Estimation for Stochastic Damping Hamiltonian Systems under Partial Observation. I. Invariant density.

Patrick Cattiaux 1 Jose R. Leon 2 Clémentine Prieur 3
1 Institut de Mathématiques de Toulouse
IMT - Institut de Mathématiques de Toulouse UMR5219
2 Universidad Central de Venezuela
Universidad Central de Venezuela
3 MOISE - Modelling, Observations, Identification for Environmental Sciences
LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble , Inria Grenoble - Rhône-Alpes
Abstract : In this paper, we study the non-parametric estimation of the invariant density of some ergodic hamiltonian systems, using kernel estimators. The main result is a central limit theorem for such estimators under partial observation (only the positions are observed). The main tools are mixing estimates and refined covariance inequalities, the main difficulty being the strong degeneracy of such processes. This is the first paper of a series of at least two, devoted to the estimation of the characteristics of such processes: invariant density, drift term, volatility ....
Document type :
Journal articles
Stochastic Processes and their Applications, Elsevier, 2014, 124 (3), pp.1236-1260. <10.1016/j.spa.2013.10.008>


https://hal.archives-ouvertes.fr/hal-00739136
Contributor : Clémentine Prieur <>
Submitted on : Monday, November 4, 2013 - 10:07:43 AM
Last modification on : Friday, January 15, 2016 - 1:02:15 AM

File

CattiauxLeonPrieur_29_10_13.pd...
Files produced by the author(s)

Identifiers

Citation

Patrick Cattiaux, Jose R. Leon, Clémentine Prieur. Estimation for Stochastic Damping Hamiltonian Systems under Partial Observation. I. Invariant density.. Stochastic Processes and their Applications, Elsevier, 2014, 124 (3), pp.1236-1260. <10.1016/j.spa.2013.10.008>. <hal-00739136v2>

Export

Share

Metrics

Record views

308

Document downloads

162