Learning a Probabilistic Model for Diffeomorphic Registration

Abstract : We propose to learn a low-dimensional probabilistic deformation model from data which can be used for registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables to compare deformations, generate normal or pathological deformations for any new image or to transport deformations from one image pair to any other image. Our unsupervised method is based on variational inference. In particular, we use a conditional variational autoencoder (CVAE) network and constrain transformations to be symmetric and diffeomorphic by applying a differentiable exponentiation layer with a symmetric loss function. We also present a formulation that includes spatial regularization such as diffusion-based filters. Additionally, our framework provides multi-scale velocity field estimations. We evaluated our method on 3-D intra-subject registration using 334 cardiac cine-MRIs. On this dataset, our method showed state-of-the-art performance with a mean DICE score of 81.2% and a mean Hausdorff distance of 7.3mm using 32 latent dimensions compared to three state-of-the-art methods while also demonstrating more regular deformation fields. The average time per registration was 0.32s. Besides, we visualized the learned latent space and show that the encoded deformations can be used to transport deformations and to cluster diseases with a classification accuracy of 83% after applying a linear projection.
Type de document :
Article dans une revue
IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers, 2019, 〈10.1109/TMI.2019.2897112〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01978339
Contributeur : Julian Krebs <>
Soumis le : lundi 11 février 2019 - 09:22:19
Dernière modification le : lundi 11 février 2019 - 09:42:01

Fichier

author_files.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Julian Krebs, Hervé Delingette, Boris Mailhé, Nicholas Ayache, Tommaso Mansi. Learning a Probabilistic Model for Diffeomorphic Registration. IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers, 2019, 〈10.1109/TMI.2019.2897112〉. 〈hal-01978339〉

Partager

Métriques

Consultations de la notice

83

Téléchargements de fichiers

13