Data assimilation with state alignment using high-level image structures detection

Alexandros Makris 1 Nicolas Papadakis 1
1 MOISE - Modelling, Observations, Identification for Environmental Sciences
LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble , Inria Grenoble - Rhône-Alpes
Abstract : Sequential and variational assimilation methods allow tracking physical states using dynamic prior together with external observation of the studied system. However, when dense image satellite observations are available, such approaches realize a correction of the amplitude of the different state values but do not incorporate the spatial errors of structure positions. In the case of the position of a vortex, for example, when there is misfit between state and observation, the processes can be long to converge and even diverge when high dimensional state spaces are treated with few iterations of the assimilation methods as it is the case in operational algorithms. In this paper, we tackle this issue by proposing an alignment method based on modern object detection methods that uses visual correspondences between the physical state model and the structural information given by a sequence of image observing the phenomena.
Type de document :
Communication dans un congrès
CVRS 2012 - International Conference on Computer Vision in Remote Sensing, Dec 2012, Xiamen, China. IEEE, pp.78-83, 2012, <10.1109/CVRS.2012.6421237>


https://hal.archives-ouvertes.fr/hal-00740666
Contributeur : Nicolas Papadakis <>
Soumis le : mercredi 10 octobre 2012 - 16:06:23
Dernière modification le : mardi 29 juillet 2014 - 01:13:21
Document(s) archivé(s) le : vendredi 11 janvier 2013 - 03:42:02

Fichier

cvrs2012.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alexandros Makris, Nicolas Papadakis. Data assimilation with state alignment using high-level image structures detection. CVRS 2012 - International Conference on Computer Vision in Remote Sensing, Dec 2012, Xiamen, China. IEEE, pp.78-83, 2012, <10.1109/CVRS.2012.6421237>. <hal-00740666>

Exporter

Partager

Métriques

Consultations de
la notice

188

Téléchargements du document

110