Skip to Main content Skip to Navigation

Development of new probes based on carbon nanocones for near-field microscopies

Abstract : Near-field microscopy allows studying the topography and the physical properties (electrical, mechanical, etc.) of a material surface at nanoscale. For such a purpose, the sample surface is scanned by a probe (or tip) which geometric characteristics (such as the apex radius and the aspect ratio) and the physical properties (mechanical, electrical, etc.) must be suitable to ensure a sufficient resolution and a reliable representation of the surface. However, the current probes have significant limitations regarding the resolution, the possible imaging artifacts, as well as their ability to be used in different modes (conductive and non-conductive). These limitations are caused mainly by the type of material used (for example silicon or silicon nitride, for standard probes, or carbon nanotubes), as well as by the manufacturing processes used to structure the geometry of the probes. In this work, we study the potential of carbon nanocones (graphenic carbonaceous morphology with conical shape with high aspect ratio and nanosized apex) for different modes of near-field microscopy. These nanocones exhibit excellent mechanical (strong C-C bond) and electrical properties. They have already been successfully tested and patented as electron emitters for the cold-field-emission guns which equip the most performing transmission electron microscopes. These various characteristics of the nanocones (aspect ratio, nanosized apex, conductivity, mechanical stability, strong atomic cohesion) and others (hydrophobicity, chemical inertia, multiscale micro-nano morphology...), make that they could also constitute a promising solution for designing probes potentially superior to existing probes, either standard or more specific such as those in carbon nanotubes, for various types of near-field microscopy, in particular in terms of spatial resolution and durability. In the first part, this thesis is dedicated to the synthesis of individual carbon nanocones using an original synthesis method called ToF-CVD (Time of Flight Chemical Vapor Deposition). The work reveals complex formation mechanisms involving the heterogeneous phase nucleation mechanisms specific of the CVD deposition of pyrolytic carbon on the one hand, and well-known wetting mechanisms such the Plateau-Rayleigh instability on the other hand. The mounting of the nanocones on dedicated supports as probes for near-field microscopies is then carried out, followed by characterization studies (SEM, TEM, RAMAN spectroscopy) to assess their starting characteristics from the geometry and structure point of view, and their evolution under the operating conditions required for both the probe fabrication and for the different near-field microscopy modes studied. In a second part, the potentiality of carbon nanocones as probes for non-conductive modes such as topographic mode (atomic force microscopy - AFM) and "Peak Force Quantitative Nano Mechanical" (PF-QNM) mode, as well as for conductive modes such as scanning tunneling microscopy (STM), conductive atomic force microscopy (c-AFM), and Kelvin force microscopy (KFM) is evaluated. This evaluation is made on the basis of (i) performances; (ii) durability; (iii) versatility. The final goal is to compare the performance of the carbon nanocone probes with other commercial probes. Carbon nanocones reveal to truly be multimode probes with few existing counterparts nowadays. Improvements are needed and possible, for which directions are proposed.
Document type :
Complete list of metadata
Contributor : Abes Star :  Contact
Submitted on : Friday, April 9, 2021 - 11:31:25 AM
Last modification on : Tuesday, April 5, 2022 - 3:43:42 AM
Long-term archiving on: : Monday, July 12, 2021 - 9:21:29 AM


Version validated by the jury (STAR)


  • HAL Id : tel-03193984, version 1


Germercy Paredes Guerrero. Development of new probes based on carbon nanocones for near-field microscopies. Materials. Université Paul Sabatier - Toulouse III, 2020. English. ⟨NNT : 2020TOU30206⟩. ⟨tel-03193984⟩



Record views


Files downloads