Distance Metric Learning for Conditional Anomaly Detection

Michal Valko 1, 2, * Milos Hauskrecht 1
* Auteur correspondant
2 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal, Inria Lille - Nord Europe
Abstract : Anomaly detection methods can be very useful in identifying unusual or interesting patterns in data. A recently proposed conditional anomaly detection framework extends anomaly detection to the problem of identifying anomalous patterns on a subset of attributes in the data. The anomaly always depends (is conditioned) on the value of remaining attributes. The work presented in this paper focuses on instance-based methods for detecting conditional anomalies. The methods depend heavily on the distance metric that lets us identify examples in the dataset that are most critical for detecting the anomaly. To optimize the performance of the anomaly detection methods we explore and study metric learning methods. We evaluate the quality of our methods on the Pneumonia PORT dataset by detecting unusual admission decisions for patients with the community-acquired pneumonia. The results of our metric learning methods show an improved detection performance over standard distance metrics, which is very promising for building automated anomaly detection systems for variety of intelligent monitoring applications.
Type de document :
Communication dans un congrès
Twenty-First International Florida Artificial Intelligence Research Society Conference, May 2008, Coconut Grove, Florida, United States. AAAI Press
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00643244
Contributeur : Michal Valko <>
Soumis le : lundi 21 novembre 2011 - 17:22:04
Dernière modification le : jeudi 11 janvier 2018 - 01:49:33
Document(s) archivé(s) le : vendredi 16 novembre 2012 - 11:35:24

Fichiers

Valko.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00643244, version 1

Collections

Citation

Michal Valko, Milos Hauskrecht. Distance Metric Learning for Conditional Anomaly Detection. Twenty-First International Florida Artificial Intelligence Research Society Conference, May 2008, Coconut Grove, Florida, United States. AAAI Press. 〈hal-00643244〉

Partager

Métriques

Consultations de la notice

224

Téléchargements de fichiers

190