MAP-AIDED LOCALLY LINEAR EMBEDDING METHODS FOR IMAGE PREDICTION

Abstract : Image prediction methods based on data dimensionality reduction techniques have been introduced in [1]. Although efficient, these methods suffer from limitations when the block to be predicted and its neighborhood (or template) are not correlated, e.g. in non homogenous texture areas. To cope with these limitations, this paper introduces new image prediction methods based on locally linear embedding (LLE) technique in which the required K-NN search is aided, at the decoder, by a block correspondence map, hence the name Map-Aided Locally Linear Embedding (MALLE) method. Another optimized variant of this approach, called oMALLE method, is also studied. The resulting prediction methods are shown to bring significant Rate-Distortion (RD) performance improvements when compared to H.264 Intra prediction modes (up to 40.78 % rate saving at low bit rates).
Type de document :
Communication dans un congrès
ICIP'12 - International Conference on Image Processing, Sep 2012, Orlando, United States. 2012
Liste complète des métadonnées

https://hal.inria.fr/hal-00749966
Contributeur : Safa Cherigui <>
Soumis le : jeudi 8 novembre 2012 - 16:46:05
Dernière modification le : mardi 16 janvier 2018 - 15:54:20

Identifiants

  • HAL Id : hal-00749966, version 1

Citation

Safa Cherigui, Christine Guillemot, Dominique Thoreau, Philippe Guillotel, Patrick Perez. MAP-AIDED LOCALLY LINEAR EMBEDDING METHODS FOR IMAGE PREDICTION. ICIP'12 - International Conference on Image Processing, Sep 2012, Orlando, United States. 2012. 〈hal-00749966〉

Partager

Métriques

Consultations de la notice

386