A marker-based approach for the automated selection of a single segmentation from a hierarchical set of image segmentations

Abstract : The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected \textit{markers} for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.
Type de document :
Article dans une revue
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, 2012, 5 (1), pp.262-272. 〈10.1109/JSTARS.2011.2173466〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00729001
Contributeur : Yuliya Tarabalka <>
Soumis le : vendredi 7 septembre 2012 - 11:21:09
Dernière modification le : lundi 9 avril 2018 - 12:22:34
Document(s) archivé(s) le : samedi 8 décembre 2012 - 03:40:37

Fichier

2012_TARABALKA_JSTARS_MHSEG.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Yuliya Tarabalka, James Tilton, Jon Atli Benediktsson, Jocelyn Chanussot. A marker-based approach for the automated selection of a single segmentation from a hierarchical set of image segmentations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, 2012, 5 (1), pp.262-272. 〈10.1109/JSTARS.2011.2173466〉. 〈hal-00729001〉

Partager

Métriques

Consultations de la notice

453

Téléchargements de fichiers

199