Skip to Main content Skip to Navigation
Conference papers

A general framework for online audio source separation

Laurent Simon 1 Emmanuel Vincent 1
1 METISS - Speech and sound data modeling and processing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : We consider the problem of online audio source separation. Existing algorithms adopt either a sliding block approach or a stochastic gradient approach, which is faster but less accurate. Also, they rely either on spatial cues or on spectral cues and cannot separate certain mixtures. In this paper, we design a general online audio source separation framework that combines both approaches and both types of cues. The model parameters are estimated in the Maximum Likelihood (ML) sense using a Generalised Expectation Maximisation (GEM) algorithm with multiplicative updates. The separation performance is evaluated as a function of the block size and the step size and compared to that of an offline algorithm.
Document type :
Conference papers
Complete list of metadata

Cited literature [12 references]  Display  Hide  Download
Contributor : Laurent S. R. Simon Connect in order to contact the contributor
Submitted on : Wednesday, December 28, 2011 - 11:59:09 AM
Last modification on : Thursday, January 20, 2022 - 5:26:44 PM
Long-term archiving on: : Thursday, March 29, 2012 - 2:20:33 AM


Files produced by the author(s)


  • HAL Id : hal-00655398, version 1
  • ARXIV : 1112.6178


Laurent Simon, Emmanuel Vincent. A general framework for online audio source separation. International conference on Latent Variable Analysis and Signal Separation, Mar 2012, Tel-Aviv, Israel. ⟨hal-00655398⟩



Les métriques sont temporairement indisponibles