A Novel Sparse Graphical Approach for Multimodal Brain Connectivity Inference

Abstract : Despite the clear potential benefits of combining fMRI and diffusion MRI in learning the neural pathways that underlie brain functions, little methodological progress has been made in this direction. In this paper, we propose a novel multimodal integration approach based on sparse Gaussian graphical model for estimating brain connectivity. Casting functional connectivity estimation as a sparse inverse covariance learning problem, we adapt the level of sparse penalization on each connection based on its anatomical capacity for functional interactions. Functional connections with little anatomical support are thus more heavily penalized. For validation, we showed on real data collected from a cohort of 60 subjects that additionally modeling anatomical capacity significantly increases subject consistency in the detected connection patterns. Moreover, we demonstrated that incorporating a connectivity prior learned with our multimodal connectivity estimation approach improves activation detection.
Type de document :
Communication dans un congrès
Medical Image Computing and Computer Assisted Intervention, Oct 2012, Nice, France. 2012
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00741631
Contributeur : Bernard Ng <>
Soumis le : lundi 15 octobre 2012 - 04:04:51
Dernière modification le : vendredi 22 juin 2018 - 01:20:42
Document(s) archivé(s) le : samedi 17 décembre 2016 - 01:01:18

Fichier

camReady.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00741631, version 1

Collections

Citation

Bernard Ng, Gaël Varoquaux, Jean-Baptiste Poline, Bertrand Thirion. A Novel Sparse Graphical Approach for Multimodal Brain Connectivity Inference. Medical Image Computing and Computer Assisted Intervention, Oct 2012, Nice, France. 2012. 〈hal-00741631〉

Partager

Métriques

Consultations de la notice

284

Téléchargements de fichiers

457