s'authentifier
version française rss feed

inria-00583036, version 4

Weighted Improper Colouring

Julio Araujo () 12, Jean-Claude Bermond () 1, Frédéric Giroire () a1, Frédéric Havet () 1, Dorian Mazauric () 13, Remigiusz Modrzejewski () 1

N° RR-7590 (2011)

Résumé : In this paper, we study a colouring problem motivated by a practical frequency assignment problem and, up to our best knowledge, new. In wireless networks, a node interferes with other nodes, the level of interference depending on numerous parameters: distance between the nodes, geographical topography, obstacles, etc. We model this with a weighted graph $(G,w)$ where the weight function $w$ on the edges of $G$ represents the noise (interference) between the two end-vertices. The total interference in a node is then the sum of all the noises of the nodes emitting on the same frequency. A weighted $t$-improper $k$-colouring of $(G,w)$ is a $k$-colouring of the nodes of $G$ (assignment of $k$ frequencies) such that the interference at each node does not exceed the threshold $t$. We consider here the Weighted Improper Colouring problem which consists in determining the weighted $t$-improper chromatic number defined as the minimum integer $k$ such that $(G,w)$ admits a weighted $t$-improper $k$-colouring. We also consider the dual problem, denoted the Threshold Improper Colouring problem, where, given a number $k$ of colours, we want to determine the minimum real $t$ such that $(G,w)$ admits a weighted $t$-improper $k$-colouring. We first present general upper bounds for both problems; in particular we show a generalisation of Lovász's Theorem for the weighted $t$-improper chromatic number. We then show how to transform an instance of the Threshold Improper Colouring problem into another equivalent one where the weights are either one or $M$, for a sufficiently large $M$. Motivated by the original application, we then study a special interference model on various grids (square, triangular, hexagonal) where a node produces a noise of intensity 1 for its neighbours and a noise of intensity 1/2 for the nodes at distance two. We derive the weighted $t$-improper chromatic number for all values of $t$. Finally, we model the problem using integer linear programming, propose and test heuristic and exact Branch-and-Bound algorithms on random cell-like graphs, namely the Poisson-Voronoi tessellations.

 
  • inria-00583036, version 4
  • oai:hal.inria.fr:inria-00583036
  • Contributeur : 
  • Soumis le : Mardi 5 Juin 2012, 18:45:15
  • Dernière modification le : Mardi 5 Juin 2012, 20:57:26
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...