Skip to Main content Skip to Navigation
New interface
Journal articles

A novel bicriteria scheduling heuristics providing a guaranteed global system failure rate

Abstract : We propose a new framework for the (length,reliability) bicriteria static multiprocessor scheduling problem. Our first criterion remains the schedule's length, crucial to assess the system's real-time property. For our second criterion, we consider the global system failure rate, seen as if the whole system were a single task scheduled onto a single processor, instead of the usual reliability, because it does not depend on the schedule length like the reliability does (due to its computation in the classical exponential distribution model). Therefore, we control better the replication factor of each individual task of the dependency task graph given as a specification, with respect to the desired failure rate. To solve this bicriteria optimization problem, we take the failure rate as a constraint, and we minimize the schedule length. We are thus able to produce, for a given dependency task graph and multiprocessor architecture, a Pareto curve of non-dominated solutions, among which the user can choose the compromise that fits his requirements best. Compared to the other bicriteria (length,reliability) scheduling algorithms found in the literature, the algorithm we present here is the first able to improve significantly the reliability, by several orders of magnitude, making it suitable to safety critical systems.
Document type :
Journal articles
Complete list of metadata

Cited literature [26 references]  Display  Hide  Download
Contributor : Alain Girault Connect in order to contact the contributor
Submitted on : Monday, October 29, 2012 - 4:05:42 PM
Last modification on : Wednesday, July 6, 2022 - 4:13:50 AM
Long-term archiving on: : Wednesday, January 30, 2013 - 3:41:08 AM


Files produced by the author(s)


  • HAL Id : hal-00746768, version 1



Alain Girault, Hamoudi Kalla. A novel bicriteria scheduling heuristics providing a guaranteed global system failure rate. IEEE Transactions on Dependable and Secure Computing, 2009, 6 (4), pp.241--254. ⟨hal-00746768⟩



Record views


Files downloads