Curvilinear schemes and maximum rank of forms

Edoardo Ballico 1 Alessandra Bernardi 2
2 GALAAD - Geometry, algebra, algorithms
CRISAM - Inria Sophia Antipolis - Méditerranée , UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR6621
Abstract : We define the \emph{curvilinear rank} of a degree $d$ form $P$ in $n+1$ variables as the minimum length of a curvilinear scheme, contained in the $d$-th Veronese embedding of $\mathbb{P}^n$, whose span contains the projective class of $P$. Then, we give a bound for rank of any homogenous polynomial, in dependance on its curvilinear rank.
Document type :
Preprints, Working Papers, ...
Liste complète des métadonnées

Cited literature [14 references]  Display  Hide  Download

https://hal.inria.fr/hal-00747023
Contributor : Alessandra Bernardi <>
Submitted on : Tuesday, October 30, 2012 - 1:06:10 PM
Last modification on : Thursday, January 11, 2018 - 4:02:53 PM
Document(s) archivé(s) le : Thursday, January 31, 2013 - 3:46:33 AM

Files

lanostraquestion.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00747023, version 1
  • ARXIV : 1210.8171

Collections

Citation

Edoardo Ballico, Alessandra Bernardi. Curvilinear schemes and maximum rank of forms. 2012. ⟨hal-00747023⟩

Share

Metrics

Record views

326

Files downloads

151