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Abstract

We study coalitional manipulation of voting systems: can a subset of voters,
by voting strategically, elect a candidate they all prefer to the candidate who
would have won if all voters had voted truthfully?

From a theoretical point of view, we develop a formalism which makes it
possible to study all voting systems, whether the ballots are orders of preference
on the candidates (ordinal systems), ratings or approval values (cardinal systems),
or even more general objects. We show that for almost all classical voting systems,
their manipulability can be strictly reduced by adding a preliminary test aiming
to elect the Condorcet winner if there is one. For the other voting systems, we
define the generalized Condorcification which leads to similar results. Then we
define the notion of decomposable culture, an assumption of which the probabilistic
independence of voters is a special case. Under this assumption, we prove that, for
each voting system, there exists a voting system which is ordinal, shares certain
properties with the original voting system, and is at most as manipulable. Thus,
the search for a voting system of minimal manipulability (in a class of reasonable
systems) can be restricted to those which are ordinal and satisfy the Condorcet
criterion.

In order to allow everyone to examine these phenomena in practice, we present
SWAMP, a Python package of our own dedicated to the study of voting systems
and their manipulability. Then we use it to compare the coalitional manipulability
of various voting systems in several types of cultures, i.e. probabilistic models
that generate populations of voters equipped with random preferences. We then
complete the analysis with elections from real experiments. Finally, we determine
the voting systems with minimal manipulability for very low values of the number
of voters and of the number of candidates, and we compare them with the classical
voting systems of the literature. In general, we establish that Borda’s method,
Range voting, and Approval voting are particularly manipulable. Conversely, we
show the excellent resistance to manipulation of the system called IRV, also known
as STV, and of its variant Condorcet-IRV.






Note to the reader

This is a translation of the original French version of this memoir, entitled:
“Vers des modes de scrutin moins manipulables”. I apologize for any errors in
language in this English version.
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Introduction

When voting systems are mentioned, we immediately think of the elections
that punctuate our public life. However, the practice of elections is far from be-
ing limited to the political domain: they can be used in any situation where a
certain number of agents, the voters, collectively wish to choose one option among
several possibilities exposed to their sagacity, the candidates. Thus, elections can
be used to designate the best restaurant or the best movie. They can be used
in associations or professional organizations. And the development of structured
communities crossing physical borders thanks to the Internet and also needing to
appoint representatives makes public life and a form of democracy independent
of States all the richer. For example, the Debian project,' the Ubuntu commu-
nity,2 the Wikipedia foundation France,® the website www.boardgamegeek.com,
and many others use Schulze’s method, a voting rule developed in 1997, and are
thus at the forefront of the experimentation with innovative voting systems.

At a time when there is a permanent increase of abstention in the country
where the Declaration of Human Rights originated, while in other countries peo-
ple struggle to obtain the right to vote; at a time when voters of our countries
are showing growing distrust of the political class, and when traditional voting
methods do not seem to satisfy voters’ desire to express themselves; at a time, fi-
nally, when the possibilities still in their infancy offered by electronic voting make
it possible to consider, in the near future, the use of voting methods with more
complex counting, it seems to us more urgent than ever to take the time to think
about the procedures used to vote, that is to say the voting rules themselves.

Simple majority voting

In this thesis, we will always use the word candidates to refer to the various
options that are available to voters, even when they are not persons running for
public office. The simplest situation occurs when voters are asked to respond to
a closed question with a yes or no answer.

Since at least the Athenian democracy of the century of Pericles (v century
B.C.), simple majority voting has been used for such decisions. It was the case in
the principal Athenian assemblies:

e The Ecclesia (éxxhnoia), the assembly of all citizens, gathered on Pnyx hill
about 40 times a year;

e The Boule (Bouly), a small council made up of 50 members drawn by lot
who met daily to deal with current affairs;

1
2

www.debian.org/.
www.ubuntu-fr.org/.
3fr.wikipedia.org/.
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e And the dikasteria (Sixacthpia), popular jurors drawn by lot, responsible
both for judging specific disputes and discussing the legality of decrees,
thus prefiguring popular juries as well as institutions such as the current
Constitutional Council (for France) or the European Court of Human Rights
(for the European Union).

In the case of a closed question, simple majority voting therefore very quickly
imposed itself as an obvious choice.

Of course, there is another case where there are only two candidates: when
two real candidates in the usual sense, that is to say two human beings, are placed
in competition and submitted to the opinion of the voters.

May (1952) formalized this superiority of simple majority voting by an ax-
iomatic approach: in the case where there are two candidates, it is the only
voting method that has the following properties.

1. It is anonymous, i.e. it treats all voters equally.

2. It is mewutral, i.e. it treats both candidates equally.

3. It is positively responsive,* i.e. if a voter prefers candidate a to candidate b,

there is no case in which it is in her interest to vote for b.

4. TImplicitly, May assumes that the voting system is ordinal. This term means
that the voter can establish an order of preference on the candidates: either
she prefers candidate a to b, or the reverse, or she likes them equally. But
she cannot express a more nuanced opinion: it is thus impossible for her to
express herself differently depending on whether she strongly prefers a to b
or slightly prefers a to b.

The first two assumptions, anonymity and neutrality, seem obvious in practice,
at least in application contexts where voters, on the one hand, and candidates,
on the other hand, are assumed to be equal in law. This is not always so, and
sometimes in an arguable way, as in a shareholders’ meeting or a federation of
states of different sizes. However, there is a wide field of application where these
assumptions are self-evident.

The third assumption, positive responsiveness, also seems to follow from com-
mon sense. It implies, in particular, that for each voter and whatever her opinions,
she can issue a ballot that will best defend them, regardless of the ballots of the
other voters: in the terminology of game theory, we say that she always has a
dominant strategy. We will come back to this notion because it is deeply linked
to manipulability, which will be the central theme of our study.

The fourth assumption, almost implicit in May’s formulation, is ordinality. It
seems quite intuitive, also for strategic reasons: imagine that a voter can reinforce
her vote for a by stating that she strongly prefers her to b. If she only slightly
prefers a to b, she may still claim to prefer her strongly, simply to give her opinion
a better chance of winning. By using such a system, there is a risk of ending up
in two situations.

e If all the voters reason in this way, we end up with a situation where the
ballots declaring a slight preference are no longer used at all, and we are
reduced to an ordinal system where the ballot “I strongly prefer” is simply
used to mean “I prefer”.

4In the French version of this dissertation, we say that the voting system “reacts positively”
(réagit positivement).
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e Alternatively, if some voters think like this but not all of them, the situation
is even worse, since the former, who vote strategically, have more power
than the latter, who vote naively. Such a situation compromises de facto
the principle of equality between voters.

It is also possible to justify ordinality by other very deep arguments. We will
come back to it.

Paradoxes of social choice

We have seen that when there are two candidates, there is a voting system,
simple majority voting, which has satisfactory properties, and that this voting
system is unique under fairly reasonable assumptions. But as soon as there are
three candidates, things start to go wrong.

Condorcet’s paradox

The question is: since we have a system with good properties for two candi-
dates and it is to some extent unique, how can it be satisfactorily extended to
cases where there are more candidates?

To answer this question, a natural idea is to require independence of irrelevant
alternatives (ITA), which intuitively means that the presence or absence of losing
candidates does not influence the outcome of the election. More precisely, this
principle can be formulated in two equivalent ways.

1. If a losing candidate is removed and the election is rerun (with the same
voters holding the same opinions), then the winner must not change.

2. If a candidate is added and the election is rerun (with the same voters
holding the same opinions), then the new winner must be either the same
as in the original election, or the added candidate.

Again, this principle seems to make perfect sense. If the community of voters
believes that candidate a is the best option among a, b, and ¢, then it seems obvi-
ous that by removing the irrelevant alternative ¢, the community should consider
that a is the best option if one has to choose between a and b.

To illustrate this principle, the following joke is often used. In a restaurant,
the server informs a customer that she has a choice between chicken and beef.
The customer then orders chicken. A few minutes later, the server comes back:
“By the way, I forgot to tell you that there is also fish.” And the customer replies:
“Very well, then I'll have some beef.” Here, the customer seems to prefer beef
when all three options are available, but chicken when only beef and chicken are
offered, thus violating the ITA assumption.

This joke serves both to show the relative naturalness of the ITA hypothesis
and to discuss its exact meaning. In this particular case, one could, for example,
imagine that the customer simply changed her mind during the five minutes the
server was away, regardless of the addition of fish to the menu. In this case, the
change of decision does not seem absurd. But the ITA concerns a more restricted
and natural case: it simply asks that, if the voters retain the same opinions, the
absence or presence of an unselected candidate does not influence the outcome.

One could also imagine that the presence of fish on the menu informs the
customer that this is a restaurant of a higher category and that, in this case, she
prefers to have beef. With this interpretation, the customer’s opinion does not
vary over time, it is the options under consideration that change: initially, she
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thinks she has the choice between “chicken in an average restaurant” and “beef in
an average restaurant” but at a later time, she thinks she has the choice between
“chicken in a superior restaurant”, “beef in a superior restaurant”, and “fish in a
superior restaurant”. Thus, there is nothing contradictory about her change of
decision and she only apparently violates the ITA principle.

One could also explain the customer’s behavior by various other explanations,
involving, for example, preferences that are not transitive. In this way, we will
see another possible interpretation of this thought experiment in Example 1.8.
That said, ITA still seems to be a desirable property in general, which guarantees
a certain consistency in the choices made.

In order to extend simple majority voting while respecting the ITA principle,
it is necessary to elect a candidate w who, compared to any other candidate c,
is preferred by a majority of voters. Indeed, if we remove all the other irrelevant
candidates, then, by ITA principle, it is necessary that w wins the simple majority
vote against ¢. When a candidate satisfies this condition, she is said to be a
Condorcet winner.

Ramon Llull, a Majorcan scholar of the XII1® century, seems to have been
the first to describe voting rules that have the property of electing the Condorcet
winner, as McLean (1990) analyzes based on the original writings of Llull (c. 1285,
1299). But, to our knowledge, it was Nicolas de Condorcet (1785) who was the
first to explicitly formulate this guiding principle and above all to have noticed
that such a candidate does not always exist. Indeed, consider three voters with
the following preferences.

o o 2
L o o
[ S T

In the notation above, each column represents one voter. For example, the first
voter prefers candidate a to candidate b, which she prefers to candidate ¢. With
the above preferences, a majority of voters prefer a to b, a majority (not made up
of the same voters) prefer b to ¢, and a majority prefer ¢ to a. There is therefore
no Condorcet winner: this is called the Condorcet paradoz. This phenomenon is
so important in social choice that it is sometimes simply called the paradoz of
voting.

In particular, the above example shows that it is impossible to extend simple
majority voting while respecting the ITA principle (which was neither named nor
formulated so explicitly in Condorcet’s time). For example, if we decide that a
is the winner, then this is not consistent with the result of an election between a
and ¢, since candidate ¢ would win this electoral duel. Similarly, no candidate is
a consistent winner with simple majority voting and the ITA principle.

Arrow’s theorem

Arrow (1950) kind of generalized Condorcet’s observation. Although his origi-
nal theorem deals with social welfare functions, which allow to completely rank the
options available to agents, it has an immediate transcription for voting systems,
which simply designate one option according to the preferences of the community.®

Being relatively modest in our demands, we can require that a voting system
possess the following properties.

5We will not use the term social choice function because it is usually reserved for systems
that are ordinal. As we will elaborate in Section 1.4, we use the term voting system in a broader
sense, which includes non-ordinal systems.
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1. It satisfies ITA.

2. It is uwnanimous: if all the voters prefer candidate a, then she must be
elected.

3. It is not dictatorial: there is no voter who has the power to decide the
outcome alone.

4. Tmplicitly, Arrow assumes that the voting system is ordinal.

5. Explicitly, Arrow assumes that the voting system is universal, in the sense
that it identifies a winning candidate for every combination of allowed bal-
lots. In this dissertation, we will always make this assumption implicitly.

Thus, we ask the same question as before: how to obtain a voting system
that satisfies IIA? But, instead of assuming that the voting system reduces to
simple majority voting when there are two candidates, we make the a priori less
demanding assumptions that it is unanimous, non-dictatorial, and ordinal.®

Yet even with these weaker requirements, Arrow’s theorem tells us that there
is no voting system that satisfies them (for a number of candidates greater than
or equal to 3).7

With regard to unanimity and non-dictatorship, these assumptions seem very
difficult to abandon. For ordinality, we will come back to it. That leaves the
IIA property, which therefore seems to have to be sacrificed to preserve the other
assumptions. In practice, all the usual ordinal voting systems effectively violate
the same assumption: ITA.?

It is important not to reduce Arrow’s theorem to a mere procedural matter,
precluding the existence of a perfectly satisfactory voting system in practice. The
most profound consequence is that, in an ordinal approach, there does not exist
a canonical notion of “candidate preferred by the population” if one makes the
understandable wish that this notion has natural properties.

Interpersonal comparison of utilities

In order to solve the problems encountered above, it would seem that removing
the ordinality assumption is a good angle of attack. A simple way to model the
intensity of a voter’s preferences is to use cardinal utilities: the interest of each
voter in each candidate is represented by a real number. Here, the term cardinal
means not only that the comparison between two utilities (which one is higher)
reveals which candidate is preferred by the voter, but also that the numerical
value of the utilities reflects a preference intensity.

Several variations of this model exist, but the most common is that of Von
Neumann and Morgenstern (1944). In this model, the utilities of a voter are de-
fined up to an additive constant and a positive multiplicative constant. Intuitively,
if we make the analogy between the measurement of the position of a candidate
on the abstract axis of a voter’s preferences (i.e. the axis of utilities) and the
measurement of the position of a concrete object on a straight line, the voter can

6These assumptions are a priori less demanding because we have assumed ITA. This is not
the case otherwise.

7One can consult Geanakoplos (2005) for elegant proofs of Arrow’s theorem, which have
also inspired several variants of the proof of the Gibbard-Satterthwaite theorem, to which we
will return in a moment. Furthermore, Mossel (2012) and Keller (2012) provide “quantitative”
versions of Arrow’s theorem that discuss the probability of observing a violation of the required
properties.

8For a discussion of the assumptions of Arrow’s theorem, see Gibbard (2014).
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choose arbitrarily where she places the origin of the reference frame (hence the
additive constant) and which unit of length she uses (hence the multiplicative
constant).

In the case of a length measurement, one agent can lend her graduated ruler
to another, which at least allows the same unit to be used. But in the case of
preferences, the measuring instrument remains in the mental universe of each
agent, and it is impossible to know whether one is using the same unit of length
as another. The question does not even make sense, since it is impossible to place
the preference axes of two agents in the same mental universe in order to compare
the measured distances.

More generally, it is impossible to make an interpersonal comparison of utili-
ties, i.e. of the preference intensities of the agents, without making an additional,
necessarily arbitrary, assumption which, in fine, amounts to favoring such or such
type of agent. We will not develop these complex questions any further: for a
good overview, the reader is invited to consult Hammond (1991).°

We will keep in mind, in any case, that removing the ordinality assumption is
far from being as innocuous as it seems. Moreover, we will see other reasons for
favoring ordinal voting systems later in this manuscript.'®

Gibbard-Satterthwaite theorem

From our point of view, the main conclusion of Arrow’s theorem and of the
fundamental problems posed by an interpersonal comparison of utilities is that
there is no canonical and indisputable notion of “candidate preferred by the popu-
lation.” We can therefore ask the question from another perspective: in practice,
how does the voting system behave? In particular, does it give the same power
to all voters according to their level of information? From a game-theory point of
view, is it easy to reach equilibrium situations?

More precisely, a voting system is said to be manipulable in a certain con-
figuration of voter preferences if and only if a subset of the voters, by voting
insincerely, can lead to the election of a candidate they prefer to the outcome of
the sincere vote (assuming the other voters cast sincere ballots anyway). It seems
intuitively obvious that manipulability is a bad property, and we will soon discuss
why in more detail.

Unfortunately, Gibbard (1973) has shown that as soon as there are 3 eligible
candidates or more, for each non-dictatorial voting system, there exists at least
one configuration where the voting system is not only manipulable, but by a
coalition made up of one single voter!

We will follow the tradition of calling this result the Gibbard-Satterthwaite
theorem. However, Gibbard’s result is both earlier and stronger than that of
Satterthwaite (1975): indeed, it applies to any type of voting rule (or game form,
cf. Section 1.4), whereas that of Satterthwaite applies only to ordinal voting
systems.

Non-deterministic Gibbard’s theorem

If one accepts without reservation the principle of resorting to chance, then
there are satisfactory systems, contrary to the deterministic case where we have
seen that the path is paved with impossibility theorems.

9Chichilnisky (1985) also proves, by other arguments, that it is essentially impossible to
aggregate cardinal preferences by a method possessing reasonable properties.

101n particular, one can consult the theoretical results of Chapter 5, the simulations of Chap-
ters 7 and 8, and the experiments of Chapter 9.
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First, randomness can be used unconditionally, regardless of voter preferences.
Again, examples can be found in ancient Athenian democracy, where many offices
were assigned by lot from a pool of eligible candidates.

Second, voter preferences can be combined with chance. In this case, it is
natural to require that the voting system be non-manipulable, unanimous, and
anonymous. Gibbard (1977, 1978) has shown, first for ordinal voting systems and
then in general, that the only voting system that satisfies these hypotheses is the
random dictatorship: each voter votes for a candidate, then a ballot is drawn
equiprobably and the candidate indicated on this ballot is elected.!!

For some applications, this system can be interesting. In particular, if the
collective decision entails measured consequences and/or if it will be renewed
frequently, for example the choice of a restaurant by a group of friends, then it
allows a balance of power while eliminating the issue of strategic voting.

In other contexts, however, such a use of chance will always remain debated,
except as an additional rule to decide between candidates in the event of a perfect
tie in the ballots of the voters. In this dissertation, we will focus exclusively on
deterministic voting systems, where the winning candidate depends only on the
voters’ ballots, without the use of a random element.

Manipulation is good. Manipulability is bad.

We have quickly said that manipulability is a harmful property of a voting
system. We will now discuss this fundamental question.

What we call manipulation is the practice by some voters of strategic voting.
We think it is important to distinguish it from manipulability, which is the fact
that manipulation can work, i.e. lead to an outcome different from sincere voting.
In other words, the manipulability of a voting system in a certain configuration of
voters’ preferences is the fact that sincere voting is not a strong Nash equilibrium
(SNE): a coalition of voters can deviate from sincere voting and obtain an outcome
they deem preferable to the winner resulting from a sincere vote.

Defense of manipulation

Manipulation, that is, the practice of strategic voting, is sometimes viewed in
a negative light. Here are the main arguments for this view, which we will discuss.

1. Manipulators are cheaters.
2. Manipulation leads to an “incorrect” election result.
3. Manipulation is to the detriment of the community.

Argument 1 is defensible if one attaches a moral dimension to sincere
voting, but it goes against all modern views on mechanism design and
Nash-implementability:'> in general, it is nowadays considered that agents
are strategic and that the problem is to find a rule of the game which leads
to a satisfactory result for social welfare, by accepting — and most of the
time, exploiting — this strategic behavior. In economics, such a point of view
essentially goes back to the “invisible hand” of Adam Smith, and this idea can
be naturally transposed into voting theory: from our point of view, the strategic

HUMore generally, Gibbard (1978) shows, by authorizing non-deterministic voting systems,
which are all non-manipulable systems. The anonymous and unanimous case that we cite for
simplicity is only a corollary of this general result.

128ee for example Feldman (1980).
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voter is thus not a cheater but an agent who contributes to seeking and perhaps
obtaining a Nash equilibrium.

As for argument 2, one can argue against it using Arrow’s theorem (in an
ordinal framework) and the fundamental problems of interpersonal comparison
of utilities (in a cardinal framework): there is no canonical notion of “candidate
preferred by the population”. So talking about an “incorrect” outcome does not
really make sense.

Argument 3 has similarities to the previous one. But whereas argument 2
assumes the existence of some sort of higher truth (the “correct” result, given
the sincere preferences of the population), argument 3 is more pragmatic and
ultimately comes down to the following question: which voters prefer the sincere
election winner, and which prefer the winner resulting from manipulation?

In the general case, it is clearly possible that some voters are less satisfied
with the alternative winner than with the sincere winner. But this cannot be the
case for all voters: indeed, at least the manipulators prefer the alternative winner
by definition. On the other hand, we will see that the opposite can happen: it
is possible that all the voters prefer the alternative winner to the sincere winner
(that is to say that the former Pareto-dominates the latter).

Indeed, consider the following example. There are 26 candidates, designated
by the letters of the alphabet. We use the voting rule called Veto, with the
alphabetical tie-breaking rule.

1. Each voter casts a veto, i.e. votes against a single candidate.'®
2. The candidate receiving the fewest vetoes is elected.

3. In the event of a tie, the first candidate in alphabetical order, among the
tied ones, is declared the winner.

Suppose there are 25 voters and they unanimously prefer the candidates in reverse
alphabetical order (they love z and they hate a). If they vote sincerely, they all
veto a and, by the tie-breaking rule, b is elected: she is the second worst candidate
for all voters!

If a voter is aware of this, she may decide to vote strategically against b and
then c is elected, improving the lot of the whole community. This manipulation is
therefore not harmful. One can even go further: if the voters skillfully coordinate
to vote against all the candidates except z, then this one is elected, which satisfies
all the voters at best.

To sum up, it is possible for a manipulation to benefit the whole community.
Conversely, even if it is possible that it is exercised to the detriment of a part of
the community, it cannot harm the whole community. Argument 3 is therefore
quite circumstantial and debatable in general.!'*

Manipulability and strong Nash equilibria (SNE)

Let us continue with a more practical example, since it now belongs to history.
The 2002 French presidential election was held using the Two-round system. In
the first round, Jacques Chirac (right) received 19.9% of the votes, Jean-Marie Le

131In this dissertation, a negative vote against a candidate is called a wveto, with a lower case
letter. In contrast, the word Veto, capitalized, refers to the voting system described above, also
known as Antiplurality.

MFor a study of the potential negative impact of manipulation on social welfare, see Branzei
et al. (2013).
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Pen (far right) 16.9%, Lionel Jospin (left) 16.2%, and 13 other candidates shared
the rest. In the second round, Chirac won by 82.2% of the votes against Le Pen.

However, according to some opinion polls at the time, Jospin would have won
the second round against any opponent, i.e. he was the Condorcet winner. It
is impossible to verify whether this was indeed the case for the entire French
electorate, but it does indicate that the reality was close enough to this scenario
so that a situation in which the observed votes would have been sincere and Jospin
would have been the Condorcet winner can be considered a realistic example.

Under this assumption, there was a possibility of manipulation: if all the voters
preferring Jospin to Chirac had voted for Jospin in the first round, then Jospin
would have been elected directly in the first round. In other words, sincere voting
was not a strong Nash equilibrium (SNE). But the voters did not perform this
manipulation, and this is a key observation to which we will return.

This situation poses two main types of problems:

1. The a posteriori feeling of the voters,
2. The legitimacy of the result.

On the one hand, after the election, some sincere voters may feel regret about
their ballot choice and also a sense of injustice: since insincere ballots would have
defended their opinion better, they may consider that their sincere ballots did not
have the impact they deserved. They may draw from this a distrust of the voting
system itself: the fact that a sincere ballot does not best defend the opinion it
expresses appears to be a bug of the voting system.'® This experience may even
develop or reinforce their distrust of elective practice in general.

On the other hand, one may fear for the outcome of such an election. On this
aspect, this example can be interpreted in two ways, but both lead to condemn
manipulability. If the result of the sincere vote is deemed by definition to best
represent, the opinions of the voters, then Chirac was the legitimate winner. But
in this case, the manipulability of the situation would have risked leading to the
election of Jospin if the voters concerned had been more skillful. Conversely, if it
is believed that a manipulated outcome can be better in terms of collective welfare
(as the proponents of the Condorcet criterion would argue in this case), then the
manipulation itself is not undesirable, but the manipulability of the situation is
undesirable all the same: indeed, it makes this “better” outcome more difficult to
identify and to produce. For example, if the entire population votes sincerely, it
is not achieved.

Thus, it seems that in this case, there was a difference between the observed
outcome of the election and that of a possible SNE. It is amusing to note that,
in other contexts of game theory, it may happen to study SNE because they are
thought to be the configurations towards which agents will naturally converge.
In voting theory, it seems to us that the situation is slightly different: these
are situations towards which it would be desirable to converge for the reasons
explained above, but in practice, this goal may be difficult to achieve because
sincere voting does not necessarily lead to an SNE. This problem corresponds
precisely to the definition of manipulability.

Like any real example, the French presidential election of 2002 must be exam-
ined with more caution than an artificial example, which could be adjusted at will

I5Please forgive me for a personal anecdote: when I began to take an interest in voting
theory, following that famous April 21 of 2002, I was convinced that the Two-round system was
a catastrophic voting system in terms of manipulability. However, we will see in Chapters 7, 8,
and 9 that, even if it is not the least manipulable voting system in general, it is far from being
the worst, even for about fifteen candidates.
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to illustrate an argument in a paradigmatic way. In particular, it is necessary here
to clearly distinguish the fact that the situation is not an SNE from the fact that
the winner is not the Condorcet winner (although the two aspects are linked).
The former can lead to various kinds of problems, which we have described. The
latter can also pose a problem of legitimacy of the winner, since a majority of
voters prefer the Condorcet winner to the elected candidate. Fortunately, we will
see (notably in Chapter 2) that addressing these two types of problems is not
incompatible, quite the contrary.

Moreover, the situation we have described also had an important symbolic
dimension, linked to the practical course of the Two-round system and its anal-
ogy in principle with certain sports competitions. Thus, it seemed shocking to
some voters that a far-right candidate reached the “final” of the competition and
somehow appeared as second in the final “ranking”. However, we will not develop
this point too much: keeping in mind that the symbolic dimension and the public
perception of events is always important, especially for a political election, we
will consider in this dissertation that the main outcome of an election is still the
choice of the winning candidate.

Manipulability and straightforwardness

By definition, the manipulability of a voting system means that the sincere
voting situation is not necessarily an SNE. This poses several problems.

1. Before the election, the voter is faced with a dilemma: vote sincerely or
strategically? If she grants a moral virtue to sincere voting, it can be a case
of conscience. If not, there is still a practical problem: how to choose a
strategic ballot best suited to the situation?

2. These strategic aspects lead de facto to an asymmetry of power between
voters that are informed and strategic and those who are neither. As Dodg-
son puts it in a sentence made famous by Black (1958), voting then becomes
“more of a game of skill than a real test of the wishes of the electors.”*¢

3. As seen in the Veto voting example, if the situation is manipulable, then
voters may need information, computational power, and coordination to
reach an SNE (even in an a priori favorable situation where they all agree).
Conversely, if the situation is non-manipulable, it suffices to vote sincerely
to reach such an equilibrium. No information exchange, no calculation, and
no coordination is then necessary.

4. This need for information, whether individual or collective, gives question-
able power to sources of information, such as the media and polling insti-
tutes.

We will show that these problems are deeply linked to an issue intimately
connected to manipulability, straightforwardness. A voting method is said to be
straightforward (Gibbard, 1973) if any voter, whatever her opinions, has a dom-
inant strategy. In order to fully understand the nuance between this notion and
non-manipulability, consider the simple case where there are only two candidates
and examine the following three voting systems. The last two are rather theoret-
ical curiosities, but they will allow us to illustrate our point.

161n the French version of this dissertation, this sentence is translated to: le vote devient alors
« davantage un jeu d’habileté qu’un test réel des souhaits des électeurs ».
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Simple majority voting Each voter is expected to announce her preferred can-
didate, a or b, and the candidate receiving the most votes is elected.

Inverted majority voting Each voter is expected to announce her preferred
candidate, a or b, but the vote is counted in favor of the other candidate.

Parity voting Each voter places a white ball or a black ball in the ballot box.
If there is an odd number of black balls, then «a is elected. Otherwise, b is
elected.

Simple majority voting is non-manipulable. In particular, as we have already
noticed, each voter always has a dominant strategy (which is simply the sincere
vote): in other words, this voting system is straightforward.

Inverted majority voting, on the other hand, is generally manipulable: if a
voter prefers a, it is in her interest to abandon a ballot with the label a in favor
of a ballot with the label b, since this will be counted in favor of a. On the
other hand, this voting method is straightforward: a voter who prefers a always
has an interest in using a ballot b, and vice versa. Now, this voting method,
even if it can cause some confusion to the voter, does not pose any of the other
problems mentioned: it is easy to find SNE without any calculation, without
any exchange of information, and without any particular coordination. These
problems are therefore clearly related to the defects in straightforwardness and
not to manipulability. We can also see from this example that the notion of
sincere voting is partly conventional: one could, on the contrary, have interpreted
the ballot with the label a as a veto against a. With this convention of language,
we would have concluded that this voting system is never manipulable.

Now let us look at parity voting. If a voter knows the ballots of the other vot-
ers, then she can always decide which candidate wins. Most of the time, therefore,
this voting system is manipulable. And it is particularly not straightforward: if
a voter prefers a, she has essentially no clue as to whether a white or black ball
will best defend her opinion. In this voting system, all the problems mentioned
above are exacerbated: for example, even if all the voters prefer the same candi-
date, they need perfect coordination to elect her. Moreover, the balance of power
between voters is particularly destroyed: a voter with perfect information has
absolute power, while an ignorant voter has essentially no decision-making power.

To sum up, we have examined a non-manipulable (and therefore straightfor-
ward) voting system, a straightforward but manipulable voting system, and a
non-straightforward (and therefore manipulable) voting system. And we found
that the problems we mentioned are actually more related to the lack of straight-
forwardness than to manipulability, since these problems are absent from the
second voting system we examined.

However, there is a deep connection between manipulability and straightfor-
wardness. Indeed, up to defining sincere voting, conventionally, as the use of
the dominant strategy (as we did by transforming inverted majority voting into
Veto), a straightforward voting system is non-manipulable. Conversely, if a voting
system is not straightforward, then there is no way to define sincere voting that
makes it non-manipulable.

In short, by an adequate choice of the sincerity function, i.e. of the conven-
tional way in which a vote deemed sincere is associated with an opinion, the
question of straightforwardness, which is basically the fundamental point, can
therefore be reduced to the question of manipulability, which is more convenient
to grasp in practice.

11
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Manipulability indicators

The theorem of Gibbard (1973) teaches us that no non-trivial voting system,
whether ordinal or cardinal, can be straightforward.!'” In other words, whatever
the sincerity function used, a non-trivial voting system is necessarily manipulable.

All that can be hoped for is therefore to limit the magnitude of the problem,
by studying the extent to which classical voting systems are manipulable and by
identifying processes for designing less manipulable voting systems.

To this end, our reference indicator will be the manipulability rate of a vot-
ing system: depending on the culture, i.e. the probabilistic distribution of the
population’s preferences, this rate is defined as the probability that the voting
system is manipulable in a randomly drawn configuration. In other words, it is
the probability that a vote without information exchange will lead to an SNE.

In the literature, there are mainly two other ways of estimating the manipu-
lability of a voting system:

1. The number of manipulators required, as well as other similar types of
indicators that quantify manipulability when possible.'®

2. The algorithmic complexity of manipulation.'’

In both cases, it is generally considered that the more difficult the manipula-
tion, the more it is a laudable property of the voting system. While understanding
and respecting this point of view, we find it interesting and relevant to defend
precisely the opposite.

Indeed, we have argued that easily reaching an SNE is a good property for
a voting system. For this, the best case is the one where the voting system is
not manipulable, since this means that an equilibrium can be reached without
exchanging information and without any particular calculation. But in the other
cases, to have the best chance of reaching an equilibrium, it is better if strategic
voting is inexpensive in terms of number of voters, information, computational
complexity, and communication.

Let us think back to the Veto example cited earlier. In the situation we de-
scribed, in order to achieve an equilibrium, 24 out of 25 voters must vote strate-
gically. Some might consider this a good thing, since this manipulation is very
difficult to perform. On the contrary, we believe it is a harmful property, since it
takes a lot of effort to achieve the only reasonable result!

Consider another example, Approval voting. Each voter votes for as many
candidates as she wants, and the candidate receiving the most votes is declared
the winner. In practice, we will see in this thesis that this voting method is often
manipulable. However, it has at least the advantage that the strategic question

17Here, we use the shorthand non-trivial to mean: not reduced to two eligible candidates and
non-dictatorial.

183ee Chamberlin et al. (1984); Saari (1990); Lepelley and Valognes (1999); Slinko (2004);
Favardin and Lepelley (2006); Pritchard and Slinko (2006); Pritchard and Wilson (2007); Xia
and Conitzer (2008); Lepelley et al. (2008); Reyhani et al. (2009); Reyhani (2013); Green-
Armytage (2014). For various indicators of manipulability related to single voter manipulation,
see Aleskerov and Kurbanov (1999).

19This line of research was initiated by Bartholdi et al. (1989a); Bartholdi and Orlin (1991).
Since then, various manipulation complexity results have been proved for classical voting sys-
tems, to which we will return. In the same spirit, Conitzer and Sandholm (2003), Elkind and
Lipmaa (2005b), Elkind and Lipmaa (2005a) propose methods to transform a voting system
in order to increase the complexity of manipulation. However, Conitzer and Sandholm (2006);
Procaccia and Rosenschein (2006, 2007); Faliszewski and Procaccia (2010) show that it is essen-
tially impossible to have a voting system that has reasonable properties and is algorithmically
difficult to manipulate on average.
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is relatively simple: as explained by Laslier (2009), it is enough to have access
to polls giving the two favorite candidates to be able to use an efficient strategy,
the Leader rule. Moreover, using this strategic behavior leads to electing the
Condorcet winner if she exists. Thus, even in cases where sincere voting does not
lead to an equilibrium, it is possible to find one with a relatively low cost.2’

In summary, it seems to us that a good property is that the manipulation is
easy. And the ideal manipulation, since it requires no information at all, is simply
the sincere vote.

Our main objectives

With these considerations in mind, it is time to present the main goals that
guided our research.

First, we want to quantify manipulability. How common is it in practice?
Which of the voting systems are the least manipulable? Are the differences sig-
nificant?

Second, in studying manipulability rates, we quickly realized the following
problem: we do not know the minimum rate that can be achieved in a given
class of voting systems.?! Consequently, we can compare voting systems with
each other, but we cannot say whether the observed manipulability rates are far
from an optimum. Ideally, we would like to identify a voting system of minimal
manipulability, or at least to estimate the corresponding manipulability rate: even
if the resulting voting system were too complex to be used in practice, it would
provide us with a yardstick for gauging the manipulability rates of other voting
systems.

Contributions and road map

Theoretical study of manipulability

Chapter 1 develops the formalism of electoral spaces, which makes it possible
to apprehend all types of voting systems, including cardinal systems and even
other types of systems. We take advantage of this chapter to recall the formal
definition of Condorcet notions and to present the voting systems studied in this
thesis. We introduce in particular the IRV system, also known as STV, which
plays an important role in the following chapters. We also introduce the IRVD
system, a variant of IRV suggested by Laurent Viennot. Finally, the IB system
is, to our knowledge, an original contribution.

In Chapter 2, we show that, for all classical voting systems except Veto, we can
make the system less manipulable by adding a preliminary test aiming at electing
the Condorcet winner if there is one.?> We call this system the Condorcification
of the initial voting system. We discuss precisely with which Condorcet notions
this result is valid and we show that the obtained manipulability decrease is strict
for all classical voting systems except Veto, using a notion we introduce and
characterize, the resistant Condorcet winner.

200ne may also want to check out Myerson (1999).

21'Whenever we mention the notion of minimal manipulability, it is in a certain class of “rea-
sonable” voting systems, which we will define a bit later. Indeed, if we were to consider all
voting systems, the question would be trivial, since dictatorship is not manipulable at all.

22 Another slightly less classical voting system is not affected by this result, just like Veto: it
is the Kim-Roush method, which is inspired by Veto and whose definition we will recall. In the
following, we will see that most of the theorems that do not apply to Veto do not apply to the
Kim-Roush method either.

13
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Condorcification theorems assume that the voting system under study satisfies
a property that we call the informed majority coalition criterion (InfMC), which
means that a strict majority of voters always have the power to choose the outcome
of the election, if they know the ballots of the other voters. In practice, all classical
voting systems satisfy this assumption, except Veto. In Chapter 3, we define
several other majoritarian criteria, some of which are original contributions, and
we study their relationship to the difficulty of finding SNE. For all the classical
voting systems, we study which criteria are satisfied by each.

Although a large class of systems satisfy the InfMC hypothesis, this is not
always the case. In Chapter 4, we study how to decrease manipulability in general,
through a process we call generalized Condorcification, using an approach inspired
by the theory of simple games. For usual systems satisfying InfMC, we use this
formalism to show that Condorcification in the usual sense, i.e. based on the
Condorcet winner, is in a certain sense optimal.

In Chapter 5, we study the influence of the ordinality of a voting system
on its manipulability. We show that, for each non-ordinal voting system, there
exists an ordinal voting system that has certain properties in common with the
original voting system and that is at most as manipulable, provided that the
culture satisfies a condition that we introduce, decomposability. In particular,
we show that this theorem is applicable when the voters are independent in the
probabilistic sense. Combining this result with the Condorcification theorems, we
conclude that the search for a voting system of minimal manipulability (within
the class of systems satisfying InfMC) can be restricted to voting systems that
are ordinal and that satisfy the Condorcet criterion.

Computer-aided study of manipulability

From Chapter 6 onward, we temporarily put aside the search for a voting
system of minimal manipulability and we try to quantify the manipulability of
classical voting systems. For that, we present SWAMP, a Python package of our
own dedicated to the study of voting systems and their manipulation. Its soft-
ware architecture is modular, allowing the rapid implementation of new voting
systems. Using the criteria defined in Chapter 3, SWYAMP has generic manipu-
lation algorithms and specific algorithms for some voting systems, either taken
from the literature or designed specifically for this software package. SWAMP will
be used in all subsequent chapters.

In Chapter 7, we study the manipulability rate of different voting systems
in spheroidal cultures, which generalize the model usually known as impartial
culture (cf. for example Nitzan, 1985). In particular, we are the first to use
the Von Mises—Fisher model to generate preferences and we explain the reasons
for this choice. We study the effect of the variation of the different parameters
and we introduce meta-analysis diagrams, which make it possible to compare the
manipulability of the voting systems studied. In particular, we show that the
voting system CIRYV, obtained by Condorcification of IRV, is generally the least
manipulable.

In Chapter 8, we study another model, based on an abstract political spec-
trum and generalizing the notion of single-peaked culture introduced by Black
(1958). This different framework allows us to qualify our conclusion about the
CIRV system: indeed, its supremacy is then more questionable than in spheroidal
cultures. In particular, other voting systems show interesting performances, such
as CSD, IB, the Two-round system, and some others.

In Chapter 9, we analyze real experiments from a wide variety of contexts,
including preference-revealing settings that are not elections. These experiments

14



Introduction

allow us to confirm previous results that there is frequently a Condorcet winner
(for example Tideman, 2006) and to establish that the CIRV system is distin-
guished by its low manipulability.

Chapter 10 takes up the search for a voting system with minimal manipulabil-
ity (in the class of systems satisfying InfMC). We define the opportunity graph
of an electoral space and we show that the question can be reduced to an integer
linear programming problem, which can be studied for very modest values of the
parameters by combining a theoretical approach and the use of dedicated software
(CPLEX). Finally, we use SWYAMP to compare the classical voting systems with
the optimum.

Appendices

In Appendix A, we study measurability issues, i.e. a technical point related
to the use of probability spaces, mainly useful for Chapter 5 on slicing.

In Appendix B, we present a work carried out in collaboration with Benoit
Kloeckner on the geometry in the utility space. In particular, we motivate the
use of spheroidal cultures in Chapter 7.

In Appendix C, we illustrate how the study of voting systems and their ma-
nipulability can provide answers to telecommunication questions, using a model
initially designed by Ludovic Noirie. In particular, we show that the IRV system
can reconcile non-manipulability and economic efficiency.

In the glossary (page 305), the reader can find a summary of the main notations
and acronyms used in this thesis.

We wish you a good reading!
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Chapter 1

Framework

In the Arrovian social choice literature, a voter’s preferences are usually repre-
sented by a strict order of preference over the candidates (Arrow, 1950). A voting
rule (or social choice function) is a function which, to the preferences of all voters,
associates a winning candidate. However, with this formalism, it is impossible to
correctly apprehend voting rules such as Approval voting or Range voting.

We develop the framework of electoral spaces (Section 1.1), a class of models
able to use arbitrary mathematical objects to represent the preferences of the
voters, while allowing to prove general theorems about these models. In this
framework, Section 1.2 defines state-based voting systems (SBVS), which will be
the main focus of our study, and Section 1.3 translates the usual definition of
manipulability into this model. Section 1.4 then defines general voting systems,
which make it possible to represent all the voting rules imaginable in practice.
We outline how one can navigate between general voting systems and SBVS, and
we show why the study can be restricted to the latter.

We then take advantage of this first general chapter to recall the notions of
weighted majority matrix and Condorcet winner in Section 1.5. We take care
to clearly distinguish the different variants of this notion, linked to the fact that
we authorize preferences which are arbitrary binary relations, for example weak
orders. In particular, we generalize the usual notion of weak Condorcet winner
by defining the notion of Condorcet-admissible candidate, which the following
chapters will reveal to be a central notion for the manipulability of almost all
usual voting systems.

Finally, in Section 1.6, we present the voting systems that we will study in this
thesis. Among them, the IB system is, to our knowledge, an original contribution.
The same is true of the systems Condorcet-dean and Condorcet-dictatorship, which
serve above all as convenient raw material for theoretical examples. We also
introduce the IRVD system. It was suggested to us by Laurent Viennot, whom
we thank.

1.1 Electoral spaces

In this section, we introduce the framework of electoral spaces, which will allow
us to represent both the preferences and the ballots of voters.
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1.1.1 Binary relations

First of all, a few reminders about binary relations are necessary. Let E be a
set and Py € P(E?) a binary relation on E. We say that Py is:

Reflexive iff Ve € E,c Py ¢;
e Irreflezive iff Ve € E,non(c Py ¢) (i.e. iff non Py is reflexive);

o Weakly complete, or simply complete,! iff V(c,d) € E?>,c # d = ¢ Py
dordPyc

o Antisymmetric iff V(c,d) € E?,¢Pg dand d Py ¢ = ¢ = d (i.e. iff not Py is
complete);

o Transitive iff V(c,d,e) € E3,c Py dand d Py e = c Py ¢;
e Negatively transitive iff not Py is transitive.

We say that Py is a strict weak order iff it is negatively transitive, irreflexive,
and antisymmetric; a strict total order iff it is transitive, irreflexive, and weakly
complete.

1.1.2 Profiles

We can now represent the preferences of the voters on the candidates.

Let V and C be two positive integers. Let V = [1, V] be the set of indices of
the voters and C = [1,C] the set of indices of the candidates, where the notation
with open bracket denotes the set of integers included in the closed interval. The
candidates can be voters themselves, without altering our results.?

We denote R¢ the set of binary relations on C: an element of R¢ represents
the binary relation of preference of a voter on the candidates. Let W, be the set
of strict weak orders and L¢ the set of strict total orders on C.

Let R = (Rc)V. Asit is usual in social choice, we call an element of R a profile.
For each voter, it gives her binary relation of preference on the candidates.

When the relations of preference of the voters are strict orders (total or weak),
we represent, a profile as in the following example.

In this case, the first 44 voters prefer a and are indifferent between b and ¢, the
next 32 prefer b to ¢ and c to a, etc. In the general case, the header row shows the
number of voters in each column. If each column corresponds to a single voter,
then the header row is omitted. The number of voters in each column can also
be given as a percentage of the total number of voters V.

L1We say that P is strongly complete when it is also reflexive. Depending on the literature,
the qualifier complete, used alone, can refer to either notion. Since we will generally use the
word complete for irreflexive relations, it will necessarily mean weakly complete so there will be
no possible confusion.

20n the other hand, we consider that the set of candidates is fixed a priori. An interesting
extension of the model, which we will not discuss in this dissertation, is to allow potential
candidates to enter or withdraw for strategic reasons (Dutta et al., 2001, 2002; Lang et al.,
2013; Brill and Conitzer, 2015).
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As an abbreviation, we can also write that the weak order of preference of the
first 44 voters is (a = b ~ ¢), where the symbol > represents a strict preference
and the symbol ~ an indifference.

1.1.3 Definition of an electoral space

Before defining the notion of electoral space in general, we present a model
that makes it possible to study all common voting systems and that we will use
frequently to illustrate our results.

Definition 1.1 (reference electoral space)
In the model that we call reference electoral space, each voter v is able to
mentally establish:

e A strict weak order of preference p, € We on the candidates,
e A vector u, € [0,1]¢ of grades on the candidates,
e And a vector a, € {0,1}“ of approval values on the candidates.

The triple wy, = (py, Uy, a,) Will be called her sincere state and we will denote P,
the function that extracts the first element of this triple: P, (w,)= p.-

In general, we will note €, the set of possible states for voter v. In the first
model above, we have Q, = W¢ x [0,1]¢ x {0,1}¢. We suggest to the reader to
see this set as the analog of a universe in probability theory: for most problems, it
is not necessary to specify exactly its content. The main point is the possibility to
define functions that extract this or that information about voter v, as a random
variable would do in probability theory: for example, the function P, gives access
to her binary relation of preference.

By analogy with the usual notations for random variables, we will frequently
write P, as a shortcut for P, (w,): therefore, the expressions ¢ P, (w,) d and ¢ P, d
are synonyms, both meaning that voter v (in the state w,) prefers candidate ¢ to
candidate d. For a certain binary relation of preference on the candidates p,, the
notation P,(w,) = p, or, in short, P, = p,, means that the variable P, has the
value p, (in state w,).

We call configuration a V-tuple w = (wi,...,wy) giving the state of each
voter, as illustrated in Figure 1.1. We note Q =[], ,, Q. the Cartesian product
that contains all the possible configurations and P = (Pq,...,Py) the function

with V variables that, to a configuration w, associates the profile that corresponds
to it: (P1(w1),...,Py(wy)).

We now have all the necessary elements to define an electoral space, i.e. a
mathematical model representing the preferences of voters.

Definition 1.2 (electoral space)
An electoral space is given by:

e Two positive integers V and C,
e For each voter v € V, a nonempty set €2, of her possible states,

e For each voter v € V, a function P, : , — R¢, whose result is her binary
relation of preference.

Such an electoral space is denoted (V,C,,P), or simply © when there is no
ambiguity.
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w1 € Qy - Pie Re
state wa € > Pae Re binary relation
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Figure 1.1 — Configuration and profile of the voters.
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Figure 1.2 — State of a voter in the reference electoral space.

Let us return to the example of the reference electoral space, where w, =
(Pv, Uy, ay). For more realism, the social planner® has the option of adopting the
assumption that each voter’s grades and approval values are consistent with her
binary relation of preference: if ¢ p, d, then u,(c) > uy,(d) and a,(c) > a,(d).
Figure 1.2 illustrates the state of a voter satisfying these assumptions. The left
part of the figure represents the positions of the candidates on her utility axis .,
as well as the boundary between the candidates she disapproves of (a, = 0) and
those she approves of (a, = 1). The right-hand side represents the graph of
her binary relation of preference. In this case, since it is a strict weak order by
assumption, transitivity is implied in the figure.

It is easy to include this assumption in the model, by defining €, as the set
of triples (py, Uy, a,) that satisfy the requested conditions. Other hypotheses can
be added in the same way, by choosing a suitable set €2, for each voter.

1.1.4 Examples of electoral spaces

Another model is very important for theory: in traditional Arrovian social
choice, it is common to represent each voter’s opinions only by a strict total order
on the candidates. This practice corresponds to the following electoral space.

3In the economic and social sciences, the social planner is a decision maker who tries to
obtain the best possible result for all the actors involved. In our case, it is an abstract person
who can represent both social choice researchers and all the people who can have an influence
in choosing the voting system used in a given human organization. By hypothesis, the social
planner tries to establish a voting system with as good properties as possible. To do this, it is
first necessary to identify the preferred application domain by defining the electoral space used.
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Definition 1.3 (electoral space of strict total orders)
For all v € V, let Q, = L¢ and P, the identity function.* This model is called
electoral space of strict total orders for V and C.

The model above is sometimes extended by allowing strict weak orders. We
can also consider arbitrary binary relations.

Definition 1.4 (electoral space of strict weak orders)
For all v € V, let 2, = W¢ and P, the identity function. This model is called
electoral space of strict weak orders for V and C.

Definition 1.5 (electoral space of binary relations)
For all v € V, let Q, = R¢ and P, be the identity function. This model is
called electoral space of binary relations for V and C.

The choice of the electoral space does not guarantee anything about the ex-
pressiveness of a possible voting system that we would plan to study later. For
example, if we choose the electoral space of strict weak orders, it does not mean
that the studied voting system will allow a voter to transmit a strict weak order
in her ballot. It just means that the social planner admits that a voter may have
a weak order of preference on the candidates and considers it impossible for her to
have any other form of preference (descriptive approach). Or, more reasonably, it
means that the good properties that would be proven later for the studied voting
system are guaranteed if the voters have strict weak orders of preference, but a
priori not in the other cases (normative approach).

Let us continue to explore the possibilities offered by electoral spaces with
some examples.

Example 1.6 (utility with margin of uncertainty)

Suppose that each voter v is able to mentally establish a vector of scores
u,y € [0,1]¢ and a real number £ > 0, interpreted as some uncertainty, such that
she prefers a candidate ¢ to a candidate d iff u,(c) > w,(d) +¢. Her state space is
then Q, = [0,1] x R and her function P, is defined by the previous inequality.®

Example 1.7 (utility intervals)

It is easy to generalize the previous example. To each candidate ¢, voter v
associates a nonempty interval [u,(c), W, (c)]. It is interpreted as follows: v situates
her utility for candidate c in this interval, but not more precisely (because of an
inability to be more precise, because of a lack of interest or because it represents a
too high cognitive cost). She prefers candidate c to d iff u,(c) > u,(d). Figure 1.3
represents an example of state for such a voter. The left side represents her utility
interval for each candidate. The right side displays the graph of her binary relation
of preference. This one is irreflexive, antisymmetric, and transitive. This is why
we did not represent explicitly the edges from d or e to a, which are deduced from
the other edges by transitivity. On the other hand, the relation is not negatively
transitive: indeed, the voter prefers neither e to d nor d to ¢, and yet she prefers
e to ¢. So it is not a strict weak order.

Example 1.8 (multi-criteria preferences)
Now, each voter mentally rates each candidate in the interval [0, 1] according
to three criteria: her state space {2, is the set of matrices of size 3 x C' with values

4This is an abuse of language that we will commit without scruples: to be quite rigorous, P,
is the inclusion map from L¢ into Re¢.

5This idea can be compared to the work of Ehlers et al. (2004), in which manipulability with
a threshold is considered, i.e. where voters wish to improve their utility by at least a certain
amount.
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Figure 1.3 — State of a voter in the electoral space of utility intervals.

Candidate
Chicken (a) | Beef (b) | Fish (c¢)
.S Cheap 1 0,5 0
S | Healthy 0,5 0 1
& | Soft 0 1 0,5 (s <>

Figure 1.4 — State of a voter with multi-criteria preferences.

in [0, 1]. We suppose that she prefers a certain candidate to another one iff the first
one is strictly better rated than the second one according to at least two criteria:
this defines the function P,,. Let us consider a voter in the state w, represented by
Figure 1.4. She prefers a to b, b to ¢, and c to a: her binary relation of preference
P,(wy) is not transitive. In some sense, such a voter realizes a Condorcet paradox
on her own: the multiplicity of criteria she considers, and the fact that she decides
her preferences according to the majority of the criteria, mimics the behavior of
three distinct voters using simple majority voting for each pair of candidates.

If such a voter is asked to designate a favorite among the three candidates, then
she necessarily violates the property of independence of irrelevant alternatives
(ITA) that we mentioned in the introduction: for example, if she designates beef (b)
as her favorite candidate among the three, then this seems to contradict the fact
that she chooses chicken when it comes to choosing between chicken and beef.

Example 1.9 (decentralized random generator)

Each voter has a binary relation of preference p, on the candidates and
owns a coin. After flipping the coin, her (honest) state is (py,z,), where z, €
{Heads, Tails}. It is assumed that nobody else knows the result of her random
draw: therefore, if she has to communicate her state to a voting system, then she
can lie about the result of the draw as well as about her order of preference.

1.1.5 Basic properties of an electoral space

Although we interpret P, as strict preferences in most of our examples,® an-
tisymmetry is not required by the definition 1.2 of an electoral space. We will
discuss in Section 1.3 (page 34) what interpretation can be given to relation P,
when it is not antisymmetric. If the reader is troubled by this possibility, she can
read all that follows with the addition of an antisymmetry hypothesis. However,
in all generality, we will note:

e ¢, diff not ¢P, d and not d P, ¢ (indifference),

6Until now, the only case where antisymmetry was not satisfied was the electoral space of
binary relations (Definition 1.5).
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e ¢PP, diff ¢cP, d and not d P, ¢ (antisymmetric preference),
e ¢cMP, diff ¢P, d and d P, ¢ (mutual preference).

If relation P, is antisymmetric, which is a common assumption, then there are
only three mutually exclusive possibilities: ¢ P, d (equivalent to ¢ PP, d in this
case), d P, ¢, and ¢ 1, d.

For some of our results, we will assume that voters have a certain freedom
of opinion (without prejudging the opportunities to express that opinion in their
ballots).

Definition 1.10 (richness of an electoral space)
We say that:

1. Q includes all strict total orders iff any voter can have any strict total
order as her binary relation of preference, that is, V(v,p,) € V x L¢, Jw, €
Oy s.t. Py(wy) = po;

2. Q allows any candidate as most liked iff any voter can strictly prefer any
candidate over all others, that is, V(v,c) € V x C,3w, € Q, s.t. Vd €
C\ {c},cPP, d.

The implication 1 = 2 is trivial.

For example, in the reference electoral space, where w, = (py,uy,a,), the
binary relation of preference p, of a voter v can be any strict weak order. In
particular, any strict total order is possible. Therefore, this electoral space satisfies
both properties 1 and 2.

We insist again on the fact that these properties have nothing to do with the
expressiveness of a possible voting system we would like to study. For example,
if it is assumed that the electoral space includes all strict total orders, this does
not mean that the voting system allows a voter to express her strict total order
of preference if she has one. It just means that such an opinion is considered as
a priori possible.

While limiting an electoral space to strict total orders is debatable, the weaker
assumption that it includes all strict total orders seems quite natural in general.
However, it is easy to devise reasonable models that do not satisfy this property.
For example, if there are a very large number of candidates, then one can argue
that it is cognitively impossible for a voter to establish a strict total order of
preference on the candidates. We nevertheless address a criticism to this type
of model: even if the idea is interesting from a descriptive point of view, it is
legitimate to add the possibility of establishing a total order for normative rea-
sons. Indeed, even if we consider that a voter cannot reach this state of complete
knowledge about her preferences, we have no reason (and no practical way) to
forbid her to do so a priori.

Before we look at another example of electoral space that does not include all
strict total orders, let us recall the classical notion of single-peakedness (Black,
1958). The intuition is as follows: suppose there is a “natural” way to place all
candidates on an abstract axis, for example a left-right axis in politics. This gives
a reference order on the candidates that we will denote P¢s.

Imagine that this axis has the following property: each voter has her maximum
utility value for a certain candidate (her peak) and her utility decreases when
moving away from this candidate, both to the right and to the left. Then her order
of preference P, starts with the candidate that corresponds to her peak utility,
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then she places all the candidates further to the left in the order of distance from
the peak, and similarly for the candidates to the right. It is possible that she
prefers all the candidates to the left of the peak and then all those to the right,
or the reverse, or that these candidates are interleaved in the order P,,.

The characteristic property of such a preference order P, is that between a
certain candidate d and two other candidates ¢ and e which are respectively to
her left and right (in the sense of P,ef), it is impossible to appreciate d less than
¢ and e at the same time: indeed, this would imply that the voter’s preference
peak is both to the left and to the right of d, whereas this peak is unique by
assumption. This characterization has the advantage of not using the notion of
utility and this is why it is commonly used as a definition of single-peakedness.

Definition 1.11 (single-peakedness)
For P, and P,ef two strict total orders on the candidates, we say that P, is
single-peaked with respect to Per iff:

¢ Pyt dand d Pres e = not(c P, d and e P, d).

For P a profile and P a strict total order, we say that P is single-peaked with
respect to P iff for every voter v, P, is a strict total order that is single-peaked
with respect to Pes.

We say that a profile P is single-peaked iff there exists a strict total order P ef
such that P is single-peaked with respect to Pt.

We say that an electoral space () is single-peaked iff any profile P of this
electoral space is single-peaked.

Example 1.12 (room temperature)

The occupants of a room have to choose the temperature of the thermostat
among the candidate options {17°,18°,19°,20°} (in degrees Celsius). The social
planner assumes that each voter can have any order of preference as long as it is
single-peaked with respect to the natural order on temperatures. This electoral
space allows any candidate as most liked but does not include all strict total
orders: for example, the preference order 20° > 17° = 19° > 18" is excluded by
hypothesis. Indeed, in this framework, if the ideal temperature of a voter is 20°,
then she cannot estimate that 17° is preferable to 19°.

1.1.6 Probabilized electoral space

Now we will equip  with a probability measure, or culture. Theoretically, in
order to handle probabilistic notions in a rigorous way, we must consider sigma-
algebras, measurable sets, and probabilistic events. However, measurability is
not a crucial problem in practice: for example, without the axiom of choice, any
subset of R is Lebesgue-measurable. This is why these technical questions will
only be discussed in Appendix A.

Definition 1.13 (probabilized electoral space)

A probabilized electoral space, or PES, is defined as an electoral space
(V,C,Q,P) equipped with a probability measure 7 on 2, called culture.

Such a PES is denoted (V,C,Q, P, 7), or simply (2, 7).

We denote p the distribution of the random variable P according to culture 7.

For example, consider the reference electoral space. Independently for each
voter v:

e Draw a vector of scores u, uniformly in [0, 1]%;
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e Define p, as the strict weak order naturally induced by w,, in the sense that
¢ pu d & uy(c) > uy(d);

e For each candidate ¢, define the approval value a,(c) as the rounding of
Uy (c) to the nearest integer, 0 or 1.

Then we have defined an example of culture 7, that is, a probability measure on
the electoral space €. Implicitly, this defines a distribution p for profile P.

A classic example of culture is the impartial culture, whose definition we now
recall.

Definition 1.14 (impartial culture)

According to the impartial culture, which is defined on the electoral space of
strict total orders, the preference order of each voter is drawn independently and
uniformly in L.

Let’s finish with a more complex example. Suppose we have 3 voters and
3 candidates. We would like to study an electoral space where each voter is
characterized by a strict total order of preference and where all single-peaked
profiles, and only those, are possible, whatever the reference order P,os. We will
see that this is impossible, why it is desirable that it be impossible, and how we
can transform the problem in order to solve it.

Given any strict total order of preference pg, the profile where all voters have
this order of preference is obviously single-peaked (with respect to pg, at least),
so it is allowed. Therefore, any order pg belongs to the set of possible states €2,
of any voter v. The following profile is thus allowed.

o o
L o o
Q0O

But this profile is not single-peaked:” indeed, the second candidate in the order
P,o¢ cannot be ¢ (resp. a, b) because of the voter 1 (resp. 2, 3).

This is due to the fact that we have defined ) as a Cartesian product: if a
particular opinion w, is a priori possible for voter v, then we consider that it
remains possible, authorized, whatever the opinions of the other voters. But it’s
not a bug, it’s a feature: this is a desirable property of the model.

On the other hand, the probability of a certain opinion w, can vary according
to the state of the other voters and even become zero. In order to study all the
single-peaked configurations, we can therefore use a PES in order to reduce to
zero the probability of the other configurations: for example, we can consider the
electoral space of strict total orders equipped with a culture m whose support is
equal to the set of single-peaked configurations.

1.2 State-based voting systems (SBVS)

1.2.1 Definition

In this section, we model voting rules by defining state-based voting systems
(SBVS), which will be the focal point of our study. At first glance, this model
does not seem to be able to represent all conceivable voting rules. But we will see

"The reader familiar with these notions may also notice that the profile cannot be single-
peaked because there is no Condorcet winner. We will come back to this.
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in Section 1.4 that, in order to limit manipulability, we can restrict the study to
SBVS, which allows to lighten the burden of formalism.?

Definition 1.15 (state-based voting system)

A state-based voting system over the electoral space 2, or SBVS, is a function
f:Q—==C.

In the following, unless explicitly stated otherwise, f will always denote an
SBVS on an electoral space 2.

For example, consider one of the possible variants of the voting system called
Range voting, in the reference electoral space, where w, = (py, Uy, ay)-

e Each voter v communicates a state belonging to €2,,.
e She is said to vote sincerely iff she communicates her true state wy,.

e The function f takes into account only the vectors of scores u, communi-
cated by the voters and returns the candidate with the highest total score.

To finish the description of this SBVS, it is necessary to give a tie-breaking
rule, i.e. a procedure which solves the cases of tie. Saying that we have defined
an SBVS is therefore a slight abuse of language: it is rather a class of SBVS, each
member of which gives the same result when there is no tie.

In the literature, it is sometimes allowed for a voting rule to output a subset
of the candidates. In that framework, it is said to be resolute iff it always outputs
a single candidate. On the contrary, in this thesis, the resoluteness assumption
is an integral part of the definition of an SBVS. We agree with the point of view
of Gibbard (1973): if the goal of an election is to choose a unique item among
several options, then the system is only fully defined if we include the possible
tie-breaking rule in its description. This may be important for the properties
studied: in particular, it may have an influence on the possible manipulations.?

Moreover, to implement in practice a voting system such as Range voting,
presented above, it is sufficient that the ballots contain only the information
actually used by the function f, i.e. the grades in this example. We will come
back to this point in Section 1.4. But this state-based formalism facilitates general
analysis, independently of the practical implementation of the voting system. On
the one hand, it avoids the need for a tedious sincerity function which associates
to a state of opinion the corresponding sincere ballot (as we mentioned in the
introduction and as we will see more precisely in Section 1.4). On the other hand,
it makes it possible to easily define transformations of voting systems, such as the
Condorcification that we will see in Chapter 2 and the slicing in Chapter 5.

1.2.2 Basic criteria for an SBVS

First, we say that a system is unanimous iff it satisfies the following property:
for every candidate ¢, if all voters strictly prefer ¢ to the other candidates and
vote sincerely, then c is elected.

We will also define anonymity and neutrality. Since the model of electoral
spaces is more abstract and general than the simple use of strict total orders of

8This notion of state-based wvoting system is a generalization of what is called elementary
voting procedure by Moulin (1978, chapter II, definition 2). The author already notes that
considering such a procedure can only decrease the strategic possibilities of the voters.

9We will come back to the complex issue of defining manipulability for irresolute or non-
deterministic voting rules in Section 6.3.3.
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preference, these definitions require a bit more care than the informal definition
that we gave in the introduction to this dissertation.

The electoral space €2 itself is said to be anonymous iff all voters have the same
state space: V(v,v’) € V2,Q, = Q, and P, = P,,. Note that this is an equality
of P, and P, as functions, not an equality between two relations of preference.

We say that an SBVS f on the electoral space 2 is anonymous iff:

1. © is anonymous;

2. For every state w € ), for every permutation o € &y, of the voters, noting
Wo = (Wo(1), -+ Wo(v)), we have f(w) = f(ws).

In other words, the winner depends only on the ballots received, not on the
identity of the voters who cast them.

To define neutrality, let ® be an action of the permutation group of the candi-
dates G¢ on the state space €2, of each voter v. This means that to any state w,
and to any permutation o of the candidates, we associate a state ®,(w,), which
we simply denote o(w,); and that we require that this transformation be compat-
ible with the group structure of G¢: this means, for example, that if we denote
o’ another permutation and o the composition operator, then we require that
o(0' (@) = (070 0")(wa).

We require, moreover, that ® be compatible with P,, in the sense that
P,(o(wy)) = 0(Py(wy)). In the right-hand side of this equality, the relation
o(Py(wy)) is naturally defined by: ¢ Py(w,) d < o(c) o0(Py(wy)) o(d), i.e. we
consider the same preference relation by simply permuting the names of the
candidates.

When such a group action is defined on the state space of each voter, it induces
a group action on the whole electoral space €: for all configurations w € , it
suffices to pose o(w) = (o(w1),...,0(wy)).

We say that f is neutral (with respect to the group action @) iff Vo € S¢, Vw €
Q, f(oc(w)) = o(f(w)). In other words, the winning candidate does not depend
on the labels used to name the candidates: if we change the labels of all the
candidates, then there is a way to re-label the ballots (®) that yields the same
voting system.

In general, the group action ® that we consider is intuitively obvious: for
example, in the reference electoral space, we will apply o to the order of prefer-
ence p,, we will permute the coordinates of the vector of scores u,, and we will
do the same for the vector of approval values a,,.

However, in all generality, it may be necessary to specify the group action ®
used. Consider again Example 1.9 of decentralized random generator, where each
voter has the result of a coin toss. We consider a case where there are C' = 2
candidates. Therefore, to define the group action ®, it is sufficient to give its effect
for the only non-trivial permutation o = (1 <> 2), which consists in exchanging
the two candidates. Its effect on the orders of preference is automatic, since we
have required that ® be compatible with the functions P,. It only remains to
define the effect of o on Heads and Tails. Moreover, we assume that there are
3 voters (to avoid questions of ties).

First of all, consider the following SBVS: if there are more Tails, then candi-
date 1 wins; otherwise, candidate 2 wins. This system is particularly manipulable:
if a voter prefers candidate 1 and her coin has fallen on Heads, then it is always
in her interest to lie and to announce Tails. But it is the neutrality of this system
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that interests us for the moment. If we define the action of o = (1 <> 2) as revers-
ing Heads and Tails (in addition to its effect on binary relations of preference),
then this voting system is neutral with respect to ®.

Now consider another SBVS. Each voter communicates her order of preference
and the state of her coin. If it is Tails, then 1 point is counted in favor of her
preferred candidate. If it is Heads, then 3 points are counted in favor of her
preferred candidate. Then the candidate with the most points is elected. This
system is similar to a variant of Range voting where Tails means “prefer slightly”
and Heads, “prefer strongly”. Moreover, as we have already noticed, a voter who
has Tails in her state always has an interest in lying and announcing Heads. As
far as neutrality is concerned, if we define the action of 0 = (1 < 2) as leaving
Tails and Heads unchanged (in addition to its effect on the binary relations of
preference), then this SBVS is neutral with respect to ®.

Thus, in the general case, it is possible to have various voting systems that
are neutral by considering different group actions that are not made obvious a
priori by the sole definition of the electoral space under consideration. That said,
in most cases of practical study, the group action ® will be intuitively obvious, as
we have seen in the reference electoral space.

Later on (notably in Chapter 10), we will sometimes focus on the electoral
space of strict total orders. A natural question then arises: under what condition
does an anonymous and neutral voting system exist?

Proposition 1.16
We place ourselves in the electoral space of strict total orders.

1. The following conditions are equivalent.

(a) There exists an anonymous and neutral SBVS.

(b) It is impossible to write C as a sum of divisors of V' greater than 1. In
other words, there is no list of natural numbers (k1,...,k,) such that:

Vi € [1,n], ki > 1 and k; divides V] and » k; = C.

i=1

(c) It is impossible to write C' as a sum of prime factors of V. In other
words, there is no list of natural numbers (ki,...,ky,) such that:

Vi € [1,n], k; is prime and k; divides V] and Z ki = C.

i=1

2. For there to exist an anonymous and neutral SBVS, it is necessary but not
sufficient that V and C are relatively prime.

Proof. We will first assume 1 and deduce 2, which will give a first intuition for
the proof of 1 that we will give next.

2. First, we show that this simplified condition is not sufficient: consider
V =6 and C = 7, which are indeed prime. It is possible to write C' as a sum of
factors of V greater than 1: C' = 3 4+ 2 4 2, where 3 divides V and 2 divides V.
So condition 1b is not satisfied, which implies that there is no anonymous and
neutral SBVS.
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1.2 State-based voting systems (SBVS)

To be convinced intuitively, examine the following profile, which gives a clue
to the proof of the equivalence stated in point 1.

N O Ot e W N
DN e Ot =W N
N O U RN =W
S N R Ot W N
N O O R W N
[<2BEN BTG S R

This profile is obtained by starting from the ranking of the first voter and applying
circular permutations to the first three candidates, the next two, and the last
two. In particular, it should be noticed that the permutations of the last two
pairs are always simultaneous (if 4 is above 5, then 6 is above 7), which makes it
possible to have 3 x 2 voters only and not 3 x 2 x 2 = 12 (which would be the
case if we considered the images of the first voter by all the mentioned circular
permutations, independently of one another). We can also note that we have, in
this case, V' =lem(3, 2, 2).

It is easy to see that, whatever the winning candidate in this profile, the SBVS
cannot be anonymous and neutral: for example, if 1 is elected, then 2 and 3 should
win as well, by anonymity and neutrality.

Now we prove that it is necessary that V and C are relatively prime. If this
is not the case, then let k& be a common prime factor of C and V. Let n = %
and k; = k for each i € [1,n]. Then ) ;" | k; = C, where all terms k; are prime
and divide V. So condition 1lc is not satisfied, which implies that there is no

anonymous and neutral SBVS.

la = 1b. If condition 1b is not satisfied, then we proceed by generalizing
the previous example. Consider a list (k1,...,k,) such that > . k; = C, all k;
are greater than 1 and divide V. This last property is equivalent to: lem,(k;)
divides V. Consider any order of preference, for example 1 > 2 > ... > C, and
all its images by applying simultaneously a circular permutation on the first k;
candidates, on the following ko candidates, etc. The orbit, that is, the set of image
rankings obtained, is of size lem;(k;). By copying these images enough times, we
obtain a profile with V' voters. If one of the first k; candidates is the winner, then
by anonymity and neutrality, each of the first k; candidates should be the winner
as well, which contradicts the uniqueness of the result because k1 > 1. The same
is true for the following ko candidates, etc. Therefore, there is no anonymous and
neutral SBVS: condition la is not satisfied.

1b = la. Let us assume that condition 1b is satisfied. Let P be a profile.
Two candidates are said to be equivalent in P iff there exists a permutation of the
candidates that sends one to the other and leaves P stable, up to a permutation
of the voters. Then let kq,...,k, be the cardinalities of the equivalence classes:
we have Z?:l k; = C. Consider a certain equivalence class of size k;: since any
candidate of the class takes the best rank (within the class) among the same
number of voters, k; divides V. Since condition 1b is satisfied, there exists a
k1 equal to 1. We can then choose the corresponding candidate as the winner
without violating anonymity and neutrality (which fixes the winner in any other
profile obtained from P by permuting candidates and/or voters). Performing the
same reasoning for each profile P whose winner is not yet chosen, we obtain an
anonymous and neutral SBVS.
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1b = 1lc. This is immediate because any prime natural number is greater
than 1.

1c = 1b. If condition 1b is not satisfied, then it is possible to write C as a
sum C = Y7 | k;, where all k; divide V and are different from 1. For each k;,
let k! be an arbitrary prime factor of k;, which is therefore also a prime factor
of V, and let n; = . Then we have C = 37" | >i.y ki, which is a sum of prime

factors of V. Hence condition 1c is not satisfied. O

This proposition is to be put in parallel with a classical result (Moulin, 1978),
which concerns voting systems which are not only anonymous and neutral, but
also efficient. This qualifier means that we have the following property: if all
voters strictly prefer a certain candidate ¢ to a certain d (i.e. if d is Pareto-
dominated by c), then d cannot be elected. The previously known result is that
there exists a neutral, anonymous, and efficient SBVS (on the electoral space of
strict total orders) iff C'! and V are relatively prime, i.e. iff any integer less than
or equal to C' is prime with V.

In order to check the consistence between this result and Proposition 1.16, we
can assume that this condition is satisfied and show that it implies condition 1b.
If we write C' as a sum of natural numbers greater than 1, then each of them is
less than or equal to C, so it is prime with V. Since it is greater than 1, this
means that it does not divide V. So condition 1b is satisfied.

To the best of our knowledge, if we remove the efficiency assumption, then
there is no previous result in the literature giving a necessary and sufficient con-
dition on the pair (V, C) for there to be an anonymous and neutral SBVS (on the
electoral space of strict total orders), as Proposition 1.16 does.

Erratum added to the English version of this dissertation After the
final version of the original French dissertation, I was informed that this result
is actually already given by Moulin (1989) in his book Azioms of Cooperative
Decision Making, Cambridge Books, Exercise 9.9, pp. 252-253. Thanks to an
anonymous (and neutral) reviewer of Social Choice and Welfare for pointing out
this reference.

1.3 Manipulability

Now we translate the usual definition of manipulability into the framework of
electoral spaces.
For two candidates w and ¢, we note:

Manip,,(w — ¢) = {v € V s.t. ¢ P, (wy) w}.

This is the set of voters who prefer ¢ to w. If w wins the sincere vote, then these
voters are interested in a manipulation in favor of c¢. Conversely, we note:

Sinc, (w — ¢) = {v € V s.t. non(c P, (w,) w)}.

These voters are not interested in manipulating to make ¢ win instead of w. For
these two notions, we generally imply the dependence in w and we simply note
Manip(w — ¢) and Sinc(w — ¢).

Definition 1.17 (manipulability)
For (w,v) € Q2% a subset of voters M € P(V), and a candidate ¢ € C, we
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say that f is manipulable in configuration w by coalition M to configuration 1 in
favor of candidate c iff:

c# fw),

W) =c,

M C Manip(f(w) — ¢),
Yo € V\ M, ¢, = w,.

In the rest of this thesis, we say either coalition-manipulable (CM), coalitionally
manipulable, manipulable by coalition or, simply, manipulable without further
precision: indeed, it is the most general notion of manipulability, in the sense
that it is implied by all the other forms of manipulability that we will mention
later, notably in Chapter 6. We will use the acronym CM indifferently as an
adjective (coalition-manipulable) or as a noun (coalition-manipulation).

When we say that f is manipulable in w without specifying ¢ (resp. M, ¢), it
means that there exists 1 (resp. M, ¢) which satisfies the previous definition.

Thus, for (w,) € Q2 and a candidate ¢ € C, we say that f is manipulable
in configuration w to configuration ¢ in favor of candidate c iff there exists a
coalition M such that the previous conditions are satisfied, which translates into
the following relations.

c# f(w),
fW) =c,
Yo € Sine(f(w) = ¢), ¥y = wy.
Similarly, for (w,v) € Q2, we say that f is manipulable in configuration w to

configuration 1 iff there exists a candidate ¢ such that the previous relations are
satisfied, which is written:

{ F) # f(w),
Vv € Slnc(f(w) — f(w))alffu = Wy-

Finally, for w € Q, we say that f is manipulable in configuration w iff there
exists a configuration ¥ € € such that f is manipulable in w to t. As a conve-
nience of language, we will sometimes say that it is the configuration w which is
manipulable (in the context of the voting system f).

We denote CMy the set of configurations w where f is manipulable and we
use the same notation for the indicator function of this set:
O — {0,1}

CM; : 1if f is manipulable in w,

0 otherwise.

For a culture 7, we call CM rate of f for m (provided that CM/ is measurable,
cf. Appendix A):

& (f) = 7(f is manipulable in w)
= CM ¢ (w)m(dw).
weN
When there is no ambiguity about the culture 7 used, this rate is simply denoted

Tom(f).

For two SBVS f and g, we say that f is at most as manipulable as g in the
set-theoretic sense'® iff CMy C CM, and we say that f is at most as manipulable

10This notion is defined by Lepelley and Mbih (1994).
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as g in the probabilistic sense it 75,(f) < 78y (g). The first property is very
strong since it implies the second one for every culture 7: if f is less manipulable
than ¢ in the set-theoretic sense, then, in any culture, f is less manipulable than g
in the probabilistic sense.'!

This definition of manipulability is the first one where we really exploit the
binary relations of preference P,. We seize this opportunity to come back to the
fact that we did not assume them to be antisymmetric.

Consider two candidates a and b. Suppose that for each voter v, her state w,
is a pair (t,,x,) where:

e t, € {a,b, T} is equal to either her favorite candidate (her “top”, which can
be a or b), or & if she supports neither of them;

e 1, is a Boolean variable that represents whether the voter is corruptible or
not, typically in the case where a candidate would offer her a bribe.

We ask the following question: given the voting system used, is the voting outcome
robust to the combined effects of bribery and strategic voting in the usual sense?

If a (resp. b) is the winner of the sincere vote, then the voters that may be
interested in changing the outcome are those who are corruptible, regardles