Computing with bacterial constituents, cells and populations: from bioputing to bactoputing

Vic Norris 1 Abdallah Zemirline 2 Patrick Amar 3, 4 Jean Nicolas Audinot 5 Pascal Ballet 6, 7 Eshel Ben-Jacob 8 Gilles Bernot 9 Guillaume Beslon 10, 11 Armelle Cabin 1 Eric Fanchon 12 Jean-Louis Giavitto 13, 14 Nicolas Glade 15 Patrick Greussay 16 Yohann Grondin 17 James A Foster 18 Guillaume Hutzler 19 Jürgen Jost 20, 21 Francois Kepes 22 Olivier Michel 23 Franck Molina 24 Jacqueline Signorini 25 Pasquale Stano 26 Alain R Thierry 24
4 AMIB - Algorithms and Models for Integrative Biology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR8623
11 BEAGLE - Artificial Evolution and Computational Biology
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information, Inria Grenoble - Rhône-Alpes, LBBE - Laboratoire de Biométrie et Biologie Evolutive, CarMeN - Laboratoire de recherche en cardiovasculaire, métabolisme, diabétologie et nutrition
12 BCM
TIMC-IMAG - Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications [Grenoble]
14 MuTant - Synchronous Realtime Processing and Programming of Music Signals
Inria Paris-Rocquencourt, UPMC - Université Pierre et Marie Curie - Paris 6, IRCAM, CNRS - Centre National de la Recherche Scientifique
19 COSMO
IBISC - Informatique, Biologie Intégrative et Systèmes Complexes
23 GIPSA-CICS - CICS
GIPSA-DIS - Département Images et Signal
Abstract : The relevance of biological materials and processes to computing-alias bioputing-has been explored for decades. These materials include DNA, RNA and proteins, while the processes include transcription, translation, signal transduction and regulation. Recently, the use of bacteria themselves as living computers has been explored but this use generally falls within the classical paradigm of computing. Computer scientists, however, have a variety of problems to which they seek solutions, while microbiologists are having new insights into the problems bacteria are solving and how they are solving them. Here, we envisage that bacteria might be used for new sorts of computing. These could be based on the capacity of bacteria to grow, move and adapt to a myriad different fickle environments both as individuals and as populations of bacteria plus bacteriophage. New principles might be based on the way that bacteria explore phenotype space via hyperstructure dynamics and the fundamental nature of the cell cycle. This computing might even extend to developing a high level language appropriate to using populations of bacteria and bacteriophage. Here, we offer a speculative tour of what we term bactoputing, namely the use of the natural behaviour of bacteria for calculating.
Type de document :
Article dans une revue
Theorie in den Biowissenschaften / Theory in Biosciences, Springer Verlag, 2011, 130 (3), pp.211-228. <10.1007/s12064-010-0118-4>
Liste complète des métadonnées

https://hal.inria.fr/hal-00643738
Contributeur : Patrick Amar <>
Soumis le : mardi 22 novembre 2011 - 16:42:04
Dernière modification le : lundi 13 février 2017 - 15:47:59

Identifiants

Citation

Vic Norris, Abdallah Zemirline, Patrick Amar, Jean Nicolas Audinot, Pascal Ballet, et al.. Computing with bacterial constituents, cells and populations: from bioputing to bactoputing. Theorie in den Biowissenschaften / Theory in Biosciences, Springer Verlag, 2011, 130 (3), pp.211-228. <10.1007/s12064-010-0118-4>. <hal-00643738>

Partager

Métriques

Consultations de la notice

1489