A Robust Approach for Multivariate Binary Vectors Clustering and Feature Selection

Abstract : Given a set of binary vectors drawn from a ¯nite multiple Bernoulli mixture model, an important problem is to determine which vectors are outliers and which features are relevant. The goal of this paper is to propose a model for binary vectors clustering that accommo- dates outliers and allows simultaneously the incorporation of a feature selection methodology into the clustering process. We derive an EM al- gorithm to ¯t the proposed model. Through simulation studies and a set of experiments involving handwritten digit recognition and visual scenes categorization, we demonstrate the usefulness and e®ectiveness of our method.
Type de document :
Communication dans un congrès
International Conference on Neural Information Processing (ICONIP), Nov 2011, Shanghai, China. 2011
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00647989
Contributeur : Khalid Daoudi <>
Soumis le : dimanche 4 décembre 2011 - 16:21:12
Dernière modification le : jeudi 26 juillet 2018 - 14:08:02
Document(s) archivé(s) le : lundi 5 mars 2012 - 02:20:43

Fichier

Binaryoutliers.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00647989, version 1

Collections

Citation

Mohamed Al Mashrgy, Nizar Bouguila, Khalid Daoudi. A Robust Approach for Multivariate Binary Vectors Clustering and Feature Selection. International Conference on Neural Information Processing (ICONIP), Nov 2011, Shanghai, China. 2011. 〈hal-00647989〉

Partager

Métriques

Consultations de la notice

668

Téléchargements de fichiers

909