Learning of fuzzy spatial relations between handwritten patterns

Abstract : It is widely admitted that modelling of spatial information is very important for interpretation and recognition of handwritten expressions. Two distinct tasks have to be addressed by spatial models in this context. Evaluation task consists in measuring the correspondence between the relationship of two objects and a predefined model of spatial relation. Localisation task consists in retrieving objects that are related to a reference object according to a predefined model of spatial relation. In this work, we introduce a new modelling of relative spatial positioning that handles the two tasks under a unified framework and a training scheme for learning spatial models from data. The use of fuzzy mathematical morphology allows to deal with imprecision of positioning and to adapt to varying shapes of handwritten objects. Experimentations of the evaluation task over two datasets of online handwritten patterns prove that the proposed modelling outperforms commonly used relative positioning features.
Type de document :
Article dans une revue
international journal on data mining, modelling and management, Inderscience, 2014, 6 (2)
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00735545
Contributeur : Adrien Delaye <>
Soumis le : mercredi 26 septembre 2012 - 03:41:39
Dernière modification le : mardi 16 janvier 2018 - 15:54:19
Document(s) archivé(s) le : jeudi 27 décembre 2012 - 04:30:18

Fichier

Delaye2012_ijdmmm_author.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00735545, version 1

Citation

Adrien Delaye, Eric Anquetil. Learning of fuzzy spatial relations between handwritten patterns. international journal on data mining, modelling and management, Inderscience, 2014, 6 (2). 〈hal-00735545〉

Partager

Métriques

Consultations de la notice

373

Téléchargements de fichiers

168