Discrete and Logico-numerical Control for Dynamic Partial Reconfigurable FPGA-based Embedded Systems : a Case Study - Publications associées au langage de programmation Heptagon Access content directly
Conference Papers Year : 2018

Discrete and Logico-numerical Control for Dynamic Partial Reconfigurable FPGA-based Embedded Systems : a Case Study

Abstract

Embedded systems need to be more and more self-adaptive, in order to better manage their constrained resources, and to better take into account evolutions in their environment and in their computing architecture. They can benefit from Field Programmable Gate Array (FPGA) architectures , which supports Dynamic Partial Reconfiguration (DPR) of the running fonctions, enabling improved performance and power consumption. The reconfigurations need to be decided and controlled in a closed loop. We approach this problem by applying techniques from the area of Supervisory Control for Discrete Event Systems (DES), where the space of configurations at the different levels (application, tasks, hardware platform) are modeled with automata, using the tools Heptagon/BZR and ReaX. This paper contributes with (i) generic modeling of the behaviors and objectives ; (ii) applications of Discrete Controller Synthesis (DCS), especially logico-numerical control ; (iii) concrete implementation on a FPGA hardware platform for an embedded video processing case study.
Fichier principal
Vignette du fichier
ccta18HPeCfinal.pdf (863.62 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01862619 , version 1 (27-08-2018)

Identifiers

  • HAL Id : hal-01862619 , version 1

Cite

Soguy Mak-Karé Gueye, Gwenaël Delaval, Eric Rutten, Jean-Philippe Diguet. Discrete and Logico-numerical Control for Dynamic Partial Reconfigurable FPGA-based Embedded Systems : a Case Study. CCTA 2018 - 2nd IEEE Conference on Control Technology and Applications, Aug 2018, Copenhaguen, Denmark. pp. 1480-1487. ⟨hal-01862619⟩
423 View
205 Download

Share

Gmail Facebook X LinkedIn More