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M. David Filliat Professeur, ENSTA / Inria Rapporteur
M. Vincent Lepetit Professeur, ENPC ParisTech / TU Graz Rapporteur
M. Nicolas Thome Professeur, CNAM Rapporteur

M. Matthieu Cord Professeur, Sorbonne / Valeo.ai Examinateur
Mme. Gabriela Csurka Docteur, Naver Labs Examinatrice
M. Fawzi Nashashibi Directeur de recherche, Inria Examinateur
M. Josef Sivic Professeur, Inria / CTU Examinateur





Contents

I Research 1

1 Introduction 3

2 Vision in the 3D world 5
2.1 3D object-centric vision . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Deformable objects . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Tracking rigid objects. . . . . . . . . . . . . . . . . . . 10

2.2 3D scene understanding . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Geometry completion . . . . . . . . . . . . . . . . . . 14
2.2.2 Semantic scene completion . . . . . . . . . . . . . . . 19

3 Weakly supervised vision 33
3.1 Dealing with fewer labels . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Generative networks . . . . . . . . . . . . . . . . . . . 34
3.1.2 Cross-modal learning . . . . . . . . . . . . . . . . . . . 41

3.2 Dealing with fewer data . . . . . . . . . . . . . . . . . . . . . 49
3.3 Supervision from action . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 DRL with dense reward . . . . . . . . . . . . . . . . . 56
3.3.2 DRL with sparse reward . . . . . . . . . . . . . . . . . 59

4 Vision and physics 63
4.1 Physics-informed vision . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Reactive scene illumination . . . . . . . . . . . . . . . 65
4.1.2 Physics-based rendering . . . . . . . . . . . . . . . . . 66

4.2 Physics-guided learning . . . . . . . . . . . . . . . . . . . . . 72
4.2.1 Model-guided disentanglement . . . . . . . . . . . . . 72
4.2.2 Model-guided learning . . . . . . . . . . . . . . . . . . 78

5 Research perspectives 85

II Scientific career 87

6 Professional 89

7 Supervision and Teaching activities 91
7.1 Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 Teaching activities . . . . . . . . . . . . . . . . . . . . . . . . 92



ii Contents

8 Dissemination 93
8.1 Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1.1 Popularization . . . . . . . . . . . . . . . . . . . . . . 93
8.1.2 Awards . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.2 Grants and Research projects . . . . . . . . . . . . . . . . . . 94
8.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.3.1 Journal with peered reviews . . . . . . . . . . . . . . . 95
8.3.2 Conferences with peered reviews . . . . . . . . . . . . 95
8.3.3 Scientific communications . . . . . . . . . . . . . . . . 97

Bibliography 99



Part I

Research





Chapter 1

Introduction

Vision is crucial for scene understanding and a prerequisite for algorithms
interacting with our visual human world. Whether it is traditional cameras
capturing intensity and texture, depth sensors capturing geometry, or
videos capturing changes in the scene, our ability to understand and pro-
cess these data will enable better interaction between computer and humans.

Since my PhD thesis (de Charette, 2012) on image processing for
driving assistant systems, my research interest has broaden towards scene
understanding, expanding to new fields, new sensors, and new applications.
As of today, my work lies at the cross-roads of computer vision, robotics,
and artificial intelligence.

At the heart of my research is the study of computer vision algorithms.
Tough I embraced the data-driven paradigm, most of my works differentiate
by focusing on weakly-supervised learning and physics-embodied vision.
The latter is key to reading my work as I believe vision algorithms can only
benefit from stronger physical grounding. Robots like humans naturally
evolve in the 3D physical world and physics can not only provide insight
of the possible world interactions, but also carries important knowledge on
materials, geometry, lighting or weather conditions. Ultimately, physics-
informed learning could provide AI vision algorithms with additional
interpretability drifting away from the black box AIs (Miller, 2019).

Apart from a few exceptions, the manuscript covers mainly the period
2017–2021 and describes the research I had with students and collaborators
following three axes of study: ‘Vision in the 3D world’, ‘Weakly supervised
vision’, and ‘Vision and physics’.

The first axis includes research on 3D scene understanding, from 3D
objects modeling and tracking to 3D scene completion and reconstruction
leveraging either supervised deep networks or what is now referred as tra-
ditional computer vision. For the most parts, these works are with a PhD,
as well as collaborators from Inria, Mines ParisTech, and Uni. of Makedonia.

The second axis investigates vision with few labels or data, otherwise
referred as weakly-supervised vision. It describes three lines of works:



4 Introduction

Outdoor image Adverse conditions Indoor image

3D data Depth map Events

Figure 1.1: Representative scenes and data. Some of the type of scenes,
conditions and nature of data addressed in this manuscript. Sources: (Geiger
et al., 2013; Sakaridis et al., 2021; Silberman et al., 2012a; Caesar et al.,
2020a; Vasiljevic et al., 2019; Dubeau et al., 2020)

domain adaptation where a trained model is transferred to a new domain
having zero or few labels, few-shot where the target domain has only very
few training samples, and reinforcement learning which dense or sparse
supervision is obtained from a reward function. These works are with 2
PhDs, a PostDoc and other Inria collaborators.

Finally, the third axis encompasses physics-informed vision where physical
models are leveraged to improve performance in adverse lighting and
weather conditions. The two main paradigms studied are: physics-based
rendering where synthetically augmented images are produced at virtually
no cost, and physics-guided learning where generative networks are guided
by simple physical models. These works were mainly conducted with a
PhD, and collaborators from Inria and Uni. Laval.

Real-world applications. Sample scenes and data addressed in this
manuscript are shown in Fig. 1.1. Application of my works cover mainly the
field of autonomous driving, but also arts & virtual reality, and computer
graphics & photo editing.

While this document focuses on the scientific achievements, a significant
part of my work included engineering for real life experiments – time consum-
ing though barely brushed in the manuscript – such as sensors calibration,
autonomous driving demos, datasets recording, etc.



Chapter 2

Vision in the 3D world

Contents
2.1 3D object-centric vision . . . . . . . . . . . . . . . . . . 6

2.1.1 Deformable objects . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Tracking rigid objects. . . . . . . . . . . . . . . . . . . 10

2.2 3D scene understanding . . . . . . . . . . . . . . . . . 14

2.2.1 Geometry completion . . . . . . . . . . . . . . . . . . 14

2.2.2 Semantic scene completion . . . . . . . . . . . . . . . 19

We focus here on extracting a thorough 3D understanding, ranging
from 3D object-centric vision to full 3D geometrical and semantical scene
understanding. While humans have great ability to extract 3D geometry
from images relying on strong priors (Koenderink et al., 1995), this is a
notoriously ill-condition problem (Sinha and Adelson, 1993), so in addition
to RGB cameras we investigate data like Depth/Events cameras, and Lidars
– some of which hold specific challenges due to the sparse or asynchronous
nature of their data.

In the first part (Sec. 2.1), we elaborate on the tracking and recon-
struction of objects from either geometrical data only or fusion with events
and color information – for the most part in the context of Arts & Virtual
Reality. Among others, we focus on objects under interaction as it holds
significant challenge due to occlusion.

In the second part (Sec. 2.2), we investigate 3D scene understanding,
leveraging first physical priors to improve 3D grid representations of the
world, surface reconstruction and finally addressing the challenging topic
of predicting a dense semantic labeled representation, otherwise referred as
semantic scene completion. These works mainly originate from the PhD of
Luis Roldão-Jimenez co-supervised with Anne Verroust-Blondet, and to a
lesser extend from PhD Maximilian Jaritz and PhD student Anh Quan Cao.
This part is centered on autonomous driving applications.
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Figure 2.1: Hand skeletal segmentation for pianist. When trained on
custom labeled arpeggio depth images (a), our RDF is able to segment real
test images reasonably good (b) with an mIoU of 80% on our test set (c).

2.1 3D object-centric vision

2.1.1 Deformable objects

In 2013–2014, during my post-docs at Mines ParisTech and University
of Makedonia (Greece), we addressed the tracking of deformable objects,
being either body parts or pottery objects during their making process.
Both works were part of a large European project, i-Treasures, which
noble purpose is to capture and preserve intangible cultural heritage and
rare know-how such as vocal abilities (eg. throat singing), dance/musical
gestures (eg. pianist gesture), and rare handicraft (eg. pottery).

To alleviate the complexity of tracking deformable objects which ap-
pearance varies greatly, we use depth sensors (here, PMD camboard cam-
era) providing informative geometrical cues and reducing domain gaps for
humans – since skin color is not accountable.

Going further...

Dapogny, A., de Charette, R.,
Manitsaris, S., Moutarde, F.,
and Glushkova, A. (2013). To-
wards a hand skeletal model
for depth images applied to
capture music-like finger ges-
tures. In CMMR

Hand skeletal segmentation. In the early Dapogny et al. (2013) we
leveraged Random Decision Forests (RDF) to detect the skeleton of a
pianist’s hand from depth images (Fig. 2.1a). RDF are improved decision
tree where a complex problem is split in simple decisions (tree nodes) with
leaves being the final decision. Here, we used the algorithm of Shotton et al.
(2011); Keskin et al. (2011) – among the bests segmentation algorithms
at the time – training our RDF to maximize the information gain of weak
classifier on thresholded depth difference for pairs of pixels.

Our lowly contribution was to design two strategies for our 12 parts hand
model, training either on few dozen thousands images from a scripted 3D
hand model in the Autodesk Maya software, or on 500 real labeled depth
image from 5 users (Fig. 2.1a). Comparatively, Keskin et al. (2011) used
200k synthetic images and 15k real ones. Performance reached on our test
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time
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Point clouds registration

(b) Our 3D reconstruction

Figure 2.2: Task and methodology. (a) Reconstruction of unknown 3D
objects in the context of wheel throwing pottery. (b) Using one or more
input point clouds, our methods clusters the 3D scene and extracts the
profile of revolving objects. Bottom are sample outputs of our method.

set (Fig. 2.1b) was sufficient for high-fidelity pianistic gesture detection with
0.8 mIoU error and <3 pixels error for finger tip locations. This allowed full
3D hand model retrieval with inverse kinematic as in Schröder et al. (2014)
since fingers are constrained-articulated.

Going further...

de Charette, R. and Man-
itsaris, S. (2019). 3D re-
construction of deformable re-
volving object under heavy
hand interaction. arXiv sub-
mitted to CVIU

Reconstruction of revolving objects. In our 2014 work de Charette
and Manitsaris (2019) (late published) we studied the 3D reconstruction
of wheel throwing pottery object during its making process, that is as it
evolves from a clay ball to its final shape. There are notable challenges.
First, because hands and objects are hardly distinguishable due the wet
clay covering both (see Fig. 2.2a). Second, since the pottery is suffers from
heavy occlusion from the potters hands. Third, because the object shape
evolves with virtually infinite Degrees of Freedom (DOF).

At the time of this work, while many works addressed rigid objects
tracking (Lepetit and Fua, 2005; Smeulders et al., 2013), the standard
approach to reconstruct known deformable object was the use of Shape
from Template (SfT) (Schulman et al., 2013; Vicente and Agapito, 2013;
Östlund et al., 2012; Salzmann and Fua, 2009), the common application
being the tracking of planar surfaces (paper, t-shirt, etc.). Only a handful
of researches explicitly reconstructed free-form unknown object, that is of
arbitrary shape but known topology.
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Our setup several uses depth sensors radially distributed all around
the turntable, thus reducing the effect of hand occlusions while being
non-invasive for the artist. Our pipeline, in Fig. 2.2b, relies on two
observations: the pottery object always sits on a turntable and both
share a common revolving axis. Each depth sensor i acquires a 3D
point cloud Pi from which we estimate the cylindrical turntable model
(c⃗i, n⃗i, r) with an mSAC optimizer (Torr and Zisserman, 2000; Lebeda
et al., 2012) and a Kernel Density Estimator (KDE). The turntables
act as shared landmarks to solve the registration matrix Mi, and build
Pr from the rigid registration of all point clouds: Pr = P1 ·M1∪...∪Pn ·Mn.

The originality of our work lies in the extraction of the 3D object.
Considering that the turntable and pottery share the same axis of rev-
olution, we transform all Pr points into a polar coordinates (ρ, h, θ)
centered around this axis. Because of noise and occlusion a radial
cross-section is not sufficient to build the object profile. Instead we
radially integrate points into a so-called radial accumulator Γ(.) and inspire
from circular statistics to compensate for occluders (like the potter’s hands).

We formulate the object profile extraction problem as a swarm-particle
optimization using Catmull-Rom parametrization (Catmull and Rom, 1974).
The latter is a form of cubic Hermite spline, which unlike B-Spline, permit
a bounded search space. The pottery profile is modeled as Ck Catmull-Rom
of k = 5 knots {κ1, ..., κk}. Coordinates from knots j to j + 1 are computed
with χ(p) (p ∈ [0, 1] the progression):

χ(p) = 1
2
(
1 p p2 p3

)
0 2 0 0
−τ 0 τ 0
2τ τ − 6 −2(τ − 3) −τ
−τ 4− τ τ − 4 τ




κj−1
κj

κj+1
κj+2

 , (2.1)

with τ ∈ [0, 1] the curve tension. We employ a bootstrap particle fil-
ter (Candy, 2007), with N particles, which evaluates P (C5

i |Γ)∀i ∈ [1, N ]
the probability of each particle (C5

i ) to match the radial accumulator Γ
(our “observation”). To approximate P (x|Γ) the radial accumulator Γ is
approximated as a Gaussian Mixture Model (GMM) so the probability
of observation of any particle, is obtained from the Probability Density
Function (PDF) of the GMM. A motion model f(.) updates the particle
state after each optimization, ie X ← f(X).

Experiments. To evaluate our proposal we recorded 3 pottery makings
from Claude Aïello – a famous potter from Vallauris (France) – using 2
depth sensor (160x120, @25FPS), and labeled all 6030 frames. Considering
16x16 accumulator and 1000 particles for optimization, Fig. 2.3 shows our
method is able to reconstruct well the 3D objects, despite challenging hands



2.1. 3D object-centric vision 9

R
ec

o
n

st
ru

ct
io

n
G

ro
u

n
d

tr
u

th

Figure 2.3: 3D pottery reconstructions. Output of our method (top,
color encodes error) and ground truths (bottom, color encodes height).

occlusions (see Fig. 2.2a for reference). Prevalence of errors at the tip of
the object (see cols 2,3 Fig. 2.3) relate both to the sensor noise and the
GMM smoothing edges. To quantify the error, we report the symmetrical
versions of Average Error (δ̄AE) and Haussdorf Distance (δ̄HD) – computed
from point-wise distance between the predicted and ground truth profiles.

In Tab. 2.1a we compare against the closest work in spirit (Wang et al.,
2006) having B-Spline fitting, and report the 10 runs average. Our method
appears twice better with a reconstruction error of δ̄AE = 8.09mm or
δ̄AE = 7.60mm with particle resampling (col ‘Temp.’) to account for object
motion. Noticeably, the error is smaller than the accumulator resolution
(10mm) which we ascribe to the continuous GMM representation. Further
ablations in our paper show that more particles or larger accumulator
resolution boost performance at a significant processing cost. Ablating the
depth sensors in Tab. 2.1b shows our method performs reasonably with a
single sensor (δ̄AE < 11mm), though more prone to occlusion.

Recently, capturing cultural heritage with computer vision gained mo-
mentum with special issues in IJCV and prestigious workshops in CVPR,
ICCV, IROS, etc. Wu et al. (2021) elegantly address a similar problem, re-
covering pixel-wise material attributes (albedo, diffuse, etc.) and 3D shape
from still image of occlusion-free revolutionary objects. In my opinion, mod-
ern 3D reconstruction little account for symmetry priors which are important
cues. A research direction I wanted to investigate is the discovery of radial
symmetries in the wild. Zhou et al. (2021) somehow address this for the
simpler planar case, assuming symmetry translates in the features space.
Radial integration was also shown to be simple and efficient way to boost
data with low Signal to Noise Ratio (SNR). It was used in the fascinating
work of Bouman et al. (2017) to turn corners into cameras.
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Temp. δ̄AE ↓ δ̄HD ↓

Wang et al. (2006)
5 knots × 16.08 ±9.71 50.87 ±20.92

Wang et al. (2006)
8 knots × 21.41 ±8.08 74.71 ±19.91

Ours × 8.09 ±8.59 21.16 ±15.56
Ours ✓ 7.60 ±8.64 19.84 ±18.70

(a) Reconstruction on test set

Sensor δ̄AE ↓ δ̄HD ↓

1 9.77 ±7.97 25.76 ±16.92
2 10.56 ±8.30 23.56 ±14.62

1 & 2 8.09 ±8.59 21.16 ±15.56

(b) Sensors ablation

Table 2.1: Performance on test set. (a) Reconstruction errors in mm
show we significantly outperform the (only and simple) baseline of Wang
et al. (2006), both in average error (δ̄AE) and maximum error (δ̄HD). ‘Temp.’
is temporal filtering (0.8 particles resampling). (b) Shows that our method
is robust to using a single sensor also.

2.1.2 Tracking rigid objects.

Assuming we know the 3D model of an object, a remaining challenge is to
track its position and orientation. This is referred as 6-Degree Of Freedom
(6-DOF) tracking and has applications for example in augmented reality.

Going further...

Code and dataset:
https://lvsn.github.io/
rgbde_tracking
See videos for demos.

Dubeau, E., Garon, M., De-
baque, B., de Charette, R.,
and Lalonde, J.-F. (2020).
RGB-D-E: Event camera cali-
bration for fast 6-dof object
tracking. In ISMAR

6-DOF tracking with RGB-D-E. In the context of our collaborative
grant with Université Laval we addressed fast 6-DOF tracking in Dubeau
et al. (2020). With relatively slow motion such tracking is reasonably solved
using RGB (Manhardt et al., 2018; Li et al., 2018; Crivellaro et al., 2015)
or RGB-D (Garon et al., 2018). However, high speed motion is challenging
for off-the-shelf RGB and Depth cameras, as it produces motion blur
and shadow artefacts (see Fig. 2.5a), respectively. Instead, in this work
we proposed what we believe to be the first 6-DOF object tracker using
event data. The specificity of events-based (aka neuromorphic) cameras
is that all pixels operate independently and asynchronously, capturing
local changes with very low latency (20µs), making them suitable for our use.

Our setup, visible in Fig. 2.4a, uses a DAVIS346 event camera
rigdly mounted over the RGB-D Kinect Azure using a custom 3D-printed
mount, and an infrared filter to prevent interference from the Kinect emitter.

An important challenge of this work was to calibrate data, both
spatially and temporally. For the intrinsics (6 radials and 2 tangentials) we
proceeded in the standard way and used PnP (Fischler and Bolles, 1981) to
solve extrinsics. Temporal synchronization is a tricky endeavor one must be
aware of for time-critical applications like fast tracking. To solve it we used
Kinect emitted pulses and proposed a simple fix for temporal misalignment.
Our calibration performed roughly twice better than the original presets.

https://lvsn.github.io/rgbde_tracking
https://lvsn.github.io/rgbde_tracking
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Figure 2.4: RGB-D-E for fast 6-DOF tracking. (a) Our setup uses a
Kinect Azure (RGB-D) and a DAVIS346 event-based camera (E), spatially
and temporally calibrated. (b) Overall pipeline for 6-DOF tracking using
an event network and a frame network.

Using this setup, we recorded a test dataset with 2,472 RGB-D-E
labeled frames (10 sequences) of a high-speed moving real-world 3D-
printed dragon retrieved from Garon et al. (2018). As ground truths, we
manually refined an ICP alignment (Pomerleau et al., 2013) on visible
3D model vertices. Our dataset, previewed in Fig. 2.5a, is publicly available.

Our research formulates 6-DOF object tracking as the estimation of the
6-DOF shift ∆P between the last known position Pt−1 and the current
RGB-D-E observation, such that Pt = ∆P Pt−1. Therefore, at t = 0, we
initialize the tracking with known position but could as well use any 3D
detector. To estimate ∆P we rely on two networks combined in a cascaded
fashion, illustrated in Fig. 2.4b. First, a novel event network fe(.) is fed with
events e[t−1,t] accumulated in [t− 1, t] time interval and cropped around the
last known position. Second, we use an existing RGB-D frame network ff (.)
from Garon et al. (2018), fed with the current cropped RGB-D frame ft, and
the rendered image r(.) of the 3D object at a given position.

Interestingly, while events are much more robust to fast displacement
they carry less textural information than RGB-D data so they are best
combined. Hence, our cascaded approach uses the event network first 6-
DOF estimate P′

t, subsequently fed to the frame network for refinement:

P′
t = (TRGB

Eventfe(e[t−1,t])) Pt−1 , (2.2)

Pt = ff (ft, r(P′
t)) P′

t , (2.3)
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# of failures

Method 30fps 15fps 10fps

Garon et al. (2018) 83 130 166
Ours 28 48 64

(c) Tracking failures

Figure 2.5: Dataset and performance. (a) Our public test dataset having
2,472 RGB-D-E labeled frames exhibits fast object displacement leading to
motion blur and shadow effect in RGB-D sensor (bottom rows). Events
(top) are encoded as blue (positive) and red (negative). (b) Translation
error w.r.t. ground truth translation speed. (c) Quantifies tracking failures.

with TRGB
Event the Event to RGB extrinsics. In practice ff (.) is called 3 times

for refinement, this helps recovering position at high motion speed.

It has to be noted that event data is fundamentally different than
frame-based data as it possesses 2 extra dimensions T and P for time and
polarity, respectively. We thus use the “Event Spike Tensor” representation
from Gehrig et al. (2019) where time dimension is binned (here, 9 bins per
33 ms sample) and polarity is removed. While such sparse tensor can be
processed by standard CNN as we showed in Jaritz et al. (2018b), reasoning
on the nature of our data we follow Gehrig et al. (2019) and first learn a 1D
filter along time dimension. This intuitively helps the network in finding
dominant motion patterns. Network details are in Dubeau et al. (2020).

Experiments. We train our network solely on synthetic data. In short,
we leveraged an event simulator (Rebecq et al., 2018), and put important
efforts in the generation of realistic synthetic events, RGB, and depth
by simulating motion of our virtual 3D dragon model in varying scene
backgrounds from SUN 3D dataset (Xiao et al., 2013). This led to
180,000/18,000 training/validation samples.

We evaluate our method on our RGB-D-E dataset (Fig. 2.5a), and com-
pare against Garon et al. (2018) – the backbone of our frame-based net-
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Figure 2.6: Qualitative tracking on our RGB-D-E dataset. The over-
lay is the 6-DOF position predicted by each method. Notice how ours (pink)
is always closer to ground truth (yellow), compared to Garon et al. (2018)
(green) despite fast motion and partial hand occlusion.

work. The translation error in Fig. 2.5b shows that our network outperforms
the baseline, especially when displacement overpasses 20mm/frame (approx.
600mm/sec). Visually the 6-DOF estimation difference is evident in Fig. 2.6
showing sample trackings with (cols 1-4) or without (cols 5-8) hand interac-
tion. For all, our 6-DOF prediction (middle row, overlaid in pink) is better
than Garon et al. (2018) (top, green) w.r.t. ground truth (bottom, yellow).
However, frame-based evaluation does not tell the entire story since small
errors will eventually accumulate and diverge. Hence, Fig. 2.5c measures
the tracking failures – that is how often the error of the predicted 6-DOF
overpasses some threshold thus requiring reinitialization. In all frame-rate
scenarios we outperformed the baseline with 2–3x less failures.

Going further...

Flores, C., Merdrignac, P.,
de Charette, R., Navas, F.,
Milanés, V., and Nashashibi,
F. (2018). A cooperative car-
following/emergency braking
system with prediction-based
pedestrian avoidance capabil-
ities. IEEE T-ITS
Nguyen, D.-V., de Charette,
R., Nashashibi, F., Dao, T.-
K., and Castelli, E. (2018).
Wifi fingerprinting localiza-
tion for intelligent vehicles in
car park. In IPIN
Meyer, A. and de Charette, R.
(2016). Computing ego veloc-
ity from scene flow estimation

Tracking with other means. For autonomous driving, localizing your-
self and other road users is of paramount importance. Fusing Lidar and
communication data we addressed object tracking in Flores et al. (2018),
relying on traditional geometrical and statistical priors. In Nguyen et al.
(2018) we addressed ego tracking (localization) this time relying only on the
WiFi fingerprints to locate ourselves. Both works were validated with exten-
sive real-world driving experiments implying several road users. In Meyer
and de Charette (2016) we showed ego-velocity can be tracked from RGB
images leveraging trivial scene-physical priors to estimate scene flow, naively
reaching less than 3km/h error on the KITTI dataset (Geiger et al., 2013).
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Figure 2.7: Occupancy grids inaccuracies. In Roldão et al. (2018) we use
physical priors to solve inaccurate grid update (a) due to uneven density of
observations (eg. cell 1 is only observed once), and conflicting observations
(eg. cell 3). For the latter, our occupancy weighting (b) accounts for ray
path information to balance individual updates.

2.2 3D scene understanding
We now investigate research on more general scene understanding, seeking
an averagely better 3D scene understanding than object-specific methods.

First, we investigate the ability to reconstruct a geometrical representa-
tion of the world, either via aggregation of multiple Lidars scans (Roldão
et al., 2018), reconstruction of 3D surfaces (Roldão et al., 2019), or depth
completion in the image space (Jaritz et al., 2018b).

We then investigate dense semantic scene completion (SSC) from sparse
3D Lidar scans (Roldão et al., 2020), detail our recent survey on 3D
SSC (Roldão et al., 2021), and conclude with our most recent 3D SSC work
relying on a single RGB image (Cao and de Charette, 2021).

2.2.1 Geometry completion

Accurate and complete geometry is a crucial cue for mobile robots but sen-
sors like Lidars only sparsely sense the scene. Inferring a dense (or denser)
representation could improve the geometrical scene understanding.

We address geometrical completion for multiple Lidar scans (Roldão
et al., 2018), local surface reconstruction for single scans (Roldão et al.,
2019) important for rendering and physical simulation, and depth comple-
tion from sparse Lidar projection in the image space (Jaritz et al., 2018b).

Going further...

Roldão, L., de Charette, R.,
and Verroust-Blondet, A.
(2018). A statistical update
of grid representations from
range sensors. arXiv

Physical priors for occupancy grid. Assuming an occupancy grid,
where each cell stores the probability of being physically occupied, in a
noise-free world multiple observations of the same portion of the scene –
ie. same cell – would lead to identical occupancy states. This however falls
shorts because of sensor inaccuracies, scene changes, or partial observations.

In Roldão et al. (2018) we leverage simple physical priors to improve the
accuracy of 3D occupancy grids. The starting point was the observation
that the literature considers cells occupied whenever there is a Lidar-return



2.2. 3D scene understanding 15

0.50 0.970.12

OctoMap (mAP 0.83) Ours (mAP 0.95)

Figure 2.8: Carla occupancy maps. Occupancy probability for truly
occupied voxels after 200 sequential Lidar scans. Our method outperforms
OctoMap (Hornung et al., 2013) (the greener the better).

within though several rays (from same or consecutive scans) can produce
different observations of the same cell. This is depicted in Fig. 2.7a where
cell “3” is observed free by the blue ray and occupied by the red ray.

First, noting that rays are only partial observations, we accounted for
the ray path information to weight the occupancy update depicted in 2D
in Fig. 2.7b. For traversals, we account for the traversed distance λ w.r.t.
maximum traversable distance λmax. For impacts, we account for the
traversed distance λ w.r.t. to the occupied distance λocc. Second, noting
that cells have uneven density of observations due to the heterogeneous
Lidar sensing – the farther the sparser –, we weight the update of each cell
c as a function of its density of observations ρ(c), analytically computed
from derivation of the optical Lidar characteristics. The intuition here is
that cells rarely observed should update their occupancy status faster than
cells frequently observed.

Our simple proposals can improve existing inverse sensor models. In
Fig. 2.8, comparing against our backbone OctoMap (Hornung et al., 2013),
we show truly occupied voxels after 200 Lidar scans updates in Carla simu-
lator (Dosovitskiy et al., 2017). The greener the better. The qualitatively
better maps is confirmed by mean Average Precision (mAP) of the occu-
pancy state, 12 points better with our simple proposals. In fact, on all tested
hyper-parameters our method surpasses OctoMap by at least 6 points. On
the real KITTI dataset (Geiger et al., 2013), we observe similar qualitative
behavior though lack of ground truth prevent quantification.

Going further...

Roldão, L., de Charette, R.,
and Verroust-Blondet, A.
(2019). 3D surface recon-
struction from voxel-based
lidar data. In ITSC

Adaptive local planar reconstruction. In Roldão et al. (2019) we
addressed 3D surface reconstruction from a single Lidar scan. The challenge
of this task lies in occlusions, noise sensor, and the uneven density point
cloud. In such scenario, reconstruction is a highly ill-posed problem since
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Figure 2.9: Adaptive local planar reconstruction. We exploit voxel-
points statistics to approximate the scene as local planar surfaces using an
adaptive neighborhood. The implicit global surface (TSDF) is then com-
puted from the weighted set of probability density functions of 2D Gaussians.

Ours
IMLS
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(Synthetic)

Height [m]
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Ours

KITTI input point cloud

RGB 
(for visualization only)

IMLS

(b) Reconstruction on KITTI
(Real)

Figure 2.10: Synthetic and real reconstruction. (a) Error as a function
of distance to sensor in Carla simulator (Dosovitskiy et al., 2017). (b) Sam-
ple results on real KITTI dataset (Geiger et al., 2013) show our method
somehow preserves density while avoiding spurious extension of the recon-
structed mesh as in IMLS.

there is not a unique surface for a given point cloud. At the time of this
work, the literature mostly used traditional processing (Berger et al., 2017)
though some deep reconstructions techniques were emerging for yet small
point clouds. Our works follows the former.

The originality of our method (see Fig. 2.9) lies in the mix of ex-
plicit/implicit surface estimation from input voxel representation. The
latter is built incrementally, storing voxels-points statistics (density,
variance) to preserve scene details. To cope with low density point cloud,
we approximate the scene as piece-wise planar though using an adaptive
neighborhood strategy. For each voxel corner, we then estimate the distance
to the closest surface (aka TSDF) from the set of optimal 2D Gaussians
lying on the estimated planes. Marching cubes then extract the 3D surface
from the TSDF.
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Figure 2.11: Spaded. Our work (Jaritz et al., 2018b) shows that a standard
UNet can infer dense depth or semantics from sparse and dense inputs.

Bearing in mind we use only a single Lidar scan, the benefit of this
method compared to the popular IMLS (Kolluri, 2005) or its extended ver-
sion (Bouchiba et al., 2020) is that it can cope with varying points density.
This is visible in Fig. 2.10a looking at the average reconstruction error as a
function of distance, almost constant at far for our method. However, one
must note that the comparison is not eye-to-eye since IMLS does not use any
adaptive neighborhood strategy – eventually failing at far. In Fig. 2.10b,
results on KITTI (Geiger et al., 2013) (64-layers Lidar) also show the higher
accuracy since IMLS tends to extend surfaces over the edges.

Going further...

Jaritz, M., de Charette, R.,
Wirbel, E., Perrotton, X.,
and Nashashibi, F. (2018b).
Sparse and dense data with
cnns: Depth completion and
semantic segmentation. In
3DV

Spaded: depth completion. Instead of completing the geometry in
the 3D world, Lidar data can be projected in the image plane to get a
2.5D depth data which can be easily integrated along other modalities (eg.
RGB). However, Lidar points do not align well with image pixels thus
leading to sparse depth maps (see Fig. 2.11).

In Jaritz et al. (2018b) we study how sparse depth and dense RGB
data can be processed with CNNs, for depth completion and semantic
segmentation. At the time of this work an emerging line of researches was
addressing sparse data with more or less complex mechanisms to obtain
sparsity invariant CNNs (Uhrig et al., 2017; Huang et al., 2018b; Ren et al.,
2018) that defined sparse convolutions only where the input domain is valid.

Instead, the simple – yet important – finding in our work is that
sparse and dense data could be addressed with normal CNNs, simply by
carefully adjusting the network design and training strategy. Our pipeline
in Fig. 2.11 leverages a NASNet architecture (Zoph et al., 2018). To
compensate for the input sparsity, we simply employ large receptive field,
and train by varying the input density in ]0, 1] which naturally enforces in-
variancy to sparsity. When RGB is input along, we use a late fusion scheme.

While the popular Sparsity invariant CNNs (Uhrig et al., 2017) or
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(a) Sparsity effect

Method iRMSE↓ iMAE↓ RMSE↓ MAE↓
Input: sD
HMS-Net (Huang et al., 2018b) 3.25 1.27 976.22 283.76
IP-Basic (Ku et al., 2018) 3.78 1.29 1288.46 302.60
SparseConvs (Uhrig et al., 2017) 4.94 1.78 1601.33 481.27
Ours 2.60 0.98 1035.29 248.32

Input: RGB+sD
HMS-Net (Huang et al., 2018b) 3.90 1.90 911.49 310.14
Ours 2.17 0.95 917.64 234.81

(b) KITTI depth completion benchmark

Figure 2.12: Robustness and performance. (a) On the depth completion
task (here, Synthia), our simple UNet architecture trained with varying den-
sity outperforms the complex sparsity invariant CNNs (Uhrig et al., 2017).
(b) Depth completion performance on the Kitti benchmark.
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Figure 2.13: Lidar layer ablation. Depth completion with simulated fewer
layer lidars (downsampling of 64 layers input). Even with only 8 layers
(projecting on only 0.8% pixels) the depth map is remarkably completed.

SBNet (Ren et al., 2018) use custom-designed convolutions and propagate
the input validity domain with masks or coordinates, we show that this is
unnecessary. On the depth completion task with different input density,
Fig. 2.12a, training with 0.1 density indeed is less stable (‘Ours, 0.1’)
but when trained with proper varying density scheme (‘Ours, varying’) it
outperforms Uhrig et al. (2017), being also significantly simpler.

Fig. 2.12b shows we overpassed state-of-the-art on KITTI depth com-
pletion benchmark (Uhrig et al., 2017) at the time of our submission on 3 of
the 4 metrics, using sparse depth (sD) alone or with RGB (RGB+sD). Of
interest for autonomous driving applications, we show our method is resis-
tant to low Lidar resolution by training and testing with fewer Lidar layers,
still reaching low error as seen in Fig. 2.13. In Jaritz et al. (2018b) we also
study the ability to infer semantics leading to 44 mIoU with only sD input.
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Figure 2.14: LMSCNet: Lightweight Multiscale Semantic Comple-
tion Network. Despite the 3D task, we use a 2D UNet turning the 3rd
spatial dimension to features, and latter retrieve it with 3D segmentation
head (gray blocks, see left inset). Convs show (filters, kernel, stride). For
lightweight reasons, we restrict the 2D features dimension and use dilated
convolutions in the segmentation heads – here, ASPP (Chen et al., 2018a).

2.2.2 Semantic scene completion

In the following two works (Roldão et al., 2020, 2021) we address the problem
of semantic scene completion (SSC) which consists into inferring a dense
semantic 3D representation of a scene from a sparse 3D scan. The task
differs from completion or SLAM in that it completes large chunk of missing
data and predicts semantic jointly without requiring sequence of Lidar scans.
In many cases however, the SSC task can be seen as a semantic task with
N+1 classes (N semantic classes, +1 free class).

Our work on the matter started in 2019. Later that year the task gained
interest with the release of SemanticKITTI (Behley et al., 2019) – a dense
semantically labeled version of KITTI urban dataset and an alternative
to the indoor NYUv2 dataset (Silberman et al., 2012a) –. Very recently,
KITTI360 (Liao et al., 2021) was released with a new SSC benchmark,
foreseeing exciting novel works.

Going further...

Code and data:
https://github.com/cv-
rits/LMSCNet

Roldão, L., de Charette,
R., and Verroust-Blondet,
A. (2020). LMSCNet:
Lightweight multiscale 3D
semantic completion. In 3DV

LMSCNet. In Roldão et al. (2020) we addressed SSC relying on vox-
elized 3D point cloud, with two major contributions: first, a lightweight
architecture leveraging a mix of 2D/3D convolutions; second, a modular
multiscale pipeline. Our method is coined LMSCNet for Lightweight
Multiscale 3D Semantic Completion network.

At the time of this work, little researches addressed SSC, and most
works relied on 3D CNNs to process point cloud or depth map as occupancy
grid, sometimes in conjunction of 2D CNNs to extract RGB features.

Instead, our LMSCNet (Fig. 2.14) uses a lightweight UNet style architec-

https://github.com/cv-rits/LMSCNet
https://github.com/cv-rits/LMSCNet
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1/8 resolution 1/4 resolution 1/2 resolution original resolution

Figure 2.15: LMSCNet multiscale samples. To supervise coarser out-
put, we use majority vote pooling from the original resolution ground truth.

ture to predict 3D semantic completion at multiple scales, allowing inference
up to 370FPS at the coarsest resolution. Rather than greedy 3D convolu-
tions, we infer here the dense output from the sparse input voxel grid, using
a 2D UNet architecture. Though dense convolutions in the encoder im-
ply a dilation of the input manifold (Graham et al., 2018), we found that
this is beneficial for 3D semantic completion in all likelihood because of the
sparse 7→ dense nature of the SSC task.

To preserve a lightweight architecture, we use 2D convolutions along
the X,Y dimensions, thus turning the height dimension (Z) into a feature
dimension. This is significantly different from prior works, since 2D
convolutions intentionally loose the 3rd spatial dimension, but are in
the meantime significantly lighter operations than their 3D counterparts.
Along with standard skip connections, we enhanced information flow in
the decoder by concatenating the output of each level to all lower levels
(bottom links in Fig. 2.14). This enables using high level features from
coarser resolutions, and thus enhance the spatial contextual information.
Both this work and the next one (Roldão et al., 2021) highlight context
importance.

Because 3D SSC requires to output 4D tensor (3 spatial, 1 semantic),
in LMSCNet we introduce 3D segmentation heads, depicted as gray blocks
in Fig. 2.14, which are added before the SSC output at each scale. The
heads (see left inset, Fig. 2.14) use a series of dense and dilated conv
like Atrous Spatial Pyramid Pooling – aka ASPP (Chen et al., 2018a) –,
which favor information flow from various receptive fields. The benefit of
preceding ASPP with dense 3D convolutions is dual: a) to further densify
the feature maps, b) to ward off features from the segmentation heads
and the backbone features. In this work we experimentally measured the
importance of disentangling segmentation features from backbone features.
In fact, disentanglement is key to informative features flow in networks and
we further studied that in some of our later works, like Jaritz et al. (2020,
2021); Pizzati et al. (2021a).
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SSCNet (Song et al., 2017b) 31.71 83.40 29.83 27.55 20.88 10.35 18.16 0 3.67 9.53
*SSCNet-full (Song et al., 2017b) 59.64 75.52 49.98 51.15 34.53 24.26 29.01 0.25 6.73 16.14
TS3D (Garbade et al., 2019) 31.58 84.18 29.81 28.00 23.19 10.72 18.32 0.03 3.52 9.54
TS3D+D (Behley et al., 2019) 25.85 88.25 24.99 27.53 22.05 8.04 20.22 2.33 6.99 10.19
TS3D+D+S (Behley et al., 2019) 80.52 57.65 50.60 62.20 34.12 30.70 33.09 0 6.94 17.70

LMSCNet (ours) 77.11 66.19 55.32 64.04 38.67 29.48 30.77 0 0.54 17.01
LMSCNet-singlescale (ours) 81.55 65.07 56.72 64.80 38.08 30.89 32.05 0 0.84 17.62

* Own implementation. / +D means +DarkNet53Seg / +S means +SATNet

Table 2.2: Performance on SemanticKITTI hidden test set. Com-
paring against all available baselines, our method performs 2nd in mIoU
(semantic scene completion) and 1st in IoU (scene completion).

As it is multiscale, LMSCNet provides outputs at several input relative
scales of 1

2l ∀ l ∈ {0, 1, 2, 3}. For each scale l, we train with a cross-entropy
loss defined as

Ll = −
N∑

c=0
wcŷi,c log

(
eyi,c∑N
c′ eyi,c′

)
, (2.4)

where y is the network output, i a voxel index, ŷi,c a one-hot vector (i.e.
ŷi,c = 1 if voxel i is labeled class c, otherwise ŷi,c = 0), and wc is a
coefficient for log class-balancing. We simply optimize the sum of all scale
losses: L = ∑3

l=0 αlLl. A sample output at each scale is shown in Fig. 2.15.
While it trains using all scales, an interesting property of our architecture
is that the latest convolutions can be ablated for faster inference at coarse
resolutions.

Experiments. In Tab. 2.2, performance at the time of publication on the
popular SSC benchmark of SemanticKITTI (Behley et al., 2019) shows
LMSCNet performs second in semantic scene completion (mIoU), and first
in terms of scene completion (IoU) with a comfortable margin. In Fig. 2.16
sample SSC outputs show the better performance of LMSCNet against
SSCNet-full (Song et al., 2017b).

Of note, in SemanticKITTI grids are 256x256x32 with 0.2m voxel size
and both input and ground truth are sparse with average density of 6.7%
and 65.8%, respectively. Furthermore, beyond LMSCNet good results,
looking at its classe-wise performance in Tab. 2.2 – showing only 6 of the
19 classes –, it is noticeable that it underperforms on rare classes which we
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Input SSCNet-full
(Song et al., 2017b)

LMSCNet
(ours)

Ground Truth

carbicycle motorcycle truck other-vehicle person bicyclist motorcyclist roadparking

sidewalk other-ground building fence vegetationtrunk terrainpole traffic-sign

Figure 2.16: SemanticKITTI validation set. Compared to
SSCNet-full (Song et al., 2017b) – the best open-source baseline –, LM-
SCNet provides smoother semantics labels and is capable of retrieving finer
details. This is evident when looking at the cars or the trees.

impute on the highly class imbalance distribution of the dataset and our
simple class-balancing strategy.

However, SSC performance does not illustrate the full lightweight benefit
of our work. Network statistics in Tab. 2.17a show LMSCNet is significantly
lighter with only 0.35 Millions parameters while others require between
2.6 and 144 times more parameters. Of greater importance for robotics
applications is the inference speed. TS3D+Darknet+Satnet (Behley et al.,
2019) – 1st on mIoU SemanticKITTI – runs at 1.3 FPS versus 21.3 for
ours. In fact the only faster method (SSCNet) performs 1% less mIoU.

An important benefit of our method, is its multiscale capacity. Ablating
the head of the network accordingly, LMSCNet runs as fast as 372 FPS at
1:8 scale. Scatter plots in Fig. 2.17b demonstrate the lightweight capacity
and our great performance-speed balance at full size or coarser resolutions,
being granted that best methods lie in the top-right corner of each plot.

In Roldão et al. (2020), we also demonstrated our inference is robust
to lower Lidar density (eg. 0.14 mIoU for 16 Lidar layers) and general-
izes to nuScenes dataset (Caesar et al., 2020b). In our survey (Roldão
et al., 2021) we tested LMSCNet on NYUv2 indoor dataset with ex-
pected worse performance since 2D convs loose a spatial axis and are thus
better suited for outdoor scene where data has main variance along two axes.
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Method Params
(M) ↓

FLOPs
(G) ↓

FPS ↑

*SSCNet 0.93 82.5 56.9
*SSCNet-full 1.09 769.6 45.9

*TS3D 43.77 2016.7 9.8
*TS3D+D 51.31 847.1 8.7

*TS3D+D+S 50.57 905.2 1.3

LMSCNet 0.35 72.6 21.3
LMSCNet (1:2) 0.32 13.7 126.4
LMSCNet (1:4) 0.28 5.7 323.5
LMSCNet (1:8) 0.24 4.4 372.2
* Own implementation to compute statistics.

(a) Network statistics

Semantic Scene Completion Scene Completion

(b) Performance vs Inference speed

Figure 2.17: Network performances. (a) At full size, LMSCNet has
less parameters and is faster than all but SSCNet which performs 1%
worse on mIoU. Our multiscale versions – LMSCNet (1:x) – enable very
fast inference. (b) Architectures performance versus speed. Notice that
TS3D+DNet+SATNet having +0.69 mIoU w.r.t. LMSCNet, is x17 slower.

Going further...

Roldão, L., de Charette, R.,
and Verroust-Blondet, A.
(2021). 3D semantic scene
completion: a survey. IJCV

3D SSC Survey. In Roldão et al. (2021) we published the first semantic
scene completion survey, which required a vast and comprehensive analysis
of the SSC landscape and multiple experiments. Considering the increase
of published papers on SSC (1 in 2017, 33 at the end of 2020), the benefit
of our survey paper work is to help researchers to navigate the field as well
as to identify new insights and directions still untouched.

While survey are always hard to synthesize in such manuscript, I brush
here a few highlights of our findings.

Looking at our listing of all methods in Tab. 2.3, an evident observation
is that most methods rely on inputs of geometrical nature (depth, range
data, HHA images, occupancy grid, TSDF or point cloud) sometimes along
textural data (RGB). While many works address 3D from RGB, none
precisely studied SSC only with images, which might be explained by the
complexity of the task itself. In (Roldão et al., 2021), when possible, we also
computed performance of the methods on both Indoor (ScanNet (Dai et al.,
2017), NYUv2 (Silberman et al., 2012a), SUNCG (Song et al., 2017a)) and
Outdoor (SemanticKITTI (Behley et al., 2019)) datasets ; which exhibits
that none of the outdoor top-performing methods use RGB (all rely on
Lidar input only).
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2017 SSCNet (Song et al., 2017b)a ✓ volume DC ✓ CE ✓ ✓ ✓ Caffe ✓
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ScanComplete (Dai et al., 2018) ✓ volume GrpConv ✓ ℓ1 CE ✓ ✓ TF ✓
VVNet (Guo and Tong, 2018) ✓ ✓ view-volume DC E ✓ CE ✓ ✓ TF ✓
Cherabier et al. (2018) ✓ ✓ volume PDA E MSO ✓ ✓ ✓ CE ✓ -

VD-CRF (Zhang et al., 2018b) ✓ volume DC ✓ ✓ CE ✓ ✓ -

ESSCNet (Zhang et al., 2018a) ✓ volume GrpConv Sparse ✓ CE ✓ ✓ PyTorch ✓
ASSCNet (Wang et al., 2018) ✓ view-volume Mscale. CAT ✓ CE ✓ ✓ TF

SATNet (Liu et al., 2018) ✓ ✓ view-volume ASPP M/L ✓ CE ✓ ✓ PyTorch ✓

2019 DDRNet (Li et al., 2019a) ✓ ✓ view-volume LW-ASPP M DDR ✓ CE ✓ ✓ PyTorch ✓
TS3D (Garbade et al., 2019)a ✓ ✓ hybrid DC E ✓ CE ✓ ✓ ✓ -

EdgeNet (Dourado et al., 2020a) ✓ ✓ volume DC ✓ M ✓ CE ✓ ✓ -

SSC-GAN (Chen et al., 2019b) ✓ volume DC ✓ BCE CE ✓ ✓ -

TS3D+DNet (Behley et al., 2019) ✓ ✓ hybrid DC E ✓ CE ✓ -

TS3D+DNet+SATNet (Behley et al., 2019) ✓ ✓ hybrid DC E ✓ CE ✓ -

ForkNet (Wang et al., 2019d) ✓ volume DC ✓ BCE CE ✓ ✓ TF ✓
CCPNet (Zhang et al., 2019) ✓ volume CCP DC GrpConv ✓ ✓ CE ✓ ✓ -

AM2FNet (Chen et al., 2019a) ✓ ✓ hybrid DC ✓ M ✓ ✓ BCE CE ✓ -

2020 GRFNet (Liu et al., 2020) ✓ ✓ view-volume LW-ASPP DC M DDR ✓ CE ✓ ✓ -

Dourado et al. (2020b) ✓ ✓ volume DC ✓ E ✓ ✓ CE ✓ -

AMFNet (Li et al., 2020c) ✓ ✓ view-volume LW-ASPP L RAB ✓ CE ✓ ✓ -

PALNet (Li et al., 2020b) ✓ ✓ hybrid FAM DC ✓ M ✓ PA ✓ ✓ PyTorch ✓
3DSketch (Chen et al., 2020a) ✓ ✓ hybrid DC ✓ M DDR ✓ ✓ BCE CE CCY ✓ ✓ PyTorch ✓
AIC-Net (Li et al., 2020a) ✓ ✓ view-volume FAM AIC M Anisotropic ✓ CE ✓ ✓ PyTorch ✓
Wang et al. (2020) ✓ volume Octree-based ✓ BCE CE ✓ -

L3DSR-Oct (Wang et al., 2019b) ✓ volume Octree-based ✓ BCE CE ✓ ✓ ✓ -

IPF-SPCNet (Zhong and Zeng, 2020) ✓ ✓ hybrid E ✓ CE ✓ -

Chen et al. (2020b) ✓ volume GA Module ✓ BCE CE ✓ ✓ -

LMSCNet (Roldao et al., 2020) ✓ view-volume MSFA 2D ✓ ✓ CE ✓ ✓ PyTorch ✓
SCFusion (Wu et al., 2020) ✓ volume DC ✓ ✓ CE ✓ ✓ -

S3CNet (Cheng et al., 2020) ✓ ✓ ✓ hybrid L Sparse ✓ ✓ BCE CE PA ✓ -

JS3C-Net (Yan et al., 2021) ✓ volume Sparse ✓ CE ✓ PyTorch ✓
Local-DIFs (Rist et al., 2020a) ✓ point-based ✓ BCE CE SCY ✓ -

2021 SISNet (Cai et al., 2021) ✓ ✓ hybrid M DDR ✓ CE ✓ ✓ ✓ PyTorch

a SSCNet was significantly extended in (Guo and Tong, 2018; Behley et al., 2019; Roldao et al., 2020). b Includes NYUv2 (Silberman et al.,
2012b), NYUCAD(Firman et al., 2016). c Includes SUNCG (Song et al., 2017b), SUNCG-RGBD(Liu et al., 2018). d Includes

SemanticKITTI (Behley et al., 2019). e Includes (Chang et al., 2017; Dai et al., 2017; Wu et al., 2020; Liu et al., 2018; Armeni et al., 2017)
Contextual Awareness - DC, Dilated Convolutions. (LW)-ASPP, (Lightweight) Atrous Spatial Pyramid Pooling. CCP, Cascaded Context
Pyramid. FAM, Feature Aggregation Module. AIC, Anisotropic Convolutional Module. GA, Global Aggregation. MSFA, Multi-scale Feature

Aggregation. PDA, Primal-Dual Algorithm. Fusion Strategies - E, Early. M, Middle. L, Late. Lightweight Design - GrpConv, Group
Convolution. DDR, Dimensional Decomposition Residual Block. RAB, Residual Attention Block. MSO, MultiScale Optimization. Losses -

Geometric: BCE, Binary Cross Entropy. ℓ1, L1 norm. Semantic: CE, Cross Entropy. PA, Position Awareness. Consistency: CCY, Completion
Consistency. SCY, Spatial Semantics Consistency.

Table 2.3: Methods studied in our SSC survey (Roldão et al., 2021).
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On networks shown in Fig. 2.18, a large part of the existing works
leverage volume networks (3D CNNs) relying on input voxel grid being
either occupancy or (flipped) TSDF. Apart from the recent Zhong and
Zeng (2020); Rist et al. (2020b), point-based networks have been little
studied for SSC, which is to be imputed first to the complexity of dealing
with large scene point clouds, and second to public datasets offering only
voxelized ground truth. We argue this refrained point cloud completion
despite promising object-oriented works (Yuan et al., 2018). We ourselves
addressed the topic of point-based SSC together with a PhD and an intern,
but with no convincing results. On training (see ‘Training’ in Tab. 2.3),
our survey also highlights the poor variety of training strategies for SSC,
and the common ‘semantic segmentation’ formulation of the SSC task.

On the SSC task itself, our survey highlights biases in the problem for-
mulation. For example, since ground truths originate from devices sensing
only the apparent physical shell, SSC fails to predict the real volume of the
objects. This is visible even in our LMSCNet outputs (Fig. 2.16) where
buildings are predicted as partly empty shells. Specific to dynamic envi-
ronments, aggregation of moving objects in the ground truth incorrectly
penalize the SSC which cannot predict individual object motion. This is
visible in ground truth of Fig. 2.16 where moving objects produce temporal
traces1. Finally, analyzing the datasets statistics in Roldão et al. (2021)
also highlights the long-tail problem of the SSC . Apart from naive class
or data balancing, only Rist et al. (2020b) addresses this problem. Future
works could also inspire from Yin et al. (2021) which applies guided point
sampling.

1In Fig. 2.16, best seen on a screen, only pedestrians are moving (notice red voxels
traces in bottom row, ground truth). All cars are parked – thus stationary in ground
truth.



26 Vision in the 3D world

3D
-b

ac
kb

on
e

: Feature Lifting

: Feature Fusion

3D U-Net

2D Encoder

FL

3D Encoder

FL

2D Encoder

Optional Multi-branch

2D 3D

2D 3D2D Input

2D Input

3D Output

Depth F

RGB
Depth

HHA SSC

3D Encoder
F

FL

2D
-b

ac
kb

on
e

2D U-Net

FL

3D 2D

FL

2D 3D

3D Decoder

3D Output3D Input

Occupancy

fTSDF

SSC

(a) View-Volume Nets., 3D-backbone: (Guo and Tong, 2018; Liu et al., 2018; Li et al.,
2019a; Liu et al., 2020; Li et al., 2020c,a), 2D-backbone.: (Roldao et al., 2020)

3D U-Net

3D Output3D Input

Occupancy

fTSDF

SSC

(b) Volume Nets. (Song et al., 2017b; Guedes et al.,
2018; Zhang et al., 2018b,a; Dourado et al., 2020a;
Chen et al., 2019b; Wang et al., 2019d; Zhang et al.,
2019; Wang et al., 2020; Chen et al., 2020b; Yan et al.,
2021; Dourado et al., 2020b; Wu et al., 2020; Cherabier
et al., 2018; Dai et al., 2018; Wang et al., 2019b)

... ... ... ...

Point-based MLP
3D Output

SSC

3D Input

Point cloud
Obs. Point
Encoder

Obs. to Occl.
Point Decoder

(c) Point-based Nets. (Zhong and
Zeng, 2020)

po
in

t-
2D

3D Input

Point cloud 2D U-Net

... ... ... ...... ... ...

3D Output

SSC

Point-based MLPPoint-based MLP

Bird-Eye View

pa
r.

-2
D

-3
D

3D Input

Occupancy

fTSDF

Bird-Eye View

2D Input
3D Output

2D U-Net

SSC

3D U-Net

F

po
in

t-
au

g.

... ... ... ...

Point-based MLP
3D Output

SSC

2D Input

2D U-Net

FL

2D 3D 3D Input

Point cloud

F

Obs. Point
Encoder

Obs. to Occl.
Point Decoder

m
ix

-2
D

-3
D 3D Input

Occupancy

fTSDF 3D Encoder

3D Output

SSC

3D U-NetRGB
Depth

HHA

2D Encoder

FL

2D 3D2D Input

F

(d) Hybrid Nets., point-2D: (Rist et al., 2020a,b), parallel-2D-3D: (Cheng et al., 2020),
point-augmented: (Zhong and Zeng, 2020), mix-2D-3D: (Garbade et al., 2019; Behley
et al., 2019; Li et al., 2020b; Chen et al., 2020a; Cai et al., 2021)

Figure 2.18: Architectures for SSC. Notice the predominance of re-
searches on volume networks, and the little works conducted on point-based
networks. F⃝ stands for any type of fusion.
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Figure 2.19: MonoScene. Our pipeline relies on successive 2D and 3D
UNets, bridged with a multi-scale projection module (M2S). In the 3D UNet,
we introduce a 3D Context Relation Prior module (3D CRP) to enforce
spatio-semantics consistency, and further train our pipeline with a class-
/scene-wise loss (Lmca) and a frustum loss (Lfrustum).

Going further...

Code:
https://github.com/cv-
rits/MonoScene

Cao, A.-Q. and de Charette,
R. (2021). MonoScene:
Monocular 3d semantic scene
completion. arXiv (submit-
ted)

MonoScene. Departing from our survey showing that all SSC rely on
3D input, in Cao and de Charette (2021) (submitted) we address 3D SSC
from a single RGB image. This task is significantly harder than standard
SSC since even sparse 3D input provides a strong geometrical cue – being
a subset of the 3D semantic ground truth. Instead, we reconstruct the
complete scene geometry and semantics with only a 2D RGB image as input.

Our overall pipeline is shown in Fig. 2.19, and is composed of a 2D UNet
(here, a pretrained EfficientNetB7) and a shallow 3D UNet. To boost 2D
contextual knowledge we unproject 2D UNet multiscale features (M2S) to
3D, along each pixel line-of-sight, and introduce a new 3D Contextual Re-
lation Prior layer (3D CRP) that enforces 3D spatio-semantics consistency.
Finally, new losses are added to ease the SSC task. We briefly describe
each component here.

Multi-scale 2D-3D projection (M2S). To avoid the ill-posed problem of
finding 2D-3D correspondences, we propose a mechanism where 2D features
project to all possible 3D correspondences. This intuitively lets the 3D
network discovers guidance from the ensemble of 2D multiscale features,
working toward a single unique consistent 3D resolution. Our process is il-
lustrated in Fig. 2.20a. In practice, considering known intrinsics, we project
the coordinates of the centroids of all voxels and sample the corresponding
features (if any) in the 2D decoder feature map F 1:1

2D , obtaining a 3D feature
map F 1:1

3D . Because 2D to 3D holds inherent ambiguities, it is important to
enhance contextual information flow in the network. We do so by repeating
the 2D sampling at all scales, summing all obtained sparse 3D features
maps into a single F3D feature map.
We found a similar-in-spirit idea in Popov et al. (2020), called ‘ray-tracing
skip connection’, though in contrast our proposal favors better 2D-3D flow
as it enables 2D-3D disentangled resolutions – leading to better results.

https://github.com/cv-rits/MonoScene
https://github.com/cv-rits/MonoScene
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Figure 2.20: 2D-3D features and Relation prior. (a) We boost contex-
tual 2D-3D flow by projecting multiscale 2D features along their individual
3D line-of-sight. (b) Our 3D CRP module learns spatio-semantics relations
prior. Here, 2D illustration of 4-ways bilateral Voxel↔Voxel relations are
shown. ( free voxel, occupied voxels - colors denote semantic class)

3D Context Relation Prior (3D CRP). Our 3D CRP layer, inserted at the 3D
UNet bottleneck, enforces 3D spatial-semantics consistency by learning to
predict the relationship of voxels in the scene. Doing so provides additional
guidance to the network to learn inter-/intra- spatio semantic relations.

In our work, we consider 4 bilateral voxel↔voxel relations, illustrated in
Fig. 2.20b, grouped into free and occupied corresponding respectively to,
‘at least one voxel is free’ and ‘both voxels are occupied’. For each group we
encode whether the voxels semantic classes are similar or different, leading
to the 4 relations: M = {fs, fd, os, od}. In practice instead, our 3D CRP
learns supervoxel↔voxel relations which are more compact and provide
better guidance, but not detailed here for brevity.
In Cao and de Charette (2021) we show our layer can work with arbitrary
number of relation priors, supervised or unsupervised.

SSC losses. We introduce two losses to train our SSC task.
First, to explicitly let the network be aware of the SSC performance, we

build upon the binary affinity loss (Yu et al., 2020) and introduce a multi-
class version directly optimizing the scene- and class- wise metrics. Our loss
optimizes the class-wise Precision (Pc), Recall (Rc) and specificity (Sc) where
Pc and Rc optimize performance of similar-class voxels, and Sc optimizes the
dissimilar-class voxels. We define the general Lmca to maximize the above
class-wise metrics. Considering ground truth p and prediction p̂ it writes:

Lmca(p̂, p) = − 1
C

C∑
c=1

(Pc(p̂, p) + Rc(p̂, p) + Sc(p̂, p)). (2.5)

In practice, we optimize both semantics (Lsem
mca) and geometry (Lgeo

mca) with
our multi-class loss, each one with its corresponding ground truth.
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Figure 2.21: Frustum loss. We align the distribution statistics of soft
labels in local frustums (here, 2x2) w.r.t. its corresponding local ground
truth. This provides cues to the network for occlusions disambiguation.

Our second loss inspires from the fact that disambiguation of occlusions
is impossible and that we observed that occluded voxels tend to be pre-
dicted as part of the object that obscures them. To mitigate this effect,
we propose a novel Frustum loss function that explicitly optimizes the class
distribution per frustum, as illustrated in Fig. 2.21. Rather than optimizing
the camera frustum distribution directly, we divide the input image into ℓxℓ
local patches of equal size and apply our loss on each local frustum (the
union of the individual pixels frustum in the patch). Intuitively, aligning
the frustums distributions provide additional cues to the network on the
scene visible and occluded structure, giving a sense on what is likely to be
occluded (eg. cars are likely to occlude road). In practice, considering a
frustum k we apply a soft-alignment on the predicted semantic probabilities
(P̂k) of all the voxels in k w.r.t. the corresponding distribution (Pk):

Lfrustum =
ℓ2∑

k=1
DKL(Pk||P̂k) , (2.6)

=
ℓ2∑

k=1

∑
c∈Ck

Pk(c) log Pk(c)
P̂k(c)

. (2.7)

Because frustums image small scene portions, considering all classes (C),
some may be locally missing making KL undefined. Hence, notice Ck refers
to classes defined in the local frustum k.

Experiments. We evaluate our method on both indoor NYUv2 (Silberman
et al., 2012a) and outdoor SemanticKitti (Behley et al., 2019). As baselines,
we chose the best opensource ones available – selecting two indoors designed
methods, 3DSketch (Chen et al., 2020a) and AICNet (Li et al., 2020a), and
two outdoors designed, LMSCNet (Roldão et al., 2020) and JS3CNet (Yan
et al., 2021). Since baselines require 3D inputs (which would provide them
with an unfair geometric advantage), we predict the required 3D input
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LMSCNet x̂occ 56.78 45.74 33.93 4.49 88.41 0.25 3.94 15.44 6.57 14.51 15.88
AICNet xRGB, x̂depth 35.63 81.90 30.03 7.58 82.97 0.05 6.93 22.92 11.11 15.90 18.15
3DSketch xRGB, x̂TSDF 47.03 68.42 38.64 8.53 90.45 5.67 10.64 29.21 13.88 23.83 22.91
Ours xRGB 55.17 64.93 42.51 8.89 93.50 12.57 13.72 36.11 15.13 27.96 26.94
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LMSCNet x̂occ 50.15 45.61 31.38 46.70 10.30 14.30 0.00 0.00 0.00 0.00 7.07
3DSketch xRGB,x̂TSDF 29.77 73.22 26.85 37.70 12.10 17.10 0.00 0.00 0.00 0.00 6.23
AICNet xRGB,x̂depth 25.12 83.51 23.93 15.30 0.00 0.00 0.00 9.60 1.90 0.10 7.09
JS3C-Net x̂pts 47.00 55.15 34.00 47.30 12.70 20.10 0.00 0.20 0.20 1.90 8.97
Ours xRGB 47.03 55.53 34.16 54.70 14.40 18.80 0.50 1.40 0.40 3.30 11.08

Table 2.4: Comparative performance. We report metrics on the indoor
NYUv2 (top) and outdoor Semantic KITTI (bottom), showing that despite
the various datasets we significantly outperform other SSC 2D-adapted base-
lines, in both mIoU and IoU.

directly from the RGB image, relying on the best found methods (details
in our publication). Notation for predicted inputs is with a hat, eg. x̂depth.

Tab. 2.4 reports the performance on NYUv2 and SemanticKITTI. In
both settings we outperform the mIoU of all 2D adapted baselines by a
significant margin of +4.03 on NYUv2 and +2.11 on SemanticKITTI. The
improved or on par IoU (+3.87 and +0.16) demonstrates our network
captures the scene geometry despite a single RGB input – avoiding the
naive mIoU increase by lowering the IoU. On individual classes, we
perform either best or second. Specifically, our method excels at large
structural classes on both datasets, while on SemanticKITTI, we get
outperformed mostly on small moving objects classes (car, motorcycle,
person, bicyclist, etc.). We ascribe this to the moving objects aggregation
in SemanticKITTI ground truth, also highlighted in Roldão et al. (2020);
Rist et al. (2020a), which requires to predict the individual objects motion.
We argue the later is harder when relying on RGB input only. Some
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NYUv2

Input LMSCNet AICNet 3DSketch MonoScene Ground Truth
Roldão et al. (2020) Li et al. (2020a) Chen et al. (2020a) (Ours)
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Semantic KITTI

Input LMSCNet JS3CNet MonoScene Ground Truth
Roldão et al. (2020) Yan et al. (2021) (Ours)

■bicycle ■car ■motorcycle ■truck ■other vehicle ■person ■bicyclist ■motorcyclist ■road
■parking ■sidewalk ■other ground ■building ■fence ■vegetation ■trunk ■terrain ■pole ■traffic sign

Figure 2.22: Qualitative results. Comparison of our MonoScene outputs
on NYUv2 (top) or SemanticKITTI (bottom) show we better match ground
truth (rightmost). In general our method better approximates the scene
structure (notice the road layout in bottom results), better reconstructing
also thin objects (NYUv2: chair, table, Sem.KITTI: cars). The camera posi-
tion is highlighted in the ground truth. Notice our method still reconstructs
plausible scene even outside of the camera FOV (darker voxels, bottom).
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NYUv2 SemanticKITTI
Method IoU ↑ mIoU ↑ IoU ↑ mIoU ↑

Ours 42.51 ±0.15 26.94 ±0.10 37.12 ±0.15 11.50 ±0.14

w/o Lfrustum 41.90 ±0.26 26.37 ±0.16 36.74 ±0.33 11.11 ±0.24

w/o M2S 41.57 ±0.11 25.61 ±0.43 36.35 ±0.15 10.61 ±0.05

w/o Lsem
mca 42.82 ±0.22 25.33 ±0.26 36.78 ±0.34 9.89 ±0.11

w/o Lgeo
mca 40.96 ±0.28 26.34 ±0.23 34.92 ±0.34 11.35 ±0.22

w/o 3D CRP 41.39 ±0.08 26.27 ±0.15 36.20 ±0.19 10.96 ±0.21

(a) Component ablations

NYUv2
2D scales IoU ↑ mIoU ↑

1, 2, 4, 8 42.51 ±0.15 26.94 ±0.10

1, 2, 4 42.08 ±0.69 26.28 ±0.24

1, 2 41.56 ±0.18 25.66 ±0.21

1 41.57 ±0.11 25.61 ±0.43

(b) Multiscale 2D-3D proj.

Table 2.5: Ablations (3 runs average). (a) Ablating our components
show all contribute to semantics (up to +1.61 mIoU) or completion (up to
+2, 2 IoU) in NYUv2 and Sem.KITTI (val sets). (b) Using more scales for
2D-3D projection perform best and tend to lower the mIoU variance.

qualitative results are in Fig. 2.22 and advocate that our method is capable
of predicting fine structures (note the furnitures in NYUv2 and cars in
Sem.KITTI). In Semantic KITTI, it is interesting to note that while
the scene FOV is larger than the camera FOV (shown in ground truth
column), our method still outputs plausible 3D scene structure outside
of the camera FOV (darker voxels in Sem.KITTI). We attribute this to
our Frustum loss, providing global class distribution insights to the network.

Tab. 2.5a reports the 3 runs average when removing either of our compo-
nents, showing that in average all contribute to the increase of performance
in both datasets. While our publication thoroughly evaluates all detailed
contributions, we describe in Tab. 2.5b only the effect of the multiscale 2D-
3D projection, by ablating the scales at which features are projected to the
3D features map. Note again here, that multiscale 2D features project to a
single scale 3D (cf. Fig. 2.20a). Results validate our intuition, since more
2D scales projections seem to help the 3D network disambiguation.
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Irrefutably, supervised learning is a dead end for computer vision be-
cause it relies on costly human-biased labeling, and assumes all conditions
are in the training sets. Both of these requirements are unbearable in the
long term, and we must relax the need of supervision. For example, mobile
robots like autonomous driving must operate safely in all conditions – some
of which are rare events, hard to capture or label. While truly unsupervised
learning is a unicorn, we focus on our vision algorithms requiring weak or
‘no’ supervision. The section is organized in twofold: leveraging vision with
fewer labels, or using action rewards as supervision.

In the first part (Sec. 3.1), we address research that deals with labels
scarcity following two different paradigms. Either using generative adver-
sarial network (GAN) to hallucinate new training data, or relying on the
unsupervised discovery of statistics during training.

In the second part (Sec. 3.2), we address vision with fewer data, aka few
shots, where GANs are used to perform few-shot image-to-image translation.

In the third part (Sec. 3.3) which is drastically different, we investigate
supervision from action where virtual agents evolve in interactive simulators
and receive rewards for their past action – leveraging reinforcement learning.

Of note, some of the works in Sec. 4 also address weak-/un- supervised
vision but in a physics-guided fashion and are thus not listed here.
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3.1 Dealing with fewer labels

The research in this section originates mainly from PhD Maximilian Jaritz
who defended in 2020, to a lesser extent from PhD student Fabio Pizzati
(defense planned in 2022), and also includes active collaborators from Inria,
Univ. of Parma, Valeo, Valeo AI and Vislab Ambarella.

In these works we consider a labeled source domain X and a semi or
un-labeled domain Y for which we aim at solving some vision task. Our
researches roughly leverage two distinct line of works. In Pizzati et al.
(2020b); Dell’Eva et al. (2021) (Sec. 3.1.1), we leverage generative networks
to learn the mapping F : X 7→ Y and benefit from the label-consistency
property1 to train ‘supervisedly’ on the translations. In Jaritz et al. (2020,
2021) (Sec. 3.1.2), we consider training supervisedly on samples from X
while unsupervisedly discovering statistical similarities in Y .

Similarly to work in Sec. 4 these researches were applied to vision algo-
rithms in adverse lighting or weather conditions – a central research interest
of my work – for autonomous driving.

3.1.1 Generative networks

The following two works (Pizzati et al., 2020b; Dell’Eva et al., 2021)
contribute somehow equally to the field of image-to-image translation (i2i)
and unsupervised domain adaptation (UDA). Both of these works leverage
high level knowledge about the domains at stake.

Going further...

Pizzati, F., Charette, R. d.,
Zaccaria, M., and Cerri, P.
(2020b). Domain bridge
for unpaired image-to-image
translation and unsupervised
domain adaptation. In WACV

Domain bridge for transfer learning. In Pizzati et al. (2020b), we
address i2i translation with GANs when source and target domains are far.
Our research originated from the observation that i2i networks collapse
when networks fail to map representations in source and target. We found
that this happens more often when source-target cumulate gaps such as
weather, sensor setup, viewpoint changes, etc. A practical example is
learning the Cityscapes7→ BDDrain mapping which collapse with popular
i2i like CycleGAN (Zhu et al., 2017) or MUNIT (Huang et al., 2018a).

Our work made two contributions somehow independent: an automatic
domains bridging strategy that boost i2i realism, and an Unsupervised
Domain Adaptation (UDA) strategy easing transfer learning.

1Because generative networks aims at preserving content, the source domain labels
are preserved when translated.
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Figure 3.1: Domain bridging. When domains gap is large, naive image-
to-image (i2i) translation (a) may fail. Instead, we ease i2i (b) by leveraging
automatically web-crawled images (ZX , ZY ) to bridge domain gap.

Instead of learning the mapping F : X 7→ Y like naive i2i (Fig. 3.1a), we
resonated from domains decomposition and add images from bridge domains
ZX and ZY that share characteristics with source and target, respectively.
Considering the case of weather changes in X and Y , source and target may
not only encompass weather changes (XW and YW , respectively) but also
other changes (XO and YO). In this work we argued that more a stable
i2i is obtained when domain gap is minimized. Adding ZX and ZY in
source and target, respectively, fulfills that role and subsequently acts as
a domain bridge (Fig. 3.1b). The criteria to choose ZX = {ZX

W , ZX
O } and

ZY = {ZY
W , ZY

O } are:

max |ZX
W ∩XW | , (3.1)

max |ZY
W ∩ YW | , (3.2)

max |ZX
O ∩ ZY

O | , (3.3)

where |.| is the set cardinality. This intuitively translates into ZX and ZY

having the same weather conditions than X and Y , respectively, and ZX

and ZY sharing similar others conditions (sensor setup, locations, etc.). This
reduces the divergence (eg. Kullback-Leibler) of our new domain sets X ′ =
{X, ZX} and Y ′ = {Y, ZY } w.r.t. the original domains, KL(PX′ , PY ′) <
KL(PX , PY ), to ease the i2i task.

In practice, our bridge domains ZX and ZY are extracted from au-
tomatically web-crawled images. We leverage a YouTube channel having
hours long dashcam sequences and split movies into clear (ZX) and rainy
(ZY ) images. Because they are recorded with the same setup and often
in the same location, they meet criteria in Eq. 3.3, and the ZX/ZY gap
is fairly reduced to weather changes only (Eqs. 3.1,3.2). Translations in
Fig. 3.3a show that when bridged with Z, MUNIT is able to properly learn
clear to rainy translations with realistic reflections, opposite to standard
MUNIT that collapsed presumably because of the large domain gap.
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Figure 3.2: UDA pipeline. We leverage our domain-bridged i2i, Online
Multimodal Sampling (OMS) and Weight Pseudo Label (WPL) strategies.
We train alternately on source, translations (fake target), and target.

To ease transfer learning from clear to rainy, we leverage our MUNIT-
bridged translations along with a new UDA strategy. The UDA pipeline
is in Fig. 3.2. First, we leverage the multi-modal capacity of MUNIT and
apply Online Multimodal Sampling (OMS) such that the task network is
fed with random style as input, increasing variability, and thus robustness.
Second, we leverage Pseudo Label (PL) (Lee et al., 2013) – a self-supervised
technique aligning source and target distributions. The principle is to
self-train a network whenever its pixel-wise prediction confidence is above
some threshold α, thus reinforcing the network own beliefs. Instead than
discrete thresholding, we introduced a new Weighted Pseudo-Label (WPL)
strategy which regresses α within the network optimization process and
applies a linear pixel-wise weighting. For brevity, we refer to Pizzati et al.
(2020b) for details. Overall, the optimization of α leads to a pseudo-label
expansion during training, illustrated in Fig. 3.3b. It shows that early in
the training α is conservative, including as pseudo-labels only pixels with
very high confidence, while after along training α is reduced to increase
supervision.

Performance. We evaluate our proposal on the task of translating im-
ages, as well as on the unsupervised domain adaptation task, leveraging
Cityscapes (Cordts et al., 2016) and the rainy set of Berkeley Deep Drive
dataset (Xu et al., 2017). On Cityscapes7→ BDDrain, leveraging our MUNIT-
bridged translations along with the OMS and WPL strategy we compare
against the best two UDA baselines at the time: BDL (Li et al., 2019b) and
AdaptSegNet (Tsai et al., 2018). Performance in Fig. 3.3c show we signif-
icantly outperform the baseline trained on source only (+8.37 mIoU), and
slightly over BDL (+0.44) but with a much simpler UDA strategy.
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(a) Cityscapes 7→ BDDrain
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EPOCH = 0
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(b) Weighted Pseudo Label (WPL)

Method mIoU↑

Baseline (source) 31.67
AdaptSegNet (Tsai et al., 2018) 33.44

BDL (Li et al., 2019b) 39.60

Baseline w/ MUNIT 20.78

Baseline w/ MUNIT-bridged 35.18
+ OMS 39.72

+ OMS + WPL (Ours) 40.04

(c) Semantic segmentation UDA on
BDDrain

Figure 3.3: Performance of domain-bridged UDA. (a) Outputs of MU-
NIT (Huang et al., 2018a) and our MUNIT bridged. Samples from target
domain Y and domain-bridge Z are shown above. Notice, ZX/ZY have
similar viewpoints and scenery, with only weather changes as gap. While
MUNIT collapses drastically, when bridged (bottom 2 rows) realistic rainy
traits are learned (reflections, drops, etc.). (b) Our WPL strategy acts as
a pseudo-label expansion during training. (c) UDA on BDDrain (Xu et al.,
2017), considering source only (baseline), two UDA baselines, training with
MUNIT translations (baseline w/ MUNIT) or training with our MUNIT-
bridged images and our UDA strategies.

Going further...

Dell’Eva, A., Pizzati, F.,
Bertozzi, M., and de Charette,
R. (2021). Leveraging local
domains for image-to-image
translation. In VISAPP

Leveraging local domains. In the previous work we introduced two new
domains ZX and ZY somehow lying between source and target to bridge
the translation task. Instead, in Dell’Eva et al. (2021) we reason about
high-level knowledge of source and target and hallucinate a new domain
which significantly boosts target tasks without ever seeing target at training.

Since i2i seeks to map global changes while preserving content, they
excel at learning complex changes – winter↔summer, painting style, etc.
– but struggle to learn subtle local changes even when consistent across
images. Our intuition is that we can leverage high-level knowledge about
domain-specific spatial characteristics, which we refer to as local domain,
translating the latter in the source domain X to hallucinate X ′. A simple
example of pairs of local domains is in Fig. 3.4 with markings/road,
snow/no-snow, etc. For example, continuously translating markings to
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Figure 3.4: Local domains. We introduce local domains as being domain-
specific local characteristics and propose to benefit from local domain trans-
lation to boost transfer learning, training on source-translated only without
seeing target.

asphalt on the US highway TuSimple dataset is an efficient and simple
way to accomodate to IDD (Varma et al., 2019) – an Indian unstructured
environment dataset with deteriorated road and lane markings.

In our work, we consider source X and target Y to be the composition
of sub domains, some of which are local domains of interest denoted with
Greek letter subscript α,β , ...,ω and the remaining is denoted with o (where
"o" stands for others). We assume the case where X and Y share at least
a local domain, say α, for example X = {Xo, Xα, Xβ} and Y = {Yo, Yα}.
Instead of learning X 7→ Y , our idea is to learn local domain mappings, such
as Xβ 7→ Xα. If such mapping is applied systematically on all samples from
X, we get a new domain X ′ without Xβ, so:

X ′ = {XO, Xα} , (3.4)

where domain X ′ is never seen and thus hallucinated. Considering that X ′

and Y have lower local domains discrepancy they are subsequently closer,
i.e. KL(Y, X ′) < KL(Y, X).

In practice, we leverage a GAN trained in a patch-based manner. For
each image x, we geometrically guide the patches extraction from a local
domain mask M(x) – often simply derivable from the image labels. We
also demonstrate that a continuous z-parametrized Xβ 7→ Xα geometrical
interpolation can be learned with a Variational Auto Encoder (VAE) and a
patch-wise composite blending. The overall architecture is in Fig. 3.5, with
details in Dell’Eva et al. (2021).

Experiments. In Dell’Eva et al. (2021), we evaluate our method on 3
different tasks: lane degradation, snow addition and deblurring, leveraging
the local domains shown in Fig. 3.4, and evaluating our translations both
against i2i baselines and on proxy tasks. We report only the first two tasks
here. We train with only 15 images and 30 patches per image. At inference,
the GAN is simply processing the whole image.
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Figure 3.5: i2i with local domains. Leveraging local domains priors we
learn to translate the latter, from simple geometrical guidance and interpo-
lation when ad-hoc. The resulting domain X ′ is hallucinated and intended
to reduce the gap with unseen target Y .

Fig. 3.6 shows sample local domains translations for contin-
uous lane 7→ asphalt trained on TuSimple (2017) and discrete
non-snowy-road 7→ snowy-sidewalk trained on ACDCsnow (Sakaridis
et al., 2021). On lane degradation, zooming in the images show that
degradation is effectively increasing along the z parametrized space.
In Dell’Eva et al. (2021) GAN metrics show our translations outperform
recent continuous GANs by a large margin (-20 FID and -0.10 LPIPS). On
snow addition, the task consists into adding snow on the road taking as
model the snowy sidewalks. Since our interpolation is geometric, it would
not make any sense here and is simply deactivated.

To validate the benefit of our local domain i2i, we use the above
trained networks to translate TuSimple and Cityscapes into ‘TuSimple
with degraded lane markings’ and ‘Cityscapes with snow’, respectively. In
Fig. 3.7 we show performance of state-of-the-art lane detectors and semantic
segmentation networks on test sets of IDD and ACDCsnow

2 either trained
on original TuSimple or Cityscapes, respectively, or on our translated
versions. In all tested metrics but one, we outperform the original results
– often by a significant margin, demonstrating the benefit of local domain
translation to boost transfer learning.

Despite a naive key idea – after all, we only translate patches – this work
has major interests: a) we use virtually free high-level domains knowledge,
b) only source is used to train, c) our pipeline can train few-shots.

The following works depart from generative networks and study trans-
fer learning without any target-domain reconstruction, but leveraging self-
supervised (aka unsupervised) features alignment.

2We hand labeled IDD lane markings 110 images. ACDCsnow comes with labels.
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Figure 3.6: Qualitative local domain translations. Leveraging local
domains shown in Fig. 3.4 and training only on 15 images, we perform
continuous ‘lane degradation’ translation on TuSimple (2017), and discrete
‘snow addition on road’ on images from ACDCsnow (Sakaridis et al., 2021).
Notice the local lane degradation (top, cols 3-4) and the snow addition on
road preserving car traces (bottom, row ‘Ours’).

Detector Trans- TuSimple IDD
lation Acc.↑ FP↓ FN↓ Acc.↑ FP↓ FN↓

SCNN
(Pan et al., 2017)

none 0.95 0.05 0.07 0.62 0.54 0.74
Ours 0.95 0.06 0.07 0.73 0.45 0.58

RESA
(Zheng et al., 2021)

none 0.95 0.06 0.07 0.64 0.72 0.80
Ours 0.95 0.06 0.07 0.67 0.69 0.76

(a) Lane detector
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(b) SCNN lane detection on IDD

Model Trans- ACDCsnow
lation road↑ sidewalk↑ mIoU↑

DeepLabv3+
(Chen et al., 2018b)

none 75.0 39.5 45.3
Ours 80.6 49.5 47.6

PSANet
(Zhao et al., 2018)

none 74.3 30.7 43.0
Ours 74.0 36.3 43.9

OCRNet
(Yuan et al., 2020)

none 82.3 45.6 54.5
Ours 82.8 54.7 55.5

(c) Semantic segmentation
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(d) DeepLabv3+ on ACDCsnow

Figure 3.7: Proxy tasks performance. (a-b) State-of-the-art lane de-
tectors when trained on original TuSimple (none) or on our lane degraded
translation (ours). (c-d) State-of-the-art semantic segmentation networks
when trained on original Cityscapes (none) or on our road/sidewalk snowy
Cityscapes (Ours).
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Figure 3.8: Cross-modal learning. (a) Leveraging cross-modal learning
(here, 2D/3D) our research enforces consistency in the uni-modal predic-
tions. On Unsupervised Domain Adaptation (UDA) (b), xMUDA learns
from supervision on the source domain (plain lines) and self-supervision on
the target domain (dashed) thanks to cross-modal learning between 2D/3D.

3.1.2 Cross-modal learning

A single scene can be captured by different means and popular datasets
are now multimodal although existing works are rarely truly multi-modal.
Different sensors do not only capture data of different nature, they capture
unique knowledge of the scene, differently impacted by the domain gaps.
Here, we aim to answer a simple question: can we leverage cross-modal
data to ease transfer learning ?

Going further...

Code and adapta-
tion scenarios: https:
//github.com/valeoai/xmuda

Jaritz, M., Vu, T.-H.,
Charette, R. d., Wirbel,
E., and Pérez, P. (2020).
xMUDA: Cross-modal unsu-
pervised domain adaptation
for 3D semantic segmentation.
In CVPR
Jaritz, M., Vu, T.-H.,
de Charette, R., Wirbel,
É., and Pérez, P. (2021).
Cross-modal learning for
domain adaptation in 3D
semantic segmentation. arXiv
submitted to PAMI

xMUDA / xMoSSDA. In Jaritz et al. (2020, 2021), along with
Valeo/Valeo.ai collaborators, we investigate how 2D and 3D modalities
can learn 3D semantic segmentation from each others and proposed a new
self-supervised cross-modal learning strategy (see Fig. 3.8a). Here, because
2D (camera) and 3D (Lidar) data are of different nature, in addition of
shared knowledge, each modality holds exclusive knowledge – not accessible
to the other modality. This makes the domain gaps differ across modalities.
For example since it emits its own light pulses, Lidar is more robust to
lighting changes (e.g., day/night) than a camera. On the other hand, Lidar
data density varies (eg. due to angular deviation and absorbing materials)
while cameras always output dense images.

In our work we investigate how cross-modal discrepancies can help
preserving the best performance of each sensor – thus avoiding that the lim-
itations of one modality negatively affect the other modality’s performance.
We proposed a cross-modal objective, implemented as a mutual mimicking
game between modalities, that drives toward consistency across predictions

https://github.com/valeoai/xmuda
https://github.com/valeoai/xmuda
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Figure 3.9: Architecture for cross-modal 3D segmentation. Inde-
pendent network streams: 2D and 3D take respectively, an image and a
point cloud as input, and output tensor of first dimension N , the num-
ber of 3D points to predict. The four segmentation outputs consist of the
main predictions P2D, P3D and the mimicry predictions P2D→3D, P3D→2D.
Knowledge transfer across modalities is enforced with KL divergences
DKL(P3D∥P2D→3D), where the objective of the 2D mimicry prediction is
to estimate the main 3D prediction, and, vice versa, DKL(P2D∥P3D→2D).

from different modalities. Specifically, we thoroughly investigated first
the cross-modal domain adaptation in the unsupervised setting (Jaritz
et al., 2020) (UDA), later extended to semi-supervised (Jaritz et al., 2021)
(SSDA), which we coined xMUDA and xMoSSDA, respectively.

Let’s consider an architecture where 2D and 3D are two independent
streams, enabling unimodal inference, respectively taking as inputs a 2D
image and a 3D point cloud. The goal of cross-modal learning is to let
each modality learn from each other. To enable this, a mimicking game
can be established between the 2D and 3D output probabilities, i.e., each
modality should predict the other modality’s output. The overall objective
drives the two modalities toward an agreement, thus enforcing consistency
between outputs.

Now, in a naive approach, the cross-modal optimization objective aligns
the outputs of both modalities segmentation heads. We found that this
leads to an important pitfall: the mimicking objective competes directly
with the main segmentation objective. In other words, transfer from the
weak modality can degrade the performance of the strong one.

Instead, our contribution focuses on disentangling the mimicry objective
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from the segmentation one. Therefore, we propose a dual-head architecture
shown in Fig. 3.9. In this setup, the 2D and 3D streams both have two
segmentation heads: one main head for the best possible prediction, and
one mimicry head to estimate the other modality’s output.

Considering the 3D segmentation task, the outputs of the four segmen-
tation heads (see Fig. 3.9) are of size (N, C), with C the number of classes,
such that we obtain a vector of class probabilities for each 3D point. The
two main heads produce the best possible segmentation predictions, P2D
and P3D respectively for each branch. The two mimicry heads estimate the
other modality’s output: 2D estimates 3D (P2D→3D) and 3D estimates 2D
(P3D→2D). The benefit of separating heads is that mimicry pushes toward
a soft features alignment of F2D and F3D without competing with the main
optimization objective. Additionally, mimicking heads are only used for the
cross-modal loss and removed for inference.

Cross-modal loss. We inspired from teacher-student distillation (Hinton
et al., 2014) to enforce cross-modal alignment. Specifically for our semantic
segmentation problem, rather than aligning only the output class, we align
the whole distribution with KL divergence. This ensure more information
is exchanged, leading to softer labels. The loss is defined as:

LxM(x) = DKL(P (n,c)
x ∥Q(n,c)

x ) (3.5)

= − 1
N

N∑
n=1

C∑
c=1

P (n,c)
x log P

(n,c)
x

Q
(n,c)
x

, (3.6)

with (P , Q) ∈ {(P2D, P3D→2D), (P3D, P2D→3D)} where P is the target
distribution from the main prediction which is to be estimated by the
mimicking prediction Q.

Of interest, our cross-modal loss LxM (Eq. 3.5) is self-supervised and
as such can be used in supervised or unsupervised setting. An important
property is the complementary of our loss with the pseudo-labels (PL) (Lee
et al., 2013) popular for unsupervised adaptation, as they pursue the
different objective of strengthening the belief of each modality.

I’m quickly brushing here how we use cross-modal learning for unsuper-
vised and semi-supervised domain adaptation, respectively UDA and SSDA.

Cross-modal UDA (‘xMUDA’), shown in Fig. 3.8b, leverages source xs

having labels y3D
s and target xt without labels. We train with the combi-

nation of a supervised loss (Lseg) on source and our cross-modal loss (LxM)
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Figure 3.10: Our five new domain adaptation scenarios. We leverage
metadata of five recent datasets to create adaptation scenarios that reflect
various challenges covering country-to-country, day-to-night, synthetic-to-
real, change of sensor setup, and clear-to-rainy.

on both source and target ; thus optimizing

min
θ

[ 1
|S|

∑
xs∈S

(
Lseg(xs, y3D

s ) + λsLxM(xs)
)

+ 1
|T |

∑
xt∈T

λtLxM(xt)
]
, (3.7)

where λs, λt are hyperparameters to weight LxM on source and target
domain respectively and θ the respective 2D/3D networks weights. When
using pseudo labels, computed offline, we denote our proposal xMUDAPL.

Cross-modal SSDA (‘xMoSSDA’) is also addressed in our research as it
is of high interest for practical applications where often a small subset of the
target dataset is labeled. It considers 3 sets: the source one xs with labels
y3D

s , the small target one Tℓ with labels y3D
tℓ , and the large unlabeled Tu.

Thus we optimize

min
θ

[ 1
|S|

∑
xs∈S

(
Lseg(xs, y3D

s ) + λsLxM(xs)
)

+ 1
|Tℓ|

∑
xtℓ∈Tℓ

(
Lseg(xtℓ, y3D

tℓ ) + λtℓLxM(xtℓ)
)

+ 1
|Tu|

∑
xtu∈Tu

λtuLxM(xtu)
]
,

(3.8)

with λs, λtℓ and λtu the cross-modal loss weights ; using λs = λtℓ for
simplicity. Again, xMoSSDAPL refers to using additional pseudo-labels.

Experiments. We consider 5 newly proposed scenarios to validate our
novel ‘cross-modal domain adaptation’ task, leveraging a combination of
multi-modal datasets, namely: nuScenes-Lidarseg (Caesar et al., 2020b),
Virtual KITTI (Gaidon et al., 2016), SemanticKITTI (Behley et al., 2019),
A2D2 (Sun et al., 2020) and Waymo Open Dataset (Sun et al., 2020).
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nuSc-Lidarseg:
USA/Singap.

nuSc-Lidarseg:
Day/Night

Virt.KITTI/
Sem.KITTI

A2D2/
Sem.KITTI

Method 2D 3D 2D+3D 2D 3D 2D+3D 2D 3D 2D+3D 2D 3D 2D+3D
Baseline (src only) 58.4 62.8 68.2 47.8 68.8 63.3 26.8 42.0 42.2 34.2 35.9 40.4

Deep logCORAL (Morerio et al., 2018) 64.4 63.2 69.4 47.7 68.7 63.7 41.4* 36.8 47.0 35.1* 41.0 42.2
MinEnt (Vu et al., 2019) 57.6 61.5 66.0 47.1 68.8 63.6 39.2 43.3 47.1 37.8 39.6 42.6
PL (Li et al., 2019b) 62.0 64.8 70.4 47.0 69.6 63.0 21.5 44.3 35.6 34.7 41.7 45.2
FDA (Yang and Soatto, 2020) 60.8 - - 48.4 - - 32.8* - - 37.6* - -
xMUDA 64.4 63.2 69.4 55.5 69.2 67.4 42.1 46.7 48.2 38.3 46.0 44.0
xMUDAPL 67.0 65.4 71.2 57.6 69.6 64.4 45.8 51.4 52.0 41.2 49.8 47.5

Oracle (trg only) 75.4 76.0 79.6 61.5 69.8 69.2 66.3 78.4 80.1 59.3 71.9 73.6
Domain gap (Oracle− Baseline) 17.0 13.3 11.5 13.6 1.1 5.9 39.5 36.4 37.9 25.1 36.0 33.2

Table 3.1: xMUDA on 3D semantic segmentation. Comparing against
the best existing DA techniques, we demonstrate the benefit of cross-modal
learning for UDA. We report mIoU (with best and 2nd best) on target test
set for unimodal 2D or 3D prediction and ensembling 2D+3D (means of 2D
and 3D probabilities). ‘Baseline’ is trained on the source set S only, and
‘Oracle’ is the upper bound, trained supervisedly on the target set T using
labels that are otherwise not used for baselines and xMUDA/xMUDAPL.

Fig. 3.10 exposes a sample source/target for each of our 5 tasks, obtained
by leveraging image metadata. Most importantly, each task encompasses a
distinct adaptation challenge, from left to right: country to country (note
USA drives right, Singapore drives left), day to night, synthetic to real,
different sensor setup (note the change of lidar pattern), clear to rainy. On
implementation, we used a modified UNet with ResNet34 (He et al., 2016)
as 2D network, and SparseConvNet (Graham et al., 2018) as 3D network.

The benefit of our cross-modal learning for both UDA or SSDA is evi-
dent in Tabs. 3.1 and 3.2, where the semantics mIoU on the target test set
is compared to the four best adaptation baselines at the time. Again, since
inference is unimodal we report individual 2D or 3D, and the ensembling
performance (‘2D+3D’) obtained by taking the mean of the predicted 2D
and 3D probabilities after softmax. In all cases but one, xMUDA (Tab. 3.1)
alone outperforms all compared baselines, demonstrating the beneficial
exchange of information between 2D and 3D. The 2D/3D ‘Oracles’ (trained
supervisedly on target) indicate that overall LiDAR (3D) is always the
strongest modality, which resonates with the choice of 3D segmentation
task. However, xMUDA consistently improves both modalities (2D and
3D) i.e., even the strong modality can learn from the weaker one. Interest-
ingly for semi-supervised adaptation, xMoSSDA alone rarely outperforms
pseudo-labels (‘PL’) which we attribute to the fact that pseudo-labels
quality is significantly increased by the use of Tℓ. When pseudo-labels
are combined with cross-modal learning (ie. xMUDAPL, xMoSSDAPL), it
outperforms on all 12 unimodal 2D or 3D metrics, and on 5 out of 6 en-
sembling 2D+3D experiments. A few qualitative results are also in Fig. 3.11.
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nuSc-Lidarseg:
USA/Singap.

A2D2/
Sem.KITTI

Waymo OD:
SF,PHX,MTV/KRK

Method Train set 2D 3D 2D+3D 2D 3D 2D+3D 2D 3D 2D+3D
Baseline (src only) S 58.8 63.2 68.5 37.9 32.8 43.3 61.4 50.8 64.4
Baseline (lab. trg only) Tℓ 70.5 74.1 74.2 51.3 57.7 59.2 56.5 57.1 60.3
Baseline (src and lab. trg) S + Tℓ 72.3 73.1 78.1 54.8 62.4 66.2 64.5 56.3 69.3

Domain gap (S vs. S + Tℓ) 13.5 9.9 9.6 16.9 29.5 22.9 3.2 5.5 4.9
xMUDA S + Tu 63.1 64.2 67.8 38.6 44.5 44.4 61.8 54.0 66.7
xMUDAPL S + Tu 66.2 65.1 70.1 41.4 49.5 48.6 68.3 55.2 71.9

Deep logCORAL (Morerio et al., 2018) S + Tℓ + Tu 71.7 73.1 78.2 55.1* 62.2 64.7* 61.4 56.5 66.1
MinEnt (Vu et al., 2019) S + Tℓ + Tu 72.6 73.3 76.6 56.3 62.5 65.0 64.3 56.6 69.1
PL (Li et al., 2019b) S + Tℓ + Tu 73.6 74.4 79.3 57.2 66.9 68.5 67.4 56.7 70.2
xMoSSDA S + Tℓ + Tu 74.3 74.1 78.5 56.5 63.4 65.9 65.2 57.4 69.4
xMoSSDAPL S + Tℓ + Tu 75.5 74.8 78.8 59.1 68.2 70.7 70.1 58.5 73.1

Unsupervised advantage 3.1 1.7 0.7 4.3 5.8 4.5 5.6 2.2 3.8
(relative) (+4.3%) (+2.3%) (+0.9%) (+7.8%) (+9.3%) (+6.8%) (+8.7%) (+3.9%) (+5.5%)

* The 2D network is trained with batch size 6 instead of 8 to fit into GPU memory.

Table 3.2: xMoSSDA on 3D semantic segmentation. See caption
of Tab. 3.1 for notation details. Considering semi-supervised adaptation
(SSDA), we have a source dataset S like in UDA, while, unlike UDA,
the target dataset has a small labeled part Tℓ and a large unlabeled
part Tu. The three uni-modal SSDA baselines as well as our ‘xMoSSDA’
and ‘xMoSSDAPL’ are trained supervisedly on S + Tℓ and unsupervisedly
on Tu. We report the ‘Unsupervised advantage’, i.e. the difference between
xMoSSDAPL and ‘Baseline (src and lab. trg)’ and relative improvement.

Our new adaptation scenarios also allow insights on the difficulty of
domain adaptation. For example, studying the difference between the
Oracle (ie. trained supervisedly on source and target) and the Baseline (ie.
trained on source only), which we refer to as ‘Domain gap’ in Tab. 3.1,
shows that intra-dataset domain gaps (nuScenes-Lidarseg: USA/Singapore,
Day/Night), in [1.1, 17.0], are much smaller than the inter-dataset do-
main gaps (A2D2/Sem.KITTI, Virt.KITTI/Sem.KITTI), in [25.1, 39.5].
This suggests that a change in sensor setup (A2D2/Sem.KITTI) is ac-
tually a very hard domain adaptation problem as for synthetic-to-real
(Virt.KITTI/Sem.KITTI).

In above results, despite a cross-modal training, we considered unimodal
inference or naive fusion via ensembling. However, in this research project
we also wanted to address the question: can cross-modal learning help fusion
setup where both modalities make a joint prediction? Because vanilla fusion
(Fig. 3.12a left) implies a single head for the two modalities, we cannot
replicate the cross-modal architecture as is. Instead, for ‘xMUDA Fusion’
an additional segmentation head is added to both 2D and 3D network
streams prior to the fusion layer with the purpose of mimicking the central
fusion head (Fig. 3.12a, right). Again, the performance in Fig. 3.12b shows
we outperform baselines using vanilla fusion. This interestingly suggests
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Figure 3.11: Qualitative results for xMUDA and xMoSSDA. Selective
outputs on 4 scenarios of our cross-modal UDA and SSDA demonstrate the
benefit of cross-modal learning which consistently improves segmentation.
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Vanilla xMUDA

(a) Fusion architectures

Method Arch. nuSc-Lidarseg:
USA/Singap.

A2D2/
Sem.KITTI

Baseline (src only) Vanilla 66.5 34.2

Deep logCORAL Vanilla 64.0 36.2
MinEnt Vanilla 65.4 39.8
PL Vanilla 70.1 38.6

xMUDA Fusion xMUDA 69.3 42.6
xMUDAPL Fusion xMUDA 70.7 42.2

Oracle xMUDA 80.6 65.7

(b) Fusion performance

Figure 3.12: Cross-modal fusion. (a) Comparison of Vanilla fusion and
xMUDA Fusion. Different from the former, we add a mimicry segmentation
head to each modality, which goal is to predict the fusion output. (b) Re-
porting mIoU on 2 adaptation scenarios, we show that xMUDA Fusion,
outperforms Vanilla Fusion.
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that even 2D/3D fusion scheme can benefit from more direct cross-modal
exchange.

In Jaritz et al. (2021) we ablate all our contributions, demonstrate
the stability of our dual-head architecture, and provide further evaluation
and analyses. In all setups, even when only considering a fully supervised
training (ie. no adaptation), 2D-3D cross-modal learning was shown to
boost performance.

On a wider note, this open doors to future works on cross-modal training.
Especially, while 2D/3D are of relatively close nature (both contains visual,
geometry, etc.) it would be interesting to investigate cross-modal learning
for dramatically different modalities such as Audio/Image, Text/Image, etc.
Of note, Peng et al. (2021) nicely extended our work with a new inter-domain
cross-modal learning and deformable inter-modal matching.
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Figure 3.13: Few-shot translation architecture. Our approach learns a
multi-target i2i manifold A from a set of anchors, from which it departs in
two-fold. First, using our weighted manifold interpolation (WMI) along A,
second by estimating residuals to resemble the target few-shots T (‘GERM’).
We train by exploiting statistics alignment with a VGG network and a patch-
based adversarial learning in our Local-Global Few-Shot module (‘LGFS’).

3.2 Dealing with fewer data

The only work in this section (Pizzati et al., 2021c) originates from PhD
student Fabio Pizzati and also includes active collaborator from Uni. Laval.

Close to our prior works Pizzati et al. (2020b); Dell’Eva et al. (2021),
we address here the ability to learn image-to-image (i2i) translation S 7→ T
though considering here T having very few training samples (e.g. |T | ≤ 25).

Going further...

Code:
https://github.com/cv-
rits/ManiFest

Pizzati, F., Lalonde, J.-F.,
and de Charette, R. (2021c).
Manifest: Manifold defor-
mation for few-shot image
translation. arXiv (submitted)

ManiFest (few-shot i2i). In Pizzati et al. (2021c) (submitted) we
propose a few-shot i2i framework which is shown to be resistant to highly
unstructured transformations as adverse weather generation or night ren-
dering. Our work departs from the observation that features consistency is
crucial for i2i (Ma et al., 2019), and impractical with only few-shot samples.
Therefore, rather than directly addressing the i2i few-shot, we deform a
stable learned manifold towards our few-shot target T , benefiting also
from style transfer and patch-based training to enable few-shot learning.
Importantly, our framework can approximate the general style of the entire
few-shot set or reproduce any image in an examplar manner.

Fig. 3.13 presents an overview of our approach. First, we learn a style
manifold in a standard multi-target GAN fashion from a set of so-called
anchor domains A having large amounts of training data. Our Weighted
Manifold Interpolation (WMI) then finds the optimal point along the
style manifold to inject the few-shot domain appearance, which is learned
with the Local-Global Few-Shot loss (LGFS). We allow to further depart

https://github.com/cv-rits/ManiFest
https://github.com/cv-rits/ManiFest
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Figure 3.14: GERM-based residuals. We perform either exemplar- or
general-based transformations on the few-shot set by learning residuals con-
ditioned on extracted statistics or noise, respectively.

from the interpolated manifold with a General-Exemplar Residual Module
(GERM) which learns a residual refining the overall image appearance. We
briefly describe our contributions below.
Hereafter, real images are s ∈ S, t ∈ T , and fake ones s̃ ∈ T where s̃ is the
output produced by a model.

Multi-target i2i. Rather than learning S 7→ T directly, we learn the S 7→ A
mapping, assuming the availability of a set A = {Aid,Am} of anchor
domains for which we have lots of data available (equivalent to the “base”
categories in few-shot image classification). By construction, one anchor is
always the identity domain (Aid = S), while the other (Am) contain images
easier to collect with respect to T .

Weighted manifold interpolation (WMI). Our intuition is that encoding T
by linearly interpolating style representations in the manifold spanned by A
should enforce feature consistency in T . For instance, assuming S = day,
T = night, Am = synthetic night, the network will be provided with the
information that all sky pixels should be darkened together.

Departing from the idea that distance between A and T manifolds varies
greatly, we seek the optimal interpolation point along A manifold where this
distance is minimized. In practice, we learn the weights wi which encode an
image s̃w by interpolating the anchor domains style representations:

zw =
∑

i∈{id,m}
wizi , s̃w = Gzw(E(s)) . (3.9)

General-Exemplar Residual Module (GERM). Because T is likely not to be
on A, it is important to allow departing from the latter. This is done by
learning a residual image s̃r, which helps encode characteristics from T that
are absent from A. In practice, we process the input image features E(s)
with a generator Gr such that

s̃r = Gr(E(s)) , and s̃ = s̃w + s̃r . (3.10)
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We provide two ways of generating the residual image, i.e., s̃r ∈ {s̃e
r , s̃g

r}. In
both cases, we draw inspiration from AdaIN style injection (Huang et al.,
2018a) and randomly condition the injected parameters either on learned
feature statistics (exemplar), or on random gaussian noise (general).

To reproduce the style of a specific image t ∈ T as in Ma et al. (2019),
we provide an exemplar residual (“GERM-E” in Fig. 3.14) by conditioning
on t. In this case,

ze
r = (µk(t), σk(t))∥k , s̃e

r = Gr
ze

r
(E(s)) , (3.11)

where µk(x) = µ(ϕk(x)) and σk(x) = σ(ϕk(x)) are the mean and variance of
the k-th layer outputs ϕk of a pretrained VGG network (Huang and Belongie,
2017), respectively, and || is the concatenation operator.

We identify as general residual some s̃g
r which moves the generated image

towards T by mimicking an average style learned from all images in T . This
is illustrated as “GERM-G” in Fig. 3.14, and, mathematically:

zg
r ∼ N (0, 1) , s̃g

r = Gr
zg

r
(E(s)) . (3.12)

Local-global few-shot loss (LGFS). Finally, the quality of the resulting image
s̃ is compared against the few-shot training set T with a combination of
two loss functions. First, we take inspiration from the state-of-the-art of
image style transfer where one image is enough for transferring the global
appearance of the style scene (Huang and Belongie, 2017). Our intuition
is that feature statistics alignment, vastly used in style transfer, could be
less prone to overfitting with respect to adversarial training. So, we align
features between s̃ and a target image t ∈ T using a style loss as in Huang
and Belongie (2017) on N layers of a pretrained VGG network. This writes

Lstyle =
N∑

k=0
||µk(s̃)− µk(t)||2 + ||σk(s̃)− σk(t)||2 , (3.13)

where (µk, σk) are the same as for GERM. While this is effective in modi-
fying the general image appearance, aligning statistics alone is insufficient
to produce realistic outputs. Thus, to provide local guidance, i.e. on more
fine-grained characteristics, we employ an additional discriminator, trained
to distinguish between rotated patches sampled from s̃ and t. We refer to
Pizzati et al. (2021c) for details.

Experiments. Our i2i is trained end-to-end with MUNIT backbone,
alternatively optimizing GERM-G or GERM-E. In our work we thoroughly
evaluate our framework on 3 translation tasks, leveraging 4 popular datasets
– the real ACDC (Sakaridis et al., 2021), Dark Zurich (Sakaridis et al.,
2020), Cityscapes (Cordts et al., 2016), and the synthetic VIPER (Richter
et al., 2017). We report here only a small subset of our evaluation.
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(b) Day 7→ Twilight
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(c) Clear 7→ Fog

Figure 3.15: Qualitative evaluation. We evaluate on (a) Day 7→ Night,
(b) Day 7→ Twilight, and (c) Clear 7→ Fog tasks (with N = 25 few-shot
images). In all, our approach learns a general realistic representation of the
few-shot target, and correctly reproduces the style of paired exemplar target
images. In comparison, existing baselines either suffer from entanglement
with the anchor domain (e.g. FUNIT, COCO-FUNIT, EGSC-IT) or from
unrealistic artifacts (e.g. WCT2).
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Method Anchor Target FID↓ LPIPS↓

G

MUNIT 0 400 79.20 0.529
MUNIT 3090 0 132.72 0.613

MUNIT 0 25 91.61 0.553
FUNIT 3090 25 156.97 0.573

COCO-FUNIT 3090 25 201.67 0.644
Ours 3090 25 81.01 0.535

E

MUNIT 0 400 87.71 0.522
MUNIT 3090 0 142.04 0.559

MUNIT 0 25 128.73 0.562
EGSC-IT 3090 25 106.68 0.574

WCT2 - - 105.58 0.580
Ours 3090 25 80.57 0.525

(a) GAN metrics

Model mIoU ↑ Acc. ↑

Baseline (src only) 12.93 45.15
MUNIT-single 17.21 54.67

MUNIT 21.22 56.65

Ours - G 21.62 58.06
Ours - E 24.31 60.50

(b) Semantic seg. (N = 25)
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(c) Robustness to N (Ours-G)

Figure 3.16: Day 7→ Night evaluation. Our general (G) and exemplar (E)
translations outperform all baselines (a). Translating Cityscapes to night
with only N = 25 shows an improved performance on the proxy semantic
segmentation task (b). Finally, (c) shows robustness to varying N .

We train our framework on 3 main tasks having Source/Target:
Day 7→ Night with ACDCday/ACDCnight, Clear 7→ Fog with
ACDCday/ACDCfog, and Day 7→ Twilight with DZday/DZtwilight. As
anchor domains we choose the synthetic VIPERnight for Day 7→ Night and
Day 7→ Twilight, and VIPERday for Clear 7→ Fog.

Qualitative results are in Fig. 3.15 for N = 25 images in T . We compare
against FUNIT (Liu et al., 2019a) and COCO-FUNIT (Saito et al., 2020)
for general translations (GERM-G), and against WCT2 (Yoo et al., 2019)
and EGSC-IT (Ma et al., 2019) for examplar translations (GERM-E)
(baseline details in our publication). In Day 7→ Night (Fig. 3.15a), even if
the appearance of images in T is partially transferred on translated images
(e.g. road color, darker sky), FUNIT and COCO-FUNIT still strongly focus
on typical textures of the anchor domains in A (note, for example, how the
street texture is similar to the anchor) which negatively impacts the overall
image realism. The same can be observed with EGSC-IT, where the hood
of the ego-vehicle present in anchor images (first column) is retained and
significantly impact visual results. While WCT2 exhibits sharp results, it
does not correctly map the image context, and it is limited to appearance
alignment which leads to artifacts (e.g. yellow sky with white halos).

The quantitative evaluation in Fig. 3.16a is aligned with the qualitative
results since our approach outperforms all few-shot baselines. On exemplar
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S T Am FID↓ LPIPS↓
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ACDC-Day ACDC-Night

Day 85.73 0.553
Night 81.01 0.535
Rain 81.38 0.549
Snow 86.74 0.554

Sunset 83.83 0.571
All 83.71 0.547

D
ay

7→
Tw

ili
gh

t

DZ-Day DZ-Twilight

Day 64.19 0.505
Night 63.15 0.510
Rain 65.33 0.501
Snow 64.09 0.513

Sunset 63.78 0.504
All 60.98 0.469

C
ro

ss
-d

at
as

et

ACDC-Day DZ-Twilight

Day 89.61 *
Night 90.48 *
Rain 89.47 *
Snow 91.49 *

Sunset 91.77 *
All 85.15 *

* Paired images are unavailable for LPIPS evaluation.

Table 3.3: Impact of anchor domains A. The relatively stable perfor-
mance across all tested anchors demonstrates robustness of our method.
Using all available anchors (“All”) also generally improve performance.

translations, it performs even better than our backbone trained on the en-
tire set of 400 training images. This shows that GERM-E, as opposed to
AdaIN style injection, enables better disentanglement of the exemplar style
by leveraging a realistic starting point interpolated in the manifold. Aside
from realism, we demonstrate the usability of these translations for a proxy
segmentation task in Fig. 3.16b, by retraining HRNet (Wang et al., 2019a)
with our Day 7→ Night versions of the Cityscapes dataset, and those of our
backbone, in single (MUNIT-single) or multi- (MUNIT) modal settings.
In Fig. 3.16c we vary the number of samples (N) for our general translations
(plain lines) showing we consistently outperform the backbone (dashed).

Finally, we wish to report here another interesting finding. One may
think that the anchor domains in A = {Aid,Am} should resemble target T .
To size the influence of anchors, in Tab. 3.3 we ablate anchors Am by select-
ing different conditions from the VIPER dataset, namely {Day, Night, Rain,
Snow, Sunset}. Our results instead show that the proxy multi-target i2i task
implicitly encodes consistency in the transformation, and is therefore robust
to the choice of anchors. Considering a multi-anchor setup (“All”, Tab. 3.3)
generally improves results, ranking either first or second in all cases for at
least one metric, which we ascribe to the more informative A manifold to
depart from.

3.3 Supervision from action
We now divert a little from other researches in this manuscript. If we
consider the context of robotics, the purpose of vision algorithms is to



3.3. Supervision from action 55

extract a humanly interpretable scene understanding – may it be on scene
semantics, objects locations, geometry, or else – in order to safely plan the
actions of a robot. Still, even partial supervision of these proxy tasks is
costly. Hence, we ask ourselves a simple question: Can we learn to control
a robot without any supervised scene understanding ?

In this section, we investigate the ability to learn directly a robot
policy π(.) from a given environment state s. This is referred as end-to-end
learning since the goal is to map the sensory space to the action space
without needs of intermediary supervised representations. Unlike vision
tasks, supervising robot actions is light and cheap.

We focus here on end-to-end driving. Despite early interest for the
latter (Pomerleau, 1989), at the time of our first work (2017) few had
addressed end-to-end driving (Bojarski et al., 2016; Xu et al., 2016; Rausch
et al., 2017; Mnih et al., 2016) most of which used imitation learning
(aka behavioral cloning). In the latter, π(.) mimics an expert driver –
ultimately leading to distributions mismatch since the expert rarely encoun-
ters driving failures (eg. off road driving, lane shift, wrong way driving, etc.).

Instead, we rely on reinforcement learning (RL) where π(.) is learned
from rewards which are either dense (after each iteration) or sparse
(after some iterations). Because RL requires trial-and-error, which would
be dramatically dangerous for cars, end-to-end driving almost always
train in simulators. There are roughly three RL strategies: value-based,
policy-based, or model-based. Value-based RL chooses the optimal action
a∗(s) from the approximated action-value function Q – implicitly learning
an optimal policy. Instead, policy-based RL explicitly learns the policy π(.)
mapping s 7→ a. A standard hybrid strategy is actor-critic which learns
both policy (actor) and value (critic) ; further stabilizing the training.
Finally, Model-based RL considers a priori known deterministic model of
the environment and is commonly employed for games (chess, pong, go,
etc.), but generally disregarded for complex simulation like car driving.
We refer to the many surveys about RL (Kaelbling et al., 1996), Deep RL
(DRL) (Arulkumaran et al., 2017) or DRL for driving (Kiran et al., 2021).

In our work, we investigated actor-critic DRL in simulated environment.
In Perot et al. (2017); Jaritz et al. (2018a), with Valeo collaborators, we were
among the firsts to address end-to-end driving in a realistic simulator ; con-
sidering dense reward (ie. frame-wise). In the recent Agarwal et al. (2021),
with Inria collaborators, we investigated the challenging task of learning to
drive with only sparse rewards (ie. episode-wise). These works have strong
technical and exploratory components though modest scientific contribution.
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(a) Naive simulator
(Torcs)

Snow (11.61km) Mountain (13.34km) Coast (4.59km)

(b) Our training tracks
(WRC6 game)

Figure 3.17: Simulators. Instead of the often used TORCS (a), we lever-
aged WRC6 a graphically and physically realistic car racing game (b).

3.3.1 DRL with dense reward

Going further...

Videos: https://team.
inria.fr/rits/computer-
vision/drl/

Perot, E., Jaritz, M., Toro-
manoff, M., and de Charette,
R. (2017). End-to-end driving
in a realistic racing game with
deep reinforcement learning.
In CVPR Workshops
Jaritz, M., de Charette, R.,
Toromanoff, M., Perot, E.,
and Nashashibi, F. (2018a).
End-to-end race driving with
deep reinforcement learning.
In ICRA

End-to-end race driving. In Perot et al. (2017); Jaritz et al. (2018a)
we addressed end-to-end driving with DRL in a car racing game, therefore
seeking to drive as fast as possible on challenging tracks while disregarding
safety or style consideration. Putting things in context, few works had
addressed DRL for driving prior to ours, mainly learning only partial control
in non-realistic arcade simulators. Instead, we learn the full car control
(steering, gas, brake, hand brake) from the interaction with WRC6 (Kylo-
tonn, 2016) – a realistic rally game with stochastic behavior (animations,
lights) – and bring practical contributions that boost performance.

Compared to the commonly employed TORCS (Wymann et al.,
2000) (Fig. 3.17a), our WRC6 simulator (Fig. 3.17b) exhibits variable
environments (snow, mountain, coast) and extreme physics changes (road
adherence, tire friction, etc.). As such the agent must understand the scene
layout and physics to infer the correct control. As DRL framework, we
leveraged the Asynchronous RL strategy (A3C) from Mnih et al. (2016)
as it is well suited for experience decorrelation. For fair comparison with
drivers’ knowledge, our agent receives as inputs the current front image
view3 and driving speed.

A3C framework. In our DRL setup (Fig. 3.18a), at discrete time steps
t the RL agent receives the game state (st) on which basis it selects an
action at as a function of policy π with probability π(at|st) and sends it to
the environment where at is executed and the next state st+1 is reached
with associated reward rt. In general, the RL agent seeks to maximize
the discounted reward Rt = ∑∞

k=0 γkrt+k with γ ∈ [0, 1[, however in
A3C the discounted reward Rt is in fact estimated with a value function
V πθ (s) = E [Rt|st = s]. The remaining rewards can be estimated after
some steps as the sum of the above value function and the actual rewards:
R̂t = ∑k−1

i=0 γirt+i + γkV̂ πθ (st+k) where k varies between 0 and tmax = 5
3In-game displays visible in Fig. 3.17b are obviously deactivated.

https://team.inria.fr/rits/computer-vision/drl/
https://team.inria.fr/rits/computer-vision/drl/
https://team.inria.fr/rits/computer-vision/drl/
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Figure 3.18: End-to-end driving with DRL. (a) A dedicated API enables
our RL agents to interact with the WRC6 rally racing game (cf. Fig. 3.17b),
receiving the game metadata (image and speed) – inputed in our state en-
coder (b) to predict the next action. In total, 15 agents are trained simul-
taneously in a distributed asynchronous setting (c).

the sampling update. The quantity R̂t − V̂ πθ (st) can be interpreted as
the advantage, i.e. whether the actions at, at+1, ..., at+tmax were actually
better or worse than expected ; which allows correction when non optimal
strategies are encountered. In practice, the networks for policy π(at|st; θ)
(aka Actor) and value function V̂ (st; θ′) (aka Critic) share all layers but
the last fully connected. The output probabilities of the discrete control
commands (i.e. steering, gas, brake, hand brake) are determined by the
policy πθ (θ the network weight) which we optimize with the REINFORCE
method (Williams, 1992) which computes an unbiased estimate of ∇θE[Rt].

We proposed several practical contributions, summarized here:

• Compared to the A3C (Mnih et al., 2016), our state encoder
(Fig. 3.18b) is deeper and uses speed vt along previous action at−1 in
an LSTM network.

• We study different reward shaping and demonstrate the benefit of our
reward which accounts for lateral drifts.

• We use an imbalance proportion of actions with more gas command
and dissociate break from hand-brake, which experimentally performs
better and allow the agent to learn drifting.

• To maximize variance of the environment, and benefit from the
decorrelation property of A3C, we simultaneously train on 3 tracks
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Figure 3.19: Performance on training tracks. (a) Our agents success-
fully learned to drive despite the challenging tracks appearance and physics,
taking sharp curves and hairpins (b). Our reward shaping (c) and spawning
strategy (c) lead to less car hits and better track exploration, respectively.

(Fig. 3.17b) with various visuals and physics, and spawn the agent
randomly along the tracks.

Experiments. Our DRL is trained simultaneously on 3 three tracks - a total
of 29.6km - using multiple distributed RL clients (Fig. 3.18c) to benefit
from the asynchronous A3C capabilities. Training the agents took about
a week on 3 computers with 9 agents total – each one interacting with a
separate instance of the WRC6 game through a custom designed API, see
Fig. 3.18c. This required an intense and cumbersome engineering work.

On training tracks, Fig. 3.19a, the agents successfully learn to drive de-
spite the challenging graphics and physics at an average speed of 72.88km/h
and cover an average distance of 0.72km per run. A run is interrupted if the
bot either stops progressing or goes in the wrong direction (off road, wrong
ways). We refer to the latter as ”crashes” and their locations are visible in
Fig. 3.19b, demonstrating that snow and mountain are harder tracks but
also that bots can go through slopes, sharp curves and even some hairpin
bends. While our contributions in Jaritz et al. (2018a) are mostly technical,
our reward shaping and spawning strategies were shown to improve signifi-
cantly the driving either by reducing the hits per kilometer (2.3 hits/km vs
9.2 for Mnih et al. (2016), Fig. 3.19c), or by favoring exploration (Fig. 3.19d).

In Jaritz et al. (2018a) we also ask ourself: Can our training generalize
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Figure 3.20: Sample predictions on real web footage. Despite scenarios
being unseen during training (other road users, multi-lanes, etc.), our RL
agent seems to take ad-hoc control decisions (shown as bottom left inset).

to unseen tracks and real images ? Referring to our video4 and paper, we
show our agent is able to drive on two unseen tracks having different road
layout proving that it incorporated general driving concepts rather than
just learned the tracks by heart. To also get a feel of transferrability to
the real domain, we inferred control on real image sequences (web footage,
cropped and resized) having situations never encountered during training
(other road users, multi-lanes). Despite our open-loop setup (i.e. control
commands are never applied), the early qualitative results in video and
Fig. 3.20 demonstrate surprisingly good performance. Retrospectively, this
is likely to be because the vision task is rather simple (road detection)
and the complexity lies in fact in the control stability – not assessed in
open loop tests. Interestingly, these preliminary results showed that one
day RL could be used as initialization strategy for decision making networks.

Leveraging an optimized version of this RL work, Valeo conducted a
real experiment at the Consumer Electronics Show in 2017 where an RL
agent was competing against real human players. Similarly, this work was
featured in a few press releases.

Since this work, real-world RL driving has been demonstrated (Kendall
et al., 2019) but transferring RL knowledge is a challenging task “due to a
series of assumptions that are rarely satisfied in practice” as mentioned in
Dulac-Arnold et al. (2019). The latter highlights the need in RL for smaller
synthetic/real gap, continuous action space, incorporating hard safety con-
straints, and accounting for real control inaccuracies. An other important
problem is the interpretability of RL decision. Schmidt et al. (2021) show for
example the benefit of combining RL and decision trees, easy to interpret.

3.3.2 DRL with sparse reward

A common pitfall of dense rewards in RL is that they prevent agents from
freely exploring the policy space. This is because the explored policies

4https://www.youtube.com/watch?v=AF0sryuSHdY

https://www.youtube.com/watch?v=AF0sryuSHdY
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Figure 3.21: Goal-constrained sparse RL. We address RL using a VAE
encoded top-view map along with speed and goal data, training with PPO
(Schulman et al., 2017) and sparse binary reward upon goal completion.

are being penalized if they diverge from the reward shaping function. An
example of interest for us is ‘taking a turn from the inside’ which – although
optimal for driving – can hardly be discovered by an agent that is penalized
by negative rewards as it drifts away from the road center.

To relax guidance, sparse RL assigns only simple reward when the task
completed or failed. Because of its weaker guidance, sparse RL is known to
be very challenging but encourages self discovery of policies.

Going further...

Agarwal, P., de Beaucorps, P.,
and de Charette, R. (2021).
Sparse curriculum reinforce-
ment learning for end-to-end
driving. arXiv

Goal-constrained end-to-end driving. In Agarwal et al. (2021) we
investigate sparse RL end-to-end driving with goal-constrained binary re-
wards. While sparse RL has been vastly explored for robotics tasks (Vecerik
et al., 2017; Strudel et al., 2020; Zuo et al., 2020), it was not yet applied to
driving due to the high-dimensionality and long-term horizon of the driving
task. In fact, while our work was initially meant to leverage driving rules
(speed limits, give-ways, traffic lights) with virtual driving-license points,
our early experiments unveiled the complexity of the task. Instead, we
addressed driving in simple city-like environments with limited success.

Rather than front-view images, here we use as input a top-view map
of the vehicle’s surroundings, shown in Fig. 3.21, compressed with a Vari-
ational AutoEncoder (VAE). The benefit is not only to reduce the input
dimensionality and ease sparse learning but also to lower the virtual/real
domain gap. The agent receives only a binary reward ; 1 if the goal is
reached before the episode ends, 0 if not.

In reality, because of the reward sparsity it is nearly impossible to
solve a long-horizon task like driving. Common practices to address this
imply using curiosity or curriculum learning. We follow the latter and
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Goal distance

20m 50m 100m 200m 300m

Ours 0.91 0.90 0.90 0.69 0.51

w/o curr. revert 0.51 0.08 0.02 0 0
w/o g. constraints 0.87 0.44 0.11 0 0
w/o ep. duration 0.36 0.04 0.00 0 0

(a) Success rate

Left Straight Right

(b) Driving characteristics
(100 runs)

Figure 3.22: Test tracks performances. (a) Success rate of our method
and variants without our curriculum revert, goal constraints or variable
episode duration. Notice the agents are trained only up to 100m, but can
still generalize to longer distances. (b) Driving styles on unseen road layouts
exhibit the agent learned to generalize and discovered some natural driving
behavior (eg. turning from the inside, keeping its right).

break driving into smaller sub-tasks addressed in a curriculum fashion –
where the goal is to reach a virtual finish line which distance from start
grows with complexity. We introduce two mechanisms. First, rather than
monotonically increasing the complexity, we propose a revert strategy –
inspired by Dasagi et al. (2019) – where complexity is only increased upon
success, and decreased upon failure. This plays the important role to
prevent the policy to be stuck in an invalid local minimum. Second, we add
dynamic goal constraints a maximum distance ρ from the goal center and
a maximum angle deviation α from the road. This intuitively encourages
better policy quality by preventing suboptimal goal achievements.

We train agents in Carla simulator (Dosovitskiy et al., 2017) with the
Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017)
which optimizes a surrogate objective Lθ (θ the network parameters) that
learns policy π while avoiding large deviation from last policy πθold . It writes

Lθ = Et

[
πθ (at|st)

πθold
(at|st)

A
πθold
t

]
, (3.14)

st and at being the environment state and action, respectively. In practice,
we train 3 individual policies (drive straight, turn left and turn right)
on small road portions, with complexity from 1m to 100m and episodes
duration scaled with the goal distance to encourage speed. Fig.3.22a shows
success rates on unseen test tracks. It is worth noting the task complexity
and the generalization capability of our agent since it was trained only up
to 100m, but can still drive 300m distances.

While our research results are still at an early stage – and far from
reward shaping RL –, we notice the emergence of driving characteristics.
For example in Fig. 3.22b where the agent discovered natural behaviors,
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such as keeping its right or taking a turn from the inside – without any
such guidance. In fact, sparse RL appears a good alternative to reward
shaping to circumvent its pitfalls for driving (Knox et al., 2021), but we
denote an absence of research in that direction. Similar choices than ours
are observed in Zhang et al. (2021) which considers task-oriented RL for
driving but leveraging both front-view and map-view images with reward
shaping.
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In the previous works we have addressed computer vision in a physic-
agnostic manner, considering images as matrices from which we seek
to discover statistical relationship between pixels to solve a vision task.
However, visual data captures photons which interaction with the world
is for the most part well understood from centuries of physics stud-
ies. While there are evident basic understanding of physics in any vision
algorithm, we question here How more physics grounding could help vision ?

An evident interest for algorithms to be more physics grounding is to
overcome the shortcoming of pure data-driven method. Indeed, no dataset
will ever be complete because the continuous nature of the physical world
make it virtually impossible. In other words, no dataset – even having
billions of data – will ever encompass all natural conditions and algorithms
are forever doomed to train on a minimal subsampling of the world. While
deep networks have great generalization properties, besides interpolation
they cannot (without additional guidance) accommodate efficiently to

Figure 4.1: Adverse weather and lighting conditions. We demonstrate
that physics models can improve vision, especially in adverse lighting and
weather conditions. Sources: (Sakaridis et al., 2021; Xu et al., 2017).
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unseen conditions.

Let’s consider a naive training on day and night images. A walk on the
learned manifold will lead to intermediate conditions to be an interpolation
of the two, whereas naive physics tells us that as the sun goes down,
shadows move and sky turns redish. The same holds for other conditions
like dynamic weathers as their visual effects cannot be trivially interpolated
or extrapolated1. This is the case for rain or snow as their visual effects
drastically change with the weather intensity due to changing particle size
distribution (Garg and Nayar, 2007). Physics-grounded algorithms could
not only provide a better understanding of the scene appearances, but
could also help compensating for data scarcity by providing a model for
inter-/extra-polation of the seen conditions.

At the heart of this section is the application of vision in adverse
lighting and weather conditions. Since the seminal work of the CAVE
laboratory (Narasimhan and Nayar, 2002; Garg and Nayar, 2007), adverse
weathers have been fascinating for me because they break the premise that
the atmosphere behaves as a transparent medium. As opposed to clear
weather, the particles in degraded weather alter our perception of the scene.

We detail the two lines of work addressed in this section.
In Sec. 4.1 we investigate how highly realistic physical models of adverse

weather can boost vision in the real world, or used to augment clear weather
images to boost performance of deep networks.

Instead in Sec. 4.2 we gradually relax the need of realistic physical mod-
els. Considering generative networks, we show that models can be used to
learn visual disentanglement, or to guide continuous image translation.

4.1 Physics-informed vision
Here, we leverage high-precision physical-models to model the dynamics
and photometrics of particles in the atmosphere to improve the visibility in
adverse particulate weathers such as fog, rain and snow.

We first brush a former work conducted at Carnegie Mellon Univer-
sity (de Charette et al., 2012) on an adaptive lighting device fueled by in-
depth study of particles physics, which we reused in our recent works to aug-

1Narasimhan and Nayar (2002) group particulate weathers as static or dynamic,
whether the particles in suspension are in motion (ie. whether gravity is stronger than
the air pressure, pulling particles down). Static weathers (eg. mist, fog) have a monotical
effect on vision as a function of distance, whereas dynamic weathers (rain, snow, hail)
produce spatio-temporal visual artefacts which is harder to model or anticipate.
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(a) Night-time rain artefact (b) Our adaptive headlight

Figure 4.2: Smart adaptive headlights. (a) At night, rain or snow pro-
duce a bright flickering (distracting) pattern reducing driver visibility. (b)
Our reactive lighting device deactivates only those light rays intersecting
raindrops, snowflakes, or hailstones to diminish the effect of falling precipi-
tation.

ment clear weather images with synthetic fog (Kahraman and de Charette,
2017) or rain (Halder et al., 2019; Tremblay et al., 2020).

4.1.1 Reactive scene illumination

Going further...

Our particle simulator is
freely distributed here:
https://github.com/cv-
rits/weather-particle-
simulator

de Charette, R., Tamburo,
R., Barnum, P. C., Rowe, A.,
Kanade, T., and Narasimhan,
S. G. (2012). Fast reac-
tive control for illumination
through rain and snow. In
ICCP

When driving at night in rain, raindrops behave as small lenses reflecting
the surrounding lights and producing bright flickering rain streaks that
disrupt the scene visibility (Fig. 4.2a). In de Charette et al. (2012) we
take advantage of the fact that rain is only visible when illuminated by
light sources, and propose an approach that directly removes the appear-
ance of rain in the scene by selectively illuminating the scene, as in Fig. 4.2b.

Our custom device (Fig. 4.3a) considers an imaging system collocated
with an illumination device having controllable light rays. To illuminate
between particles, we locate raindrops in consecutive frames, predict their
dynamics leveraging physical models, and then reactively deactivate rays of
light that would intersect particles. Because the latter are moving at high
speed2 and since visibility is crucial we identified two challenges: the need
of a responsive system, and the need to preserve high light throughput. In
practice, we limit our operating range to drops within 3m since our lab
experiments showed drops are not visible beyond that.

Relying on our high precision particle simulator – which models all
physics, imaging, lighting, and processing – we showed that a realistic
120Hz system having 13ms response time would successfully preserve 95%
throughput while avoiding 87% of the raindrops when stationary and
43% when driving at 90 km/h (see light maps in Fig. 4.3b). The finding
was validated building a prototype made of a DLP projector and a fast
camera of 120×244 resolution. Using a controllable rain test bed, our lab

2A falling 3mm raindrop rushes towards the earth at ≈9m/sec.

https://github.com/cv-rits/weather-particle-simulator
https://github.com/cv-rits/weather-particle-simulator
https://github.com/cv-rits/weather-particle-simulator
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(a) Adaptive lighting principle

0 kmph 30 kmph 90 kmph

(b) Simulations for 5mm/hr rain (c) Lab prototype performance

Figure 4.3: Concept, Simulations and Experiments. (a) We assume a
co-located camera-projector system images to first briefly illuminate falling
particles which are detected, and their future locations predicted for selective
illumination. (b) Simulations for 5mm/hr rain shows that limited light rays
are turned off (black pixels) and few particles remain shined (red). (c) Us-
ing an indoor rain test bed, our real prototype shows raindrop visibility is
significantly diminished while preserving overall illumination.

experiments show that drops are significantly less visible with our adaptive
lighting device (Fig. 4.3c) while preserving scene illumination. The same
prototype was later tested in real-rain or snow conditions3 showing the
same benefit.

A compact lighting device, fitting in a SUV headlight storage, was
later developed by the Carnegie team. In Tamburo et al. (2014) they also
extended the concept of selective illumination to avoid blinding upcoming
drivers or to highlight danger.

4.1.2 Physics-based rendering

Instead of reducing bad weather appearance, we now use physics models
to oppositely render unseen weather conditions on clear weather images.
Adding arbitrarily controlled weather (eg. 15mm/hr rain) would not only
allow benchmarking performance of vision algorithms but also improving
their robustness.

Indeed, while all computer vision practitioners know that bad weather
affect our algorithms, few knows how much it affects them. This is be-

3See videos at: https://www.cs.cmu.edu/smartheadlight/index2.html

https://www.cs.cmu.edu/smartheadlight/index2.html
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cause little datasets encompass adverse weathers and none include weather-
calibrated data.

Going further...

Kahraman, S. and
de Charette, R. (2017).
Influence of fog on computer
vision algorithms

Fog. As first steps, in our research report Kahraman and de Charette
(2017) we studied fog rendering. Fog is by far the easiest weather because
its particles are small (between 1µm–10µm), not individually detected by
cameras, so that rendering only requires simulation of light attenuation and
atmospheric airlight4. Hence, fog can be rendered on a clear image I0 with:

I = Ioe−βd + L∞(1− e−βd) , (4.1)

where d is the scene depth, L∞ is the horizon radiance and β is the atmo-
spheric extinction coefficient (ie. how thick is the fog). In our work, we also
account for the spatial heterogeneous characteristics of fog by replacing β
with N(β) where N(.) is a 3D Perlin noise with smooth gradient (Gustavson,
2005). Our fog rendering capacity is demonstrated in the next work.

Going further...

Code and Weather augmented
KITTI, Cityscapes, nuScenes:
https://github.com/cv-
rits/rain-rendering

Halder, S. S., Lalonde, J.-F.,
and Charette, R. d. (2019).
Physics-based rendering for
improving robustness to rain.
In ICCV
Tremblay, M., Halder, S. S.,
de Charette, R., and Lalonde,
J.-F. (2020). Rain rendering
for evaluating and improving
robustness to bad weather.
IJCV

Rain. Fueled by our collaborative grant, we also worked with Université
Laval (Canada) on Physics-Based Rendering (PBR) of rain in Halder
et al. (2019), studying various vision tasks, and extending to GAN and
GAN+PBR in Tremblay et al. (2020). Rain is significantly harder to render
due to the large falling particles and their complex light refractive behavior.

Relying on well-understood physical models we are able to control
the amount of synthetic rain in order to generate arbitrary weather,
ranging from very light rain (1 mm/hour rainfall) to very heavy storms
(200+ mm/hour). This key feature allowed us to produce the first (still
the only) calibrated rain-augmented datasets, ie. where the rainfall rate
is known and physically calibrated. We used our weather augmented
versions of KITTI (Geiger et al., 2013), Cityscapes (Cordts et al., 2016)
and nuScenes (Caesar et al., 2020a) to evaluate the robustness of 14
popular algorithms – for object detection, semantic segmentation and depth
estimation – in adverse weather. In Fig. 4.4 left, sample algorithms outputs
on clear and augmented rain versions show the extent of degradation caused
by adverse weather. Spoiling our findings, our benchmark (Fig. 4.4, right)
indicates that stormy rain affects all algorithms with a performance drop
of 15% mAP for object detection, 60% AP for semantic segmentation, and
a 6-fold error increase in depth estimation.

Physics-Based Rendering (PBR). We simulate a controllable rain in an ar-
bitrary image with the pipeline summarized in Fig. 4.5a, inspiring from the
vast literature of raindrops physics. Unlike fog, rain particles are bigger and

4In fog, the atmosphere behaves as a source of light due to the scattering of environ-
mental illumination (e.i. sunlight, skylight, etc.) by particles in the atmosphere.

https://github.com/cv-rits/rain-rendering
https://github.com/cv-rits/rain-rendering
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Figure 4.4: Vision tasks in clear and rain-augmented images. Our
rain rendering framework can augment clear-weather images in a controlled
manner. It was used to produce rain-augmented versions of KITTI (Geiger
et al., 2013) (rows 1-2), Cityscapes (Cordts et al., 2016) (rows 3-4) and
nuScenes (Caesar et al., 2020b) (rows 5-6). Leftmost column shows clear-
weather performance for each vision task and its performance on our rain-
augmented version in the middle column. Rightmost column shows the cor-
responding benchmark for each vision task on a total of 14 recent networks.
Overall, all algorithms are quite significantly affected by rainy conditions,
and when raining cats and dogs (200mm/hr) it leads to a performance drop
of 15% mAP for object detection, 60% AP for semantic segmentation, and
a 6-fold error increase in depth estimation
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Figure 4.5: Physics-based rendering of rain. (a) Our PBR
pipeline leverages the vast literature about rain, our prior particle sim-
ulator (de Charette et al., 2012), and the CAVE appearance streak
dataset (Garg and Nayar, 2006) to render both volumetric rain and indi-
vidual falling raindrops. To render the photometry of raindrops given their
large FOV (b), we approximate a scene environment map (c) and compute
the drop radiance from the projection of its FOV in the latter (in red).

thus harder to synthesize. Our pipeline follows the definition of Garg and
Nayar (2007) and models successively fog-like rain and individual drops.

For the former, given a clear image I0, the effect of drops that project
on less than 1 pixel is rendered with a volumetric attenuation:

Iatt(x) = I0Lext(x) + Ain(x) , (4.2)

where

Lext(x) = e−0.312R0.67d(x) ,

Ain(x) = βHG(θ)Ēsun(1− Lext(x)) ,
(4.3)

with R the rainfall rate (in mm/hr), d(x) the pixel depth, βHG the standard
Heynyey-Greenstein coefficient, and Ēsun the average sun irradiance.

Large close drops are instead rendered individually, relying on our par-
ticle simulator (de Charette et al., 2012) providing us with positions and
dynamics of all raindrops for a given fallrate. Synthesizing the exact pho-
tometry of a drop is complex for two reasons: a) as it falls a drop oscillates
making its visual effect uneven during shutter opening, b) the field of view
of a drop is larger than common cameras (165◦ vs approx. 70–100◦) hence
each drop images a large portion of the scene (Figs. 4.5b,c). To overcome
these, we used the CAVE streak appearance dataset (Garg and Nayar, 2006)
warping the queried streaks to match our particle simulator outputs.
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Figure 4.6: Evaluation of our rain realism. (a) We compare our rain
rendering on the Outdoor HDR ULaval dataset (Hold-Geoffroy et al., 2019)
using either ground truth (GT) map or our approximated version (Ours).
Results show only subtle differences. (b) User study comparing 30 randomly
selected images of our renderings, competitors and real rainy images, where
users judged ‘if rain looks realistic’ on a 5-point Likert scale.

Rather than computing the exact drop photometry – virtually impossible
as it requires perfect knowledge of the scene materials and geometry – we
estimate a coarse environment map E from a series of optical approximation
and compute each drop radiance from the projection F of its field-of-view
on the former (Fig. 4.5c, red line). Finally, since a drop refracts 94% of its
field of view radiance and reflects 6% of the entire scene radiance (Garg and
Nayar, 2007), the final streak appearance S′ is:

S′ = H(S)(0.94F̄ + 0.06Ē) , (4.4)

where H(S) is the warped S streak appearance and ¯ is the mean operator.
The final rain appearance is obtained from the rainfall composite of all
individual streaks on the fog-like rain image Iatt.

Because no rain-calibrated dataset exists, we evaluated our rain realism
in two-fold. First, in Fig. 4.6a we rendered rain on the Outdoor ULaval
HDR dataset (Hold-Geoffroy et al., 2019) using either the provided ground
truth illumination or our approximation which shows that the rain realism
is comparable. Second, we conducted a user-study with 35 participants
asked to judge rain realism with a 5-point Likert scale, and compared
our performance against competitors and real rain images. Histograms in
Fig. 4.6b show our realism is judged significantly better.

Image-to-image translation (GAN, GAN+PBR). A limitation of Physics-
Based Rendering is that it ignores major rainy characteristics such as
wetness, reflections, clouds and thus may fail at conveying the overall look
of a rainy scene. Hence, in Tremblay et al. (2020) we compare our PBR
against image-to-image clear 7→ rain translations (hereafter, GAN) and a
hybrid mix of the two (GAN+PBR). We train a CycleGAN (Zhu et al.,
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(a) Performance on our augmented datasets
Object detection Semantic seg. Depth estimation

YOLO9000 PSPNet Monodepth2
mAP (%) ↑ AP (%) ↑ Sq. err. (%) ↓

Clear Rain Clear Rain Clear Rain

Untuned 32.53 16.30 40.8 18.7 2.96 3.53
Finetuned (PBR) 33.51 19.68 39.0 25.6 3.15 3.54
Finetuned (GAN) 32.26 18.07 * * 2.89 3.40
Finetuned (GAN+PBR) 30.59 19.73 * * 3.01 3.29

De-rained (Liu et al., 2019b) 32.60 18.30 * * 2.25 3.09
* Lack of semantic labels for GAN training.

(b) Performance on real nuScenes (Caesar et al., 2020b)
Figure 4.7: Finetuned performance. (a) On our rain-augmented datasets
YOLO9000 (Redmon and Farhadi, 2017), PSPNet (Zhao et al., 2017) and
Monodepth2 (Godard et al., 2019) perform better for all fallrate when fine-
tuned. (b) On real rainy images from nuScenes a boost is also observed
when finetuned with any of our rain augmentations.

2017) on unpaired clear/rainy images of nuScenes (Caesar et al., 2020b).

Assessing and improving robustness to rain. In Halder et al. (2019); Trem-
blay et al. (2020) we thoroughly evaluate 14 state-of-the-art algorithms – 6
object detection, 6 semantic segmentation, and 2 depth estimation. Plots
in Fig. 4.4 (right) show performance on our augmented weather KITTI,
Cityscapes, and nuScenes, respectively from top to bottom. Among all 3
tasks, semantic suffers significantly more from rain artefacts.

While the effect of rain augmentation is evident, the story is missing a
piece since the goal is rather to improve robustness to real rain. To assess
the benefit of our augmentations, we retrained 3 algorithms – YOLO9000
for object detection (Redmon and Farhadi, 2017), PSPNet for segmenta-
tion (Zhao et al., 2017) and Monodepth2 for depth estimation (Godard
et al., 2019) – finetuning them on our PBR, GAN or GAN+PBR augmen-
tations in a curriculum fashion (i.e. successively on 0, 25, ..., 100 mm/hr
fallrate). In Fig. 4.7a, finetuned networks (dashed lines) show an important
boost on our rain-augmented datasets over untuned versions (plain lines)
on all three tasks.
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A comparable but smaller boost is observed in Fig. 4.7b on real
clear/rainy images of the nuScenes dataset. It is interesting to note
that finetuning on PBR rain is sufficient to boost performance in real
rain without needs of real rainy images at training, though GAN+PBR
combination provides the best results but requires real training rain images
not always available. We also demonstrate that deraining first images
performs always worse than our finetuning. Still, even with our improve-
ment we notice the significant clear/rain performance gap showing that
further efforts are required to be truly robust to such challenging conditions.

4.2 Physics-guided learning

Some visual traits (eg. wetness, puddles, etc.) are just too complex to
be physically rendered on images but are easily learned by generative
networks. Inversely, the latter are well known for being visually pleasant
but not physically realistic since they only optimize a perceptual difference.

In the PhD of Fabio Pizzati we address the use of physics to guide the
training of generative networks, by either enforcing disentanglement between
the learned visual traits and the ones physically modeled (Pizzati et al.,
2020a, 2021b), or by guiding the learned manifold discovery with simple
physical models (Pizzati et al., 2021a).

4.2.1 Model-guided disentanglement

Naive combination of GAN and physics-based rendering was done in our
work (Tremblay et al., 2020) but has important limitations since the GAN
may partially entangle some physically rendered traits. This is visible in
Fig. 4.8 (top) where a standard image-to-image translation (i2i) trained on
a clear 7→ rain task evidently entangles blurred raindrops in the outputs
(red circles) because they are present in the target dataset (ie. raindrops on
the lenses or on the windshield). For what is more, we show in the following
that entanglement also hinders the real underlying translation task.

Going further...

Pizzati, F., Cerri, P., and
de Charette, R. (2020a).
Model-based occlusion dis-
entanglement for image-to-
image translation. In ECCV
Pizzati, F., Cerri, P., and
de Charette, R. (2021b).
Guided disentanglement in
generative networks. arXiv
submitted to IJCV

Guided disentanglement in generative networks. In recent works
we investigated how to disentangle the learned representation of a GAN
from a model acting as disentanglement-guidance, may it be a physics-based
rendering model (Pizzati et al., 2020a, 2021b) or an other GAN output (Piz-
zati et al., 2021b). We focus here on the physics model guidance only. The
benefit to learn a disentangled representation is to allow simple-to-render
characteristics (eg. raindrops) to be physically modeled and to learn
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Figure 4.8: Guided disentanglement. Figure is best seen on a screen. We
learn characteristics disentanglement in target, from W (.) guidance which
might be neural or physical models (differentiable or not). Different from
naive GANs generating entangled target images, we learn a disentangled
version of the scene from guidance of model W (.) with target estimated
physical (w̃) or neural (θ̃) parameters.

others (eg. reflections) with a generative network. This allows us to inject
arbitrary realistic styles unseen during training (Fig. 4.8, bottom).

Considering a standard X 7→ Y image-to-image translation, the task of
the generator is to approximate the probability distributions PX and PY

associated with the problem domains, such as

∀x ∈ X, x ∼ PX(x),
∀y ∈ Y, y ∼ PY (y).

(4.5)

Let us assume a subdomain decomposition of target such that Y = {YW , YT }
separates the physically modeled traits (YW ) from the other ones (YT ). If
we hypothesize both traits are independent, we can formalize PY as a joint
probability distribution with independent marginals, such as

PY (y) = PYW ,YT
(yW , yT ) = PYW

(yW )PYT
(yT ) , (4.6)
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Disentanglement

Blend

Source Disentangled

Model Target

Target

Guidance

Parameters

Parameters
Differential

Non-differential

Noise

Forward pass

backward

backward

Figure 4.9: Model-guided disentanglement. Our disentanglement lever-
ages a physical model WMod(.) – parameterized by differentiable and non-
differentiable parameters – added to the generated image G(x). This pushes
the GAN to learn the non-modeled characteristics in a disentangled manner.
Green stands for real data, red for fake ones.

so that by imposing a strict guidance on PYW
, the GAN is let to learn PYT

in a disentangled manner. In practice, the guidance is enforced by injecting
features belonging to YW before forwarding the images to the discriminator,
which provides feedback on the general realism of the image and pushes the
generator to estimate the remaining PYT

.

Fig. 4.9 depicts the overall pipeline. Notice the model Wmod(.) ren-
dering the physical traits, and the learned disentangled representation
G(x). Though illustrated here with raindrops, in Pizzati et al. (2020a)
we experiment on 4 tasks (raindrops, dirt, and other composite tasks)
and extend in Pizzati et al. (2021b) to 1 new task (fog) having interesting
entanglement challenges – since fog is physically entangled with the scene.

To ensure a proper disentanglement, it is important that the guidance
realistically estimates PYW

; but models are by nature parameters dependent.
For example, a raindrop appears drastically different whether in-focus or
out-of-focus (see samples in Fig. 4.8, bottom). In our work, we introduce an
adversarial mechanism to estimate the optimal target-style parameters w̃.
For differentiable parameters (Fig. 4.10a), we rely on a premise that given
a frozen pretrained discriminator (Dent trained to differentiate X and Y ),
and a source image on which is applied our physical model Wmod, a global
minimum can only be found by adjusting the differentiable model parameters
wd to mimic target, thus leading to w̃d. Non differentiable parameters wnd

are optimized on target leveraging genetic optimization (Fig. 4.10b), thus
leading to w̃nd.
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(a) Differentiable parameters.
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(b) Joint differentiable and
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Figure 4.10: Model-guided parameters estimation. To properly guide
disentanglement, the optimal model parameters are regressed on target. (a)
For those differentiable, we exploit a pretrained frozen discriminator Dent

which makes the gradient flows only in the parameters direction. (b) For
non-differentiable parameters, we optimize until convergence alternatively
differentiable parameters as mentioned and non-differentiable parameters
using a black-box genetic optimization (Hansen et al., 2003).

It is interesting to note that a naive solution exists to our optimization
problem since Wmod can be injected where local X 7→ Y translations are too
complex to learn5. To prevent this, we introduce in our work a learnable
disentanglement guidance-map (DG in Fig. 4.9) which acts as a regularizer
to the disentanglement process.

Experiments. Evaluating the quality of our disentanglement on existing
datasets is non trivial since none of the latter provide disentangled versions
(eg. rainy scenes without raindrops, foggy scene without fog, etc.). We thus
introduced 5 experiments denoted as source 7→ targetent where subscript
denotes the entangled traits in target, with the aim to learn the disentangled
source 7→ target (notice the absence of ent). Selected results for some tasks
are in Fig. 4.11.

For fair comparison against baselines, in Figs. 4.11b,c we provide
not only our disentangled versions (TW

wd
Mod

for model-guided, TWGAN for
GAN-guided) but also our disentangled output with re-injection of the
guided traits to resemble target-style (ie. TWMod(w̃), TWGAN(w̃)). Our
disentangled versions exhibit that neither raindrops (Fig. 4.11b) nor dirts
(Fig. 4.11c) are entangled though other target characteristics are fully
preserved – wetness and color, respectively. To quantitatively evaluate
our translations (in the absence of disentangled ground truths), we com-

5While counter intuitive, in Pizzati et al. (2020a, 2021b) we elaborate on the fact
that complex translations are those having little visual changes from source to target. For
example, in Fig. 4.9 notice how the entangled drops are always located in the trees. This
is because they look alike when dry or wet so entangling raindrops is a trivial simple
optimization minimum to fool the discriminator.
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Experiment
datasets

Method Guidance IS↑ LPIPS↑ CIS↑

clear 7→ raindrop
nuScenes

CycleGAN - 1.15 0.473 -
AttentionGAN - 1.41 0.464 -

U-GAT-IT - 1.04 0.489 -
DRIT - 1.19 0.492 1.12

MUNIT - 1.21 0.495 1.03
Model-guided T

W
wd
Mod

(w̃d) raindrop (1|9) 1.53 0.515 1.15

gray 7→ colordirt
WoodScape

MUNIT - 1.06 0.656 1.08
Model-guided T

W
wd
Mod

(w̃d) dirt (2|0) 1.25 0.590 1.15
GAN-guided TWGAN (θ̃) GAN 1.58 0.663 1.47

synth 7→ WCSfog
Synthia

Weather Cityscapes

MUNIT - 1.22 0.429 1.13
Model-guided T

W
wd
Mod

(w̃d) fog (1*|0) 1.33 0.420 1.17

(a) GAN metrics.
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(c) gray 7→ colordirt (Woodscapes)

Figure 4.11: Guided disentanglement performance. In (a), we quantify
GAN metrics for some of our tasks comparing our disentangled translations
with re-injection of the modeled traits and target images. Bottom, we show
sample outputs (b,c) and selected baselines. Our guided network is able
to disentangle the generation of peculiar rain/color characteristics from the
raindrop/dirt on the windshield (‘disentangled’ rows TWMod / TWGAN). In
last rows of model-/GAN-guided outputs we re-inject droplets with optimal
target style parameters w̃ (‘Target-style’ rows TW

wd
Mod

(w̃d)) or new unseen
style (‘Dashcam-1’ row, left).
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Source Target

Porav et al. (2019) T
W

wd
Mod

(w̃d) TWMod (w̃)

Model-guided

(a) Sample images

Method FID↓ LPIPS↓
Porav et al. (2019) 207.34 0.53

Model-guided T
W

wd
Mod

(w̃d) 135.32 0.44

Model-guided TWMod (w̃) 157.44 0.43

(b) Benchmark on Porav et al. (2019)

Figure 4.12: Validity of our parameters estimation. Our increased re-
alism (a) in raindrop rendering on the RobotCar dataset (Porav et al., 2019)
is also assessed quantitatively (b) with FID and LPIPS distances. Notice
our translations better resembles target images (drops size/focus/etc.).

pare our target-style reinjected images against target ones in Fig. 4.11a,
reporting the Inception Score (measuring quality and diversity), LPIPS
(diversity), and Conditional Inception Score (multi-modal diversity). We
outperform almost all metrics, which translate qualitatively in Figs. 4.11b,c.

In Pizzati et al. (2021b) we also ablate model-guidance, showing that
even naive model can guide disentanglement. However, accurate parameters
estimation is crucial for a proper disentanglement. Notably, for raindrops
we leverage the RobotCar dataset (Porav et al., 2019) having pairs of
clear/water-sprayed images and compare our automatic estimation of the
raindrop parameters in Fig. 4.12 to their highly customized version. Our
images better resemble target qualitatively and quantitatively – whether
considering the full model TMod or only the differentiable one T wd

Mod.

A crucial benefit of disentangling representations is to accommodate
to unseen characteristics. This is especially important for traits like rain-
drops exhibiting high appearance variability with different camera setups.
In Fig. 4.11b (bottom row) we exhibit our unique ability to re-inject un-
seen style of characteristics (here, dashcam-like raindrops never seen during
training). Our work Pizzati et al. (2021b) shows these translations can
also be used to boost vision tasks like semantic segmentation – allowing us
to train semantics on a labeled dataset having unfocused raindrops, while
performing well on dashcam-like images.
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Figure 4.13: CoMoGAN: continuous model-guided image-to-image
translation. Sample translation tasks for our architecture-agnostic frame-
work learns the continuous mapping from source domain (green point) to
a target domain (red lines). A key property, is the unsupervised reorgani-
zation of the data along a functional manifold (top: cyclic, middle/bottom:
linear). From top to bottom: day to timelapse, in-focus to shallow depth of
field, or synthetic clear images to realistic foggy images.

4.2.2 Model-guided learning

While we gradually relaxed the use of physics models, it is notable in the
former works that physical rendering still condition the translations realism.
Investigating the interaction of machine learning, physics and vision, we
question now how physics can guide the manifold discovery so as to learn
the complete i2i mapping.

Going further...

Code: https://github.com/
cv-rits/CoMoGAN

Pizzati, F., Cerri, P., and
de Charette, R. (2021a). Co-
MoGAN: continuous model-
guided image-to-image trans-
lation. In CVPR

CoMoGAN. In Pizzati et al. (2021a) we proposed a novel continuous
model-guided image-to-image translation, coined CoMoGAN, where simple
physics-inspired models are leveraged to guide the learning. Different from
the previous works, we fully relax the model dependency by introducing
a continuous disentanglement of domain features – making naive model
(eg. tone-mapping, blurring, etc.) sufficient to guide the learning of
complex mapping. Experiments show that it significantly and consistently
outperforms the literature.

Fig. 4.13 shows some of our continuous translations for various manifold
shapes. An interesting property we found is that CoMoGAN discovers the
target data manifold ordering, unsupervised.

https://github.com/cv-rits/CoMoGAN
https://github.com/cv-rits/CoMoGAN
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Figure 4.14: CoMoGAN framework. Our framework learns X 7→ Y (ϕ) in
an end-to-end, architecture-agnostic manner. The Disentanglement Resid-
ual Block (DRB) – between encoder/decoder (GE/GD) – uses a new Func-
tional Instance Normalization (FIN, yellow layer) to learn manifold reshap-
ing and continuous translation, guided with simple physics-inspired model
M . On top of the standard ones, our losses optimize model reconstruc-
tion (LM ) and manifold consistency (Lϕ) by enforcing ϕ distances between
GAN output and model outputs {ϕ, ϕ′} with a pair-wise estimator (ϕ-Net).

More in depth, CoMoGAN learns a continuous domain translation con-
trolled by ϕ, that is X 7→ Y (ϕ), while reshaping the data manifold guided by
simple physics-inspired models. Importantly, we consider unknown ϕ labels
in Y . Our architecture-agnostic framework in Fig. 4.14 relies on model-
guidance M(x, ϕ) – with x the source image and M(.) the model.

A key feature is that we learn two domains, the target domain Y (ϕ)
and the model one YM (ϕ). To avoid strict guidance (leading the GAN to
only mimic the model) we allow Y (ϕ) and YM (ϕ) to have shared modeled
features but also discover private non-modeled features. This is enabled with
our Disentanglement Residual Block (DRB, shown in Fig. 4.14) whose goal
is to extract disentangled representations for a given ϕ.

To inject guidance in the target domain Y (ϕ), we introduce constraints
on the discovered manifold. First, we encode ϕ continuity with a novel
Functional Instance Normalization layer (FIN, yellow in Fig. 4.14), tak-
ing advantage of our model guidance – continuous by nature –. It builds
on prior Instance Normalization (IN) which carries style-related informa-
tion (Ulyanov et al., 2017; Huang and Belongie, 2017) although, instead of
a unique affine transformation of the input feature statistics (µ, β), our FIN
learns a distribution of transformations fγ and fβ:

FIN(x, ϕ) = x− µ

σ
fγ(ϕ) + fβ(ϕ), (4.7)

allowing the network to shape the ϕ-manifold based on how the transfor-
mation evolves. Depending on the nature of the transformation, we can
parametrize fγ and fβ accordingly: cyclically for daytime translations, or
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(a) Continuous cyclic translations

(b) ϕ and style disentanglement

Figure 4.15: Manifold organization. (a) Our translations (dark circle)
of a source image (center) are properly ordered and have non-modeled vi-
sual features (eg. frontal sun also in target samples, outer circle). With
dawn/dusk singularities and night time stable appearance this assesses the
manifold quality. (b) Disentanglement of ϕ (red) and style (dotted) is
demonstrated since styles vary slightly per ϕ (notice hue and brightness).

linearly for translations like adverse weathers evolving monotically.
The second constraint is to impose phi distances in the two discovered

manifolds. Because we do not use target ϕ values, we consider pairs
of random phi values and use our ϕ-Net (Fig. 4.14, right) to optimize
pair-wise phi differences between the model M(.) and the learned target
Y (.) or model YM (.) domains. The benefit of this distance constraint is to
ensure images follow some similarity criteria despite differences between
the model output and the learned translation. Importantly, this leads to an
organization of the latent space guided by the physical model.

Experiments. We adapt our architecture-agnostic CoMoGAN to the
popular MUNIT (Huang et al., 2018a) and CycleGAN (Zhu et al., 2017),
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(a) Rolling FID

Error
Method Mean↓ Std↓

Model 21.12 10.15
DLOW (Gong et al., 2019) 17.39 9.02

StarGANV2 (Choi et al., 2020) 15.91 10.00
DNI-CycleGAN (Wang et al., 2019c) 13.84 7.91

DNI-MUNIT (Wang et al., 2019c) 13.80 8.30

CoMo-MUNIT 9.84 7.20

Real data 3.61 4.52

(b) ϕ regression

Figure 4.16: Translations realism. (a) Rolling FID shows our method
is more effective, especially at Dawn/Dusk (‘D/D’) despite less supervision
(cf. Text). (b) Comparing the error between input ϕ translation values and
the regressed ϕ with an InceptionV3 network (trained on real data), also
advocate we outperform others.

referred as CoMo-MUNIT and CoMo-CycleGAN, respectively, and consider
3 continuous image-to-image translation tasks where source data lie
on a fixed ϕ0 point and target ϕ is unknown. The challenge is to learn
simultaneously the orderly ϕ-manifold and the continuous image translation.

Leveraging the recent Waymo Open dataset (Sun et al., 2020), split
into ‘Day’ (source) and ‘Dawn/Dusk/Night’ (target), we map ϕ to the sun
elevation and demonstrate the ability to learn the cyclic Day 7→ Timelapse
translations. A tone-mapping serves as model-guidance M(.), simply
darkening the image at night and shifting hue at dawn/dusk6. The
cyclic translations learned with CoMo-MUNIT are in shown Fig. 4.15a,
having source in the center. Apart from the visually pleasant translations,
CoMo-MUNIT translations (inner circle) are correctly ordered and show
we learned non-modeled features like frontal sun, sunset/sunrise, material
reflectance at night, and importantly the stable nighttime appearance.
None of these features are modeled in M(.) though present in target images
(outer circle), which advocates from the effective disentanglement of Y (ϕ)
and YM (ϕ) with our DRB. A fair concern here would be that ϕ could be
entangled as style (since MUNIT is multimodal) but Fig. 4.15b shows the
latter evolve correctly on different axes – as expected since ϕ is regulated
by model-guided features.

Other qualitative translations are shown in Fig. 4.17 for CoMo-MUNIT
and CoMo-CycleGAN for the linear iPhone 7→ DSLR and detached linear
Syntheticclear 7→ Realclear, foggy tasks. The model-guidance is a simple
gaussian blurring for the former, and our physical fog model (Kahraman

6Model guidance is detailed in Pizzati et al. (2021a), main and supp.
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Day Dawn/Dusk Night

+30.00° +12.50° −5.00° −22.50° −40.00°

(a) Day 7→ Timelapse (guidance: tone-mapping)

Source
Synthetic (clear) Real (clear) CoMo-MUNIT Real (foggy)

(b) Syntheticclear 7→ Realclear, foggy (guidance: fog model)

Source
iPhone iPhone CoMo-CycleGAN DSLR CycleGAN Zhu et al. (2017)

(c) iPhone 7→ DSLR (guidance: blur)

Figure 4.17: CoMoGAN translations. Translations on three X 7→ Y (ϕ)
continuous tasks show CoMoGAN discovers unmodeled features for all. (a)
Unlike baselines, our framework enables ϕ to be cyclically encoded for
timelapses allowing to distinguish Dawn and Dusk, and learns the – oth-
erwise undiscovered – stable night appearance. (b) We experiment a de-
tached linear target, where source (Synthia (Ros et al., 2016)) and target
(clear/foggy Cityscapes (Cordts et al., 2016; Halder et al., 2019)) are not
connected (ie. X ⊂ Y or X ̸⊂ Y ). (c) CoMo-CycleGAN translations on the
iPhone 7→ DSLR task, using iphone2dslr dataset (Zhu et al., 2017). Despite
naive blur guidance, it learns continuous DSLR depth of field, though Zhu
et al. (2017) only learns target translations.



4.2. Physics-guided learning 83

and de Charette, 2017) for the latter. Again, there are evident non-modeled
features discovered such as shallow depth of field, real textures, etc. Impor-
tantly, notice the selected baselines in Fig. 4.17a all use more supervision
than us since they use Dawn/Dusk annotations.

While the perceptual benefit is evident, we also question the realism
of our translations and their benefit for proxy tasks. Hence, in Fig. 4.16a
we plot the rolling Frechet Inception Distance (ie. FID per ϕ interval)
of timelapse translations versus baselines and real data (mean as dashed
lines). This shows that CoMoGAN is particularly capable of capturing
the unique Dawn/Dusk appearance – again, despite less supervision. The
quality of our ϕ mapping is also evaluated with a proxy ϕ-estimation task,
where an InceptionV3 network (Szegedy et al., 2016) is trained to regress
sun elevation from real images and ϕ ground truths. Reporting the average
ϕ estimation error of translated images and real images, in Fig. 4.16b, show
our translations are significantly closer to real data. An important aspect
is to note the difference between mean error of the tone-mapping ‘Model’
translations (21.12) which serve as guidance, and our ‘CoMo-MUNIT’
(9.84). This once more show CoMoGAN is not simply mimicking a model.

In Pizzati et al. (2021a) we also show that our translations can boost se-
mantic segmentation (+3.2 mIoU) for example to adapt a Cityscapes model
to Foggy Driving, using our Syntheticclear 7→ Realclear, foggy translations. We
also demonstrate the ability to address other task like Cat 7→ Dog or trans-
lations trained with domain-confusion.





Chapter 5

Research perspectives

In the following years, I plan to pursue my research on vision for scene un-
derstanding in the direct continuation of the three axes of studies developed
before. Transversal to these line of works, my research will be conducted
keeping in mind two important intertwined aspects for AI:

Relaxing supervision. Despite the ever increasing amount of training
data, relying on full supervision appears as an intuitive non-sense even
though ‘truly unsupervised vision’ is arguably possible. In fact, machine
learning in its current form always relies on some sort of supervision may it
be from a model, synthetic labels, labels in another domain, or else. The
cost of supervision is however different. In that spirit, my near future works
will focus on weakly-/self- and model-supervision. Among others, I intend
to develop work on cross-modal learning (2D/3D, audio/video, etc.), and
to rely more on physics knowledge to relax the need of labeled data. On
a longer note I wish to investigate the self-supervised discovery of physics
laws in data inspired by recent works (Chari et al., 2019), which I believe
could help both weak supervision and interpretable AI.

Increasing interpretability. Machine learning is yet often seen as a
black box and while transparent AI is a long term goal (Arrieta et al.,
2020), interpretability appears as a reasonable next step for human to
understand (to some extent) the output of AI machines. This appears to
me an important investigation direction for safe and ethical AI. On scene
understanding from vision, this means enforcing physical consistency in the
learning process, and physics realism in the algorithms outputs. We are
currently pursuing our work on physics guided learning for vision in adverse
conditions.

On a general note, I wish to diversify my field of applications to more
general vision – expanding to new topics and types of sceneries, and to
strengthen open and reproducible research. As a wish list, I hope to open
stronger bounds with other groups – as I find collaborative research exciting
and inspiring – while developing collaboration with researchers from other
fields (eg. physics, ethnology, archaeology, anthropology, etc.).
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Scientific career





Chapter 6

Professional

Since my PhD started, I worked in 4 research laboratories, of which two
were abroad, and experienced working in a private company:

• Since 2020. Permanent researcher at Inria, RITS team (France). I
lead a small group on vision for scene understanding.

• 2015-2020. Post-Doc at Inria, RITS team (France). Following a period
where I took over applied projects on autonomous driving, I then led
the computer vision group in the team.

• 2015. Developer/CTO of the startup Design Your Cube (France).
Working on web 3D interactive tools.

• 2014. Post-Doc at the University of Makedonia (Greece). Short po-
sition on 3D reconstruction of revolving pottery object from depth
maps.

• 2013-2014. Post-Doc in Robotics Centre of Mines ParisTech (France).
I worked on skeleton and object estimation from depth map data.

• 2012. PhD from Mines ParisTech, Robotics Centre (France) in “Infor-
matique temps-réel, robotique et automatique”. PhD topic: “Vision
algorithms for Rain and Traffic Lights in Driver Assistance Systems”.

• 2011. PhD visit at Carnegie Mellon University, ILIM Lab (USA) on
fast-reactive illumination through rain and snow.

Associate positions. Since 2019 I am also Associate Professor of Univer-
sité Laval, Canada.
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Supervision and Teaching
activities
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7.1 Supervision
In the 9 years since my PhD defense in 2012, I fully co-supervised 5 PhDs
(3 are ongoing), 1 Post-Doc, 1 engineer, 18 interns (inc. 3 PhDs interns).

The 2 PhD theses already defended are:

• 2017-2021. 3D Scene Reconstruction and Completion for Au-
tonomous Driving, Luis Roldão Jimenez.
CIFRE with Akka. Co-supervised with Anne Verroust-Blondet.
Publications: (Roldão et al., 2018, 2019, 2020, 2021)

• 2017-2020. 2D-3D scene understanding for autonomous driv-
ing, Maximilian Jaritz.
CIFRE with Valeo/Valeo.ai. Co-supervised with Fawzi Nashashibi.
Publications: (Perot et al., 2017; Jaritz et al., 2018a,b, 2020, 2021)

The 3 ongoing PhD theses are:

• 2019-2022. Style transfer and domain adaptation for semantic
segmentation, Fabio Pizzati.
CIFRE with Vislab Ambarella.
Publications: (Pizzati et al., 2020b,a, 2021a,b,c)

• 2020-2023. 3D Semantic Scene Reconstruction and Comple-
tion from 2D Image, Anh Quan Cao.
Publications: (Cao and de Charette, 2021)

• 2021-2024. Physic-guided learning for vision in adverse
weather conditions, Ivan Lopes.
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7.2 Teaching activities
Aside from research, I have been involved in the following teaching activities:

• 2018-2021. Computer Vision for Scene Understanding, Master Arti-
ficial Intelligence and Movement (AI-Move), Mines ParisTech, Paris,
France. Audience: Master, English.

• 2017. Computer Vision for Autonomous Driving. Master of Engi-
neering, Universidad Simon Bolivar (USB), Caracas, Venezuela. Au-
dience: Master, English.

• 2018-2019. Artificial Intelligence. Puck & Ribambelle, Montpellier,
France. Audience: primary school, French.

• 2017. Signal Processing with Python. Paris Science et Lettre (PSL),
Paris, France. Audience: PhDs, English.

• 2014. Introduction to Computer Vision. University of Makedonia
(UOM), Thessaloniki, Greece. Audience: Pro. Master, English.
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Dissemination
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8.1 Dissemination

The research I supervised was published in peer-reviewed conferences and
journals listed in Sec. 8.3.

In the last years I also promoted open research and – when legal frame-
work allowed it – recent works are openly distributed.

8.1.1 Popularization

I have an important activity on the popularization of science which accounts
for talks, press releases, and involvements in associations. I’m brushing the
most important actions here.

On press targeting a general audience I was interviewed in roughly 25
press releases (magazine, web, radio, TVs), plus over 60 on our research on
illumination through rain (CMU, 2011) which gained large media coverage1.

On young audience targets, I was mostly involved with: Arbre des con-
naissances (2017-2018) for popularizing science in secondary schools and
encouraging girls in science, Puck et Ribambelle primary school (2018-2019)
to introduce artificial intelligence to young kids.

1https://cs.cmu.edu/~ILIM/projects/IL/smartHeadlight/index2.html#press

https://cs.cmu.edu/~ILIM/projects/IL/smartHeadlight/index2.html#press
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8.1.2 Awards

• Outstanding reviewer CVPR 2021
• ICCP 2012, Best honorable paper award. (de Charette et al., 2012)

de Charette, R., Tamburo, R., Barnum, P. C., Rowe, A., Kanade, T.,
and Narasimhan, S. G. (2012). Fast reactive control for illumination
through rain and snow. In ICCP

8.2 Grants and Research projects

Some of the researches presented were funded by the following grants I
obtained:

• 2021-2024. ANR JCJC SIGHT investigates invariant algorithms for
complex weather conditions (rain, snow, hail). The project leverages
un-/self-supervised algorithms with physic-guidance to model physi-
cally realistic weather, and learn weather-invariant representations.

• 2018-2022. Samuel de Champlain is a collaborative grant with
J-F. Lalonde (Uni. Laval, Canada) on computer vision in non homo-
geneous lighting conditions and fine modeling of dynamic scenes. Up to
now, it led to 4 co-supervisions, 2 seminars, 5 visits, 4 co-publications.

I was also involved, scientifically or administratively, in the following
projects:

• 2020-2022. PIA project SAMBA seeks to improve the safety of
autonomous driving. We study here how to boost 3D scene under-
standing leveraging sparse 3D or dense 2D sensing.

• 2016-2021. FUI PACV2x is an applied project on augmented percep-
tion via communication for cooperative driving. It focuses on complex
interaction scenarios: highway merging, overtaking, intersections, etc.

• 2013-2017. H2020 i-Treasures studies the intangible cultural her-
itage and how to learn the rare know-how of living. It included the
reconstruction of fast-evolving 3D objects like pottery object.

• 2014-2017. ECOS Nord is a collaborative grant with a broad spec-
trum. It eased the exchanges and collaborations between Inria Paris
and Universitad Simon Bolivar, Venezuela.

• 2011-2016. H2020 Furbot goal is to build an autonomous freight ur-
ban robotic vehicle for the ‘last mile problem’ in controlled conditions.
It covers object detection, vehicle planning and control.

• 2011-2016. ANR CAMPUS seeks to improve the perception of the
environment with 3D vision sensor, for autonomous driving.
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• 2011-2016. H2020 AutoNet2030 is centered around cooperative
systems in support of networked automated driving by 2030.

• 2009-2012. ICADAC targets Improved Camera based Detection un-
der Adverse Conditions.

• 2008-2011. Intersafe2 aims at crossing intersection safely with au-
tonomous driving.

8.3 Publications

Legend: = opensource, = dataset shared.

8.3.1 Journal with peered reviews

• (Pizzati et al., 2021b) Pizzati, F., Cerri, P., and de Charette, R.
(2021b). Guided disentanglement in generative networks. arXiv (sub-
mitted to IJCV)

• (Roldão et al., 2021) Roldão, L., de Charette, R., and Verroust-
Blondet, A. (2021). 3D semantic scene completion: a survey.
IJCV

• (Jaritz et al., 2021) Jaritz, M., Vu, T.-H., de Charette, R., Wirbel, É.,
and Pérez, P. (2021). Cross-modal learning for domain adaptation in
3D semantic segmentation. arXiv (submitted to PAMI)

• (Tremblay et al., 2020) Tremblay, M., Halder, S. S., de Charette, R.,
and Lalonde, J.-F. (2020). Rain rendering for evaluating and improving
robustness to bad weather. IJCV

• (Flores et al., 2018) Flores, C., Merdrignac, P., de Charette, R.,
Navas, F., Milanés, V., and Nashashibi, F. (2018). A cooperative car-
following/emergency braking system with prediction-based pedestrian
avoidance capabilities. IEEE T-ITS

8.3.2 Conferences with peered reviews

• (Pizzati et al., 2021c) Pizzati, F., Lalonde, J.-F., and de Charette, R.
(2021c). Manifest: Manifold deformation for few-shot image transla-
tion. arXiv (submitted)

• (Cao and de Charette, 2021) Cao, A.-Q. and de Charette, R. (2021).
MonoScene: Monocular 3d semantic scene completion. arXiv (submit-
ted)

• (Dell’Eva et al., 2021) Dell’Eva, A., Pizzati, F., Bertozzi, M., and
de Charette, R. (2021). Leveraging local domains for image-to-image
translation. In VISAPP
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• (Pizzati et al., 2021a) Pizzati, F., Cerri, P., and de Charette, R.
(2021a). CoMoGAN: continuous model-guided image-to-image
translation. In CVPR oral

• (Roldão et al., 2020) Roldão, L., de Charette, R., and Verroust-
Blondet, A. (2020). LMSCNet: Lightweight multiscale 3D semantic
completion. In 3DV oral

• (Dubeau et al., 2020) Dubeau, E., Garon, M., Debaque, B.,
de Charette, R., and Lalonde, J.-F. (2020). RGB-D-E: Event camera
calibration for fast 6-dof object tracking. In ISMAR

• (Pizzati et al., 2020a) Pizzati, F., Cerri, P., and de Charette, R.
(2020a). Model-based occlusion disentanglement for image-to-image
translation. In ECCV

• (Jaritz et al., 2020) Jaritz, M., Vu, T.-H., Charette, R. d., Wirbel,
E., and Pérez, P. (2020). xMUDA: Cross-modal unsupervised domain
adaptation for 3D semantic segmentation. In CVPR

• (Pizzati et al., 2020b) Pizzati, F., Charette, R. d., Zaccaria, M., and
Cerri, P. (2020b). Domain bridge for unpaired image-to-image trans-
lation and unsupervised domain adaptation. In WACV

• (Roldão et al., 2019) Roldão, L., de Charette, R., and Verroust-
Blondet, A. (2019). 3D surface reconstruction from voxel-based lidar
data. In ITSC

• (Halder et al., 2019) Halder, S. S., Lalonde, J.-F., and Charette, R. d.
(2019). Physics-based rendering for improving robustness to rain. In
ICCV

• (Nguyen et al., 2018) Nguyen, D.-V., de Charette, R., Nashashibi, F.,
Dao, T.-K., and Castelli, E. (2018). Wifi fingerprinting localization for
intelligent vehicles in car park. In IPIN

• (Jaritz et al., 2018b) Jaritz, M., de Charette, R., Wirbel, E., Perrotton,
X., and Nashashibi, F. (2018b). Sparse and dense data with cnns:
Depth completion and semantic segmentation. In 3DV

• (Jaritz et al., 2018a) Jaritz, M., de Charette, R., Toromanoff, M.,
Perot, E., and Nashashibi, F. (2018a). End-to-end race driving with
deep reinforcement learning. In ICRA

• (Perot et al., 2017) Perot, E., Jaritz, M., Toromanoff, M., and
de Charette, R. (2017). End-to-end driving in a realistic racing game
with deep reinforcement learning. In CVPR Workshops

• (Dapogny et al., 2013) Dapogny, A., de Charette, R., Manitsaris, S.,
Moutarde, F., and Glushkova, A. (2013). Towards a hand skeletal
model for depth images applied to capture music-like finger gestures.
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In CMMR
• (de Charette et al., 2012) de Charette, R., Tamburo, R., Barnum,

P. C., Rowe, A., Kanade, T., and Narasimhan, S. G. (2012). Fast
reactive control for illumination through rain and snow. In ICCP
best honorable paper

• (Nashashibi et al., 2010) Nashashibi, F., de Charrette, R., and Lia, A.
(2010). Detection of unfocused raindrops on a windscreen using low
level image processing. In ICARCV

• (de Charette and Nashashibi, 2009b) de Charette, R. and Nashashibi,
F. (2009b). Traffic light recognition using image processing compared
to learning processes. In IROS

• (de Charette and Nashashibi, 2009a) de Charette, R. and Nashashibi,
F. (2009a). Real time visual traffic lights recognition based on spot
light detection and adaptive traffic lights templates. In IV

8.3.3 Scientific communications

• (de Charette and Manitsaris, 2019) de Charette, R. and Manitsaris, S.
(2019). 3D reconstruction of deformable revolving object under heavy
hand interaction. arXiv (journal submission)

• (Agarwal et al., 2021) Agarwal, P., de Beaucorps, P., and de Charette,
R. (2021). Sparse curriculum reinforcement learning for end-to-end
driving. arXiv

• (Roldão et al., 2018) Roldão, L., de Charette, R., and Verroust-
Blondet, A. (2018). A statistical update of grid representations from
range sensors. arXiv

• (Meyer and de Charette, 2016) Meyer, A. and de Charette, R. (2016).
Computing ego velocity from scene flow estimation

• (Kahraman and de Charette, 2017) Kahraman, S. and de Charette, R.
(2017). Influence of fog on computer vision algorithms
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