Markov Processes with Restart

Abstract : We consider a general honest homogeneous continuous-time Markov process with restarts. The process is forced to restart from a given distribution at time moments generated by an independent Poisson process. The motivation to study such processes comes from modeling human and animal mobility patterns, restart processes in communication protocols, and from application of restarting random walks in information retrieval. We provide a connection between the transition probability functions of the original Markov process and the modified process with restarts. We give closed-form expressions for the invariant probability measure of the modified process. When the process evolves on the Euclidean space there is also a closed-form expression for the moments of the modified process. We show that the modified process is always positive Harris recurrent and exponentially ergodic with the index equal to (or bigger than) the rate of restarts. Finally, we illustrate the general results by the standard and geometric Brownian motions.
Type de document :
[Research Report] RR-8000, INRIA. 2012
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger
Contributeur : Konstantin Avrachenkov <>
Soumis le : mercredi 20 juin 2012 - 12:13:23
Dernière modification le : samedi 27 janvier 2018 - 01:31:44
Document(s) archivé(s) le : jeudi 15 décembre 2016 - 16:56:16


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00710217, version 1
  • ARXIV : 1206.5674



Konstantin Avrachenkov, Alexei Piunovskiy, Zhang Yi. Markov Processes with Restart. [Research Report] RR-8000, INRIA. 2012. 〈hal-00710217〉



Consultations de la notice


Téléchargements de fichiers