purpose of
this thesis is to extend those results to the case of quasi-Newtonian fluid flow whose
viscosity is assumed to be a nonlinear function that varies upon the imposed rate of
deformation. The considered problem then is a nonlinear Cauchy type because of the
non-linearity of the viscosity function. Two different iterative procedures, control-type
and Nash game algorithms, are considered to solve it. From a computational point of
view, the non-linearity needs some particular algorithms. We propose a novel one-shot
algorithm to solve the nonlinear state equations during a recovery process, representing
a different idea to treat the nonlinear Cauchy problems. Some numerical experiments
are provided to demonstrate our algorithm’s efficiency in the noise-free and noisy data
cases. A comparison between the one-shot scheme and the fixed-point method was
performed. Finally, we introduce an algorithm to jointly recover the missing boundary
data and the location and shape of the inclusions for nonlinear Stokes models based on
the Game-Theoretic approach.

Keywords : Data completion, Cauchy-Stokes problem, level-set method, point-force
detection, calculus of variations, topological sensitivity, Nash game, shape identification,
quasi-Newtonian Stokes flows.
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Introduction générale

La théorie des jeux définit un cadre pour traiter les problèmes d’optimisation
multi-critère et multidisciplinaire. Dans ce contexte, la notion d’optimum se remplace
par la notion de concepts de solution ou équilibre, qui est un concept fondamental dans
la théorie des jeux. Il existe de nombreuses définitions d’équilibres de jeu, qui dépend
généralement du type de jeu considéré. Le plus célèbre entre eux est l’équilibre de
Nash dans les jeux non-coopératifs. La théorie des jeux a été commencé en économie,
elle se propose d’étudier des situations (jeux) dans lesquelles les décideurs (joueurs)
interagissent dans un environnement d’interdépendance stratégique. Elle a été ensuite
largement étudiée et appliquée à un large éventail de disciplines, où les décideurs
(joueurs) traitent des systèmes régis par les équations aux dérivées partielles (EDP).
De nouvelles applications liées à la conception de la topologie de systèmes couplés
physiques ou biologiques sont présentées dans [53, 54, 58]. D’une façon générale, un
jeu non-coopératif est défini par l’ensemble des joueurs N = {1, ..., n} et l’ensemble
des stratégies possibles pour chacun d’eux. Chaque joueur i choisit une stratégie si au
sein de l’espace de ses stratégies possibles Si et cherche à améliorer son propre critère
Ji : S1× ...× Sn → R simultanément et indépendamment des autres. L’état d’équilibre
est atteint lorsque aucun joueur ne peut améliorer son propre critère unilatéralement,
c’est la notion de l’équilibre de Nash (EN) :

Un équilibre de Nash est un profil s∗ = {s∗1, ..., s∗n} ∈ S1× ...×Sn, tel que la stratégie
du joueur i est une meilleure réponse :

∀i ∈ N, s∗i ∈ Bi(s
∗
−i),

Bi(s
∗
−i) =

{
si ∈ Si/Ji(si, s∗−i) 6 Ji(s

′
i, s
∗
−i), ∀s′i ∈ Si

}
(1)

avec s−i est le profil s des stratégies autres que celles du joueur i :
s−i = {s1, ..., si−1, si+1, ..., sn}.

Dans cette thèse, on s’intéresse essentiellement à exploiter l’approche de la théorie
des jeux pour traiter certains problèmes inverses gouvernés par les équations de Stokes.
L’un des objectifs de cette thèse est de montrer l’intérêt et l’utilité de l’approche
introduite par la théorie des jeux dans des applications issues de la mécanique des
fluides. Le problème inverse que nous traiterons par la suite va transformer en N
sous-problèmes d’optimisation, qui vont considérer comme des joueurs. Chacun contrôle
seulement sa propre variable stratégie et tente de minimiser simultanément son propre
coût en cherchant à converger vers un équilibre qui représente un compromis entre eux,
et qui devrait être la solution approchée du problème inverse initial.
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La première partie de la thèse se décompose en trois chapitres. Le premier cha-
pitre est dédié à la résolution du problème de détection des inclusions dans un
écoulement, lorsque le mouvement de fluide est régi par les équations de Stokes : On

|

|

Γi

Γc

ω∗

Figure 1 – Configuration géométrique du notre problème.

considère un écoulement de fluide visqueux et incompressible dans un domaine borné
Ω de Rd (avec d=2 ou d=3). Soit ω∗ ⊂ Ω un objet inconnu immergé dans le domaine
Ω rempli d’un fluide (voir la figure 1). On s’intéresse alors à identifier ω∗, à partir de
mesure sur Γc de la vitesse f et de la contrainte normale Φ, où Γc est une partie de la
frontière ∂Ω, tel que la vitesse du fluide u = (u1, ..., ud) et la pression correspondante p
dans Ω satisfont le problème de Stokes suivant :


−div(σ(u, p)) = 0 dans Ω \ ω∗,

divu = 0 dans Ω \ ω∗,
σ(u, p)n = 0 sur ∂ω∗,

u = f sur Γc,
σ(u, p)n = Φ sur Γc,

(2)

avec σ est le tenseur des contraintes défini par σ(u, p) := −pId + (∇u + ∇uT ), où
Id est la matrice identité. Le problème (2) est du type Cauchy, qui est considéré
comme un problème inverse mal posé au sens d’Hadamard [59], du fait de l’absence
de solution si les données f et Φ ne sont pas compatibles mais surtout du fait de son
extrême sensibilité aux données bruitées, dans le sens où une légère perturbation des
données entraine une grande perturbation de la solution. Nous visons alors à traiter
simultanément la question de l’identification d’un ou plusieurs objets ω∗ immergés
dans un fluide avec celle de la reconstruction des données manquantes sur une partie
du bord du domaine Γi = ∂Ω \ Γc à partir des données surabondantes (f, Φ). Afin de
modéliser notre problème inverse couplé, on utilise la classe des jeux statiques avec
des information complètes. Cette approche est une extension de celles publiées par
Habbal et Kallel [55, 56] sur la résolution du problème de Cauchy pour un opérateur
elliptique de type divergence. Il s’agit alors de considérer une formulation de jeu de
Nash entre trois joueurs : les deux premiers sont consacrés à contrôler les données
de Neumann et Dirichlet sur la partie du bord inaccessible Γi, tandis que le troisième
joueur contrôle la position et la forme des objets. Pour une représentation implicite
de bord de l’objet ∂ω∗, nous avons adopté la méthode de courbes de niveau où
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l’idée est de considérer le bord ∂ω∗ comme une courbe de niveau zéro d’une fonction
lipschitzienne φ : Ω → R. Après la réécriture de nos problèmes directs et nos critères
en fonction de courbes de niveau, on présente notre nouvel algorithme de jeux. La
classe d’algorithmes que nous proposons s’applique à un large éventail de problèmes
inverses mal posés, les techniques de calcul étant plutôt classiques : L’utilisation de la
méthode de descente de gradient pour la résolution de trois problèmes de minimisations
partielles, l’utilisation de la méthode de l’état adjoint pour calculer les sensibilités, et
l’utilisation de la méthode des éléments finis pour la résolution numérique d’équations
aux dérivées partielles, ainsi que pour mettre à jour les fonctions de courbes de
niveau. Notre code est implémenté avec FreeFem++. Une étude numérique a été
développée dans un domaine de deux dimensions, où nous avons réalisé trois tests
numériques. Dans le deuxième chapitre, on résout le problème du couplage entre la
complétion des données et l’identification des sources : on considère un écoulement
de fluide visqueux et incompressible sous l’action d’un nombre fini des particules. On
suppose que chaque particule n’est pas plus qu’un seul point et que ce point exercera
une force sur le fluide, qui exprime mathématiquement en termes de distribution de
Dirac λkδPk , où Pk représente l’emplacement des particules et λk est l’intensité de
la force. Dans ce cadre, la vitesse du fluide u et la pression p satisfont le système suivant :


−div(σ(u, p) =

∑m
k=1 λkδPk dans Ω,

divu = 0 dans Ω,
u = G sur Γc,

σ(u, p)n = Φ sur Γc,

(3)

avec G et Φ sont deux fonctions connues. L’idée essentielle de notre analyse consiste à
reconstruire deux problèmes aux limites bien posées. Chacun utilise l’une ou l’autre
des données surabondantes. Ensuite, on utilise une technique de relaxation afin de
construire un nouvel algorithme de minimisation. Cette étape consiste à considérer
une approximation classique d’une fonction de Dirac au point Pk par une fonction
caractéristique d’une petite boule de centre Pk et de rayon ε divisé par son volume. Le
problème (3) est reformulé comme un jeux de Nash à trois joueurs. Les deux premiers
résolvent le problème de reconstruction des données manquantes sur Γi = ∂Ω \ Γc,
tandis que le troisième joueur minimise une fonctionnelle du type Kohn-Vogelius afin
de déterminer le nombre de points sources m, leur emplacement relatif Pk et leurs
intensités approximatives λk. La notion de gradient topologique a été utilisée pour la
localisation des centres de source présents dans l’écoulement. Trois tests numériques
ont été effectués afin d’étudier la robustesse de l’algorithme proposé vis-à-vis des
données bruitées en bidimensionnel (2D) et en tridimensionnel (3D). Tous les codes de
résolution ont été implémentés avec FreeFem++ MPI, et le besoin de plus d’espace
mémoire pour les simulations (3D) nous a conduits à utiliser ffddm. Le troisième
chapitre est consacré à la détection de petits objets immergés dans un fluide à partir
des mesures effectuées sur une partie du bord extérieur. L’approche introduite par
la théorie des jeux s’applique pour ce problème couplé, où le troisième joueur ici
utilise la méthode du gradient topologique pour identifier le nombre d’objets et leur
emplacement approximatif.

La deuxième partie de cette thèse concerne la résolution des problèmes inverse
non linéaire. On considère un écoulement de fluide incompressible et quasi-Newtonien
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dont la viscosité obéit à la loi de carreau. On présente deux formulations de problème
de Cauchy pour le système de Stokes non linéaire, une basée sur une approche de
contrôle optimal et l’autre basée sur une stratégie de jeux de Nash. Le traitement
numérique de la non linéarité de la fonction de viscosité nécessite des algorithmes
spécifiques pour la résolution des problèmes aux limites non linéaires. Parmi eux,
on présente l’algorithme de point fixe et on propose un nouveau schème, qui montre
une autre façon de traiter les problèmes de Cauchy non linéaire avec un coût très
avantageux comparé avec une résolution classique des problèmes non-linéaires. Les
résultats numériques obtenus sont satisfaisants et ont montré la performance de notre
nouveau schème par rapport à l’algorithme de point fixe. Les deux méthodes proposées
sont efficaces et robustes, puisqu’il est capable de débruiter les données et de fournir
des reconstructions satisfaisantes. Enfin, on étend l’approche de jeux de Nash pour le
problème du couplage non linéaire entre la reconstruction des données manquantes et
la détection des inclusions.
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CHAPTER 1
Introduction

“Satisfaction lies in the effort,
not in the attainment, full effort
is full victory."

Mahatma Gandhi

An inverse problem in science is determining the causal factors that produced them
from a collection of observations. It is called an inverse problem because it begins with
the effects and calculates the causes. It amounts to reconstructing the past state of a
physical system knowing its current state, unlike the direct problem, which predicts
the future knowing its current state. Inverse problems are some of the majority signifi-
cant mathematical problems in science because they inform us of necessary parameters
that we cannot directly follow. There are many types of inverse problems, and their
applications are found in numerous fields such as hydrogeology, geophysics, acoustics,
signal processing, medical imaging, and many other fields. The intensive study of in-
verse problems is dictated by the subjects’ richness from the theoretical and numerical
viewpoints. Any direct problem generates a local variety of inverse problems, which
gives rise to theoretical questions and numerical challenges. In particular, the inverse
problems in fluid mechanics governed by Stokes equations can be properly classified into
three possible types : reconstruction of the missing boundary data, geometric/source
inverse problem, and parameter (viscosity of the fluid) identification. Inverse problems
are well known to be severely ill-posed, and such algorithms require supplementary
prior information on the geometries or parameters to be recovery. Various algorithms
have been developed, and their abilities to recover their aims have been confirmed. All
of the proposed algorithms still require a complete set of data, demanding to carry
out measurements on the whole boundary, which is unrealistic in practical situations
because parts of the boundary may be inaccessible. In this thesis, we investigate game
theory to deal with such problems. We will show that the game’s formulation could
effectively deal with these problems, and treat even those previously inaccessible, cou-
pling ill-posedness. We will overview the most common approaches for reconstructing
the missing data and the identification problem and highlighting their advantages and
challenges in the following.
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1.1 Cauchy-Stokes problem

Cauchy’s problem involves solving a partial differential equation PDE on a domain
for which overdetermined boundary conditions are given only on the part of its
boundary. The Cauchy problem, also known as a data completion problem, consists
of recovering the missing data on the boundary’s remaining part. It is a prototype of
inverse boundary value problems (IBVP), suitable for many industrial and biomedical
applications. Among the different applications already achieved : medical imaging and
thermal inspection, such as reconstructing the temperature on the inside wall of a
pipeline. Medical imaging provides a large number of inverse problems, we can cite
Electrocardiography, Electroencephalography [23, 32, 50, 80, 89, 98]... For instance,
Electrocardiography (ECG) is a medical test measuring cardiac activity’s electrical
potential, using electrodes placed on the patient’s chest. However, this tool does not
allow to know the potential values on the surface of the heart. But, if we consider
the domain delimited by the thorax, such that the overspecified boundary data are
the obtained measurements by the electrocardiogram on the thorax surface, and the
values of the potentials are the missing data on the surface of the heart. Thus, the
numerical resolution of the Cauchy problem, in this case, allows the reconstruction of
the electrical potential on the surface of the heart.

The Cauchy problem is known to be severely ill-posed and computationally challen-
ging. The mathematical term well-posed problem was basically introduced by Jacques
Hadamard [59] in 1923. He believed that mathematical models of physical problems
must have the properties of uniqueness, existence, and stability of the solution. If at
least one of these properties is not satisfied, the problem is ill-posed. Inverse problems
are often ill-posed. In particular, the Cauchy problem’s ill-posedness is mostly related
to the solution’s instability, even it exists, for a small perturbation of the Cauchy data.
Various regularization approaches have been used in the literature to solve certain
inverse problems, particularly the ill-posed Cauchy problem. Regularization’s method
principle consists of substituting the ill-posed problem with a sequence of well-posed
problems whose approximate solutions converge to the original inverse problem’s exact
solution.

One of the most popular methods for ill-posed problems governed by partial
differential equations is the Tikhonov method [96, 97], which was introduced by the
Russian mathematician Andrey Nikolayevich Tikhonov. The general regularization
concept can found in many papers and books on inverse theory [69]. Tikhonov’s
regularization method involves solving the inverse problem in the least-squares sense
by adding a stabilizing term. The additional term is the norm of solution or its gradient.
Cimetière et al. [38] proposed to solve the Cauchy problem using an iterative Tikhonov
regularization method, and the regularizing term is the distance between two successive
iterated solutions. Ben Belgacem and El Fekih [27] treated the Cauchy problem for
Laplace’s equation interpreted by solving an interface problem by introducing the
Steklov Poincaré operator. With Azaiez [15], they are interested in the construction of
a stable solution of the Steklov-Poincaré problem using the Tikhonov method.

Lattès and Lion [74] proposed the quasi-reversibility method of changing an
ill-posed problem into a well-posed one by introducing a parameter. The convergence

8



to the original problem is achieved when the parameter tends to zero. Several authors
then took up this method to solve certain elliptic inverse problems, Klibanov and
Santosa [87], Bourgeois [28].

The iterative method used by Kozlov et al. [71, 72] was extended in [22] for the
stationary Stokes system. This method is an altering iterative one, where successive
solutions of well-posed mixed boundary value problems for the original equation are
computed. This method has been interpreted in terms of an interfacial operator in [10,
24]. Three iterative procedures have been developed by Johansson and Lesnic [63, 62, 64]
for obtaining a stable solution to the Cauchy problem for the generalized Stokes system.
The first paper proposed an algorithm based on the Landweber-Fridman method, an
iteration scheme based on solving a series of mixed well-posed boundary value problems
for the generalized Stokes system and its adjoint. A variational conjugate gradient
iterative procedure has been proposed in the second one. These two latter algorithms
are compared in the third paper with another iterative method, namely, the minimal
error method. Notice that in all these mentioned works, the regularizing procedure
lies in selecting an appropriate stopping criterion. Other contributions are focused on
carefully developing a control type method, which is graciously allowed to approximate
the Cauchy problem’s solution. Andrieux et al. [85] proposed a new procedure for linear
elliptic Cauchy problem based on minimizing energy like error functional. This method
has been studied and adapted in different frameworks : elasticity equations [19], Stokes
system [24]. A conjugate gradient type optimization procedure used in the works of
Aboulaich et al. [1, 2]. A regularization technique has achieved the stabilization of the
proposed algorithm. In [55, 56], the authors used a Nash game approach to solve the
Cauchy-Laplace problem. Moreover, they compare the Nash game algorithm to a control
type method and show its efficiency.

1.1.1 The model problem

The considered Cauchy-Stokes problem is given in the following framework : Let Ω
be a bounded open domain in Rd (d=2,3), which is filled with a viscous incompressible
fluid flowing at low Reynolds numbers governed by the Stokes equations. Its boundary
is sufficiently smooth and composed of two parts Γi and Γc.

Ω

Mesured Data over Γc
(fluid velocity f and stress force Φ) Identified Data over Γi

Figure 1.1 – Example in a two-dimensional geometry : An annular domain represents a region
between two concentric circles.
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Our Cauchy problem here consists to find (u, p) ∈ H1(Ω)d × L2(Ω) such that :

(CS)


−div(σ(u, p)) = 0 in Ω,

divu = 0 in Ω,
u = f on Γc,

σ(u, p)n = Φ on Γc,

where f ∈ H
1
2 (Γc)

d and Φ ∈ (H
1
2
00(Γc)

d)′ are given functions, and σ being the stress
tensor satisfying the following constitutive law

σ(u, p) = −pId + 2νD(u),

with Id is the identity matrix, the coefficient ν > 0 denotes the kinematic viscosity
and D(u) = (∇u + ∇uT )/2 represents the deformation tensor. The Dirichlet data f
and the Neumann data Φ are the so-called Cauchy data, which are known on the
accessible part Γc of the boundary ∂Ω. The problem under study (CS) is known as
a data completion problem, which consists to find the fluid velocity and the normal
stress on the inaccessible part of the boundary Γi.

The above Cauchy-Stokes problem does not always admit a solution for any given
data (f, Φ), but when a solution exists, it is necessarily unique graciously according
to the unique continuation property for the Stokes system (see [47]). Therefore, if the
Cauchy problem (CS) has a solution, the Cauchy data are justly said to be compatible.

1.1.2 Instability in the Cauchy problem for the Stokes equations

In 1923 (Lectures on Cauchy’s Problem in Linear PDEs (New York, 1953)) [59],
J. Hadamard has been provided precisely a fundamental example to elucidate the
ill-posedness of a Cauchy problem for Laplace’s equation. He showed that the solution
does not depend continuously on the given boundary data.
In our case, we will properly build an analytical example for the stokes system by
naturally inspiring from the classic example of J. Hadamard. This example is as follows :

Consider the solution (u, p) = ((u1, u2), p) to the Cauchy-Stokes problem in the
upper half plane, 

−div(σ(u, p)(x, y)) = 0 in Ω,
divu(x, y) = 0 in Ω,

u(x, 0) = f for every x ∈ R,
σ(u, p)(x, 0)n = Φ for every x ∈ R,

(1.1)

where Ω = {(x, y) ∈ R2|y > 0}. In particular, when the Cauchy data (f, Φ) are equal
to zero, we have the following solution

(u(x, y), p(x, y)) = (0, 0),

(p=cte is also a solution, and to have a uniqueness we can choose p such that its average
is zero). For n > 0, we introduce the pair (fn, Φn), the perturbation of the data (f, Φ),
given by
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∥∥∥∥ fn = (0,− 1
n2 cos(nx))

Φn = ( 1
n
sin(nx), 0).

Then, the perturbed solution of the Cauchy-Stokes problem (1.1) becomes,∥∥∥∥∥∥
un1 (x, y) = 1

n2 sin(nx)sinh(ny),
un2 (x, y) = − 1

n2 cos(nx)cosh(ny),
pn(x, y) = 0.

One can remark that if n −→ ∞, then we have (Φn − Φ) and (fn − f) tend to zero,
while the perturbation (un(x, y) − u(x, y)) takes high values for any y > 0. Therefore,
to sufficiently illustrate this example we have plotted the two components of (un(x, y)−
u(x, y)), for n = 10000 with different values of y, see Figure 1.2.

Figure 1.2 – Exponential explosion for high frequencies.

This problem’s ill-posed character makes its mathematical resolution delicate en-
ough and cannot directly consider due to the risk of having unstable solutions. A large
number of approaches can be found in the literature for solving the Cauchy-Laplace
problem. In the following subsection, we will present an extension for the Stokes
system by two control-type approaches introduced in [2, 24]. The main idea of those
approaches was borrowed liberally from the domain decomposition. It consists of
reconstructing two well-posed problems. The solution to the Cauchy problem breaks
down into a couple of functions.

In consequence, the Cauchy-Stokes problem can be split into two well-posed sub-
problems with mixed boundary conditions as follows :

(P1)


Find (u1, p1) ∈ H1(Ω)d × L2(Ω) such that :
−div(σ(u1, p1)) = 0 in Ω,

divu1 = 0 in Ω,
u1 = f on Γc,

σ(u1, p1)n+ αu1 = η + ατ on Γi,

(P2)


Find (u2, p2) ∈ H1(Ω)d × L2(Ω) such that :
−div(σ(u2, p2)) = 0 in Ω,

divu2 = 0 in Ω,
σ(u2, p2)n = Φ on Γc,

σ(u2, p2)n+ βu2 = η + βτ on Γi,
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where η ∈ (H
1
2
00(Γi)

d)′, τ ∈ H
1
2 (Γi)

d are given functions, α and β are real parameters,
that makes it possible to specify the different types of boundary conditions on Γi :

– The Neumann-Dirichlet case corresponds to α = 0 and β = +∞ (i.e. a Neumann
boundary condition over Γi and a Dirichlet boundary condition over Γi respectively
in (P1) and (P2) ).

– The Dirichlet-Dirichlet case corresponds to α = β = +∞.
– The Neumann-Neumann case corresponds to α = β = 0.

In general, these two problems are distinct for any values of η and τ . Although
when they coincide, the Cauchy problem is solved efficiently. The researchers carefully
have introduced methods that minimize the gap between the two sub-problems’ two
solutions to solve the initial inverse problem.

1.1.3 An optimal control formulation

Minimization of an energy-like error functional : In this paragraph, we
present an approach developed in [24] to solve the Cauchy-Stokes problem (Laplace
equation in [10]), where this latter is converted into an optimization one, and an energy-
like functional is introduced. Then, the authors proposed an optimal control formulation
given by :

MinimizeEα,β(η, τ), for all (η, τ) ∈ (H
1
2
00(Γi)

d)′ ×H 1
2 (Γi)

d,

where Eα,β(η, τ) =
1

2

∫
Ω
σ(u1 − u2, p1 − p2) : ∇(u1 − u2) dx,

such that (u1, p1) and (u2, p2) are the solutions of the respective BVP(P1) and (P2).

The authors used an iterative process based on the preconditioned gradient algo-
rithm. To show the efficiency of the proposed method, they make a comparison with
the Kozlov–Maz’ya–Fomin’s algorithm [72], which is an alternative method introduced
for solving the ill-posed problem. The basic idea of KMF’s method is to reduce the
ill-posed problem to a sequence of well-posed mixed boundary value problems, and it
describes in the following steps for the Neumann-Dirichlet case :

Step I : Choose an initial guess η0 ∈ (H
1
2
00(Γi)

d)′, and solve the problem (P1) with
η = η0.

Step II : For j > 1, a sequence of well-posed mixed BVP (uj, pj) is generated as
follows :
1- (u2j+1, p2j+1) solve the well-posed mixed BVP (P2) with τ = u2j on Γi.
2- (u2j+2, p2j+2) solve the well-posed mixed BVP (P1) with η = σ(u2j+1, p2j+1)n

on Γi.
3- Repeat step 1 until a prescribed stopping criterion is satisfied.

The KMF’s algorithm can be properly characterized as an alternating-direction mini-
mization method for the energy-like error functional E.

A control-type regularized data recovering process : A control-type method
for solving the Cauchy problem was presented in the work of Aboulaich et al. [1, 2].
The overall idea of this approach is to convert the problem into an optimization one.
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A regularization technique is developed here in order to properly handle the instability
of the solution of the ill-posed problem. For the Neumann-Dirichlet case, the authors
exploit the problems (P1) and (P2), to solve the following minimization problem :

Find (η∗, τ ∗) ∈ (H
1
2
00(Γi)

d)′ ×H 1
2 (Γi)

d such that :
(η∗, τ ∗) = arg minη,τ J(η, τ),

where J(η, τ) =
1

2
||σ(u1(η), p1(η))n− Φ||2

(H
1
2
00(Γc)d)′

+
1

2
||u1(η)− u2(τ)||2

H
1
2 (Γi)d

.

The functional J splits into a classical least square term on Γc and a regularizing one on
Γi, where the data is to be completed. The authors showed that this function is twice
Fréchet differentiable and strictly convex, and they used the Lagrangian method, which
makes it possible to evaluate the gradient components. Then, they used a conjugate
gradient algorithm to minimize the above function J.

1.2 Game Theory

Game theory is the study of mathematical models. It allows a formal analysis of
conflicts posed by agents’ strategic interaction (are called -players), pursuing their own
goals. A formal theory of games was suggested by the mathematician John Von Neu-
mann and economist Oskar Morgenstern in a “Theory of Games and Economic Beha-
vior" in 1944 [81]. Mathematician John Nash is considered by many as contributing
the first significant extension of Neumann and Morgenstern’s work. He introduced what
has now been named the Nash equilibrium of a strategic game in the 1950s.

1.2.1 Game

The game is the object of studying game theory. All games are described as a set
of circumstances that depend on all decision-makers’ actions (players). It is defined as
a formal description of a strategic situation. It has three essential elements :

– A (finite) number of players N = {1, ..., n}.
– Each player i has a strategy set Si.
– Each player i has a cost functional Fi : S1 × S2 × ..× Sn → R.

Different categories of games can distinguish in game-theory according to three main
criteria :

(i) the ability of players to formally commit to their future decisions,
(ii) the complete or incomplete nature of the information,
(iii) the static or dynamic nature of the game.

This classification is necessary because we do not use the same tools to solve
any game type. Roughly speaking, the first criterion refers to the two main approaches,
cooperative vs non-cooperative, around which game theory has historically been built.
Cooperative games in which players are allowed to cooperate on a joint strategy.
For non- cooperative is the basic assumption that players cannot cooperate ; they are
completely free to decide when making their choices. Games with complete information,
meaning that all players know each others’ strategy spaces and cost functionals. The
failure of this assumption is termed as a game with incomplete information. Thus,
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a game will be dynamic if the game’s progress provides information to at least one
player ; otherwise, it is static.

In a game, an equilibrium is when the players have made their decisions, and
an outcome is reached. John Nash proved that every finite n-player non-cooperative
game has what is now known as a Nash equilibrium :

A Nash equilibrium is a strategy profile s∗ = {s∗1, ..., s∗n} ∈ Πn
i=1Si, such that the

strategy of player i is a better answer :

∀i ∈ N, s∗i ∈ Bi(s
∗
−i),

Bi(s
∗
−i) =

{
si ∈ Si/Fi(si, s∗−i) 6 Fi(s

′
i, s
∗
−i), ∀s′i ∈ Si

}
(1.2)

where s−i is the profile s of strategies other than those of player i :
s−i = {s1, ..., si−1, si+1, ..., sn}.

Game theory’s object is to formalize the interactions to predict the possible outcome
and help the player or players choose the best strategy.

1.2.2 Some Applications of Game Theory

In the present section, we overview some applications in applied mathematics and
in biology carefully studied by using the game-theoretic approach.

Tumoral angiogenesis as a Nash game : In [53, 54], an original approach based
on game theory frameworks proposed to model pro- and antiangiogenesis. Angiogenesis
is a blood network created by cancer cells, and this network allows both to feed the
tumor and disperse the cancer cells via the blood networks. Indeed, this network is pro-
duced thanks to activators’ action, which naturally induces the migration of endothelial
cells from a nearby vessel toward the tumor and the destruction of the tissues in their
direct path to making easy the construction of new capillary and vascular networks.

Angiogenesis can be described as a competition between a density of activators,
which act to provide the tumor with an optimum blood network, and a density of
inhibitors which act to reduce the tissue degradation. These densities act in a context
described by a fluid-structure coupling model, which means a porous media model,
representing the fluid needs of the tumor, and a linear elasticity model, representing
the need for good structural behavior of the host tissue.

For that, the authors considered a two-player zero-sum game. The two players are
activator and inhibitor, where activators aim to maximize the tumor drainage while the
inhibitors play with exactly the opposite objective. The combined action of activators
and inhibitors leads to creating a blood network, whose shape is obtained using to-
pological optimization. Figure 1.3 illustrates the porosity distribution at convergence,
obtained by Habbal et al. [54].

Game-theoretic approach to joint image restoration and segmentation :
Kallel et al. [65] proposed a game-theoretic approach to solving the problem of image
restoration and segmentation jointly. The authors considered a two-player static of
complete information game where the first player is restoration, and the second is
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Figure 1.3 – The 2D model of a circular tumor with a vascular network : strategies converging
to a Nash equilibrium [54].

segmentation. The restoration player’s goal is to minimize, with an image intensity I
as a strategy variable, the functional :

J1(I, C) =

∫
Ω
(I − I0)2 dx+ µ

∫
Ω\C
|∇I|2 dx,

while the segmentation player aims at minimizing the following functional with the
discontinuity set C -contours- as strategy variable,

J2(I, C) =
k∑
i=1

∫
Ωi

(I0 − Ii)2 dx+ ν|C|, where Ii =
1

|Ωi|

∫
Ωi

I(x) dx.

Since both objectives depend on both strategies, then, solving the game amounts
to finding a Nash equilibrium, defined as a possible of strategies (I∗, C∗) such that the
following holds

(I∗, C∗) = arg minI J1(I, C
∗),

= arg minC J2(I
∗, C),

with I∗ is sought in the Sobolev space H1(Ω\C∗), and C∗ is sought the set of the union
of curves made of a finite set of C1,1-arcs. In order to compute this equilibrium, the
authors used a classical iterative method with relaxation. Figure 1.4 present a numerical
result using a level set approach, obtained by the authors of article [65].

A Nash game formulation of the Cauchy problem : Habbal and Kallel
[55, 56] introduced a game theory-based algorithm for solving the Cauchy problem for an
elliptic operator, which consists of recovering the Dirichlet and Neumann missing data
over Γi. Then, in order to solve this inverse problem, the authors proposed to formulate
it as a two-player Nash game, and introduced the two following cost functional : for
η ∈ H− 1

2 (Γi) and τ ∈ H
1
2 (Γi) ,

J1(η, τ) =
1
2
||k∇u1.ν − Φ||2

H−
1
2 (Γc)

+ 1
2
||k∇u1.ν − k∇u2.ν||2

H−
1
2 (Γi)

,

J2(η, τ) =
1
2
||u2 − f ||2

H
1
2 (Γc)

+ 1
2
||k∇u1.ν − k∇u2.ν||2

H−
1
2 (Γi)

,

where the fields u1(η) and u2(τ) are the unique solutions to the respective BVP,

(SP1)


∇.(k∇u1) = 0 in Ω,

u1 = f on Γc,
k∇u1.ν = η on Γi.

(SP2)


∇.(k∇u2) = 0 in Ω,

u2 = τ on Γi,
k∇u2.ν = Φ on Γc.
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Figure 1.4 – Top row : noisy image with Gaussian noise and initial contour, evolution by
iterations. Bottom row : segmentation and restoration of image by the Nash game algorithm
[65].

In a few words, the first player controls the strategy variable η, which belongs to the
space strategy H−

1
2 (Γi), and the second player controls the strategy variable τ , which

belongs to the space strategy H
1
2 (Γi). Each of the two players tries to minimize its own

cost, namely, J1 for the first player and J2 for player the second one. Clearly each
player’s cost depends on other strategy. Then, the Neumann and Dirichlet controls η
and τ do cooperate to minimize either J1 or J2. A pair of strategies (η∗, τ ∗) is a Nash
equilibrium if

(η∗, τ ∗) = arg minη J1(η, τ
∗),

= arg minτ J2(η
∗, τ).

The authors proved that there always exists a unique Nash equilibrium, which is
exactly the missing data when the Cauchy problem has a solution. The game separable
structure is crucial for the proof, by the fact that the Neumann gap in J1 depending
only on η and the Dirichlet gap in J2 depending only on τ . According to the Nash
theorem [56], the existence of a Nash equilibrium has been proved by using the partial
ellipticity of J1 and J2 with respect to η and τ , respectively. This property allows us
to restrict the search for Nash equilibria to bounded subsets of the strategy spaces,
which remains consistent with the classical results of the conditional stability of the
Cauchy problem [3]. They also proved that the completion process by the Nash-game
approach is stable with respect to noisy data. The nonradial missing data, obtained by
Habbal and Kallel [56], are presented in Figure 1.5, with noisy Cauchy data over Γc.

Many other investigations are focusing on the game theory framework. For instance,
in electrocardiography imaging [36], the authors have introduced a Nash game algorithm
to simultaneously recover the value of different tissues’ conductivity and the potential
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Figure 1.5 – Reconstructed nonradial Dirichlet (τN , left) and Neumann (ηN , right) data over
Γi. The profiles are presented at convergence and for a noise level σ = 5% [56].

and flux on the heart’s surface from available measurements on the thorax’s surface. An
application related to the topology design of coupled heat transfer-thermoelastic system
is presented in [58]. The authors formulated the problem as a 2-players Nash game,
where the structure and the temperature distribution in the structure are considered as
strategies to respectively the first and second players. In [66], the authors studied the
image inpainting problem, where the data are not available on a part of the damaged
region’s boundary. They used a Nash game approach after reformulating the inpainting
image problem as a Cauchy one.

1.3 Geometric inverse problem

The geometric inverse problem, i.e., a problem where the unknown is a geometric
shape, has been studied theoretically and numerically. It consists precisely of finding the
optimal geometry of an object with respect to certain criteria. Generally, this problem
can be modeled as follows :

min
Ω∈E
J (Ω, uΩ) (1.3)

where E is a given set of admissible geometries, uΩ is a solution to a given partial
differential equation PDE defined in Ω. Various mathematical approaches in different
frameworks are available to solve this type of problem(1.3) : Level-set approach, to-
pological sensitivity analysis method, shape gradient approach, and homogenization
theory.

1.3.1 Level set approach

The level-set method was proposed first by the mathematicians Stanley Osher and
James Sethian [83]. It has become popular in many disciplines, such as computational
fluid dynamics, optimization, and image processing [13, 65, 82]. This approach supplies
an efficient way of describing time-evolving curves and surfaces that may undergo a
topological change ; with this approach, one can perform numerical computations on a
fixed grid without parameterizing the unknown objects included in the domain.
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In a few words, the level set method is used to describe interfaces that evolve along a
given velocity field implicitly, as zero level sets of an evolving scalar function φ = φ(x, t).
This function φ attains positive values in one subdomain and negative values in the
other, while the material interface is given by the zero level set of the function φ.
Therefore, the level set function φ here represents the shape’s boundary to be identified
during the optimization process. The Hamilton–Jacobi equation governs the change of
the level set function φ as follows :

∂

∂t
φ+ V.∇φ = 0,

where t is a pseudo-time parameter and V is the desired normal velocity on the boun-
dary. In a conventional level set method, it is crucial to keep the level set function as a
distance function during the evolution procedure because steep or flat slopes can deve-
lop in the evolution of φ through the Hamilton–Jacobi equation. It is well known that a
signed distance function must satisfy the property |∇φ| = 1. This initialization, which
does not affect the zero level set’s computation, increases the computation accuracy
and has been extensively used as a remedial measure.

1.3.2 Shape optimization method

Advanced shape optimization techniques have become a potent tool in the de-
sign and construction of industrial structures. The shape optimization problem is
formulated as the minimization of a given shape functional (1.3), which consists of
finding the unknown shape of domain or subdomain of Rn, whose topology is given.
The sensitivity analysis has been rigorously investigated in several published works [60].

There is either nonparametric (free form) or parametric shape optimization. In pa-
rametric shape optimization, the shape of a body is varied by parameters, typically
assuming the role of dimensions or orientations of this body to build the optimal shape.
Thus, when a spline curve or surface describes a shape, the shape sensitivities may also
be related to the control points’ position meanings this curve or surface. On the other
hand, the nonparametric shape optimization is excessively linked to the body’s general
geometry. A shape functional’s sensitivity concerning a smooth arbitrary perturbation
of these shapes is called the shape derivative. The last method is based on the accurate
computation of the shape derivative of the functional J :

dJ (Ω;V ) = lim
t→∞

J (Ωt)− J (Ω)
t

, (1.4)

where Ωt = Tt(Ω) denotes the transformed domain under the flow Tt(V ) generated by
a smooth vector field V .

There exists a certain number of methods available to compute the shape derivative
above (1.4) the direct method based on calculating the material derivative of a solution
of a partial differential equation PDE [99], and the Lagrangian method developed by
J. Céa [33].
If in addition the derivative is linear with respect to V , then, one can be written it as
follows :

dJ (Ω;V ) =

∫
∂Ω

gV.n ds,
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Ω Tt(V )(Ω)

X Tt(V )(X)

Figure 1.6 – Perturbed domain.

where g ∈ L2(∂Ω). This gives a natural idea of gradient descent, where the boundary
∂Ω is evolved in the direction of negative shape gradient in order to reduce the value
of the cost functional.

As soon as a descent direction V is obtained, it advects the shape in the direction
of V . There are, respectively, two different processes to describe a shape, explicitly
and implicitly. If the interface is given explicitly, e.g., by a spline, then the procedure
consists of simply moving the interface a certain distance into the direction given by
V and looking at the impact of these variations on the objective function. One of the
difficulties of this method is the remeshing. Indeed, so that the computation by finite
elements is reliable, the mesh must respect certain criteria. If the form varies a lot,
that imposes to remesh the domain. However, the software generally uses the number
of the elements to define the boundary conditions or the extraction of the results, and
a remeshing necessarily implies a renumbering. Another way is possible, where the
shape can be represented in an implicit mode, employing a level set function where the
Hamilton-Jacobi equation describes its evolution.

1.3.3 Topological gradient method

To present the basic idea, let Ω be a bounded domain of Rd (d = 2, 3), and j(Ω) =
J (Ω, uΩ). For ε > 0, let Ωε = Ω \ (x0 + εB) be the domain obtained by removing a
small part (x0 + εB) from Ω, at a location x0 ∈ Ω, and B is a fixed bounded domain
containing the origin. Then, the asymptotic expansion of the cost function j with respect
to ε, takes the form

j(Ω \ (x0 + εB))− j(Ω) = ρ(ε)g(x0) + o(ρ(ε)).

In this expansion, ρ(ε) denotes an explicit positive function going to zero with ρ and
g(x0) is called the topological gradient or topological derivative. Therefore, to minimize
the cost functional j, one has to create holes at some points x where the topological gra-
dient g(x) is the most negative. It is usually simple to compute using direct and adjoint
problems defined in the initial domain. Various kinds of topology optimization problems

19



have been solved efficiently by using the topological gradient method : the elasticity
case [52], Laplace equation [9], Navier-Stokes equations [8] and Maxwell equations [79]...

In [25], a numerical process based on the topological gradient method is applied
to solve the inverse problem of detecting of small flaws’ locations from boundary
measurements. The topological sensitivity analysis is given for the Stokes system
with respect to the insertion of a small hole (gas bubble) Bε in the domain Ω,
with a homogeneous Neumann condition is prescribed on the boundary ∂Bε. In [35],
Caubet et al. used the notion of a topological gradient in combination with the shape
derivative of a Kohn-Vogelius functional to find the number, the location, and the
shape of the obstacle, which are immersed in a fluid, for the two-dimensional case
via the measurement of the velocity of the fluid and the Cauchy forces on the outer
boundary. They considered the homogeneous Dirichlet boundary conditions on the
obstacles. Ben Ameur et al. [26] studied the geometric inverse problem in linear
elasticity. This problem consists of identifying an unknown interface or inclusion from
a single boundary measurement. A regularization approach was used to compute stable
approximations of the solutions by adding multiple perimeters as a penalty to the
least-square functional. The authors employed the level-set approach with the shape
gradient method for the reconstruction problem’s numerical solution.

The topological gradient method has also been greatly used to identify the source
location. In [49], Ferchichi et al. investigated a Dirac–Stokes problem under the action
point-forces located inside the domain. In order to solve this problem, they have properly
used relaxation techniques and have formulated the relaxed problem as a topological
optimization one.

1.4 Quasi-Newtonian Fluids

Experimental observations show that, for some fluids as water, the viscosity is
constant. These precious fluids are called Newtonian. However, considered experiments
show that the viscosity, for several other fluids such as biological or polymer fluids,
is no more constant, called non-Newtonian or complex fluids. The latter sufficiently
showed that the fluid viscosity might typically vary depending on gradient tensor or
temperature or else time... Governed by the classical Stokes or Navier–Stokes equa-
tions, the Newtonian fluid flows are a well-reasoned estimation of the more realistic
non-Newtonian fluids. In this work, we will be interested in the quasi-Newtonian
fluid flow models, which could be considered a first step into the world of complex
fluids. The most applied formulations of the viscosity, in this case, are based on the
deformation tensor [18, 20, 21, 88].

The model that we work is as follows : consider the motion of incompressible
fluids in a bounded open domain Ω ∈ Rd (d=2,3), described by the fluid velocity u
and the pressure p such that

(QNS)

{
−div(σ(u, p)) = f in Ω,

divu = 0 in Ω,
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where f is a given source term, and the stress tensor σ expresses as follows :

σ(u, p) = −pId + 2ν(|D(u)|2)D(u),

with ν : R+ → R+ is a viscosity function. There are two prevalent classical models :
Carreau’s law and the power law. The boundary Dirichlet condition allows us to close
simply the equation’s system (QNS) and write their weak formulation. There are other
boundary conditions gently leading to a closed system of equations, i.e., capable of
admitting a unique solution [18, 21, 39]. Existence and uniqueness results are given in
the previous references, for the system (QNS) with homogeneous Dirichlet boundary
data. Specific techniques developed in these investigations allow the correct handling of
non-linearity. To the best of our knowledge, there is no work devoted to the case where a
single pair of Dirichlet and Neumann data are available only on the part of the boundary,
that is, the case of the Cauchy problem for nonlinear Stokes system. But, there are a
few works that were concerned with nonlinear elliptic Cauchy problems ; we can cite the
work of Avdonin et al. [14] which used an iterative method for solving a nonlinear elliptic
Cauchy problem in glaciology. In [66], the authors used a game strategy to solve the
image inpainting problem as a nonlinear Cauchy problem. In [73], the authors proposed
two iterative methods based on the segmenting Mann iteration applied to fixed point
equations. The first approach consists of transforming the nonlinear Cauchy problem
into a linear Cauchy problem and analyzing a linear fixed point equation. A nonlinear
fixed point equation is considered on the second approach, and a thoroughly nonlinear
iterative method is investigated. An approach is based on a Tikhonov regularization
method in [42].

Organization of the Thesis

This thesis is organized into five chapters and a conclusion.

Chapter 1 gives an overview of the most common approaches used to solve parameter
or geometric identification problems highlight their advantages and challenges. Chap-
ter 2 takes the form of an article published in Inverse problems and imaging [57].
It is dedicated to solving the inverse inclusion Cauchy-Stokes problem. This problem
involves detecting one or more inclusions immersed in a stationary viscous fluid, using
only a single pair of Dirichlet and Neumann boundary measurements. We use the
simplest class of games in order to model our coupled inverse problem, specifically, the
class of static games with complete information.

In Chapter 3, we present an approach to recover jointly the location, magni-
tude of a finite but unknown number of point-wise sources, and missing boundary data
using an original Nash game strategy. This approach studies the strategic interactions
between players, where the optimal point-force location is characterized as the solution
to the topological optimization problem.

Chapter 4 is based on the work presented in [57]. We consider the topological
gradient method to determine some small objects’ best locations, using incomplete
measurements, which was the subject of a paper that has been accepted for publication
in the ARIMA journal.
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Chapter 5 aims to treat nonlinear Stokes models arising in quasi- Newtonian
fluids and the Cauchy type problem framework. Thus, we consider two well-posed
mixed BVPs, and we propose a new one-shot scheme to solve the nonlinear Cauchy
problem. Two iterative procedures were developed to reconstruct the solution of our
inverse problem numerically. A comparison of the one-shot scheme with a fixed-point
method to solve the nonlinear BVPs is performed. This comparison shows our novel
scheme’s excellent performance from a data completion viewpoint for noise-free and
noisy cases.
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CHAPTER 2
Nash strategies for the inverse inclusion
Cauchy-Stokes problem

“But in my opinion, all things in
nature occur mathematically."

René Descartes

Abstract. We introduce a new algorithm to solve the problem of detecting
unknown cavities immersed in a stationary viscous fluid, using partial boundary
measurements. The considered fluid obeys a steady Stokes regime, the cavities are
inclusions and the boundary measurements are a single compatible pair of Dirichlet
and Neumann data, available only on a partial accessible part of the whole boundary.
This inverse inclusion Cauchy-Stokes problem is ill-posed for both the cavities and
missing data reconstructions, and designing stable and efficient algorithms is not
straightforward. We reformulate the problem as a three-player Nash game. Thanks to
an identifiability result derived for the Cauchy-Stokes inclusion problem, it is enough
to set up two Stokes boundary value problems, then use them as state equations. The
Nash game is then set between 3 players, the two first targeting the data completion
while the third one targets the inclusion detection. We used a level-set approach to get
rid of the tricky control dependence of functional spaces, and we provided the third
player with the level-set function as strategy, with a cost functional of Kohn-Vogelius
type. We propose an original algorithm, which we implemented using Freefem++. We
present 2D numerical experiments for three different test-cases.The obtained results
corroborate the efficiency of our 3-player Nash game approach to solve parameter or
shape identification for Cauchy problems.
keywords : Data completion, Cauchy-Stokes problem, shape identification, Nash
games.

This chapter takes the form of a published article :
A. Habbal, M. Kallel, and M. Ouni. Nash strategies for the inverse inclusion Cauchy-
stokes problem. Inverse problems and imaging, 13 :827–862, 2019.
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2.1 Introduction

Fluid dynamics are central in many industrial, biological and biomedical processes.
The good functioning of the involved systems could be dramatically damaged in the pre-
sence of undesired small obstacles (impurities) or inclusions (cavitation). For example,
polymer material degradation is related to the formation of inclusions during polymer
extrusion [92] ; as well, the mechanism of joint cracking is related to cavity formation
[68].

A large spectrum of the processes above can be considered as Stokes flows, though
they should be taken unsteady and anisotropic to render satisfactorily the complex
phenomenon of the formation of cavities [93]. The shape and location of the inclusions
is generally out of reach for direct observation, hence the need for effective nondes-
tructive monitoring solutions, known as geometric inverse problems when mathematics
and algorithms are involved. Popular mathematical models build on the assumption
that some specific measurements are available over the whole boundary of the struc-
ture under investigation, dealing with partial differential equations of boundary value
-BVP- type. However, it should be noticed that from a technological point of view,
when industrial devices are involved, the assumption above is in general impossible to
fulfill, either because it is too expensive, or simply because part of the boundary is
not accessible to probing, think of a heart valve [76]. Such restrictions lead to develop
complex protocoles like for the detection of flaws in metal melts in foundry industry
[67]. Industrial solutions use in general protocoles where emission and reception of the
probing signals are set on the same location of the boundary. From a mathematical
point of view, we have access to over specified boundary data (e.g. temperature and
thermal flux) on the probing location, and no data elsewhere. Thus, we deal with partial
differential equations, having access to over specified boundary data, and missing data
to recover as well as unknown inclusions to detect. We are then in the framework of
geometric inverse problems for the so called Cauchy-Stokes system. We shall restrict
ourselves to the case of steady and Newtonian Stokes flows.

Figure 2.1 – An example of the geometric configuration of the problem : the whole domain
including cavities is denoted by Ω. It contains an inclusion ω∗. The boundary of Ω is composed
of Γc, an accessible part where over-specified data are available, and an inaccessible part Γi where
the data are missing.

Let us introduce a preliminary mathematical description of the problem. Consider
a bounded open domain Ω ⊂ Rd (d=2, 3) occupied by an incompressible viscous fluid,
see Figure-2.1. We assume that the outer boundary of Ω is sufficiently smooth and
composed of two parts Γc and Γi. Let ω∗ ⊂⊂ Ω be an unknown inclusion immersed in
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Ω. The Cauchy-Stokes geometric inverse problem considered here consists, then, from
given velocity f and fluid stress forces Φ prescribed only on the accessible part Γc of the
boundary, to identify ω∗ ∈ Dad (a set of admissible shapes defined later) such that the
fluid velocity u and the pressure p are solution of the following Stokes problem :

ν∆u−∇p = 0 in Ω \ ω∗,
divu = 0 in Ω \ ω∗,

σ(u, p)n = 0 on ∂ω∗,
u = f on Γc,

σ(u, p)n = Φ on Γc,

(2.1)

where n is the unit outward normal vector on the boundary, and σ(u, p) the fluid stress
tensor defined as follows :

σ(u, p) = −pId + 2νD(u)

with D(u) = 1
2
(∇u + ∇uT ) being the linear strain tensor and Id denotes the d × d

identity matrix. For the sake of simplicity, from now on, the viscosity ν of the fluid is
set to ν = 1.

Additionally to the geometric identification problem (i.e. detect the inclusions ω∗)
one has to complete the boundary data, that is to recover the missing traces of the ve-
locity u and of the normal stress σ(u, p).n over Γi the inaccessible part of the boundary.
Remark that the difference between obstacles and inclusions amounts to which boun-
dary condition is used : homogeneous Dirichlet one for the obstacles and homogeneous
Neumann condition for the inclusions (considered as free surfaces).

Even when restricted to elliptic equations, mostly Laplace and Stokes systems, there
exists a prolific literature dedicated to each of these two problems separately, and be-
cause of their well known ill-posedness (in the sense of Hadamard) [59], most of the
literature addresses as well (if not exclusively) the ensuing stability and other computa-
tional issues. For the Cauchy problem, far from being exhaustive, an excerpt of popular
approaches are the least-square penalty techniques used in [48] and in the earlier paper
[50], Tikhonov regularization methods [38], quasi reversibility methods [28], alternating
iterative methods [72, 62] and control type methods [10, 2]. Recently, an approach ba-
sed on game theory, using decentralized strategies, was proposed in [56]. This work has
been extended in [66], in the image inpainting problem for a nonlinear Cauchy problem
and in [36] for the solution of coupled conductivity identification and data completion
in cardiac electrophysiology.

Let us mention that many of the papers dedicated to data completion or to obs-
tacle detection and based on control or optimization approaches, minimize a so-called
Kohn-Vogelius type functional, an energy error function introduced in the framework
of parameter identification in [70].

Regarding the obstacle identification problem, a more challenging geometric inverse
problem, and again with a very partial on the existing literature, the authors in [5]
address the obstacle detection problem for unsteady Stokes and Navier-Stokes flows,
quasi reversibility coupled to a level set approach is used in [29] for the Laplace equation,
shape optimization [16] and topological gradient [46] are used for the Stokes system,
and in [17] stability issues are addressed for the inverse obstacle problem in a Stokes
flow.

In contrast, rather a few papers address the joint geometric and data completion
inverse problems, at least regarding its computational aspects. Close to our present
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work, the inverse obstacle problem for the Cauchy-Laplace equation is studied in [35]
where a control-type approach is used and applied to a Kohn-Vogelius functional. In [30]
the authors use quasi reversibility coupled to a level set approach to solve the inverse
obstacle problem for the Cauchy-Stokes equations. A formulation based on nonlinear
integral equations arising from the reciprocity gap [11] principle is used in [6].

Presently, we consider the inverse inclusion problem for the Cauchy-Stokes system.
In order to solve the joint completion/detection problem, we reformulate it as a three
players Nash game, following the ideas introduced earlier in [56] to solve the Cauchy-
Laplace (completion) problem.

The game is defined as follows : first, the Cauchy-Stokes problem is formulated as two
boundary value problems (BVP). The first BVP defines the first player, it inherits the
available Dirichlet data f specified on the boundary Γc, and has control on a Neumann
data set over the inaccessible boundary Γi, the latter control being the first player’s
strategy aimed at minimizing the gap over Γc between first player’s normal stress and
the prescribed normal stress Φ. The second BVP defines the second player, as it inherits
the available normal stress data Φ set over Γc, and uses Dirichlet data set over the
inaccessible boundary Γi as strategy variables. The second player’s Dirichlet strategy
is aimed at minimizing the gap over Γc between second player’s and the prescribed
Dirichlet data f . The fading and regularizing difference between the solutions to these
two BVPs is shared by the two players. The third player has no own BVP, but has access
to the two previous ones, and uses as control variable the shape of the inclusion(s). The
third player’s criteria to minimize is a Kohn-Vogelius type functional. The three players
play a static Nash game with complete information, whose relevant solution concept is
the so-called Nash equilibrium (NE).

We shall present and prove some theoretical results for the Cauchy-Stokes problem,
precisely that a Nash equilibrium exists and is unique, and coincides with the missing
data as soon as the Cauchy problem has a solution (that is, when the over specified data
are compatible). Then, we propose a new algorithm dedicated to the joint computation
of the missing data and the obstacle shapes. In this algorithm, a Nash subgame is
played by the completion first and second players in order to precondition the Cauchy
problem and tackle its ill-posedness. A level set approach is used for the latter geometric
identification problem. We lead a sensitivity analysis, and present several numerical
experiments that corroborate the efficiency of our approach and its nice stability with
respect to noisy data.

The paper is organized as follows. In Section 2.2, we extend our previous [56] Nash
game approach to the data completion for the steady Stokes flows. In view of the for-
mulation of the geometric inverse problem, we first recall in Section 2.3 a now classical
identifiability proof [5] usually established for obstacles, so with homogeneous Dirichlet
boundary condition, with a minor adaption to fit the case of inclusions, whose boun-
dary conditions are of homogeneous Neumann type. Then, we formulate in Section 2.4
the Nash game approach to tackle the joint completion and geometric identification
problem. We detail our algorithm, and some numerical aspects of the level set method,
used to capture the inclusion boundary. Section 2.5 is devoted to the presentation of
three numerical 2D test cases which assess the ability of our algorithm to jointly recover
the missing boundary data and the location and shape of the inclusions as well. We
finally draw some concluding remarks in Section 2.6.
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2.2 Data completion for the Stokes problem

We consider in the present section the case where possible obstacles or inclusions
are known, which amounts to simply not consider them, focusing solely on the data
completion problem. In the following, we apply the Nash game formulation of [56] to
the Stokes problem. Results and proofs in the cited reference extend easily to the present
case.

With the previous notations, let be f ∈ H
3
2 (Γc)

d and Φ ∈ H
1
2 (Γc)

d given Cauchy
data. The Cauchy-Stokes problem is stated as follows : find u ∈ H1(Ω)d and p ∈ L2(Ω)
such that 

∆u−∇p = 0 in Ω,
divu = 0 in Ω,

u = f on Γc,
σ(u, p)n = Φ on Γc.

The data completion problem, which is simply a reformulation of the Cauchy-Stokes
one, amounts to find τ ∗ ∈ H 3

2 (Γi)
d and η∗ ∈ H 1

2 (Γi)
d such that u = τ ∗ and σ(u, p)n = η∗

over Γi.
For any given η ∈ H

1
2 (Γi)

d and τ ∈ H
3
2 (Γi)

d, we define the states (u1(η), p1(η)) ∈
H1(Ω)d × L2(Ω) and (u2(τ), p2(τ)) ∈ H1(Ω)d × L2(Ω) as the unique weak solutions of
the following Stokes mixed boundary value problems (SP1) and (SP2) :

(SP1)


∆u1 −∇p1 = 0 in Ω,

divu1 = 0 in Ω,
u1 = f on Γc,

σ(u1, p1)n = η on Γi,

(SP2)


∆u2 −∇p2 = 0 in Ω,

divu2 = 0 in Ω,
u2 = τ on Γi,

σ(u2, p2)n = Φ on Γc.

The existence and uniqueness of solutions to (SP1) and (SP2) can be derived from
the general theory on existence of solutions to the incompressible steady state Stokes
equations, which can be found e.g. in [40, 95]. See also [34] annex A.1 which is suitable
to the Cauchy-Stokes framework of the present paper. Notice that, thanks to the
assumption on Cauchy data, we have (u1(η), p1(η)) ∈ H2(Ω)d ×H1(Ω)d.

We then define the following cost functionals :

J1(η, τ) =
1

2
||σ(u1(η), p1(η))n− Φ||2

H
1
2 (Γc)d

+
1

2
||u1(η)− u2(τ)||2

H
3
2 (Γi)d

(2.2)

J2(η, τ) =
1

2
||u2(τ)− f ||2

H
3
2 (Γc)d

+
1

2
||u1(η)− u2(τ)||2

H
3
2 (Γi)d

(2.3)

We are now in a position to formulate the two-player Nash game. The first player
is defined by its strategy η ∈ H 1

2 (Γi)
d and cost J1, while the second one has control on

τ ∈ H 3
2 (Γi)

d and aims at minimizing the cost J2. The two players play a static Nash
game with complete information. The most popular solution concept for such games is
the one of a Nash equilibrium (NE) given by the

Definition 2.2.1 A strategy pair (ηN , τN) ∈ H
1
2 (Γi)

d × H 3
2 (Γi)

d is a Nash equilibrium
if the following holds :{

J1(ηN , τN) ≤ J1(η, τN), ∀η ∈ H 1
2 (Γi)

d,

J2(ηN , τN) ≤ J2(ηN , τ), ∀τ ∈ H 3
2 (Γi)

d.
(2.4)
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Recall that, similarly as [56], this two players solve in parallel the associated BVP’s
(SP1) and (SP2). Their respective objectives involve the gap between the non used
Neumann/Dirichlet known data and the traces of the BVP’s solutions over the accessible

boundary Γc, plus a common coupling term
1

2
||u1(η)− u2(τ)||2

H
3
2 (Γi)d

. This term depends
on both η and τ , has a regularizing effect in partial minimization, u1 (resp. u2) is fixed
in the partial minimization process of J2 (resp. J1). Furthermore, the partial mapping
η 7−→ J1(η, τ) (resp. τ 7−→ J2(η, τ) ) is a quadratic strongly convex functional over
H

1
2 (Γi)

d (resp. H
3
2 (Γi)

d). This partial ellipticity property of J1 holds uniformly w.r.t.
τ , and conversely for J2. It allows to restrict the search for Nash equilibrium in data
completion to a bounded subsets of the strategy spaces, which remains consistent with
the classical results of conditional stability of Cauchy problem (see e.g. [3]).

The recourse to a game formulation and to a NE solution finds its justification in
the following result :

Proposition 2.2.1 Consider the Nash game defined above, with costs given by (2.2)
and (2.3).

(i) There always exists a unique Nash equilibrium (ηN , τN) ∈ H
1
2 (Γi)

d ×H 3
2 (Γi)

d,
which is also the minimum of the potential

L(η, τ) =
1

2
||σ(u1(η), p1(η))n−Φ||2

H
1
2 (Γc)d

+
1

2
||u2(τ)−f ||2

H
1
2 (Γc)d

+
1

2
||u1(η)−τ ||2

H
3
2 (Γi)d

.

(ii) If the Cauchy problem has a solution (u, p), then (u1(ηN), p1(ηN)) =
(u2(τN), p2(τN)) = (u, p) and (ηN , τN) are the missing data, i.e. ηN = σ(u, p)n|Γi
and τN = u|Γi.

Proof 2.2.1 (i). We first prove the uniqueness of a NE. It is easy to check that the
potential L is strictly convex by computing its second order differential with respect to
(η, τ), see [2]. Thus, L has at most a one minimum. Moreover, if it exists, the minimum
of L is a Nash equilibrium, and conversely. Indeed, let be (η0, τ0) the minimum of L,
then, we have {

L(η0, τ0) ≤ L(η, τ0), ∀η ∈ H 1
2 (Γi)

d,

L(η0, τ0) ≤ L(η0, τ), ∀τ ∈ H 3
2 (Γi)

d.

Thanks to the specific structure of L, this is equivalent to write{
J1(η0, τ0) ≤ J1(η, τ0), ∀η ∈ H 1

2 (Γi)
d,

J2(η0, τ0) ≤ J2(η0, τ), ∀τ ∈ H 3
2 (Γi)

d.

That is, (η0, τ0) is a Nash equilibrium. Conversely, if (η0, τ0) is a Nash equilibrium then,{
J1(η0, τ0) ≤ J1(η, τ0), ∀η ∈ H 1

2 (Γi)
d,

J2(η0, τ0) ≤ J2(η0, τ), ∀τ ∈ H 3
2 (Γi)

d.

Adding the term 1
2
||u2(τ)− f ||2

H
3
2 (Γc)d

in the first inequality and the term
1
2
||σ(u1, p1)n− Φ||2

H
1
2 (Γc)d

in the second one, we get,{
L(η0, τ0) ≤ L(η, τ0), ∀η ∈ H 1

2 (Γi)
d,

L(η0, τ0) ≤ L(η0, τ), ∀τ ∈ H 3
2 (Γi)

d.
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By the optimality conditions, we have
∂L

∂η
(η0, τ0) = 0,

∂L

∂τ
(η0, τ0) = 0,

thus, (η0, τ0) is the minimum of L, the uniqueness of which implies that of the Nash
equilibrium.

The proof of existence follows the same lines as in [56], the main ingredient being
the uniform ellipticity of the convex partial maps η → J1(η, τ) and of τ → J2(η, τ)
which allows for a direct application of the Nash Theorem, see ibidem references to the
Nash games and theorem.
(ii). If we assume that the Cauchy-Stokes problem has a solution (u, p), which is then
unique by the unique continuation property, proved by Fabre and Lebeau in [47], then
let us define the following ηC = σ(u, p)n|Γi and τC = u|Γi. It is then straightforward to
check that the solutions (u1(ηC), p1(ηC)) to (SP1) and (u2(τC), p2(τC)) to (SP2) coincide
with the Cauchy solution (u, p), thanks to the uniqueness of the solution of the boundary
value Stokes problem. Thus, L(ηC , τC) = 0 so that (ηC , τC) is a minimum of L ≥ 0.
Thanks to the uniqueness result above, (ηN , τN) = (ηC , τC).

For the computation of the NE for the Cauchy-Stokes problem, we used a popular algo-
rithm [12] which amounts basically to solve iteratively the following coupled problem,
using gradient descent methods,

(ηN , τN) = argminηJ1(η, τN),

(ηN , τN) = argminτJ2(ηN , τ).

We describe in Algorithm 2.2.1 below the main steps of the method, with a version
where the Cauchy data of the Dirichlet type f are possibly perturbed by a noise
with some magnitude σ, yielding for the Cauchy problem a noisy Dirichlet data fσ :

Algorithm 2.2.1: Computation of a Cauchy-Stokes Nash equilibrium
Given : ε > 0 a convergence tolerance, Kmax a computational budget, σ a noise
level and ρ(σ) a -tuned- function which depends on the noise.
Choose an initial guess S(0) = (η(0), τ (0)) ∈ H 1

2 (Γi)
d ×H 3

2 (Γi)
d. Set k = 1.

• Step 1 : Compute η(k) solution of minηJ1(η, τ
(k−1))

and determine η(k) = tη(k−1) + (1− t)η(k) with 0 ≤ t < 1 .
• Step 2 : Compute τ (k) solution of minτJ2(η

(k−1), τ)
and determine τ (k) = tτ (k−1) + (1− t)τ (k) with 0 ≤ t < 1 .

• Step 3 : Compute sk = ||u(k)2 − fσ||L2(Γc), where (u
(k)
2 , p

(k)
2 ) is the solution

of the following direct problem
∆u

(k)
2 −∇p

(k)
2 = 0 in Ω,

divu
(k)
2 = 0 in Ω,

u
(k)
2 = τ (k) on Γi,

σ(u
(k)
2 , p

(k)
2 )n = Φ on Γc.

While sk ≥ ρ(σ)ε and k < Kmax set k = k + 1, return back to step 1.
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The gradient descent methods used to solve steps 1 and 2 in the algorithm above do
require the computation of the gradients of the costs J1 and J2, with respect to their
respective strategies. The fast computation of the latter is classical, and led by means
of an adjoint state method, as shown by the Proposition 2.2.2 below.

We shall use the following classical notation :

H1

Γ(Ω) = {ϕ ∈ H
1(Ω)d /ϕ|Γ = 0} and H2

Γ(Ω) = {ϕ ∈ H
2(Ω)d /ϕ|Γ = 0}

whenever Γ is a non empty subset of the boundary of Ω.

Proposition 2.2.2 We have the following two partial derivatives :

(AP1)



∂J1

∂η
ψ = −

∫
Γi
ψλ1ds, ∀ψ ∈ H

1
2 (Γi)

d,

with (λ1, κ1) ∈ H1

Γc
(Ω)× L2(Ω) solution of the adjoint problem :

∫
Γc
(σ(u1, p1)n− Φ)((∇γ +∇γT )n)ds+

∫
Γi
(u1 − τ)γds

+

∫
Ω
(∇γ +∇γT ) : ∇λ1dx−

∫
Ω
κ1divγdx = 0, ∀γ ∈ H1

Γc
(Ω).

−
∫
Γc
(σ(u1, p1)n− Φ)δnds−

∫
Ω
δdivλ1dx = 0, ∀δ ∈ H1(Ω)d,

(AP2)



∂J2

∂τ
µ =

∫
Γi
(σ(λ2, κ2)n− (u1(η)− u2(τ)))µds, ∀µ ∈ H

3
2 (Γi)

d,

with (λ2, κ2) ∈ H1(Ω)d × L2(Ω) solution of the adjoint problem :

∫
Ω
(∇λ2 +∇λT2 ) : ∇ϕdx−

∫
Ω
κ2divϕdx =

∫
Γc
(f − u2(τ))ϕds,

∀ϕ ∈ H1

Γi
(Ω),∫

Ω
ξdivλ2dx = 0, ∀ξ ∈ L2(Ω),

where, by a classical convention, ∇u : ∇v = Tr(∇u∇vT ) =
∑
i,j

∂ui
∂xj

∂vi
∂xj

.

Remark 2.2.1 The existence and uniqueness of the solutions to the problems (AP1)
and (AP2), namely the adjoint states (λ1, κ1) ∈ H1

Γc
(Ω) × L2(Ω) and (λ2, κ2) ∈

H1(Ω)d × L2(Ω) is straightforward, thanks to the regularity assumption on the Cau-
chy data (f, Φ) ∈ H 3

2 (Γc)
d ×H 1

2 (Γc)
d and to the regularity H2(Ω)d ×H1(Ω)d results on

the solutions to the Stokes problems (SP1) and (SP2), see e.g. [51] (or [22] Theorem
5.2).

Later on, Algorithm 2.2.1 described above will be embedded into an overall algorithm
with the specific task of processing the data recovery problem. We shall then use the
partial derivatives given by Proposition 2.2.2. The overall algorithm stems from the
Nash game played by the data recovery problem against the inclusion inverse problem.
Next section is then devoted to a mandatory preamble for geometric inverse problems,
that is the identifiability question.
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2.3 An identifiability result for the inverse inclusion
Cauchy-Stokes problem

In the present section, we adapt an identifiability result in [5], established for the case
of obstacles, that is with a homogeneous Dirichlet condition, to the case of inclusions
defined by Neumann (or free surface) boundary conditions.

The set of admissible inclusions is definded by :

Dad = {ω ⊂⊂ Ω is a C1,1open set and Ω \ ω is connected}.

We follow grosso modo the same proof technique of [5], noticing that, differently from
the obstacle (Dirichlet) case, inclusions are not identifiable in case of over specified data
f of affine free divergence form. Consequently, even if the over specified fluid stress Φ
is identically zero, it is enough for the identifiability to hold, that the velocity data f
be non affine.

Theorem 2.3.1 Let be Ω ⊂ R2 an open bounded Lipschitz domain and Γc a non-
empty open subset of the boundary ∂Ω. Assume there exists a pair of compatible data
(f, Φ) ∈ H 3

2 (Γc)
d × H 1

2 (Γc)
d for the Cauchy-Stokes problem, such that either Φ 6≡ 0 or

f(x)6≡ Ax+ b where A is a constant matrix with null diagonal. Consider two admissible
open sets ω1 and ω2 in Dad. For i = 1, 2, let be (ui, pi) the solutions to the following
Cauchy-Stokes inclusion problem :

∆ui −∇pi = 0 in Ω \ ωi,
divui = 0 in Ω \ ωi,

σ(ui, pi)n = 0 on ∂ωi,
ui = f on Γc,

σ(ui, pi)n = Φ on Γc.

(2.5)

Then ω1 = ω2.

Proof 2.3.1 Denote by ω = ω1 ∪ ω2 and define, over the set Ω \ ω, v = u1 − u2 and
q = p1 − p2, where (u1, p1) and (u2, p2) are the solutions to the system (2.5).

One sees that (v, q) satisfies
∆v −∇q = 0 in Ω \ ω,

divv = 0 in Ω \ ω,
v = 0 on Γc,

σ(v, q)n = 0 on Γc.

Thus, thanks to the unique continuation property for the Stokes system (see [47] or [5]
Corollary 2.2), we have v = 0 in Ω \ ω and then u1 = u2 in Ω \ ω.

ω1

ω2

ω1ω2 ω1

ω2 ω2

ω1

Ω Ω Ω Ω

Figure 2.2 – Different situations
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Let us suppose that ω1 6= ω2, and assume then (up to a swap in subscripts) that ω1\ω2

is an open non-empty subset of Ω. We know from system (2.5) that : ∆u2 −∇p2 =
0 in ω1 \ ω2.

First, let us consider the case where ω1 \ω2 is Lipschitz. Then, we multiply the equa-
tion above by u2 and take the integral over ω1\ω2. Observe then that, thanks to divu2 = 0
in ω1 \ ω2, one has ∆u2 = 2div(D(u2)) where we recall that D(u2) = 1/2(∇u2 +∇uT2 ).
By use of the Green formula, we obtain∫

ω1\ω2

D(u2) : ∇u2dx−
∫
ω1\ω2

p2divu2dx =

∫
∂(ω1\ω2)

(−p2Id +D(u2))nu2ds,

which can be rewritten as follows :

1

2

∫
ω1\ω2

|D(u2)|2dx =

∫
∂(ω1\ω2)

σ(u2, p2)nu2ds.

Now, since σ(v, q) vanishes in Ω \ ω, and thanks to the continuity of the involved -
normal- traces, one has σ(v, q)n = 0 on ∂ω. From other part, one has σ(u1, p1)n = 0 on
∂ω1 thanks to equations (2.5). We then have σ(u2, p2)n = 0 on ∂ω1 \ ∂(ω1 ∩ ω2). Now,
since we know that σ(u2, p2)n = 0 on ∂ω2 thanks to equations (2.5), we obtain∫

∂(ω1\ω2)

σ(u2, p2)nu2ds = 0,

that is,
1

2

∫
ω1\ω2

|D(u2)|2dx = 0.

Since ||D(u2)||2L2(ω1\ω2)
= 0, the components of the matrix of D(u2) are a.e. zero. Conse-

quently, the velocity field u2 has an affine form in ω1\ω2, shortly given by u2(x) = Ax+b
where A is a constant matrix with null diagonal.

We know from above and from equations (2.5) that (u2, p2) satisfies the following
system, 

∆u2 −∇p2 = 0 in ω1 \ ω2,
divu2 = 0 in ω1 \ ω2,

σ(u2, p2)n = 0 on ∂(ω1 \ ω2).
(2.6)

Thus, by application to u2(x) − (Ax + b) which fulfills the system (2.6) above, of
the unique continuation theorem for the steady Stokes equation established in [47], we
conclude that u2(x) = Ax+ b and p2 = 0 in the whole domain Ω\ω2. Finally, reasoning
with the traces on the boundary of the domain ∂Ω, we observe that u2(x) = Ax+ b and
p2 = 0 in Ω \ ω2 yields σ(u2, p2)n = Φ = 0 and u2(x) = f(x) = Ax + b over Γc, which,
by assumption, is impossible. We conclude that ω1 \ ω2 = ∅, and so ω1 = ω2.

Now, when ω1 \ ω2 is not Lipschitz, then the use the Green formula is not justified.
We recall and follow here the solution given by [34] : the author in the cited reference
introduces an additional regularity assumption on ω1 and ω2, assuming that they have
C1,1 boundary. We assumed more regularity on the Cauchy data in order to have more
regularity for the solution (u2, p2), that is u2 ∈ H2(Ω \ω2)

d and p2 ∈ H1(Ω \ω2). Then,
consider two Lipschitz open sets O1,O2 ∈ Ω \ ω2, such that O1 ⊂ Ω \ ω1, ∂O1 \ (∂ω1 ∪
∂ω2) = ∂O2 \ (∂ω1 ∪ ∂ω2) and ∂ω2 ∩ ω1 ⊂ ∂O1.
Next, by use the Green formula on O1 and O2, we obtain

1

2

∫
O1

|D(u2)|2dx =

∫
∂O1

σ(u2, p2)nu2ds and
1

2

∫
O2

|D(u2)|2dx =

∫
∂O2

σ(u2, p2)nu2ds.
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Subtracting these two equalities, we get

1

2

∫
ω1\ω2

|D(u2)|2dx = 0.

Hence, we conclude as previously. Finally, for the case where the domain Ω \ ω1 ∪ ω2

is not connected (fourth case in figure 2.2), we refer the reader to the same cited above
[34] where this case is successfully handled.

The identifiability result suggests that there is no need for a third party state equa-
tion, the two state equations (SP1) and (SP2) formulated with inclusions and dedicated
to the completion problem should suffice. Only a third player’s cost functional should
be defined, playing with inclusions as strategies. Hence we enforced the data completion
steps, by letting the first and second players lead a Nash subgame during the overall
iterations, see next section. Numerical experiments show that this choice turned out to
be efficient.

2.4 Coupled data completion and geometry identifi-
cation for the Stokes problem

The aim of the present section is to introduce an algorithm dedicated to recover the
missing boundary data while solving the inverse inclusion problem for steady Stokes
flows. We extend the two-player Nash game set for the completion problem to a three-
player Nash game, the third player being in charge of the inverse inclusion problem.

We recall that the inverse inclusion problem amounts to find ω∗ ∈ Dad such that the
fluid velocity u and the pressure p are solution to the following Cauchy-Stokes problem :

∆u−∇p = 0 in Ω \ ω∗,
divu = 0 in Ω \ ω∗,

σ(u, p)n = 0 on ∂ω∗,
u = f on Γc,

σ(u, p)n = Φ on Γc.

(2.7)

Thanks to the identifiability result stated in section 2.3, a single pair of -compatible-
measurements (f, Φ) is enough to recover the inclusion(s) as well as the missing data.
Next, we shall set up a three-player Nash game following the same philosophy than in
section 2.2 dedicated for the sole completion.

For η ∈ H 1
2 (Γi)

d , τ ∈ H 3
2 (Γi)

d and ω ∈ Dad, let us define the following three cost
functionals :

J1(η, τ ;ω) =
1

2
||σ(uω1 (η), pω1 (η))n− Φ||2H 1

2 (Γc)d
+

1

2
||uω1 (η)− uω2 (τ)||2H 3

2 (Γi)d
, (2.8)

J2(η, τ ;ω) =
1

2
||uω2 (τ)− f ||2H 3

2 (Γc)d
+

1

2
||uω1 (η)− uω2 (τ)||2H 3

2 (Γi)d
, (2.9)

J3(η, τ ;ω) = ||σ(uω1 (η), pω1 (η)− σ(uω2 (τ), pω2 (τ))||2L2(Ω\ω)d + µ|∂ω|, (2.10)

where the parameter µ > 0 is a penalization of the perimeter |∂ω|, defined as the
Hausdorff measure H1(∂ω), (uω1 (η), pω1 (η)) and (uω2 (τ), p

ω
2 (τ)) are the solutions of the
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respective BVP (P1) and (P2) :

(P1)


∆uω1 −∇pω1 = 0 in Ω \ ω,

divuω1 = 0 in Ω \ ω,
σ(uω1 , p

ω
1 )n = 0 on ∂ω,
uω1 = f on Γc,

σ(uω1 , p
ω
1 )n = η on Γi,

(P2)


∆uω2 −∇pω2 = 0 in Ω \ ω,

divuω2 = 0 in Ω \ ω,
σ(uω2 , p

ω
2 )n = 0 on ∂ω,

σ(uω2 , p
ω
2 )n = Φ on Γc,
uω2 = τ on Γi.

In a few words, there are three players : Player (1) controls the strategy variable
η ∈ H 1

2 (Γi)
d and aims at minimizing the cost J1 and Player (2) controls the strategy

variable τ ∈ H
3
2 (Γi)

d and aims at minimizing the cost J2. These two players may be
interpreted exactly the same way than in the completion game stated section 2.2 :
they are given Dirichlet (resp. Neumann) data and try to minimize the gap with the
Neumann (resp. Dirichlet) remaining condition. The player (3) controls the strategy
variable ω ∈ Dad and aims at minimizing the Kohn-Vogelius type functional J3, to
which we added the regularizing term µ|∂ω| which prevents from obtaining too irregular
contours, as classical from Mumford-Shah functionals, see e.g. [13].

Notice that the state variables (uω1 (η), pω1 (η)) and (uω2 (τ), p
ω
2 (τ)) belong to the space

(H1(Ω\ω))d × L2(Ω\ω), which obviously depends on ω, a variable intended to be
a control. In order to circumvent this tricky dependence, we recourse to a level-set
formulation, before stating the actual three-player Nash game effectively implemented.

2.4.1 A level-set formulation

The level-set approach is a very convenient tool in shape identification, see [77] for
a general introduction, or [86] where the approach is applied to detect obstacles in a
Stokes flow. The boundary of the shape to be identified is postulated to be a zero level-
set of a smooth enough (say Lipschitz) function φ : Ω −→ R. In other words, when φ
varies in some -admissible- functional space, admissible open subsets ω ∈ Ω are those
defined by the following 

φ(x) < 0 in ω,
φ(x) > 0 in Ω \ ω,
φ(x) = 0 on ∂ω.

The open set Ω \ ω is then given in terms of the level-set function as follows :

Ω \ ω = {x ∈ Ω such that H(φ(x)) = 1}, (2.11)

where H(.) is the Heaviside function. The perimeter of ω can then be formally given by

|∂ω| =
∫
Ω
|∇H(φ)|dx =

∫
Ω
δ(φ)|∇φ|dx,

where δ is the Dirac distribution.
For regularity reasons, and for ensuring the well-posedness of the modified Stokes

system as well, it is usual to use smoothed versions of the Heaviside and Dirac distribu-
tions. Given two small enough parameters ε > 0 and β > 0, we used smoothed versions
denoted respectively by Hε,β(.) and δε,β(.), expressed as follows, for s ∈ R,

Hε,β(s) =


1 if s > ε,
1

2
(1 +

2

π
arctan(

s

ε
)) if |s| ≤ ε,

β if s < −ε,
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δε,β(s) =

{ 1

π
(

ε

s2 + ε2
) if |s| ≤ ε,

β if |s| > ε.

Let us define the -control free- Sobolev state spaces :

Given g ∈ H
1
2 (Γc)

d, ψ ∈ H
3
2 (Γi)

d, Vg = {v ∈ H1(Ω)d/divv = 0; v|Γc = g}

and Wψ = {v ∈ H1(Ω)d /divv = 0 v|Γi = ψ}.

Problems (P1) and (P2) are then rephrased in terms of the level-set, yielding the
modified weak form :

(P1ε,β)

 Find (uφ1 , p
φ
1) ∈ Vf × L2(Ω) such that∫

Ω
(σ(uφ1 , p

φ
1) : ∇v1)Hε,β(φ)dx =

∫
Γi
ηv1ds, ∀v1 ∈ H1

Γc
(Ω),

(P2ε,β)

 Find (uφ2 , p
φ
2) ∈ Wτ × L2(Ω) such that∫

Ω
(σ(uφ2 , p

φ
2) : ∇v2)Hε,β(φ)dx =

∫
Γc
Φv2ds, ∀v2 ∈ H1

Γi
(Ω).

The existence and uniqueness of solutions to the problems (P1ε,β) and (P2ε,β) follows
from the fact that Hε,β(φ) ≥ β > 0 is bounded, and thanks to the well-posedness of the
Stokes system with mixed boundary conditions (see Remark 2.2.1).

It is not the scope of the present paper to discuss the dependence of the modified
Stokes problems with respect to (ε, β), which is known to behave consistently [41, 94], so
we still refer to problems (P1ε,β) and (P2ε,β) as (P1) and (P2), and we omit to underline
the dependence of the state variables w.r.t. (ε, β) as well.

2.4.2 Level-set sensitivity and optimality condition

The player (3) in charge of the inverse inclusion problem has now control on the
level-set function φ instead of the open subset ω ∈ Dad. The new form of the third
player’s cost functional is now as follows :

J3(η, τ ;φ) =

∫
Ω
|σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)|2Hε,β(φ)dx+ µ

∫
Ω
δε,β(φ)|∇φ|dx

where (uφ1 , p
φ
1) and (uφ2 , p

φ
2) solve respectively problems (P1ε,β) and (P2ε,β). We choose

as convenient space for the level-set variables the Sobolev space S = H1(Ω) though
it is not optimal (in the sense that it may introduce too much regularity requirement,
hampering the capture of non H1 inclusions).

In order to perform the partial optimization of J3(η, τ ;φ) w.r.t. φ for (η, τ) given
by players (1) and (2), one needs to compute the derivative of J3 w.r.t. φ. We have the
following :

Proposition 2.4.1 Assume φ ∈ S satisfies ∆φ ∈ L2(Ω) and |∇φ|6≡0 with the boundary

condition
∂φ

∂n
= 0 over ∂Ω. Then J3(η, τ ;φ) is Fréchet-differentiable with respect to
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φ, and the partial derivative of J3(η, τ ;φ) with respect to φ, in any direction ψ ∈ S, is
given by

(
∂J3

∂φ
(η, τ ;φ), ψ) =

∫
Ω
δε,β(φ)

[
|σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)|2 − µdiv(

∇φ
|∇φ|

)

+σ(uφ1 , p
φ
1) : ∇λ1 + σ(uφ2 , p

φ
2) : ∇λ2

]
ψdx,

where (λ1, π1) ∈ H1

Γc
(Ω)×L2(Ω) and (λ2, π2) ∈ H1

Γi
(Ω)×L2(Ω) are respective solutions

of the adjoints problems,



−2
∫
Ω
(σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)) : (∇h1 +∇hT1 )Hε,β(φ)dx−

∫
Ω
π1divh1Hε,β(φ)dx

+

∫
Ω
((∇h1 +∇hT1 ) : ∇λ1)Hε,β(φ)dx = 0, ∀h1 ∈ H1

Γc
(Ω),

2

∫
Ω
(σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)) : (k1Id)Hε,β(φ)dx−

∫
Ω
k1divλ1Hε,β(φ)dx = 0,

∀k1 ∈ L2(Ω),
(2.12)

2

∫
Ω
(σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)) : (∇h2 +∇hT2 )Hε,β(φ)dx−

∫
Ω
π2divh2Hε,β(φ)dx

+

∫
Ω
((∇h2 +∇hT2 ) : ∇λ2)Hε,β(φ)dx = 0, ∀h2 ∈ H1

Γi
(Ω),

−2
∫
Ω
(σ(uφ2 , p

φ
2)dx− σ(u

φ
1 , p

φ
1)) : (k2Id)Hε,β(φ)dx−

∫
Ω
k2divλ2Hε,β(φ)dx = 0,

∀k2 ∈ L2(Ω),
(2.13)

and where (uφ1 , p
φ
1) and (uφ2 , p

φ
2) are the solutions to respectively (P1ε,β) and (P2ε,β).

Proof 2.4.1 To prove Proposition 2.4.1 above, let us first remark that we are in a clas-
sical elliptic case : the states (uφ1 , p

φ
1) and (uφ2 , p

φ
2) solve respectively problems (P1ε,β) and

(P2ε,β) which are elliptic, and with a smooth dependence of energy functionals on φ, na-
mely on the regularized parameter Hε,β(φ). It is then well known that the states (uφ1 , p

φ
1)

and (uφ2 , p
φ
2) are Frechet-differentiable with respect to φ, see [84] or [37] page 107, the

assumptions made therein are straightforward in our case. From other part, the assump-
tion |∇φ|6≡0 is fulfilled by the reinitialisation step (2.17) which forces |∇φ| to be close
to 1. The cost function J3(η, τ ;φ) is then partially Frechet-differentiable with respect to
φ, as it is partially with respect to a generic state (v1, q1) and (v2, q2) (dismissing the de-
pendence of these w.r.t. φ, the functional is quadratic w.r.t. the states (vi, qi), i = 1, 2).
The cited references state then that the reduced cost function (taking into account the
implicit dependence of the states w.r.t. the control φ) is Frechet-differentiable with res-
pect to φ, and the derivative is computable by means of an adjoint state method, as
stated in Proposition 2.4.1. The derivation of the adjoint state equations and of the
formula for the derivative is given in Appendix A.2.

Remark 2.4.1 The assumption that φ satisfies ∆φ ∈ L2(Ω) is necessary for the exis-
tence of the Neumann trace of φ. Indeed, from one part, stating regularity results for
the nonlinear implicit equation (2.14) fulfilled by φ below is not straightforward ; and
from other part, the discretized scheme (2.16) of the latter equation provides iterates
φ(n) which are in H2(Ω).
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The necessary optimality condition for the minimization problem minφ∈S J3(η, τ ;φ)
is then formulated as the following Euler-Lagrange equation :

δε,β(φ)

[
|σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)|2 − µdiv(

∇φ
|∇φ|

)

+σ(uφ1 , p
φ
1) : ∇λ1 + σ(uφ2 , p

φ
2) : ∇λ2

]
= 0, in Ω,

∂φ

∂n
= 0, on ∂Ω.

(2.14)

The strongly nonlinear equation above -with implicit terms- is solved iteratively as the
stationary state of the following evolution equation

∂φ

∂t
+ δε,β(φ)

[
|σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)|2 − µdiv(

∇φ
|∇φ|

)

+σ(uφ1 , p
φ
1) : ∇λ1 + σ(uφ2 , p

φ
2) : ∇λ2

]
= 0, in R+ ×Ω,

∂φ

∂n
= 0, on R+ × ∂Ω,

φ(0, x) = φ0(x), in Ω,

(2.15)

where φ0 ∈ S is a given initial condition.
The variational formulation associated to the problem (2.15) above reads∫
Ω

∂φ

∂t
ψdx = −

∫
Ω
δε,β(φ)|σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)|2ψdx+ µ

∫
Ω
δε,β(φ)div(

∇φ
|∇φ|

)ψdx

−
∫
Ω
δε,β(φ)

[
σ(uφ1 , p

φ
1) : ∇λ1 + σ(uφ2 , p

φ
2) : ∇λ2

]
ψdx, ∀ψ ∈ H1(Ω).

But, since one has

div(δε,β(φ)
∇φ
|∇φ|

)) = δ′ε,β(φ)∇φ
∇φ
|∇φ|

+ δε,β(φ)div(
∇φ
|∇φ|

),

we get,∫
Ω

∂φ

∂t
ψdx = −

∫
Ω
δε,β(φ)|σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)|2ψdx− µ

∫
Ω

δε,β(φ)

|∇φ|
∇φ∇ψdx

−
∫
Ω
δε,β(φ)

[
σ(uφ1 , p

φ
1) : ∇λ1 + σ(uφ2 , p

φ
2) : ∇λ2

]
ψdx

−µ
∫
Ω
δ′ε,β(φ)|∇φ|ψdx, ∀ψ ∈ H1(Ω).

The problem above is solved numerically by means of a semi-implicit Euler scheme

with
∂φ

∂t
approximated by

φn+1 − φn

δt
, where φn(.) = φ(tn, .) and tn = nδt, with δt > 0

a given time step.
We obtain the following iterative scheme :{

Given φn,Find φn+1 ∈ H1(Ω) such that :

a(φn+1, ψ) = l(ψ), ∀ψ ∈ H1(Ω),
(2.16)

where
a(φn+1, ψ) =

∫
Ω
φn+1ψdx+ µδt

∫
Ω

δε,β(φ
n)

|∇φn|
∇φn+1∇ψdx,

l(ψ) = −δt
∫
Ω
δε,β(φ

n)|σ(un2 , pn2 )− σ(un1 , pn1 )|2ψdx− µδt
∫
Ω
δ′ε,β(φ

n)|∇φn|ψdx

+

∫
Ω
φnψdx− δt

∫
Ω
δε,β(φ

n) [σ(un1 , p
n
1 ) : ∇λn1 + σ(un2 , p

n
2 ) : ∇λn2 ]ψdx,
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with (un1 , p
n
1 ) = (u1(η, φ

n), p1(η, φ
n)), (un2 , pn2 ) = (u2(τ, φ

n), p2(τ, φ
n)) are solutions to

(P1ε,β) and (P2ε,β) for a given φn, and λn{i=1,2} = λ{i=1,2}(φ
n) are the adjoint state

solutions of the problems (2.12) and (2.13).
In order to prevent the level set iterates from being too flat or too steep, we trigger

from time to time a regularization pass that reinitializes the level set to a signed distance
(see e.g. [4]). This step is mandatory in order to keep the iterated level sets smooth
enough, but is also necessary to have a non vanishing |∇φn| that ensures the ellipticity
of a(., .) in (2.16). The update is performed by solving the following equation :

∂ψ

∂t
+ sign(φn)(|∇ψ| − 1) = 0 in R+ ×Ω,

∂ψ

∂n
= 0 on R+ × ∂Ω,

ψ(0, x) = φn(x) in Ω.

(2.17)

In practice, equation (2.17) above is solved for a few time steps (typically 5 or 6) then
one reassigns the last computed ψ to φn(x).

The six variational problems (P1ε,β), (P2ε,β), (2.12), (2.13), (2.16) and (2.17) are
solved by means of ad hoc Finite Element methods (see Section 2.5 below).

2.4.3 The three-player Nash algorithm

We are now ready to state the three-player identification/completion Nash game.
As aforementioned in section 2.4, players (1) and (2) aim at solving the Cauchy pro-
blem, while player (3) is aimed at minimizing a Kohn-Vogelius type energy, intended
to capture the shape of the inclusion. The game is of Nash type, which means that it
is static with complete information [56] and hence its solution is a Nash equilibrium
(NE), see Definition 2.4.

Given a triplet (η, τ, φ) ∈ H 1
2 (Γi)

d ×H 3
2 (Γi)

d × S, let (uφ1(η), p
φ
1(η)) be the solution

to the approximate Stokes problem (P1ε,β) and (uφ2(τ), p
φ
2(τ)) the solution to the ap-

proximate Stokes problem (P2ε,β), then the three players and their respective costs are
defined as follows :

– Player (1) has control on the Neumann strategies η ∈ H 1
2 (Γi)

d, and its cost func-
tional is given by

J1(η, τ, φ) =
1

2
||σ(uφ1(η), p

φ
1(η))n− Φ||2H 1

2 (Γc)d
+

1

2
||uφ1(η)− u

φ
2(τ)||2H 3

2 (Γi)d
(2.18)

– Player (2) has control on the Dirichlet strategies τ ∈ H 3
2 (Γi)

d, and its cost func-
tional is given by

J2(η, τ, φ) =
1

2
||uφ2(τ)− f ||2H 3

2 (Γc)d
+

1

2
||uφ1(η)− u

φ
2(τ)||2H 3

2 (Γi)d
(2.19)

– Player (3) has control on the inclusion level-set strategies φ ∈ S, and its cost
functional is given by

J3(η, τ ;φ) =

∫
Ω
|σ(uφ2(τ), p

φ
2(τ))−σ(u

φ
1(η), p

φ
1(η))|2Hε,β(φ)dx+µ

∫
Ω
δε,β(φ)|∇φ|dx

(2.20)
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In Algorithm 2.4.1 below, we describe the main steps in computing the Nash
equilibrium. This algorithm is unusual in the sense that, first, it introduces a
completion-oriented Nash subgame, solved incompletely (Kmax is small, around ten
iterations), and second, it processes the third player’s minimization step by iterating
on the necessary optimality condition. Classical algorithms compute Nash equilibria
with Kmax = 1. It is easy to check (by writing down the stationarity equations) that
when the two algorithms converge, they lead to the same limit point, which is a Nash
equilibrium of the three-player’s game defined above.

As we shall see in section 2.5 below, Algorithm 2.4.1 outperforms the classical one.

Algorithm 2.4.1: Computation of the coupled inclusion-completion Nash equili-
brium
Given : convergence tolerances εN > 0, εS > 0, Kmax a computational budget
per Nash iteration, Nmax a maximum Nash iterations, σ a noise level and ρ(σ) a
-tuned- function which depends on the noise.
Set n = 0, choose an initial level-set φ(0) ∈ S.
• Step I : (a completion Nash subgame) Set k = 1.

Choose an initial guess S(k−1) = (η(k−1), τ (k−1)) ∈ H 1
2 (Γi)

d ×H 3
2 (Γi)

d.
• Step 1 : Compute η(k) solution of minηJ1(η, τ

(k−1), φ(n))
and set η(k) = αη(k−1) + (1− α)η(k) with 0 ≤ α < 1 .
• Step 2 : Compute τ (k) solution of minτJ2(η

(k−1), τ, φ(n))
and set τ (k) = ατ (k−1) + (1− α)τ (k) with 0 ≤ α < 1 .
• Step 3 : While ‖S(k) − S(k−1)‖ > εS and k < Kmax, set k = k + 1,

return back to step 1.
• Step II : Compute rk = ||u(k)2 − fσ||L2(Γc), where (u

(k)
2 , p

(k)
2 ) is the solution

of the problem (P2ε,β) with the level-set φ = φ(n) and with the Dirich-
let condition u(k)2 = τ (k) over Γi.
• Step III : While rk ≥ ρ(σ)ε and n < Nmax update the level-set : compute φ(n+1)

solution to the variational problem (2.16) and set n = n+ 1, go back
to step I.

2.5 Numerical experiments

In this section, we provide and discuss the numerical results of experiments led for
three test cases, named A, B and C. These 3 test-cases share the following common
settings :

The domain Ω =
]
−1

2
, 1
2

[
×
]
−1

2
, 1
2

[
The boundaries Γi = {12} ×

]
−1

2
, 1
2

[
; Γc = ∂Ω \ Γi

Normal stress Φ(x, y) = −2(y2 − 1/4; 0) prescribed over ∂Ω

Initial strategies for Step I, we always used S(0) = (η0), τ (0)) = (0, 0) and took
α = 0.1

Parameters for Step III : we took δt = 0.02 for solving equation (2.16).
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The test-cases differ in the shape and/or number of connexe components of the
inclusions.

Given a known shape and location of the inclusion ω∗ ∈ Dad, we solve the following
Stokes problem : 

∆u−∇p = 0 in Ω \ ω∗,
divu = 0 in Ω \ ω∗,

σ(u, p)n = 0 on ∂ω∗,
σ(u, p)n = Φ on ∂Ω,

where the (phantom) exact solution (u, p) is used to build the remaining Cauchy data
f = u|Γc , and the exact missing data u|Γi and σ(u, p)n|Γi . The two latter data together
with the known inclusion shape ω∗ are used to compute the following relative errors :

errD =
||τN − u|Γi ||L2(Γi)
||u|Γi ||L2(Γi)

, errN =
||ηN − σ(u, p)n|Γi ||L2(Γi)
||σ(u, p)n|Γi ||L2(Γi)

,

errO =
mes(ω∗ ∪ ωN)−mes(ω∗ ∩ ωN)

mes(ω∗)
,

(2.21)

where (ηN , τN , φN) is the approximate Nash equilibrium output from Algorithm 2.4.1,
and ωN = 1{φ

N
<0}. These metrics are used to assess the efficiency of our approach.

The stability w.r.t. noise was stressed by solving the joint inverse inclusion/completion
problem with noisy perturbations of the Dirichlet data fσ = f + σN with N being a
Gaussian white noise.

Two different initial level-sets were used : φ(0)
1 has as zero level-set the disk B(c0, r0)

where c0 = (0, 0) and r0 = 0.3, and φ(0)
2 is a periodic function with as zero level-set 30

small ellipsoids with uniformly distributed centers, see Figures 2.5(a) and 2.6(a).
The solvers for Stokes, equation (2.16) and adjoint systems, the sensitivity routines,

and the minimization algorithms as well, were implemented using the Finite Element
package FreeFem++ [61].

Test-case A

The exact inclusion is a disk ω∗ = B(c, r) centered at c and with a radius r where
c = (0, 0) and r = 0.1.

The FreeFem++ implementation of Algorithm 2.4.1 was ran for two different initial
contours, leading to very close results, both of them in good accordance with the exact
solutions (inclusion and missing data). It can be however observed from Figure 2.5(c)(e)
and Figure 2.6(c)(e) that the initial contour φ(0)

2 outperforms φ(0)
1 as the computed first

component of the fluid velocity and normal stress are more accurate with the initial
contour φ(0)

2 . Indeed, in all our subsequent numerical experiments, the initial contour
φ
(0)
2 outperformed φ

(0)
1 , so we shall later on present only those results obtained with

φ
(0)
2 .
For the case of noisy Dirichlet data fσ given over Γc, it can be seen from the profiles

presented in Figure 2.7 that the boundary data recovery is remarkably stable with
respect to the noise magnitude, and even more striking is the stability of the detected
inclusion.

The relative errors defined by formulas (2.21) are summarized in Table 2.1 for the
test-case A.
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Noise level σ = 0% σ = 1% σ = 3% σ = 5%
errD 0.010 0.015 0.039 0.063
errN 0.031 0.033 0.051 0.07
errO 0.032 0.043 0.066 0.117

Table 2.1 – Test-case A. L2 relative errors on missing data on Γi (on Dirichlet and Neumann
data), and the error between the reconstructed and the real shape of the inclusion for various
noise levels.

Test-case B

The exact inclusion ω∗ has a peanut-like shape, with a boundary parameterized as
follows :

∂ω =

{(
x0
y0

)
+ r(θ)

(
a sin θ
b cos θ

)
; θ ∈ [0, 2π)

}
,

where r(θ) =
√
sin2 θ + 0.25 cos2 θ, (x0, y0) = (0, 0) and (a, b) = (0.15, 0.18).

In this test-case, the shape of the inclusion is nonconvex. We observe from Figure
2.8(b) that while the computed zero level-set is in good accordance with the exact one,
it is however unable to accurately capture the nonconvex features of the real inclusion.
This is not very surprising in view of the different smoothed approximations used for
the inclusion Stokes problems as well as for the level-set equation. The data completion
results are however very satisfactory, as shown by the velocity and normal stress profiles
in Figures 2.8(c)-(e). There is also a remarkable stability with respect to noisy data of
both the inclusion detected and the recovered boundary data, see Figure 2.9.

Test-case C

The inclusion to be detected is the union of two separate disks ω∗1 = B(c1, r1)
centered at c1 = (0.2, 0.2) and with a radius r1 = 0.10 and ω∗2 = B(c2, r2) centered at
c2 = (−0.2,−0.2) and with a radius r2 = 0.12.

This third and last test-case was set up to assess the ability of our algorithm to
identify inclusions with several components. One observes from Figure 2.10(b) that the
locations and the shapes of the two components of the inclusion are well detected, as
well as the recovered data Figure 2.10(c)-(f). The recovery of missing boundary data is
stable with respect to noisy Dirichlet measurements while there is a barely slight shift
in the location of the detected approximation of ω∗1 for the noise levels 3% and 5%, as
shown Figure 2.11.

The relative errors presented in Table 2.2 corroborate the stability of the detected
contours and missing data with respect to noisy Dirichlet measurements.
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Noise level σ = 0% σ = 1% σ = 3% σ = 5%
errD 0.042 0.044 0.046 0.08
errN 0.095 0.1 0.13 0.16
errO 0.099 0.11 0.13 0.15

Table 2.2 – Test-case C. L2-errors on missing data over Γi (on Dirichlet and Neumann data),
and the error between the reconstructed and the real shape for various noise levels.

Algorithm 2.4.1 vs classical.
In a classical algorithm [75] dedicated to the computation of a Nash equilibrium,

there would be no inner do loop as performed during step I in Algorithm 2.4.1, or in
other words, Kmax = 1. We have compared these two approaches, for two noise free
test-cases. We used the same number of total calls (400) to the Stokes Finite Element
solvers. We see from Table 2.3 that, for both test-cases, Algorithm 2.4.1 outperforms the
classical one.Iterations in step I compute a two-player Nash equilibrium for a fixed level-
set.This step, which we call a preconditioning Nash subgame, is dedicated to enforce
the data completion part does indeed enforce the identifiability property as well, since
from the result established in Proposition 2.3, it is enough for a candidate velocity u(ω),
for some inclusion ω, to be a Cauchy solution for the pair of boundary measurements
(f, Φ), to ensure that ω = ω∗, the real inclusion.

Case A Classical algorithm Algorithm 2.4.1
errD 0.058 0.033
errN 0.106 0.032
errO 0.358 0.140

Case C Classical algorithm Algorithm 2.4.1
errD 0.067 0.058
errN 0.208 0.122
errO 0.566 0.167

Table 2.3 – Relative errors on the reconstructed missing data and inclusion shape for the
Stokes problem (with noise free measurements), compared for a classical Nash algorithm and
Algorithm 2.4.1 : (left) test-case A (right) test-case C.

Sensitivity to the mesh size, to closeness to the inaccessible boun-
dary and inverse crime.

The coupled completion/detection problem for the Cauchy-Stokes system involves
many numerical tricks of more or less severity. In the lack of theoretical convergence
results, which are not easy to establish in the present framework, we led three kinds of
numerical experiments.

The first one is related to the behaviour of the overall coupled algorithm with respect
to finite element discretization of the domain Ω. The second one is related to the study
of the efficiency of the algorithm in detecting obstacles located near the inaccessible
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boundary Γi. Figure-2.3 shows that the relative errors decrease w.r.t. the mesh size,
with different convergence rates ; it also shows that the errors increase dramatically
when the inclusion becomes too close to the inaccessible boundary Γi.

Figure 2.3 – Test case A. (Left) sensitivity of the reconstruction w.r.t. the mesh size
(on abscissae : the number of F.E. nodes on the boundary ∂Ω). (Right) sensitivity of the
reconstruction w.r.t. the distance to the inaccessible boundary Γi (on abscissae : the distance
of the center of the circular inclusion from Γi ).

Figure 2.4 – Test case C. (Left) Mesh used for solving the direct problem with the P1bubble-
P1 finite element, in order to construct the synthetic data. (Right) Mesh used for solving the
coupled inverse problem with P2-P1 finite element, using the P1 bubble-P1 synthetic data.

The third set of experiments was led to assess our algorithm and results against the
so-called inverse crime, that arises when the same model is used to synthesize Cauchy
data and to solve the corresponding inverse problem, resulting in possible artificial
outperformance. To prevent such a bias, we synthesized Cauchy data using different
meshes, and solving the direct problem with the well known P1 bubble - P1 finite
element, see one example figure 2.4. All our numerical experiments produced results,
in data completion as well as in obstacle detection, of the same good quality than the
results presented in figures 2.5–2.11, see figure 2.12.
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2.6 Conclusion

We addressed in the present paper the delicate problem of detecting unknown cavi-
ties immersed in a stationary viscous fluid, using partial boundary measurements. The
considered fluid obeys a Stokes regime, the cavities are inclusions and the boundary
measurements are a single compatible pair of Dirichlet and Neumann data, available
only on a partial accessible part of the whole boundary. This inverse inclusion Cauchy-
Stokes problem is ill-posed for both the cavities and missing data reconstructions, and
designing stable and efficient algorithms, which is the main goal of our work, is not
straightforward.

The ill-posedness is tackled by decentralization : we reformulate it as a three players
Nash game, following the ideas introduced earlier in [56] to solve the Cauchy-Laplace
(completion) problem. Thanks to a simple yet strong identifiability result for the
Cauchy-Stokes system, it is enough to set up two Stokes BVP, then use them as state
equations. The Nash game is then set between 3 players, the two first targeting the
data completion while the third one targets the inclusion detection. The latter problem
is formulated using a level-set approach, and we provided the third player with the
level-set function as strategy, while its cost functional is of Kohn-Vogelius type.

The class of algorithms we propose are summarized in Algorithm 2.4.1, the invol-
ved computational apparatus being rather classical : use of descent algorithms for the
different minimizations, use of adjoint state method to compute the sensitivities, and
use of Finite Element methods to solve the state and adjoint state equations, as well as
to update the level-sets. We used Freefem++ to implement these routines.

We led 2D numerical experiments for three different test-cases. For noise free, as
well as for noisy -Cauchy data- Dirichlet measurements, we obtained satisfactory re-
sults, exhibiting very stable behaviour with respect to the noise level (1%, 3%, 5%). The
obtained results favor our 3-player Nash game approach to solve parameter or shape
identification for Cauchy problems. Finally, our approach rises difficult theoretical ques-
tions that we did not address here, such as the existence, uniqueness and convergence
issues for the level-set solution to the implicit optimality condition (2.14) and, related
to the game-theoretic approach, the existence and convergence issues for the 3-player
Nash equilibrium.
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Figure 2.5 – Test case A. Reconstruction of the inclusion shape and missing boundary data
with noise free Dirichlet data over Γc. (a) initial contour is φ(0)1 (b) exact inclusion shape
-green line- and computed one - blue dashed- (c) exact -line- and computed -dashed line-
first component of the velocity over Γi (d) exact -line- and computed -dashed line- second
component of the velocity over Γi (e) exact -line- and computed -dashed line- first component
of the normal stress over Γi (f) exact -line- and computed -dashed line- second component of
the normal stress over Γi.
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Figure 2.6 – Test case A. Reconstruction of the inclusion shape and missing boundary data
with noise free Dirichlet data over Γc.(a) initial contour is φ(0)2 (b) exact inclusion shape -
green line- and computed one - blue dashed- (c) exact -line- and computed -dashed line-
first component of the velocity over Γi (d) exact -line- and computed -dashed line- second
component of the velocity over Γi (e) exact -line- and computed -dashed line- first component
of the normal stress over Γi (f) exact -line- and computed -dashed line- second component of
the normal stress over Γi.
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Figure 2.7 – Test case A. Reconstruction of the inclusion shape and missing boundary data
with noisy Dirichlet data over Γc with noise levels σ = {1%, 3%, 5%}.(a) initial contour is
φ
(0)
2 (b) exact inclusion shape -green line- and computed ones for different noise levels (c)

exact and computed first components of the velocity over Γi (d) exact and computed second
components of the velocity over Γi (e) exact and computed first components of the normal
stress over Γi (f) exact and computed second components of the normal stress over Γi.
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Figure 2.8 – Test case B. Reconstruction of the inclusion shape and missing boundary data
with noise free Dirichlet data over Γc. (a) initial contour is φ(0)2 (b) exact inclusion shape
-green line- and computed one - blue dashed- (c) exact -line- and computed -dashed line-
first component of the velocity over Γi (d) exact -line- and computed -dashed line- second
component of the velocity over Γi (e) exact -line- and computed -dashed line- first component
of the normal stress over Γi (f) exact -line- and computed -dashed line- second component of
the normal stress over Γi.
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Figure 2.9 – Test case B. Reconstruction of the inclusion shape and missing boundary data
with noisy Dirichlet data over Γc with levels σ = {1%, 3%, 5%}.(a) initial contour is φ(0)2 (b)
exact inclusion shape -green line- and computed ones for different noise levels (c) exact and
computed first components of the velocity over Γi (d) exact and computed second components
of the velocity over Γi (e) exact and computed first components of the normal stress over Γi
(f) exact and computed second components of the normal stress over Γi.
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Figure 2.10 – Test case C. Reconstruction of the inclusion shape and missing boundary data
with noise free Dirichlet data over Γc. (a) initial contour is φ(0)2 (b) exact inclusion shape
-green line- and computed one - blue dashed- (c) exact -line- and computed -dashed line-
first component of the velocity over Γi (d) exact -line- and computed -dashed line- second
component of the velocity over Γi (e) exact -line- and computed -dashed line- first component
of the normal stress over Γi (f) exact -line- and computed -dashed line- second component of
the normal stress over Γi.
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Figure 2.11 – Test case C. Reconstruction of the inclusion shape and missing boundary data
with noisy Dirichlet data over Γc with levels σ = {1%, 3%, 5%}.(a) initial contour is φ(0)2 (b)
exact inclusion shape -green line- and computed ones for different noise levels (c) exact and
computed first components of the velocity over Γi (d) exact and computed second components
of the velocity over Γi (e) exact and computed first components of the normal stress over Γi
(f) exact and computed second components of the normal stress over Γi.
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Figure 2.12 – Assessing Inverse-Crime-Free reconstruction. Test case C. Top : initial and opti-
mal contour. Middle : the two components of the velocity on Γi. Bottom : the two components
of the normal stress on Γi (errD = 0.0615048, errN = 0.124296, and errO = 0.113156).
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Appendix A

A.1 Proof of proposition 2.2.2.

The Lagrange function L is defined as follows :

L(η, τ, u1, p1, u2, p2, v1, q1, v2, q2, π) =
1

2
||u1 − τ ||2

H
3
2 (Γi)d

+
1

2
||u2 − f ||2

H
3
2 (Γc)d

+
1

2
||σ(u1, p1)n− Φ||2

H
1
2 (Γc)d

+

∫
Ω
σ(u1, p1) : ∇v1dx−

∫
Γi
ηv1ds

−
∫
Ω
q1divu1dx+

∫
Ω
σ(u2, p2) : ∇v2dx−

∫
Γc
Φv2ds−

∫
Ω
q2divu2dx

−
∫
Γi
σ(u2, p2)nv2ds−

∫
Γi
π(u2 − τ)ds

for every (η, τ) ∈ H
1
2 (Γi)

d × H
3
2 (Γi)

d, (u1, u2, v1, v2) ∈ H2(Ω)d × H1(Ω)d × H1

Γc
(Ω) ×

H1(Ω)d, π ∈ H 1
2 (Γi)

d and (p1, p2, q1, q2) ∈ H1(Ω)d × L2(Ω)3.
First, we compute the derivative of J1 with respect to η in some direction ψ ∈

H
1
2 (Γi)

d, we have then

∂J1
∂η

(η, τ).ψ =

∫
Γc
(σ(u1, p1)n− Φ)σ(u′1, p′1)nds+

∫
Γi
(u1 − τ)u′1ds,

where u′1 =
∂u1
∂η

.ψ and p′1 =
∂p1
∂η

.ψ. We now derive the Lagrangian with respect to u1
and w.r.t. p1, we obtain

∂L
∂u1

.γ =

∫
Γc
(σ(u1, p1)n− Φ)(∇γ +∇γT )nds+

∫
Γi
(u1 − τ)γds

+

∫
Ω
(∇γ +∇γT ) : ∇v1dx−

∫
Ω
q1divγdx = 0, ∀γ ∈ H1

Γc
(Ω),

(2.22)

∂L
∂p1

.δ = −
∫
Γc
(σ(u1, p1)n− Φ)δnds−

∫
Ω
δdivv1dx = 0, ∀δ ∈ H1(Ω)d. (2.23)

By replacing(γ, δ) with (u′1, p
′
1) in (2.22) and (2.23), then by summing them, we get∫

Γc
(σ(u1, p1)n− Φ)σ(u′1, p′1)nds+

∫
Γi
(u1 − τ)u′1ds

+

∫
Ω
σ(u′1, p

′
1) : ∇v1dx−

∫
Ω
q1divu

′
1dx = 0,

which is equivalent to,∫
Ω
σ(u′1, p

′
1) : ∇v1dx = −

∫
Γc
(σ(u1, p1)n− Φ)σ(u′1, p′1)nds

−
∫
Γi
(u1 − τ)u′1ds+

∫
Ω
q1divu

′
1dx,

(2.24)

with (u′1, p
′
1) solves the following problem

∆u′1 −∇p′1 = 0 in Ω,
divu′1 = 0 in Ω,

u′1 = 0 on Γc,
σ(u′1, p

′
1)n = ψ on Γi.
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The weak formulation associated to this problem is∫
Ω
σ(u′1, p

′
1) : ∇ϕdx =

∫
Γi
ψϕds+

∫
Γc
σ(u′1, p

′
1)nϕds, ∀ϕ ∈ H1(Ω)d,

in particular for ϕ = v1, we have∫
Ω
σ(u′1, p

′
1) : ∇v1dx =

∫
Γi
ψv1ds, because v1 ∈ H1

Γc
(Ω). (2.25)

Now since divu′1 = 0 in Ω, using (2.24) and (2.25), we find

−
∫
Γc
(σ(u1, p1)n− Φ)σ(u′1, p′1)nds−

∫
Γi
(u1 − τ)u′1ds =

∫
Γi
ψv1ds,

then, we deduce that

∂J1
∂η

(η, τ).ψ = −
∫
Γi
ψv1ds,

with (v1, q1) solves the adjoint problem

∫
Γc
(σ(u1, p1)n− Φ)(∇γ +∇γT )nds+

∫
Γi
(u1 − τ)γds

+

∫
Ω
(∇γ +∇γT ) : ∇v1dx−

∫
Ω
q1divγdx = 0, ∀γ ∈ H1

Γc
(Ω),

−
∫
Γc
(σ(u1, p1)n− Φ)δnds−

∫
Ω
δdivv1dx = 0, ∀δ ∈ H1(Ω)d.

Now we compute the other derivative, the derivative of the cost function J2 with
respect to the variable τ . We have,

∂J2
∂τ

(η, τ).µ =

∫
Γc
(u2 − f)u′2ds−

∫
Γi
(u1 − τ)µds, (2.26)

where u′2 =
∂u2
∂τ

and p′2 =
∂p2
∂τ

. Let

W1 = {v ∈ H1(Ω)d/v|Γi
= 0}.

We have then,

∂L
∂u2

.h =

∫
Γc
(u2 − f)hds+

∫
Ω
(∇h+∇hT ) : ∇v2dx

+

∫
Γi
((∇h+∇hT )n)v2ds−

∫
Ω
q2divhdx = 0, ∀h ∈ W1,

(2.27)

∂L
∂p2

.k = −
∫
Ω
kdivv2dx−

∫
Γi
knv2ds = 0, ∀k ∈ L2(Ω). (2.28)

Using the Green’s formula, and summing (2.27) and (2.28), we obtain∫
Γc
(u2 − f)hds−

∫
Ω
div(∇v2 +∇vT2 )hdx+

∫
Γc
((∇v2 +∇vT2 )n)hds

+

∫
Γi
σ(h, k)nv2ds+

∫
Ω
∇q2hdx−

∫
Γc
(q2n)hds−

∫
Ω
kdivv2dx = 0.
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Therefore, we get for all (h, k) ∈ W1 × L2(Ω),

−
∫
Ω
div(∇v2 +∇vT2 )hdx+

∫
Ω
∇q2hdx+

∫
Γc
((σ(v2, q2)n− (f − u2))hds

+

∫
Γi
σ(h, k)nv2ds−

∫
Ω
kdivv2dx = 0.

Finally, from this equality, we deduce the following problem
∆v2 −∇q2 = 0 in Ω,

divv2 = 0 in Ω,
v2 = 0 on Γi,

σ(v2, q2)n = f − u2 on Γc.

The weak formulation associated to this problem is,

−
∫
Ω
σ(v2, q2) : ∇ϕdx =

∫
Γc
(f − u2)ϕds+

∫
Γi
σ(v2, q2)nϕds, ∀ϕ ∈ H1(Ω).

Taking ϕ = u′2, we obtain,∫
Ω
σ(v2, q2) : ∇u′2dx =

∫
Γc
(f − u2)u′2ds+

∫
Γi
(σ(v2, q2)n)u

′
2ds, (2.29)

with the solution (u′2, q
′
2) verify

∆u′2 −∇p′2 = 0 in Ω,
divu′2 = 0 in Ω,

u′2 = µ on Γi,
σ(u′2, p

′
2)n = 0 on Γc.

The weak formulation associated of this problem is∫
Ω
σ(u′2, p

′
2) : ∇ϑdx =

∫
Γi
(σ(u′2, p

′
2)n)ϑds, ∀ϑ ∈ H1(Ω)d,

if we replace ϑ by v2, we obtain∫
Ω
σ(u′2, p

′
2) : ∇v2dx =

∫
Γi
(σ(u′2, p

′
2)n)v2ds. (2.30)

From (2.29) and (2.30), and the boundary condition v2
|Γi

= 0, we have

∫
Γc
(u2 − f)u′2ds =

∫
Γi
(σ(v2, q2)n)µds.

Thus,

∂J2
∂τ

(η, τ).µ =

∫
Γi
(σ(v2, q2)n)µds−

∫
Γi
(u1 − τ)µds, ∀µ ∈ H

1
2 (Γi)

d.
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A.2 Proposition 2.4.1 : Derivation of the sensitivity formula.

For fixed (η, τ) ∈ H 1
2 (Γi)

d ×H 3
2 (Γi)

d, let us define the Lagrangian L′ by :

L′(φ, λ1, π1, λ2, π2, u1, p1, u2, p2) =
∫
Ω
|σ(u2, p2)− σ(u1, p1)|2Hε,β(φ)dx

+µ

∫
Ω
δε,β(φ)|∇φ|dx+

∫
Ω
(σ(u1, p1) : ∇λ1)Hε,β(φ)dx−

∫
Γi
ηλ1ds

−
∫
Ω
π1divu1Hε,β(φ)dx+

∫
Ω
(σ(u2, p2) : ∇λ2)Hε,β(φ)dx−

∫
Γc
Φλ2ds

−
∫
Ω
π2divu2Hε,β(φ)dx,

where the control φ ∈ S, the state variables (u1, u2, p1, p2) ∈ Vf ×Wτ ×L2(Ω)×L2(Ω),
the adjoint variables (λ1, λ2) ∈ H1

Γc
(Ω)×H1

Γi
(Ω) and (π1, π2) ∈ L2(Ω)× L2(Ω).

The differentiation of the functional J3(η, τ ;φ) with respect to φ in some direction
ψ ∈ H1(Ω) yields

∂J3

∂φ
(η, τ ;φ).ψ =

∫
Ω
|σ(u2, p2)− σ(u1, p1)|2δε,β(φ)ψdx

+2

∫
Ω
(σ(u2, p2)− σ(u1, p1)) : (σ(u′2, p′2)− σ(u′1, p′1))Hε,β(φ)dx

+µ

∫
Ω
δ′ε,β(φ)|∇φ|ψdx+ µ

∫
Ω
δε,β(φ)

∇φ∇ψ
|∇φ|

dx, ∀ψ ∈ H1(Ω)d,

(2.31)

where we have used the notations

(u′1, p
′
1) = (

∂u1
∂φ

ψ,
∂p1
∂φ

ψ) and (u′2, p
′
2) = (

∂u2
∂φ

ψ,
∂p2
∂φ

ψ).

We know that (u1, p1) solves the variational equation∫
Ω
(σ(u1, p1) : ∇v1)Hε,β(φ)dx =

∫
Γi
ηv1ds, ∀v1 ∈ H1

Γc
(Ω).

Then, (u′1, p′1) fulfills the following weak formulation∫
Ω
(σ(u′1, p

′
1) : ∇v1)Hε,β(φ)dx+

∫
Ω
(σ(u1, p1) : ∇v1)δε,β(φ)ψdx = 0, ∀v1 ∈ H1

Γc
(Ω).

Now, we derive the Lagrangian L′ with respect to u1 and with respect to p1, we get

∂L′

∂u1
h1 = −2

∫
Ω
(∇h1 +∇hT1 ) : (σ(u2, p2)− σ(u1, p1))Hε,β(φ)dx

+

∫
Ω
(∇h1 +∇hT1 ) : ∇λ1)Hε,β(φ)dx−

∫
Ω
π1divh1dx = 0, ∀h1 ∈ H1

Γc
(Ω),

∂L′

∂p1
k1 = 2

∫
Ω
(k1Id) : (σ(u2, p2)− σ(u1, p1))Hε,β(φ)dx−

∫
Ω
k1divλ1Hε,β(φ)dx

= 0, ∀k1 ∈ L2(Ω).
(2.32)

If the pair (h1, k1) is replaced by (u′1, p
′
1) in (2.32) and because of divu1 = 0 implies

divu′1 = 0, using the weak formulation for the couple (u′1, p
′
1), we get

−2
∫
Ω
(σ(u2, p2)− σ(u1, p1)) : σ(u′1, p′1)Hε,β(φ)dx =

∫
Ω
(σ(u1, p1) : ∇λ1)δε,β(φ)ψdx,

(2.33)
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where (λ1, π1) solves the adjoint state problem

−2
∫
Ω
(σ(u2, p2)− σ(u1, p1)) : (∇h1 +∇hT1 )Hε,β(φ)dx−

∫
Ω
π1divh1Hε,β(φ)dx

+

∫
Ω
((∇h1 +∇hT1 ) : ∇λ1)Hε,β(φ)dx = 0, ∀h1 ∈ H1

Γc
(Ω),

2

∫
Ω
(σ(u2, p2)− σ(u1, p1)) : (k1Id)Hε,β(φ)dx−

∫
Ω
k1divλ1Hε,β(φ)dx = 0,

∀k1 ∈ L2(Ω).

In the same way, we find that

2

∫
Ω
(σ(u2, p2)− σ(u1, p1)) : σ(u′2, p′2)Hε,β(φ)dx =

∫
Ω
(σ(u2, p2) : ∇λ2)δε,β(φ)ψdx,

(2.34)
where (λ2, π2) solves the adjoint problem

2

∫
Ω
(σ(u2, p2)− σ(u1, p1)) : (∇h2 +∇hT2 )Hε,β(φ)dx−

∫
Ω
π2divh2Hε,β(φ)dx

+

∫
Ω
((∇h2 +∇hT2 ) : ∇λ2)Hε,β(φ)dx = 0, ∀h2 ∈ H1

Γi
(Ω),

−2
∫
Ω
(σ(u2, p2)− σ(u1, p1)) : (k2Id)Hε,β(φ)dx−

∫
Ω
k2divλ2Hε,β(φ)dx = 0,

∀k2 ∈ L2(Ω).

Using (2.33) and (2.34), we obtain

∂J3

∂φ
(η, τ ;φ).ψ =

∫
Ω
|σ(u2, p2)− σ(u1, p1)|2δε,β(φ)ψdx+ µ

∫
Ω
δ′ε,β(φ)|∇φ|ψdx

+µ

∫
Ω
δε,β(φ)

∇φ∇ψ
|∇φ|

dx+

∫
Ω
(σ(u1, p1) : ∇λ1)δε,β(φ)ψdx

+

∫
Ω
(σ(u2, p2) : ∇λ2)δε,β(φ)ψdx.

On the one hand, we have∫
Ω
div(δε,β(φ)

∇φ
|∇φ|

)ψdx = −
∫
Ω
δε,β(φ)

∇φ
|∇φ|

∇ψdx+
∫
∂Ω

δε,β(φ)

|∇φ|
∂φ

∂n
ψds,

and on the other hand,∫
Ω
div(δε,β(φ)

∇φ
|∇φ|

)ψdx =

∫
Ω
δ′ε,β(φ)|∇φ|ψdx+

∫
Ω
δε,β(φ)div(

∇φ
|∇φ|

)ψdx.

Then, if φ satisfies the boundary condition

δε,β(φ)

|∇φ|
∂φ

∂n
= 0, on ∂Ω,

one can conclude that
∂J3

∂φ
(η, τ ;φ).ψ =

∫
Ω
|σ(u2, p2)− σ(u1, p1)|2δε,β(φ)ψdx

+

∫
Ω
[σ(u1, p1) : ∇λ1) + (σ(u2, p2) : ∇λ2] δε,β(φ)ψdx

−µ
∫
Ω
δε,β(φ)div(

∇φ
|∇φ|

)ψdx.
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CHAPTER 3
A Three-player Nash game for point-wise
source identification in Cauchy-Stokes pro-
blems

“ As far as the laws of
mathematics refer to reality,
they are not certain, and as far
as they are certain, they do not
refer to reality. "

Albert Einstein

Abstract.We consider linear steady Stokes flow under the action of a finite number
of particles located inside the flow domain. The particles exert point-wise forces on
the fluid, and are unknown in number, location and magnitude. We are interested
in the determination of these point-wise forces, using only a single pair of partially
available Cauchy boundary measurements. The inverse problem then couples two harsh
problems : identification of point-wise sources and recovery of missing boundary data.
We reformulate it as a three-player Nash game. The first two players aim at recovering
the Dirichlet and Neumann missing data, while the third one aims at the point-forces
reconstruction of the number, location and magnitude of the point-forces. To illustrate
the efficiency and robustness of the proposed algorithm, we finally present several
numerical experiments for different geometries and source distribution, including the
case of noisy measurements.
keyword : Data completion, Point-force detection, Topological sensitivity, Nash game.

The results presented in this chapter lead to the paper :
A. Habbal, M. Kallel, and M. Ouni. A Three-player Nash game for point-wise source
identification in Cauchy-Stokes problems. Submitted.

59



Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 An identifiability result for the inverse point-forces

Cauchy-Stokes problem . . . . . . . . . . . . . . . . . . . . . . 63
3.3 A game formulation of the coupled data completion and

point-forces identification problems . . . . . . . . . . . . . . . 65
3.3.1 Relaxation step . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.2 Localization of the source position. . . . . . . . . . . . . . . . 68

Topological sensitivity method . . . . . . . . . . . . . . . . . 68
3.3.3 Identification of the source intensity. . . . . . . . . . . . . . . 73
3.3.4 The three-player Nash algorithm . . . . . . . . . . . . . . . . 74

3.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 77
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

60



3.1 Introduction

Consider a bounded open domain Ω ⊂ Rd (d=2, 3) occupied by an incompressible
viscous fluid, with a smooth enough boundary ∂Ω.We assume that the fluid flow is
under the action of a finite number of point-wise forces F located inside Ω.
The source term F is assumed to be a linear combination of Dirac distributions accoun-
ting for the collection of the point-wise forces :

F =
m∑
k=1

λkδPk , (3.1)

where m is the total number of point-wise forces, δPk denotes the classical Dirac dis-
tribution with origin the point Pk, and λk ∈ Rd is a constant vector. The parameters
Pk and λk stand respectively for the position and the magnitude of the kth point-wise
force.

In this work, we assume that the vectors λk are nonzero and that the positions Pk
are well separated and satisfy the following :

Pk 6= Pk′ , ∀k 6= k′ and λk 6= 0 ∀k, k′ ∈ {1, ...,m},
dist(Pk, ∂Ω) ≥ d0 > 0, ∀k ∈ {1, ...,m}. (3.2)

The Cauchy-Stokes inverse problem consists then in a coupled inverse problem :
identification of point-wise sources, and recovery of missing boundary data.

The first inverse problem is a classical point-wise source reconstruction. Namely,
from given velocity G and fluid stress forces Φ prescribed on Γc, where Γc is a part of
the boundary ∂Ω, one has to identify the unknown source-term F ∗, that is, to find the
number, the location and the magnitude of these point-wise forces such that the fluid
velocity u and the pressure p are solution of the following Stokes problem :

(CS)


−div(σ(u, p)) = F ∗ in Ω,

divu = 0 in Ω,
u = G on Γc,

σ(u, p)n = Φ on Γc,

where n is the unit outward normal vector on the boundary, and σ(u, p) the fluid stress
tensor defined as follows :

σ(u, p) = −pId + 2νD(u)

with D(u) = 1
2
(∇u+∇uT ) being the linear strain tensor, Id denotes the d× d identity

matrix and ν > 0 is a viscosity coefficient that remains constant for all values of applied
shear stress. For simplicity and without loss of generality, from now on, the viscosity to
be equal unity.

Additionally to the inverse problem of detecting the unknown point-wise sources,
one has to complete the boundary data, that is to recover the missing traces of the
velocity u and of the normal stress σ(u, p).n over Γi, the inaccessible part of the
boundary. This inverse problem is of Cauchy type, a family of problems known to be
severely ill-posed in the sense of Hadamard [59], even regardless of the point-wise force
identification, because the existence of solution is not guaranteed for arbitrary Cauchy
data and depends on their compatibility, and even if a solution exists, it is unstable
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with respect to small perturbations of the Cauchy data.

For the Cauchy problem, there exists a prolific dedicated literature. An excerpt of
popular approaches are the least-square penalty techniques, as used in [48] and in the
earlier paper [50], Tikhonov regularization methods [38], quasi reversibility methods
[28], alternating iterative methods [72, 63] and control type methods [10, 2]. Recently,
an approach based on game theory, using decentralized strategies, was proposed in
[56]. The same approach has been investigated in [36] for the solution of coupled
conductivity identification and data completion in cardiac electrophysiology, and in
[57] to solve the problem of detecting unknown cavities immersed in a stationary
viscous fluid using partial boundary measurements.

The point-wise force identification for the Stokes system was, in contrast, paid
much less attention. The authors in [7] introduced an approach based on considering a
reciprocity gap functional for Stokeslets located outside Ω. In [49], the authors proposed
to detect the point-force locations by minimizing tracking (a difference to a distributed
state known all over Ω) and energy functionals. Their algorithm is based on a relaxation
technique and on topological sensitivity analysis. We shall follow the same lines for
the source identification algorithmic part of our coupled inverse problem. To the best
of our knowledge, there are no papers which address algorithmic aspects in solving the
present coupled point-wise source identification and boundary data recovery problems
for the steady Stokes flows. The paper [78] addresses the coupled inverse problem
of identifying wells and recovering boundary data, but with the help of a number of
interior measurements. We can also mention an ancient work made by El Badia and
Ha-Duong [44] for an inverse source problem for elliptic equations. Its application
aims to identify electrostatic dipoles in the human head where the boundary data are
generated via electrodes placed on the head’s part. The authors give a uniqueness result
and an algebraic method for computing the number of dipoles and their characteristics.

The paper is organized as follows. In section 2, we introduce the identifiability
problem for the Cauchy-Stokes case, and we provide an identifiability result. Then,
using a relaxed formulation in section 3, we formulate a Nash game approach to tackle
the coupled problem of detecting the unknown point-forces and recovering the missing
boundary data. A topological sensitivity analysis method is used in order to determine
the optimal location of the point-sources. We present what we think is a fairly new
algorithm. Optimization (sub)tasks are performed by means of descend methods, so ad
hoc adjoint state methods are provided to compute the gradients.

Finally, Section 4 illustrates the efficiency and robustness of the proposed overall
method, where different numerical experiments are presented and discussed. We end
paper by a short concluding section.

Some notation : Let Ω be a bounded domain in Rd, with Lipschitz boundary ∂Ω.
Let Γc be an open part of ∂Ω and we put Γi = ∂Ω \ Γc. For any subset Γ = Γc or Γi, the
space of function in H1(Ω) vanishing on Γ is denoted by H1

Γ(Ω). By H
1
2 (Γ), we denote

the space of traces of functions of H1(Ω) over Γ. Furthermore, we will use the special
space H

1
2
00(Γ), which consists of functions from H

1
2 (Γ) vanishing on ∂Ω \ Γ. This is a

subspace of H
1
2 (Γ) and its dual space is then denoted by (H

1
2
00(Γ))

′.

62



3.2 An identifiability result for the inverse point-
forces Cauchy-Stokes problem

The source identifiability problem amounts to ask whether a unique pair of over
specified boundary data, for instance the Cauchy data (G,Φ), could reconstruct a unique
source, and if not, how much of such pairs is necessary to a unique reconstruction.

Our identifiability result is given by the following theorem :

Theorem 3.2.1 Let be Ω ⊂ Rd an open bounded Lipschitz domain and Γc a non-empty
open subset of the boundary ∂Ω. Consider two point-wise source terms F1 and F2 of the
form (3.1), whose magnitudes and locations satisfy the requirements stated in (3.2).

For i = 1, 2, let be (ui, pi) the solution of the following :
−div(σ(ui, pi)) = Fi in Ω,

divui = 0 in Ω,
ui = G on Γc,

σ(ui, pi)n = Φ on Γc.

(3.3)

where the Cauchy data (G,Φ) ∈ H 1
2 (Γc)

d × (H
1
2
00(Γc)

d)′ are assumed to be compatible for
the two Cauchy-Stokes problems. Then F1 = F2, that is,

m1 = m2 = m, {(λk,1, Pk,1), 1 ≤ k ≤ m} = {(λk′,2, Pk′,2), 1 ≤ k′ ≤ m} .

Proof : An identifiability result is proved for the Dirac-Stokes problem in [7] using
the reciprocity gap. In our general framework, proofs of identifiability usually follow
the same classical steps by properly using the unique continuation property, notably
for second order elliptic PDES. We follow the same lines, with slight adaption to our
Cauchy-Stokes problem.

Let (ui, pi), i=1,2 be solutions to the system (3.3), and we define (v, q) = (u1 −
u2, p1 − p2) and F = F1 − F2, where

F =

m1∑
k=1

λk,1δPk,1 −
m2∑
k′=1

λk′,2δPk′,2 , ∀k, k′ = 1, ...,mi and i = 1, 2.

It is straightforward to see that (v, q) is a solution of

(P)


−div(σ(v, q)) = F in Ω,

divv = 0 in Ω,
v = 0 on Γc,

σ(v, q)n = 0 on Γc.

Consider (Bk,i)k=1,...,mi for i = 1, 2, a family of open balls such that

0 < ε� 1, Bk,i = B(Pk,i, ε) ⊂ Ω, and Bk,i ∩ Bk′,i = ∅, if k 6= k′. (3.4)

Thus F vanishes as restricted to ΩH = Ω \ ((∪m1
k=1Bk,1) ∪ (∪m2

k′=1Bk′,2)).
From the unique continuation theorem for the steady Stokes equation established

in [47], we obtain v = 0 and q = 0 in ΩH . Let us suppose that m1 > m2, and as the
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positions Pk are well separated and satisfy (3.2), then there exists a source Pm0,1 6= Pk′,2,
k′ = 1, ...,m2, and we define Ω0 = Ω \ ((∪k 6=m0Bk,1) ∪ (∪m2

k′=1Bk′,2)) with k = 1, ...,m1.
We denote O = Bm0,1,⊂ Ω. Thus, the solution (v, q) of the problem (P), which is null
in Ω0 \ O, satisfies the following system in O ;

−div(σ(v, q)) = λm0,1δPm0,1
in O,

divv = 0 in O,
v = 0 on ∂O.

(3.5)

Let us consider now the solution (vs, qs) that satisfies :{
−div(σ(vs, qs)) = λm0,1δPm0,1

in Rd,
divvs = 0 in Rd,

and (vr, qr) which solves
−div(σ(vr, qr)) = 0 in O,

divvr = 0 in O,
vr = −vs on ∂O.

Thus, the solution (vs, qs) is given by

(vs, qs) = (U ∗ (λm0,1δPm0,1
), P ∗ (λm0,1δPm0,1

)) = (U(· −Pm0,1).λm0,1, P (· −Pm0,1).λm0,1),

where the pair (U, P ) is the fundamental solution of the Stokes equation. It is given
(see e.g. [7]), for d = 2, by∥∥∥∥∥∥∥∥

Uij(x) =
1

4πν

(
δijlog(

1

|x|
) +

xixj
|x|2

)
, i, j = 1, 2

Pi(x) =
1

2π

xi
|x|2

, i = 1, 2

and, for d = 3, ∥∥∥∥∥∥∥∥
Uij(x) =

1

8πν

(
δij(

1

|x|
) +

xixj
|x|3

)
, i, j = 1, 2, 3

Pi(x) =
1

4π

xi
|x|3

, i = 1, 2, 3.

Then, we can deduce that the solution (v, q) of the problem (P), and which satisfies
(3.5), can be written (v, q) = (vr + vs, qr + qs) in O. Besides, we have (vs, qs) is an
analytic solution in O \ Pm0,1, implies that vs is analytic on the boundary of O, then
vr is an analytic function in O \ Pm0,1. Therefore, the fluid velocity v, which is null in
Ω0 \ O, is an analytic function in O \ Pm0,1. This would imply that λm0,1 = 0, which
by assumption is impossible.

We proceed analogously, for the case m2 > m1. Thus, m = m1 = m2.

Now, let us suppose

{P1,1, ..., Pm,1} 6= {P1,2, ..., Pm,2},
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and we assume that O is a subset of Ω such that {∪mk=1(Pk,1 ∪ Pk,2)} ∈ O. In the same
way, we deduce that the solution v is an analytic function in O \ {∪mk=1(Pk,1 ∪ Pk,2)},
which is null in Ω \ O, and by application of the unique continuation property we
conclude that v equal to zero in O, that is,

m∑
k=1

(λk,1δPk,1 − λk,2δPk,2) = 0 in O,

such that λk,i 6= 0 for k = 1, ...,m1 and i=1,2. Therefore, there exists a unique permu-
tation π of the entries such that,

Pk,1 = Pπ(k),2, ∀k = {1, ...,m}.

Finally, we conclude that F =
∑m

k=1(λk,1 − λπ(k),2)δPk,2 . Using the same arguments, we
obtain λk,1 = λπ(k),2, with i=1,2 and k = 1, ...,m.

�

3.3 A game formulation of the coupled data comple-
tion and point-forces identification problems

The present section aims to introduce a new algorithm based on the game-theoretic
approach to solving our coupled inverse problem of data completion and source identifi-
cation. As the source term F belongs to Hs(Ω)d with s < −1 for d = 2 or s < −3/2 for
d = 3, one thus thinks of describing the two-dimensional case, although the presented
method here can properly be applied to the 3-D case. A three-dimensional experiment
is provided to illustrate the algorithm’s efficiency and stability in section 4.

With the previous notations, let be G ∈ H 1
2 (Γc)

2 and Φ ∈ (H
1
2
00(Γc)

2)′ given Cauchy
data. We recall that the inverse source-term problem amounts to find a collection of
point-wise sources F ∗ ∈ Hs(Ω)2 for s < −1 such that the fluid velocity u and the
pressure p are solution to the following Cauchy-Stokes problem :

(CS)


−div(σ(u, p)) = F ∗ in Ω,

divu = 0 in Ω,
u = G on Γc,

σ(u, p)n = Φ on Γc.

For any given η ∈ (H
1
2
00(Γi)

2)′, τ ∈ H
1
2 (Γi)

2 and F ∈ Hs(Ω)2 for s < −1, we
define the states (u1, p1) = (u1(η, F ), p1(η, F )) ∈ L2(Ω)2 × L2(Ω) and (u2, p2) =
(u2(τ, F ), p2(τ, F )) ∈ L2(Ω)2 × L2(Ω) as the unique solution of the following Stokes
mixed boundary value problem (P1) and (P2),

(P1)


−div(σ(u1, p1)) = F in Ω,

divu1 = 0 in Ω,
u1 = G on Γc,

σ(u1, p1)n = η on Γi,

(P2)


−div(σ(u2, p2)) = F in Ω,

divu2 = 0 in Ω,
u2 = τ on Γi,

σ(u2, p2)n = Φ on Γc.

The proof of the existence and uniqueness of the solutions to (P1) and (P2), can be
easily adapted from the proof given in [49] for the Dirichlet type boundary condition.
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Since the source F given by (3.1) belongs to Hilbert space Hs(Ω)2 with s < −1, a
classical formulation of the problems (P1) and (P2), well adapted to standard finite
elements analysis is not possible. Nevertheless, to overcome this difficulty, we recourse
to a relaxation technique, which consists in approximating the point-force support Pk
by a small region, we could also use a subtraction method [7].

3.3.1 Relaxation step

| | | |

Γc Γc

Γi Γi

•

�� �
�

� �

�
◦◦ ◦◦

◦ ◦
◦

ε

SPk,ε

Figure 3.1 – Relaxation step

We consider the classical approximation of a Dirac function at a points P =
{P1, ..., Pm} by the characteristic function of a small ball centred at P divided by its
volume. Thus, instead of the source term F given by (3.1), we consider the following :

Fε =
m∑
k=1

λk
|SPk,ε|

χSPk,ε

where χSPk,ε denotes the characteristic function of the ball SPk,ε = Pk+ εωk, with ε > 0

is small enough and ωk is bounded and smooth domain containing the origin. As the
positions Pk are well separated and satisfy (3.2), we can suppose then that the region
SPk,ε also do not intersect,

SPk,ε ∩ SPk′ ,ε = 0 if k 6= k′. (3.6)

The set of admissible source term Dad is defined by :

Dad =

{
f ∈ L2(Ω); f =

p∑
k=1

βkχSzk,ε , such that Szk,ε ⊂⊂ Ω

}
.

Problems (P1) and (P2) are then rephrased in terms of this more regular source term.
Let (u1,ε, p1,ε) ∈ H1(Ω)2 × L2(Ω) and (u2,ε, p2,ε) ∈ H1(Ω)2 × L2(Ω) be the unique
solutions of the respective relaxed BVPs (P1,ε) and (P2,ε),

(P1,ε)


−div(σ(u1,ε, p1,ε)) = Fε in Ω,

divu1,ε = 0 in Ω,
u1,ε = G on Γc,

σ(u1,ε, p1,ε)n = η on Γi,

(P2,ε)


−div(σ(u2,ε, p2,ε)) = Fε in Ω,

divu2,ε = 0 in Ω,
σ(u2,ε, p2,ε)n = Φ on Γc,

u2,ε = τ on Γi,
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where

Fε =
m∑
k=1

λk
|SPk,ε|

χSPk,ε ∈ Dad (3.7)

is more regular source term, with χSPk,ε is the characteristic function of the unknown
region SPk,ε.

Remark 3.3.1 The existence and uniqueness of the solutions (P1,ε) and (P2,ε), can be
derived from the general theory on existence of solutions to the incompressible steady
state Stokes equations, which can be found e.g. in [95, 40] ; See also [22] which is suitable
to the Stokes framework of the present paper. Moreover, the solutions (u1,ε, p1,ε) and
(u2,ε, p2,ε) converge to the respective solutions (u1, p1) and (u2, p2) with the parameter ε,
the proof of this result can be handled by applying the same technique as in [49].

Let Iad = {(m;λ, P ) ∈ N∗ × R2m ×Ωm}. Let φ = (m; (λk, Pk)1≤k≤m) ∈ Iad be a source
configuration corresponding to a source F of the form (1). Let us introduce the following
three cost functionals :

J1(η, τ ;φ) =
1

2
||σ(u1,ε, p1,ε)n− Φ||2

(H
1
2
00(Γc)2)′

+
α

2
||u1,ε − u2,ε||2

H
1
2 (Γi)2

, (3.8)

J2(η, τ ;φ) =
1

2
||u2,ε −G||2

H
1
2 (Γc)2

+
α

2
||u1,ε − u2,ε||2

H
1
2 (Γi)2

, (3.9)

J3(η, τ ;φ) = ||σ(u1,ε, p1,ε)− σ(u2,ε, p2,ε)||2L2(Ω)2
, (3.10)

where α is given positive parameter (e.g. α = 1). Player (1) controls the strategy
variable η ∈ (H

1
2
00(Γi)

2)′ and aims at minimizing the cost J1 and Player (2) controls
the strategy variable τ ∈ H 1

2 (Γi)
2 and aims at minimizing the cost J2 : they are given

Dirichlet (resp. Neumann) data and try to minimize the gap with the Neumann (resp.
Dirichlet) remaining condition. The player (3) controls the strategy variable φ ∈ Iad
and aims at minimizing the Kohn-Vogelius type functional J3.

Definition 3.3.1 A triplet (ηN , τN , φN) ∈ (H
1
2
00(Γi)

2)′ ×H 1
2 (Γi)

2 × Iad is a Nash equili-
brium for the three players game if the following holds :

J1(ηN , τN ;φN) ≤ J1(η, τN , φN), ∀η ∈ (H
1
2
00(Γi)

2)′,

J2(ηN , τN ;φN) ≤ J2(ηN , τ, φN), ∀τ ∈ H 1
2 (Γi)

2,
J3(ηN , τN ;φN) ≤ J3(ηN , τN , φ), ∀φ ∈ Iad.

(3.11)

The player 3 in charge of the inverse source-term problem has as a strategy φ =
(m; (λk, Pk)1≤k≤m), which is a solution of the following optimization problem,

min
φ∈ Iad

J3(η, τ ;φ), when (η, τ) ∈ (H
1
2
00(Γi)

2)′ ×H
1
2 (Γi)

2.

In the following, the player (3) will play in two steps in order to determine the
elements defining the source F introduced in (3.1) ; a first step enables to localize
the source position P = {P1, ..., Pm}, or in other words after this relaxation step, the
support of S = ∪mk=1Sk,ε. Then, a second step uses the determined source position and
compute the approximate value of the source intensity Λ = {λ1, ..., λm}.
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3.3.2 Localization of the source position.

Here, the player (3) focuses on identifying the optimal location of the source-term
with respect to the assumption (3.6). Therefore, the minimization problem of J3 w.r.t.
P can be formulated as a topological optimization one. Thus, the unknown region S
can be characterized as the solution to the following topological optimization problem,
for fixed (η, τ, Λ) ∈ (H

1
2
00(Γi)

2)′ ×H 1
2 (Γi)

2 × R2m, Find S∗ = ∪mk=1SPk,ε ⊂ Ω, such that

S∗ = arg minS⊂Ω

{
J (S) :=

∫
Ω
|σ(u1,ε, p1,ε)− σ(u2,ε, p2,ε)|2dx

}
,

where (u1,ε, p1,ε) and (u2,ε, p2,ε) are the solutions to respectively (P1,ε) and (P2,ε). In
order to solve this problem, we shall use a topological sensitivity analysis method. The
concept of the topological derivative was proposed by Schumacher [45] in the case of
compliance minimization. Next, Sokolowski et al. [91] extended it to more general shape
functionals. It has been widely applied in literature for arbitrarily shaped perturbations
and a general class of cost functionals related to PDEs. It consists in studying the
variation of the cost function with respect to small perturbations of the topology of
the domain. In our case, we want to apply the topological gradient computation to
adding a source term of a given form to the Stokes equations. A topological gradient
computation for a source term perturbation can be found in [49, 9].

Topological sensitivity method

This approach’s main step consists of studying the variation of a given functional
with respect to a small topological perturbation of the source term. For a given source
term f , let δfP,ε be a finite topological perturbation of f on the form

δfP,ε =


λ in ωP,ε = ∪mk=1ωPk,ε

0 in Ω \ ∪mk=1ωPk,ε

where P = (P1, ..., Pm) ∈ Ωm, and ωPk,ε, 1 ≤ k ≤ m are small geometrical perturbation
separated and have the geometry form ωPk,ε = Pk + εB, where ε > 0 is small enough
and B is a fixed bounded domain containing the origin (e.g. the unit ball). The points
Pk ∈ Ω, 1 ≤ k ≤ m, determine the location of the geometric ωPk,ε. Then, the asymptotic
expansion of the given cost function J with respect to ε takes the form,

J (f + δfP,ε)−J (f) = ρ(ε)
∑m

k=1 G (Pk) + o(ρ(ε)), ∀Pk ∈ Ω,
limε→0 ρ(ε) = 0, ρ(ε) > 0,

(3.12)

where the function G is the so-called topological gradient. Therefore, the source
location would be identified in the region where the topological gradient is the most
negative, that means that, the function J will be decreased if we add source terms at
points Pk, 1 ≤ k ≤ m.

Let us consider, for now, the case of a single support Sx0,ε := ωx0,ε such that
the perturbation δfε := δfx0,ε is given by

δfε =


λ in Sx0,ε,

0 in Ω \ Sx0,ε.
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Then, we define the source function J to be minimized,

J (f + δfε) := J ((uε1, pε1); (uε2, pε2)),

where
J ((uε1, pε1); (uε2, pε2)) =

∫
Ω
|σ(uε1, pε1)− σ(uε2, pε2)|2dx,

and (uε1, p
ε
1) and (uε2, p

ε
2) are respective solutions of the following BVP,

(Pε1)


−div(σ(uε1, pε1)) = f + δfε in Ω,

divuε1 = 0 in Ω,
uε1 = G on Γc,

σ(uε1, p
ε
1)n = η on Γi,

(Pε2)


−div(σ(uε2, pε2)) = f + δfε in Ω,

divuε2 = 0 in Ω,
σ(uε2, p

ε
2)n = Φ on Γc,
uε2 = τ on Γi,

Then, the weak solutions to problem (P ε
1) and (P ε

2) are defined by :
Find (uε1, p

ε
1) ∈ H1(Ω)2 × L2(Ω) such that,

A (uε1, ϕ1) + B(pε1, ϕ1) = l1,ε(ϕ1), ∀ϕ1 ∈ H1

Γc
(Ω),

B(ξ1, u
ε
1) = 0, ∀ξ1 ∈ L2

0(Ω),

(3.13)


Find (uε2, p

ε
2) ∈ H1(Ω)2 × L2(Ω)such that,

A (uε2, ϕ2) + B(pε2, ϕ2) = l2,ε(ϕ2), ∀ϕ2 ∈ H1

Γi
(Ω),

B(ξ2, u
ε
2) = 0, ∀ξ2 ∈ L2

0(Ω),

(3.14)

where
A (uεi , ϕi) =

∫
Ω
D(uεi) : ∇ϕi dx, B(pεi , ϕi) = −

∫
Ω
pεidivϕi dx

and

l1,ε(ϕ1) =

∫
Ω
(f + δfε)ϕ1 dx+

∫
Γi
ηϕ1 ds, l2,ε(ϕ2) =

∫
Ω
(f + δfε)ϕ2 dx+

∫
Γc
Φϕ2 ds.

We now consider the case where f = 0, then, the linear forms l1,0 and l2,0 can be defined
as follows

l1,0(ϕ1) =

∫
Γi
ηϕ1 ds, l2,0(ϕ2) =

∫
Γc
Φϕ2 ds.

Next, we introduce the following Proposition which describes an adjoint method,
for the computation of this first variation of our cost function J with respect to ε.

Proposition 3.3.1 Consider (uε1, pε1) and (uε2, p
ε
2) solutions of the Problems (3.13) and

(3.14), respectively. Suppose that the following assumptions hold :
– (i) J is Fréchet-differentiable with respect to (ui, pi), for i = 1, 2.
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– (ii) There exist two real numbers δl1 and δl2 such that

(l1,ε − l1,0)(v1) = ρ(ε)δl1 + o(ρ(ε)),

(l2,ε − l2,0)(v2) = ρ(ε)δl2 + o(ρ(ε)),

where (v1, q1) and (v2, q2) are solutions of the following weak formulations adjoint
problems,

(AP1)

∥∥∥∥∥∥∥
A (h1, v1) + B(k1, v1)−B(q1, h1) = −

∂J
∂u1

((u01, p
0
1); (u

0
2, p

0
2)).h1

−∂J
∂p1

((u01, p
0
1); (u

0
2, p

0
2)).k1

(AP2)

∥∥∥∥∥∥∥
A (h2, v2) + B(k2, v2)−B(q2, h2) = −

∂J
∂u2

((u01, p
0
1); (u

0
2, p

0
2)).h2

−∂J
∂p2

((u01, p
0
1); (u

0
2, p

0
2)).k2

for all (h1, k1) ∈ H1

Γc
(Ω)× L2(Ω) and (h2, k2) ∈ H1

Γi
(Ω)× L2(Ω).

Then the first variation of the cost function J with respect to ε is given by,

J (δfε) = J (0) + ρ(ε)(δl1 + δl2) + o(ρ(ε)),

where ρ(ε) = |Sx0,ε|. The topological gradient G at point x0 is given by :

G (x0) = −λ.(v1 + v2)(x0), (3.15)

where λ is a constant vector and (vi, qi) is the solution of the adjoint problem (AP i),
with i=1,2.

Proof. Let us define the Lagrangian L by,

Lε(v1, q1, v2, q2, u1, p1, u2, p2) = J ((u1, p1); (u2, p2)) + A (u1, v1) + B(p1, v1)
−B(q1, u1)− l1,ε(v1) + A (u2, v2) + B(p2, v2)−B(q2, u2)− l2,ε(v2),

with (u1, u2, v1, v2) ∈ H1(Ω)2×H1(Ω)2×H1

Γc
(Ω)×H1

Γi
(Ω) and (p1, p2, q1, q2) ∈ L2(Ω)4.

Using (3.13) and (3.14), we obtain

J (δfε) = Lε(v1, q1, v2, q2, uε1, pε1, uε2, pε2).

So the first variation of the cost function with respect to ε is given by :

J (δfε) −J (0) = Lε(v1, q1, v2, q2, uε1, pε1, uε2, pε2)− L0(v1, q1, v2, q2, u
0
1, p

0
1, u

0
2, p

0
2)

= A (uε1, v1) + B(pε1, v1)−B(q1, u
ε
1)−A (u01, v1)−B(p01, v1) + B(q1, u

0
1)

+A (uε2, v2) + B(pε2, v2)−B(q2, u
ε
2)−A (u02, v2)−B(p02, v2) + B(q2, u

0
2)

−(lε1 − l01)(v1)− (lε2 − l02)(v2) + J ((uε1, pε1); (uε2, pε2))− J ((u01, p01); (u02, p02)).

Then, from the definition of A and B, we have
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A (uε1, v1) + B(pε1, v1)−B(q1, u
ε
1)−A (u01, v1)−B(p01, v1) + B(q1, u

0
1)

=

∫
Ω
D(uε1 − u01) : ∇v1 dx+

∫
Ω
(pε1 − p01)divv1 dx−

∫
Ω
q1div(u

ε
1 − u01) dx,

A (uε2, v2) + B(pε2, v2)−B(q2, u
ε
2)−A (u02, v2)−B(p02, v2) + B(q2, u

0
2)

=

∫
Ω
D(uε2 − u02) : ∇v2 dx+

∫
Ω
(pε2 − p02)divv2 dx−

∫
Ω
q2div(u

ε
2 − u02) dx.

Choosing (v1, q1) and (v2, q2) as the solutions of the adjoints problems (AP1) and
(AP2),

∫
Ω
D(uε1 − u01) : ∇v1 dx+

∫
Ω
(pε1 − p01)divv1 dx−

∫
Ω
q1div(u

ε
1 − u01) dx =

−∂J
∂u1

((u01, p
0
1); (u

0
2, p

0
2)).(u

ε
1 − u01)−

∂J
∂p1

((u01, p
0
1); (u

0
2, p

0
2)).(p

ε
1 − p01),∫

Ω
D(uε2 − u02) : ∇v2 dx+

∫
Ω
(pε2 − p02)divv2 dx−

∫
Ω
q2div(u

ε
2 − u02) dx =

−∂J
∂u2

((u01, p
0
1); (u

0
2, p

0
2)).(u

ε
2 − u02)−

∂J
∂p2

((u01, p
0
1); (u

0
2, p

0
2)).(p

ε
2 − p02).

Thus, we have

J (δfε)−J (0) = −∂J
∂u1

((u01, p
0
1); (u

0
2, p

0
2)).(u

ε
1 − u01)−

∂J
∂p1

((u01, p
0
1); (u

0
2, p

0
2)).(p

ε
1 − p01)

−∂J
∂u2

((u01, p
0
1); (u

0
2, p

0
2)).(u

ε
2 − u02)−

∂J
∂p2

((u01, p
0
1); (u

0
2, p

0
2)).(p

ε
2 − p02)

−(lε1 − l01)(v1)− (lε2 − l02)(v2) + J ((uε1, pε1); (uε2, pε2))− J ((u01, p01); (u02, p02))

• Variation of the linear form. We are interested here in the asymptotic analysis of
the variation

(l1,ε − l1,0)(v1) =

∫
Ω
δfεv1dx =

∫
Sx0,ε

λv1dx,

= |Sx0,ε|λv1(x0) + o(ε).

(3.16)

where (v1, q1) is the solution of the adjoint problem (AP1). The same, we have

(l2,ε − l2,0)(v1) = |Sx0,ε|λv2(x0) + o(ε), (3.17)

where (v2, q2) is the solution of the adjoint problem (AP2).

• Variation of the cost function. Let us now turn to the asymptotic analysis of the
variation of the Kohn-Vogeluis functional given by

J ((uε1, pε1); (uε2, pε2)) =
∫
Ω
|σ(uε1, pε1)− σ(uε2, pε2)|2dx.

Thus, this functional J can be decomposed as

J ((uε1, pε1); (uε2, pε2)) = J1(u
ε
1, p

ε
1) + J2(u

ε
2, p

ε
2)− 2J12(u

ε
1, p

ε
1); (u

ε
2, p

ε
2)),

with
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J1(u
ε
1, p

ε
1) =

∫
Ω
|σ(uε1, pε1)|2dx,

J2(u
ε
2, p

ε
2) =

∫
Ω
|σ(uε2, pε2)|2dx,

J12((u
ε
1, p

ε
1); (u

ε
2, p

ε
2)) =

∫
Ω
σ(uε1, p

ε
1)σ(u

ε
2, p

ε
2)dx.

Variation of J1 :

J1(u
ε
1, p

ε
1)− J1(u

0
1, p

0
1) =

∫
Ω
|σ(uε1, pε1)|2dx−

∫
Ω
|σ(u01, p01)|2dx± 2

∫
Ω
|σ(u01, p01)|2dx

=

∫
Ω
|σ(uε1, pε1)− σ(u01, p01)|2dx+ 2

∫
Ω
σ(uε1, p

ε
1)σ(u

0
1, p

0
1)dx− 2

∫
Ω
|σ(u01, p01)|2dx.

Posing (wεi , ξ
ε
i ) = (uεi − u0i , pεi − p0i ) for i=1,2, we obtain

J1(u
ε
1, p

ε
1)− J1(u

0
1, p

0
1) =

∫
Ω
|σ(wε1, ξε1)|2dx+ 2

∫
Ω
σ(u01, p

0
1)σ(w

ε
1, ξ

ε
1)dx. (3.18)

Variation of J2 : In the same way, we find that

J2(u
ε
2, p

ε
2)− J2(u

0
2, p

0
2) =

∫
Ω
|σ(wε2, ξε2)|2dx+ 2

∫
Ω
σ(u02, p

0
2)σ(w

ε
2, ξ

ε
2)dx. (3.19)

Variation of J12 :

J12((u
ε
1, p

ε
1); (u

ε
2, p

ε
2))− J12((u

0
1, p

0
1); (u

0
2, p

0
2)) =

∫
Ω
σ(uε1, p

ε
1)σ(u

ε
2, p

ε
2)dx

−
∫
Ω
σ(u01, p

0
1)σ(u

0
2, p

0
2)dx.

Then, we have

J12((u
ε
1, p

ε
1); (u

ε
2, p

ε
2))− J12((u

0
1, p

0
1); (u

0
2, p

0
2)) =

∫
Ω
σ(wε1, ξ

ε
1)σ(w

ε
2, ξ

ε
2)dx

+

∫
Ω
σ(u01, p

0
1)σ(w

ε
2, ξ

ε
2)dx+

∫
Ω
σ(u02, p

0
2)σ(w

ε
1, ξ

ε
1)dx

(3.20)

Combining the variations (3.18), (3.19) and (3.20), we obtain

J ((uε1, pε1); (uε2, pε2))− J ((u01, p01); (u02, p02)) =

∫
Ω
|σ(wε1, ξε1)|2dx

+

∫
Ω
|σ(wε2, ξε2)|2dx− 2

∫
Ω
σ(wε1, ξ

ε
1)σ(w

ε
2, ξ

ε
2)dx

+2

∫
Ω
(σ(u01, p

0
1)− σ(u02, p02))σ(wε1, ξε1)dx

−2
∫
Ω
(σ(u01, p

0
1)− σ(u02, p02))σ(wε2, ξε2)dx.

Therefore,

J ((uε1, pε1); (uε2, pε2))− J ((u01, p01); (u02, p02))−
∂J
∂u1

((u01, p
0
1); (u

0
2, p

0
2)).w

ε
1

−∂J
∂p1

((u01, p
0
1); (u

0
2, p

0
2)).ξ

ε
1 −

∂J
∂u2

((u01, p
0
1); (u

0
2, p

0
2)).w

ε
2

−∂J
∂p2

((u01, p
0
1); (u

0
2, p

0
2)).ξ

ε
2 = I(ε),
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where

I(ε) = ||σ(wε1, ξε1)||20,Ω + ||σ(wε2, ξε2)||20,Ω − 2

∫
Ω
σ(wε1, ξ

ε
1)σ(w

ε
2, ξ

ε
2)dx.

We will then prove that I(ε) = o(ρ(ε)). Thus, the topological asymptotic expansion of
the functional J with respect to ε is given by

J (δfε)−J (0) = −|Sx0,ε|λ(v1 + v2)(x0) + o(|Sx0,ε|),

then the topological gradient G at point x0 is given by

G (x0) = −λ(v1 + v2)(x0).

Let’s now show that I(ε) = o(|Sx0,ε|). Consider (wε1, ξε1) = (uε1− u01, pε1− p01) solution
of the following problem,

−div(σ(wε1, ξε1)) = δfε in Ω,
divwε1 = 0 in Ω,

wε1 = 0 on Γc,
σ(wε1, ξ

ε
1)n = 0 on Γi.

This problem is well-posed and has a unique solution in H1(Ω)2 × L2(Ω), see e.g. [34].
Using ([22], theorem 5.2), there exists a positive constant C such that,

||wε1||1,Ω + ||ξε1||0,Ω 6 C||δfε||0,Ω
6 C||λ||(ρ(ε)) 1

2 .
(3.21)

The same for the solution (wε2, ξ
ε
2). Using these latter results, we obtain an estimation

of the third term of I. We deduce then that I(ε) = o(ρ(ε)).
�

3.3.3 Identification of the source intensity.

In this subsection, the player (3) assumes to be known the position P = x0 defining
a source-term Fε that satisfies (3.7) and focuses on identifying the source intensity λk.
To this end, player (3) must minimize the functional J3 with respect to λ. So the source
intensity can be characterized as the solution of the following minimization problem,

λ∗ = arg min
λ∈Rd

{
J3(η, τ ;φ) :=

∫
Ω
|σ(u1,ε, p1,ε)− σ(u2,ε, p2,ε)|2dx

}
,

where (u1,ε, p1,ε) and (u2,ε, p2,ε) solve respectively problems (P1,ε) and (P2,ε). In order to
perform the partial optimization problem of J3(η, τ ;φ) w.r.t the source intensity λ with
(η, τ) given by players (1) and (2), one needs to compute the derivative of J3 w.r.t. λ.
We have the following :

Proposition 3.3.2 We have the following partial derivative,

∂J3

∂λ
.ϕ = − 1

|Sx0,ε|

∫
Sx0,ε

(z1 + z2)(x).ϕdx, ∀ϕ ∈ R,
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where (z1, π1) ∈ H1

Γc
(Ω)× L2(Ω) and (z2, π2) ∈ H1

Γi
(Ω)× L2(Ω) are respective solutions

of the adjoints problems,



2

∫
Ω
(σ(u1,ε, p1,ε)− σ(u2,ε, p2,ε)) : (∇h1 +∇hT1 )dx−

∫
Ω
π1divh1dx

+

∫
Ω
((∇h1 +∇hT1 ) : ∇z1)dx = 0, ∀h1 ∈ H1

Γc
(Ω),

−2
∫
Ω
(σ(u1,ε, p1,ε)− σ(u2,ε, p2,ε)) : (k1Id)dx−

∫
Ω
k1divz1dx = 0,

∀k1 ∈ L2(Ω),

(3.22)



−2
∫
Ω
(σ(u1,ε, p1,ε)− σ(u2,ε, p2,ε)) : (∇h2 +∇hT2 )dx−

∫
Ω
π2divh2dx

+

∫
Ω
((∇h2 +∇hT2 ) : ∇z2)dx = 0, ∀h2 ∈ H1

Γi
(Ω),

2

∫
Ω
(σ(u1,ε, p1,ε)− σ(u2,ε, p2,ε)) : (k2Id)dx−

∫
Ω
k2divz2dx = 0,

∀k2 ∈ L2(Ω),

(3.23)

and where (u1,ε, p1,ε) and (u2,ε, p2,ε) are the solutions to respectively (P1,ε) and (P2,ε).

3.3.4 The three-player Nash algorithm

We are now ready to state the three-player identification/completion Nash game.
As aforementioned, players (1) and (2) aim at solving the Cauchy problem, while
player (3) is aimed at minimizing a Kohn-Vogelius type energy, intended to identify the
elements of the source-term. The game is of Nash type, which means that it is static
with complete information [56] and hence its solution is a Nash equilibrium (NE), see
Definition 3.3.1.

Given a triplet (η, τ ;φ) ∈ (H
1
2
00(Γi)

2)′ × H 1
2 (Γi)

2 × Iad, and we define (u1,ε, p1,ε) :=
(u1,ε(η, φ), p1,ε(η, φ)) be the solution to the approximate Stokes problem (P1,ε) and
(u2,ε, p2,ε) := (u2,ε(τ, φ), p2,ε(τ, φ)) the solution to the approximate Stokes problem (P2,ε),
then the three players and their respective costs are defined as follows :

– Player (1) has control on the Neumann strategies η ∈ (H
1
2
00(Γi)

2)′, and its cost
functional is given by

J1(η, τ ;φ) =
1

2
||σ(u1,ε, p1,ε)n− Φ||2

(H
1
2
00(Γc)2)′

+
1

2
||u1,ε − u2,ε||2

H
1
2 (Γi)2

(3.24)

– Player (2) has control on the Dirichlet strategies τ ∈ H 1
2 (Γi)

2, and its cost func-
tional is given by

J2(η, τ ;φ) =
1

2
||u2,ε − f ||2

H
1
2 (Γc)2

+
1

2
||u1,ε − u2,ε||2

H
1
2 (Γi)2

(3.25)

– Player (3) has control on the elements φ ∈ Iad defining the unknown source, and
its cost functional is given by

J3(η, τ ;φ) =

∫
Ω
|σ(u1,ε, p1,ε)− σ(u2,ε, p2,ε)|2dx (3.26)
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In algorithm 3.3.1 below, we describe the main steps in computing the Nash
equilibrium, with a version where the Cauchy data of the Dirichlet type G are possibly
perturbed by a noise with some magnitude σ, yielding for the Cauchy problem a noisy
Dirichlet data Gσ.

The topological gradient and the gradient with fixed step methods are used to solve
step I and II respectively. In step II, in order to solve the problems of partial optimization
of J1, J2 and J3, we need to calculate the gradient of these costs with respect to their
respective strategies η, τ and λ. The fast computation of the latter is classical, and led
by means of an adjoint state method, as shown by the proposition 3.3.2 and 3.3.3, the
proof of the proposition 3.3.3 is given in ([57], Appendix A. 1).

Proposition 3.3.3 [57] We have the following two partial derivatives :

∂J1

∂η
.ψ = −

∫
Γi
ψλ1ds, ∀ψ ∈ (H

1
2
00(Γi)

2)′,

with (λ1, κ1) ∈ H1

Γc
(Ω)× L2(Ω) solution of the adjoint problem :

∫
Γc
(σ(u1,ε, p1,ε)n− Φ)((∇γ +∇γT )n)ds+

∫
Γi
(u1,ε − u2,ε)γds

+

∫
Ω
(∇γ +∇γT ) : ∇λ1dx−

∫
Ω
κ1divγdx = 0, ∀γ ∈ H1

Γc
(Ω).

−
∫
Γc
(σ(u1,ε, p1,ε)n− Φ)δnds−

∫
Ω
δdivλ1dx = 0, ∀δ ∈ L2(Ω),

(3.27)



∂J2

∂τ
.µ =

∫
Γi
(σ(λ2, κ2)n− (u1,ε − u2,ε))µds, ∀µ ∈ H

1
2 (Γi)

2,

with (λ2, κ2) ∈ H1(Ω)2 × L2(Ω) solution of the adjoint problem :

∫
Ω
(∇λ2 +∇λT2 ) : ∇ϕdx−

∫
Ω
κ2divϕdx =

∫
Γc
(G− u2,ε)ϕds,

∀ϕ ∈ H1

Γi
(Ω),∫

Ω
ξdivλ2dx = 0, ∀ξ ∈ L2(Ω),

(3.28)

where, by a classical convention, ∇u : ∇v = Tr(∇u∇vT ) =
∑
i,j

∂ui
∂xj

∂vi
∂xj

.
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Algorithm 3.3.1: Computation of the Nash equilibrium
Data: εS > 0 a convergence tolerance, Kmax a computational budget per Nash

iteration, Nmax a maximum Nash iterations, σ a noise level and ρ(σ)
a-tuned-function which depends on the noise.

Set n = 0, choose an initial source intensity λ(0) and Fε = 0 ;
while ||u2 −G||0,Γc > ρ(σ) do

Set k = 0 and choose an initial guess (η(0), τ (0)) ∈ (H
1
2
00(Γi)

2)′ ×H 1
2 (Γi)

2 ;
Compute η(k) solution of minηJ1(η, τ

(k);Fε).
Compute (in parallel) τ (k) solution of minτJ2(η

(k), τ ;Fε).
Evaluate (η(k+1), τ (k+1)) = α(η(k), τ (k)) + (1− α)(η(k), τ (k)), with 0 ≤ α < 1.
– Step I : Set Fε = 0, and use the one-shot algorithm to determine the set of optimal
locations P (n) = {P1, .., Pm(n)} :
• Solve two well-posed mixed forward problems :

(P0
1 )


−div(σ(u0,k+1

1 , p0,k+1
1 )) = 0 in Ω,

divu0,k+1
1 = 0 in Ω,

u0,k+1
1 = G on Γc,

σ(u0,k+1
1 , p0,k+1

1 )n = η(k+1) on Γi,

(P0
2 )


−div(σ(u0,k+1

2 , p0,k+1
2 )) = 0 in Ω,

divu0,k+1
2 = 0 in Ω,

σ(u0,k+1
2 , p0,k+1

2 )n = Φ on Γc,

u0,k+1
2 = τ (k+1) on Γi.

• Solve the adjoint problems (AP1) and (AP2) with respective solutions v1 and v2.
• Compute the topological gradient G using Formula (3.15), i.e.

G (x) = −λ(k).(v1 + v2)(x), ∀x ∈ Ω.

• Seek
P (n) = arg min

x∈Ω
J3(η

(k+1), τ (k+1); (λ(k), x)).

– Step II : Solve the Nash game between η, τ and λ : Set k = 1,
• Step 1 : Evaluate F (n,k)

ε =
∑m(n)

i=1
1

|SPi,ε|
λ
(k−1)
i χSPi,ε .

• Step 2 : Compute η(k) solution of minηJ1(η, τ
(k); (λ(k−1), P (n))).

• Step 3 : Compute (in parallel) τ (k) solution of minτJ2(η
(k), τ ; (λ(k−1), P (n))) .

• Step 4 : Compute (in parallel) λ(k) solution of minλJ3(η
(k), τ (k); (λ, P (n))).

• Step 5 : For 0 ≤ α < 1, set

S(k+1) = (η(k+1), τ (k+1), λ(k)) = α(η(k), τ (k), λ(k−1)) + (1− α)(η(k), τ (k), λ(k)).

While ‖S(k+1) − S(k)‖ > εS and k < Nmax, set k = k + 1, return back to step 1.
end
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3.4 Numerical experiments

In this section, we illustrate the numerical results obtained using the 3-costs
functionals described in the previous section 3.3. In order to test the efficiency of the
proposed numerical method, we solve the source Cauchy-Stokes problem in the 2-D
situations : the annular domain and a geometry with corners are considered. Then,
we present an example of numerical reconstruction in the three-dimensional 3-D case.
In our numerical experiments, we use L2 norms to estimate errors and calculate the
gradient of the cost functionals.

Given a known the elements defining the source term F ∗ε , that is φ∗ = (λ, P ), we
solve the following Stokes problem :

−div(σ(u, p)) = F ∗ε in Ω,
divu = 0 in Ω,

u = G on Γc,
βu+ γσ(u, p)n = βH + γΨ on Γi,

(3.29)

where the (phantom) exact solution (u, p) is used to build the remaining Cauchy data
Φ = σ(u, p)n|Γc , and the exact missing data u|Γi and σ(u, p)n|Γi . The two latter data
together with the known elements defining F ∗ε are used to compute the following relative
errors :

errD =
||τN − u|Γi ||0,Γi
||u|Γi ||0,Γi

, errN =
||ηN − σ(u, p)n|Γi ||0,Γi
||σ(u, p)n|Γi ||0,Γi

,

errP =
||Pex − Pop||2
||Pex||2

, errλ =
||Λex − Λop||2
||Λex||2

,

(3.30)

where (ηN , τN ;φN) is the approximate Nash equilibrium output from Algorithm 3.3.1,
and ||.||2 represents the Euclidean norm. These metrics are used to assess the efficiency
of our approach. The stability w.r.t. noise was stressed by solving the coupled problem
with noisy perturbations of the Dirichlet data Gσ = G(1+ σδ), with δ is a random real
number taken from the uniform distribution over the interval [−1, 1].

An arbitrary initial guess such as S(0) = (η(0), τ (0), λ(0)) = (0, 0, 0.1) and Fε = 0
are chosen to start the algorithm, and the relaxation parameter α is set to 0.25. The
pointwise forces identified are represented in the domain Ω as a disc of raduis ε = 0.07.

The solvers for Stokes, the computation of the topological gradient and adjoint
systems, and the minimization algorithms as well, were implemented using the Finite
Element package FreeFem++ [61].

Example 1 : An annular domain.

We consider an annular domain Ω with circular boundary components Γi and Γc, both
centered at (0, 0) and with radii Ri = 1 and Rc = 2, respectively. In this example, we
choose (β, γ) = (0, 1), and the Cauchy data σ(u, p)n|Γc is generated via the solution of
the problem (3.29), with G|Γc = (y2, x2) and Ψ|Γi = −(x, y).
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Test-case A.

The exact source-term is located at Pex = (1.8, 0), with an intensity source
Λex = (0.2, 0.2).

We applied our algorithm 1, presented in section 3.3, to compute the Nash equi-
librium. Figure 3.5 presents the obtained results. We remark that these results are in
good accordance with the exact source Fε and missing data.

For the case of noisy Dirichlet data Gσ given over Γc, it can be seen from the profiles
presented in Figure 3.6 and the Table 3.4 that the boundary data recovery is overall
stable with respect to the noise magnitude, in particular the computed components of
the normal stress are more sensitive than the velocity one, and the estimated elements
defining Fε, identified source and their intensity forces, are also acceptable.

The relative errors defined by formulas (3.30) are summarized in Table 3.1 for the
test-case A.

Table 3.1 – Test-case A. L2 relative errors on missing data on Γi (on Dirichlet and Neumann
data), and the relative errors on the identified source position and on the identified source
intensity for various noise levels.

Noise level errD errN errP errΛ

σ = 0% 0.003 0.060 0.010 0.018
σ = 1% 0.008 0.087 0.010 0.155
σ = 3% 0.015 0.147 0.043 0.169

Test-case B. The case of multiple points-forces.

In this test-case, we try to detect and locate multiple point-forces. We propose to iden-
tify four pointwise forces, located respective at the points P1 = (1.8, 0), P2 = (0, 1.8),
P3 = (−1.8, 0) and P4 = (0,−1.8), and their exact intensity force λi is equal to
(0.2, 0.2), i=1,...,4.

We suppose that the numberm of the region SPi,ε, i=1,...,m, is unknown. We observe
from Figure 3.7(a)(b) that our proposed algorithm is able to determine the number of
the small region inside Ω and gives a good approximation of the locations and the
recovery intensity for each components of the source-term, as well as the recovered data
Figure 3.7(c)-(f). The recovery of missing boundary data and the estimated value of P
and λ are stable with respect to noisy Dirichlet measurements, as shown Figure 3.8 and
Table 3.5, where the table 3.5 presents the different error at convergence.

To assess our algorithm and results against the so-called inverse crime, that possibly
arises when the same model is used to synthesize Cauchy data and to solve the corres-
ponding inverse problem, resulting in possible artificial outperformance, we synthesized
Cauchy data using different meshes, see Figure 3.2. All our numerical experiments pro-
duced results of the same good quality than the results presented in Figure 3.7, see
Figure 3.9.
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Figure 3.2 – Test case B. (Left) Mesh used for solving the direct problem, in order to construct
the synthetic data. (Right) Mesh used for solving the coupled inverse problem, with P2-P1
finite element.

Example 2 : A geometry with corners.

The domain is a centered square ] − 0.5, 0.5[×] − 0.5, 0.5[, the finite element dis-
cretization of the domain boundary ∂Ω is constituted of 160 vertices. We impose here
(β, γ) = (1, 0), and G = H = (2y2 − 1/2, 0) prescribed over ∂Ω.
Overspecified Cauchy data are prescribed on the boundaries y ∈ {−1

2
, 1
2
} and x = −1/2

of the square and the underspecified boundary data u|Γi = u(1/2, y) and its stress force
are sought.

Test-case C.

The exact source-term is located at Pex = (−0.3,−0.25), with intensity
Λex = (0.25, 0.2).

The numerically obtained results are shown in Figure 3.10. Figure 3.10(a) presents
the iso-values of the topological gradient, the source support Sx0,ε can be located in the
areas where the topological gradient is negative. The estimated intensity and the deter-
mined position are very satisfactory, as shown Figure 3.10(b). The numerical Dirichlet
solution is a good approximation for the exact solution one, see Figure 3.10(c)(d). Then,
concerning the numerical Neumann solution, see Figure 3.10(e)(f), it can be seen that
the estimates deviate from the exact one, especially near the endpoints of the boundary
which is the region of singularities, in the corners. There is also a remarkable stability
with respect to noisy data of both the estimated elements and the recovered boundary
data, see Figure 3.11 and Table 3.6.

The relative errors presented in Table 3.2 show the performance of our method with
respect to noisy Dirichlet measurements.

A numerical study concerning the sensitivity of the reconstruction according to the
position of the source term in the domain has been studied. The Figure 3.3 shows that
the relative errors increase when the source term becomes closer to the inaccessible
boundary Γi.
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Table 3.2 – Test-case C. L2 relative errors on missing data on Γi (on Dirichlet and Neumann
data), and the relative errors on the identified source position and on the identified source
intensity for various noise levels.

Noise level errD errN errP errΛ

σ = 0% 0.011 0.097 0.071 0.009
σ = 1% 0.011 0.102 0.136 0.029
σ = 3% 0.021 0.106 0.184 0.058

Figure 3.3 – Test case C. Sensitivity of the reconstruction w.r.t. the distance to the inacces-
sible boundary Γi, the distance of the center of SP,ε from Γi, for y = −0.25.

The 3D case.

We present hereafter an example of numerical reconstruction in the three dimensio-
nal case. The domain Ω is a cube (0, 1)3, such that its boundary splitted into two parts
Γi and Γc, where Γi = {(x, y, z) ∈ ∂Ω; such that x = 1} represents the inaccessible
part and Γc = ∂Ω\Γi is the accessible part, where the Cauchy data is available. We try
so to detect a source Fε located in Pex = (0.25, 0.25, 0.25) and with a source intensity
λex = (0.25, 0.2, 0). The Cauchy data on Γc are numerically simulated by solving the
following Dirichlet problem :

−div(σ(u, p)) = F ∗ε in Ω,
divu = 0 in Ω,

u = G on ∂Ω,

where G is a given function. Then, applying our algorithm 3.3 in order to find the
Nash equilibrium, which is expected to approximate the coupled problem solution. The
finite element computations are performed with 4,096 nodes and 20,250 tetrahedral
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elements. The cost of computation is quite expensive, to overcome this difficulty, we use
ffddm which implements a class of parallel solvers in FreeFem. The obtained results are
presented in Table 3.3, with noise free Dirichlet data over Γc. The Figure 3.4 represents
the iso-values of the topological gradient at convergence.

Table 3.3 – L2 relative errors of reconstructed solution in the whole domain and mis-
sing data on Γi (on Dirichlet and Neumann data), and the relative errors on the iden-
tified source position and on the identified source intensity for noise-free, where errui =
||ui,ε − u||0,Ω/||u||0,Ω, for i = 1, 2.

erru1 erru2 errτ errη errP errΛ

0.008 0.026 0.031 0.224 0.2 0.056

Figure 3.4 – The iso-values of the topological gradient at convergence, Pop = (0.2, 0.2, 0.2)
and Λop = (0.233, 0.204, 0.005). Exact values : Pex = (0.25, 0.25, 0.25) and Λex = (0.25, 0.2, 0).

3.5 Conclusion

we have addressed, in the present paper, the problem of identifying the location and
magnitude of a finite but unknown number of point-wise sources, in a linear steady
Stokes problem with missing boundary data. Such a reconstruction problem couples
two inverse problems of different classes, the recovery of missing boundary data (the
Cauchy problem), and the identification of point-wise sources. Each of these two inverse
problems is known to be severely ill-posed by its own, and designing efficient and stable
algorithms is challenging. In our case, the problem of designing efficient and robust
algorithms is worsened by the coupling of the two ill-posed problems, and by the fact
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that we consider as available only a single pair of over-specified data (and not the
classical Dirichlet-to-Neumann whole map).

Due to the identification/recovery coupling, classical methods fail, mainly because
of being too specific to each of the source identification or data recovery problems.
Hence our recourse to game theory, which is, by its very nature, able to address such
antagonistic situations. Previous successful reframing of data recovery inverse problems
as Nash games has fostered the formulation of the coupled source identification and
data recovery problems as Nash games.

We have proposed here to formulate the coupled inverse problems as a static with
complete information Nash game. First, we have relaxed the point-wise source identi-
fication problem to gain some regularity on the velocity and pressure state variables,
and we have introduced three players and three cost functionals. The two first, named
Dirichlet-Neumann players, were dedicated to ensure the data completion while the
third one was dedicated to ensure the detection of the sources. We postulated that the
sought solution of the coupled problem could be found as a Nash equilibrium of the
three-player game.

This formulation resulted in the design of a novel algorithm, which is composed of
two main steps. In the first step, the third player seeks to identify the number and
location of the sources using a topological gradient method. In the second one, the two
Dirichlet-Neumann players solve the data completion, in a parallel task with the third
player, which minimizes a Kohn-Vogelius like functional in order to identify the different
sources magnitudes.

The efficiency and robustness of our coupled reconstruction algorithm was proved
against several numerical experiments led for different two- and three-dimensional
test-cases.
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Figure 3.5 – Test case A. Reconstruction of the point-forces and missing boundary data with
noise free Dirichlet data over Γc. (a) the iso-values of the topological gradient at convergence.
(b) exact elements defining the source-term -red vector- and computed one -blue vector- (c)
exact -line- and computed -dashed line- first component of the velocity over Γi. (d) exact
-line- and computed -dashed line- second component of the velocity over Γi. (e) exact -line-
and computed -dashed line- first component of the normal stress over Γi (f) exact -line- and
computed -dashed line- second component of the normal stress over Γi.
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Figure 3.6 – Test case A. Reconstruction of the missing boundary data with noisy Dirichlet
data over Γc with noise levels σ = {1%, 3%}. (a) exact and computed first components of the
velocity over Γi (b) exact and computed second components of the velocity over Γi (c) exact
and computed first components of the normal stress over Γi (d) exact and computed second
components of the normal stress over Γi.

Table 3.4 – Test-case A. Identified source position and their intensity for various noise levels.

Noise level σ = 0% σ = 1% σ = 3%

Pop (1.81,-2e-09) (1.81,-2.e-09) (1.84,-0.066) Pex = (1.8, 0)
Λop (0.195,0.202) (0.161,0.179) (0.2,0.152) Λex = (0.2, 0.2)

84



Figure 3.7 – Test case B. Reconstruction of the point-forces and missing boundary data with
noise free Dirichlet data over Γc. (a) the iso-values of the topological gradient at convergence.
(b) exact elements defining the source-term -red vector- and computed one -blue vector- (c)
exact -line- and computed -dashed line- first component of the velocity over Γi. (d) exact
-line- and computed -dashed line- second component of the velocity over Γi. (e) exact -line-
and computed -dashed line- first component of the normal stress over Γi (f) exact -line- and
computed -dashed line- second component of the normal stress over Γi.
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Figure 3.8 – Test case B. Reconstruction of the missing boundary data with noisy Dirichlet
data over Γc with noise levels σ = {1%, 3%}. (a) exact and computed first components of the
velocity over Γi (b) exact and computed second components of the velocity over Γi (c) exact
and computed first components of the normal stress over Γi (d) exact and computed second
components of the normal stress over Γi.

Table 3.5 – Test-case B. L2 relative errors on missing data on Γi (on Dirichlet and Neumann
data), and the relative errors on the identified source position and on the identified source
intensity for various noise levels.

Noise level errD errN errP errΛ

σ = 0% 0.005 0.056 0.010 0.049
σ = 1% 0.013 0.113 0.010 0.181
σ = 3% 0.025 0.141 0.043 0.24
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Figure 3.9 – Test case B : Assessing Inverse-Crime-Free reconstruction. Test case B. Top :
the iso-values of the topological gradient at convergence, and the exact and optimal elements
defining the source-term. Middle : the two components of the velocity on Γi. Bottom : the
two components of the normal stress on Γi (errτ = 0.00768152, errη = 0.0713575, errP =
0.0105486, and errΛ = 0.0560551).
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Figure 3.10 – Test case C. Reconstruction of the point-forces and missing boundary data with
noise free Dirichlet data over Γc. (a) the iso-values of the topological gradient at convergence.
(b) exact elements defining the source-term -red vector- and computed one -blue vector- (c)
exact -line- and computed -dashed line- first component of the velocity over Γi. (d) exact
-line- and computed -dashed line- second component of the velocity over Γi. (e) exact -line-
and computed -dashed line- first component of the normal stress over Γi (f) exact -line- and
computed -dashed line- second component of the normal stress over Γi.
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Figure 3.11 – Test case C. Reconstruction of the missing boundary data with noisy Dirichlet
data over Γc with noise levels σ = {1%, 3%}. (a) exact and computed first components of the
velocity over Γi (b) exact and computed second components of the velocity over Γi (c) exact
and computed first components of the normal stress over Γi (d) exact and computed second
components of the normal stress over Γi.

Table 3.6 – Test-case C. Identified source position and their intensity for various noise levels.

Noise level σ = 0% σ = 1% σ = 3%

Pop (-0.326,-0.259) (-0.339,-0.285) (-0.36,-0.29) Pex = (−0.3,−0.25)
Λop (0.248,0.197) (0.24,0.199) (0.231, 0.196) Λex = (0.25, 0.2).
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CHAPTER 4
A Nash-game approach to joint data comple-
tion and location of small inclusions in Stokes
flow

“ If people do not believe that
mathematics is simple, it is only
because they do not realize how
complicated life is. "

John Louis von Neumann

Abstract. We consider the coupled inverse problem of data completion and the
determination of the best locations of an unknown number of small objects immersed
in a stationary viscous fluid. We carefully introduce a novel method to solve this
problem based on a game theory approach. A new algorithm is provided to recovering
the missing data and the number of these objects and their approximate location
simultaneously. The detection problem is formulated as a topological one. We present
two test-cases that illustrate the efficiency of our original strategy to deal with the
ill-posed problem.
keywords : Geometric inverse problem, Data completion, Calculus of variations,
Topological sensitivity, Nash games.

The results presented in this chapter lead to the paper :
A. Habbal, M. Kallel, and M. Ouni. A Nash-game approach to joint data completion
and location of small inclusions in Stokes flow. Accepted for publication in the ARIMA
journal in December 2020.
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4.1 Introduction and motivation

Geometric inverse problems are central in various fields of industrial, biological, and
biomedical processes. Challenging theoretical and computational problems arising in
fluid mechanics have been intensively investigated, see e.g. [25]. In the present paper,
we study a geometric identification problem related to Stokes flows. The problem
amounts to determining the unknown number of small objects located in a stationary
viscous fluid and their approximate locations, using partial boundary measurements.
The latter are of Cauchy type data, available only on the -accessible- part of the outer
boundary. Then, the inverse problem under consideration here consists of a coupled
inverse problem of object detection and data completion. The identifiability result for
the inverse inclusion Cauchy-Stokes problem, with a homogeneous Neumann condition
imposed on the unknown geometry, of Habbal et al. [57] implies that a single pair of
compatible- measurements is enough to recover the unknown objects and the missing
boundary data on the remaining -inaccessible- part of the exterior boundary. It is well
known that the considered inverse problems are ill-posed, in Hadamard’s sense [59].
The problem’s ill-posed character is worsened by the coupling, and is critically related
to the solution’s instability. Ill-posedness makes classical numerical methods usually
inappropriate, and consequently, some regularization techniques have to be used to
solve the problem numerically. In order to address the present coupled ill-posedness,
we use a game-theoretic framework, following the works [56, 57]. We then suggest an
alternating minimization approach, where the coupled inverse problem is formulated
as a three players non-cooperative Nash game. The two first players are associated
with the data completion while the third one is in charge of identifying the number of
small objects and their location. The small size assumption made on the objects allows
deriving an asymptotic expansion of an involved functional. To solve the identification
problem, we use the topological gradient notion. Topological sensitivity analysis related
to Stokes equations has been investigated in the past by several authors. Various
other mathematical approaches in different frameworks are available to solve the
obstacle inverse problem, such that the level-set approach, shape gradient method, and
homogenization theory.

Let us introduce a preliminary mathematical description of the problem. Consider
a bounded open domain Ω ⊂ Rd (d=2,3), which is filled with a viscous incompressible
fluid. We assume that a finite number of the objects included in the domain Ω, and
we also suppose that these unknown objects are well separated and have the geometry
form : Ozk,ε = zk + εBk; ∀k ∈ {1, ...,m}, where ε is the shared diameter and Bk is
bounded and smooth domain containing the origin. The points zk ∈ Ω determine the
location of the unknown objects inside Ω. Finally, we suppose that for k ∈ {1, ...,m},
the object Ozk,ε is far from the exterior boundary ∂Ω, which is composed of two disjoint
components Γi and Γc, see Figure-4.1.

The problem we study then is to detect some small objects (location of the inclu-
sions), from given fluid velocity f and stress forces Φ prescribed only on the accessible
part Γc of the boundary. We denote O∗ε = ∪mk=1O∗zk,ε and we consider the following
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Ω \ O∗ε

Γc

Γi

^ _

O∗zk,ε = z∗k + εBk

Figure 4.1 – An example of the geometric configuration of the problem : The whole domain
Ω, the inclusions O∗ε , and two parts of the boundary Γc and Γi.

problem : 
∆u−∇p = 0 in Ω \ O∗ε ,

divu = 0 in Ω \ O∗ε ,
σ(u, p)n = 0 on ∂O∗ε ,

u = f on Γc,
σ(u, p)n = Φ on Γc,

(4.1)

where u denote the velocity filed, p the pressure, and σ(u, p) represents the stress tensor
defined by :

σ(u, p) = 2νD(u)− pId,

with ν is the kinematic viscosity of the fluid, D(u) = 1/2(∇u+t∇u) is the deformation
tensor, and Id is the identity matrix.

This work aims to recover the missing data of fluid velocity u and stress forces
σ(u, p)n over Γi the inaccessible part of the boundary from available measurements on
the accessible part Γc, in addition determine the number of the small objects included in
a flow domain and their approximate locations. Section 2 presents an original approach
to jointly solving data completion and object detection problems using a Nash game
strategy. A topological sensitivity analysis method is used in order to determine the
optimal locations of these inclusions, and a new algorithm is provided. In section 3, we
illustrate the efficiency of the proposed method by treating two different situations.

4.2 Data completion and localization of small objects

Assuming that the Cauchy data f and Φ belongs to H
1
2 (Γc)

d × (H
1
2
00(Γc)

d)′. For
given functions η ∈ (H

1
2
00(Γi)

d)′, τ ∈ H
1
2 (Γi)

d, and Oε = ∪mk=1zk + εBk ⊂ Ω, we define
(uε1, p

ε
1) = (uε1(η), p

ε
1(η)), (uε2, pε2) = (uε2(τ), p

ε
2(τ)), and (uε3, p

ε
3) = (uε3(τ), p

ε
3(τ)) as the

unique weak solutions of the following Stokes mixed boundary value problems :
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(Pε1)



Find (uε1, pε1) ∈ (H1(Ω\Oε))d × L2(Ω\Oε) such that :
−div(σ(uε1, pε1)) = 0 in Ω \ Oε,

divuε1 = 0 in Ω \ Oε,
σ(uε1, p

ω
1 )n = 0 on ∂Oε,
uε1 = f on Γc,

σ(uε1, p
ε
1)n = η on Γi.

(Pε2)



Find (uε2, pε2) ∈ (H1(Ω\Oε))d × L2(Ω\Oε) such that :
−div(σ(uε2, pε2)) = 0 in Ω \ Oε,

divuε2 = 0 in Ω \ Oε,
σ(uε2, p

ε
2)n = 0 on ∂Oε,
uε2 = τ on Γi,

σ(uε2, p
ε
2)n = Φ on Γc.

(Pε3)



Find (uε3, pε3) ∈ (H1(Ω\Oε))d × L2
0(Ω\Oε) such that :

−div(σ(uε3, pε3)) = 0 in Ω \ Oε,
divuε3 = 0 in Ω \ Oε,

σ(uε3, p
ω
3 )n = 0 on ∂Oε,
uε3 = τ on Γi,
uε3 = f on Γc,

In order to solve the inverse problem (4.1), we use the simplest class of games. Let us
present the following three costs : For (η, τ ;Z) ∈ (H

1
2
00(Γi)

d)′ ×H 1
2 (Γi)

d ×Ω,

J1(η, τ ;Z) =
1

2
||σ(uε1, pε1)n− Φ||2

(H
1
2
00(Γc)d)′

+
1

2
||uε1 − uε2||2H 1

2 (Γi)d
, (4.2)

J2(η, τ ;Z) =
1

2
||uε2 − f ||2H 1

2 (Γc)d
+

1

2
||uε1 − uε2||2H 1

2 (Γi)d
, (4.3)

J3(η, τ ;Z) = 2ν||D(uε3)−D(uε2)||2L2(Ω\Oε)
. (4.4)

We shall say that there are three players : Player 1 and 2 control the respective
strategies η ∈ (H

1
2
00(Γi)

d)′ and τ ∈ H 1
2 (Γi)

d, and try to minimize their own cost, namely,
J1 for Player 1 and J2 for Player 2, such that each cost functional split into a classical
least square term depending only on η in J1 and τ in J2, and a common coupling term
1

2
||uε1 − uε2||2H 1

2 (Γi)d
, which depends on both η and τ , and has a regularization effect in

the partial minimization. Player 3 controls the strategy variable Z = {z1, ..., zm} ∈ Ω,
where no information on the number m is given, and tries to minimize a cost functional
J3 of Kohn-Vogelius type, which basically relies on an identifiability result.

We seek the solution of the original coupled problem as a Nash equilibrium, defined
as follows :

Definition 4.2.1 A triplet (ηN , τN ,ZN) ∈ (H
1
2
00(Γi)

d)′ ×H 1
2 (Γi)

d × Ω is a Nash equili-
brium for the three players game involving the costs J1, J2 and J3 if :

(NE)


J1(ηN , τN ,ZN) 6 J1(η, τN ,ZN), ∀η ∈ (H

1
2
00(Γi)

d)′,

J2(ηN , τN ,ZN) 6 J2(ηN , τ,ZN), ∀τ ∈ H
1
2 (Γi)

d,
J3(ηN , τN ,ZN) 6 J3(ηN , τN ,Z), ∀Z ∈ Ω.
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Remark 4.2.1 If we consider the case where possible object locations are known,
concentrating only on the data completion problem, then the existence of a two-players
Nash equilibrium can be proved by using the partial ellipticity of J1 and J2 with respect
to η and τ , respectively [56, 57]. This property allows us to restrict the search for Nash
equilibria to bounded subsets of the strategy spaces, which remains consistent with the
classical results of conditional stability of the Cauchy problem [3]. The existence of a
three-players Nash equilibrium is much less easy to prove and is out of the scope of the
present paper.

Remark 4.2.2 We sometimes use the improper notation Z ∈ Ω to stipulate that Z is
made of a collection of points in Ω whose size is unknown.

The minimization problem minZ∈ΩJ3 can be formulated as a topological optimiza-

tion problem as follows : for fixed η ∈ (H
1
2
00(Γi)

d)′ and τ ∈ H 1
2 (Γi)

d,

(Pε)


FindZ∗ = {z∗1 , ..., z∗m} ∈ Ω, such that :

J (Ω \ O∗ε ) = min
zk∈Ω J (Ω \ Oε),

where O∗ε = ∪mk=1z
∗
k + εBk ⊂ Ω, and J is defined by

J (Ω \ Oε) = JKV (uε2, uε3) := J3(η, τ ;Z). (4.5)

In order to solve the optimization problem (Pε) above, we will use the notion of
topological gradient. The topological gradient method has been known as an efficient
approach to solving geometric optimization problems. It consists of studying the varia-
tion of a cost function with respect to modifying the topology of the domain Ω. For
simplicity in what follows, we will consider the case of a single object Oz,ε. Notice that
in the case of several inclusions, the results presented below are still valid.

4.2.1 The topological gradient method

The topological sensitivity analysis consists in the study of the variations of a design
functional J with respect to the insertion of a small inclusion Oz,ε at the point z. Then,
an asymptotic expansion of the function J can be obtained in the following form : for
ε > 0

J (Ωz,ε) = J (Ω) + ρ(ε)δJ (z) + o(ρ(ε)), ∀z ∈ Ω,
limε→0 ρ(ε) = 0, ρ(ε) > 0,

where Ωz,ε = Ω \ Oz,ε and the function δJ (z) is the so-called topological gradient.
This function δJ (z) provides an information for creating a small hole located at z.
Hence, it can be used like a descent direction in an optimization process. Therefore, to
minimize the cost function, one has to create small hole at the location z when δJ is
the most negative.
The concept of the topological derivative was introduced by Schumacher [45] in the
case of compliance minimization. Next, Sokolowski et al [91] extended it to a more
general shape functionals. Various kinds of topology optimization problems have been
solved efficiently by using the topological gradient method. It has been widely applied
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in literature for arbitrarily shaped perturbations and a general class of cost functionals
related to PDEs : the elasticity equations [52], Laplace equations [9], Maxwell equations
[79], and stokes system [25], with a homogeneous boundary conditions prescribed on
the boundary of the objects.

An adaptation of the adjoint method to the topological context is developed in [52].
We now present the following proposition that describes a generalized adjoint method
for the computation of the first variation of a given cost functional.

Proposition 4.2.1 Let V be a Hilbert space. For ε ∈ [0, ξ), ξ > 0, consider a function
uε ∈ V that’s solution of a variational problem of the form

Aε(uε, v) = lε(v), ∀v ∈ V

where Aε and lε are a bilinear form and a linear form on V, respectively. For all ε ∈
[0, ξ), consider a functional j(ε) = Jε(uε), where Jε is Frêchet differentiable at the point
u0 and its derivative being denoted DJ (u0). Suppose that the following hypotheses hold :

(i)- There exist two numbers δa, δl and a function ρ(ε) > 0 such that

(Aε −A0)(u0, vε) = ρ(ε)δa+ o(ρ(ε)),

(lε − l0)(vε) = ρ(ε)δl + o(ρ(ε)),

limε→0ρ(ε) = 0,

where vε is an adjoint state satisfying,

Aε(w, vε) = −DJ (u0)w, ∀w ∈ V .

(ii)- There exist a real number δJ such that

Jε(uε) = J0(u0) +DJ (u0)(uε − u0) + ρ(ε)δJ + o(ρ(ε)).

Then, the first variation of the cost function with respect to ε is given by

j(ε) = j(0) + ρ(ε)(δa+ δl + δJ ) + o(ρ(ε)).

4.2.2 Application to the model problem

The aim here is to derive an asymptotic expansion for our functional J defined in
(4.5) following the same steps described in the proposition 4.2.1 above. Then, we shall
give explicitly the variations δa, δl, δJKV .

We start by defining the -control free- Sobolev state spaces : Given g ∈ H 1
2 (Γi)

d and
φ ∈ H 1

2 (∂Ω),

Vε1,g = {v ∈ H1(Ωz,ε)
d, such that divv = 0 inΩz,ε and v|Γi

= g},

and
Vε2,φ = {v ∈ H1(Ωz,ε)

d, such that divv = 0 inΩz,ε and v|∂Ω = φ}.
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The variational formulations associated to problems (Pε2) and (Pε3) can be stated
respectively as follows : ∥∥∥∥ Finduε2 ∈ Vε1,τ such that :

A1,ε(u
ε
2, v) = l1,ε(v), ∀v ∈ Vε1,0,

(4.6)

∥∥∥∥∥ Finduε3 ∈ W = {φ ∈ Vε1,τ / φ|Γc
= f} such that :

A2,ε(u
ε
3, v) = l2,ε(v), ∀v ∈ Vε2,0,

(4.7)

where

A1,ε(u
ε
2, v) = 2ν

∫
Ωz,ε

D(uε2) : D(v) dx,

A2,ε(u
ε
3, v) = 2ν

∫
Ωz,ε

D(uε3) : D(v) dx,

l1,ε(v) =

∫
Γc
Φv ds,

and
l2,ε(v) = 0.

Note that for ε = 0, we have Ω0 = Ω, and (u02, p
0
2) ∈ H1(Ω)d ×L2(Ω) and (u03, p

0
3) ∈

H1(Ω)d × L2
0(Ω) solve the respective boundary value problems :

(P0
2 )


Find (u02, p02) ∈ H1(Ω)d × L2(Ω) such that :

−div(σ(u02, p02)) = 0 in Ω,
divu02 = 0 in Ω,

u02 = τ on Γi,
σ(u02, p

0
2)n = Φ on Γc,

(P0
3 )


Find (u03, p03) ∈ H1(Ω)d × L2

0(Ω) such that :
−div(σ(u03, p03)) = 0 in Ω,

divu03 = 0 in Ω,
u03 = τ on Γi,
u03 = f on Γc.

Variation of the bilinear form A1,ε and A2,ε :
In order to obtain an asymptotic expansion of the variation of the bilinear form, we
will use a simplified technique proposed in [25] for the Stokes system. We can also
use a truncation technique, which is developed in [52] for elasticity equations, with a
Neumann boundary condition on ∂Oz,ε.
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Variation of A1,ε : We are interested in the asymptotic analysis of the variation

(A1,ε −A1,0)(u
0
2, v

ε
1) = −A1,ε(u

ε
2 − u02, vε1) + (l1,ε(v

ε
1)− l1,0(vε1))

= −A1,ε(u
ε
2 − u02, vε1)

= −2ν
∫
Ωz,ε

D(uε2 − u02) : D(vε1) dx

=

∫
∂Oz,ε

σ(u02, p
0
2)n v

ε
1 ds.

According to fundamental assumption (i) carefully formulated in proposition 4.2.1, we
search to find a real number δa1 ∈ R and a scalar function positive ρ such that∫

∂Oz,ε

σ(u02, p
0
2)n v

ε
1 ds = ρ(ε)δa1 + o(ρ(ε)),

limε→0ρ(ε) = 0.

To this end, we start by splitting the integral above,∫
∂Oz,ε

σ(u02, p
0
2)n v

ε
1 ds =

∫
∂Oz,ε

σ(u02, p
0
2)n v

0
1 ds+

∫
∂Oz,ε

σ(u02, p
0
2)n (v

ε
1 − v01) ds

= I1 + I2.

Next, properly using the obtained estimates by Ben Abda et al [25] for each term I1
and I2, which are written as follows

I1 = −2νε2|B|D(u02)(z) : D(v01)(z) + o(ε2),

and
I2 = 2νε2|B|D(u02)(z) : D(v01)(z)− ε2D(u02)(z) :

∫
∂B
µ(y)yT ds+ o(ε2),

where µ ∈ H− 1
2 (∂B)d is the solution to the boundary integral equation : ∀y ∈ ∂B,

−µ(y)
2

+

∫
∂B

[2νDy(E)(x− y)µ(x))n(y)−P (x− y)µ(x)n(y)] ds(x) = −2νD(v01)(z)n(y),

with (E,P ) is the fundamental solution to the stokes system in R2. Therefore, we deduce

(A1,ε −A1,0)(u
0
2, v

ε
1) = −ε2D(u02)(z) :

∫
∂B
µ(y)yT ds+ o(ε2).

If B = B(0, 1), using the same technique as that used in [25], we obtain

δa1 = −4νD(u02)(z) : D(v01)(z),

where v01 ∈ V0
1,0 is the solution to the associated adjoint problem :

A1,0(w, v
0
1) = −∂u02JKV (u

0
2, u

0
3)w, ∀w ∈ V0

1,0.

Variation of A2,ε : Let us mention that the same bilinear form is available also for the
(Pε3), namely, A1,ε ≡ A2,ε. Thus, the variation of A1,ε associated to (Pε3) is written as
follows :

(A2,ε −A2,0)(u
0
3, v

ε
2) = −4νπε2D(u03)(z) : D(v02)(z),
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where v02 ∈ V0
2,0 is the solution to the associated adjoint problem :

A2,0(w, v
0
2) = −∂u03JKV (u

0
2, u

0
3)w, ∀w ∈ V0

2,0.

Variation of the linear form l1,ε and l2,ε :
Since l1,ε and l2,ε are independent of ε, it follows trivially that δl1 = δl2 = 0.

Variation of the cost functional JKV :
Let us now turn to the asymptotic analysis of the variation of the Kohn-Vogeluis func-
tional given by

JKV (uε2, uε3) = 2ν

∫
Ωz,ε

D(uε3 − uε2) : D(uε3 − uε2) dx.

One can decompose this above functional as follows :

JKV (uε2, uε3) = J1(u
ε
2) + J2(u

ε
3)− 2J12(u

ε
2, u

ε
3),

where
J1(u

ε
2) = 2ν

∫
Ωz,ε

D(uε2) : D(uε2) dx,

J2(u
ε
3) = 2ν

∫
Ωz,ε

D(uε3) : D(uε3) dx,

J12(u
ε
2, u

ε
2) = 2ν

∫
Ωz,ε

D(uε2) : D(uε3) dx.

Variation of J1 : The variation of J1 reads

J1(u
ε
2)− J1(u

0
2) = 2ν

∫
Ωz,ε

D(uε2) : D(uε2) dx− 2ν

∫
Ω
D(u02) : D(u02) dx

= 2ν

∫
Ωz,ε

D(uε2 − u02) : D(uε2) dx+ 2ν

∫
Ωz,ε

D(uε2 − u02) : D(u02) dx

−2ν
∫
Oz,ε

D(u02) : D(u02) dx

Using the Green formula applied to the problem (Pε2), we get

2ν

∫
Ωz,ε

D(uε2 − u02) : D(uε2) dx =

∫
Γc
Φ(uε2 − u02) ds.

Then, it follows that

J1(u
ε
2)− J1(u

0
2) = 2ν

∫
Ωz,ε

D(uε2 − u02) : D(u02) dx− 2ν

∫
Oz,ε

D(u02) : D(u02) dx

+

∫
Γc
Φ(uε2 − u02) ds.

(4.8)
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Variation of J2 : The variation of J2 reads

J2(u
ε
3)− J2(u

0
3) = 2ν

∫
Ωz,ε

D(uε3) : D(uε3) dx− 2ν

∫
Ω
D(u03) : D(u03) dx

= 2ν

∫
Ωz,ε

D(uε3 − u03) : D(uε3) dx+ 2ν

∫
Ωz,ε

D(uε3 − u03) : D(u03) dx

−2ν
∫
Oz,ε

D(u03) : D(u03) dx

Using the Green formula, one can get from (Pε3) that

2ν

∫
Ωz,ε

D(uε3 − u03) : D(uε3) dx = 0.

Then, we obtain

J2(u
ε
2)− J2(u

0
2) = 2ν

∫
Ωz,ε

D(uε3 − u03) : D(u03) dx− 2ν

∫
Oz,ε

D(u03) : D(u03) dx. (4.9)

Variation of J12 : The variation of J12 reads

J12(u
ε
2, u

ε
3)− J12(u

0
2, u

0
3) = 2ν

∫
Ωz,ε

D(uε2) : D(uε3) dx− 2ν

∫
Ω
D(u02) : D(u03) dx.

Using the Green formula applied to (Pε2) and (P0
2 ), we obtain

2ν

∫
Ωz,ε

D(uε2) : D(uε3) dx =

∫
Γc
Φf ds+

∫
Γi
σ(uε2, p

ε
2)n τ ds.

2ν

∫
Ω
D(u02) : D(u03) dx =

∫
Γc
Φf ds+

∫
Γi
σ(u02, p

0
2)n τ ds.

Then, we deduce

J12(u
ε
2, u

ε
3)− J12(u

0
2, u

0
3) =

∫
Γi
σ(uε2 − u02, pε2 − p02)n τ ds. (4.10)

Combining the variation (4.8), (4.9) and (4.10), the variation of the functional JKV
becomes

JKV (uε2, uε3)− JKV (u02, u03) = −2ν
∫
Oz,ε

D(u02) : D(u02) dx− 2ν

∫
Oz,ε

D(u03) : D(u03) dx

+2ν

∫
Ωz,ε

D(uε2 − u02) : D(u02) dx+ 2ν

∫
Ωz,ε

D(uε3 − u03) : D(u03) dx

+

∫
Γc
Φ(uε2 − u02) ds− 2

∫
Γi
σ(uε2 − u02, pε2 − p02)n τ ds.

Then for ε ∈ [0, ξ), we get

DJKV (u02, u03)(uε2 − u02, uε3 − u03) = 2ν

∫
Ωz,ε

D(uε2 − u02) : D(u02) dx

+2ν

∫
Ωz,ε

D(uε3 − u03) : D(u03) dx+
∫
Γc
Φ(uε2 − u02) ds

−2
∫
Γi
σ(uε2 − u02, pε2 − p02)n τ ds.
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Thus, we have

JKV (uε2, uε3)− JKV (u02, u03) = DJKV (u02, u03)(uε2 − u02, uε3 − u03)

−2ν
∫
Oz,ε

D(u02) : D(u02) dx− 2ν

∫
Oz,ε

D(u03) : D(u03) dx.
(4.11)

Next, the second term on the right hand side of (4.11) may be written as

2ν

∫
Oz,ε

D(u02) : D(u02) dx = 2ν

∫
Oz,ε

D(u02)(z) : D(u02)(z) dx

+ 2ν

∫
Oz,ε

[D(u02)−D(u02)(z)] : D(u02) dx

+ 2ν

∫
Oz,ε

D(u02)(z) : [D(u02)−D(u02)(z)] dx.

Using the Taylor theorem and the change of variables x = z + εy, we obtain

2ν

∫
Oz,ε

D(u02) : D(u02) dx = 2νε2|B|D(u02)(z) : D(u02)(z) + o(ε2).

The same way for the third term, we have

2ν

∫
Oz,ε

D(u03) : D(u03) dx = 2νε2|B|D(u03)(z) : D(u03)(z) + o(ε2).

Thus,
δJKV = −2νπ(|D(u02)(z)|2 + |D(u03)(z)|2).

Now, we are ready to give the main result of this paper.

Theorem 4.2.1 If d = 2, the function J has the following asymptotic expansion

J (Ωz,ε)− J (Ω) = πεd(δa1(u
0
2, v

0
1) + δa2(u

0
3, v

0
2) + δJKV (u02, u03)) + o(εd),

where ∀z ∈ Ω, we have
δa1(u

0
2, v

0
1) = −4νD(u02)(z) : D(v01)(z),

δa2(u
0
3, v

0
2) = −4νD(u03)(z) : D(v02)(z),

δJKV (u02, u03) = −2(|D(u02)(z)|2 + |D(u03)(z)|2),

with v01 ∈ V0
1,0 and v02 ∈ V0

2,0 are solutions to the adjoint equations associated respectively
to the (P0

2 ) and (P0
3 ) :

A1,0(w, v
0
1) = −∂u02J (u

0
2, u

0
3)w, ∀w ∈ V0

1,0,

A2,0(w, v
0
2) = −∂u03J (u

0
2, u

0
3)w, ∀w ∈ V0

2,0.

We now present a novel algorithm dedicated to the Nash equilibrium computation,
which is described below. The algorithm is divided into two main steps : In the
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first, Player 3 seeks to identify the number and the best locations of the objects
by minimizing J3 and using a one-shot algorithm based on a topological derivative.
In the second one, players 1 and 2 play a Nash subgame in order to precondition
the Cauchy problem and tackle its ill-posedness. To save overall computation time,
we consider parallel implementations for the computation of the two-players Nash
equilibrium based on the alternating minimization algorithm introduced in [12] ; we
can also assume that the players solve their partial optimization problems sequentially,
not simultaneously. Those algorithms are similar to alternating and parallel Schwarz
methods. A fixed-step gradient method is used to solve the partial optimization
problems of J1 and J2.

Algorithm 4.2.1: Computation of the Nash equilibrium (ηN , τN ,ZN)
Given : convergence tolerances εS, εN , Nmax a computational budget per Nash
iteration, Kmax a maximum Nash iterations.
Set k = 0 and choose an initial guess S(0) = (η(0), τ (0)) ∈ (H

1
2
00(Γi)

d)′ ×H 1
2 (Γi)

d :
• Step I : Fix an initial shape Ok = ∅ and use the one-shot algorithm to determine

Z(k+1) = argmin
x∈ΩJ3(η

(k), τ (k);x).

• Step II : Solve the Nash game between η and τ : Set p = 0.
Set Ω(k+1) = Ω \ Ok+1, where Ok+1 =

⋃mk
i=1 B(zi, r).

1. Compute η(p), which solves minηJ1(η, τ
(p);Z(k+1)).

Evaluate η(p+1) = αη(p) + (1− α)η(p), with 0 ≤ α < 1.
2. Compute τ (p), which solves minτJ2(η

(p), τ,Z(k+1)).
Evaluate τ (p+1) = ατ (p) + (1− α)τ (p), with 0 ≤ α < 1.
3. Set S(p+1) = (η(p+1), τ (p+1)).
While ‖S(p+1) − S(p)‖ > εS and p < Nmax, set p = p+ 1, return back to

step 1.
• Step III : Compute rk = ||u(k)2 − f ||0,Γc , where (u

(k)
2 , p

(k)
2 ) is the solution of the

problem (Pε2). If rk < εN stop. Otherwise k = k + 1, go to Step I.

4.3 Numerical simulations.

In this section, we will present some numerical reconstructions in two dimensions
to show the efficiency of our novel approach, using synthetic data generated via a
finite element resolution of boundary value problem, corresponding to a homogeneous
Neumann condition on the boundary ∂O∗ε with the code FreeFem++ [61].

The exterior boundary is assumed to be the rectangle Ω = [−0.5, 0.5]×[−0.25, 0.25],
which will be split in two components : the inaccessible part of the boundary Γi =
{0.5} × [−0.25, 0.25] and the accessible part Γc = ∂Ω \ Γi, where the Cauchy data are
available.
In the following, the subscripts ex and opt denote, respectively, exact and optimal
values.
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Case A- Single object : First, we start testing the detection of a single
circle O∗ = C(zex, r) centered at zex and with radius r where zex = (−0.3,−0.15) and
r = 0.025.
Figure 4.2 presents the evolution of the three costs functionals as functions of overall
Nash iterations for unnoisy data. We observe that during the early Nash iteration
process, Player 1 shows a fast decrease of its cost J1 then stagnates around 0.005, while
the other players 2 and 3 continuously improve their own cost J2 and J3 respectively.
The fact that each player controls only his strategy, while there is a strong dependence
of each player’s cost on the joint strategy, justifies the game theory framework employed
to formulate the iterative negotiation between the costs. Typical of a static Nash
equilibrium, the three players then proceed in the negotiation until none of them can
unilaterally improve its cost, a behavior which is observed around iteration 18. The
detection is quite efficient, see Figure 4.3(a)-(b), where 3(a) presents the iso-values
of the topological gradient and 3(b) presents the obtained domain at convergence.
Figure 4.4 show the reconstructed Dirichlet and Neumann boundary data. It can be
seen that the reconstructed Dirichlet data give a good approximation for the exact
one, while the reconstructed Neumann data deviate from the exact one, especially
near the endpoints of the unspecified boundary, which is the region of singularities. At
convergence, the approximate location zopt is equal to (−0.294,−0.174) and the relative

error on Dirichlet data
||τopt − uex||L2(Γi)
||uex||L2(Γi)

and Neumann data
||ηopt − σ(uex, pex)n||L2(Γi)
||σ(uex, pex)n||L2(Γi)

are equal to 0.003 and 0.073 respectively.

Figure 4.2 – Case A- . Plots of the three costs J1, J2 and J3 as functions of overall Nash
iterations

Case B- Two objects : For this test, we want to detect two circles O∗1 and O∗2
centered respectively at (−0.4,−0.15) and (−0.4, 0.15), with shared radius r = 0.025.
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The numerical results are illustrated in Figure 4.5 and 4.6. Figure 4.5 shows the iso-
values of the topological gradient and the obtained domain at convergence. The optimal
locations are equal to (−0.422006,−0.160662) and (−0.416224, 0.159772). In Figure
4.6, we present the reconstruction of the missing Dirichlet and Neumann boundary data.

4.4 Conclusion

In the present work, we addressed the coupled inverse problem of recovering the
missing boundary data and determining the best locations of an unknown number of
small objects included in a stationary viscous fluid. To treat this problem, we have
proposed to formulate it as static with complete information Nash game, where the
two first players target the data completion while the third one seeks to determine
the number and the locations of the objects. The latter problem (identification) is
formulated as a topological one. Topological sensitive analysis related to a considered
Kohn-Vogelius functional has been investigated. Then we have introduced a new algo-
rithm for computing the Nash equilibrium for three players. We have then presented
two test-cases, which showed that small inclusions close to the accessible part of the
boundary could be recovered, as well as the missing boundary data on the inaccessible
part.

(a) (b)

Figure 4.3 – Case A- Detection of a single object (for unnoisy data). (a) the iso-values
of the topological gradient at convergence (b) the approximate location zopt is equal to
(−0.294,−0.174), while the exact one zex is equal to (−0.3,−0.15).

104



(a) (b)

(c) (d)

Figure 4.4 – Case A- Reconstruction of the missing boundary data (for unnoisy data). (a)
exact -line- and computed -dashed line- first component of the velocity over Γi (b) exact -
line- and computed -dashed line- second component of the velocity over Γi (c) exact -line-
and computed -dashed line- first component of the normal stress over Γi (d) exact -line- and
computed -dashed line- second component of the normal stress over Γi.
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(a) (b)

Figure 4.5 – Case B- Detection of two objects (for unnoisy data). (a) the iso-values
of the topological gradient at convergence (b) the approximate locations are equal to
z1opt = (−0.422006,−0.160662) and z2opt = (−0.416224, 0.159772), while the exact ones are
equal to z1ex = (−0.4,−0.15) and z2ex = (−0.4, 0.15).

(a) (b)

(c) (d)

Figure 4.6 – Case B- Reconstruction of the missing boundary data (for unnoisy data). (a)
exact -line- and computed -dashed line- first component of the velocity over Γi (b) exact -
line- and computed -dashed line- second component of the velocity over Γi (c) exact -line-
and computed -dashed line- first component of the normal stress over Γi (d) exact -line- and
computed -dashed line- second component of the normal stress over Γi.
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CHAPTER 5
A Nash game strategy to model the nonlinear
Cauchy-Stokes problems : Quasi-Newtonian
flow

“ The definition of insanity is
doing the same thing over and
over again, but expecting
different results. "

Albert Einstein

Abstract. In this work, two iterative procedures (conjugate gradient- classic me-
thod CM- and Nash game method NGM) for obtaining a solution to the Cauchy-Stokes
problem in quasi-Newtonian fluid flow obeying the Carreau law are presented and
compared. This model is well known to be severely ill-posed. Each of the two strategies
reduces the ill-posed problem to solving a series of well-posed mixed BVPs. The state
equations are nonlinear due to the non-linearity of the fluid viscosity function, and
their numerical treatment demands some particular algorithms during the overall
iterations. Two schemes are presented to solve the nonlinear state equations, the
first is a fixed-point algorithm FPA, and the second is a novel one-shot scheme NS
that we proposed described a new way for solving the nonlinear Cauchy problem.
We present numerical results that illustrate the proposed methods’ efficiency and
robustness for solving our inverse problem. A comparison of the numerical results
was performed to show our new scheme’s performance. This paper also contributes
to recovering the location and shape of some objects immersed in the flow domain
and the missing boundary data simultaneously. A Nash game formulation of this
nonlinear geometric Cauchy-Stokes problem and a new algorithm for its solution is
given. The numerical experiments performed using the finite-element method show the
game-based algorithm’s relevance and efficiency.
keywords : Cauchy problem, quasi-Newtonian flow, data completion, Nash game,
geometric inverse problem.

The content of this chapter is a work in progress, in collaboration with Abderrahmane
Habbal and Moez Kallel.
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5.1 Introduction

This work is concerned with reconstructing a nonlinear Stokes flow governed by
the partial differential equations PDEs, which arises in modeling flows of, for example,
biological or polymeric fluids, where the viscosity varied upon the imposed strain tensor.
Our nonlinear Cauchy-Stokes problem here is given by

−div(2ν(I(u))D(u)) +∇p = 0 in Ω,
divu = 0 in Ω,

u = f on Γc,
σ(u, p)n = Φ on Γc,

(5.1)

where Ω is the flow region, a bounded open domain in Rd (d=2, 3) with a sufficiently
smooth boundary ∂Ω, and Γc is an accessible part of ∂Ω. The motion of our incom-
pressible fluid is described by the velocity u and pressure p. The stress tensor σ(u, p)
defined as follows :

σ(u, p) = −pId + 2ν(I(u))D(u) (5.2)

with D(u) =
1

2
(∇u+∇uT ) represents the deformation (rate-of-strain) tensor, the

shear rate I is defined by I(u) =
1

2
D(u) : D(u), and the function ν describes the

nonlinear viscosity of the fluid. The fluid flows satisfying (5.2) for a function ν to be
typically specified are called quasi-Newtonian.
Some classical examples of ν are given by ; (a) The Carreau law

ν(z) = ν∞ + (ν0 − ν∞)(1 + λz)
r−2
2 ,

(b) the power law
ν(z) = ν0z

r−2
2 ,

where λ > 0 is a constant, ν0 and ν∞ are positive constants assumed to satisfy
ν0 > ν∞ > 0 and 1 < r <∞ is a fluid characteristic real parameter. Note that, r = 2 in
both models of ν leads to ν = ν0, that is, the power law and the Carreau’s law reduces
to a Newtonian fluid model. When r < 2, the fluid is said, shear thinning or pseudo-
plastic. This designates the fact that the system’s viscosity decreases as the shear rate
is increased : the power law is quite similar to the case of Carreau’s law with ν∞ = 0
and tends to zero. Shear-thinning is the most common type of non-Newtonian behavior
of fluids and is seen in many industrial and everyday applications. When r > 2, the
viscosity increases with the shear strain, and the fluid is said shear thickening or dilatant.

The Cauchy problem is a difficult issue, and it is ill-posed in the Hadamard
sense [59]. In fact, the existence of solutions for arbitrary Cauchy data cannot be
guaranteed, and even it exists, it does not depend continuously on the data. The linear
elliptic Cauchy problems are already discussed in many published works by several
numerical approaches, which were carefully considered, for instance, classical numerical
methods [2, 10, 72], and game theory approaches [56, 55, 57]. What concerns nonlinear
elliptic Cauchy problems, the level set approach proposed in [42], which is based on a
Tikhonov regularization method. In [73], the authors proposed two iterative methods
based on the segmenting Mann iteration applied to fixed point equations. The first
approach consists of transforming the nonlinear Cauchy problem into a linear Cauchy
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problem and analyzing a linear fixed point equation. A nonlinear fixed point equation
is considered on the second approach, and a thoroughly nonlinear iterative method is
investigated. Avdonin et al used in [14] an iterative method for solving a nonlinear
elliptic Cauchy problem in glaciology. In [66], the authors used a game strategy to
solve the image inpainting problem as a nonlinear Cauchy problem. However, to the
best of our knowledge, there are no papers devoted to the present problem (5.1), which
consists of recovering in quasi-Newtonian fluid flow models the missing data on the
inaccessible part ∂Ω \ Γc, i.e., nonlinear Cauchy-Stokes problem.

A secondary problem is also studied in the quasi-Newtonian flow framework, where
we supposed that there is ω∗ an unknown object immersed in the flow domain Ω.
Thus, the considered problem here is finding the location and shape of this object ω∗,
using incomplete measurements on the boundary. For this case, we’re gonna complete
the missing boundary data and recover the inclusion(s). In particular, with r = 2, we
properly recover the linear inverse inclusion Cauchy-stokes problem [57].

The manuscript is organized as follows : In Section 2, the nonlinear mixed boun-
dary value problem’s solution’s existence and uniqueness are proved. A density result
for compatible data of the nonlinear Cauchy problem is demonstrated. Next, we re-
phrased the data completion problem as an optimization one, and we presented two
different approaches, a control-type regularized and a Nash game approach. To solve
the nonlinear state equations, we proposed a novel one-shot scheme. Then, we compared
it with the classic algorithm of the fixed-point. In section 3, we formulated the joint
completion/detection problem as three players, and we proposed a new algorithm for
its numerical solution. Some numerical examples presented in Section 4 corroborate the
proposed methods’ efficiency and robustness for the data completion and the coupled
problems.

5.2 Data completion problem for the quasi-
Newtonian flow

In this section, we focus on the problem of reconstructing velocity u and pressure
p from partial boundary measurements, which described as a solution of the following
system : 

−div(2ν(I(u))D(u)) +∇p = 0 in Ω,
divu = 0 in Ω,

u = f on Γc,
σ(u, p)n = Φ on Γc,

(5.3)

where f and Φ are given functions that will be specified later. The data completion
problem, which is a reformulation of the nonlinear Cauchy-Stokes one, amounts to find
η∗ = σ(u, p)n|Γi

and τ ∗ = u|Γi
, where Γi = ∂Ω \ Γc.

The Stokes equation with different boundary conditions, Dirichlet or a combination
of a Dirichlet-Neumann boundary condition, can be formulated variationally. In the
following subsection, we present the existence and uniqueness result of a weak solution
for the following direct nonlinear mixed boundary-value problem : for a given function η,
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(Pd)


−div(2ν(I(u))D(u)) +∇p = 0 in Ω,

divu = 0 in Ω,
u = f on Γc,

σ(u, p)n = η on Γi.

We limit ourselves in this work to the Quasi-Newtonian flows whose viscosity obeys the
Carreau law, but the presented methods can properly be applied to other laws.

5.2.1 The direct Problem

The well-posedness of the direct quasi-Newtonian fluid flow problem and its
standard finite element approximation are well demonstrated precisely in [18, 39]
for homogeneous Dirichlet boundary conditions. In this paragraph, we formulate the
variational model associated to nonlinear mixed boundary-value problem (Pd), and we
also indicate how the existence and uniqueness of solution is obtained.

Before giving the weak formulation of the direct problem (Pd). Let us introduce some
notations that will be used throughout this paper : The Lebesgue space is denoted as
usual Lp(Ω), 1 ≤ p ≤ ∞, with norms ||.||Lp . For any non-negative integer m and real
number p ≥ 1, the classical Sobolev spaces Wm,p(Ω) is defined to be

Wm,p(Ω) =

{
u ∈ Lp(Ω) | ∀α such that |α| ≤ m, Dαu ∈ Lp(Ω)

}
.

For p ∈]1, 2], we let
χp = (W 1,p(Ω))d,

χpg = {v ∈ χp, such that v|Γc
= g},

κpφ = {v ∈ χ
p, such that v|Γi

= φ},

and
χpg,div =

{
v ∈ χp, such that divv = 0 inΩ and v|Γc

= g

}
.

From the Sobolev trace theorem [31], a necessary and sufficient condition for the
boundary condition f and η to satisfy f = u|Γc

and η = σ(u, p)n|Γi
when u ∈ χp is

f ∈ χΓc = W 1− 1
p
,p(Γc)

d, and η belongs to the dual space of trace χ′Γi = (W 1− 1
p
,p(Γi)

d)′.

The variational principle corresponding to the equations (Pd) with viscosity well
specified is

(Om)
{

Findu ∈ V such that,
J(u) = infw∈V J(w)

where

J(w) =

∫
Ω

∫ I(w)

0

ν(t) dt dx−
∫
Γi
ηw ds, ∀w ∈ V,

and
V =

{
v ∈ X such that divv = 0 in Ω and v|Γc

= f

}
,
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with X is a functional space to be specified depending on the viscosity function ν. Now,
when the quasi-Newtonian flow obeying the Carreau law, the functional J takes the
following form :

J(w) =

∫
Ω

⌊
ν∞
2
|D(w)|2 + 2

λr
(ν0 − ν∞)[(1 +

λ

2
|D(w)|2)

r
2 − 1]

⌋
dx−

∫
Γi
ηw ds, ∀w ∈ V,

these terms are well bounded when w ∈ W 1,p(Ω)d with p = r if ν∞ = 0, otherwise
p = max(2, r). Hereafter, we consider then the case where ν∞ > 0 and 1 < r ≤ 2, which
implies that X := χp is the Hilbert space H1(Ω)d (i.e. p = 2 and V = χ2

f,div), and the
spaces χΓc , χ

′
Γi

are respectively H
1
2 (Γc)

d and (H
1
2 (Γi)

d)′. Therefore, we assume that the
function ν satisfies the structural hypothesis stated in Hypothesis 5.2.1 below :

Assumptions 5.2.1 We assume that the nonlinearity ν satisfies the following condi-
tions :

(i) ν ∈ C1(R+).
(ii) There exist constants mν , Mν > 0 such that

mν 6 ν(t) 6Mν , ∀t > 0.

(iii) There exist constants C1, C2 > 0 such that, for all τ, ω ∈ Rd×d

|ν(|τ |)τ − ν(|ω|)ω| 6 C1|τ − ω|, (5.4)

C2|τ − ω|2 6 (ν(|τ |)τ − ν(|ω|)ω) : (τ − ω). (5.5)

It is easy to see that the direct weak formulation of (Pd) is the Euler-Lagrange
equation of J, if u is solution of (Om), then u solves the direct weak formulation of (Pd).
Conversely, if u is a weak solution, then it is a minimum of J, which is characterized by
J′(u).v = 0 for all v ∈ χ2, divv = 0 and v = 0 on Γc. Multiplying the first equation of
(Pd) by any test function ϕ that must belong to χ2

0, integrating over Ω and performing
an integration by parts, we obtain the following weak form∫

Ω
2ν(I(u))D(u) : ∇ϕdx−

∫
Ω
p divϕdx =

∫
Γi
ηϕ ds, ∀ϕ ∈ χ2

0, (5.6)

that is, for all ϕ ∈ χ2
0 satisfies divϕ = 0,∫

Ω
2ν(I(u))D(u) : ∇ϕdx−

∫
Γi
ηϕ ds = 0.

Therefore, the functional J is Gâteaux differentiable (see Proposition 2.1 of Baranger
and Najib [18]).

Proposition 5.2.1 The optimization problem (Om) admits a unique solution
u ∈ χ2

f,div.
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Proof. We start by proving that the potential J is continuous. Let h be a function
in χ2

0, then we have

J(u+ h)− J(u) =

∫
Ω

∫ I(u+h)

0

ν(t) dt dx−
∫
Ω

∫ I(u)

0

ν(t) dt dx−
∫
Γi
ηh ds.

We define now a function H : R+ → R+ by
∫ z

0

ν(t) dt, and graciously according to

the Mean-Value Theorem applied for the continuous function H, we deduce that there
exists 0 < α < 1 such that

H(I(v + h))−H(I(v)) = H ′(Q) (I(v + h)− I(v)),

with
Q = αI(v + h) + (1− α)I(v).

Therefore,

J(v + h)− J(v) =

∫
Ω
H ′(Q) (I(v + h)− I(v)) dx−

∫
Γi
ηh ds

=

∫
Ω
ν(Q)(I(v + h)− I(v)) dx−

∫
Γi
ηh ds

=
1

2

∫
Ω
ν(Q)(|D(v + h)|2 − |D(v)|2) dx−

∫
Γi
ηh ds

=
1

2

∫
Ω
ν(Q)(2D(v) : D(h) + |D(h)|2) dx−

∫
Γi
ηh ds.

Applying the condition (ii) and the continuity of the trace operator from H1(Ω)d to
L2(Γi), for all h ∈ χ2

0 we have

|J(v + h)− J(v)| 6 (c1||D(v)||
L2(Ω)

+ c2||η||L2(Γi) + c3||h||H1(Ω)d
)||h||

H1(Ω)d
.

where c1, c2 and c3 are positive constants. Thus, this inequality implies that the func-
tional J is continuous. Next, we show that the functional J is strongly convex. Clearly,

J′′(v;ψ, h) =
d

dt

{∫
Ω
ν(I(v + th))D(v + th) : D(ψ) dx

}
t=0

,

=

∫
Ω
ν(I(v))D(h) : D(ψ) dx+

1

2

∫
Ω
ν ′(I(v))(D(v) : D(h)) (D(v) : D(ψ)) dx,

Now, for h = ψ we get

J′′(v;ψ, ψ) =

∫
Ω
ν(I(v))|D(ψ)|2 dx+ 1

2

∫
Ω
ν ′(I(v))(D(v) : D(ψ))2 dx.

Not since 1 < r 6 2, we have that ν ′ < 0, and from the Cauchy-Schwartz inequality,

J′′(v;ψ, ψ) >
∫
Ω
(ν(I(v)) + ν ′(I(v))I(v))|D(ψ)|2 dx,

>
∫
Ω
F (I(v))|D(ψ)|2 dx,

with F (t) = ν(t) + ν ′(t)t, where,

ν(t) = ν∞ + (ν0 − ν∞)(1 + λt)
r−2
2 ,
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ν ′(t) =
(r − 2)λ

2
(ν0 − ν∞)(1 + λt)

r−4
2 .

Thus,

F (t) = ν∞ + (ν0 − ν∞)(1 + λt)
r−2
2 +

(r − 2)λ

2
(ν0 − ν∞)(1 + λt)

r−4
2 t,

or as long as 1 < r 6 2 , we have that (r − 2)λt > (r − 2)(1 + λt).

Therefore,

F (t) > ν∞ + (ν0 − ν∞)(1 + λt)
r−2
2 +

(r − 2)

2
(ν0 − ν∞)(1 + λt)

r−2
2 ,

= ν∞ +
r

2
(ν0 − ν∞)(1 + λt)

r−2
2 ,

> ν∞ +
r

2
(ν0 − ν∞) > 0,

which implies that there exists δ > 0 such that,

J′′(v;ψ, ψ) > δ||D(ψ)||2
L2(Ω)

,

using Poincare-Wirtinger’s inequality, we obtain

J′′(v;ψ, ψ) > c′||ψ||2
H1(Ω)d

, ∀ψ ∈ χ2
0.

Then, we conclude that J is a strongly convex function. Therefore, the optimization
problem (Om) admits a unique solution v ∈ χ2

f,div, for 1 < r 6 2. �

Now, we consider the mixed weak formulation of (Pd). Since we will be working
with the pressure, and according to the second term of (5.6), it is convenient to
introduce the pressure spaceM2 := L2(Ω).

Thus, the mixed weak formulation of the Stokes problem (Pd) writes
Find (u, p) ∈ χ2

f ×M2 such that :
A(u;u, ϕ) +B(ϕ, p) = l(ϕ), ∀ϕ ∈ χ2

0

B(u, q) = 0, ∀q ∈M2
(5.7)

where
A(u;u, ϕ) =

∫
Ω
2ν(I(u))D(u) : ∇ϕdx,

B(u, q) = −
∫
Ω
q divu dx,

l(ϕ) =

∫
Γi
ηϕ ds.

Furthermore, the above problem (5.7) can appear as a saddle-point formulation of the
minimization problem (Om) under the incompressibility constraint divu = 0. Let us
introduce the following Lagrangian functional on χ2

f × L2(Ω) :

L(w, q) := J(w) +B(w, q)

=

∫
Ω

∫ I(w)

0

ν(t) dt dx−
∫
Ω
q divw dx−

∫
Γi
ηw ds.
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The lagrangian L is convex and coercive with respect to u, due to the strong convexity of
the functional J and linear with respect to p and then concave. Moreover, the lagrangian
L is Gâteaux-differentiable with respect each variable u and p, hence L is weakly lower
semi-continuous in u and weakly upper semi-continuous in p. According to Ekeland and
Temam ([43] Proposition 2.4 page 164), the functional L admits at least one saddle-
point (u∗, p∗) on χ2

f × L2(Ω), which satisfies :

L(u∗, p∗) = min
u∈ χ2

f
sup

p∈L2(Ω)
L(u, p)

= max
p∈L2(Ω)

inf
u∈ χ2

f
L(u, p).

Then, from the existence of the saddle-point of the lagrangian L and the existence and
uniqueness of the solution of the minimization problem (Om), the uniqueness of u of
the saddle-point of the lagrangian is ensured but not the uniqueness of the Lagrange
multiplier part p which is in L2(Ω). Whereas the Neumann type condition on the part
of the boundary implies the uniqueness of the direct problem’s pressure. This yields the
existence and uniqueness of a weak solution (u∗, p∗) associated to (Pd).

5.2.2 Existence of the Cauchy-Stokes solution

Existence solution to the Cauchy-Stokes problem (5.3) is not guaranteed for any
pair of data and depends on the compatibility of f and Φ. They are said compatible
if the corresponding Cauchy problem has a solution. For a fixed f ∈ H 1

2 (Γc)
d, we show

in the Lemma 5.2.1 below that the set of compatible data Φ with f is dense in (H
1
2 (Γc)

d)′.

Lemma 5.2.1 Let (f, Φ) the data on Γc. For fixed f ∈ H
1
2 (Γc)

d, and (u, p) ∈ H1(Ω)d×
L2(Ω) satisfies the Cauchy problem, then, the set

D = {Φ ∈ (H
1
2 (Γc)

d)′, such that f andΦ are compatible},

is dense in (H
1
2 (Γc)

d)′.

Proof. We assume that f = 0, and let (u, p) be the solution of the following problem,
−div(2ν(I(u))D(u)) +∇p = 0 in Ω,

divu = 0 in Ω,
u = 0 on Γc,

σ(u, p)n = Φ on Γc.

Denote by D0 the set of compatible data Φ with the Dirichlet condition f = 0 on Γc,

D0 = {Φ ∈ (H
1
2 (Γc)

d)′, such that 0 andΦ are compatible}.

Let λ ∈ D⊥0 , then λ ∈ H
1
2 (Γc)

d such that

(λ, φ) = 0, ∀φ ∈ D0. (5.8)

Now, we consider the following direct nonlinear BVP :
−div(2ν(I(u0))D(u0)) +∇p0 = 0 in Ω,

divu0 = 0 in Ω,
u0 = 0 on Γc,

σ(u0, p0)n = ξ on Γi,

(5.9)
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where ξ ∈ (H
1
2 (Γc)

d)′, and let (v, q) be the unique solution of the following linear mixed
BVP, 

−div(2ν(I(u0))D(v)) +∇q = 0 in Ω,
divv = 0 in Ω,

v = λ on Γc,
−qn+ 2ν(I(u0))D(v)n = 0 on Γi.

(5.10)

From the second Green’s formula applied to (u0, p0) and (v, q), we conclude that∫
∂Ω

(σ(u0, p0)nv − σ(v, q)nu0) ds = 0.

The integral is defined in the sense of duality. It flows from u0|
Γc

= 0 and σ(v, q)n|Γi
= 0

that ∫
Γi
ξvds = 0, ∀ξ ∈ (H

1
2 (Γc)

d)′,

which implies v|Γi
= 0. Therefore, the solution (v, q) satisfies the upcoming system,

−div(2ν(I(u0))D(v)) +∇q = 0 in Ω,
divv = 0 in Ω,

v = 0 on Γi,
−qn+ 2ν(I(u0))D(v)n = 0 on Γi.

Thus, thanks to the unique continuation property for the linear Stokes system [47], we
have v = 0 in Ω, and consequently λ = 0.

For any fixed f 6= 0. Under the assumption f ∈ H 1
2 (Γc)

d, let f̃ ∈ H1(Ω)d in order
that f̃|Γc = f , and divf̃ = 0 in Ω. Then, we reduced the Dirichlet condition u|Γc

= f

to a homogeneous condition. The Cauchy problem (5.3) can be written with unknown
function (w, p) as follows :

−div(2ν(I(w + f̃))D(w + f̃)) +∇p = 0 in Ω,
divw = 0 in Ω,

w = 0 on Γc,

σ(w + f̃ , p)n = Φ on Γc.

Therefore, the density result in this case can be obtained by the same previous argu-
ments of the fixed data f = 0. �

Remark 5.2.1 For a fixed Φ ∈ (H
1
2 (Γc)

d)′, we can put into service the same process
of Lemma 5.2.1 proof to demonstrate a particular case for Φ = 0, that is, the set
D0 = {f ∈ H

1
2 (Γc)

d, such that fand 0 are compatible} is dense in H
1
2 (Γc)

d. However, this
march is useless for any fixed Φ 6= 0, due to the nonlinear function.

5.2.3 A control-type method for solving the nonlinear Cauchy-
Stokes problem

In this subsection, we propose to use a control-type regularized data recovery
process that generalized the method given in [2] for the linear case. Then, we re-
formulate the considered nonlinear Cauchy-Stokes problem (5.3) as an optimization one.
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For any given η ∈ (H
1
2 (Γi)

d)′ and τ ∈ H 1
2 (Γi)

d, we define the states (u1(η), p1(η)) ∈
χ2 ×M2 and (u2(τ), p2(τ)) ∈ χ2 ×M2 as the unique weak solutions, respectively, of
the following mixed boundary value problems (SP1) and (SP2) :

(SP1)


−div(2ν(I(u1))D(u1)) +∇p1 = 0 in Ω,

divu1 = 0 in Ω,
u1 = f on Γc,

σ(u1, p1)n = η on Γi,

(SP2)


−div(2ν(I(u2))D(u2)) +∇p2 = 0 in Ω,

divu2 = 0 in Ω,
σ(u2, p2)n = Φ on Γc,

u2 = τ on Γi.

Following the work in [2], the unknown data (η, τ) can be characterized as the
solution of the following minimization problem :

(η∗, τ ∗) = arg min
(η,τ)

J (η, τ), (5.11)

where the cost functional J is defined below, and splits into a classical least square
term, prescribing the gap between the Neumann known data Φ and the stress forces of
the solution of the boundary value problem (SP1) on Γc, and a regularization term over
Γi. Thus, J could be renamed into a "Neumann-gap" cost JN , which is given by :

J (η, τ) := JN(u1(η), p1(η);u2(τ), p2(τ)) =
1

2

∫
Γc
(σ(u1(η), p1(η))n− Φ)2 ds

+
1

2

∫
Γi
(u1(η)− u2(τ))2 ds.

Proposition 5.2.2 For a pair of -compatible- measurements (f, Φ) ∈ H
1
2 (Γc)

d ×
(H

1
2 (Γc)

d)′, we assume that the problem (5.3) admits a unique solution. Then, solving
the nonlinear Cauchy-Stokes problem (5.3) is equivalent to solving the minimization
problem (5.11) and

inf
(η,τ)∈(H

1
2 (Γi)d)′×H

1
2 (Γi)d

J (η, τ) = 0.

Proof. We assume that the nonlinear Cauchy-Stokes problem admits a unique so-
lution. Let (u, p) be a solution of (5.3), such that η0 = σ(u, p)n|Γi and τ0 = u|Γi . Then,
we have,

J (η0, τ0) = JN(u1(η0), p1(η0);u2(τ0), p2(τ0)) = 0.

Conversely, let (η∗, τ ∗) solution of the minimization problem (5.11). Then, we have

0 6 J (η∗, τ ∗) 6 J (η0, τ0).

This implies that, σ(u1(η∗), p1(η∗))n|Γc
= Φ, that is (u1(η

∗), p1(η
∗)) = (u, p) in Ω and

the condition u1(η∗)|Γi
= τ ∗. Thus, the solution (u1(η

∗), p1(η
∗)) satisfies the upcoming

system, 
−div(2ν(I(u1))D(u1)) +∇p1 = 0 in Ω,

divu1 = 0 in Ω,
u1 = τ ∗ on Γi,

σ(u1, p1)n = Φ on Γc,

(5.12)
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multiplying the first equation of (5.12) by v1 ∈ χ2 and the first equation of (SP2) by
v2 ∈ χ2, and using Green’s formula, we obtain∫

Ω
2ν(I(u1))D(u1) : ∇(v1) dx−

∫
Ω
p1divv1 dx =

∫
Γc
Φv1 ds+

∫
Γi
σ(u1, p1)n v1 ds,

∫
Ω
2ν(I(u2))D(u2) : ∇(v2) dx−

∫
Ω
p2divv2 dx =

∫
Γc
Φv2 ds+

∫
Γi
σ(u2, p2)n v2 ds,

we replace now v1 and v2 by u1 − u2, we get

2

∫
Ω
(ν(I(u1))D(u1)− ν(I(u2))D(u2)) : D(u1 − u2) dx = 0. (5.13)

It follows from condition (iii) and Poincaré-Wirtinger’s inequality that u1(η∗) = u2(τ
∗).

Hence, by assumption of uniqueness of the Cauchy Stokes solution, we have that
u1(η

∗) = u2(τ
∗) = u(η0, τ0). �

Remark 5.2.2 Other functional JD, referring to the "Dirichlet-gap" cost, may be
considered here, where the classical least square term on Γc is the gap between the Diri-
chlet known data f and the trace of the solution of the boundary value problem (SP2)
over Γc. In this way JD is given by :

JD(u1(η), p1(η);u2(τ), p2(τ)) =
1

2

∫
Γc
(u2(τ)− f)2 ds+

1

2

∫
Γi
(u1(η)− u2(τ))2 ds. (5.14)

Conjointly, the "Dirichlet-gap" cost JD responds to the same process shown in this
subsection.

The optimization process which will be evolved here require the components of the
gradient of J . The computation of this latter may be efficiently calculated employing
an adjoint state method. We presented it in proposition 5.2.3 below. Let us now define
the following Lagrangian :

L(η, τ, u1, p1, ϕ, ξ) =
1

2

∫
Γc
(σ(u1, p1)n− Φ)2 ds+

1

2

∫
Γi
(u1 − τ)2 ds

+

∫
Ω
2ν(I(u1))D(u1) : ∇ϕdx−

∫
Ω
p1divϕdx−

∫
Γi
ηϕds−

∫
Ω
ξdivu1dx,

for every (u1, ϕ) ∈ χ2 × χ2
0, (p1, ξ) ∈ L2(Ω)× L2(Ω), and (η, τ) ∈ (H

1
2 (Γi)

d)′ ×H 1
2 (Γi)

d.

Proposition 5.2.3 The gradient of the functional J is given by
∂J
∂η

(η, τ)γ = −
∫
Γi
z1γds, ∀γ ∈ (H

1
2 (Γi)

d)′,

∂J
∂τ

(η, τ)δ = −
∫
Γi
(u1 − τ)δds, ∀δ ∈ H

1
2 (Γi)

d,
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with (z1, r1) ∈ χ2
0 × L2(Ω) solution of the adjoint problem :

∫
Γc
(σ(u1, p1)n− Φ)(ν ′(I(u1))(D(u1) : D(h1))D(u1)n+ 2ν(I(u1))D(h1)n)ds

+

∫
Γi
(u1 − τ)h1ds+

∫
Ω
2ν ′(I(u1))(D(u1) : D(h1))(D(u1) : ∇(z1))dx

+

∫
Ω
2ν(I(u1))D(h1) : ∇(z1)dx−

∫
Ω
r1divh1dx = 0, ∀h1 ∈ χ2

0.

−
∫
Γc
(σ(u1, p1)n− Φ)k1nds−

∫
Ω
k1divz1dx = 0, ∀k1 ∈ L2(Ω).

(5.15)

In the numerical treatment, we used a fixed-point algorithm for the resolution of
the nonlinear state equations (SP1) (resp. (SP2)) described as follows :
• Choose ε ∈]0, ξ) a convergence tolerance and (u1,0, p1,0) a Newtonian solution.
• Iteration : For n ∈ N :
• Given u1,n−1 ; Find (u1,n, p1,n) ∈ χ2

f ×M2 such that A(u1,n−1;u1,n, v) + B(v, p1,n) =

∫
Γi
ηvds, ∀v ∈ χ2

0,

B(u1,n, q) = 0, ∀q ∈M2,
(5.16)

where,

A(u1,n−1;u1,n, v) =
∫
Ω
2ν(I(u1,n−1))D(u1,n) : ∇v dx,

and
B(v, p1,n) = −

∫
Ω
p1,ndivv dx.

• If ||u1,n−u1,n−1|| < ε, stop. Otherwise u1,n−1 = u1,n, repeat the solving of (5.16).

Let us consider a convergent sequence situation u1,n in order to apply an ite-
rative reconstruction procedure for the minimization problem’s numerical resolution
min(η,τ) J (η, τ). Consequently, due to the fixed-point algorithm and this assumption
of convergence, we propose a novel algorithm inspired by the classical method of the
conjugate gradient for a linear criterion. We describe in Algorithm 5.2.1 below the main
steps of the method, supposing that the Cauchy data of the Dirichlet type f are noisy
and we denote by σ the level of noise.

5.2.4 A Nash game formulation of the nonlinear Cauchy-Stokes
problem

Following the previous subsection and conforming to the game theory vocabulary,
the Neumann and Dirichlet controls η and τ cooperate to optimize either the Neumann-
gap and Dirichlet-gap costs. Consider then a two-player Nash game : Player 1, referring
to the "Neumann-gap" while Player 2, referring to the "Dirichlet-gap" with two different
strategies. Those two players play a static game with complete information.
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Algorithm 5.2.1: Conjugate Gradient Method
Data: ε > 0 a convergence tolerance, Kmax a maximum number of iterations.
Set k=0 and choose an initial guess (η(0), τ (0)) ∈ (H

1
2 (Γi)

d)′ ×H 1
2 (Γi)

d. ;
while ||u(k)2 − f ||Γc ≥ ε do

– Solve the Stokes problem (SP1) and the adjoint problem (5.15).
– Evaluate the gradient

∇J (η∗, τ ∗) = −(z(k)1 , u
(k)
1,n − τ (k))|Γi .

– Determine the descent direction dk given by : βk−1 = (

∫
Γi
∇J (η(k), τ (k))2 ds)/(

∫
Γi
∇J (η(k−1), τ (k−1))2 ds),

with β−1 = 0 and dk = (d1,k, d2,k) = −∇J (η(k), τ (k)) + βk−1dk−1,

in order to find
(η(k+1), τ (k+1)) = (η(k), τ (k)) + αkdk,

αk is explicitly evaluated by :

αk =
I
(k)
1

I
(k)
2

where

I
(k)
1 =

∫
Γc
(−p(k)1,nn+ 2ν(I(u

(k)
1,n−1))D(u

(k)
1,n)n− Φ)(−q

(k)
1 n+ 2ν(I(u

(k)
1,n−1))D(v

(k)
1 )n)ds

+

∫
Γi
(u

(k)
1,n − τ (k))(v

(k)
1 − d2,k)ds,

I
(k)
2 =

∫
Γc
(−q(k)1 n+ 2ν(I(u

(k)
1,n−1))D(v

(k)
1 )n)2ds+

∫
Γi
(v

(k)
1 − d2,k)2ds,

with (v
(k)
1 , q

(k)
1 ) is the weak solution of

−div(2ν(I(v(k)1 ))D(v
(k)
1 )) +∇q(k)1 = 0 in Ω,

divv
(k)
1 = 0 in Ω,

v
(k)
1 = 0 on Γc,

σ(v
(k)
1 , q

(k)
1 )n = d1,k on Γi.

end

More explicitly, the "Neumann-gap" player’s objective is to optimize (with strategy
η) the succeeding cost,

J1(η, τ) =
1

2

∫
Γc
(−p1n+ 2ν(I(u1))D(u1)n− Φ)2 ds+

1

2

∫
Γi
(u1 − τ)2 ds, (5.17)

however, the "Dirichlet-gap" player’s one is to optimize (with strategy τ) the cost

J2(η, τ) =
1

2

∫
Γc
(u2 − f)2 ds+

1

2
(u1 − τ)2 ds, (5.18)
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where (u1, p1) and (u2, p2) are the solutions to respectively (SP1) and (SP2). The
considered two players solve, in parallel, their respective partial optimization problems,
by seeking to converge towards an equilibrium that represents a compromise between
them. This equilibrium situation is known in the game theory vocabulary as Nash
equilibrium, which is defined as follows :

Definition 5.2.1 A strategy pair (ηN , τN) ∈ (H
1
2 (Γi)

d)′ × H
1
2 (Γi)

d is called, for the
two-player game :

– Nash equilibrium if the following holds :{
J1(ηN , τN) ≤ J1(η, τN), ∀η ∈ (H

1
2 (Γi)

d)′,

J2(ηN , τN) ≤ J2(ηN , τ), ∀τ ∈ H 1
2 (Γi)

d.

– Pareto optimal Nash equilibrium if there does not exists another Nash equilibrium
(ηn, τn) ∈ (H

1
2 (Γi)

d)′ ×H 1
2 (Γi)

d such that :

J1(ηn, τn) ≤ J1(ηN , τN) and J2(ηn, τn) ≤ J1(ηN , τN).

The proposed game formulation has a separable structure. Indeed, the players’
criteria are formed of individual costs, in the sense that for each cost, we try to optimize
it with respect to a single variable where the information coming from the others is
fixed. In [56], the authors showed in the linear case that this separable structure is
privileged since it eases proving the existence and uniqueness of Nash equilibrium and
proving a convergence result concerning noisy data. Graciously to this structure of the
criteria, it can evidently show that when the nonlinear Cauchy-Stokes problem has a
unique solution (u, p), the pair (ηc, τc) = (σ(u, p)n|Γi

, u|Γi
) is the unique Pareto optimal

Nash equilibrium.

From the computational viewpoint, we consider a classical alternating minimization
algorithm with relaxation [12]. It is also referred to as the inertial Nash equilibration
process, which computes the Nash equilibrium described in Algorithm 5.2.2 below.
Algorithm 5.2.2: Nash equilibrium algorithm
Data: ξ > 0 a convergence tolerance, a relaxation factor 0 ≤ α < 1.
Set k = 0. Starting from an initial guess S(0) = (η(0), τ (0)) ∈ (H

1
2 (Γi)

d)′ ×H 1
2 (Γi)

d

while ||S(k+1) − S(k)|| > ξ do
• Step 1 : Compute η(k) solution of

minηJ1(η, τ
(k)).

• Step 2 : Compute (in parallel) τ (k) solution of

minτJ2(η
(k), τ).

• Step 3 : Set S(k+1) = (η(k+1), τ (k+1)) = α(η(k), τ (k)) + (1− α)(η(k), τ (k)).
end

We used the fixed step gradient method to solve the partial optimization problem in
steps 1 and 2 above. For that, we need to evaluate the gradients of the costs J1 and
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J2, respectively, to their strategies. The adjoint state method is employed to compute
the components of the gradient. Let us define the lagragian L′ as follows :

L′(η, τ, u1, p1, u2, p2, v1, q1, u2, p2) =
1

2

∫
Γc
(σ(u1, p1)n− Φ)2 ds+

1

2

∫
Γc
(u2 − f)2 ds

+
1

2

∫
Γi
(u1 − u2)2 ds+

∫
Ω
2ν(I(u1))D(u1) : ∇v1 dx−

∫
Ω
p1divv1 dx

−
∫
Γi
ηv1 ds−

∫
Ω
q1divu1 dx+

∫
Ω
2ν(I(u2))D(u2) : ∇v2 dx−

∫
Ω
p2divv2 dx

−
∫
Γc
Φv2 ds−

1

ε

∫
Γi
(u2 − τ)v2 ds−

∫
Ω
q2divu2 dx,

for every (u1, u2, v1, v2) ∈ χ2 × χ2 × χ2
0 × χ2, (p1, p2, q1, q2) ∈ (L2(Ω))4, and

(η, τ) ∈ (H
1
2 (Γi)

d)′ ×H 1
2 (Γi)

d, and with ε� 1.

Proposition 5.2.4 We have the following two partial derivatives :

(A1)



∂J1

∂η
ψ = −

∫
Γi
ψv1ds, ∀ψ ∈ (H

1
2 (Γi)

d)′,

with (v1, q1) ∈ χ2
0 × L2(Ω) solution of the adjoint problem :

∫
Γc
(σ(u1, p1)n− Φ)(ν ′(I(u1))(D(u1) : D(h1))D(u1)n+ 2ν(I(u1))D(h1)n)ds

+

∫
Γi
(u1 − τ)h1ds+

∫
Ω
2ν ′(I(u1))(D(u1) : D(h1))(D(u1) : ∇(v1))dx

+

∫
Ω
2ν(I(u1))D(h1) : ∇(v1)dx−

∫
Ω
q1divh1dx = 0, ∀h1 ∈ χ2

0.

−
∫
Γc
(σ(u1, p1)n− Φ)k1nds−

∫
Ω
k1divv1dx = 0, ∀k1 ∈ L2(Ω),

(A2)



∂J2

∂τ
µ =

∫
Γi
(
1

ε
v2 − (u1 − τ))µds, ∀µ ∈ H

1
2 (Γi)

d,

with (v2, q2) ∈ χ2 × L2(Ω) solution of the adjoint problem :

∫
Γc
(u2 − f)h2ds+

∫
Ω
2ν ′(I(u2))(D(u2) : D(h2))(D(u2) : ∇(v2))dx

+

∫
Ω
2ν(I(u2))D(h2) : ∇(v2)dx−

∫
Ω
q2divh2dx−

1

ε

∫
Γi
h2v2ds = 0, ∀h2 ∈ χ2,

−
∫
Ω
k2divv2dx = 0, ∀k2 ∈ L2(Ω).

where (u1, p1) and (u2, p2) are the solutions, respectively to (SP1) and (SP2).

In order to solve the state equations (SP1) and (SP2), we employed the fixed-point
algorithm described in the previous subsection.

5.2.5 A one-shot algorithm to deal with nonlinear Cauchy pro-
blems :

Due to the non-linearity of the viscosity function, we need to use specific algo-
rithms to solve the nonlinear boundary value problems (SP1) and (SP2) during the
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reconstruction procedure. In this context, we propose a novel one-shot scheme for
solving these nonlinear state equations. It is about a new way to study the nonlinear
Cauchy type problems, which gives hope to treat nonlinear state equations with a very
advantageous cost compared with a classical resolution such as a fixed-point method.

More explicitly, this novel purpose consists precisely of reconstructing two linear
well-posed problems. In each one (Pi) for i 6= j ∈ {1, 2}, we displace the variable ui
in the viscosity function by uj. This technique aims to linearize the problems without
forgetting that they come from the same Cauchy problem. In fact, we define (w1, ξ1) =
(w1(η), ξ1(η)) and (w2, ξ2) = (w2(τ), ξ(τ)) as the respective solutions to the following
linear mixed boundary value problem,

(P∗1 )


−div(2ν(I(w2))D(w1)) +∇ξ1 = 0 in Ω,

divw1 = 0 in Ω,
w1 = f on Γc,

σ(w1, ξ1)n = η on Γi,

(P∗2 )


−div(2ν(I(w1))D(w2)) +∇ξ2 = 0 in Ω,

divw2 = 0 in Ω,
σ(w2, ξ2)n = Φ on Γc,

w2 = τ on Γi.

These two systems are generally distinct for any values of η and τ . But when they
coincide, the Cauchy problem (5.3) is solved. In this fact, we start by introducing the
two cost functionals, that measure the gap between these two problems (P∗1 ) and (P∗2 ) :
For η ∈ (H

1
2 (Γi)

d)′ and τ ∈ H 1
2 (Γi)

d,

J1(η, τ) =
1

2

∫
Γc
((−ξ1(η)Id+2ν(I(w2(τ)))D(w1(η)))n−Φ)2 ds+

1

2

∫
Γi
(w1(η)−w2(τ))

2 ds,

J2(η, τ) =
1

2

∫
Γc
(w2(τ)− f)2 ds+

1

2

∫
Γi
(w1(η)− w2(τ))

2 ds.

Proceeding in the same manner, the nonlinear Cauchy-Stokes problem is formulated
as a two-player Nash-game. The two players here solve in parallel the associated BVPs
(P∗1 ) and (P∗2 ). Naturally, each tries minimizing his own cost ; J1 for player 1 and J2
for player 2. This game’s best strategy is defined as an equilibrium situation where
none of the players has the interest to minimize its cost function. Consequently, the
optimum found is called Nash equilibrium, given by Definition 5.2.1. For the equilibrium
computation, in this case, we used Algorithm 5.2.2 described above, where the gradients
for this case are given in the following proposition.

Proposition 5.2.5 We have the following two partial derivatives :

(AP1)



∂J1

∂η
ψ = −

∫
Γi
ψλ1ds, ∀ψ ∈ (H

1
2 (Γi)

d)′,

with (λ1, κ1) ∈ χ2
0 × L2(Ω) solution of the adjoint problem :

∫
Γc
((−ξId + 2ν(I(w2))D(w1))n− Φ)(ν(I(w2))(∇γ +∇γT )n)ds+

∫
Γi
(w1 − τ)γds

+

∫
Ω
ν(I(w2))(∇γ +∇γT ) : ∇λ1dx−

∫
Ω
κ1divγdx = 0, ∀γ ∈ χ2

0.

−
∫
Γc
((−ξId + 2ν(I(w2))D(w1))n− Φ)δnds−

∫
Ω
δdivλ1dx = 0, ∀δ ∈ L2(Ω),
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(AP2)



∂J2

∂τ
µ =

∫
Γi
(2ν(I(w1))D(λ2)n− κ2n− (w1 − τ))µds, ∀µ ∈ H

1
2 (Γi)

d,

with (λ2, κ2) ∈ χ2 × L2(Ω) solution of the adjoint problem :

∫
Ω
ν(I(w1))(∇λ2 +∇λT2 ) : ∇ϕdx−

∫
Ω
κ2divϕdx =

∫
Γc
(f − w2)ϕds,

∀ϕ ∈ κ20,∫
Ω
ξdivλ2dx = 0, ∀ξ ∈ L2(Ω).

5.3 Extension for a nonlinear coupled problem : Data
completion and Geometry identification

We consider extending a new approach based on a game theory introduced by
Habbal et al. [57] to solve a nonlinear geometric Cauchy-Stokes problem. The problem
is a coupled inverse problem of data completion and detection of unknown cavities
immersed in a flow domain.

We assume that the unknown object ω∗ belongs to the following class of admissible
geometries in the problem carefully investigated :

Dad = {ω ⊂⊂ Ω is a C1,1open set and Ω \ ω is connected}.

Let us present the considered coupled inverse problem, which consists of finding
η∗ ∈ (H

1
2 (Γi)

d)′, τ ∗ ∈ H 1
2 (Γi)

d and ω∗ ∈ Dad, such that
−div(2ν(I(u))D(u)) +∇p = 0 in Ω \ ω∗,

divu = 0 in Ω \ ω∗,
σ(u, p)n = 0 on ∂ω∗,

σ(u, p)n = Φ, u = f on Γc,
σ(u, p)n = η∗, u = τ ∗ on Γi.

(5.19)

Following the ideas introduced in [57], the inverse inclusion nonlinear Cauchy-Stokes
problem (5.19) is formulated as a three players Nash game. Let us present the following
three cost : For any η ∈ (H

1
2 (Γi)

d)′ , τ ∈ H 1
2 (Γi)

d and ω ∈ Dad

J1(η, τ ;ω) =
1

2

∫
Γc
(−pω1 (η)n+2ν(I(uω1 (η)))D(uω1 (η))n−Φ)2 ds+

1

2

∫
Γi
(uω1 (η)−uω2 (τ))2 ds,

J2(η, τ ;ω) =
1

2

∫
Γc
(uω2 (τ)− f)2 ds+

1

2

∫
Γi
(uω1 (η)− uω2 (τ))2 ds,

J3(η, τ ;ω) =

∫
Ω
(−pω2 (τ)+pω1 (η))Id+2ν(I(uω2 (τ)))D(uω2 (τ)))−2ν(I(uω2 (τ)))D(uω1 (η))))

2 dx+µ|∂ω|,

where the parameter µ > 0 is a penalization of the perimeter |∂ω|, defined as the
Hausdorff measureH1(∂ω), (uω1 (η), pω1 (η)) and (uω2 (τ), p

ω
2 (τ)) are the respective solutions

to the following mixed boundary value problems (P1) and (P2) :

(P1)


−div(2ν(I(uω1 ))D(uω1 )) +∇pω1 = 0 in Ω \ ω,

divuω1 = 0 in Ω \ ω,
σ(uω1 , p

ω
1 )n = 0 on ∂ω,
uω1 = f on Γc,

σ(uω1 , p
ω
1 )n = η on Γi,
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(P2)


−div(2ν(I(uω2 ))D(uω2 )) +∇pω2 = 0 in Ω \ ω,

divuω2 = 0 in Ω \ ω,
σ(uω2 , p

ω
2 )n = 0 on ∂ω,

σ(uω2 , p
ω
2 )n = Φ on Γc,
uω2 = τ on Γi.

Adopting the two-player Nash game strategy precedently stated in subsection 5.2.4
to solve here our coupled inverse problem. Therefore, three players are defined which
play non-cooperatively a Nash game : the players 1 and 2 control the strategies η ∈
(H

1
2 (Γi)

d)′ and τ ∈ H
1
2 (Γi)

d, respectively, and play a Nash subgame to minimize the
"Neumann-gap" cost J1 and the "Dirichlet-gap" cost J2, while the player 3 has a control
on ω ∈ Dad and aims at minimizing the Kohn-Vogelius cost J3, to which we added the
regularizing term µ|∂ω| which prevents from obtaining too irregular contours. In this
setting, solving the coupled inverse problem (5.19) amounts to find a Nash equilibrium,
defined as a triplet of strategies (η∗, τ ∗, ω∗) ∈ (H

1
2 (Γi)

d)′ ×H 1
2 (Γi)

d ×Dad, such that


η∗ = arg minη J1(η, τ

∗, ω∗),
τ ∗ = arg minτ J2(η

∗, τ, ω∗),
ω∗ = arg minω J3(η

∗, τ ∗, ω).
(5.20)

Now, we suppose that the Nash equilibrium for the three players exists. To evaluate
it then we use Algorithm 5.3.1 described below, which is mainly based on the ideas
of Habbal et al. [57]. This algorithm is divided into two main steps : In step I, called
a preconditioning Nash subgame, we solve a fixed shape’s data completion problem.
From the two-player Nash equilibrium obtained in step I, we move to step II, where
the third player solves the minimization problem to detect the inclusion’s shape and
location.

Algorithm 5.3.1: Nash game algorithm for the Three-players
Data: convergence tolerances ξ > 0, σ a noise level, ρ(σ) a-tuned-function which

depends on the noise and 0 ≤ t < 1 a relaxation factor.
Set n = 0 and choose an initial shape ω(0) ∈ Dad. ;
while ||u2 − fσ||0,Γc > ρ(σ) do

– Step I : A Nash subgame between η and τ : Set k = 0.
Initial guess : S(0) = (η(0), τ (0)) ∈ (H

1
2 (Γi)

d)′ ×H 1
2 (Γi)

d.
1. Compute η(k) solution of minη J1(η, τ

(k);ω(n)),

2. Compute (in parallel) τ (k) solution of minτ J2(η
(k), τ ;ω(n)),

3. Set S(k+1) = (η(k+1), τ (k+1)) = t(η(k), τ (k)) + (1− t)(η(k), τ (k)).
4. If ||S(k+1) − S(k)|| > ξ, then, set k = k + 1 and repeat step 1.

– Step II : Compute ω(n+1) solution of minω J3(η
(k+1), τ (k+1);ω).

end

In step II, the level set approach has been used to represent the boundaries of
the inclusions. This approach is an original development one for the curve and surface
evolution [90]. For a given admissible shape ω ⊂ Dad included in Ω, we assume that
there exists an implicit function φ, the so-called level set function, which satisfies,
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
φ(x) < 0 in ω,
φ(x) > 0 in Ω \ ω,
φ(x) = 0 on ∂ω.

For the Heaviside and Dirac delta distributions, used in the level set approach and
for the regularity reasons, we used smoothed versions of these distributions denoted
respectively by Hε,β(.) and δε,β(.), in terms of continuous functions defined over Ω
considered as follows : for s ∈ R,

Hε,β(s) =


1 if s > ε,
1

2
(1 +

s

ε
+

1

π
sin(

πs

ε
)) if |s| ≤ ε,

0 if s < −ε,

δε,β(s) =

{ 1

2ε
(1 + cos(

πs

ε
)) if |s| ≤ ε,

0 if |s| > ε,

where ε > 0 is small enough parameters.

Denoting by J̃3 the new form of the cost functional J3 in term of the level set
function to be minimized

min
φ

{
J̃3(η, τ ;φ) :=

∫
Ω
|σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)|2Hε,β(φ)dx+ µ

∫
Ω
δε,β(φ)|∇φ|dx

}
,

(5.21)
where σ(uφi , p

φ
i ) = 2ν(I(uφi ))D(uφi )−p

φ
i Id, for i = 1, 2, (uφ1 , p

φ
1) and (uφ2 , p

φ
2) are solutions

of the following weak formulations problems

(P1ε,β)


Find (uφ1 , p

φ
1) ∈ χ2

f,div × L2(Ω) such that∫
Ω
2ν(I(uφ1))D(uφ1) : ∇(v1)Hε,β(φ) dx−

∫
Ω
pφ1divv1Hε,β(φ) dx =

∫
Γi
η v1 ds,

∀v1 ∈ χ2
0,

(P2ε,β)


Find (uφ2 , p

φ
2) ∈ κ2τ,div × L2(Ω) such that∫

Ω
2ν(I(uφ2))D(uφ2) : ∇(v2)Hε,β(φ) dx−

∫
Ω
pφ2divv2Hε,β(φ) dx =

∫
Γc
Φv2 ds,

∀v2 ∈ κ20.

The numerical resolution of (5.21) required the computation of the gradient of J̃3.
Following the same lines as for the linear case [57] and using the Lagrangian method, we

obtain for φ ∈ H1(Ω) such that |∇φ|6≡0 and with the boundary condition
∂φ

∂n
= 0 over

∂Ω, the partial derivative of J̃3(η, τ ;φ) with respect to φ, in any direction ψ ∈ H1(Ω) :

(
∂J3

∂φ
(η, τ ;φ), ψ) =

∫
Ω
δε,β(φ)

[
|σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)|2 − µdiv(

∇φ
|∇φ|

)

+2ν(I(uφ1))D(uφ1) : ∇λ1 − p1divλ1 + 2ν(I(uφ2))D(uφ2) : ∇λ2 − p2divλ2
]
ψdx,
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where (λ1, π1) ∈ χ2
0 × L2(Ω) and (λ2, π2) ∈ κr0 × L2(Ω) are respective solutions of the

adjoints problems,



2

∫
Ω
(σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)) : (2ν

′(I(uφ1))(D(u1) : D(h1))D(uφ1) + 2ν(I(uφ1))D(h1))Hε,β(φ)dx

+

∫
Ω
(2ν ′(I(uφ1))(D(uφ1) : D(h1))D(uφ1) : ∇λ1 + 2ν(I(uφ1))D(h1) : λ1)Hε,β(φ)dx

−
∫
Ω
π1divh1Hε,β(φ)dx = 0, ∀h1 ∈ χ2

0,

2

∫
Ω
(σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)) : (k1Id)Hε,β(φ)dx−

∫
Ω
k1divλ1Hε,β(φ)dx = 0,

∀k1 ∈ L2(Ω),
(5.22)

2

∫
Ω
(σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)) : (2ν

′(I(uφ2))(D(u2) : D(h2))D(uφ2) + 2ν(I(uφ2))D(h2))Hε,β(φ)dx

+

∫
Ω
(2ν ′(I(uφ2))(D(uφ2) : D(h2))D(uφ2) : ∇λ2 + 2ν(I(uφ2))D(h2) : λ2)Hε,β(φ)dx

−
∫
Ω
π2divh2Hε,β(φ)dx = 0, ∀h2 ∈ κ20,

−2
∫
Ω
(σ(uφ2 , p

φ
2)dx− σ(u

φ
1 , p

φ
1)) : (k2Id)Hε,β(φ)dx−

∫
Ω
k2divλ2Hε,β(φ)dx = 0,

∀k2 ∈ L2(Ω),
(5.23)

and where (uφ1 , p
φ
1) and (uφ2 , p

φ
2) are the solutions to respectively (P1ε,β) and (P2ε,β).

The Euler-Lagrange equation associated to the minimization problem
minφ∈S J3(η, τ ;φ), (S = H1(Ω)) reads :

δε,β(φ)

[
|σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)|2 − µdiv(

∇φ
|∇φ|

)

+σ(uφ1 , p
φ
1) : ∇λ1 + σ(uφ2 , p

φ
2) : ∇λ2

]
= 0, in Ω,

∂φ

∂n
= 0, on ∂Ω.

(5.24)

The nonlinear equation above is solved as the stationary state of the evolution equation
in order to make the level set function dynamically changes in times :

∂φ

∂t
+ δε,β(φ)

[
|σ(uφ2 , p

φ
2)− σ(u

φ
1 , p

φ
1)|2 − µdiv(

∇φ
|∇φ|

)

+σ(uφ1 , p
φ
1) : ∇λ1 + σ(uφ2 , p

φ
2) : ∇λ2

]
= 0, in R+ ×Ω,

∂φ

∂n
= 0, on R+ × ∂Ω,

φ(0, x) = φ0(x), in Ω,

(5.25)

where φ0 is a given initial condition. The numerical solution associated with the problem
(5.25) above will be achieved using a finite-element method and a semi-implicit Euler
scheme.
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5.4 Numerical results

All the PDEs are numerically solved in this work using the Finite Element package
FreeFem++ [61]. The domain boundary is split into two parts Γc and Γi : Γi is the
inaccessible part where the fluid velocity and the stress forces are missing, and Γc is
the accessible part where the Cauchy data f and Φ are available. These latter are
generated via a finite element solution of the mixed boundary value problem in each
test-case.

In order to study the robustness of our algorithms, we add white noise to the Diri-
chlet data f = uex over Γc, as follows

fσ = f + σN,

where σ representing the percentage of noise, and N being a Gaussian-or-uniform
white noise. For the Carreau law, we assume that : r = 3/2, λ = 1, ν∞ = 1/2, and
ν0 = 1.

5.4.1 Data completion problem.

This paragraph illustrates the numerical results obtained using two approaches, the
control type method and the Nash game one, described in subsection 5.2.3 and 5.2.4.
To test these approaches’ efficiency and compare them, we solve the Cauchy-Stokes
problem in two 2D-situations. We will present here three test-cases, named A, B, and C.

Our goal is to find the missing data over the inaccessible Γi part of the boun-
dary ∂Ω : the fluid velocity and the stress forces. We start from an initial guess
(η0, τ0) = (0, 0).

Test-case A. In this example, the nonlinear Cauchy-Stokes problem is solved in
an annular domain Ω, centered in (0, 0), and discretized by a mesh of 180 vertices on
Γc and 90 vertices on Γi. The inner boundary, circle of radius Ri = 1, is considered as
Γi, while the outer circle, of radius Rc = 2, indicates the accessible part Γc. The Cauchy
data here are numerically simulated by solving the following problem,

(P1
ex)


−div(2ν(I(u))D(u)) +∇p = 0 in Ω,

divu = 0 in Ω,
σ(u, p)n = 0 on Γc,
σ(u, p)n = Ψ on Γi,

where Ψ is a given function, and in order to solve this problem (P1
ex), we used the

fixed-point algorithm.
Figure 5.1 represents the iso-values of the exact solution ; fluid velocity and

corresponding pressure. The two components of the fluid velocity and the normal stress
are presented in Figure 5.4 for unnoisy data, compared with the corresponding exacts
solution, using the conjugate gradient algorithm 5.2.1 described in subsection 5.2.3.

In this test-case A, the proposed algorithms 5.2.1 and 5.2.2 are tested for two types
of noise : Gaussian noise and uniform noise. Figures 5.5 and 5.8 show the reconstructed
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Figure 5.1 – Test case A. Iso-values of the velocity (left) and pressure (right) fields.

fluid velocity and normal stress for different values of noise σ as well as the exact
ones, when we added, respectively, the uniform noise and the Gaussian noise, to the
Dirichlet data over Γc. These letter results are obtained by a classical method.

We repeated the same test for the Nash game algorithm by using two different
schemes to solve the state equations (SP1) and (SP2) : The first is the fixed-point
algorithm FPA, and the second is our new proposed one-shot scheme NS, which
consists to change the viscosity function ν(u1) in (SP1) by ν(u2) (resp. ν(u2) in (SP2)
by ν(u1)), that is, solving the state equations (P∗1 ) and (P∗2 ) instead of (SP1) and
(SP2). At convergence, using the fixed-point algorithm (respectively, NS), the relative
L2-errors on missing Dirichlet data is equal to 0.0015 (respectively, 0.0015), and
Neumann data is equal to 0.0082 (respectively, 0.0081) for the case of unnoisy data.
In Figures 5.6 and 5.7, the missing data ηN and τN are presented at the convergence
of the Nash game algorithm 5.2.2 for two different schemes with various noise levels.
These results show remarkable stability with respect to a uniform noise.

Table 2 shows different errors on the reconstructed missing data for different uniform
noise levels, and the following formulas compute these errors :

errτ =
||uex − τop||Γi
||uex||Γi

, errη =
||σ(uex, pex)n− ηop||Γi
||σ(uex, pex)n||Γi

, (5.26)

where (uex, pex) is the solution to (P1
ex), and the pair (ηop, τop) is the numerical Cauchy

solution. On the one hand, according to the game method, a remarkable advantage is
clearly observed for high noise levels. On the other hand, the relative errors obtained
by testing two different schemes, the fixed-point and the novel schemes, are almost
identical. So, for this reason, a comparison in CPUs time is performed. Let us note that
the Nash game algorithm’s benefit is that the players solve their partial optimization
problems parallelly at each overall iteration. Consequently, to save computation time,
parallel implementations are considered using the package FreeFem++ MPI. All
experiments are performed on a Personal computer ; i.e., the CPU’s obtained values
are approximate to make simply the desired comparison. The obtained values are
presented in Table 3 at convergence for noisy Dirichlet data, for the case of a uniform
noise, and show our new scheme’s performance.

129



Likewise that the precedent results concerning a uniform noise, we obtain the up-
coming Figures 5.9-5.10 and Tables 4-5, which show nice stability with respect to a
gaussian noise, according to two different schemes (fixed-point algorithm and novel
scheme) using a Nash game strategy.

Test-case B. To illustrate the case where Γi touches Γc, we consider a unit disk
domain, where the Cauchy data are available only on half the external boundary. The
latter are generated via a finite element solution of the following mixed boundary value
problem

(P2
ex)


−div(2ν(I(u))D(u)) +∇p = 0 in Ω,

divu = 0 in Ω,
u = f on Γc,

σ(u, p)n = H on Γi,

where f and H are given functions. Several tests are carried out for various finite
element meshes to show the convergence of our two algorithms ; the classic and the Nash
game approaches. Figure 5.11 depicts the Dirichlet and Neumann reconstructed data
for various numbers of nodes on the boundary M = {100, 150, 200}, with the control-
type method. It can be possible to observe that the recovered Dirichlet data remains a
good approximation for the exact solution, while the recovered Neumann data deviate
from the exact one in the neighborhood of Γi endpoint, which is the region of singularity.

The same reconstructions are presented in Figure 5.12 using Nash game algo-
rithm 5.2.2 with our proposed scheme to solve the state equations. In order to compare
these two approaches for this test-case, we compute different errors indicators, which
are presented in Table 6, where (u, p) is the solution of (P2

ex).

Test-case C. To build a specific geometry of an artery close to being realistic
for numerical simulation in 2D, the idea is to construct a mesh from a photo using
Photoshop-or-Matlab and a script in FreeFem++, or GMSH to create the artery’s initial
mesh. In this case, the obtained mesh is given in figure 5.2(a). In which we assumed
that the domain boundary is divided into two parts, namely, Γi =

∑3
k=1 Γik where the

outlet boundary conditions are unknown, and Γc = Γc1 ∪ Γc2 which is the artery wall
and the inlet side, where the Cauchy data are available. These latter are generated via
the solution of the upcoming nonlinear mixed boundary problem,

(P3
ex)


−div(2ν(I(u))D(u)) +∇p = 0 in Ω,

divu = 0 in Ω,
u = f on Γc1,
u = f on Γi,

σ(u, p)n = 0 on Γc2,

where f is a given function. Figure 5.2(b) represents the exact velocity isoline of the
above problem (P3

ex). To recover the unknown outlet boundary conditions, Dirichlet
and Neumann data, we employed the Nash game algorithm for two-player 5.2.2. The
obtained results of the missing data over Γi are illustrated in figure 5.13, in comparison
with the corresponding exact solutions for unnoisy data.
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(a) (b)

Figure 5.2 – Test case C. (Left) Mesh used for solving the coupled inverse problem. (Right)
Iso-values of the velocity field.

5.4.2 Application to coupled problem : Data completion and
geometry identification

A numerical study is performed for two 2D test-cases to illustrate the Nash game
algorithm’s efficiency for three players, which consists of recovering the inclusions and
the missing data, Dirichlet and Neumann data on the inaccessible part.

The domain : Ω =]−1
2
, 1
2
[×]−1

2
, 1
2
[

The boundaries : Γi = {12}×]
−1
2
, 1
2
[ ; Γc = ∂Ω \ Γi

Normal stress : Φ(x, y) = −2(y2 − 1/4; 0) prescribed over ∂Ω

The Cauchy data are generated via the solution of the following direct problem :

(P4
ex)


−div(2ν(I(u))D(u)) +∇p = 0 in Ω \ ω∗,

divu = 0 in Ω \ ω∗,
σ(u, p)n = 0 on ∂ω∗,
σ(u, p)n = Φ, on ∂Ω.

To start our Nash equilibrium algorithm 5.3.1, an initial guess (η(0), τ (0)) is chosen equal
to (0, 0), and an initial contour φ(0) is defined by a periodic function, as several holes
spread over the entire domain, see Figure 5.14(a). We re-initialize the level set function
to a signed distance function during the evolution for maintaining stable curve evolution
and guaranteeing desired results.

Test-case D. In this test case, we try to detect a disk ω∗ = B(c, r) centered at
c = (−0.15,−0.15) and with a radius r of 0.15.

To illustrate the convergence of the Nash Equilibrium Algorithm for the three
players, we present in Figure 5.3 the evolution of the three objective functionals as
functions of overall Nash iterations for noise-free. We remark that during the early
Nash iterations process, the three players show a fast decrease in their costs before
stagnating.

In Figure 5.14, we present the recovered Dirichlet/ Neumann data results and the
optimal shape of the inclusion for different noise levels. Notice that the reconstruction
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Figure 5.3 – Test case D. Plots of the three costs J1, J2 and J̃3 as functions of overall Nash
iterations.

of the missing data is in good agreement with the expected one. The profile shape also
shows a remarkable stability w.r.t the Gaussian noise.

Table 1 represents the relative errors on Dirichlet and Neumann missing data, which
are defined in (5.26), and the detected contours errω, with respect to noisy Dirichlet
measurements, where errω = mes(ω∗ ∪ ωN)−mes(ω∗ ∩ ωN)/mes(ω∗).

Table 5.1 – Test-case D. L2-errors on missing data over Γi, and the error between the recons-
tructed and the real shape of the inclusion for various noise levels.

Noise level σ = 1% σ = 3% σ = 5% σ = 8%

errτ 0.0222 0.0282 0.0405 0.0691
errη 0.0466 0.0860 0.1038 0.1270
errω 0.0831 0.1020 0.1163 0.1548

Test-case E. Here, we want to detect two object, a disk ω∗1 = B(c, r) centered at
c = (0.2, 0.25), with a radius r of 0.1, and an ellipse ω∗2, in which the equation of its curve

is :
(x− x1)2

a2
+

(y − y1)2

b2
= 1, where (a, b) = (0.15, 0.07) and (x1, y1) = (−0.2,−0.1).

In Figure 5.15, we present the obtained results illustrating our algorithm’s stabi-
lity dedicated to the computation of Nash equilibrium for three players, the missing
data over Γi, and the identified shape at convergence for different noise levels (for a
Gaussian noise).
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5.5 Conclusion

This paper has addressed the nonlinear Cauchy type problems for a quasi-Newtonian
flow where the fluid viscosity is assumed to be a nonlinear function dependent on the
deformation tensor. The Cauchy problem is ill-posed in the sense of Hadamard. Their ill-
posedness is related to the instability issue, and designing efficient and stable algorithms
is challenging.

Firstly, we have considered two different data recovering strategies : The first me-
thod is a control-type one that is a variational conjugate gradient iterative procedure
is used. The second approach consists of formulating the data completion problem as
a static game with complete information. Each one reduces the ill-posed problem to
solving two well-posed nonlinear mixed BVPs. The numerical implementation of these
approaches is accomplished using the finite-element method for solving, at each itera-
tion, the state equations for a nonlinear Stokes system and the corresponding adjoint
ones. Since the state equations are nonlinear, specific algorithms are required to solve
them, such as Newton’s or a fixed-point algorithm. We have proposed a novel one-shot
scheme representing a new way to solve a nonlinear Cauchy problem. Next, we com-
pare it with a fixed-point algorithm. The numerical results show that the Nash game
approach outperforms the classic method, in terms of accuracy for noise-free, as well
as for noisy Dirichlet data measurements (from a data completion viewpoint on the
inaccessible part of the boundary), and that the one-shot scheme NS outperforms the
fixed-point algorithm FPA, in terms of CPU times.

This work’s second contribution is the numerical resolution of a delicate problem,
which identifies unknown cavities immersed in a quasi-Newtonian fluid flow obeying
the Carreau law, using partial boundary measurements. Following the ideas introduced
earlier in [57] to solve the geometric Cauchy problem for the linear Stokes system, we
reformulate the coupled problem as a three players Nash game : the two first players
dedicate to the missing data, while the third one is functionally related to the geometric
identification problem. Numerical experiments for two test-cases were performed and
showed the efficiency of our 3-player Nash game algorithm.

Table 5.2 – Control type (classic) compared to Nash (game) algorithms. Relative L2-errors on
missing data on Γi (on Dirichlet and Neumann data) are shown for various noise levels (w.r.t
a uniform noise).

Noise level σ = 0% σ = 3% σ = 5% σ = 10% σ = 15%

Reconstructed data D-N D-N D-N D-N D-N

Classic method 0.0054-0.0150 0.0195-0.0623 0.0293-0.0773 0.0507-0.1328 0.0916-0.1678
NGM-FPA 0.0015-0.0082 0.0124-0.0552 0.0158-0.0598 0.0185-0.0688 0.0236-0.0819
NGM-NS 0.0015-0.0081 0.0123-0.0544 0.0159-0.0600 0.0188-0.0689 0.0232-0.0815
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(a) (b)

(c) (d)

Figure 5.4 – Test case-A "Classic Method". Reconstruction of the missing boundary data from
unnoisy data. (a) exact and computed first components of the velocity over Γi (b) exact and
computed second components of the velocity over Γi (c) exact and computed first components
of the normal stress over Γi (d) exact and computed second components of the normal stress
over Γi.

Table 5.3 – Test case A. A CPU time performance’s comparison, between the fixed-point
algorithm and the new scheme, through CPUs’ results (w.r.t a uniform noise).

Noise level σ = 0% σ = 3% σ = 5% σ = 10% σ = 15%

CPU CPU CPU CPU CPU CPU

NGM-FPA 3870 1850 1512 792 578
NGM-NS 2511 1195 1084 492 358
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(a) (b)

(c) (d)

Figure 5.5 – Test case-A "Classic Method". Reconstruction of the missing boundary data
with noisy Dirichlet data over Γc with noise levels σ = {3%, 5%, 10%, 15%}. (a) exact and
computed first components of the velocity over Γi (b) exact and computed second components
of the velocity over Γi (c) exact and computed first components of the normal stress over Γi (d)
exact and computed second components of the normal stress over Γi (w.r.t a uniform noise).

Table 5.4 – Test case-A "Control type (classic) compared to Nash (game) algorithms". Relative
L2-errors on missing data on Γi (on Dirichlet and Neumann data) are shown for various noise
levels (w.r.t a Gaussian noise).

Noise level σ = 1% σ = 3% σ = 5% σ = 8%

Reconstructed data D-N D-N D-N D-N

Classic method 0.0270-0.0659 0.1242-0.2237 0.1293-0.2346 0.1261-0.3108
NGM- FPA 0.0145-0.0486 0.018-0.063 0.0221-0.0740 0.0278-0.0927
NGM-NS 0.0108-0.0404 0.0189-0.0606 0.0193-0.0636 0.0216-0.0711
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(a) (b)

(c) (d)

Figure 5.6 – Test case-A "NGM-FPA". Reconstruction of the missing boundary data with
noisy Dirichlet data over Γc with noise levels σ = {3%, 5%, 10%, 15%}. (a) exact and computed
first components of the velocity over Γi (b) exact and computed second components of the
velocity over Γi (c) exact and computed first components of the normal stress over Γi (d) exact
and computed second components of the normal stress over Γi (w.r.t a uniform noise).

Table 5.5 – Test case-A. A CPU time performance’s comparison, between the fixed-point
algorithm and the new scheme, through CPUs’ results (w.r.t a Gaussian noise).

Noise level σ = 1% σ = 3% σ = 5% σ = 8%

CPU CPU CPU CPU CPU

NGM-FPA 2556 1798 5952 4922
NGM-NS 1444 925 703 688
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(a) (b)

(c) (d)

Figure 5.7 – Test case-A "NGM-NS". Reconstruction of the missing boundary data with noisy
Dirichlet data over Γc with noise levels σ = {3%, 5%, 10%, 15%}. (a) exact and computed first
components of the velocity over Γi (b) exact and computed second components of the velocity
over Γi (c) exact and computed first components of the normal stress over Γi (d) exact and
computed second components of the normal stress over Γi (w.r.t a uniform noise).

Table 5.6 – Test case B "The mesh refinement effect". Relative L2-errors on missing data
on Γi (on Dirichlet and Neumann data) with noise free Dirichlet data over Γc, for various
M = {100, 150, 200}.

M = 100 M = 150 M = 200

Reconstructed data D-N D-N D-N

Classic method 0.0114-0.0901 0.0116-0.0806 0.0169-0.0764
NGM-NS 0.0068-0.0789 0.0070-0.0669 0.0093-0.0645
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(a) (b)

(c) (d)

Figure 5.8 – Test case-A "Classic Method". Reconstruction of the missing boundary data with
noisy Dirichlet data over Γc with noise levels σ = {1%, 3%, 5%, 8%}. (a) exact and computed
first components of the velocity over Γi (b) exact and computed second components of the
velocity over Γi (c) exact and computed first components of the normal stress over Γi (d) exact
and computed second components of the normal stress over Γi (w.r.t a Gaussian noise).
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(a) (b)

(c) (d)

Figure 5.9 – Test case A "NGM-FPA". Reconstruction of the missing boundary data with
noisy Dirichlet data over Γc with noise levels σ = {1%, 3%, 5%, 8%}. (a) exact and computed
first components of the velocity over Γi (b) exact and computed second components of the
velocity over Γi (c) exact and computed first components of the normal stress over Γi (d) exact
and computed second components of the normal stress over Γi (w.r.t a Gaussian noise).
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(a) (b)

(c) (d)

Figure 5.10 – Test case-A "NGM-NS". Reconstruction of the missing boundary data with
noisy Dirichlet data over Γc with noise levels σ = {1%, 3%, 5%, 8%}. (a) exact and computed
first components of the velocity over Γi (b) exact and computed second components of the
velocity over Γi (c) exact and computed first components of the normal stress over Γi (d) exact
and computed second components of the normal stress over Γi (w.r.t a Gaussian noise).
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(a) (b)

(c) (d)

Figure 5.11 – Test case B "Classic Method". Reconstruction of the missing boundary data
with noise free Dirichlet data over Γc. (a) exact -line- and computed -dashed line- first com-
ponent of the velocity over Γi (b) exact -line- and computed -dashed line- second component of
the velocity over Γi (c) exact -line- and computed -dashed line- first component of the normal
stress over Γi (d) exact -line- and computed -dashed line- second component of the normal
stress over Γi .
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(a) (b)

(c) (d)

Figure 5.12 – Test case B "NGM-NS". Reconstruction of the missing boundary data with
noise free Dirichlet data over Γc. (a) exact -line- and computed -dashed line- first component
of the velocity over Γi (b) exact -line- and computed -dashed line- second component of the
velocity over Γi (c) exact -line- and computed -dashed line- first component of the normal
stress over Γi (d) exact -line- and computed -dashed line- second component of the normal
stress over Γi.
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(on Γi1)

(on Γi2)

(on Γi3)

Figure 5.13 – Test case-C. Reconstruction of the missing boundary data from unnoisy data
using Nash game algorithm. The exact and computed first component of the velocity and the
normal stress, respectively : (Top) over Γi1 , (Middle) over Γi2 and (Bottom) over Γi3 .
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14 – Test case D. Reconstruction of the inclusion shape and missing boundary data
with noisy Dirichlet data over Γc with noise levels σ = {1%, 3%, 5%, 8%}. (a) initial contour
is φ(0) (b) exact inclusion shape -green line- and computed ones for different noise levels (c)
exact and computed first components of the velocity over Γi (d) exact and computed second
components of the velocity over Γi (e) exact and computed first components of the normal
stress over Γi (f) exact and computed second components of the normal stress over Γi.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15 – Test case E. Reconstruction of the inclusion shape and missing boundary data
with noisy Dirichlet data over Γc with noise levels σ = {1%, 3%, 5%, 8%}. (a) initial contour
is φ(0) (b) exact inclusion shape -green line- and computed ones for different noise levels (c)
exact and computed first components of the velocity over Γi (d) exact and computed second
components of the velocity over Γi (e) exact and computed first components of the normal
stress over Γi (f) exact and computed second components of the normal stress over Γi.
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Conclusion and perspectives

The inverse problems, such as identifying parameters, geometries, or sources, are
known to be severely ill-posed in Hadamard’s sense. The ill-posedness is related
to the instability problem, which requires precisely regularized numerical methods.
In this thesis, we have used the simplest class of games to model such situa-
tions. We have shown that this new formulation of the game could effectively deal
with these problems and treat even those previously inaccessible, coupling ill-posedness.

In the first part of the thesis, we have assumed that the steady Stokes equa-
tions govern the fluid motion, the case of Newtonian fluids. We have proposed three
original algorithms in a game theory framework for solving inverse problems of
inclusions (or sources) identification coupled to the reconstruction of missing data,
using only a single pair of Dirichlet and Neumann boundary measurements. Then,
3-players and their corresponding criteria are defined. The two first-named Dirichlet
and Neumann players were dedicated to ensuring the data completion, while the third
one was dedicated to ensuring the identification problem. The 3-players play a static
game with complete information. We considered as a solution to the game the so-called
Nash equilibrium. In chapter 2, to solve the inclusions detection and data completion
jointly, we have proposed to use the level-set strategy to follow the evolution of the
boundary of the shape to be recovered during the identification procedure. Thus, the
third player in charge of the inverse inclusion problem controls the level-set function
instead of the open subset. The first algorithm that we have proposed to solve this
coupled problem is composed of two steps : First, compute the 2-player Nash equili-
brium for a fixed level-set. This step, which we call a preconditioning Nash subgame,
is dedicated to enforce the data completion part to precondition the Cauchy problem
and tackle its ill-posedness. Second, the third player receives the optimal Dirichlet-
Neumann solution and seeks to identify the inclusions’ location and shape. A second
algorithm has been introduced to solve the data completion and sources identification
simultaneously in chapter 3. The third player, here in charge of identifying point-wise
sources, controls the number, location, and magnitude of the point-forces as a strategy
variable. For that, the third player plays en two-step ; first, seeks to find the number
and locations of the sources using a topological gradient method, then aims to identify
the sources’ different magnitudes, parallel with the Dirichlet-Neumann players, which
solve the data recovery problem. The 3-player Nash game algorithm naturally has been
applied to detecting some unknown objects immersed in a stationary viscous fluid
using partial boundary measurements in chapter 4. For this problem, the third player
used a topological gradient method in order to determine its strategy : the number of
objects and their relative locations.

The purpose of the second part is to extend those results to the class of nonli-
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near Stokes models arising in quasi-Newtonian fluids. We have investigated two
approaches, a control-types method and a Nash game algorithm, to a nonlinear
Cauchy-stokes problem in chapter 5. The developed model is nonlinear with respect to
the fluid velocity because of the non-linearity of the viscosity function, which varies
upon the deformation tensor. The numerical procedure of this non-linearity demands
particular algorithms. In this framework, we have proposed a new scheme to treat this
non-linearity appropriately, and we have compared it with the fixed-point algorithm.
The numerical results showed excellent performance in terms of the CPU of our
proposed scheme. Finally, we have considered extending the Nash game strategy to the
nonlinear coupled problem of geometric identification and data completion.

Possible future work : It might be fascinating to extend the Nash game strategy
to other inverse problems and other operators, e.g., the Cauchy problem for Stokes or
Navier-Stokes equations coupled with identifying the fluid’s viscosity, Navier-Stokes or
Darcy-stokes equations coupled with the heat equation, i.e., parameter identification
(missing boundary data and temperature of the fluid on the part of the pipeline wall to
control the material’s condition) or leak detection, etc. We can also study another type
of non-cooperative game like the Stackelberg game. It is a non-symmetric game where
the players communicate hierarchically by designating them as a leader and the others
as followers.
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