A general framework for online audio source separation - Archive ouverte HAL Access content directly
Conference Papers Year : 2012

A general framework for online audio source separation

(1) , (1)
1

Abstract

We consider the problem of online audio source separation. Existing algorithms adopt either a sliding block approach or a stochastic gradient approach, which is faster but less accurate. Also, they rely either on spatial cues or on spectral cues and cannot separate certain mixtures. In this paper, we design a general online audio source separation framework that combines both approaches and both types of cues. The model parameters are estimated in the Maximum Likelihood (ML) sense using a Generalised Expectation Maximisation (GEM) algorithm with multiplicative updates. The separation performance is evaluated as a function of the block size and the step size and compared to that of an offline algorithm.
Fichier principal
Vignette du fichier
LVA2012.pdf (102.86 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00655398 , version 1 (28-12-2011)

Identifiers

Cite

Laurent S. R. Simon, Emmanuel Vincent. A general framework for online audio source separation. International conference on Latent Variable Analysis and Signal Separation, Mar 2012, Tel-Aviv, Israel. ⟨hal-00655398⟩
399 View
389 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More