Combinaisons d'automates et de boules de mots pour la classification de séquences

Frédéric Tantini 1, 2 Alain Terlutte 3 Fabien Torre 3, 4
2 PAROLE - Analysis, perception and recognition of speech
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
4 MOSTRARE - Modeling Tree Structures, Machine Learning, and Information Extraction
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe
Abstract : In this paper, we present a general framework for supervised classification. This framework only needs the definition of a generalisation operator and provides ensemble methods. For sequence classification tasks, we show that grammatical inference has already defined such learners for automata classes like reversible automata or k-TSS automata. Then we propose a generalisation operator for the class of balls of words. Finally, we show through experiments that our method efficiently resolves sequence classification tasks.
Document type :
Journal articles
Complete list of metadatas

Cited literature [4 references]  Display  Hide  Download

https://hal.inria.fr/hal-00643057
Contributor : Fabien Torre <>
Submitted on : Monday, November 21, 2011 - 9:24:38 AM
Last modification on : Thursday, February 21, 2019 - 10:52:49 AM
Long-term archiving on : Friday, November 16, 2012 - 11:31:57 AM

File

Volata-RIA-2011.pdf
Files produced by the author(s)

Identifiers

Citation

Frédéric Tantini, Alain Terlutte, Fabien Torre. Combinaisons d'automates et de boules de mots pour la classification de séquences. Revue des Sciences et Technologies de l'Information - Série RIA : Revue d'Intelligence Artificielle, Lavoisier, 2011, Apprentissage artificiel, 25 (3), pp.411-434. ⟨10.3166/ria.25.411-434⟩. ⟨hal-00643057⟩

Share

Metrics

Record views

456

Files downloads

252