Fast Computation of Orthogonal Polar Harmonic Transforms

Thai V. Hoang 1 Salvatore Tabbone 2
1 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
2 QGAR - Querying Graphics through Analysis and Recognition
LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : This paper presents a method for the computation of polar harmonic transforms that is fast and efficient. The method is based on the inherent recurrence relations among harmonic functions that are used in the definitions of the radial and angular kernels of the transforms. The employment of these relations leads to recursive strategies for fast computation of harmonic function-based kernels. Polar harmonic transforms were recently proposed and have shown nice properties for image representation and pattern recognition. The proposed method is 10-time faster than direct computation and five-time faster than fast computation of Zernike moments.
Type de document :
Communication dans un congrès
ICPR 2012 - The 21st International Conference on Pattern Recognition, Nov 2012, Tsukuba Science City, Japan. 2012


https://hal.inria.fr/hal-00734307
Contributeur : Thai V. Hoang <>
Soumis le : samedi 27 octobre 2012 - 14:17:28
Dernière modification le : jeudi 22 septembre 2016 - 14:33:21
Document(s) archivé(s) le : lundi 28 janvier 2013 - 02:35:09

Fichier

PID2416719.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00734307, version 1

Collections

Citation

Thai V. Hoang, Salvatore Tabbone. Fast Computation of Orthogonal Polar Harmonic Transforms. ICPR 2012 - The 21st International Conference on Pattern Recognition, Nov 2012, Tsukuba Science City, Japan. 2012. <hal-00734307>

Exporter

Partager

Métriques

Consultations de
la notice

162

Téléchargements du document

402