Quick Detection of Nodes with Large Degrees

Abstract : Our goal is to quickly find top $k$ lists of nodes with the largest degrees in large complex networks. If the adjacency list of the network is known (not often the case in complex networks), a deterministic algorithm to find a node with the largest degree requires an average complexity of $\mbox{O}(n)$, where $n$ is the number of nodes in the network. Even this modest complexity can be very high for large complex networks. We propose to use the random walk based method. We show theoretically and by numerical experiments that for large networks the random walk method finds good quality top lists of nodes with high probability and with computational savings of orders of magnitude. We also propose stopping criteria for the random walk method which requires very little knowledge about the structure of the network.
Type de document :
[Research Report] RR-7881, INRIA. 2012
Liste complète des métadonnées

Contributeur : Konstantin Avrachenkov <>
Soumis le : mercredi 15 février 2012 - 10:05:05
Dernière modification le : samedi 27 janvier 2018 - 01:31:41
Document(s) archivé(s) le : mercredi 16 mai 2012 - 02:20:41


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00670278, version 1
  • ARXIV : 1202.3261



Konstantin Avrachenkov, Nelly Litvak, Marina Sokol, Don Towsley. Quick Detection of Nodes with Large Degrees. [Research Report] RR-7881, INRIA. 2012. 〈hal-00670278〉



Consultations de la notice


Téléchargements de fichiers