A new feature and associated optimal spatial filter for EEG signal classification: Waveform Length

Fabien Lotte 1, 2
1 Potioc - Popular interaction with 3d content
LaBRI - Laboratoire Bordelais de Recherche en Informatique, Inria Bordeaux - Sud-Ouest
Abstract : In this paper, we introduce Waveform Length (WL), a new feature for ElectroEncephaloGraphy (EEG) signal classification which measures the signal complexity. We also propose the Waveformlength Optimal Spatial Filter (WOSF), an optimal spatial filter to classify EEG signals based on WL features. Evaluations on 15 subjects suggested that WOSF with WL features provide performances that are competitive with that of Common Spatial Patterns (CSP) with Band Power (BP) features, CSP being the optimal spatial filter for BP features. More interestingly, our results suggested that combining WOSF with CSP features leads to classification performances that are significantly better than that of CSP alone (80% versus 77% average accuracy respectively).
Type de document :
Communication dans un congrès
International Conference on Pattern Recognition (ICPR), Nov 2012, Tsukuba, Japan. 2012
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00717617
Contributeur : Fabien Lotte <>
Soumis le : vendredi 13 juillet 2012 - 11:31:16
Dernière modification le : jeudi 11 janvier 2018 - 06:24:06
Document(s) archivé(s) le : dimanche 14 octobre 2012 - 02:41:04

Fichier

lotte12.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00717617, version 1

Collections

Citation

Fabien Lotte. A new feature and associated optimal spatial filter for EEG signal classification: Waveform Length. International Conference on Pattern Recognition (ICPR), Nov 2012, Tsukuba, Japan. 2012. 〈hal-00717617〉

Partager

Métriques

Consultations de la notice

220

Téléchargements de fichiers

295