Tracking Level Set Representation Driven by a Stochastic Dynamics

Abstract : We introduce a non-linear stochastic filtering technique to track the state of a free curve from image data. The approach we propose is implemented through a particle filter, which includes color measurements characterizing the target and the background respectively. We design a continuous-time dynamics that allows us to infer inter-frame deformations. The curve is defined by an implicit level-set representation and the stochastic dynamics is expressed on the level-set function. It takes the form of a stochastic partial differential equation with a Brownian motion of low dimension. Specific noise models lead to the traditional level set evolution law based on mean curvature motions, while other forms lead to new evolution laws with different smoothing behaviors. In these evolution models, we propose to combine local photometric information, some velocity induced by the curve displacement and an uncertainty modeling of the dynamics. The associated filter capabilities are demonstrated on various sequences with highly deformable objects.
Type de document :
Communication dans un congrès
International Conference on Curves and Surfaces, Jul 2010, Avignon, France. Springer, 6920/2012, pp.130-141, 2012, Lecture Notes in Computer Science. 〈10.1007/978-3-642-27413-8_8〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00694591
Contributeur : Etienne Memin <>
Soumis le : vendredi 4 mai 2012 - 18:59:44
Dernière modification le : mercredi 11 avril 2018 - 02:01:09
Document(s) archivé(s) le : dimanche 5 août 2012 - 02:40:49

Fichier

Avenel-10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Christophe Avenel, Etienne Memin, Patrick Pérez. Tracking Level Set Representation Driven by a Stochastic Dynamics. International Conference on Curves and Surfaces, Jul 2010, Avignon, France. Springer, 6920/2012, pp.130-141, 2012, Lecture Notes in Computer Science. 〈10.1007/978-3-642-27413-8_8〉. 〈hal-00694591〉

Partager

Métriques

Consultations de la notice

293

Téléchargements de fichiers

126