Current-based 4D shape analysis for the mechanical personalization of heart models

Abstract : Patient-specific models of the heart may lead to better understanding of cardiovascular diseases and better planning of therapy. A machine-learning approach to the personalization of an electro-mechanical model of the heart, from the kinematics of the endo- and epicardium, is presented in this paper. We use 4D mathematical currents to encapsulate information about the shape and deformation of the heart. The method is largely insensitive to initialization and does not require on-line simulation of the cardiac function. In this work, we demonstrate the performance of our approach for the joint estimation of three parameters on one heart geometry. We manage to retrieve parameters such that the model matches the 4D observations with an accuracy below the voxel size, in less than three minutes of computation.
Type de document :
Communication dans un congrès
Menze, Bjoern and Langs, Georg and Montillo, Albert and Tu, Zhuowen and Criminisi, Antonio. MCV - MICCAI Workshop on Medical Computer Vision - 2012, Oct 2012, Nice, France. Springer Berlin Heidelberg, 7766, pp.283-292, 2012, LNCS; Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. <http://link.springer.com/chapter/10.1007/978-3-642-36620-8_28>. <10.1007/978-3-642-36620-8_28>


https://hal.inria.fr/hal-00746740
Contributeur : Loic Le Folgoc <>
Soumis le : lundi 29 octobre 2012 - 15:46:49
Dernière modification le : vendredi 28 juin 2013 - 11:48:08
Document(s) archivé(s) le : mercredi 30 janvier 2013 - 03:40:54

Fichier

LL_MCV2012.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Loic Le Folgoc, Hervé Delingette, Antonio Criminisi, Nicholas Ayache. Current-based 4D shape analysis for the mechanical personalization of heart models. Menze, Bjoern and Langs, Georg and Montillo, Albert and Tu, Zhuowen and Criminisi, Antonio. MCV - MICCAI Workshop on Medical Computer Vision - 2012, Oct 2012, Nice, France. Springer Berlin Heidelberg, 7766, pp.283-292, 2012, LNCS; Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. <http://link.springer.com/chapter/10.1007/978-3-642-36620-8_28>. <10.1007/978-3-642-36620-8_28>. <hal-00746740>

Exporter

Partager

Métriques

Consultations de
la notice

193

Téléchargements du document

147