Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding

Abstract : This paper describes a single-image super-resolution (SR) algorithm based on nonnegative neighbor embedding. It belongs to the family of single-image example-based SR algorithms, since it uses a dictionary of low resolution (LR) and high resolution (HR) trained patch pairs to infer the unknown HR details. Each LR feature vector in the input image is expressed as the weighted combination of its K nearest neighbors in the dictionary; the corresponding HR feature vector is reconstructed under the assumption that the local LR embedding is preserved. Three key aspects are introduced in order to build a low-complexity competitive algorithm: (i) a compact but efficient representation of the patches (feature representation) (ii) an accurate estimation of the patches by their nearest neighbors (weight computation) (iii) a compact and already built (therefore external) dictionary, which allows a one-step upscaling. The neighbor embedding SR algorithm so designed is shown to give good visual results, comparable to other state-of-the-art methods, while presenting an appreciable reduction of the computational time.
Type de document :
Communication dans un congrès
British Machine Vision Conference (BMVC), Sep 2012, Guildford, Surrey, United Kingdom. 2012
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00747054
Contributeur : Marco Bevilacqua <>
Soumis le : jeudi 15 novembre 2012 - 21:34:12
Dernière modification le : mardi 16 janvier 2018 - 15:54:20
Document(s) archivé(s) le : samedi 17 décembre 2016 - 06:21:55

Fichier

bmvc_final_submitted.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00747054, version 1

Citation

Marco Bevilacqua, Aline Roumy, Christine Guillemot, Marie-Line Alberi Morel. Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding. British Machine Vision Conference (BMVC), Sep 2012, Guildford, Surrey, United Kingdom. 2012. 〈hal-00747054〉

Partager

Métriques

Consultations de la notice

3728

Téléchargements de fichiers

208