There is no variational characterization of the cycles in the method of periodic projections

Abstract : The method of periodic projections consists in iterating projections onto m closed convex subsets of a Hilbert space according to a periodic sweeping strategy. In the presence of m⩾3 sets, a long-standing question going back to the 1960s is whether the limit cycles obtained by such a process can be characterized as the minimizers of a certain functional. In this paper we answer this question in the negative. Projection algorithms for minimizing smooth convex functions over a product of convex sets are also discussed.
keyword : sadco
Type de document :
Article dans une revue
Journal of Functional Analysis, Elsevier, 2012, 262 (1), pp.400-408. 〈10.1016/j.jfa.2011.09.002〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00643370
Contributeur : Estelle Bouzat <>
Soumis le : lundi 21 novembre 2011 - 16:58:24
Dernière modification le : vendredi 31 août 2018 - 09:06:02

Lien texte intégral

Identifiants

Collections

Citation

Jean-Bernard Baillon, Patrick Louis Combettes, Roberto Cominetti. There is no variational characterization of the cycles in the method of periodic projections. Journal of Functional Analysis, Elsevier, 2012, 262 (1), pp.400-408. 〈10.1016/j.jfa.2011.09.002〉. 〈hal-00643370〉

Partager

Métriques

Consultations de la notice

244