Sensor Data Fusion for Road Obstacle Detection: A Validation Framework

Abstract : Real-time obstacle detection is an essential function for the future of Advanced Driving Assistance Systems (ADAS), but its applications to the driving safety require a very high reliability: the detection rate must be high, while the false detection rate must remain extremely low. Such features seem antinomic for obstacle detection systems, especially when using a single sensor. Therefore, multi-sensor fusion is often considered as a mean to reduce this limitation. In this paper, we propose to use stereo-vision as a post-process to improve the reliability of any obstacle detection system, by reducing the number of false positives. Our algorithm, which is both generic and real-time con firms detections by locally using the stereoscopic data.
Type de document :
Chapitre d'ouvrage
Ciza Thomas. Sensor Fusion and Its Applications, in-tech / Sciyo, 2010, 978-953-307-101-5
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00683751
Contributeur : Mathias Perrollaz <>
Soumis le : jeudi 29 mars 2012 - 18:15:39
Dernière modification le : jeudi 11 janvier 2018 - 06:21:47
Document(s) archivé(s) le : samedi 30 juin 2012 - 02:36:10

Fichier

InTech-Sensor_data_fusion_for_...
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00683751, version 1

Collections

Citation

Raphaël Labayrade, Mathias Perrollaz, Gruyer Dominique, Didier Aubert. Sensor Data Fusion for Road Obstacle Detection: A Validation Framework. Ciza Thomas. Sensor Fusion and Its Applications, in-tech / Sciyo, 2010, 978-953-307-101-5. 〈hal-00683751〉

Partager

Métriques

Consultations de la notice

461

Téléchargements de fichiers

743