Article Dans Une Revue Mathematical Programming Année : 2017

Minimizing Finite Sums with the Stochastic Average Gradient

Résumé

We propose the stochastic average gradient (SAG) method for optimizing the sum of a finite number of smooth convex functions. Like stochastic gradient (SG) methods, the SAG method's iteration cost is independent of the number of terms in the sum. However, by incorporating a memory of previous gradient values the SAG method achieves a faster convergence rate than black-box SG methods. The convergence rate is improved from O(1/k^{1/2}) to O(1/k) in general, and when the sum is strongly-convex the convergence rate is improved from the sub-linear O(1/k) to a linear convergence rate of the form O(p^k) for p < 1. Further, in many cases the convergence rate of the new method is also faster than black-box deterministic gradient methods, in terms of the number of gradient evaluations. Numerical experiments indicate that the new algorithm often dramatically outperforms existing SG and deterministic gradient methods, and that the performance may be further improved through the use of non-uniform sampling strategies.
Fichier principal
Vignette du fichier
sagMP.pdf (926.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00860051 , version 1 (10-09-2013)
hal-00860051 , version 2 (10-05-2016)

Identifiants

Citer

Mark Schmidt, Nicolas Le Roux, Francis Bach. Minimizing Finite Sums with the Stochastic Average Gradient. Mathematical Programming, 2017, 162 (1-2), pp.83-112. ⟨10.1007/s10107-016-1030-6⟩. ⟨hal-00860051v2⟩
4368 Consultations
16367 Téléchargements

Altmetric

396 readers on Mendeley
1 readers on CiteULike

Partager

More