Simultaneous Smoothing and Estimation of DTI via Robust Variational Non-local Means

Abstract : Regularized diffusion tensor estimation is an essential step in DTI analysis. There are many methods proposed in literature for this task but most of them are neither statistically robust nor feature preserving denoising techniques that can simultaneously estimate symmetric positive definite (SPD) diffusion tensors from diffusion MRI. One of the most popular techniques in recent times for feature preserving scalar- valued image denoising is the non-local means filtering method that has recently been generalized to the case of diffusion MRI denoising. However, these techniques denoise the multi-gradient volumes first and then estimate the tensors rather than achieving it simultaneously in a unified approach. Moreover, some of them do not guarantee the positive definiteness of the estimated diffusion tensors. In this work, we propose a novel and robust variational framework for the simultaneous smoothing and estimation of diffusion tensors from diffusion MRI. Our variational principle makes use of a recently introduced total Kullback-Leibler (tKL) divergence, which is a statistically robust similarity measure between diffusion tensors, weighted by a non-local factor adapted from the traditional non-local means filters. For the data fidelity, we use the nonlinear least-squares term derived from the Stejskal-Tanner model. We present experimental results depicting the positive performance of our method in comparison to competing methods on synthetic and real data examples.
Type de document :
Communication dans un congrès
MICCAI Workshop Computational Diffusion MRI, Sep 2011, Toronto, Canada. 2011
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00645007
Contributeur : Rachid Deriche <>
Soumis le : vendredi 25 novembre 2011 - 18:04:27
Dernière modification le : jeudi 11 janvier 2018 - 16:22:59
Document(s) archivé(s) le : dimanche 26 février 2012 - 02:35:07

Fichier

Liu-vemuri-etal_11.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00645007, version 1

Collections

Citation

Meizhu Liu, Baba Vemuri, Rachid Deriche. Simultaneous Smoothing and Estimation of DTI via Robust Variational Non-local Means. MICCAI Workshop Computational Diffusion MRI, Sep 2011, Toronto, Canada. 2011. 〈hal-00645007〉

Partager

Métriques

Consultations de la notice

300

Téléchargements de fichiers

188